Science.gov

Sample records for quartz vein gold

  1. Gold grade distribution within an epithermal quartz vein system, Kestanelik, NW Turkey: implications for gold exploration

    NASA Astrophysics Data System (ADS)

    Gulyuz, Nilay; Shipton, Zoe; Gulyuz, Erhan; Lord, Richard; Kaymakci, Nuretdin; Kuscu, İlkay

    2017-04-01

    Vein-hosted gold deposits contribute a large part to the global gold production. Discovery of these deposits mainly include drilling of hundreds of holes, collecting thousands of soil and rock samples and some geophysical surveys which are expensive and time consuming. Understanding the structures hosting the veins and the variations in gold concentrations within the veins is crucial to constrain a more economic exploration program. The main aim of this study is to investigate the gold grade distribution in the mineralized quartz veins of a well exposed epithermal gold deposit hosted by Paleozoic schist and Eocene quartz-feldspar-hornblende porphyry in Lapseki, NW Turkey. We have constructed 3D architecture of the vein surfaces by mapping their outcrop geometries using a highly sensitive Trimble GPS, collecting detailed field data, well-logs and geochemistry data from 396 drill holes (255 diamond cut and 141 reverse circulation holes). Modelling was performed in MOVE Structural Modelling and Analysis software granted by Midland Valley's Academic Software Initiative, and GIS application softwares Global Mapper and Esri-ArcGIS. We envisaged that while fluid entering the conduit ascents, a sudden thickness increase in the conduit would lead to a drop in the fluid pressure causing boiling (the most dominant gold precipitation mechanism) and associated gold precipitation. Regression analysis was performed between the orthogonal thickness values and gold grades of each vein, and statistical analyses were performed to see if the gold is concentrated at specific structural positions along dip. Gold grades in the alteration zones were compared to those in the adjacent veins to understand the degree of mineralization in alteration zones. A possible correlation was also examined between the host rock type and the gold grades in the veins. These studies indicated that gold grades are elevated in the adjacent alteration zones where high gold grades exist in the veins. Schist

  2. Fluid immiscibility and gold deposition in the Birimian quartz veins of the Angovia deposit (Yaouré, Ivory Coast)

    NASA Astrophysics Data System (ADS)

    Coulibaly, Y.; Boiron, M. C.; Cathelineau, M.; Kouamelan, A. N.

    2008-02-01

    The Paleoproterozoic terranes (Birimian) of West Africa are well known to host numerous economic gold mineralizations. The Angovia gold mineralization is located in a brecciated and mylonitic zone within the Birimian greenstones. The sulfide-gold mineralization is mainly represented by gold associated with pyrite and chalcopyrite. A fluid inclusion study undertaken on mineralized quartz veins revealed the presence of aqueous-carbonic (CO 2-H 2O) fluids, the association of carbonic (CO 2) and early aqueous fluids, followed by later aqueous (H 2O-salt) and finally nitrogen-rich fluids. Entrapment of the initial homogeneous aqueous-carbonic fluids prior to fluid immiscibility depicts the evolution of the P-T conditions during the exhumation of the terranes after the peak of green-schist metamorphism. The CO 2 rich-fluid occurs especially in gold-bearing quartz, and are considered as the main evidence of the ore-forming process in the gold-bearing quartz veins. It is considered as a product of immiscibility of the CO 2-H 2O parent. The volatile fraction of carbonic and aqueous-carbonic fluid inclusions is dominated by CO 2, containing minor amounts of N 2, even smaller amounts of CH 4 and sporadically, H 2S. The aqueous-carbonic fluids have moderate salinity (3-10 wt.% eq. NaCl). Late aqueous and N 2 - (CH 4-CO 2) fluids are considered as later, unrelated to the main ore stage, and were trapped during the cooling of the hydrothermal system from 300 to 200 °C. The immiscibility has been favored by a strong pressure drop, the main trapping P-T conditions being 320-370 °C and 105-135 MPa. The mineralizing process is likely related to the immiscibility event, which was probably favored by the release of the fluid pressure after fracturing along the main shear zones. The ore process is likely to have occurred along the main shear zones or related secondary structures affected by cycling of the fluid pressure and quartz sealing-fracturing processes. The superimposed

  3. Telescoped porphyry Cu-Mo-Au mineralisation, advanced argillic alteration and quartz-sulphide-gold-anhydrite veins in the Thames District, New Zealand

    NASA Astrophysics Data System (ADS)

    Brathwaite, R.; Simpson, M.; Faure, K.; Skinner, D.

    2001-10-01

    Porphyry Cu-Mo-Au mineralisation with associated potassic and phyllic alteration, an advanced argillic alteration cap and epithermal quartz-sulphide-gold-anhydrite veins, are telescoped within a vertical interval of 400-800 m on the northeastern margin of the Thames district, New Zealand. The geological setting is Jurassic greywacke basement overlain by Late Miocene andesitic-dacitic rocks that are extensively altered to propylitic and argillic assemblages. The porphyry Cu-Mo-Au mineralisation is hosted in a dacite porphyry stock and surrounding intrusion breccia. Relicts of a core zone of potassic K-feldspar-magnetite±biotite alteration are overprinted by phyllic quartz-sericite-pyrite or intermediate argillic chlorite-sericite alteration assemblages. Some copper occurs in quartz-magnetite-chlorite-pyrite-chalcopyrite veinlets in the core zone, but the bulk of the copper and the molybdenum are associated with the phyllic alteration as disseminated chalcopyrite and as molybdenite-sericite-carbonate veinlets. The advanced argillic cap has a quartz-alunite-dickite core, which is enveloped by an extensive pyrophyllite-diaspore-dickite-kaolinite assemblage that overlaps with the upper part of the phyllic alteration zone. Later quartz-sphalerite-galena-pyrite-chalcopyrite-gold-anhydrite±carbonate veins occur within and around the margins of the porphyry intrusion, and are associated with widespread illite-carbonate (argillic) alteration. Multiphase fluid inclusions in quartz stockwork veins associated with the potassic alteration trapped a highly saline (50-84 wt% NaCl equiv.) magmatic fluid at high temperatures (450 to >600 °C). These hypersaline brines were probably trapped at a pressure of about 300 bar, corresponding to a depth of 1.2 km under lithostatic conditions. This shallow depth is consistent with textures of the host dacite porphyry and reconstruction of the volcanic stratigraphy. Liquid-rich fluid inclusions in the quartz stockwork veins and quartz

  4. The Laramide Caborca orogenic gold belt of northwestern Sonora, Mexico; white mica 40Ar/39Ar geochronology from gold-rich quartz veins

    USGS Publications Warehouse

    Izaguirre, Aldo; Kunk, Michael J.; Iriondo, Alexander; McAleer, Ryan; Caballero-Martinez, Juan Antonio; Espinosa-Arámburu, Enrique

    2016-02-12

    The COGB is approximately 600 kilometers long and 60 to 80 km wide, trends northwest, and extends from west-central Sonora to southern Arizona and California. The COGB contains mineralized gold-rich quartz veins that contain free gold associated with white mica (sericite), carbonate minerals (calcite and ankerite), and sulfides such as pyrite and galena. Limited geochronologic studies exist for parts of the COGB, and previous work was concentrated in mining districts. These previous studies recorded mineralization ages of approximately 70 to 40 Ma. Therefore, some workers proposed that the orogenic gold mineralization in the region occurred during a single pulse that was associated with the Laramide Orogeny that took place during the Cretaceous to early Eocene in the western margin of North America. However, the geochronologic dataset was quite limited, making any regional interpretations tenuous. Accordingly, one of the objectives of this geochronology study was to get a better representative sampling of the COGB in order to obtain a more complete record of the mineralization history. The 63 samples presented in this work are broadly distributed throughout the area of the COGB and allow us to better test the hypothesis that mineralization occurred in a single pulse.

  5. Relationship between amorphous silica and precious metal in quartz veins

    NASA Astrophysics Data System (ADS)

    Harrichhausen, N.; Rowe, C. D.; Board, W. S.; Greig, C. J.

    2015-12-01

    Super-saturation of silica is common in fault fluids, due to pressure changes associated with fracture, fault slip, or temperature gradients in hydrothermal systems. These mechanisms lead to precipitation of amorphous silica, which will recrystallize to quartz under typical geologic conditions. These conditions may also promote the saturation of precious metals, such as gold, and the precipitation of nanoparticles. Previous experiments show that charged nanoparticles of gold can attach to the surface of amorphous silica nanoparticles. Thus, gold and silica may be transported as a colloid influencing mineralization textures during amorphous silica recrystallization to quartz. This may enrich quartz vein hosted gold deposits, but the instability of hydrous silica during subsequent deformation means that the microstructural record of precipitation of gold is lost. We investigate a recent, shallow auriferous hydrothermal system at Dixie Valley, Nevada to reveal the nano- to micro-scale relationships between gold and silica in fresh veins. Fault slip surfaces at Dixie Valley exhibit layers of amorphous silica with partial recrystallization to quartz. Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) show amorphous silica can contain a few wt. % gold while areas recrystallized to quartz are barren. At the Jurassic Brucejack deposit in British Columbia, Canada we observe the cryptocrystalline quartz textures that may indicate recrystallization from amorphous silica within quartz-carbonate veins containing high grade gold. Comb quartz within syntaxial veins, vugs, and coating breccia clasts indicate structural dilation. Vein geometry is investigated to determine relative importance of fault slip in creating dilational sites. By comparing quartz-carbonate veins from the Dixie Valley to Brucejack, we can determine whether amorphous silica formed in different environments show similar potential to affect precious metal mineralization.

  6. Geology, Ore-microscopy and Fluid inclusion study on Auriferous Quartz Veins at the Gidami Gold Mine, Eastern Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Abd El Monsef, Mohamed; Salem, Ibrahim; Slobodnik, Marek

    2013-04-01

    The gold deposits are represented by auriferous quartz veins and aplitic dykes that are cutting through granitic rocks. The main lode of gold is confined to two principal veins occupying fracture zones and fissures. The main auriferous vein is striking mainly NNW-SSE with dipping 85° NE, it extends up to 450 m with an average thickness 120 cm. The second vein is striking NW-SE and dipping 60° E, it extends for 150 m with an average thickness 35 cm. The gold bearing veins are made up of fine grained quartz that is always massive, milky-white with reddish or greenish tint. They commonly include vugs, some of them are occasionally filled with iron oxides, carbonate and clay minerals. Sometimes the quartz veins enclose remnants of altered wall rock materials as an indication for the metamorphic or syntectonic nature of the veins. Brecciation, comb layering, swelling and nodules manganese dendrites are usually detected. The microscopic examination for thin and polished sections of auriferous quartz veins revealed that quartz and calcite are the predominant minerals commonly associated with accessory minerals (fluorite, apatite, zircon, muscovite and sericite). Ore mineral assemblage is found as disseminated sulfide minerals (pyrite, sphalerite, chalcopyrite, molybdenite, pyrrhotite covellite, galena and pentlandite). Ilmenite and goethite are the main iron oxide mineral phases. Gold most commonly occurs as small inclusions within pyrite or goethite. Gold also occurs as tiny grains scattered within quartz vein (in close proximity to the sulfides) or as disseminated grains in the altered wall rocks. Hydrothermal alteration includes silicification, kaolinitization, sericitisation, carbonatisation confined to a delicate set of veins. Petrography and microthermometry of fluid inclusions revealed that the majority of inclusions are of primary/pseudosecondary nature that occur in clusters and along growth zones or along intra-granular planar trails (pseudosecondary

  7. Zonation of primary haloes of Atud auriferous quartz vein deposit, Central Eastern Desert of Egypt: A potential exploration model targeting for hidden mesothermal gold deposits

    NASA Astrophysics Data System (ADS)

    Harraz, Hassan Z.; Hamdy, Mohamed M.

    2015-01-01

    The Atud gold mine located in the Neoproterozoic diorite and metagabbro of the Central Eastern Desert of Egypt has been initially excavated during Pharaonic times. Between 1953 and 1969, the Egyptian Geological Survey and Mining Authority performed underground prospection in the auriferous quartz vein and metasomatic alteration zones in the main Atud area, estimating a principal gold lode of 19,000 tones (16.28 g/ton), and 1600 tons of damp (1.24 g/ton). Yet the potentiality of the deposit has not been exhausted. However, for exploration of hidden ore, quantitative characterization using trace elements zoning of mineralization haloes with 280 samples from surface and three underground mining levels is applied. This was through multivariate statistical analysis (Factor analysis) of 11 selected trace elements. Axial (vertical) extents of primary haloes above and beneath gently dipping orebody are also visualized to interpret the level of erosion, determine the direction of mineralizing solutions as well as to examine whether the hidden orebody is promising at the Atud mine. Axial zones of primary dispersion aureoles of trace elements are: Ag, As, S and U around the auriferous quartz veins; Cu, and Pb in the surface horizons; and Zn, Ni, Co, and U along the lower margin of mineralization zone. Gold contents in bedrock and quartz vein samples from level-42M are the highest (5.7 and 40.3 ppm, respectively). In the transverse (lateral) direction, the maximum relative accumulation of Au and Zn occurs at the Northern Shaft; Pb, Cu, As, and U at the Main Shaft; and Ag, S, Co, and Ni at the Southern Shaft. The estimated axial zonation sequence of indicator elements using the variability index is Pb → Cu → Ag → Au → As → S → Ni → Co → U → Zn. According to this zonation, an index such as (Pb × Cu)D/(U × Zn)D can be a significant for predicting the Au potentiality at a particular depth. In addition, the Pb/U zonality index is an appropriate indicator for the

  8. Gold Veins near Great Falls, Maryland

    USGS Publications Warehouse

    Reed, John Calvin; Reed, John C.

    1969-01-01

    Small deposits of native gold are present along an anastomosing system of quartz veins and shear zones just east of Great Falls, Montgomery County, Md. The deposits were discovered in 1861 and were worked sporadically until 1951, yielding more than 5,000 ounces of gold. The vein system and the principal veins within it strike a few degrees west of north, at an appreciable angle to foliation and fold axial planes in enclosing rocks of the Wissahickon Formation of late Precambrian (?) age. The veins cut granitic rocks of Devonian or pre-Devonian age and may be as young as Triassic. Further development of the deposits is unlikely under present economic conditions because of their generally low gold content and because much of the vein system lies on park property, but study of the Great Falls vein system may be useful in the search for similar deposits elsewhere in the Appalachian Piedmont.

  9. Structure, alteration, and geochemistry of the Charlotte quartz vein stockwork, Mt Charlotte gold mine, Kalgoorlie, Australia: time constraints, down-plunge zonation, and fluid source

    NASA Astrophysics Data System (ADS)

    Mueller, Andreas G.

    2015-02-01

    The Kalgoorlie district in the Archean Yilgarn Craton, Western Australia, comprises two world-class gold deposits: Mt Charlotte (144 t Au produced to 2013) in the northwest and the Golden Mile (1,670 t Au) in the southeast. Both occur in a folded greenschist-facies gabbro sill adjacent to the Golden Mile Fault (D2) in propylitic alteration associated with porphyry dikes. At Mt Charlotte, a shear array of fault-fill veins within the Golden Mile Fault indicates sinistral strike-slip during Golden Mile-type pyrite-telluride mineralization. The pipe-shaped Charlotte quartz vein stockwork, mined in bulk more than 1 km down plunge, is separated in time by barren D3 thrusts from Golden Mile mineralization and alteration, and occurs between two dextral strike-slip faults (D4). Movement on these faults generated an organized network of extension and shear fractures opened during the subsequent infiltration of high-pressure H2S-rich fluid at 2,655 ± 13 Ma (U-Pb xenotime). Gold was deposited during wall rock sulphidation in overlapping vein selvages zoned from deep albite-pyrrhotite (3 g/t Au) to upper muscovite-pyrite assemblages (5 g/t Au bulk grade). Chlorite and fluid inclusion thermometry indicate that this kilometre-scale zonation is due to fluid cooling from 410-440 °C at the base to 350-360 °C at the top of the orebody, while the greenstone terrane remained at 250 °C ambient temperature and at 300 MPa lithostatic pressure. The opened fractures filled with barren quartz and scheelite during the retrograde stage (300 °C) of the hydrothermal event. During fracture sealing, fluid flux was periodically restricted at the lower D3 thrust. Cycles of high and low up-flow, represented by juvenile H2O-CO2 and evolved H2O-CO2-CH4 fluid, respectively, are recorded by the REE and Sr isotope compositions of scheelite oscillatory zones. The temperature gradient measured in the vein stockwork points to a hot (>600 °C) fluid source 2-4 km below the mine workings, and several

  10. New Peak Temperature Constraints Using RSCM Geothermometry on Lucia Subterrane in Franciscan Complex (California, USA): Detection of Thermal Anomalies in Gold-Bearing Quartz Veins Surrounding.

    NASA Astrophysics Data System (ADS)

    Lahfid, A.; Delchini, S.; Lacroix, B.

    2015-12-01

    The occurrence of deposits hosted by carbonaceous materials-rich metasediments is widespread. Therefore, we aims in this study to investigate the potential of the Raman Spectroscopy of Carbonaceous Material (RSCM) geothermometry to detect thermal anomalies in hydrothermal ore deposits environment and to demonstrate the ability of warm fluids, migrating through the sedimentary sequence to locally disturb the thermal gradient and associated peak temperatures. For this purpose, we have chosen the Lucia subterrane in the Franciscan Complex (California, USA), which includes gold-bearing quartz veins that witness a hydrothermal overprint (Underwood et al., 1995).The sediments in this zone essentially comprise greywacke and shale-matrix mélange (e.g. Frey and Robinson, 1999), which have undergone high-pressure, low-temperature metamorphism. The thermal history of the Lucia subterrane has been previously proposed by Underwood et al. (1995), essentially using vitrinite reflectance method (Rm). Rm values increase from the south to the north; they vary between 0.9 and 3.7 % (~150-280°C). All these results suggest that the Lucia subterrane underwent a regional increase of thermal gradient toward the north. Anomalous Rm values from 4.5% to 4.9% (~305-315°C) are recorded near Cape San Martin. These highest temperatures estimated are likely, associated with a late hydrothermal event (Underwood et al., 1995). Estimated Raman temperatures 1) confirmed the increase in the metamorphic grade towards the north already shown by Underwood et al. (1995), using classical methods like mineralogy and vitrinite reflectance and 2) exhibit anomalous values (temperatures reach 350°C). These anomalies are probably due to the later hydrothermal event. This result suggests that RSCM could be used as a reliable tool to determine thermal anomalies caused by hot fluid-flow.

  11. Metamorphic origin of ore-forming fluids for orogenic gold-bearing quartz vein systems in the North American Cordillera: constraints from a reconnaissance study of δ15N, δD, and δ18O

    USGS Publications Warehouse

    Jia, Y.; Kerrich, R.; Goldfarb, R.

    2003-01-01

    The western North American Cordillera hosts a large number of gold-bearing quartz vein systems from the Mother Lode of southern California, through counterparts in British Columbia and southeastern Alaska, to the Klondike district in central Yukon. These vein systems are structurally controlled by major fault zones, which are often reactivated terrane-bounding sutures that formed in orogens built during accretion and subduction of terranes along the continental margin of North America. Mineralization ages span mid-Jurassic to early Tertiary and encompass much of the evolution ofthe Cordilleran orogen. Nitrogen contents and δ15N values of hydrothermal micas from veins are between 130 and 3,500 ppm and 1.7 to 5.5 per mil, respectively. These values are consistent with fluids derived from metamorphic dehydration reactions within the Phanerozoic accretion-subduction complexes, which have δ15N values of 1 to 6 per mil. The δ18O values of gold-bearing vein quartz from different locations in the Cordillera are between 14.6 and 22.2 per mil but are uniform for individual vein systems. The δD values of hydrothermal micas are between -110 and -60 per mil. Ore fluids have calculated δ18O values of 8 to 16 per mil and δD values of -65 to -10 per mil at an estimated temperature of 300δC; δD values of ore fluids do not show any latitudinal control. These results indicate a deep crustal source for the ore-forming fluids, most likely of metamorphic origin. Low δDH2O values of -120 to -130 per mil for a hydrous muscovite from the Sheba vein in the Klondike district reflect secondary exchange between recrystallizing mica and meteoric waters. Collectively, the N, H, and O isotope compositions of ore-related hydrothermal minerals indicate that the formation of these gold-bearing veins involved dilute, aqueous carbonic, and nitrogen-bearing fluids that were generated from metamorphic dehydration reactions at deep crustal levels. These data are not consistent with either mantle

  12. Tracking the Mineralogical Fate of Arsenic in Weathered Sulfides from the Empire Mine Gold-Quartz Vein Deposit by using Microbeam Analytical Techniques

    NASA Astrophysics Data System (ADS)

    Burlak, T.; Alpers, C. N.; Foster, A. L.; Brown, A.; Hammersley, L. C.; Petersen, E.

    2010-12-01

    Several complementary microbeam analytical techniques are being employed to determine the mineralogical fate of arsenic (As) released by weathering of primary sulfide minerals from waste rock at a California gold mine. Because of the known association of As with Fe-oxides, special attention was paid to the fate of Fe during weathering of arsenian pyrite [Fe(S,As)2], arsenopyrite (FeAsS), and ferroan dolomite [Ca(Mg,Fe)(CO3)2]. Samples were collected from waste rock dumps at the Empire Mine State Historic Park in Grass Valley, California, and polished thick (60-μm) sections were prepared for analysis. Micro-X-ray fluorescence (µXRF) investigations at the Stanford Synchrotron Radiation Lightsource (SSRL) involved mapping element distribution at the 100-μm pixel scale (beamline 10-2) and 2-µm pixel size (beamline 2-3) at four energies spanning the range of As valence states (11,867-11,890 eV). The maps provide spatial data on several elements (As, Ca, Fe, K, Mn, Ni, S, and Zn), but without standardization this information remains qualitative. Good correspondence was found between the results of principal component analysis of the maps and the distribution of the two main As valence states, As(III) and As(V). X-ray absorption fine structure (XAFS) spectra collected on beamline 2-3 at the As and Fe K-edges show reduced and oxidized species of both elements and no evidence for secondary arsenate phases such as scorodite (FeAsO4 ● 2H2O). Spectra of As(III) were rare, and not often mixed with As(V). The same thick sections were also analyzed by electron microbeam methods. Chemical and element analysis using a Cameca SX-100 microprobe quantified mineral compositions at selected spots in the sections by comparison to well-characterized reference materials. Concentrations of As in pyrite ranged from less than 0.01% to 3.1 wt. % and pyrite and was heterogeneous at the sub-µm scale. Arsenopyrite and ferroan dolomite were also found to be heterogeneous in composition

  13. Establishment of gold-quartz standard GQS-1

    USGS Publications Warehouse

    Millard, Hugh T.; Marinenko, John; McLane, John E.

    1969-01-01

    A homogeneous gold-quartz standard, GQS-1, was prepared from a heterogeneous gold-bearing quartz by chemical treatment. The concentration of gold in GQS-1 was determined by both instrumental neutron activation analysis and radioisotope dilution analysis to be 2.61?0.10 parts per million. Analysis of 10 samples of the standard by both instrumental neutron activation analysis and radioisotope dilution analysis failed to reveal heterogeneity within the standard. The precision of the analytical methods, expressed as standard error, was approximately 0.1 part per million. The analytical data were also used to estimate the average size of gold particles. The chemical treatment apparently reduced the average diameter of the gold particles by at least an order of magnitude and increased the concentration of gold grains by a factor of at least 4,000.

  14. Crystallochemical and structural evolution of tourmaline in auriferous quartz veins of the Iskel terrane prospect (western Hoggar, Tamanrasset, South Algeria)

    NASA Astrophysics Data System (ADS)

    Talbi, Mohamed; Chaouche, Ismahane; Fuchs, Yves

    2016-04-01

    A mylonite zone limits the Iskane Terrane tectonic unit (Western Hoggar). This zone is intruded by granitic units belonging to the Taourirt cycle. North -South and North East-South West trending auriferous quartz veins are hosted in the cataclased areas. Visible gold can be observed but gold is also present in sulfides (pyrite, chalcopyrite). Tourmaline is abundant in these veins. Mossbauer spectrometry as well as FTIR spectrometry shows that in some sectors tourmaline underwent an oxidation process posterior to its formation. The general structure of tourmaline studied, shows the coexistence of ferric iron Fe3+ with ferrous iron Fe2+ in the Y site. This represents a tourmaline "deprotonated". This oxidation induced a partial transformation of Fe2+ in Fe3+ that is charge compensated by a deshydroxylation of the central OH group. The relationship of the gold deposition with the oxidation of tourmaline is discussed. Key words: Tourmaline, oxidation, "deprotonation-deshydroxylation", sulfides, gold.

  15. Evolution of ore forming fluid in the orogenic type gold deposit in Tavt, Mongolia: trace element geochemistry and fluid inclusions in quartz

    NASA Astrophysics Data System (ADS)

    Lee, K.; Oyungerel, S.; Lee, I.

    2011-12-01

    The Tavt gold deposit of Dzhida-Selengisky metallogenic belt is located in the Dzhida terrane, northern Mongolia. This deposit commonly occurs with massive auriferous quartz veins that contain sulfides and less commonly occurs with disseminated- and stockwork-type quartz veins. Such gold-bearing quartz veins have an average grade of 6.3 g/t Au, 29.4 g/t Ag, and 1.3% Cu. This gold deposit is composed of three stages of quartz vein groups. The first stage quartz group is widely spread with medium to large grain size, showing white-grey and milky white colors. It underwent intensive cataclasis with strong cuts via fractures and includes a small amount of sulfides, secondary minerals and Au. The second stage quartz group is grey and includes an oxidation zone. The oxidation zone distributed on the outside of the vein is brown and green-grey; it is also enriched with sulfide minerals containing gold. This quartz group is located in a brittle and cataclastic zone with the first stage quartz group. The main mineralization process for gold is related to this second stage quartz group. The transition between the first and second groups is not clear, and their contact relationship is complex. The third stage quartz group is transparent to translucent, and has small euhedral crystals that were formed in the second stage quartz group. The third stage of quartz is partly associated with chlorite and montmorillonite that was formed in the latest stage. Each generation of quartz was analyzed by SEM-CL, EPMA, and ICP-MS. Fluid inclusion data were collected from the USGS gas-flow heating/freezing stage and Raman-spectroscopy. The electron microprobe data show the distribution of Al, Ca, K and Fe among distinguished CL intensities and textures of quartz from different stages. The prepared pure quartz samples were analyzed by ICP-MS. The analysis also shows different patterns of trace elements according to the quartz stages.

  16. Deposition conditions and distribution features of native gold individuals in the veins of the Tokur mesothermal deposit, Russia

    NASA Astrophysics Data System (ADS)

    Ostapenko, N. S.; Neroda, O. N.

    2016-05-01

    The paper discusses factors in the deposition and concentration of native gold and the spatial distribution of its individuals within the sufide-poor gold-quartz veins at the mesoabyssal Tokur deposit. The major factors in deposition of gold were sealing of the hydrothermal system, a sudden drop in fluid pressure, and repeated immiscibility in the fluid. Native gold was deposited in relation to initial acts of prolonged and discrete opening and preopening of cavities in three mineral assemblages of the productive association II. Most native gold individuals with a visible size of 0.1-1.5 mm were together with the early generation of quartz 2 on cavity walls adjacent to altered rocks. This is caused by the high content of Au complexes in initial hydrothermal solutions favoring rapid oversaturation during cavity formation. Gold fills interstices between grains of quartz 2 throughout the deposit and mineral assemblages. The vertical-flow distribution of gold has been established in economic veins; the upper and middle levels are enriched in gold, and samples with the greatest gold grade of 100-500 g/t or higher are concentrated there. This is caused both by the predominance of mineral association II at these levels and probable natural flotation of gold grains contained in the gold-gas associate for immiscibility of the hydrothermal fluid at the second stage of the ore-forming process.

  17. Geology and mineralization at the Ishmas Kabir gold prospect, Ishmas gold district, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Walker, B.M.; Ben Talib, Majed; El Komi, Mohamed; Hussain, M.A.; Christian, R.P.

    1990-01-01

    Quartz veins intersected by drill holes are surrounded by mylonite schist. Quartz and carbonate veins less than 5 mm thick are boudined, whereas thick quartz veins (£ 1.2 m) have disrupted and brecciated margins; mylonitized country rock envelops quartz-vein fragments. Sulfide mineralization associated with vein formation predates this rock-deformation event. Contemporaneous brittle and ductile deformation of quartz veins and country rocks occurred during the Nabitah orogeny. Supergene gold enrichment took place much later.

  18. Permeability enhancement during gold mineralization: Evidences from Kestanelik epithermal vein system, NW Turkey

    NASA Astrophysics Data System (ADS)

    Gulyuz, Nilay; Shipton, Zoe; Kuscu, Ilkay; Lord, Richard A.; Gladwell, David R.; Kaymakci, Nuretdin

    2016-04-01

    The most favourable and principal mineral deposition mechanism in low sulphidation epithermal systems is boiling. Mineralization in these systems occurs dominantly as veins and stockworks; therefore, structures play major role in the localization of epithermal fluid flow. Epithermal fluids rise from depth along structural conduits at high temperatures under enough pressure to prevent boiling. When the pressure drops suddenly (for instance, through faulting or any fracturing), boiling occurs, and CO2 and H2S are released to the vapour phase. Change in fluid chemistry due to the boiling causes first the base metals, and then the ore and gangue minerals to deposit in a well-recognized temporal and vertical sequence until all open spaces are filled. Vein infill in epithermal deposits indicate that mineralization is multiphase and associated with repeated and episodic fluid flow rather than a steady-state process. How can permeability enhancement be achieved after deposition of minerals in fractures and faults chokes permeable pathways and restrict fluid flow? Although geochemical aspects of LS epithermal systems are well known, limited studies exist on the permeability enhancement mechanisms in LS epithermal veins. The main aim of the study is to understand the permeability enhancement mechanisms in epithermal gold deposits by focussing on the structures and quartz textures of a well-preserved low sulphidation epithermal quartz vein/breccia system in Lapseki, NW Turkey. We revealed the kinematics of the structure-vein network by mapping the geometries of epithermal quartz veins and associated structures and collecting detailed structural data from them. In addition, we determined the different phases of fluid flow and mineralization with the cross-cutting and structural relationships among them by examining the quartz textures and breccias and mapping their spatial distribution on vein outcrops and in drill cores with the help of thin section analyses. On-going work

  19. Analysis of Rare Earth Elements (REE) in vein quartz and quartz-sandstone host rock in the Zhelannoe high purity quartz deposit, Russia

    NASA Astrophysics Data System (ADS)

    Zemskova, Marina; Prokofiev, Vsevolod; Bychkov, Andrey

    2015-04-01

    The Zhelannoe high purity quartz deposit is located on the western slope of the Polar Urals. It is one of the largest deposits of vein quartz and rock crystal in Russia. Most of the mineralization is hosted within a single horizon of very firm quartz-sandstone, where plastic deformation did not occur almost entirely. All tectonic stress was released by the development of numerous thrust faults of different scales. Cavities formed during this process were later filled with quartz and rock crystal. In order to obtain more details on conditions under which mineralization took place, analysis of trace element contents in vein quartz and host rocks, and the micro-thermometric study of fluid inclusions in quartz have been carried out. The trace element composition of vein quartz and of the host rock has been determined by ICP-MS. The results have shown that concentrations of most of the 46 studied elements in quartz are two orders of magnitude lower than in chondrite, and more than three orders of magnitude lower than in the upper crust. Even though Pb and Li have the highest concentrations in quartz samples, levels are only nearly comparable in chondrite, and substantially lower in the upper crust. At the same time, negative anomalies of Pb and Li concentrations in the host rock may indicate the removal of these elements during vein quartz formation. Contents of most REEs are two orders of magnitude lower than in chondrite, and three orders of magnitude lower than in the host rock. Generally, the patterns of REE distribution in vein quartz and the host rock express a clear correlation; confirming the genetic link between vein quartz and quartz-sandstone host rock. However, the process of quartz recrystallization led to an intense decrease of REEs content, and of all other impurities, which consequently influenced industrial value of the Zhelannoe deposit. As a result of the micro-thermometric study of fluid inclusions in quartz, the following physical

  20. Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation

    NASA Astrophysics Data System (ADS)

    Rusk, Brian G.; Lowers, Heather A.; Reed, Mark H.

    2008-07-01

    High-resolution electron microprobe maps show the distributionof Ti, Al, Ca, K, and Fe among quartz growth zones revealedby scanning electron microscope-cathodoluminescence (SEM-CL)from 12 hydrothermal ore deposits formed between ~100 and ~750°C. The maps clearly show the relationships between traceelements and CL intensity in quartz. Among all samples, no singletrace element consistently correlates with variations in CLintensity. However in vein quartz from five porphyry-Cu (Mo-Au)deposits, CL intensity always correlates positively with Ticoncentrations, suggesting that Ti is a CL activator in quartzformed at >400 °C. Ti concentrations in most rutile-bearingvein quartz from porphyry copper deposits indicate reasonableformation temperatures of <750 °C using the TitaniQ geothermometer.Titanium concentrations of <10 ppm in all veins that formedat temperatures <350 °C suggest a broad correlation betweenTi concentrations and temperature of quartz precipitation.

  1. Different carbon reservoirs of auriferous fluids in African Archean and Proterozoic gold deposits? Constraints from stable carbon isotopic compositions of quartz-hosted CO2-rich fluid inclusions

    NASA Astrophysics Data System (ADS)

    Lüders, Volker; Klemd, Reiner; Oberthür, Thomas; Plessen, Birgit

    2015-04-01

    Stable carbon (and when present, nitrogen) isotope ratios of fluid inclusions in quartz from selected gold deposits in Ghana and Zimbabwe have been analyzed using a crushing device interfaced to an isotopic ratio mass spectrometer (IRMS) in order to constrain possible sources of the auriferous fluids. The study revealed a striking difference in stable carbon isotopic compositions of CO2 in quartz-hosted fluid inclusions from Archean and Paleoproterozoic orogenic gold deposits and points to diverse sources of CO2 in the studied deposits. Whether this finding can be generalized for other Archean and Proterozoic orogenic gold deposits worldwide remains open. However, a significant CO2 contribution by mantle degassing can be ruled out for every deposit studied. Devolatilization of greenstone belt rocks is the most likely source for CO2 in some Archean Au deposits in Zimbabwe, whereas CO2 in Proterozoic vein-type Au deposits in the West African Craton is most likely derived from Corg-bearing metasedimentary rocks. The δ13CCO2 values of high-density CO2-rich, water-poor inclusions hosted in quartz pebbles from the world-class Au-bearing conglomerate deposits at Tarkwa (Ghana) differ considerably from the δ13CCO2 values of similar high-density CO2-rich inclusions in vein quartz from the giant Ashanti deposit (Ghana) and disprove the idea of derivation of the Tarkwaian quartz (and gold?) from an older equivalent to the Ashanti vein-type gold deposit.

  2. SEM-Cathodoluminescence and fluid inclusion study of quartz veins in Hugo Dummett porphyry Cu-Au deposit,South Mongolia

    NASA Astrophysics Data System (ADS)

    Sanjaa, M.; Fujimaki, H.; Ken-Ichiro, H.

    2010-12-01

    The Hugo Dummett porphyry copper-gold deposit in Oyu Tolgoi, South Mongolia is a high-sulfidation type deposit which consists of Cu-Au bearing quartz veins. Cathodoluminescence (CL) analysis using scanning electron microscope (SEM) and fluid inclusion microthermometer were performed to elucidate the relationship between CL structures, fluid inclusion microthermometer of different quartz generations, and ore forming process of the Hugo Dummett deposit. Hydrothermal quartz from quartz-sulfide veins in the porphyry Cu-Au deposit in Hugo Dummett, revealing the following textures: (1) euhedral growth zones (2) embayed and rounded CL-bright cores, with CL-dark and CL-gray overgrowths, (3) concentric and non concentric growth zones, and (4) CL dark/bright microfractures. These textures indicate that many veins have undergone fracturing, growth of quartz into fluid-filled space and quartz dissolution of quartz. SEM-CL imaging indicates vein quartz in the Hugo Dummett deposit, initially grew as individual CL-bright crystals 356 ± 10°C liquid-reservoir (average Th value for fluid inclusions in the crystal cores is 359°C). In contract, SEM-CL imaging shows the edges of the micron-scale growth zones of varying CL intensity, reflecting quartz precipitation at some later time, when the Hugo Dummett deposit hydrothermal system had cooled, when reservoir conditions were about 211 ± 25°C (average Th value of 212°C). Crystal growth is SEM-CL evidence of the vein quartz having been partly dissolved. Pressure change has a large effect on quartz solubility and may have been responsible for quartz dissolution and precipitation textures in the cooling hydrothermal system. CL-dark microfractures homogenization temperatures lower 169 ± 16°C (average Th value 170°C) than CL bright and CL gray. Temperature and pressure of the mineralized fluid estimates a pressure of formation of 0.3-0.5 kbar (lithostatic), was formed at approximately 2 km depth, as well as a formation temperature

  3. Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation

    USGS Publications Warehouse

    Rusk, B.G.; Lowers, H.A.; Reed, M.H.

    2008-01-01

    High-resolution electron microprobe maps show the distribution of Ti, Al, Ca, K, and Fe among quartz growth zones revealed by scanning electron microscope-cathodoluminescence (SEM-CL) from 12 hydrothermal ore deposits formed between ???100 and e1750 ??C. The maps clearly show the relationships between trace elements and CL intensity in quartz. Among all samples, no single trace element consistently correlates with variations in CL intensity. However in vein quartz from five porphyry-Cu (Mo-Au) deposits, CL intensity always correlates positively with Ti concentrations, suggesting that Ti is a CL activator in quartz formed at >400 ??C. Ti concentrations in most rutile-bearing vein quartz from porphyry copper deposits indicate reasonable formation temperatures of 2000 ppm, but in high-temperature quartz, Al concentrations are consistently in the range of several hundred ppm. Aluminum concentrations in quartz refl ect the Al solubility in hydrothermal fluids, which is strongly dependent on pH. Aluminum concentrations in quartz therefore reflect fluctuations in pH that may drive metal-sulfide precipitation in hydrothermal systems. ?? 2008 The Geological Society of America.

  4. New data for geology and geochemistry of the Rodion gold-quartz deposit, northeastern Russia

    NASA Astrophysics Data System (ADS)

    Volkov, A. V.; Prokofiev, V. Yu.; Tyukova, E. E.; Sidorov, V. A.; Murashov, K. Yu.; Sidorova, N. V.; Zemskova, M. A.

    2017-03-01

    This paper is focused on the new data for geology, mineralogy, and geochemistry of stockworks consisting of steep and gentle quartz veins and veinlets forming a complex multilevel structure at the Rodion deposit. These stockworks range from 25 to 150 m in thickness. Average gold grade is 1.8 g/t. Ore minerals pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, and native gold are predominantly concentrated on the vein and veinlet walls. Thermal metamorphism caused by the intrusion of the Ulakhan granodiorite pluton is the important singularity of the deposit. The deposit ore is enriched in chalcophile microelements Au, Ag, As, Sb, Cu, Pb, Zn, and Bi as compared to the average composition of the upper crust and hosting Permian sequences. The enrichment factors range from a few to hundreds of times. Bi, W, Pb, Ag, and Na2O are positively correlated between each other and with Au. The highest correlation coefficient 0.59 is between Au and Bi. Au is negatively correlated with Ba, Li, Co, Ni, Mn, Ti, and Be. The stockwork ores were formed involving homogeneous low-saline (9.4-4.3 wt % NaCl equiv) substantially aqueous bicarbonate-chloride fluid at 275-330°C and 300-1840 bar fluid pressure. Fluid has a high concentration of CO2 (up to 349 g/kg of water) and is reductive (CO2/CH4 = 17-37.3). Na and Ca are the major cations in the fluid, whereas K and Mg are minor. In addition, many microelements were detected in the fluid: As, Li, Rb, Cs, Mo, Ag, Sb, Cu, Zn, Cd, Pb, U, Ga, Ge, Ti, Mn, Fe, Co, Ni, V, Cr, Y, Zr, Sn, Ba, W, Au, Hg, and REE. The results obtained are consistent with the metamorphic-magmatic formation model of orogenic gold-quartz deposits within the Yana-Kolyma belt.

  5. Formation of Archean batholith-hosted gold veins at the Lac Herbin deposit, Val-d'Or district, Canada: Mineralogical and fluid inclusion constraints

    NASA Astrophysics Data System (ADS)

    Rezeau, Hervé; Moritz, Robert; Beaudoin, Georges

    2017-03-01

    The Lac Herbin deposit consists of a network of mineralized, parallel steep-reverse faults within the synvolcanic Bourlamaque granodiorite batholith at Val-d'Or in the Archean Abitibi greenstone belt. There are two related quartz-tourmaline-carbonate fault-fill vein sets in the faults, which consist of subvertical fault-fill veins associated with subhorizontal veins. The paragenetic sequence is characterized by a main vein filling ore stage including quartz, tourmaline, carbonate, and pyrite-hosted gold, chalcopyrite, tellurides, pyrrhotite, and cubanite inclusions. Most of the gold is located in fractures in deformed pyrite and quartz in equilibrium with chalcopyrite and carbonates, with local pyrrhotite, sphalerite, galena, cobaltite, pyrite, or tellurides. Petrography and microthermometry on quartz from the main vein filling ore stage reveal the presence of three unrelated fluid inclusion types: (1) gold-bearing aqueous-carbonic inclusions arranged in three-dimensional intragranular clusters in quartz crystals responsible for the main vein filling stage, (2) barren high-temperature, aqueous, moderately saline inclusions observed in healed fractures, postdating the aqueous-carbonic inclusions, and considered as a remobilizing agent of earlier precipitated gold in late fractures, and (3) barren low-temperature, aqueous, high saline inclusions in healed fractures, similar to the crustal brines reported throughout the Canadian Shield and considered to be unrelated to the gold mineralization. At the Lac Herbin deposit, the aqueous-carbonic inclusions are interpreted to have formed first and to represent the gold-bearing fluid, which were generated contemporaneous with regional greenschist facies metamorphism. In contrast, the high-temperature aqueous fluid dissolved gold from the main vein filling ore stage transported and reprecipitated it in late fractures during a subsequent local thermal event.

  6. Formation of Archean batholith-hosted gold veins at the Lac Herbin deposit, Val-d'Or district, Canada: Mineralogical and fluid inclusion constraints

    NASA Astrophysics Data System (ADS)

    Rezeau, Hervé; Moritz, Robert; Beaudoin, Georges

    2016-07-01

    The Lac Herbin deposit consists of a network of mineralized, parallel steep-reverse faults within the synvolcanic Bourlamaque granodiorite batholith at Val-d'Or in the Archean Abitibi greenstone belt. There are two related quartz-tourmaline-carbonate fault-fill vein sets in the faults, which consist of subvertical fault-fill veins associated with subhorizontal veins. The paragenetic sequence is characterized by a main vein filling ore stage including quartz, tourmaline, carbonate, and pyrite-hosted gold, chalcopyrite, tellurides, pyrrhotite, and cubanite inclusions. Most of the gold is located in fractures in deformed pyrite and quartz in equilibrium with chalcopyrite and carbonates, with local pyrrhotite, sphalerite, galena, cobaltite, pyrite, or tellurides. Petrography and microthermometry on quartz from the main vein filling ore stage reveal the presence of three unrelated fluid inclusion types: (1) gold-bearing aqueous-carbonic inclusions arranged in three-dimensional intragranular clusters in quartz crystals responsible for the main vein filling stage, (2) barren high-temperature, aqueous, moderately saline inclusions observed in healed fractures, postdating the aqueous-carbonic inclusions, and considered as a remobilizing agent of earlier precipitated gold in late fractures, and (3) barren low-temperature, aqueous, high saline inclusions in healed fractures, similar to the crustal brines reported throughout the Canadian Shield and considered to be unrelated to the gold mineralization. At the Lac Herbin deposit, the aqueous-carbonic inclusions are interpreted to have formed first and to represent the gold-bearing fluid, which were generated contemporaneous with regional greenschist facies metamorphism. In contrast, the high-temperature aqueous fluid dissolved gold from the main vein filling ore stage transported and reprecipitated it in late fractures during a subsequent local thermal event.

  7. Looking at Dauphiné twins in vein quartz as a potential paleostress indicator

    NASA Astrophysics Data System (ADS)

    Sintubin, Manuel; Wenk, Hans-Rudolf

    2013-04-01

    Paleostress studies commonly call upon (1) a fault slip data inversion technique, (2) a calcite twin stress inversion technique, (3) recrystallized grain size piezometry for quartz, or (4) direct measurements of residual lattice strain. Recent advances in orientation imaging microscopy (OIM) using electron backscatter diffraction (EBSD) on a scanning electron microscope (SEM) have revealed that Dauphiné twinning is very common in quartz in naturally deformed quartz-bearing rocks in a wide range of tectonometamorphic conditions. It has long been known that mechanical Dauphiné twinning in quartz can be stress-induced. Based on the results of an extensive EBSD-OIM analysis on vein quartz, taken from well-studied early to late-orogenic veins in the High-Ardenne slate belt (Germany, Belgium), we explore the potential use of mechanical Dauphiné twins as a paleostress indicator, possibly completing our toolbox for reconstructing paleostresses in the Earth's crust. The vein quartz studied precipitated in low-grade tectonometamorphic conditions (~200-400°C), typical for the brittle-plastic transition zone at the base of the seismogenic crust (~7-15km). Quartz has only been weakly affected by low to moderate temperature (200 to 400°C) crystal-plastic deformation. The samples show grains with a high concentration of Dauphiné twin boundaries and others free of twin boundaries, thus being untwinned or completely twinned. This pattern depends on the crystallographic orientation. Twin boundaries are arrested by grain or subgrain boundaries, suggesting that Dauphiné twinning occurred on a pre-existing fabric that resulted from crystal-plastic deformation. An analysis of the orientation distribution of the rhombs in the twinned variant domains of individual quartz (sub-)grains reveals a particular preferred orientation of the poles to rhombs. We will discuss the possible significance of these observations with respect to paleostresses that may have caused the mechanical

  8. Brittle-viscous deformation of vein quartz under fluid-rich low greenschist facies conditions

    NASA Astrophysics Data System (ADS)

    Kjøll, H. J.; Viola, G.; Menegon, L.; Sørensen, B. E.

    2015-01-01

    A coarse grained, statically crystallized quartz vein, embedded in a phyllonitic matrix, was studied by EBSD and optical microscopy to gain insights into the processes of strain localization in quartz deformed under low-grade conditions, broadly coincident with the frictional-viscous transition. The vein is from a high strain zone at the front of the Porsa Imbricate Stack in the Paleoproterozoic Repparfjord Tectonic Window in northern Norway. The vein was deformed under lower greenschist facies conditions during deformation along a large out-of-sequence phyllonitic thrust of Caledonian age. The host phyllonite formed at the expense of metabasalt wherein feldspar broke down to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the studied quartz vein acted as a relatively rigid body deforming mainly by coaxial strain. Viscous deformation was initially accommodated by basal ⟨a⟩ slip of quartz during the development of a mesoscopic pervasive extensional crenulation cleavage. Under the prevailing boundary conditions, however, dislocation glide-accommodated deformation of quartz resulted inefficient and led to dislocation tangling and strain hardening of the vein. In response to hardening, to the progressive increase of fluid pressure and the increasing competence contrast between the vein and the weak foliated host phyllonite, quartz crystals began to deform frictionally along specific, optimally oriented lattice planes, creating microgouges along microfractures. These were, however, rapidly sealed by nucleation of new grains as transiently over pressured fluids penetrated the deforming system. The new nucleated grains grew initially by solution-precipitation and later by grain boundary migration. Due to the random initial orientation of the vein crystals, strain was accommodated differently in the individual crystals, leading to the development of remarkably different microstructures. Crystals

  9. Hydrothermal Fluid Evolution During Vein Formation in Arghash Gold Prospect, Northeast Of Iran

    NASA Astrophysics Data System (ADS)

    Alirezaei, S.; Ashrafpour, E.; Ansdell, K. M.

    2009-05-01

    The Arghash gold prospect consisting of five gold-bearing vein systems is hosted by Eocene intermediate volcanic and pyroclastic rocks and Late Eocene-Oligocene granitic and dioritic rocks. The vein materials consist mostly of quartz, calcite and minor pyrite. Gold occurs as native particles in quartz, as well as submicroscopic particles in arsenian pyrite, as indicated by microprobe analyses. All auriferous vein systems show similar vein mineralogy and hydrothermal alteration assemblages, implying that they all belong to the same mineralization event in the region. The ä18O compositions of hydrothermal fluid(s) in equilibrium with vein quartz vary from +6.3 to +10.5 per mil. The äD values of the fluid in equilibrium with kaolinite from the immediate altered wall rocks vary from -53 to - 62 per mil. The oxygen isotope values fall in the range commonly accepted for magmatic waters; the calculated äD values overlap between meteoric and magmatic waters. Oxygen and hydrogen isotope compositions similar to those in Arghash can be produced from meteoric waters evolved through interaction with country rocks, boiling, and mixing with magmatic water. The effects of various water/rock ratios on the isotopic composition of the exchanged meteoric water could explain a shift of about +14 per mil in the ä18O values of the mineralizing fluids in the Arghash prospect. Water/rock interaction would also change the äD values of the hydrothermal fluids at low water/rock ratios. In the case of igneous country rocks, as in the Arghash, this process should lead to a shift in the äD of the presumed meteoric waters toward higher values. Boiling will increase the ä18O and äD values of hydrothermal fluids due to fractionation of 16O and H into the vapor phase and decreasing temperature. The magnitude of the enrichment depends on the boiling path and the mechanism of vapor separation. Boiling in Arghash is supported by mineralogical and textural evidences. Gold assays are highest

  10. Fluid inclusions in quartz-pebbles of the gold-bearing Tarkwaian conglomerates of Ghana as guides to their provenance area

    NASA Astrophysics Data System (ADS)

    Klemd, R.; Hirdes, W.; Olesch, M.; Oberthür, T.

    1993-11-01

    Quartz-pebbles of the early Proterozoic Au-bearing Tarkwaian conglomerates in Ghana reveal several original (inherited) pre-sedimentary fluid inclusions. These inclusions are CO2-N2 rich and display a distinct high density (up to 1.15 g/cm3). The unusual high density and composition compare well with CO2-N2-rich inclusions in quartz-vein type gold deposits of the Birimian Supergroup in Ghana and Burkina Faso. This type of fluid inclusions has not been reported from any other lode-gold deposit of greenstone affiliation and is thus a specific characteristic for Birimian-hosted gold deposits. Therefore, it can be used as an unequivocal pathfinder for epigenetic as well as for syn-sedimentary gold mineralization of the early Proterozoic of West Africa. The inherited fluid inclusions with the unique physicochemical characteristics suggest that the Tarkwaian quartz-pebbles and possibly some gold were derived from Au-quartz vein deposits comparable in mineralogy, petrography and genesis to those along the NW-margin of the Ashanti belt (e.g. Ashanti Mine, Prestea Mine).

  11. Genetic links among fluid cycling, vein formation, regional deformation, and plutonism in the Juneau gold belt, southeastern Alaska

    USGS Publications Warehouse

    Miller, Lance D.; Goldfarb, Richard J.; Gehrels, George E.; Snee, Lawrence W.

    1994-01-01

    Gold-bearing quartz vein systems in the Juneau gold belt formed within a 160-km- long by 5- to 8-km-wide zone along the western margin of the Coast Mountains, Alaska. Vein systems are spatially associated with shear zones adjacent to terrane-bounding, mid-Cretaceous thrust faults. Analysis of vein orientations and sense of shear data define a stress configuration with greatest and least principal axes oriented subhorizontally with northeast-southwest trends and subverticaly, respectively. This local stress configuration is compatible with the far-field plate configuration during Eocene time. Isotopic ages of vein formation indicate that fluid cycling occurred between 56.5 and ≥52.8 Ma, and are consistent with a genetic link between veining and a change in plate motion in early Eocene time. Veining was also synchronous with the latter stages of rapid exhumation and voluminous plutonism immediately inboard of the gold belt. We propose a model in which interacting tectonic events facilitated fault-valve action and vein development along now-exhumed shear zones.

  12. Formation of Quartz-Carbonate Veins: Evidence From Experimental Supercritical Carbon Dioxide-Brine-Rock System

    NASA Astrophysics Data System (ADS)

    Janecky, D. R.; Kaszuba, J. P.

    2003-12-01

    Quartz-carbonate veins are common in a variety of moderate temperature hydrothermal systems and ore deposits. Associated fluid inclusions have a wide range of compositions, including liquid carbon dioxide fillings. Examination of chemical and physical conditions which result precipitation of quartz and carbonate in veins raises several key questions about multiphase fluid processes and reaction rates. We have been experimentally investigating physical-chemical reaction processes of mixed brine-carbon dioxide fluids for the shallow crust. Synthetic arkose (microcline + oligoclase + quartz + biotite) plus argillaceous shale were reacted with 5.5 molal NaCl brine. The system was held at 200 C and 200 bars for 32 days to approach steady state, then injected with carbon dioxide and allowed to react for an additional 45 days. In a parallel experiment, the system was allowed to react for 77 days without injection of carbon dioxide. Trace ions initially absent from NaCl brine appeared in solution at mM (K, Ca, and silica) to uM (Mg, Al, Fe and Mn) quantities, reflecting reaction of brine with rock. Without carbon dioxide injection, the silica concentration (2.4 mM) was stable below calculated quartz solubility (3.9 mM). Injection of carbon dioxide resulted in decreased pH and increased silica concentration to a level near calculated chalcedony solubility (5.4 mM). Dissolution of silicate minerals is apparently coupled to the acidity, and concomitant inhibition of the precipitation of quartz (and other silicates). A significant increase in concentration of trace metals is consistent with in-situ pH decrease and increased carbon dioxide dissolved in brine. Multi-phase fluid reaction relationships between supercritical carbon dioxide and brine-rock systems allow formation of carbonate vein precipitates in substantial quantities. Brine and continued rock reactions provide a substantial reservoir for Ca, Mg and Fe components. A separate carbon dioxide liquid allows

  13. Raman and micro-thermometric investigation of the fluid inclusions in quartz in a gold-rich formation from Lepaguare mining district (Honduras, Central America).

    PubMed

    Bersani, D; Salvioli-Mariani, E; Mattioli, M; Menichetti, M; Lottici, P P

    2009-08-01

    Fluid inclusions in the quartz crystals present in gold-rich veins from central Honduras have been studied by means of micro-thermometry and micro-Raman spectroscopy in order to provide information on the physico-chemical conditions and chemical composition of the mineralizing fluids. The use of a confocal micro-Raman apparatus allowed to obtain information on the fluid composition, in particular on the gas phase, minimizing the contributions of the host matrix to the Raman signal. The samples studied were collected from an area (Lepaguare mining district, Northern-Central Honduras) rich in ore deposits due to the Cenozoic magmatic activity, where the gold and sulphide mineralization is connected with a system of quartz veins (few decimetres thick) occurring in low-grade metamorphic rocks and produced by hydrothermal fluids. The quartz crystals present in the gold-rich veins often contain fluid inclusions. Four types of fluid inclusions have been observed, but their assemblage in the same clusters and fracture systems, as well as their comparable salinity and homogenization data, suggest that they have the same origin. Micro-thermometry and Raman spectroscopy provide a composition of the mineralizing fluids attributable to the system H(2)O-NaCl-KCl-CO(2)-CH(4), with temperature and pressure intervals of 210-413 degrees C and 1050-3850 bar, respectively. These data agree with an epigenetic origin of the gold deposit (depth < 6 km) related to granitoid or granodiorite intrusions associated to orogenic environments.

  14. Raman and micro-thermometric investigation of the fluid inclusions in quartz in a gold-rich formation from Lepaguare mining district (Honduras, Central America)

    NASA Astrophysics Data System (ADS)

    Bersani, D.; Salvioli-Mariani, E.; Mattioli, M.; Menichetti, M.; Lottici, P. P.

    2009-08-01

    Fluid inclusions in the quartz crystals present in gold-rich veins from central Honduras have been studied by means of micro-thermometry and micro-Raman spectroscopy in order to provide information on the physico-chemical conditions and chemical composition of the mineralizing fluids. The use of a confocal micro-Raman apparatus allowed to obtain information on the fluid composition, in particular on the gas phase, minimizing the contributions of the host matrix to the Raman signal. The samples studied were collected from an area (Lepaguare mining district, Northern-Central Honduras) rich in ore deposits due to the Cenozoic magmatic activity, where the gold and sulphide mineralization is connected with a system of quartz veins (few decimetres thick) occurring in low-grade metamorphic rocks and produced by hydrothermal fluids. The quartz crystals present in the gold-rich veins often contain fluid inclusions. Four types of fluid inclusions have been observed, but their assemblage in the same clusters and fracture systems, as well as their comparable salinity and homogenization data, suggest that they have the same origin. Micro-thermometry and Raman spectroscopy provide a composition of the mineralizing fluids attributable to the system H 2O-NaCl-KCl-CO 2-CH 4, with temperature and pressure intervals of 210-413 °C and 1050-3850 bar, respectively. These data agree with an epigenetic origin of the gold deposit (depth < 6 km) related to granitoid or granodiorite intrusions associated to orogenic environments.

  15. Porosity structures in synthetic quartz veins examined by micro X-ray CT

    NASA Astrophysics Data System (ADS)

    Yamada, R.; Okamoto, A.; Saishu, H.; Nakamura, M.; Okumura, S.; Sasaki, O.; Tsuchiya, N.

    2013-12-01

    Ubiquitous occurrences of quartz veins suggest that dissolution/precipitation of silica provides significant effects on the hydrological and mechanical properties within the crust. For example, a model has been proposed that fracture sealing processes control the change of pore fluid pressure and thus earthquake cycle. Previous studies on natural quartz veins have focused on estimates of P-T conditions, stress and strain fields and fluid compositions; however, details of dynamics of fluid flow and how fractures are sealed during vein formation are still unclear. In this study, we synthesized quartz veins by the hydrothermal experiments, and observed the aperture structures by using X-ray CT. The purpose of this study is to clarify how aperture structures evolve during vein formation especially focusing on effect of the state of water (vapor and supercritical region). We conducted the hydrothermal flow-through experiments for quartz precipitation from Si-supersaturated solutions under supercritical (430C, 30MPa) and vapor condition (370C, 20MPa). The experimental apparatus consists of two vessels for preparation of the Si-supersaturated solution and for precipitation, respectively. The precipitation vessel has double-structure: the main flow path was the inner alumina tube (diameter=4mm), and the outer SUS tube was filled with static solutions. Two situations were examined as the inner tubes; one is porous media composed of closed packed alumina balls(1mm in size), and the other one is fracture. The advantage of this system is that we can take out the non-destructive sample for the analyses by X-ray CT. Significant porosity reduction by silica precipitation at porous media. Under supercritical condition, amorphous silica was predominantly formed with covering the surfaces of the alumina balls and alumina tube, and discrete quartz crystal (50μm) within the amorphous silica layers. The porosity (Φ) gradually decreases with minimal porosity (Φ = 0.4) at ˜ 38mm from

  16. Brittle-viscous deformation of vein quartz under fluid-rich low greenschist facies conditions

    NASA Astrophysics Data System (ADS)

    Jørgen Kjøll, Hans; Viola, Giulio; Menegon, Luca; Sørensen, Bjørn

    2015-04-01

    A coarse grained, statically crystallized quartz vein with a random CPO, embedded in a phyllonitic matrix, was studied by optical microscopy, SEM imaging and EBSD to gain insights into the processes of strain localization in quartz deformed under low greenschist facies conditions at the frictional-viscous transition. The vein is located in a high strain zone at the front of an imbricate stack of Caledonian age along the northwesternmost edge of the Repparfjord Tectonic Window in northern Norway. The vein was deformed within the Nussirjavrri Fault Zone (NFZ), an out-of-sequence thrust with a phyllonitic core characterized by a ramp-flat-ramp geometry, NNW plunging stretching lineations and top-to-the SSE thrusting kinematics. Deformation conditions are typical of the frictional-viscous transition. The phyllonitic core formed at the expense of metabasalt wherein feldspar broke down to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the studied quartz vein acted as a relatively rigid body deforming mainly by coaxial strain. Viscous deformation, related to the development of a mesoscopic pervasive extensional crenulation cleavage, was accommodated within the vein initially by basal slip of suitably oriented quartz crystals, which produced e.g. undulose extinction, extinction bands and bulging grain boundaries. In the case of misoriented quartz crystals, however, glide-accommodated dislocation creep resulted soon inefficient and led to localized dislocation tangling and strain hardening. In response to 1) hardening, 2) progressive increase of fluid pressure within the actively deforming vein and 3) increasing competence contrast between the vein and the surrounding weak, foliated phyllonitic fault core, quartz crystals began to deform frictionally along specific lattice planes oriented optimally with respect to the imposed stress field. Microfaulting generated small volumes of gouge along

  17. Archean geodynamics and the Abitibi-Pontiac collision: implications for advection of fluids at transpressive collisional boundaries and the origin of giant quartz vein systems

    NASA Astrophysics Data System (ADS)

    Kerrich, R.; Feng, R.

    1992-01-01

    dehydration are all necessary conditions for forming giant quartz vein systems. Metamorphic fluids are expelled along the terrane boundary structures at deep levels, and focussed into second and higher order splays at mid-crustal levels where quartz and Au precipitation occurs. Hydrothermal fluids that formed the giant quartz veins are remarkably uniform in H, O, C, and Sr isotopic compositions, albeit with small provincial variations. The veins and gold precipitated at 270°-360°C, from fluids with low salinity and moderate CO 2 at 2-3 kbar in the brittle-ductile transition.

  18. Ion-microprobe dating of zircon from quartz-graphite veins at the Bristol, New Hampshire, metamorphic hot spot

    SciTech Connect

    Zeitler, P.K. ); Barreiro, B.; Chamberlain, C.P. ); Rumble, D. III )

    1990-07-01

    Detrital zircons entrained in hydrothermal quartz-graphite-rutile veins found near the Bristol, New Hampshire, metamorphic hot spot are overgrown by thin rims. Ion-microprobe analyses of these rims date their growth at 408 {plus minus} 6 Ma. These measurements quantitatively confirm textural evidence that the graphite veins were emplaced during peak metamorphism associated with the Acadian orogeny, and they provide a direct positive test of the hypothesis, based on petrological and stable-isotope evidence, that the hydrothermal systems responsible for the quartz-graphite veins were also responsible for the hot-spot metamorphism.

  19. The formation of auriferous quartz-sulfide veins in the Pataz region, northern Peru: A synthesis of geological, mineralogical, and geochemical data

    NASA Astrophysics Data System (ADS)

    Schreiber, D. W.; Amstutz, G. C.; Fontboté, L.

    1990-12-01

    The Pataz region in the eastern part of the North Peruvian Department La Libertad hosts a number of important gold mining districts like La Lima, El Tingo, Pataz, Parcoy, and Buldibuyo. Economic gold mineralization occurs in quartz-sulfide veins at the margin of the calc-alkaline Pataz Batholith, that mainly consists of granites, granodiorites, and monzodiorites. The batholith is of Paleozoic age and cuts the Precambrian to Early Paleozoic low-grade metamorphic basement series. Its intrusion was controlled by a NNW-trending fault of regional importance. The gold-bearing veins are characterized by a two-stage sulfide mineralization. Bodies of massive pyrite and some arsenopyrite were formed in stage 1, and after subsequent fracturing they served as sites for deposition of gold, electrum, galena, sphalerite, and chalcopyrite. It is concluded that gold was transported as a AuCl{2/-}-complex by oxidizing chloride solutions and deposited near older pyrite by micro-scale redox changes and a slight temperature decrease. Mineralogical, textural, geochemical, and microthermometric features are interpreted as a consequence of mineralization at considerable depth produced by a hydrothermal system linked with the emplacement of the Pataz Batholith. acteristics in order to outline a general physicochemical model of the hydrothermal ore-forming processes.

  20. Nature and composition of gold-forming fluids at Umm Rus area, Eastern Desert, Egypt: evidence from fluid inclusions in vein materials

    NASA Astrophysics Data System (ADS)

    Harraz, H. Z.; El-Dahhar, M. A.

    1993-04-01

    The Umm Rus gold lode is housed along fractures in granitoid-gabbroic rocks, being largely controlled by a NE-SW trending fracture system that affected the Eastern Desert. Mineralogically, the gold lode consists of quartz and carbonate gangue enclosing minor amounts of auriferous pyrite and arsenopyrite. Trace amounts of sphalerite, galena, marcasite and pyrrhotite are also present. The lode can be divided into: (i) Au-poor, pyrite-quartz vein, (ii) Au-rich, pyrite-arsenopyrite-quartz vein and (iii) gangue dominant. Inspection of primary inclusions from the Umm Rus gold lode showed that the ore was formed from CO 2-H 2O-rich fluids (ca. 30-46 mol % CO 2) of low salinity (6.75-7.75 wt. % NaCl equiv.) and alkaline to neutral pH with a density of 0.76-0.85 g/cc. These data are consistent with dissolution of gold as a bisulphide complex. Deposition of Au most likely occurred over a temperature range of 250-300°C and at pressures around 0.35 Kbars. The deposition may have occurred in response to separation of a liquid CO 2-phase from an originally CO 2-H 2O-rich aqueous fluids. The style of mineralization at Umm Rus bears certain resemblances to Au-bearing quartz veins in the Archaean deposits of Canada and Australia and the "Mother Lode" deposits of the U.S.A.

  1. Alteration and fluid flow around a sulfide-carbonate-quartz vein, Lucky Friday mine, Northern Idaho

    SciTech Connect

    Gitlin, E.C.

    1985-01-01

    Wall rocks at the Lucky Friday mine, Coeur d'Alene district, Idaho, contain a >500m wide zone about a steeply dipping Pb-Zn-Ag vein. This zone has experienced local conditions distinct from the regional metamorphism of the quartzite + argillite host rock. Within the district, the host rock (Precambrian Revett Formation) has undergone low grade metamorphism and contains varying proportions of quartz, phengitic muscovite, detrital alkali feldspar, magnetite, hematite, ilmenite, rutile, zircon, tourmaline, +/- calcite, +/- ankeritic dolomite. In contrast, the Lucky Friday wall rocks lack feldspar and Fe-bearing oxides, and contain Fe-poor muscovite and up to 40% carbonate: siderite, ankerite, and/or calcite. A comparison of district-wide Revett rocks with Lucky Friday wall rocks suggests that the wall rocks have undergone localized dephengitization with concomitant Fe-enrichment in the carbonates and Fe-depletion of the oxides. Pertinent metamorphic reactions consume CO/sub 2/ and liberate H/sub 2/O. Fluid inclusions from the vein and wall rock stringers have homogenization temperatures from approx. =200/sup 0/ to <375/sup 0/C, but they define no temperature gradient. With few exceptions, compositions of the carbonates are identical throughout the altered wall rock. These observations suggest that the carbonate subzone contacts are not isograds but isofluxes: the loci of equivalent fluid/reactant mineral ratio. The disposition of isofluxes around a dominant fluid channelway, i.e. the vein, affords an opportunity to interpret fluid flow pathways during low temperatures metamorphism.

  2. In situ 14C depth profile of subsurface vein quartz samples from Macraes Flat New Zealand

    NASA Astrophysics Data System (ADS)

    Kim, K. J.; Lal, D.; Englert, P. A. J.; Southon, J.

    2007-06-01

    We present results of measurements of cosmogenic in situ 14C produced in a quartz vein from Macraes Flat, East Otago, New Zealand, where concentrations of in situ produced 10Be and 26Al were previously studied by Kim and Englert [Earth Planet. Sci. Lett. 223 (2004) 113]. 14C was extracted from the quartz samples up to depths of 400 g cm-2 using a low temperature wet extraction method [D. Lal, A.J.T. Jull, Nucl. Instr. and Meth. B 92 (1994) 291]. Based on the results for 10Be and 26Al, we expected that the 14C activity in the samples would be at saturation levels, in equilibrium with erosion. The surface exposure age of this site was found to be about 25 000 years using 10Be and 26Al at the surface, with a surface erosion rate of at least 10-3 cm/y [K.J. Kim, P.A.J. Englert, Earth Planet. Sci. Lett. 223 (2004) 113]. The measured 14C activities were compared with those expected from spallation of Si and O in quartz by energetic neutrons and fast muons, and from capture of negative muons in O in quartz [B. Heisinger, A.J.T. Jull, D. Lal, P. Kubik, S. Ivy-Ochs, K. Knie, E. Nolte, Earth Planet. Sci. Lett. 200 (2002) 357; B. Heisinger, D. Lal, A.J.T. Jull, P. Kubik, S. Ivy-Ochs, S. Neumaier, K. Knie, V. Lazarev, E. Nolte, Earth Planet. Sci. Lett. 200 (2002) 345]. Surprisingly, we found that the 14C activities were significantly greater than those expected, by factors of 2 3, especially in samples of depths <200 g cm-2. We suspect that the excess 14C probably resulted from capture of thermal neutrons in nitrogen present in the fluid inclusions in quartz. This study shows that great care has to be taken in measurements of in situ 14C in quartz, especially in samples exposed near sea level and greater depths, where rates of spallation produced 14C are low.

  3. Three sets of fine extinction bands in a tectonically deformed vein-quartz single crystal

    NASA Astrophysics Data System (ADS)

    Derez, Tine; Van der Donck, Tom; Pennock, Gill; Drury, Martyn; Sintubin, Manuel

    2014-05-01

    Intracrystalline fine extinction bands (FEBs) in quartz, are narrow (less than 5µm thick), planar microstructures with a misorientation up to 5° with respect to the host crystal, occurring in closely spaced sets (spacing of 4-5μm). FEBs have been commonly attributed to a large range of brittle and/or crystal-plastic mechanisms, revealing considerable disagreement on the responsible crystal-plastic slip systems and the ambient conditions. Another question that arises, is whether or not the FEBs rotate from a basal plane orientation to orientations ranging between the basal and prism planes. Usually only one set of FEBs occurs in a single crystal, though two sets are observed, in particular with increasing strain. Tentatively, a maximum of two sets of sub-basal FEBs has been postulated to develop in a single quartz crystal in a tectonic context. However, we identified several crystals in naturally deformed vein-quartz containing three sets of FEBs. The vein-quartz has been deformed under sub-greenschist metamorphic conditions, during the late Palaeozoic Variscan orogeny, in the High-Ardenne slate belt (Belgium). The vein-quartz has been subjected to bulging dynamic recrystallisation and shows a high degree of undulatory extinction, abundant subgrains and wide extinction bands sub-parallel to the c-axis. We attempted to characterise these three sets of FEBs by means of light microscopy, EBSD-OIM and universal stage microscopy. In both cases studied the c-axis is inclined less than 8° with respect to the thin-section plane. The different sets of FEBs show a consistent orientation with respect to the c-axis. One set of FEBs deviates maximum 10° from the basal plane. The other two sets deviate between 15 and 35° from a basal plane orientation. Corresponding FEBs, at the same angle with respect to the c-axis, have similar morphologies. In relative EBSD orientation maps FEBs show a maximum misorientation of 3°, and have a lower pattern quality than the host crystal

  4. Orogenesis, high-T thermal events, and gold vein formation within metamorphic rocks of the Alaskan Cordillera

    USGS Publications Warehouse

    Goldfarb, R.J.; Snee, L.W.; Pickthorn, W.J.

    1993-01-01

    Mesothermal, gold-bearing quartz veins are widespread within allochthonous terranes of Alaska that are composed dominantly of greenschist-facies metasedimentary rocks. The most productive lode deposits are concentrated in south-central and southeastern Alaska; small and generally nonproductive gold-bearing veins occur upstream from major placer deposits in interior and northern Alaska. Ore-forming fluids in all areas are consistent with derivation from metamorphic devolatilisation reactions, and a close temporal relationship exists between high-T tectonic deformation, igneous activity, and gold mineralization. Ore fluids were of consistently low salinity, CO2-rich, and had ??18O values of 7 ???-12??? and ??D values between -15??? and -35???. Upper-crustal temperatures within the metamorphosed terranes reached at least 450-500??C before onset of significant gold-forming hydrothermal activity. In southern Alaska, gold deposits formed during latter stages of Tertiary, subduction-related, collisional orogenesis and were often temporally coeval with calc-alkaline magmatism. -from Authors

  5. Mass transfer during wall-rock alteration: An example from a quartz-graphite vein, Black Hills, South Dakota

    SciTech Connect

    Galbreath, K.C.; Duke, E.F.; Papike, J.J. ); Laul, J.C. )

    1988-07-01

    Mass transfer and fluid-rock interaction have been evaluated along two sample traverses in low-sillimanite grade quartz-mica schist adjacent to a synmetamorphic quartz-graphite vein in the southern Black Hills, South Dakota. In an {approximately}17 cm halo between apparently unaltered schist and the vein contact is an outer zone of cryptic alteration and three inner zones of visible alteration. The cryptic zone consists of the original prograde metamorphic mineral assemblage plus anomalously high amounts of tourmaline. The outermost visible zone contains abundant graphite. The second visible zone is defined by intensive bleaching of the schist. The innermost visible zone, immediately adjacent to the vein, is tourmaline + quartz + plagioclase + limonite + graphite. The vein is composed almost entirely of quartz, but also contains trace amounts of graphite. Mass balance calculations indicate that Al was essentially inert. The predominant chemical changes during wall-rock alteration were addition of B and C from the vein-forming fluid along with loss of K from the wall rocks, corresponding to precipitation of tourmaline and graphite, and the progressive destruction of microcline, biotite, and muscovite toward the vein. In addition, the elements V, Cr, Cu, Zn, Pb, As, Sb, W, and Au were introduced into the country rock, whereas Si, Rb, Ba, and Cs were removed. Fluid-rock interaction modeling suggests that between one and four equivalent masses of fluid interacted chemically with the most altered mineral assemblages. In addition, greater than one equivalent mass of reactive fluid penetrated to distances of at least 5 cm from the vein contact.

  6. Zinc oxide nanorod growth on gold islands prepared by microsphere lithography on silicon and quartz.

    PubMed

    Blackledge, Charles W; Szarko, Jodi M; Dupont, Aurélie; Chan, George H; Read, Elizabeth L; Leone, Stephen R

    2007-09-01

    Gold islands, vapor deposited on silicon and quartz by microsphere lithography patterning, are used to nucleate arrays of ZnO nanorods. ZnO is grown on approximately 0.32 microm2 Au islands by carbothermal reduction in a tube furnace. Scanning electron microscopy (SEM) and energy dispersive atomic X-ray spectroscopy (EDS) confirm that the gold effectively controls the sites of nucleation of ZnO. Atomic force microscopy (AFM) shows that approximately 30 nm diameter nanorods grow horizontally, along the surface. Alloy droplets that are characteristic of the vapor-liquid-solid (VLS) mechanism are observed at the tips of the nanorods. The spatial growth direction of VLS catalyzed ZnO nanorods is along the substrate when they nucleate from gold islands on silicon and quartz. The energy of adhesion of the VLS droplet to the surface can account for the horizontal growth.

  7. Lubricity of gold nanocrystals on graphene measured using quartz crystal microbalance

    PubMed Central

    Lodge, M. S.; Tang, C.; Blue, B. T.; Hubbard, W. A.; Martini, A.; Dawson, B. D.; Ishigami, M.

    2016-01-01

    In order to test recently predicted ballistic nanofriction (ultra-low drag and enhanced lubricity) of gold nanocrystals on graphite at high surface speeds, we use the quartz microbalance technique to measure the impact of deposition of gold nanocrystals on graphene. We analyze our measurements of changes in frequency and dissipation induced by nanocrystals using a framework developed for friction of adatoms on various surfaces. We find the lubricity of gold nanocrystals on graphene to be even higher than that predicted for the ballistic nanofriction, confirming the enhanced lubricity predicted at high surface speeds. Our complementary molecular dynamics simulations indicate that such high lubricity is due to the interaction strength between gold nanocrystals and graphene being lower than previously assumed for gold nanocrystals and graphite. PMID:27554595

  8. Lubricity of gold nanocrystals on graphene measured using quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Lodge, M. S.; Tang, C.; Blue, B. T.; Hubbard, W. A.; Martini, A.; Dawson, B. D.; Ishigami, M.

    2016-08-01

    In order to test recently predicted ballistic nanofriction (ultra-low drag and enhanced lubricity) of gold nanocrystals on graphite at high surface speeds, we use the quartz microbalance technique to measure the impact of deposition of gold nanocrystals on graphene. We analyze our measurements of changes in frequency and dissipation induced by nanocrystals using a framework developed for friction of adatoms on various surfaces. We find the lubricity of gold nanocrystals on graphene to be even higher than that predicted for the ballistic nanofriction, confirming the enhanced lubricity predicted at high surface speeds. Our complementary molecular dynamics simulations indicate that such high lubricity is due to the interaction strength between gold nanocrystals and graphene being lower than previously assumed for gold nanocrystals and graphite.

  9. Development of discrete aggregates of recrystallization along micro-shear zones in quartz ribbons during multistage ductile evolution of a quartz vein

    NASA Astrophysics Data System (ADS)

    Ceccato, Alberto; Pennacchioni, Giorgio; Bestmann, Michel

    2016-04-01

    The post-magmatic ductile deformation of the Rieserferner pluton (Eastern Alps) includes localized ductile shear zones exploiting a set of joint-filling quartz veins. These deformed veins show different stages of evolution, from coarse grained vein quartz to the fine grained recrystallized aggregates of ultramylonites, locally recorded in different domains of heterogeneously sheared veins. The microstructural evolution includes, with increasing strain: (i) Development of ribbon mylonites consisting of elongated grains, oblique to the shear zone boundary, derived from different quartz veins crystals. The individual ribbons have different crystallographic orientations and aspect ratios. (ii) Dismantling of ribbons along a fracture-like network of fine grained recrystallized quartz aggregates, that commonly represent micro-shear zones (μSZ). These discrete recrystallization zones are preferentially developed in ribbons whose crystallographic axis is oriented either parallel or normal to ribbon elongation. (iii) Extensive dynamic recrystallization to fine-grained (10-20 μm) aggregates leading to quartz ultramylonites. Typically ultramylonites show a layered texture with bands having different crystallographic preferred orientation (CPO) that probably reflect the original heterogeneity in crystallographic orientations of the vein. Electron backscattered diffraction analysis indicates that the μSZ within quartz ribbons are mainly parallel to {r} or {z} planes of the host grain, and the new grain inside μSZ show a weak CPO with their basal plane parallel to the μSZ boundary. There is no systematic relationships between the Dauphiné twinning and the μSZ. Misorientation analysis suggests that in the host grain dislocation creep is dominant on {m} slip system, whereas it is probably a minor mechanism within μSZ. Subgrains and low-angle boundaries (LAB) are heterogeneously developed at the border of the μSZ, and more commonly occur around the tips of

  10. Fluid inclusion and stable isotopes studies of epithermal gold-bearing veins in the SE Afar Rift (Djibouti)

    NASA Astrophysics Data System (ADS)

    Moussa, N.; Boiron, M. C.; Grassineau, N.; Fouquet, Y.; Le Gall, B.; Mohamed, J.

    2015-12-01

    The Afar rift results from the interaction of a number of actively-propagating tectono-magmatic axes. Recent field investigations in the SE Afar rift have emphasized the importance of hydrothermal system in rift-related volcanic complexes. Mineralization occur as gold-silver bearing veins and are associated with felsic volcanism. Late carbonate veins barren of sulfides and gold are common. The morphologies and textures of quartz show crustiform colloform banding, massive and breccias. Microthermometric measurements were made on quartz-hosted two phases (liquid + vapor) inclusions; mean homogenization temperature range from 150°C to 340°C and ice-melting temperatures range from -0.2° to 1.6°C indicating that inclusion solutions are dilute and contain 0.35 to 2.7 equivalent wt. % NaCl. Furthermore, δ18O and δ13C values from calcite range from 3.7 to 26.6 ‰ and -7.5 to 0.3‰, respectively. The presence of platy calcite and adularia indicate that boiling condition existed. This study shows that precious-metal deposition mainly occurred from hydrothermal fluids at 200°C at around 300 and 450 m below the present-day surface in a typical low-sulphidation epithermal environment.

  11. Mechanisms of fine extinction band development in vein quartz: new insights from correlative light and electron microscopy

    NASA Astrophysics Data System (ADS)

    Derez, Tine; Van Der Donck, Tom; Plümper, Oliver; Muchez, Philippe; Pennock, Gill; Drury, Martyn R.; Sintubin, Manuel

    2017-07-01

    Fine extinction bands (FEBs) (also known as deformation lamellae) visible with polarized light microscopy in quartz consist of a range of nanostructures, inferring different formation processes. Previous transmission electron microscopy studies have shown that most FEB nanostructures in naturally deformed quartz are elongated subgrains formed by recovery of dislocation slip bands. Here we show that three types of FEB nanostructure occur in naturally deformed vein quartz from the low-grade metamorphic High-Ardenne slate belt (Belgium). Prismatic oriented FEBs are defined by bands of dislocation walls. Dauphiné twin boundaries present along the FEB boundaries probably formed after FEB formation. In an example of two sub-rhombohedral oriented FEBs, developed as two sets in one grain, the finer FEB set consists of elongated subgrains, similar to FEBs described in previous transmission electron microscopy studies. The second wider FEB set consists of bands with different dislocation density and fluid-inclusion content. The wider FEB set is interpreted as bands with different plastic strain associated with the primary growth banding of the vein quartz grain. The nanometre-scale fluid inclusions are interpreted to have formed from structurally bounded hydroxyl groups that moreover facilitated formation of the elongate subgrains. Larger fluid inclusions aligned along FEBs are explained by fluid-inclusion redistribution along dislocation cores. The prismatic FEB nanostructure and the relation between FEBs and growth bands have not been recognized before, although related structures have been reported in experimentally deformed quartz.

  12. Zoning and sectoriality of the florencite and xenotime group minerals from quartz veins, the Subpolar Urals

    NASA Astrophysics Data System (ADS)

    Repina, S. A.

    2010-12-01

    A detailed study of the florencite and xenotime assemblage from quartz veins of Au-REE occurrences in the Subpolar Urals allowed the REE fractionation and distribution of REE mixtures in the crystal structure to be characterized. In minerals of selective composition, isomorphic mixtures of LREE and HREE are divided into lanthanum Lasg (La-Pr) and samarium Smsg (Nd-Eu) subgroups in florencite and gadolinium Gdsg (Gd-Dy) and ytterbium Ybsg (Ho-Lu) subgroups in xenotime. Concentrations of elements from these subgroups are inversely proportional to each other. Each florencite or xenotime crystal is characterized by several mineral varieties: xenotime-(Y) and Gd-bearing xenotime-(Y), florencite-(Sm), -(Nd), and -(Ce); they are selectively distributed by growth zones and pyramids of the crystal with formation of direct and inverse zoning. In both cases, cores of the crystals are enriched in HREE. The correlation between REEs, Y, and such trace elements as As, S, Ca, Sr, U, and Sc is established. REE deportment is considered in minerals formed as products of primary crystallization and hydrothermal redeposition. The REE fractionation is interpreted in terms of quantum mechanics.

  13. Combined optical second harmonic generation/quartz crystal microbalance study of underpotential deposition processes: copper electrodeposition on polycrystalline gold.

    PubMed

    Lakkaraju, S; Bennahmias, M J; Borges, G L; Gordon Ii, J G; Lazaga, M; Stone, B M; Ashley, K

    1990-11-20

    Optical second harmonic generation and quartz crystal microbalance techniques are used as in situ probes of copper underpotential deposition on polycrystalline gold surfaces in sulfuric acid electrolyte. The second harmonic signal from a polished bulk gold substrate is observed to decrease by >60% as a result of copper underpotential deposition on gold. Also, the mass of an underpotentially deposited copper adlayer is monitored in situ by an oscillating quartz crystal microbalance, yielding an estimated coverage of ~8.0 x 10(-10) mol cm(-2) and an electrosorption valency of 1.5 for a copper adlayer on the surface of vapor-deposited polycrystalline gold.

  14. Crack-seal microstructure evolution in bi-mineralic quartz-chlorite veins in shales and siltstones from the RWTH-1 well, Aachen, Germany

    NASA Astrophysics Data System (ADS)

    Becker, Stephan; Hilgers, Christoph; Kukla, Peter A.; Urai, Janos L.

    2011-04-01

    In core samples from the deep geothermal well RWTH-1 we studied Variscan quartz-chlorite veins formed by crack-seal processes in siliciclastics at the brittle to ductile transition. These sheared veins are common in sections of the well, which are interpreted as Variscan thrust zones based on image logs and seismic data. Microstructures interpreted to reflect different stages in the evolution of such crack-seal veins suggest the veins started in microcracks sealed by quartz and chlorite, to veinlets crossing multiple grains, and bundles of veinlets evolving by progressive localization into low-angle extensional shear veins and high-angle dilational jog veins. In the sheared veins, chlorite and quartz ribbons show evidence for crack-seal and simultaneous ductile shearing during vein evolution, forming peculiar fin-shaped microstructures in quartz ribbons. In high-angle dilational jogs fibrous crystals of quartz and chlorite point to multiple crack-seal events with simultaneous growth of two different mineral phases. This is interpreted to be the basic microstructural process in the veins. We extend earlier models of polycrystal growth in fractures and present a series of 2D simulations of the kinematics of crystal growth in these bi-mineralic veins for both localized and non-localized cracking. Results are compared with the observed microstructures. We show that when the relative growth rates of the two mineral phases are different, serrated grain boundaries evolve. The similarities between observation and model suggest that the assumption of our model is valid, although many second order processes require a more detailed study. We propose that the principles observed here can be applied to other bi-mineralic crack-seal veins.

  15. Gold volatile species atomization and preconcentration in quartz devices for atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Arslan, Yasin; Musil, Stanislav; Matoušek, Tomáš; Kratzer, Jan; Dědina, Jiří

    2015-01-01

    The on-line atomization of gold volatile species was studied and the results were compared with thermodynamic calculations in several quartz atomizers, namely: diffusion flame, flame-in-gas-shield, flame-in-plain-tube, externally heated T-tube and externally heated flame-in-T-tube. Atomization mechanism in the explored devices is proposed, where volatile species are converted to thermodynamically stable AuH at elevated temperature over 500 °C and then atomized by an interaction with a cloud of hydrogen radicals. Because of its inherent simplicity and robustness, diffusion flame was employed as a reference atomizer. It yielded atomization efficiency of 70 to 100% and a very good long time reproducibility of peak area sensitivity: 1.6 to 1.8 s μg- 1. Six and eleven times higher sensitivity, respectively, was provided by atomizers with longer light paths in the observation volume, i.e. externally heated T-tube and externally heated flame-in-T-tube. The latter one, offering limit of detection below 0.01 μg ml- 1, appeared as the most prospective for on-line atomization. Insight into the mechanism of atomization of gold volatile species, into the fate of free atoms and into subsequent analyte transfer allowed to assess possibilities of in-atomizer preconcentration of gold volatile species: it is unfeasible with quartz atomizers but a sapphire tube atomizer could be useful in this respect.

  16. Fluid evolution in a volcanic-hosted epithermal carbonate-base metal-gold vein system: Alto de la Blenda, Farallón Negro, Argentina

    NASA Astrophysics Data System (ADS)

    Márquez-Zavalía, M. Florencia; Heinrich, Christoph A.

    2016-10-01

    Alto de la Blenda is a ˜6.6-Ma intermediate-sulphidation epithermal vein system in the Farallón Negro Volcanic Complex, which also hosts the 7.1-Ma porphyry-Cu-Au deposit of Bajo de la Alumbrera. The epithermal vein system is characterised by a large extent and continuity (2 km × 400 m open to depth × 6 m maximum width) and an average gold grade of ˜8 g/t. The vein is best developed within an intrusion of a fine-grained equigranular monzonite, interpreted as the central conduit of a stratovolcano whose extrusive activity ended prior to porphyry-Cu-Au emplacement at Bajo de la Alumbrera, which is in turn cut by minor epithermal veins. The Alto de la Blenda vein consists predominantly of variably Mn-rich carbonates and quartz, with a few percent of pyrite, sphalerite, galena and other sulphide and sulphosalt minerals. Four phases of vein opening, hydrothermal mineralisation and repeated brecciation can be correlated between different vein segments. Stages 2 and 3 contain the greatest fraction of sulphide and gold. They are separated by the emplacement of a polymictic breccia containing clasts of quartz feldspar porphyry as well as basement rocks. Fluid inclusions in quartz related to stages 2 to 4 are liquid rich with 2-4 wt% NaCl(eq). They homogenise between 160 and 300 °C, with very consistent values within each assemblage. Vapour inclusions are practically absent in the epithermal vein. Quartz fragments in the polymictic breccia contain inclusions of intermediate to vapour-like density and similar low salinity (˜3 wt% NaCl(eq)), besides rare brine inclusions containing halite. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analyses of epithermal inclusions indicate high concentrations of K, Fe, As, Sb, Cs, and Pb that significantly vary within and through subsequent vein stages. Careful consideration of detection limits for individual inclusions shows high gold concentrations of ˜0.5 to 3 ppm dissolved in the ore fluid, which

  17. Fluid inclusion and carbon isotope studies of quartz-graphite veins, Black Hills, South Dakota, and Ruby Range, Montana

    NASA Astrophysics Data System (ADS)

    Duke, Edward F.; Galbreath, Kevin C.; Trusty, Kane J.

    1990-03-01

    Fluid inclusions and graphite are intimately associated in quartz veins that cut high grade metamorphic rocks in the Black Hills, South Dakota, and at the Crystal Graphite Mine in the southwestern Ruby Range, Montana. Measured fluid inclusion compositions and volumetric properties were compared with calculated compositions of graphite-saturated fluids and with estimates of metamorphic P-T conditions and carbon isotope ratios of graphite were measured to evaluate possible sources of carbon in veinforming fluids. Fluid inclusions from the two areas contrast markedly in their reliability as recorders of metamorphic fluid compositions and metamorphic conditions. The δ13C of graphite associated with the veins indicates that the source of carbon was also different in the two areas. In the Black Hills veins, fluid inclusions are dominantly H 2OCO 2 mixtures with 24-96 mol% CO 2 and a maximum of ˜5 mol% N 2 and ˜ 13 mol% CH 4. Isochores for the highest density inclusions pass near estimated peak metamorphic conditions (550°-600°C, 4.5-6.5 kbar) and fluid inclusion compositions are compatible with thermodynamic predictions for fluids in equilibrium with graphite in the stated P- T range at geologically reasonable ƒ O 2.Graphite in a 12-cm wall-rock alteration zone adjacent to one of the veins has uniform δ13C of -20.8 ± 0.2%., indicating that carbon in the vein-forming fluid was derived largely from reduced organic carbon. In the Ruby Range, peak metamorphic conditions were higher - ˜750°-850°C, 5-8 kbar. In contrast to the Black Hills veins, fluid inclusions are almost all CO 2CH 4 mixtures (with unknown N 2 content). Many contain > 20 equivalent mol% CH 4 and mixed H 2OCO 2 inclusions were observed in only one sample. Inclusions in one vein have ˜ 84-97 mol% CH 4. Virtually all inclusion compositions are incompatible with computed graphite equilibria and inclusion isochores likewise do not pass through estimated metamorphic conditions. The density and

  18. Recrystallization fabrics of sheared quartz veins with a strong pre-existing crystallographic preferred orientation from a seismogenic shear zone

    NASA Astrophysics Data System (ADS)

    Price, Nancy A.; Song, Won Joon; Johnson, Scott E.; Gerbi, Christopher C.; Beane, Rachel J.; West, David P.

    2016-07-01

    Microstructural investigations were carried out on quartz veins in schist, protomylonite, and mylonite samples from an ancient seismogenic strike-slip shear zone (Sandhill Corner shear zone, Norumbega fault system, Maine, USA). We interpret complexities in the microstructural record to show that: (1) pre-existing crystallographic preferred orientations (CPO) in the host rock may persist in the new CPO patterns of the shear zone and (2) the inner and outer parts of the shear zone followed diverging paths of fabric development. The host rocks bounding the shear zone contain asymmetrically-folded quartz veins with a strong CPO. These veins are increasingly deformed and recrystallized with proximity to the shear zone core. Matrix-accommodated rotation and recrystallization may position an inherited c-axis maximum in an orientation coincident with rhomb < a > or basal < a > slip. This inherited CPO likely persists in the shear zone fabric as a higher concentration of poles in one hemisphere of the c-axis pole figure, leading to asymmetric crossed girdle or paired maxima c-axis patterns about the foliation plane. Three observed quartz grain types indicate a general trend of localization with decreasing temperature: (1) large (> 100 μm), low aspect ratio (< 5) and (2) high aspect ratio ( 5-20) grains overprinted by (3) smaller (< 80 μm), low aspect ratio (< 4) grains through subgrain rotation-dominated recrystallization. In the outer shear zone, subgrain rotation recrystallization led to a well-developed c-axis crossed girdle pattern. In the inner shear zone, the larger grains are completely overprinted by smaller grains, but the CPO patterns are relatively poorly developed and are associated with distinctively different misorientation angle histogram profiles ("flat" neighbor-pair profile with similar number fraction for angles from 10 to 90°). This may reflect the preferential activation of grain size sensitive deformation processes in the inner-most part of the

  19. Theoretical prediction of gold vein location in deposits originated by a wall magma intrusion

    NASA Astrophysics Data System (ADS)

    Martin, Pablo; Maass-Artigas, Fernando; Cortés-Vega, Luis

    2016-05-01

    The isotherm time-evolution resulting from the intrusion of a hot dike in a cold rock is analized considering the general case of nonvertical walls. This is applied to the theoretical prediction of the gold veins location due to isothermal evolution. As in previous treatments earth surface effects are considered and the gold veins are determined by the envelope of the isotherms. The locations of the gold veins in the Callao mines of Venezuela are now well predicted. The new treatment is now more elaborated and complex that in the case of vertical walls, performed in previous papers, but it is more adequated to the real cases as the one in El Callao, where the wall is not vertical.

  20. Using vein fabric and fluid inclusion characteristics as an integrated proxy to constrain the relative timing of non cross-cutting, syn- to late-orogenic quartz vein generations

    NASA Astrophysics Data System (ADS)

    Jacques, Dominique; Muchez, Philippe; Sintubin, Manuel

    2014-05-01

    Research on ancient fluid systems mainly focuses on veins, because they offer the opportunity to combine macro- and microstructural data with geochemical data to gain insight into the P-T-X conditions present during veining. By applying such an integrated petrographic and microthermometric methodology to syn- to late-orogenic quartz veins in the Palaeozoic High-Ardenne slate belt (Belgium), we were able to define the relative timing and related P-T-X conditions of different quartz vein generations, despite of the absence of any mutual cross-cutting relationships in the field (Jacques et al., 2014). The different quartz vein generations represent the meso-scale brittle accommodation during fold initiation, amplification and locking. The presence of free polycrystal growth in cavities at a midcrustal depth, and fluid-assisted brecciation indicate that veining occurred under overpressured fluid conditions during the orogeny. Significant differences in crystal-plastic deformation microstructures and P-T trapping conditions indicate that the different processes accommodating folding occurred in a progressive manner along a retrograde deformation path. While vein quartz in an extrados vein and in the peripheral part of a lenticular, fault-accommodating vein shows moderate crystal-plastic deformation (e.g. bulging recrystallisation, deformation lamellae, shear bands), crystal-plastic deformation is relatively absent in the vein quartz of a saddle reef and the core of the lenticular vein (i.e. no to minor undulose extinction). Successive veining occurred from peak metamorphic conditions (ca. 300 ° C and 190 MPa), measured in the extrados vein, to lower P-T conditions in the periphery of the lenticular vein (ca. 275 ° C and 180 MPa), the late-orogenic saddle reef (ca. 245 ° C and 160 MPa) and the core of the lenticular vein (ca. 220 ° C and 150 MPa). The relative timing and accompanying decrease in P-T conditions of the different quartz vein generations reflect the

  1. Diagnosis of environmental problems related to vein gold mining in Colombia

    NASA Astrophysics Data System (ADS)

    Prieto, Gloria R.; Gonzalez, Myriam L.

    Since 1985 the annual gold production in Colombia has been fluctuating between 30 and 35 tons (1-1.4 million ounces troy). Exploitation plants can be found in vein and placer gold deposits. During 1992 a preliminary study was undertaken, resulting in a diagnosis of problems in small scale mining in 6 gold areas (vein type) of Colombia. In order to evaluate the general impact caused to the environment due to mining activities, six gold districts located in Nariño, Antioquia, Bolivar, Valle and Caldas Departments were visited. Geochemical analysis (ES, AAS, HGAAS, GFAAS) of orebodies, tailings and waters were carried out, with results that showed high levels of heavy metals in the environmental compartments studied.

  2. A natural example of fluid-mediated brittle-ductile cyclicity in quartz veins from Olkiluoto Island, SW Finland

    NASA Astrophysics Data System (ADS)

    Marchesini, Barbara; Garofalo, Paolo S.; Viola, Giulio; Mattila, Jussi; Menegon, Luca

    2017-04-01

    Brittle faults are well known as preferential conduits for localised fluid flow in crystalline rocks. Their study can thus reveal fundamental details of the physical-chemical properties of the flowing fluid phase and of the mutual feedbacks between mechanical properties of faults and fluids. Crustal deformation at the brittle-ductile transition may occur by a combination of competing brittle fracturing and viscous flow processes, with short-lived variations in fluid pressure as a viable mechanism to produce this cyclicity switch. Therefore, a detailed study of the fluid phases potentially present in faults can help to better constrain the dynamic evolution of crustal strength within the seismogenic zone, as a function of varying fluid phase characteristics. With the aim to 1) better understand the complexity of brittle-ductile cyclicity under upper to mid-crustal conditions and 2) define the physical and chemical features of the involved fluid phase, we present the preliminary results of a recently launched (micro)structural and geochemical project. We study deformed quartz veins associated with brittle-ductile deformation zones on Olkiluoto Island, chosen as the site for the Finnish deep repository for spent nuclear fuel excavated in the Paleoproterozoic crust of southwestern Finland. The presented results stem from the study of brittle fault zone BFZ300, which is a mixed brittle and ductile deformation zone characterized by complex kinematics and associated with multiple generations of quartz veins, and which serves as a pertinent example of the mechanisms of fluid flow-deformation feedbacks during brittle-ductile cyclicity in nature. A kinematic and dynamic mesostructural study is being integrated with the detailed analysis of petrographic thin sections from the fault core and its immediate surroundings with the aim to reconstruct the mechanical deformation history along the entire deformation zone. Based on the observed microstructures, it was possible to

  3. Deformation assisted by fluids in quartz veins of shear zones: an example from Iron Formations of Quadrilátero Ferrífero, Brazil.

    NASA Astrophysics Data System (ADS)

    Barbosa, Paola; Lagoeiro, Leonardo

    2013-04-01

    The evidences of fluid activity in rocks are well recognized. In many cases, the fluid is responsible to remobilize many elements (e.g. Au, Mn, Si) that may be transported over a long distance and precipitated as new minerals in regions of low stress of the rock. In many deformed rocks, the origin of a large number of structures (veins, pressure shadows, dissolved grain boundaries, etc) may be correlated to the fluid activity. However, the fluids are important not only during the crack-and-seal process but also after the sealing ceases. As an example of how the fluids are responsible to rearrange the structure of the rock, we studied many quartz veins of one iron-formation from Brazil. The rocks were collected in Quadrilátero Ferrífero (QF), Brazil, that is one of the most important metalogenetic provinces in the world. It is assumed the existence of a deformational and metamorphic gradient in the rocks of QF, increasing the occurrence of penetrative structures from southwest to northeast. However, the effects of the local shear zones in the deformation pattern of QF may not be neglected. Shear zones are generally recognized as structures that accommodate deformation, eventually with intense fluid percolation. It is indubitable that there is a relationship between the fluid activity and the deformation accommodation in shear zones. So, to investigate how the fluid activity can affect the mechanisms of accommodation of deformation in rocks of shear zones from QF, we characterized the crystallographic preferred orientation (CPO) of some quartz vein by EBSD (electron backscattering diffraction). All the samples came from the same outcrop and from the same dextral shear zone, localized in the low-deformation region of QF, under greenschist metamorphic conditions. The samples were oriented according to the XYZ reference system, with X parallel to the foliation and Z normal to the XY plane. The veins are quartz-rich layers parallel to the rock foliation. They do not

  4. A new LA-ICP-MS method for Ti-in-Quartz: Implications and application to HP rutile-quartz veins from the Czech Erzgebirge

    NASA Astrophysics Data System (ADS)

    Cruz-Uribe, A. M.; Mertz-Kraus, R.; Zack, T.; Feineman, M. D.; Woods, G.

    2014-12-01

    Experimental determination of the pressure and temperature controls on Ti solubility in quartz provide a calibration of the Ti-in-quartz (TitaniQ) geothermometer applicable to geologic conditions up to ~20 kbar (Thomas et al. (2010) Contrib Mineral Petrol 160, 743-759). One of the greatest limitations to analyzing Ti in metamorphic quartz by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is the lack of a suitable matrix-matched reference material. Typically LA-ICP-MS analyses of Ti in minerals use 49Ti as a normalizing mass because of an isobaric interference from 48Ca, which is present in most well characterized reference glasses, on 48Ti. The benefit of using a matrix-matched reference material to analyze Ti in quartz is the opportunity to use 48Ti (73.8 % abundance) as a normalizing mass, which results in an order of magnitude increase in signal strength compared to the less abundant isotope 49Ti (5.5 % abundance), thereby increasing the analytical precision. Here we characterize Ti-bearing SiO2 glasses from Heraeus Quarzglas and natural quartz grains from the Bishop Tuff by cathodoluminescence (CL) imaging, electron probe microanalysis (EPMA), and LA-ICP-MS, in order to determine their viability as reference materials for Ti in quartz. Titanium contents in low-CL rims in the Bishop Tuff quartz grains were determined to be homogenous by EPMA (41 ± 2 µg/g Ti, 2σ), and are a potential natural reference material. We present a new method for determining 48Ti concentrations in quartz by LA-ICP-MS at the 1 µg/g level, relevant to quartz in HP-LT terranes. We suggest that natural quartz such as the homogeneous low-CL rims of the Bishop Tuff quartz are more suitable than NIST reference glasses as an in-house reference material for low Ti concentrations because matrix effects are limited and Ca isobaric interferences are avoided, thus allowing for the use of 48Ti as a normalizing mass. Titanium concentration from 33 analyses of low

  5. Orthogonal fracture formation in the South Wales coalfield: implications from a field study and fluid overpressure of quartz veins

    NASA Astrophysics Data System (ADS)

    Fukunari, Tetsuzo; Gudmundsson, Agust

    2014-05-01

    Orthogonal fractures can easily make networks in geological formations and are of great importance for permeability and fluid transport in subsurface reservoirs. Despite many studies focusing on the formation of orthogonal fractures, no clear and generally accepted model has been established as yet although their formation is widely believed to occur during crustal uplift or exhumation. Here we provide new insights into their mechanism of formation based on the results of a fieldwork and analytical study of orthogonal fractures and quartz veins in alternating sand-shale layers in the South Wales coalfield, which is one of foreland basins developed in relation with north-south compression of the Variscan Orogeny. More than 3,000 fractures were measured at various localities extending from southern end to northern end of the basin. Most of the fractures in the sandstone layers, are extension fractures (mode I cracks), and become arrested at contacts with shale layers. The fractures strike north-south and east-west. Some fractures are filled with shale, probably supplied from adjacent shale layers, suggesting the shale behaved as semi-ductile material at the time of fracture formation. A remarkable observation is that most of the fractures are perpendicular to bedding planes throughout the basin. This is despite the fact that the beds are strongly folded as a result of the Variscan Orogeny. The perpendicular attitude suggests that the fracture formation somewhat predates or coincides with that of folding. This implies that the orthogonal fractures in this area did not form during crustal uplift/exhumation but rather during basin growth at the time of regional north-south convergence and associated compression of the Variscan Orogeny. By using aspect (length/thickness) ratios of quartz veins of the same geometry as the orthogonal fractures, fluid overpressure (driving pressure) at the time of fracture formation is estimated at around 33 MPa for fractures striking north

  6. Cyclical Stress Field Switching and (Total?) Relief of Fault Shear Stress Recorded in Quartz Vein Systems Hosted by Proterozoic Strike-Slip Faults, Mt Isa, Australia

    NASA Astrophysics Data System (ADS)

    Sibson, R. H.; Begbie, M. J.; Ghisetti, F. C.; Blenkinsop, T. G.

    2003-12-01

    The Proterozoic Mt Isa inlier ( ˜50,000 km2) in NW Queensland, Australia, underwent a complex tectonothermal history involving multiple episodes of intracontinental rifting, sedimentation, and magmatism that culminated in the Isan Orogeny (1590-1500 Ma) where strong E-W shortening led to compressional inversion of former rift basins. The resulting metamorphic complex of subgreenschist to amphibolite facies assemblages is disrupted by brittle, late-orogenic (1500-1450 Ma?) strike-slip faults. The faults occur in two mutually cross-cutting sets; a set of dextral strike-slip faults striking NE-SW to NNE-SSW with offsets <20 km, and a conjugate set of sinistral faults striking NW-SE to NNW-SSE. The two contemporaneous fault sets therefore lie at +/-45-60° to inferred E-W maximum compression, approaching the expected lock-up angle for 'Byerlee' friction coefficients. The faults commonly outcrop as linear blade-like ridges extending for many kilometres across the semi-arid terrain. Transects across the NE-SW Fountain Range and Overlander Faults which crosscut Corella Formation amphibolite facies assemblages and granites have shown that the fault zones are about 100 m in width with a composite brittle fabric comprising: (1) subvertical silicified cataclastic shear zones (cataclasites plus microbreccias containing vein fragments); (2) innumerable subvertical quartz-veins (cm to m thickness) lying subparallel to the principal shear zones (some retain purely dilational textures; others are multiply recemented fault-breccias with wallrock fragments); (3) highly irregular non-systematic veins; and (4) a systematic set of predominantly extensional, steep planar quartz veins oriented 080-120° at moderate angles to the main faults. Mutual cross-cutting relationships occur between all structural components, indicating broad contemporaneity. Recorded dextral separations along shear fracture components are commonly of the order of 1-10 cm, consistent with small-moderate seismic

  7. Orientation of tectonic stresses in central Kentucky during U. Devonian/L. Mississippian times: Evidence from quartz veins (after gypsum) in NE-trending, systematic joints in shales

    SciTech Connect

    Grover, J.; Dupuis-Nouille, E.M. . Dept. of Geology)

    1992-01-01

    Quartz replacing fibrous gypsum and anhydrite pseudomorphically (QAS; quartz after sulfate''), and preserving characteristic crack-seal'' and chickenwire'' textures, occurs in extensional veins at four locations in central KY. The veins occupy a systematic set of NE-SW-trending, vertical joints within the essentially flat-lying shales of the Renfro Member of the Mississippian Borden Formation and the Late Devonian New Albany Shale. The four QAS occurrences discovered to date are located northeast of the Borden Front. At one site in the New Albany Shale, QAS veins show clear evidence of penecontemporaneous deformation. It is proposed that at all QAS locations, gypsum precipitated in incipient joints before complete lithification of the sediment, and grew perpendicular to the fractures to form extensional veins in the soft but firm muds. The orientations of the joints now marked by QAS veins are broadly consistent with regional patterns of NE-SW-trending systematic joints and lineaments in southern IN and in central and eastern KY. These systematic fracture patterns do not correspond directly to known basement faults or rift systems, although they are consistent with modern stress directions in eastern and western KY, measured in situ in wells and by earthquake fault-plane solutions. It is proposed that this systematic trend marks the regional tectonic stress pattern characteristic of southern IN and central and eastern KY at, and since the Late Devonian. The evidence of penecontemporaneous sedimentary deformation in joints of U. Devonian age, marked and preserved by quartz replacement of early gypsum, is sufficient to show that while the systematic NE-trending joint set in KY may also be modern it is not uniquely so.

  8. Tracing the evolution of crustal-scale, transient permeability in a tectonically active, mid-crustal, low-permeability environment by means of quartz veins

    NASA Astrophysics Data System (ADS)

    Sintubin, M.

    2013-12-01

    In mid-crustal, low-permeability environments pervasive fluid flow is primarily driven by the production of internally-derived metamorphic fluids, causing a near permanent state of near-lithostatic fluid-pressure conditions. In a tectonically active crust, these overpressured fluids will generate intermittently an enhanced permeability that will facilitate fluid flow through the crust. The High-Ardenne slate belt (Belgium, France, Germany) can be considered as a fossil (late Palaeozoic) analogue of such mid-crustal, low-permeability environment at the brittle-plastic transition (depth range from 7 to 15 km). Low-grade metamorphic (250°C-350°C), predominantly fine-grained, siliciclastic metasediments were affected by a contraction-dominated deformation, materialized by a pervasive slaty cleavage. Quartz veins, abundantly present in the slate belt, are used as a proxy for the enhanced permeability. Detailed structural, petrographical, mineralogical and geochemical studies of different quartz-vein occurrences has enabled to reconstruct the evolution of the crustal-scale permeability , as well as to constrain the coupled fluid-pressure and stress-state evolution throughout the orogenic history. Extensive veining on a regional scale seems confined to periods of tectonic stress inversion, both at the onset (compressional stress inversion) and in the final stages (extensional stress inversion) of orogeny. Firstly, compressional stress inversion is expressed by pre-orogenic bedding-normal extension veins, consistently arranged in parallel arrays, followed by early orogenic bedding-parallel hybrid veins. Fluid-inclusion studies demonstrate near-lithostatic to supralithostatic fluid pressures, respectively. Secondly, discordant veins, transecting the pre-existing cleavage fabric, are interpreted to be initiated shortly after the extensional stress inversion, reflecting the late-orogenic extensional destabilisation of the slate belt. Veining again occurred at high fluid

  9. Carbon isotope evidence for a magmatic origin for Archaean gold-quartz vein ore deposits

    NASA Technical Reports Server (NTRS)

    Burrows, D. R.; Wood, P. C.; Spooner, E. T. C.

    1986-01-01

    Sediments from three sites in the Santa Barbara Basin were examined with a 160X power light microscope and TEM equipment to characterize the magnetostatic bacteria (MB) in the samples. Both the free magnetite and the crystals in the MB in the samples had lengths from 40-60 nm in length and increased in size from one end to the next. An intact magnetosome was also observed. Scanning the sediments with saturation isothermal remanent magnetization (SIRM) and altering field demagnetization techniques using a SQUID magnetometer yielded coercivity spectra which showed that the primary remanence carrier in the sediments was single domain magnetite. Although it is expected that the predominance of the bacterial magnetite component will decrease with depth in the open ocean basin, single-domain bacteria as old as 50 Myr have been observed in oceanic sediments.

  10. Tourmalines from the siderite-quartz-sulphide hydrothermal veins, Gemeric unit, western Carpathians, Slovakia: crystal chemistry and evolution

    NASA Astrophysics Data System (ADS)

    Bačík, P.; Uher, P.; Dikej, J.; Puškelová, Ľ.

    2017-03-01

    Tourmaline is an important gangue mineral in a large number of Cretaceous siderite-quartz-sulphide hydrothermal veins in the Gemeric Unit, Slovak Ore Mountains, Slovakia, such as Dobšiná, Vlachovo, Rožňavské Bystré, Hnilčík, Rakovnica, Novoveská Huta, Gretla, Rudňany, and Bindt. In this study we combine by electron microprobe analysis, powder X-ray diffraction, Mössbauer and optical emission spectroscopy to determine the range of tourmaline compositions in the deposits and constrain the mechanisms of its precipitation. Selected samples from the mentioned deposits belong mostly to the alkali group, schorl to dravite series, rarely dominant X-site vacant foititic tourmaline (Vlachovo and Bindt) and oxy-dravite compositions (Hnilčík) were detected. Rim zones of some schorlitic tourmalines show high concentrations of Ti (up to 2.35 wt.% TiO2, 0.30 apfu; Rožňavské Bystré). The chemical composition is mostly controlled by alkali-deficient X □AlNa-1(Mg,Fe2+)-1 and proton-deficient AlO(Mg,Fe2+)-1(OH)-1 substitutions. Titanium is incorporated into the structure by Y Ti Y (Mg,Fe) Y Al-2, Y Ti Z Mg Y Al-1 Z Al-1, Y TiO( Y AlOH), and X Ca Y Ti Z MgO2 X □-1 Y,Z Al-2(OH)-2 substitutions. Along trace elements, Sr and V attain concentrations of 80-450 and 70-320 ppm, respectively. The unit-cell parameter a varies between 15.960 and 15.985 Å; variations in c are larger, between 7.177 and 7.236 Å indicating the presence of Fe3+ and Mg2+ at Z site. Mössbauer spectroscopy has shown variable Fe3+ proportions (0.17-0.55 apfu) in all samples. The gathered dataset suggests some qualitative considerations on the mechanisms controlling tourmaline compositions at the regional scale. The highest Fe3+ concentrations occur in samples from Rudňany and Gretla in the external part of Gemeric unit, suggesting higher oxidation during longer transport of fluids. We propose that the determined XFe in the samples are correlated with the compositions of the host rocks, as

  11. Oxygen isotope record of fluid-rock-SiO 2 interaction during Variscan progressive deformation and quartz veining in the meta-volcanosediments of Belle-Ile (Southern Brittany)

    NASA Astrophysics Data System (ADS)

    Schulz, Bernhard; Audren, Claude; Triboulet, Claude

    2002-08-01

    Belle-Ile in the South Armorican Domain is composed of Palaeozoic volcano-detrital sequences with sericite phyllites and porphyroids. Fine-banded and folded meta-tuffites, microquartzites and graphitic quartzites occur in the basal part at Plage de Bordardoué. Phengite compositions constrain that Variscan metamorphism did not exceed 430 °C/4.5 kbar. Four generations (1-4) of centimeter-thick quartz veins were precipitated during Variscan progressive deformation and recorded changing fluid compositions. Values of 26‰ δ18OSMOW in vein 1 quartz exceed high δ18OSMOW in the host rocks. Decrease of quartz δ18OSMOW from margins to centers can be observed from the syntaxial veins. Younger veins 4 have lower δ18O. Their inclusions indicate lower salinities and traces of CH4 in the fluid when compared with veins 1. Veins 1 were overprinted by shearing and fissuring. Subgrain rotation recrystallization occurred along briquette structures and subgrain boundaries. The initial isotope values have been preserved. Larger domains with small-grained quartz can be identified by lower values of δ18O. Homogeneous isotopic compositions are found in hinges of folded veins 2 with grain boundary migration recrystallization. The small-scale oxygen isotope variations and the changing fluid compositions point to a locally hosted fluid system with a limited contribution of meteoric water during multiphase deformation and vein formation.

  12. From evaporated seawater to uranium-mineralizing brines: Isotopic and trace element study of quartz-dolomite veins in the Athabasca system

    NASA Astrophysics Data System (ADS)

    Richard, Antonin; Boulvais, Philippe; Mercadier, Julien; Boiron, Marie-Christine; Cathelineau, Michel; Cuney, Michel; France-Lanord, Christian

    2013-07-01

    Stable isotope (O, H, C), radiogenic isotope (Sr, Nd) and trace element analyses have been applied to quartz-dolomite veins and their uranium(U)-bearing fluid inclusions associated with Proterozoic unconformity-related UO2 (uraninite) ores in the Athabasca Basin (Canada) in order to trace the evolution of pristine evaporated seawater towards U-mineralizing brines during their migration through sediments and basement rocks. Fluid inclusion data show that quartz and dolomite have precipitated from brines of comparable chemistry (excepted for relatively small amounts of CO2 found in dolomite-hosted fluid inclusions). However, δ18O values of quartz veins (δ18O = 11‰ to 18‰) and dolomite veins (δ18O = 13‰ to 24‰) clearly indicate isotopic disequilibrium between quartz and dolomite. Hence, it is inferred that this isotopic disequilibrium primarily reflects a decrease in temperature between the quartz stage (˜180 °C) and the dolomite stage (˜120 °C). The δ13C values of CO2 dissolved in dolomite-hosted fluid inclusions (δ13C = -30‰ to -4‰) and the δ13C values of dolomite (δ13C = -23.5‰ to -3.5‰) indicate that the CO2 dissolved in the mineralizing brines originated from brine-graphite interactions in the basement. The resulting slight increase in the fluid partial pressure of CO2 (pCO2) may have triggered dolomite precipitation instead of quartz. δ18O values of quartz veins and previously published δ18O values of the main alteration minerals around the U-ores (illite, chlorite and tourmaline) show that quartz and alteration minerals were isotopically equilibrated with the same fluid at ˜180 °C. The REE concentrations in dolomite produce PAAS-normalized patterns that show some similarities with that of UO2 and are clearly distinct from that of the other main REE-bearing minerals in these environments (monazite, zircon and aluminum phosphate-sulfate (APS) minerals). The radiogenic isotope compositions of dolomite (87Sr/86Sri = 0.7053 to 0

  13. Evaluation of anisotropy in physical/mechanical properties of metabasalts from Gadag (Southern India) - implications for vein emplacement and gold mineralization

    NASA Astrophysics Data System (ADS)

    Satheesan Vishnu, C.; Mamtani, Manish A.

    2016-04-01

    Foliated rocks have anisotropic physical and mechanical properties. In the case of foliated metamorphic and bedded sedimentary rocks, it is easy to decipher this anisotropy. However, this is not readily possible in the case of massive rocks. Vishnu et al. (2010) used Anisotropy of Magnetic Susceptibility (AMS) analysis to identify magnetic fabric in massive quartzites and established that the rocks have a lower strength parallel to the magnetic foliation, than perpendicular to it. In the present study, the authors have extrapolated the same concept to the metabasalts of Gadag region (West Dharwar Craton, Southern India), which is replete with quartz veins that are gold bearing. These metabasalts are massive and are devoid of visible foliation. Mondal and Mamtani (2013, 2014) did AMS analysis of the metabasalts and showed that the magnetic foliation is NW-SE striking, and the quartz veins also have similar strike. It was inferred by the above authors that the magnetic foliation developed during D1/D2 deformation (regional NE-SW compression) and the veins emplaced during D3 (NW-SE compression). This implies (a) dilation of pre-existing anisotropic elements during D3 and (b) rock strength anisotropy must have been important in controlling this dilation. To test this oriented blocks (each approximately 50 × 40 × 25 cm in size) of metabasalts were collected. A portion of the sample was used for AMS analysis. Subsequently, the magnetic foliation identified from AMS analysis was marked on the remaining sample block, and NX size (Diameter = 54.7 cm) cylindrical cores were drilled parallel and perpendicular to the magnetic foliation for various rock physical/mechanical tests - uniaxial compressive strength (UCS), point load test (PLT), P-wave velocity and Brazilian tensile strength. Results so far indicate that average point load index parallel and perpendicular to the foliation is 8.47 MPa, and 9.93 MPa, respectively, while UCS is 172.77 kN and 212.95 kN, respectively

  14. Structural control on the emplacement of contemporaneous Sn-Ta-Nb mineralized LCT pegmatites and Sn bearing quartz veins: Insights from the Musha and Ntunga deposits of the Karagwe-Ankole Belt, Rwanda

    NASA Astrophysics Data System (ADS)

    Hulsbosch, Niels; Van Daele, Johanna; Reinders, Nathan; Dewaele, Stijn; Jacques, Dominique; Muchez, Philippe

    2017-10-01

    The Nb-Ta-Sn pegmatites and Sn quartz veins of the Rwamagana-Musha-Ntunga area in eastern Rwanda are part of the Mesoproterozoic Karagwe-Ankole Belt. These commodities are on a regional scale spatiotemporally associated to the early Neoproterozoic fertile G4-granite generation. Although a transition from the lithium-cesium-tantalum pegmatites to cassiterite-microcline-quartz veins has been observed in the Rwamagana-Musha-Ntunga area, the structural control and the paragenetic relationship between the mineralized pegmatites and the Sn bearing quartz veins is largely unknown. Consequently, this study investigates the occurrence of pegmatites and quartz veins and the structural and lithological controls on their emplacement. The metasediments in the area are affected by a regional compressional regime with a shortening direction oriented N70E, which resulted in a N20W-oriented fold sequence. The Lake Muhazi granite is present in center of the Karehe anticline. The structural orientations of pegmatites and quartz veins show that two important factors control their emplacement. The first control is the reactivation of pre-existing discontinuities such as the bedding, bedding-parallel joints or strike-slip fault planes. In view of the regional structural grain in the Rwamagana-Musha-Ntunga area, this corresponds with abundant N20W-oriented pegmatites and quartz veins. The reactivation is strongly related to the lithology of the host rocks. The Musha Formation, which mainly consists of decimeter- to meter-scale lithological alternations of metapelite, metasiltstone and metasandstone, represents the most suitable environment for bedding reactivation. This is reflected in the predominance of bedding-parallel pegmatites and quartz veins hosted by the Musha Formation. Strike-parallel joints were mainly observed in the competent lithologies. The second controlling factor is related to the regional post-compressional stress regime. New joints initiated upon emplacement of the

  15. Adsorption kinetics of an engineered gold binding Peptide by surface plasmon resonance spectroscopy and a quartz crystal microbalance.

    PubMed

    Tamerler, Candan; Oren, Ersin Emre; Duman, Memed; Venkatasubramanian, Eswaranand; Sarikaya, Mehmet

    2006-08-29

    The adsorption kinetics of an engineered gold binding peptide on gold surface was studied by using both quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) spectroscopy systems. The gold binding peptide was originally selected as a 14-amino acid sequence by cell surface display and then engineered to have a 3-repeat form (3R-GBP1) with improved binding characteristics. Both sets of adsorption data for 3R-GBP1 were fit to Langmuir models to extract kinetics and thermodynamics parameters. In SPR, the adsorption onto the surface shows a biexponential behavior and this is explained as the effect of bimodal surface topology of the polycrystalline gold substrate on 3R-GBP1 binding. Depending on the concentration of the peptide, a preferential adsorption on the surface takes place with different energy levels. The kinetic parameters (e.g., K(eq) approximately 10(7) M(-1)) and the binding energy (approximately -8.0 kcal/mol) are comparable to synthetic-based self-assembled monolayers. The results demonstrate the potential utilization of genetically engineered inorganic surface-specific peptides as molecular substrates due to their binding specificity, stability, and functionality in an aqueous-based environment.

  16. Simultaneous anomalous reflection and quartz-crystal microbalance measurements of protein bindings on a gold surface.

    PubMed

    Manaka, Yuichi; Kudo, Yukihiko; Yoshimine, Hiroshi; Kawasaki, Takayoshi; Kajikawa, Kotaro; Okahata, Yoshio

    2007-09-14

    Protein bindings onto a gold surface were detected simultaneously by QCM (delta F(water)) and anomalous reflection (deltaR) of gold on the same surface in aqueous solutions; the obtained delta F(water)/deltaR values correlated with surface areas and viscosity of proteins.

  17. Fluid fractionation of tungsten during granite-pegmatite differentiation and the metal source of peribatholitic W quartz veins: Evidence from the Karagwe-Ankole Belt (Rwanda)

    NASA Astrophysics Data System (ADS)

    Hulsbosch, Niels; Boiron, Marie-Christine; Dewaele, Stijn; Muchez, Philippe

    2016-02-01

    The identification of a magmatic source for granite-associated rare metal (W, Nb, Ta and Sn) mineralisation in metasediment-hosted quartz veins is often obscured by intense fluid-rock interactions which metamorphically overprinted most source signatures in the vein system. In order to address this recurrent metal sourcing problem, we have studied the metasediment-hosted tungsten-bearing quartz veins of the Nyakabingo deposit of the Karagwe-Ankole belt in Central Rwanda. The vein system (992 ± 2 Ma) is spatiotemporal related to the well-characterised B-rich, F-poor G4 leucogranite-pegmatite suite (986 ± 10 Ma to 975 ± 8 Ma) of the Gatumba-Gitarama area which culminated in Nb-Ta-Sn mineralisation. Muscovite in the Nyakabingo veins is significantly enriched in granitophile elements (Rb, Cs, W and Sn) and show alkali metal signatures equivalent to muscovite of less-differentiated pegmatite zones of the Gatumba-Gitarama area. Pegmatitic muscovite records a decrease in W content with increasing differentiation proxies (Rb and Cs), in contrast to the continuous enrichment of other high field strength elements (Nb and Ta) and Sn. This is an indication of a selective redistribution for W by fluid exsolution and fluid fractionation. Primary fluid inclusions in tourmaline of these less-differentiated pegmatites demonstrate the presence of medium to low saline, H2O-NaCl-KCl-MgCl2-complex salt (e.g. Rb, Cs) fluids which started to exsolve at the G4 granite-pegmatite transition stage. Laser ablation inductively coupled plasma mass-spectrometry shows significant tungsten enrichment in these fluid phases (∼5-500 ppm). Fractional crystallisation has been identified previously as the driving mechanism for the transition from G4 granites, less-differentiated biotite, biotite-muscovite towards muscovite pegmatites and eventually columbite-tantalite mineralised pegmatites. The general absence of tungsten mineralisation in this magmatic suite, including the most differentiated

  18. Competitive surfactant adsorption of AOT and Tween 20 on gold measured using a quartz crystal microbalance with dissipation.

    PubMed

    Thavorn, Jakkrit; Hamon, Joshua J; Kitiyanan, Boonyarach; Striolo, Alberto; Grady, Brian P

    2014-09-23

    Competitive surfactant adsorption of anionic surfactant AOT and nonionic surfactant Tween 20 on gold was investigated by using a quartz crystal microbalance with dissipation (QCM-D) at 25 °C. The adsorption isotherm of pure AOT did not reach a plateau at the CMC, but rather adsorption continued to increase gradually at concentrations higher than the CMC before reaching a plateau. This behavior is evidence of competitive adsorption between AOT and impurities. The adsorbed layer of AOT on gold became more viscoelastic as the concentration of AOT increased. Tween 20 reached the plateau adsorption on gold before its concentration reached the CMC, suggesting that the attraction between Tween 20 and gold is very strong. The Tween 20 adsorbed layer was rigid when compared to the AOT adsorbed layer, as indicated by low dissipation. The addition of Tween 20 to a surface covered by AOT resulted in an increase in adsorbed mass, suggestive of the insertion of Tween 20 into the AOT adsorbed layer as expected because Tween 20 is able to separate the repulsive headgroups of AOT. When AOT was added to a preformed Tween 20 layer, a drop in the adsorbed amount was found between 0 and 0.1 CMC, and then no change was observed until the CMC of AOT was reached; the adsorbed amount then increased, reaching a final adsorption greater than that of pure AOT. All data support the formation of mixed surfactant layers on the surface. Although a two-step model fit both AOT and Tween 20 adsorption kinetic data well, AOT was found to adsorb much more slowly than Tween 20.

  19. The Sarylakh and Sentachan gold-antimony deposits, Sakha-Yakutia: A case of combined mesothermal gold-quartz and epithermal stibnite ores

    NASA Astrophysics Data System (ADS)

    Bortnikov, N. S.; Gamynin, G. N.; Vikent'eva, O. V.; Prokof'ev, V. Yu.; Prokop'ev, A. V.

    2010-10-01

    New mineralogical, thermobarometric, isotopic, and geochemical data provide evidence for long and complex formation history of the Sarylakh and Sentachan Au-Sb deposits conditioned by regional geodynamics and various types of ore mineralization, differing in age and source of ore matter combined in the same ore-localizing structural units. The deposits are situated in the Taryn metallogenic zone of the East Yakutian metallogenic belt in the central Verkhoyansk-Kolyma Fold Region. They are controlled by the regional Adycha-Taryn Fault Zone that separates the Kular-Nera Terrane and the western part of the Verkhoyansk Fold-Thrust Belt. The fault extends along the strike of the northwest-trending linear folds and is deep-rooted and repeatedly reactivated. The orebodies are mineralized crush zones accompanied by sulfidated (up to 100 m wide) quartz-sericite metasomatic rocks and replacing dickite-pyrophyllite alteration near stibnite veinlets. Two stages of low-sulfide gold-quartz and stibnite mineralization are distinguished. The formation conditions of the early milk white quartz in orebodies with stibnite mineralization at the Sarylakh and Sentachan deposits are similar: temperature interval 340-280°C, salt concentration in fluids 6.8-1.6 wt % NaCl equiv, fluid pressure 3430-1050 bar, and sodic bicarbonate fluid composition. The ranges of fluid salinity overlapped at both deposits. In the late regenerated quartz that attends stibnite mineralization, fluid inclusions contain an aqueous solution with salinity of 3.2 wt % NaCl equiv and are homogenized into liquid at 304-189°C. Syngenetic gas inclusions contain nitrogen 0.19 g/cm3 in density. The pressure of 300 bar is estimated at 189°C. The composition of the captured fluid is characterized as K-Ca bicarbonatesulfate. The sulfur isotopic composition has been analyzed in pyrite and arsenopyrite from ore and metasomatic zones, as well as in coarse-, medium-, and fine-grained stibnite varieties subjected to

  20. Low rate of asymptomatic cerebral embolism and improved procedural efficiency with the novel pulmonary vein ablation catheter GOLD: results of the PRECISION GOLD trial.

    PubMed

    De Greef, Yves; Dekker, Lukas; Boersma, Lucas; Murray, Stephen; Wieczorek, Marcus; Spitzer, Stefan G; Davidson, Neil; Furniss, Steve; Hocini, Mélèze; Geller, J Christoph; Csanádi, Zoltan

    2016-05-01

    This prospective, multicentre study (PRECISION GOLD) evaluated the incidence of asymptomatic cerebral embolism (ACE) after pulmonary vein isolation (PVI) using a new gold multi-electrode radiofrequency (RF) ablation catheter, pulmonary vein ablation catheter (PVAC) GOLD. Also, procedural efficiency of PVAC GOLD was compared with ERACE. The ERACE study demonstrated that a low incidence of ACE can be achieved with a platinum multi-electrode RF catheter (PVAC) combined with procedural manoeuvres to reduce emboli. A total of 51 patients with paroxysmal atrial fibrillation (AF) (age 57 ± 9 years, CHA2DS2-VASc score 1.4 ± 1.4) underwent AF ablation with PVAC GOLD. Continuous oral anticoagulation using vitamin K antagonists, submerged catheter introduction, and heparinization (ACT ≥ 350 s prior to ablation) were applied. Cerebral magnetic resonance imaging (MRI) scans were performed within 48 h before and 16-72 h post-ablation. Cognitive function assessed by the Mini-Mental State Exam at baseline and 30 days post-ablation. New post-procedural ACE occurred in only 1 of 48 patients (2.1%) and was not detectable on MRI after 30 days. The average number of RF applications per patient to achieve PVI was lower in PRECISION GOLD (20.3 ± 10.0) than in ERACE (28.8 ± 16.1; P = 0.001). Further, PVAC GOLD ablations resulted in significantly fewer low-power (<3 W) ablations (15 vs. 23%, 5 vs. 10% and 2 vs. 7% in 4:1, 2:1, and 1:1 bipolar:unipolar energy modes, respectively). Mini-Mental State Exam was unchanged in all patients. Atrial fibrillation ablation with PVAC GOLD in combination with established embolic lowering manoeuvres results in a low incidence of ACE. Pulmonary vein ablation catheter GOLD demonstrates improved biophysical efficiency compared with platinum PVAC. ClinicalTrials.gov NCT01767558. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  1. Mercury Sorption and Desorption on Gold: A Comparative Analysis of Surface Acoustic Wave and Quartz Crystal Microbalance-Based Sensors.

    PubMed

    Kabir, K M Mohibul; Sabri, Ylias M; Esmaielzadeh Kandjani, Ahmad; Matthews, Glenn I; Field, Matthew; Jones, Lathe A; Nafady, Ayman; Ippolito, Samuel J; Bhargava, Suresh K

    2015-08-04

    Microelectromechanical sensors based on surface acoustic wave (SAW) and quartz crystal microbalance (QCM) transducers possess substantial potential as online elemental mercury (Hg(0)) vapor detectors in industrial stack effluents. In this study, a comparison of SAW- and QCM-based sensors is performed for the detection of low concentrations of Hg(0) vapor (ranging from 24 to 365 ppbv). Experimental measurements and finite element method (FEM) simulations allow the comparison of these sensors with regard to their sensitivity, sorption and desorption characteristics, and response time following Hg(0) vapor exposure at various operating temperatures ranging from 35 to 75 °C. Both of the sensors were fabricated on quartz substrates (ST and AT cut quartz for SAW and QCM devices, respectively) and employed thin gold (Au) layers as the electrodes. The SAW-based sensor exhibited up to ∼111 and ∼39 times higher response magnitudes than did the QCM-based sensor at 35 and 55 °C, respectively, when exposed to Hg(0) vapor concentrations ranging from 24 to 365 ppbv. The Hg(0) sorption and desorption calibration curves of both sensors were found to fit well with the Langmuir extension isotherm at different operating temperatures. Furthermore, the Hg(0) sorption and desorption rate demonstrated by the SAW-based sensor was found to decrease as the operating temperature increased, while the opposite trend was observed for the QCM-based sensor. However, the SAW-based sensor reached the maximum Hg(0) sorption rate faster than the QCM-based sensor regardless of operating temperature, whereas both sensors showed similar response times (t90) at various temperatures. Additionally, the sorption rate data was utilized in this study in order to obtain a faster response time from the sensor upon exposure to Hg(0) vapor. Furthermore, comparative analysis of the developed sensors' selectivity showed that the SAW-based sensor had a higher overall selectivity (90%) than did the QCM

  2. Creating gold nanoprisms directly on quartz crystal microbalance electrodes for mercury vapor sensing

    NASA Astrophysics Data System (ADS)

    Sabri, Y. M.; Ippolito, S. J.; O'Mullane, A. P.; Tardio, J.; Bansal, V.; Bhargava, S. K.

    2011-07-01

    A novel electrochemical route is used to form highly {111}-oriented and size-controlled Au nanoprisms directly onto the electrodes of quartz crystal microbalances (QCMs) which are subsequently used as mercury vapor sensors. The Au nanoprism loaded QCM sensors exhibited excellent response-concentration linearity with a response enhancement of up to ~ 800% over a non-modified sensor at an operating temperature of 28 °C. The increased surface area and atomic-scale features (step/defect sites) introduced during the growth of nanoprisms are thought to play a significant role in enhancing the sensing properties of the Au nanoprisms toward Hg vapor. The sensors are shown to have excellent Hg sensing capabilities in the concentration range of 0.123-1.27 ppmv (1.02-10.55 mg m - 3), with a detection limit of 2.4 ppbv (0.02 mg m - 3) toward Hg vapor when operating at 28 °C, and 17 ppbv (0.15 mg m - 3) at 89 °C, making them potentially useful for air monitoring applications or for monitoring the efficiency of Hg emission control systems in industries such as mining and waste incineration. The developed sensors exhibited excellent reversible behavior (sensor recovery) within 1 h periods, and crucially were also observed to have high selectivity toward Hg vapor in the presence of ethanol, ammonia and humidity, and excellent long-term stability over a 33 day operating period.

  3. Ore mineralogy and textural zonation in the world-class epithermal Waihi Vein System, Hauraki Goldfield

    USGS Publications Warehouse

    Mauk, Jeffrey L.; Skinner, Erin G; Fyfe, Sarah J; Menzies, Andrew H; Lowers, Heather A.; Koenig, Alan E.

    2016-01-01

    The Waihi district in the Hauraki Goldfield of New Zealand contains adularia-sericite epithermal gold-silver veins that have produced more than 7.7 Moz gold. The outermost veins of the district (Martha, Favona, Moonlight, and Cowshed) contain abundant colloform, cherty, and black quartz fill textures, with minor crustiform and massive quartz. The central veins (Amaranth, Trio, and Union) contain predominantly massive and crustiform textures, and these veins are also commonly coarser grained than outermost veins. Pyrite, sphalerite, galena, chalcopyrite, electrum, and acanthite occur in both outermost and central veins; base metal sulfide minerals typically increase in abundance in deeper samples. Antimony-, arsenic-, and selenium-bearing minerals are most abundant in the Favona and Moonlight veins, whereas base metal sulfide minerals are more abundant in the central veins at Correnso. Throughout the Waihi vein system, electrum is by far the most widespread, abundant, and significant gold-bearing mineral, but LA-ICP-MS analyses show that arsenian pyrite also contains some gold. Mineralogical and textural data are consistent with the central veins forming at a deeper structural level, or from hydrothermal fluids with different chemistry, or both.

  4. Preliminary investigation of gold mineralization in the Pedro Dome-Cleary Summit area, Fairbanks district, Alaska

    USGS Publications Warehouse

    Pilkington, H.D.; Forbes, R.B.; Hawkins, D.B.; Chapman, R.M.; Swainbank, R.C.

    1969-01-01

    Anomalous gold values in mineralized veins and hydrothermally altered quartz-mica schist in the Pedro Dome-Cleary Summit area of the Fairbanks district suggest the presence of numerous small low- to high-grade lodes. Anomalous concentrations of gold were found to exist in the wall rocks adjacent to mineralized veins. In general, the gold concentration gradients in these wall rocks are much too steep to increase appreciably the mineable width of the veins. Anomalous gold values were also detected in bedrock samples taken by means of a power auger on the Murphy Dome Road along the southwest extension of the Pedro Dome-Cleary Summit mineralized belt.

  5. Gold-quartz deposits of the Zhdaninsky ore-placer cluster, eastern Yakutia: Structural control and formation conditions

    NASA Astrophysics Data System (ADS)

    Aristov, V. V.; Babarina, I. I.; Grigor'eva, A. V.; Alekseev, V. Yu.; Prokof'ev, V. Yu.; Uzyunkoyan, A. A.; Zabolotskaya, O. V.; Titov, S. G.

    2017-01-01

    Gold deposits and occurrences small in reserves and high in Au grade conventionally determine the line of prospecting in terrigenous sequences of the Verkhoyansk-Kolyma region. In this paper, the geological structure of such gold objects is considered with the example of the deposits and prospects making up the Zhdaninsky ore-placer cluster in the Republic of Sakha (Yakuia). From lithological, structural, and mineralogical-geochemical data, the formation conditions of ore-bearing complexes are specified, the geological evolution history of the northern Ol'chan Zone of the Kular-Nera Belt is reconstructed, and the zonal distribution of mineralization within the ore-placer cluster is revealed. The structural-compositional complexes were formed in the following succession: (1) sedimentation at the shelf of the passive margin accompanied by synsedimentation deformations; (2) metagenesis of sediments and the development of bedding-plane intraformational detachments of collision stage D1 under conditions of tangential compression and accompanied by the formation of carbon dioxide-aqueous metamorphic fluid at a temperature of 300°C and under a pressure of 1.4 kbar; (3) folding and faulting of orogenic stage D2 with the formation of synkinematic magmatic bodies, metasomatic alteration, and Au-bearig mineral assemblages. Small Au-bearing objects with veined mineralization and high Au grade are localized in structures of stage D2 transverse to bedding-plane schistosity S1. They form at the collision stage above intraformational detachment surfaces and are controlled by shear structures of the orogenic stage with misalignment of these deformations. The ore zoning is determined by the distribution of Co and Ni minerals and by variations in the anionic composition of ore (S, As, Sb).

  6. Gold gradients and anomalies in the Pedro Dome-Cleary Summit area, Fairbanks district, Alaska

    USGS Publications Warehouse

    Forbes, Robert B.; Pilkington, H.D.; Hawkins, D.B.

    1968-01-01

    Anomalous gold values have been discovered in hydrothermally altered quartz diorite, quartz monzonite, and quartz mica schist at the head of Fox Creek; and in similarly altered quartz diorite in the Granite Creek area. Channel samples across some of these altered zones have produced anomalous gold values over widths which merit further investigation as potential large tonnage low-grade gold deposits. Trace gold gradients have also been detected in the wall rocks adjacent to mineralized veins and in hydrothermal alteration zones in the Pedro Dome-Cleary Summit area. Although most of the gradients may not materially increase the mineable width of the deposit under current economic conditions, such gradients can be used to locate auriferous quartz veins and altered zones by geochemical methods. Gold enrichment is accompanied by anomalous concentrations of arsenic and antimony, and gold bearing quartz veins and altered zones are frequently signaled by peripheral haloes of these metals before trace gold is detectable. Hydrothermally altered and/or sheared zones in both granitic and metamorphic rocks should be carefully prospected, along the trend of the Cleary Antiform.

  7. Gold mineralization in the West Hoggar shear zone, Algeria

    NASA Astrophysics Data System (ADS)

    Ferkous, K.; Leblanc, M.

    1995-06-01

    The Amesmessa gold prospect is located along a vertical N-S-trending crustal-scale ductile shear zone; stretching lineations are subhorizontal. This major shear zone is a Late Pan African dextral strike-slip fault of the Pharusian Belt of the Tuareg Shield (Algeria). The Amesmessa shear zone is asymmetric: strong thermal and deformational gradients are present along its western border where biotitic ultramylonites are in contact with a rigid Archean complex (In Ouzzal block), whereas there is a progressive gradation, through mylonite then protomylonite, to the Proterozoic gneiss of the Eastern block which displays co-axial Pan African structures. The Amesmessa shear zone is characterized by the presence of a felsic dike complex emplaced during shearing, and forming the most important parent material for ultramylonites. Basic magmas and carbonatites also intruded within the shear zone. The gold-rich quartz veins are located within the ultramylonitic western part of the shear zone. These N-S-trending laminated quartz veins formed during the late increments of shearing (plastic/brittle transition), by repeated syntectonic hydraulic fracturing along zones of rheological contrast parallel to foliation. The ore mineral association (pyrite, galena, native gold, sphalerite) crystallized in the deformed quartz matrix along late shear planes. Undeformed E-W trending banded quartz veins are present in the mylonitic eastern part of the shear zone; their gold content is low and no native gold has been observed. A strong hydrothermal alteration resulted in the development (along the walls of the N-S gold-bearing quartz veins) of a 5-m-wide carbonate-sericite-albite-pyrite secondary mineral association which implies an important CO2 supply and moderate temperature conditions. There is no alteration halo around the E-W quartz veins. Ultramylonites, hydrothermally altered rocks and quartz veins display similar REE patterns characterized by strong LREE enrichments. Shear

  8. Mass and charge balance in self-assembled multilayer films on gold. Measurements with optical reflectometry and quartz crystal microbalance.

    PubMed

    Buron, C C; Filiâtre, C; Membrey, F; Perrot, H; Foissy, A

    2006-04-15

    This work aimed to the determination of weight uptakes and charge balance in the course of successive deposition of polyelectrolytes, using the so-called self-assembled multilayer technique. Polyelectrolytes were the quaternized polydimethylaminoethyl methacrylate chloride, (MADQUAT) and poly(acrylic acid) (PAA). Experiments were made at pH 5.5 in NaCl solutions between 10(-3) and 10(-1) M. Deposits (5 bilayers) on a gold substrate were monitored using a quartz crystal microbalance (QCM) and optical fixed-angle reflectometry. Analysis of data lead to the determination of the sensitivity factor of the reflectometric output. QCM allowed the direct measurement of weight uptakes in 10(-3) and 10(-2) M solutions, while the viscoelastic properties of the film did not look appropriate for the measurement in 10(-1) M solutions. The layer-by-layer uptakes and charge balances in 10(-3) and 10(-2) M solutions revealed a large contribution of the counterions in the neutralization of the electrical charge in the film, more so for the highly charged MADQUAT polymer. The difference between two successive polymer charge densities increased significantly with the layer number and the electrolyte concentration. The increase of NaCl concentration induced an increase of MADQUAT but reversely a decrease of PAA deposits. The results were consistent with the determining influence of the salt in polyelectrolyte adsorption, both with regards to the concentration and the type of ions that has been well demonstrated in the literature. This work also draws attention to the role of small ions in the structural and application properties of self-assembled multilayer films.

  9. Citizen-Scientist Led Quartz Vein Investigation in the McDowell Sonoran Preserve, Scottsdale, Arizona, Resulting in Significant Geologic Discoveries and a Peer-Reviewed Report Coauthored and with Maps by Citizen-Scientists.

    NASA Astrophysics Data System (ADS)

    Gruber, D.; Gootee, B.

    2016-12-01

    Citizen-scientists of the McDowell Sonoran Conservancy Field Institute originated and led this project to study milky quartz deposits. Milky quartz veins of all sizes are visible throughout the McDowell Sonoran Preserve (Scottsdale, Arizona) and are commonly found in Arizona Proterozoic rocks. No research on milky quartz has been done locally and little is known about its formation and emplacement history. Working with Brian Gootee, research geologist with the Arizona Geological Survey (AZGS), a citizen science team identified candidate study sites with large quartz veins and then conducted aerial balloon photography followed by geologic mapping, basic data collection, photo-documentation, and sampling from two sites. Samples were analyzed with a UV lamp, Geiger counter, and x-ray fluorescence spectrometer. Petroscopic analysis and interpretation of the samples were done by Gootee. Daniel Gruber, the citizen-science project leader, and Gootee summarized methodology, sample analyses, and interpretation in a report including detailed geologic maps. Analysis of samples from one site provided evidence of several events of Proterozoic quartz formation. The other site hosted pegmatite, cumulates, graphic granite and orbicular granite in association with milky quartz, all discovered by citizen scientists. The milky quartz and surrounding pegmatites in granite at this site trace the progression of late-stage crystallization at the margin of a fractionated granite batholith, providing an exemplary opportunity for further research into batholith geochemistry and evolution. The project required 1000 hours of citizen-science time for training, field work, data organization and entry, mapping, and writing. The report by Gootee and Gruber was reviewed and published by AZGS as an Open File Report in its online document repository. The citizen scientist team leveraged the time of professional geologists to expand knowledge of an important geologic feature of the McDowell Mountains.

  10. The pink topaz-bearing calcite, quartz, white mica veins from Ghundao Hill (North West Frontier Province, Pakistan): K/Ar age, stable isotope and REE data

    NASA Astrophysics Data System (ADS)

    Morteani, G.; Voropaev, A.

    2007-01-01

    In the area of the Ghundao Hill (Northern Frontier Province, Pakistan) an orange-yellow to cherry-red topaz is found in calcite, quartz, white mica veins crosscutting the schistosity of probably Silurian to Devonian gray limestones. Topaz with such a range of colours is traded as Imperial Topaz. Low fluorine contents of about 15 wt.%, oxygen isotope thermometry, K/Ar age determination on white mica, fluid inclusion data and mineral textures indicate that the topaz from Ghundao Hill crystallized at temperatures of about 230 °C during the Eocene Himalayan tectonothermal event and not from a late to postmagmatic granite-related fluid. The pink Topaz from Ghundao Hill shares the coexistence with carbonates, low fluorine content and a crystallization at low temperature and pressure during a regional tectonothermal event with the Imperial Topaz from Ouro Preto (Brazil) and from the Sanarka/Kamenka rivers (South Urals, Russia). The efficiency of topaz to remove fluorine from fluids at low temperature explains how topaz can be formed from metamorphic fluids that are typically poor in fluorine. High CO2 activity produced in the fluids by metamorphic decarbonatisation reactions and Al buffering by white mica prevented fluorination of carbonates stabilising topaz relative to fluorite.

  11. VOC and VOX in fluid inclusions of quartz: New chemical insights into hydrothermal vein mineralization by GC-MS and GC-IRMS measurements

    NASA Astrophysics Data System (ADS)

    Sattler, Tobias; Kirnbauer, Thomas; Keppler, Frank; Greule, Markus; Fischer, Jan; Spiekermann, Patrik; Schreiber, Ulrich; Mulder, Ines; Schöler, Heinz Friedrich

    2015-04-01

    Fluid inclusions (FIs) in minerals are known to contain a variety of different liquids, gases, and solids. The fluids get trapped during mineral growth and can preserve the original mineral-forming fluid or fluids of later events. A new analytical technique developed by Mulder et al. (2013) [1] allows to measure trace gases in FIs. For the measurements, grains of 3-5 mm diameter are ground in an airtight grinding device, releasing the volatiles from FIs into the gas phase, where they can be measured by GC-MS, GC-FID and GC-IRMS. The Taunus covers the southeastern part of the thrust-and-fold-belt of the Rhenish Massif (Germany). The Variscan rock sequences comprise sedimentary and volcanic units ranging from Ordovician to Lower Carboniferous. Several types of hydrothermal mineralization can be distinguished, which are - in regard to the Variscan orogeny - pre-orogenic, orogenic, late-orogenic, post-orogenic and recent in age [2]. They include SEDEX, vein, Alpine fissure, disseminated and stockwerk mineralizations. Thus, the Taunus mineralizations enable investigations of different hydrothermal systems at different age in one region. For most of them extensive studies of stable and radiogenic isotopes exist. Quartz crystals of post-orogenic quartz veins and Pb-Zn-Cu bearing veins [3] were selected for our FI investigation. Sulphur containing compounds like COS and CS2 dominate the FIs but there are also volatile hydrocarbons (VOC) like different butenes, benzene, toluene and cyclopentene that were found very often. In some samples volatile halogenated organic carbons (VOX) like chloro- and bromomethane were found. Some FIs even contain iodomethane, chlorobenzene, vinyl chloride and -bromide. The non-fossil-fuel subsurface chemistry of VOC and VOX is not fully understood. There are a lot of unknown geogenic sources [4][5]. For a better understanding δ13C- and δ2H-values of CH4 were measured by GC-IRMS to examine if the detected organic compounds are formed biotic

  12. Simultaneous detection of surface coverage and structure of krypton films on gold by helium atom diffraction and quartz crystal microbalance techniques

    SciTech Connect

    Danisman, M. Fatih; Oezkan, Berrin

    2011-11-15

    We describe a quartz crystal microbalance setup that can be operated at low temperatures in ultra high vacuum with gold electrode surfaces acting as substrate surface for helium diffraction measurements. By simultaneous measurement of helium specular reflection intensity from the electrode surface and resonance frequency shift of the crystal during film adsorption, helium diffraction data can be correlated to film thickness. In addition, effects of interfacial viscosity on the helium diffraction pattern could be observed. To this end, first, flat gold films on AT cut quartz crystals were prepared which yield high enough helium specular reflection intensity. Then the crystals were mounted in the helium diffractometer sample holder and driven by means of a frequency modulation driving setup. Different crystal geometries were tested to obtain the best quality factor and preliminary measurements were performed on Kr films on gold surfaces. While the crystal structure and coverage of krypton films as a function of substrate temperature could successfully be determined, no depinning effects could be observed.

  13. Simultaneous detection of surface coverage and structure of krypton films on gold by helium atom diffraction and quartz crystal microbalance techniques.

    PubMed

    Danışman, M Fatih; Özkan, Berrin

    2011-11-01

    We describe a quartz crystal microbalance setup that can be operated at low temperatures in ultra high vacuum with gold electrode surfaces acting as substrate surface for helium diffraction measurements. By simultaneous measurement of helium specular reflection intensity from the electrode surface and resonance frequency shift of the crystal during film adsorption, helium diffraction data can be correlated to film thickness. In addition, effects of interfacial viscosity on the helium diffraction pattern could be observed. To this end, first, flat gold films on AT cut quartz crystals were prepared which yield high enough helium specular reflection intensity. Then the crystals were mounted in the helium diffractometer sample holder and driven by means of a frequency modulation driving setup. Different crystal geometries were tested to obtain the best quality factor and preliminary measurements were performed on Kr films on gold surfaces. While the crystal structure and coverage of krypton films as a function of substrate temperature could successfully be determined, no depinning effects could be observed.

  14. Electrical Characterization of a Thiol SAM on Gold as a First Step for the Fabrication of Immunosensors based on a Quartz Crystal Microbalance

    PubMed Central

    Tlili, Asma; Abdelghani, Adnane; Hleli, Salwa; Maaref, Mhamed A.

    2004-01-01

    In order to develop a robust biosensor based on quartz crystal microbalance technique for antigen detection, a control of the steps of the surface functionalization has been performed by impedance spectroscopy. The gold electrode is functionalized with the self-assembled monolayer technique. The high insulating properties of the acidic thiol monolayer has been characterized with cyclic voltammetry and impedance spectroscopy. The modified surface is activated with N-hydroxysuccinimide(NHS) and 1-(3-(dimethylamino)propyl)-3-ethylcarbodimide hydrochloride(EDC) cross-linker for antibody coupling. The non-specific sites are blocked with bovin serum albumine molecules. Different concentrations of antigen can be detected with a good reversibility in real time with the quartz crystal microbalance.

  15. Genetic significance of the trace element content in metamorphic and hydrothermal quartz: a reconnaissance study

    NASA Astrophysics Data System (ADS)

    Monecke, T.; Kempe, U.; Götze, J.

    2002-09-01

    A reconnaissance study on trace elements in metamorphic and hydrothermal quartz was carried out using quartz samples from the tin district Erzgebirge, Germany, the gold mineralization at Kašperské Hory, Czech Republic, and the gold-quartz vein deposits Muruntau and Myutenbai, Uzbekistan. A new method of sample preparation has been developed to prepare pure quartz samples by combining conventional hand-picking with microscopic and spectroscopic studies as well as acid wash/etch procedures. Preparation of monomineralic samples was followed by sample dissolution and measurement by ICP-MS. The metamorphic quartz has very low concentrations of Li (≤0.4 ppm), Al (≤30 ppm), K (≤35 ppm), Rb (≤50 ppb), Sr (≤0.3 ppm), and Y (≤15 ppb). Moreover, it is characterized by light rare earth element enriched lanthanide distribution patterns lacking Eu anomalies. The low element concentrations in metamorphic quartz are interpreted to result from recrystallization. Metamorphic quartz from alteration halos enveloping tin and gold deposits has distinctly different trace element signatures. These differences are related to the hydrothermal overprint of the pre-existing metamorphic quartz by the mineralizing fluids. Hydrothermally altered metamorphic quartz from tin deposits has elevated concentrations of Li (≥0.9 ppm), Al (≥50 ppm), K (≥45 ppm), Rb (≥250 ppb), and Y (≥40 ppb) whereas altered metamorphic quartz from gold deposits is characterized by elevated concentrations of Sr (≥0.5 ppm). The rare earth element distribution patterns of altered metamorphic quartz show variable enrichments of the heavy rare earth elements and frequently display positive Eu anomalies. Hydrothermal vein quartz from the gold deposits usually has elevated Al (≥50 ppm) and Sr (≥0.6 ppm) contents. The lanthanide distribution patterns exhibit variable enrichments of the heavy rare earth elements and commonly show positive Eu anomalies. The elevated Sr concentrations in the quartz

  16. Tectonic setting of Late Cenozoic gold mineralization in the gold belt of Costa Rica

    SciTech Connect

    Deruyter, V.D.

    1985-01-01

    The Gold Belt of Costa Rica is a northwest-elongated zone 15 km wide by 120 km long containing numerous auriferous quartz veins and pyritic silicified patterns upon which abundant small mines are developed. Gold veins are related principally to northeast-southwest and north-south striking, steeply dipping faults. Higher grade ore and thicker veins invariably occur at intersections of these fracture orientations, indicating simultaneous opening at the time of gold introduction. Restriction of gold veins to the northwest-trending arc of Miocene Aguacate Group andesite volcanic rocks, a product of Cocos Plate subduction, suggested approximately coeval formation, but recognition by the writer of the important role played by 2-5 m.y. old altered, gold mineralized rhyolite dikes intruded along north-south gold vein structures and intimately involved with high grade ores at the Esperanza Mine and Rio Chiquito prospect, for example, suggest a much younger period of fracturing and gold introduction. The rhyolite intrusions are more brittle and stockwork mineralized than andesite host rocks and form bulk tonnage gold targets. Initiation of right-lateral movement along the north-south Panama Fracture Zone at 5 m.y.a. within the pattern of northeastward Cocos Plate subduction may have tapped rhyolites from subvolcanic magma chambers into new faults.

  17. A unique ore-placer cluster with high-Hg gold mineralization in the Amur region (Russia)

    NASA Astrophysics Data System (ADS)

    Stepanov, V. A.; Moyseenko, V. G.; Melnikov, A. V.

    2017-02-01

    This work presents the geological structure and a description of gold-ore manifestations and gold placers in the Un'ya-Bom ore-placer cluster of the Amur gold-bearing province. The host rocks are Late Paleozoic and Mesozoic black-shale formations. Intrusive formations are rare. The sublatitudinal Un'ya thrust fault, along which Paleozoic sandstones overlap Mesozoic flyschoid deposits, is regarded as an orecontrolling structure. Gold-quartz and low-sulfide ores are confined to quartz-vein zones. Ore minerals are arsenopyrite, scheelite, ferberite, galena, and native gold. Gold-ore manifestations and placers contain high-Hg native gold. The high Hg content in native gold is explained by the occurrence of the eroded frontal part of the gold-ore pipe in the ore cluster, a source of native gold.

  18. Characteristics of gold deposits in northern Sonora, Mexico: a preliminary report

    USGS Publications Warehouse

    Silberman, M.L.; Giles, D.A.; Graubard, C.

    1988-01-01

    The complex geology of northern Sonora has a variety of environments suitable for gold mineralisation, and many of the gold prospects occur within or adjacent to the southwestern boundary of the megashear in Precambrian, Mesozoic and Tertiary rocks. The characteristics types of gold deposits have been delineated by reconnaissance field investigations of the authors. There are four main environments of lode gold deposits present in Sonora: epithermal veins and breccias; discontinuous quartz veins; structurally controlled Au; and carbonate sedimentary-hosted disseminated Au. -after Authors

  19. Strike-slip fault reactivation as a control on epithermal vein-style gold mineralization

    NASA Astrophysics Data System (ADS)

    Henley, R. W.; Adams, D. P. M.

    1992-05-01

    Epithermal precious metal mineralization develops within contemporaneously active tectonic and volcanic terranes in which co-active faults focus fluids from deep high-temperature reservoirs and magmas into shallower environments. Recognition of such structural controls through analysis of the architecture of prospective volcanic belts and basins is therefore important in the exploration for epithermal gold deposits. Field and high-resolution aeromagnetic data suggest that gold mineralization at Bimurra and Wirralie in the late Paleozoic Drummond Basin (northeast Queensland, Australia) is primarily controlled by reactivation of a northeast-striking strike-slip fault array that may have developed as a transfer fault in the early history of the basin. Gold mineralization is hosted by volcaniclastic and sedimentary rocks whose distribution was also controlled by this reactivated structure.

  20. Biogenic Iron-Rich Filaments in the Quartz Veins in the Uppermost Ediacaran Qigebulake Formation, Aksu Area, Northwestern Tarim Basin, China: Implications for Iron Oxidizers in Subseafloor Hydrothermal Systems.

    PubMed

    Zhou, Xiqiang; Chen, Daizhao; Tang, Dongjie; Dong, Shaofeng; Guo, Chuan; Guo, Zenghui; Zhang, Yanqiu

    2015-07-01

    Fe-(oxyhydr)oxide-encrusted filamentous microstructures produced by microorganisms have been widely reported in various modern and ancient extreme environments; however, the iron-dependent microorganisms preserved in hydrothermal quartz veins have not been explored in detail because of limited materials available. In this study, abundant well-preserved filamentous microstructures were observed in the hydrothermal quartz veins of the uppermost dolostones of the terminal-Ediacaran Qigebulake Formation in the Aksu area, northwestern Tarim Basin, China. These filamentous microstructures were permineralized by goethite and hematite as revealed by Raman spectroscopy and completely entombed in chalcedony and quartz cements. Microscopically, they are characterized by biogenic filamentous morphologies (commonly 20-200 μm in length and 1-5 μm in diameter) and structures (curved, tubular sheath-like, segmented, and mat-like filaments), similar to the Fe-oxidizing bacteria (FeOB) living in modern and ancient hydrothermal vent fields. A previous study revealed that quartz-barite vein swarms were subseafloor channels of low-temperature, silica-rich, diffusive hydrothermal vents in the earliest Cambrian, which contributed silica to the deposition of the overlying bedded chert of the Yurtus Formation. In this context, this study suggests that the putative filamentous FeOB preserved in the quartz veins might have thrived in the low-temperature, silica- and Fe(II)-rich hydrothermal vent channels in subseafloor mixing zones and were rapidly fossilized by subsequent higher-temperature, silica-rich hydrothermal fluids in response to waning and waxing fluctuations of diffuse hydrothermal venting. In view of the occurrence in a relatively stable passive continental margin shelf environment in Tarim Block, the silica-rich submarine hydrothermal vent system may represent a new and important geological niche favorable for FeOB colonization, which is different from their traditional

  1. Geology of the Ar Rahail ancient gold mine, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    White, Willis H.; Samater, Rashid M.; Doebrich, Jeff L.

    1987-01-01

    Pre-existing northwest-trending faults, possibly re-opened by stock emplacement, were invaded by later fluids that precipitated barren quartz veins and, in the adjacent faulted wall rocks, anomalous gold and arsenic. Gold, however, is restricted to the narrow structures, and, although values as much as 4.2 g/t are present, the tonnages are inadequate for profitable mining. No further work is recommended, because the hoped for dissemination of gold between faults does not exist.

  2. Blue, complexly zoned, (Na,Mg,Fe,Li)-rich beryl from quartz-calcite veins in low-grade metamorphosed Fe-deposit Skály near Rýmařov, Czech Republic

    NASA Astrophysics Data System (ADS)

    Novák, Milan; Gadas, Petr; Filip, Jan; Vaculovič, Tomáš; Přikryl, Jan; Fojt, Bohuslav

    2011-10-01

    Syn-tectonic quartz-calcite veins containing blue beryl are enclosed in hematite > magnetite-rich portions of the low-grade metamorphosed Fe-deposit Skály near Rýmařov, Czech Republic. Aggregates of pale to deep blue beryl, up to 2 cm in diameter, are associated with euclase, clinochlore, hematite, albite and dravite. Complexly zoned beryl crystals consist of skeletal aggregates of beryl I randomly distributed within volumetrically dominant beryl II with narrow rims of beryl III. All types of beryl have similar contents of Na (0.32-0.49 apfu) and Mg (0.31-0.41 apfu) but variable contents of Fetot (0.05-0.34 apfu) and Al (1.20-1.62 apfu). The LA-ICP-MS study yielded elevated contents of Li, up 1,314 ppm (0.28 wt.% Li2O) in beryl I. The quartz-calcite veins represent an unusual type of low-T metamorphic-hydrothermal vein related to Fe-ore deposit characterized by single-stage fracturing and mobilization in a closed system at T~200-300°C and CO{3/2-} as a major complexing agent for the mobility of Be.

  3. An exhumation pressure-temperature path and fluid activities during metamorphism in the Tseel terrane, SW Mongolia: Constraints from aluminosilicate-bearing quartz veins and garnet zonings in metapelites

    NASA Astrophysics Data System (ADS)

    Burenjargal, Ulziiburen; Okamoto, Atsushi; Meguro, Yuichi; Tsuchiya, Noriyoshi

    2012-08-01

    The Tseel terrane of the Central Asian Orogenic Belt, SW Mongolia, contains a record of amphibolite-facies (locally granulite-facies) metamorphism and multiple igneous intrusions. However, the metamorphic history of the terrane and the relation of metamorphism to the intrusion of granitoids remain uncertain. In this study, we investigated pelitic gneisses and aluminosilicate-bearing quartz veins located at various distances from a granitoid body in the central part of the Tseel terrane. The pelitic gneisses are composed mainly of garnet (Grt) + biotite (Bt) + plagioclase (Pl) + sillimanite (Sil) + quartz (Qtz). Garnet in the pelitic gneiss located far from the granitoid shows compositional zoning, characterized by decreases in Ca and Mn from core to rim, and increases in Fe and Mg, along with minor retrograde zoning at the outermost rim. The P-T path during garnet growth was estimated by garnet isopleth thermobarometry based on a P-T pseudosection and by conventional Grt-Bt geothermometry and Grt-Bt-Pl-Qtz geobarometry. The two approaches yield similar P-T paths, with the decompression P-T path extending from the kyanite (Ky) stability field (560 ± 10 °C and 6.5 ± 0.5 kbar) to the sillimanite stability field (600 ± 5 °C and 3.8 ± 0.5 kbar), accompanied by a slight increase in temperature (by 40-50 °C). Garnet grains in pelitic gneisses located near the granitoid body lack a high-Ca core and yield P-T conditions of the sillimanite stability field, suggesting the local thermal effect of a granitoid intrusion at shallow crustal depths (<˜20 km). Aluminosilicate-bearing quartz veins in the pelitic gneisses contain kyanite, sillimanite, and andalusite (And) at their margins. The textural relations among aluminosilicate polymorphs in the veins indicate their formation in the order of Ky → Sil → And. Microthermometric analyses of fluid inclusions reveal that these veins formed in the kyanite stability field, that corresponds to the growth of high-Ca garnet

  4. Colorado quartz: occurrence and discovery

    USGS Publications Warehouse

    Kile, D.E.; Modreski, P.J.; Kile, D.L.

    1991-01-01

    The many varieties and associations of quartz found throughout the state rank it as one of the premier worldwide localities for that species. This paper briefly outlines the historical importance of the mineral, the mining history and the geological setting before discussing the varieties of quartz present, its crystallography and the geological enviroments in which it is found. The latter include volcanic rocks and near surface igneous rocks; pegmatites; metamorphic and plutonic rocks; hydrothermal veins; skarns and sedimentary deposits. Details of the localities and mode of occurrence of smoky quartz, amethyst, milky quartz, rock crystal, rose quartz, citrine, agate and jasper are then given. -S.J.Stone

  5. Potential-dependent adsorption/desorption behavior of perfluorosulfonated ionomer on a gold electrode surface studied by cyclic voltammetry, electrochemical quartz microbalance, and electrochemical atomic force microscopy.

    PubMed

    Masuda, Takuya; Ikeda, Kota; Uosaki, Kohei

    2013-02-19

    Potential-dependent adsorption/desorption behavior of perfluorosulfonated ionomer (PFSI) on a gold electrode was investigated by cyclic voltammetry (CV), electrochemical quartz crystal microbalance (EQCM), and electrochemical atomic force microscopy (EC-AFM) in a Nafion (i.e., PFSI) dispersed aqueous solution without any other electrolyte. It was found that PFSI serves as an electrolyte and that electrochemical measurements can be performed in this solution without any significant IR drop. PFSI molecules were adsorbed on the Au surface in the lying-down configuration in the potential range between 0 and 0.45 V, the amount of adsorbed PFSI increased when the potential was made more positive than 0.75 V, and the adsorbed PFSI fully desorbed from the surface at potentials more positive than 1.4 V where gold oxide was formed. Once the gold oxide had been reduced, PFSI readsorbed on the surface, albeit slowly. PFSI desorbed from the surface as the potential was made more negative than 0 V. These processes took place reversibly.

  6. An aptamer-based quartz crystal microbalance biosensor for sensitive and selective detection of leukemia cells using silver-enhanced gold nanoparticle label.

    PubMed

    Shan, Wenqian; Pan, Yuliang; Fang, Heting; Guo, Manli; Nie, Zhou; Huang, Yan; Yao, Shouzhuo

    2014-08-01

    An aptamer-based quartz crystal microbalance (QCM) biosensor was developed for the selective and sensitive detection of leukemia cells. In this strategy, aminophenylboronic acid-modified gold nanoparticles (APBA-AuNPs) which could bind to cell membrane were used for the labeling of cells followed by silver enhancement, through which significant signal amplification was achieved. Both the QCM and fluorescence microscopy results manifested the selectivity of the sensor designed. A good linear relationship between the frequency response and cell concentration over the range of 2×10(3)-1×10(5)cells/mL was obtained, with a detection limit of 1160cells/mL. This approach provides a simple, rapid, and economical method for leukemia cell analysis which might have great potential for further use. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Gold of the Pharaohs 6000 years of gold mining in Egypt and Nubia

    NASA Astrophysics Data System (ADS)

    Klemm, Dietrich; Klemm, Rosemarie; Murr, Andreas

    2001-08-01

    The legendary wealth in gold of ancient Egypt seems to correspond with an unexpected high number of gold production sites in the Eastern Desert of Egypt and Nubia. This contribution introduces briefly the general geology of these vast regions and discusses the geology of the different varieties of the primary gold occurrences (always related to auriferous quartz mineralization in veins or shear zones) as well as the variable physico-chemical genesis of the gold concentrations. The development of gold mining over time, from Predynastic (ca. 3000 BC) until the end of Arab gold production times (about 1350 AD), including the spectacular Pharaonic periods is outlined, with examples of its remaining artefacts, settlements and mining sites in remote regions of the Eastern Desert of Egypt and Nubia. Finally, some estimates on the scale of gold production are presented.

  8. Epigenetic lead, zinc, silver, antimony, tin, and gold veins in Boulder Basin, Blaine and Custer counties, Idaho; potential for economic tin mineralization

    USGS Publications Warehouse

    Ratchford, Michael E.

    2002-01-01

    Boulder Basin is in a northwest-trending belt of allochthonous Paleozoic rocks in the Boulder Mountains of central Idaho. Regional Tertiary extension resulted in widespread normal faulting and coeval emplacement of shallow-level intrusions and extrusive rocks of the Challis Volcanic Group. Epigenetic lead-zinc-silver-antimony-tin-gold vein deposits formed during Tertiary extension and are hosted within Paleozoic strata. The major orebodies are in the lower plate of the Boulder Basin thrust fault, in massive quartzite of the Middle Pennsylvanian to Lower Permian Wood River Formation. Anomalous concentrations of tin are present in the base-metal mineral assemblage of the Boulder Basin ore deposits. The tin-bearing veins in Boulder Basin are strikingly similar to Bolivian tin deposits. The deposit model for Bolivian tin deposits identifies buried tin porphyry below the tin-bearing vein system.

  9. A geological and geophysical study of the gold-silver vein system of Unga Island, Southwestern Alaska

    USGS Publications Warehouse

    Riehle, James R.

    1999-01-01

    The topic of this CD-ROM is the geologic framework of gold-silver vein deposits on Unga Island, in the Shumagin Islands, southwestern Alaska. The core of the publication is a new geologic map at a scale of 1:63,360 and aeromagnetic and electromagnetic survey data acquired by industry over the area of mineralization. Both the geologic map as well as a preliminary interpretation of the geophysical data - which are included by permission of the owner - are aimed towards deciphering the relations among volcanism, tectonism, and mineralization. Data and discussions are organized in seven chapters, titles of which are outlined in the table of contents. The chapters consist of viewable text and figure images; postscript versions of the frontispiece figures and all chapter figures are included on the CD-ROM as well. The geologic map is a large viewable figure (Plate 1) that accompanies chapter 2. The map was constructed in ARC and its component coverages are provided in the folder 'Geology' for users who may wish to modify the geologic data or add their own data.

  10. Influence of endodontic post type (glass fiber, quartz fiber or gold) and luting material on push-out bond strength to dentin in vitro.

    PubMed

    Kremeier, Karin; Fasen, Lutz; Klaiber, Bernd; Hofmann, Norbert

    2008-05-01

    To determine the influence of post type and luting material on bond strength to dentin. The root canals of extracted human upper central incisors were instrumented and post space was prepared using the respective drills for each post system. Glass fiber posts (Luscent Anchor, Dentatus [LA]) were luted using three dual-curing adhesive systems (Excite DSC/Variolink II, Vivadent [VL2]; EnaBond/EnaCem, Micerium [ENA]; Prime & Bond NT/Calibra, DentSply DeTrey [CAL]). A different brand of glass fiber post (EasyPost, DentSply Maillefer [EP]) and quartz fiber post (DT Light Post, VDW [DT]) were luted using CAL. Gold posts (Perma-dor, VDW) were luted either adhesively following tribo-chemical silicate coating (Rocatec, ESPE-Sil, 3M ESPE; CAL) or conventionally using glass ionomer cement (Ketac Cem, 3M ESPE). Three slices of 2mm height were cut perpendicular to the post from each restored root. Bond strength was determined by pushing out the post using a universal testing machine (/1449, Zwick). For all experimental groups combined, bond strength increased from the coronal to the apical section (Friedman test: P<0.001). Significant differences were observed among the fiber posts (DT/CAL>LA/CAL; Mann-Whitney U-test with Bonferroni-Holm adjustment: P<0.05; EP/CAL ranging in between) but not among luting materials (LA/VL2, LA/ENA, LA/CAL: n.s.). The gold posts were equivalent to DT/CAL with both luting procedures. Selection of post type may be more important for bond strength than luting material. Bond strength of fiber posts was equivalent but not superior to adhesively or conventionally luted gold posts.

  11. Gold geochemical anomaly in the Cortez district, Nevada

    USGS Publications Warehouse

    Erickson, Ralph Leroy; Van Sickle, G.H.; Nakagawa, H.M.; McCarthy, J.H.; Leong, K.W.

    1966-01-01

    An area in the Cortez district, Nevada, previously established to be anomalous in arsenic, antimony, and tungsten has been found to be anomalous also in mercury and gold. Samples from narrow quartz veins, calcite veins, and shear zones in partially silicified limestone in the lower plate of the Roberts thrust fault (Cortez window) contain as much as 3.4 ounces gold per ton. The richest samples are from an outcrop, about 100 feet long, surrounded by gravels. Their economic significance is yet to be established.

  12. Meteoric incursion and oxygen fronts in the Dalradian metamorphic belt, southwest Scotland: a new hypothesis for regional gold mobility

    NASA Astrophysics Data System (ADS)

    Craw, D.; Chamberlain, C. P.

    1996-07-01

    Post-metamorphic quartz veins which occur over hundreds of square kilometres in the biotite zone of the Dalradian metamorphic belt consist of three principal types: anhedral quartz with pyrite, anhedral quartz with hematite, and prismatic quartz with hematite or rutile. The oxide minerals in anhedral veins have formed by oxidation of pre-existing sulphides, and gold was mobilized during this oxidation. Anhedral quartz veins formed from an aqueous fluid with up to 5 wt% dissolved salts and 16 wt% CO2 at about 300 °C. Texturally later prismatic quartz crystals formed from a compositionally similar fluid which was undergoing phase separation at the H2O-CO2 solvus at 160 200 °C and 500 to 1200 bars fluid pressure. Oxygen isotope ratios for quartz from the veins range from 12.0 to 15.3‰, with hematite-bearing veins generally isotopically heavier than pyrite-bearing veins. Calculated fluid oxygen isotope ratios range from +8‰ for pyrite-bearing veins to -2‰ for late prismatic crystals. The mineralizing fluid contained a substantial component of meteoric water whose isotopic and chemical composition evolved with progressive water-rock interaction. Evolution of meteoric fluid composition involved migration of oxidation and oxygen isotope fronts in the down-flow direction as head-driven water passed through structurally controlled fractures in the schist pile. A gold solubility trough occurs for the observed fluid in the oxidation frontal zone. Gold remobilization and reprecipitation occurred progressively as the oxidation front migrated through the schist pile.

  13. Geology, geochemistry, and geochronology of the East Bay gold trend, Red Lake, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Gallagher, Shaun; Camacho, Alfredo; Fayek, Mostafa; Epp, Mark; Spell, Terry L.; Armstrong, Richard

    2017-04-01

    The Red Lake greenstone belt is situated in northwestern Ontario within the Uchi Subprovince, Superior Province. Most gold deposits therein are associated with major deformation corridors; the east-west oriented "Mine trend" hosts most of the large deposits and the northeast-southwest "East Bay trend" hosts several small deposits and showings. Gold along the East Bay trend typically occurs in quartz replacement veins that were emplaced into pre-existing quartz-carbonate veins. Gold can occur as free gold or along vein margins associated with pyrite and pyrrhotite. Most primary fluid inclusions, preserved in relatively undeformed portions of veins, are carbonaceous with lesser quantities of aqueous inclusions. The average homogenization temperature of aqueous fluids is 250 °C; however, the abundance of three-phase inclusions, variation in liquid-vapor ratios, and a wide range in homogenization temperatures indicate that immiscibility, effervescence, and fluid mixing are mechanisms associated with gold deposition. The age ( 2550 Ma) of alteration minerals in the Abino area is considerably younger (by 100 Myr) than alteration minerals in other deposits in the Red Lake district, indicating that the mineralizing fluid history was more protracted than previously thought. Along the East Bay trend, barren veins generally have lower δ18OVSMOW values (0.0 to 8.5‰) relative to auriferous veins (9.6 and 13.1‰). Consequently, the oxygen isotopic composition of quartz could be used as a vector for gold mineralization. The genetic model for the East Bay trend involves several stages of vein formation. Auriferous veins formed near the upper boundary of the mesozonal regime (depth of 5-6 km).

  14. Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana

    USGS Publications Warehouse

    Rusk, B.G.; Reed, M.H.; Dilles, J.H.; Kent, A.J.R.

    2006-01-01

    Textures of hydrothermal quartz revealed by cathodoluminescence using a scanning electron microscope (SEM-CL) reflect the physical and chemical environment of quartz formation. Variations in intensity of SEM-CL can be used to distinguish among quartz from superimposed mineralization events in a single vein. In this study, we present a technique to quantify the cathodoluminescent intensity of quartz within individual and among multiple samples to relate luminescence intensity to specific mineralizing events. This technique has been applied to plutonic quartz and three generations of hydrothermal veins at the porphyry copper deposit in Butte, Montana. Analyzed veins include early quartz-molybdenite veins with potassic alteration, pyrite-quartz veins with sericitic alteration, and Main Stage veins with intense sericitic alteration. CL intensity of quartz is diagnostic of each mineralizing event and can be used to fingerprint quartz and its fluid inclusions, isotopes, trace elements, etc., from specific mineralizing episodes. Furthermore, CL intensity increases proportional to temperature of quartz formation, such that plutonic quartz from the Butte quartz monzonite (BQM) that crystallized at temperatures near 750 ??C luminesces with the highest intensity, whereas quartz that precipitated at ???250 ??C in Main Stage veins luminesces with the least intensity. Trace-element analyses via electron microprobe and laser ablation-ICP-MS indicate that plutonic quartz and each generation of hydrothermal quartz from Butte is dominated by characteristic trace amounts of Al, P, Ti, and Fe. Thus, in addition to CL intensity, each generation of quartz can be distinguished based on its unique trace-element content. Aluminum is generally the most abundant element in all generations of quartz, typically between 50 and 200 ppm, but low-temperature, Main Stage quartz containing 400 to 3600 ppm Al is enriched by an order of magnitude relative to all other quartz generations. Phosphorous

  15. Geology of epithermal silver-gold bulk-mining targets, bodie district, Mono County, California

    USGS Publications Warehouse

    Hollister, V.F.; Silberman, M.L.

    1995-01-01

    The Bodie mining district in Mono County, California, is zoned with a core polymetallic-quartz vein system and silver- and gold-bearing quartz-adularia veins north and south of the core. The veins formed as a result of repeated normal faulting during doming shortly after extrusion of felsic flows and tuffs, and the magmatic-hydrothermal event seems to span at least 2 Ma. Epithermal mineralization accompanied repeated movement of the normal faults, resulting in vein development in the planes of the faults. The veins occur in a very large area of argillic alteration. Individual mineralized structures commonly formed new fracture planes during separate fault movements, with resulting broad zones of veinlets growing in the walls of the major vein-faults. The veinlet swarms have been found to constitute a target estimated at 75,000,000 tons, averaging 0.037 ounce gold per ton. The target is amenable to bulkmining exploitation. The epithermal mineralogy is simple, with electrum being the most important precious metal mineral. The host veins are typical low-sulfide banded epithermal quartz and adularia structures that filled voids created by the faulting. Historical data show that beneficiation of the simple vein mineralogy is very efficient. ?? 1995 Oxford University Press.

  16. Origin of ore-forming fluids of the Haigou gold deposit in the eastern Central Asian Orogenic belt, NE China: Constraints from H-O-He-Ar isotopes

    NASA Astrophysics Data System (ADS)

    Zeng, Qingdong; He, Huaiyu; Zhu, Rixiang; Zhang, Song; Wang, Yongbin; Su, Fei

    2017-08-01

    The Haigou lode deposit contains 40 t of gold at an average grade of 3.5 g/t, and is one of the largest deposits in the Jiapigou gold belt located along the eastern segment of the northern margin of the North China Craton. The deposit comprises 15 gold-bearing quartz veins hosted in a Carboniferous monzonite-monzogranite stock. Cretaceous dikes consisting of diorite, diabase, and granodiorite porphyries are well developed in the deposit. The diorite porphyry dikes (130.4 ± 6.3 Ma) occur together with gold-bearing quartz veins in NNE- and NE-striking faults. Gold-bearing quartz veins crosscut the diorite porphyry dikes, and the veins are in turn crosscut by E-W-striking 124.6 ± 2.2 Ma granodiorite porphyry dikes. The mineralization mainly occurs as auriferous quartz veins with minor amounts of sulfide minerals, including pyrite, galena, chalcopyrite, and molybdenite. Gold occurs as either native gold or calaverite. Common gangue minerals in the deposit include quartz, sericite, and calcite. The deposit is characterized by various types of hydrothermal alteration, including silicification, sericitization, chloritization, potassic alteration, and carbonatization. Three stages of hydrothermal activity have been recognized in the deposit: (1) a barren quartz stage; (2) a polymetallic sulfide (gold) stage; (3) a calcite stage. Fluid inclusions in hydrothermal pyrites have 3He/4He ratios of 0.3 to 3.3 Ra and 40Ar/36Ar ratios of 351 to 1353, indicating mixing of fluids of mantle and crustal origin. Hydrothermal quartz yielded δ18O values of -1.3‰ to +7.2‰ and δD values of fluid inclusions in the quartz vary between -80‰ and -104‰. These stable isotope data also suggest mixing of magmatic and meteoric fluids. Noble gas and stable isotopic data suggest that the ore fluids have a predominant mantle source with a significant crustal component. Based on the spatial association of gold-bearing quartz veins with early Cretaceous intrusions, and the H-O-He-Ar isotopic

  17. Employing two different quartz crystal microbalance models to study changes in viscoelastic behavior upon transformation of lipid vesicles to a bilayer on a gold surface.

    PubMed

    Cho, Nam-Joon; Kanazawa, Kay K; Glenn, Jeffrey S; Frank, Curtis W

    2007-09-15

    By analyzing the viscoelastic properties of two distinct layers, a layer of "soft" vesicles and a "rigid" bilayer, we have created a model system to permit the study of film behavior in the region of nonlinear mass and frequency change (non-Sauerbrey). The structural transformation of lipid vesicles to a bilayer is shown to be accompanied by significant changes in their physical properties. After the adsorption and saturation of intact vesicles on gold surfaces, the adsorbed vesicle layer exhibits a soft, water-rich, viscoelastic state. The AH peptide, a vesicle-destabilizing agent, is then added to trigger the formation of a much thinner (approximately 5 nm), compact, and rigid bilayer. In this study, we used the quartz crystal microbalance with dissipation technique. Large non-Sauerbrey frequency and energy dissipation changes characterize the viscoelastic nature of adsorbed intact vesicle films thicker than approximately 10 nm. Once the transformation is complete, the frequency changes along with zero energy dissipation for sufficiently thin films (t approximately 5 nm) were effectively modeled with the Sauerbrey equation. Furthermore, we checked the validity of the Voigt-Voinova model in which the quartz substrate is treated as a Voigt element, which is beyond the Sauerbrey description. The calculations treating the film as having a constant viscosity agreed well with the Voigt-Voinova model. These results were compared to calculations done using the electromechanical (EM) model, which does not require a series expansion. The Voigt-Voinova results were in excellent agreement with the EM model, providing evidence that the expansion used in their study is quite accurate.

  18. Gold, base-metal, and related deposits of North Carolina

    USGS Publications Warehouse

    Luttrell, Gwendolyn Werth

    1978-01-01

    Gold, silver, copper, lead, zinc, pyrite, tin, cobalt, molybdenum, tungsten, barite, and rare-earths have been mined in North Carolina. Gold, with by-product silver, occurs in veins and mineralized shear zones in metamorphic rocks of the Piedmont province and in placers derived from these deposits. Copper occurs with complex sulfide ores in quartz veins in the metamorphic rocks of the Piedmont province and in massive pyrrhotite-pyrite deposits in crystalline rocks west of the Blue Ridge. Lead and zinc occur in complex ores of gold, copper, lead, zinc, and silver in veins and replacements in metamorphic rocks. Pyrite occurs in crystalline metamorphic rocks. Tin occurs in pegmatite and placer deposits in crystalline rocks near Kings Mountain. Cobalt minerals with ores of iron or gold have been reported in a few areas in the Piedmont. Molybdenum occurs along the borders of a granite body in Halifax County. Tungsten minerals occur with copper sulfide ores in Cabarrus and Vance Counties. Barite occurs in quartz veins and associated with sulfide minerals in Orange, Madison, Cleveland, and Gaston Counties. Ore-earths occur with sulfides in vein deposits in Cabarrus County.

  19. Flash vaporization during earthquakes evidenced by gold deposits

    NASA Astrophysics Data System (ADS)

    Weatherley, Dion K.; Henley, Richard W.

    2013-04-01

    Much of the world's known gold has been derived from arrays of quartz veins. The veins formed during periods of mountain building that occurred as long as 3 billion years ago, and were deposited by very large volumes of water that flowed along deep, seismically active faults. The veins formed under fluctuating pressures during earthquakes, but the magnitude of the pressure fluctuations and their influence on mineral deposition is not known. Here we use a simple thermo-mechanical piston model to calculate the drop in fluid pressure experienced by a fluid-filled fault cavity during an earthquake. The geometry of the model is constrained using measurements of typical fault jogs, such as those preserved in the Revenge gold deposit in Western Australia, and other gold deposits around the world. We find that cavity expansion generates extreme reductions in pressure that cause the fluid that is trapped in the jog to expand to a very low-density vapour. Such flash vaporization of the fluid results in the rapid co-deposition of silica with a range of trace elements to form gold-enriched quartz veins. Flash vaporization continues as more fluid flows towards the newly expanded cavity, until the pressure in the cavity eventually recovers to ambient conditions. Multiple earthquakes progressively build economic-grade gold deposits.

  20. Electrochemistry, surface plasmon resonance, and quartz crystal microbalance: an associative study on cytochrome c adsorption on pyridine tail-group monolayers on gold.

    PubMed

    Paulo, Tércio de F; de Sousa, Ticyano P; de Abreu, Dieric S; Felício, Nathalie H; Bernhardt, Paul V; Lopes, Luiz G de F; Sousa, Eduardo H S; Diógenes, Izaura C N

    2013-07-25

    Quartz crystal microbalance (QCM), surface plasmon resonance (SPR), and electrochemistry techniques were used to study the electron-transfer (ET) reaction of cytochrome c (Cyt c) on gold surfaces modified with thionicotinamide, thioisonicotinamide, 4-mercaptopyridine, 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol, 5-phenyl-1,3,4-oxadiazole-2-thiol, 4,4'-bipyridine, and 4,4'-dithiopyridine. The electrochemical results showed that the ET process is complex, being chiefly diffusional with steps depending on the orientation of the pyridine or phenyl tail group of the modifiers. The correlation between the electrochemical results and those acquired by SPR and QCM indicated the presence of an adlayer of Cyt c adsorbed on the thiolate SAMs. This adlayer, although being not electroactive, is essential to assess the ET reaction of Cyt c in solution. The results presented in this work are consistent with the statement (Feng, Z. Q.; Imabayashi, S.; Kakiuchi, T.; Niki, K. J. Electroanal. Chem. 1995, 394, 149-154) that the ET reaction of Cyt c can be explained in terms of the through-bond tunneling mechanism.

  1. Quartz crystal microbalance study of bovine serum albumin adsorption onto self-assembled monolayer-functionalized gold with subsequent ligand binding.

    PubMed

    Thourson, Scott B; Marsh, Caitlin A; Doyle, Brian J; Timpe, Shannon J

    2013-11-01

    Adsorption characteristics of the model protein bovine serum albumin (BSA) onto gold surfaces were examined using a 5 MHz quartz crystal microbalance. Protein immobilization was executed in the presence and absence of a homogenous self-assembled monolayer (SAM) of NHS-terminated alkanethiols. BSA concentrations in the range of 3.2 × 10(-6) to 1.0 × 10(-3)mol/L were found to saturate both SAM-functionalized and non-functionalized surfaces with similar densities of 450 ± 26 ng/cm(2). The lack of functionalization dependence is attributed to the large protein size relative to the density of available binding sites in either surface condition. The BSA ligand 8-anilino-1-naphthalenesulfonic acid (ANS) was subsequently introduced to the immobilized BSA to determine any effects of the protein immobilization conditions on ligand binding. The rate of ANS binding to BSA was found to increase with increasing BSA concentration used in the immobilization step. This suggests that protein concentration affects morphology and ligand binding affinity without significantly altering adsorption quantity.

  2. Genesis of the hydrothermal gold deposits in the Canan area, Lepaguare District, Honduras

    NASA Astrophysics Data System (ADS)

    Mattioli, Michele; Menichetti, Marco; Renzulli, Alberto; Toscani, Lorenzo; Salvioli-Mariani, Emma; Suarez, Pedro; Murroni, Alessandro

    2014-04-01

    The Canan area (Honduras) is characterized by a gold-bearing ore deposit that is associated with quartz-veined shear zones. Gold mineralization occurs in low-to medium-grade metamorphic host-rocks (graphitic and sericitic schists). Hydrothermal fluids, which are associated with the emplacement of Cretaceous-Tertiary granodioritic intrusions, are responsible for the formation of quartz veins and the hydrothermal alteration of wall-rocks. Three main altered zones have been detected in the wall-rocks as far as 150 cm from the quartz veins. The distal zone (up to 50-cm thick) contains quartz, chlorite and illite. The intermediate zone is the thickest (up to 80 cm) and is marked by quartz, muscovite, sulphides, kaolinite and native elements such as Au and Ag. The proximal zone, which is close to the quartz veins, is rather thin (up to 25 cm) and contains clay minerals, Al-oxides-hydroxides and sulphides. The transition from the distal to the proximal zone is accompanied by the enrichment of SiO2 and the depletion of all other major elements, except for Fe2O3(tot). Precious metals occur in the highest concentrations in the intermediate zone (Au up to 7.6 ppm and Ag up to 11 ppm). We suggest that gold was transported as a reduced sulphur complex and was precipitated from the hydrothermal solution by the reaction of the sulphur complexes with Fe2+ from the alteration of the mafic minerals of the host-rock. Fluid-wall-rock interactions seem to be the main cause of gold mineralization. Genetic relationships with a strike-slip fault system, hydrothermal alteration zones within the metamorphic wall-rocks, and an entire set of geochemical anomalies are consistent with orogenic-type gold deposits of the epizonal class.

  3. Quartz Crystal Microbalance Aptasensor for Sensitive Detection of Mercury(II) Based on Signal Amplification with Gold Nanoparticles

    PubMed Central

    Dong, Zong-Mu; Zhao, Guang-Chao

    2012-01-01

    We show that a short mercury-specific aptamer (MSA) along with gold nanoparticles (Au-NPs) can be used to determine Hg(II) ion by a combination of a QCM-based sensor and a flow system. The MSA binds specifically to Hg(II), and the Au-NPs can amplify the signal to enhance sensitivity. Specifically, the short thiolated MSAs are immobilized on the surface of the QCM as the capture probe, and the MSAs are linked to the Au-NPs as the linking probe. The two components can form a sandwich structure of the T-Hg(II)-T type in the presence of Hg(II) ions. This leads to change in the mass on the QCM and a change in the resonance frequency. Hg(II) can be determined with a detection limit of 0.24 ± 0.06 nM which is better by three orders of magnitude than previous methods. The sensor can be regenerated by disrupting the T-Hg(II)-T base pairs with a solution of cysteine. PMID:22969338

  4. Gold

    USGS Publications Warehouse

    Kirkemo, Harold; Newman, William L.; Ashley, Roger P.

    1998-01-01

    Through the ages, men and women have cherished gold, and many have had a compelling desire to amass great quantities of it -- so compelling a desire, in fact, that the frantic need to seek and hoard gold has been aptly named "gold fever." Gold was among the first metals to be mined because it commonly occurs in its native form -- that is, not combined with other elements -- because it is beautiful and imperishable, and because exquisite objects can be made from it.

  5. Late-Hercynian intrusion-related gold deposits: An integrated model on the Tighza polymetallic district, central Morocco

    NASA Astrophysics Data System (ADS)

    Éric, Marcoux; Khadija, Nerci; Yannick, Branquet; Claire, Ramboz; Gilles, Ruffet; Jean-Jacques, Peucat; Ross, Stevenson; Michel, Jébrak

    2015-07-01

    Gold have been recently recognized in the Tighza (formerly Jebel Aouam) district, in the Hercynian belt of central Morocco. This district has long been known for its W mineralization, as well as major Pb-Ag-Zn, and minor Sb-Ba deposits, all geographically associated with late-Hercynian calc-alkaline magmatism. Gold mineralization in the district is mainly hosted by thick W-Au quartz veins located around the "Mine granite" small granitic plug. Within the veins, gold grade is highest (up to 70 g/t) close to the granite but rapidly decreases going outward from the granite, defining a perigranitic zoning. Anomalous gold grades have also been measured in hydrothermal skarn layers close to two other granitic plugs (Kaolin granite and Mispickel granite), associated with disseminated As-Fe sulfides. The paragenetic sequence for the W-Au quartz veins shows three stages: (1) an early oxidized stage with wolframite-scheelite associated with early quartz (Q1), (2) an intermediate Bi-As-Te-Mo-Au sulfide stage with loellingite, bismuth minerals and native gold with a later quartz (Q2), restricted to a narrow distance from the granite, and (3) a late lower temperature As-Cu-Zn-(Pb) stage with abundant massive pyrrhotite, arsenopyrite and sphalerite, locally forming independent veins ("pyrrhotite vein"). Both Q1 hyaline and Q2 saccharoidal gold-bearing quartz display aqua-carbonic fluids with minor H2S and Cu and an homogeneous composition (81 mole% H2O, 18 mole% CO2 and about 1 mole% NaCl). The trapping pressure is estimated to 1.5-2 kbar with temperature ranging from 300 to 350 °C. Q1 inclusions have exploded indicating an uplift of the Tighza block, that lead to saccharoidal Q2 quartz deposition with multiphase NaCl-saturated fluid inclusions. 40Ar/39Ar dating demonstrates that the "Mine granite", tungsten skarnoid, scheelite-molybdenite veins, and very likely gold-bearing veins are coeval, emplaced at 286 ± 1 Ma. Multiple and widespread metal sources are indicated by

  6. The Niassa Gold Belt, northern Mozambique - A segment of a continental-scale Pan-African gold-bearing structure?

    NASA Astrophysics Data System (ADS)

    Bjerkgard, T.; Stein, H. J.; Bingen, B.; Henderson, I. H. C.; Sandstad, J. S.; Moniz, A.

    2009-01-01

    The Niassa Gold Belt, in northernmost Mozambique, is hosted in the Txitonga Group, a Neoproterozoic rift sequence overlying Paleoproterozoic crust of the Congo-Tanzania Craton and deformed during the Pan-African Orogeny. The Txitonga Group is made up of greenschist-facies greywacke and schist and is characterized by bimodal, mainly mafic, magmatism. A zircon U-Pb age for a felsic volcanite dates deposition of the sequence at 714 ± 17 Ma. Gold is mined artisanally from alluvial deposits and primary chalcopyrite-pyrite-bearing quartz veins containing up to 19 ppm Au have been analyzed. In the Cagurué and M'Papa gold fields, dominantly N-S trending quartz veins, hosted in metagabbro and schist, are regarded as tension gashes related to regional strike-slip NE-SW-trending Pan-African shear zones. These gold deposits have been classified as mesozonal and metamorphic in origin. Re-Os isotopic data on sulfides suggest two periods of gold deposition for the Cagurué Gold Field. A coarse-crystalline pyrite-chalcopyrite assemblage yields an imprecise Pan-African age of 483 ± 72 Ma, dating deposition of the quartz veins. Remobilization of early-formed sulfides, particularly chalcopyrite, took place at 112 ± 14 Ma, during Lower Cretaceous Gondwana dispersal. The ˜483 Ma assemblage yields a chondritic initial 187Os/ 188Os ratio of 0.123 ± 0.058. This implies a juvenile source for the ore fluids, possibly involving the hosting Neoproterozoic metagabbro. The Niassa Gold Belt is situated at the eastern end of a SW-NE trending continental-scale lineament defined by the Mwembeshi Shear Zone and the southern end of a NW-SE trending lineament defined by the Rukwa Shear Zone. We offer a review of gold deposits in Zambia and Tanzania associated with these polyphase lineaments and speculate on their interrelation.

  7. EPITHERMAL GOLD-SILVER MINERALIZATION RELATED TO VOLCANIC SUBSIDENCE IN THE CUSTER GRABEN, CUSTER COUNTY, IDAHO.

    USGS Publications Warehouse

    Johnson, Kathleen M.; McIntyre, David H.

    1984-01-01

    The Custer graben is a 13 by 32 km northeast-trending volcano-tectonic graben in the Challis volcanic field of central Idaho. Andesites, rhyolites, and associated pyroclastic rocks host vein and disseminated gold-silver deposits that are localized along discrete northeast- and northwest-trending fracture zones. Ore minerals in vein deposits are electrum, native gold and silver, chalcopyrite, and various sulfosalts in a gangue of pyrite and fine-grained quartz. At the Sunbeam Mine, near the center of the graben, vein and disseminated gold-silver mineralization occurred in hydrothermally altered rhyolite and pyroclastic rocks. The host rock has been pervasively silicified, and the feldspars altered to clay minerals. Analyses of surface and drill-core samples show that altered rocks are variably enriched in gold, silver, molybdenum, arsenic, zirconium, and selenium. Intense silicification is shown by SiO//2 values at high as 93%.

  8. A method of layer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance DNA sensing system used to detect dengue virus

    NASA Astrophysics Data System (ADS)

    Chen, Sz-Hau; Chuang, Yao-Chen; Lu, Yi-Chen; Lin, Hsiu-Chao; Yang, Yun-Liang; Lin, Chih-Sheng

    2009-05-01

    Dengue virus (DENV) is nowadays the most important arthropod-spread virus affecting humans existing in more than 100 countries worldwide. A rapid and sensitive detection method for the early diagnosis of infectious dengue virus urgently needs to be developed. In the present study, a circulating-flow quartz crystal microbalance (QCM) biosensing method combining oligonucleotide-functionalized gold nanoparticles (i.e. AuNP probes) used to detect DENV has been established. In the DNA-QCM method, two kinds of specific AuNP probes were linked by the target sequences onto the QCM chip to amplify the detection signal, i.e. oscillatory frequency change (ΔF) of the QCM sensor. The target sequences amplified from the DENV genome act as a bridge for the layer-by-layer AuNP probes' hybridization in the method. Besides being amplifiers of the detection signal, the specific AuNP probes used in the DNA-QCM method also play the role of verifiers to specifically recognize their target sequences in the detection. The effect of four AuNP sizes on the layer-by-layer hybridization has been evaluated and it is found that 13 nm AuNPs collocated with 13 nm AuNPs showed the best hybridization efficiency. According to the nanoparticle application, the DNA-QCM biosensing method was able to detect dengue viral RNA in virus-contaminated serum as plaque titers being 2 PFU ml-1 and a linear correlation (R2 = 0.987) of ΔF versus virus titration from 2 × 100 to 2 × 106 PFU ml-1 was found. The sensitivity and specificity of the present DNA-QCM method with nanoparticle technology showed it to be comparable to the fluorescent real-time PCR methods. Moreover, the method described herein was shown to not require expensive equipment, was label-free and highly sensitive.

  9. Hydrothermal alteration, ore fluid characteristics, and gold depositional processes along a trondhjemite-komatiite contact at Tarmoola, Western Australia

    USGS Publications Warehouse

    Duuring, P.; Hagemann, S.G.; Cassidy, K.F.; Johnson, C.A.

    2004-01-01

    Tarmoola is a structurally controlled Archean orogenic gold deposit hosted in greenschist facies metamorphosed komatiite and trondhjemite in the Leonora district of the Eastern Goldfields province, Yilgarn craton. High-grade (>1 g/t Au) orebodies are located in komatiite wall rock adjacent to the eastern and northeastern margins of the asymmetrical, north-south-striking, Tarmoola trondhjemite intrusion. Gold-bearing veins post-date trondhjemite emplacement (ca. 2700 Ma), quartz diorite dikes (ca. 2667 Ma), and regional greenschist facies metamorphism. Textures and crosscutting relationships in gold-bearing veins indicate two stages of hydrothermal fluid infiltration associated with a single gold-related hydrothermal event: a volumetrically dominant, but gold-poor, stage I fluid and a gold-rich stage II fluid. Gold-bearing veins contain stage I milky quartz and pyrite that are overprinted by stage II quartz-ankerite-muscovite-chalcopyrite-sphalerite-galena-gold-tellurides ?? albite ?? chlorite ?? fuchsite ?? epidote ?? scheelite. Stage I hydrothermal alteration assemblages are different in trondhjemite and komatiite due to contrasting reactions between a common ore fluid and disparate wall-rock chemistry. Stage II fluid-wall rock interaction was minor compared to stage I and is indicated by the overprinting of stage I mineral assemblages by stage II microveins. Wall-rock alteration proximal to veins in trondhjemite is characterized by replacement of igneous plagioclase, amphibole, biotite, and metamorphic chlorite by hydrothermal quartz, muscovite, ankerite, calcite, pyrite, chalcopyrite, sphalerite, galena, tellurides, and gold, whereas in proximal alteration in komatiite, metamorphic chlorite and talc are replaced by ankerite, quartz, muscovite, albite, chlorite, fuchsite, pyrite, chalcopyrite, sphalerite, galena, tellurides, and gold. The stage II fluid was enriched in H2O, CO2, Si, Ca, K, Na, S, Au, Ag, Cu, Pb, W, Bi, As, Mo, Zn, and Te. Based on fluid inclusion

  10. Gold deposits in the late Archaean Nzega-Igunga greenstone belt, central plateau of tanzania

    SciTech Connect

    Feiss, P.G.; Siyomana, S.

    1985-01-01

    2.2 m oz of gold have been produced, since 1935, from late Archaean (2480-2740 Ma) greenstone belts of the Central Plateau, Tanzania. North and east of Nzega (4/sup 0/12'S, 3/sup 0/11'E), 18% of the exposed basement, mainly Dodoman schists and granites, consists of metavolcanics and metasediments of the Nyanzian and Kavirondian Series. Four styles of mineralization are observed. 1. Stratabound quartz-gold veins with minor sulfides. Host rocks are quartz porphyry, banded iron formation (BIF), magnetite quartzite, and dense, cherty jasperite at the Sekenke and Canuck mines. The Canuck veins are on strike from BIF's in quartz-eye porphyry of the Igusule Hills. 2. Stratabound, disseminated gold in coarse-grained, crowded feldspar porphyry with lithic fragments and minor pyrite. At Bulangamilwa, the porphyry is conformable with Nyanzian-aged submarine (.) greenstone, volcanic sediment, felsic volcanics, and sericite phyllite. The deposits are on strike with BIF of the Wella Hills, which contains massive sulfide with up to 15% Pb+Zn. 3. Disseminated gold in quartz-albite metasomes in Nyanzian greenstones. At Kirondatal, alteration is associated with alaskites and feldspar porphyry dikes traceable several hundred meters into post-Dodoman diorite porphyry. Gold is with pyrite, arsenopyrite, pyrrhotite, minor chalcopyrite, and sphalerite as well as tourmalinite and silica-cemented breccias. 4. Basal Kavirondian placers in metaconglomerates containing cobbles and boulders of Dodoman and Nyanzian rocks several hundred meters up-section from the stratabound, disseminated mineralization at Bulangamilwa.

  11. Textures, paragenesis and wall-rock alteration of lode-gold deposits in the Charters Towers district, north Queensland: implications for the conditions of ore formation

    NASA Astrophysics Data System (ADS)

    Kreuzer, Oliver P.

    2006-01-01

    Ore deposits of the Charters Towers Goldfield (CTGF) are mainly hosted by fault-fill veins. Extensional (˜8% of all veins) and stockwork-like (˜3%) veins are less common and of little economic significance. Crosscutting relationships and published structural and geochronological data indicate a Late Silurian to Early Devonian timing of gold mineralization, coincident with regional shortening (D4) and I-type magmatism. Paragenetic relationships, which are uniform in veins everywhere within the CTGF, suggest that vein formation commenced with the deposition of large volumes of buck quartz (stage I), followed by buck and comb quartz, and significant pyrite and arsenopyrite precipitation (stage II). Gold was introduced during stage III, after earlier sphalerite and coincident with galena and chalcopyrite. Narrow, discontinuous calcite veins of stage IV mark the waning of gold-related hydrothermal activity or a later unrelated episode. Ore zones within the veins are everywhere composed of comb and/or gray quartz, calcite and/or ankerite and bands or clusters of fractured pyrite that are spatially associated with galena, sphalerite or chalcopyrite. Low-grade or barren vein sections, on the other hand, are mainly composed of milky buck quartz with little evidence for modification, overprinting or interaction with later fluids. Gold-related hydrothermal wall-rock alteration is symmetrically zoned, displaying proximal sericite-ankerite and distal epidote-chlorite-hematite assemblages that may be taken to imply wall-rock interaction with near neutral fluids (pH 5-6). Isocon plots assuming immobile Al, P, Ti, Y and Zr consistently indicate As, K, Pb, S and Zn enrichment and Na, Si and Sr depletion in altered wall-rock specimens relative to the least altered rocks. Alteration assemblages, quartz textures, fault rocks and published fluid inclusion and stable isotope data imply that the veins were formed under conditions of episodic fluid overpressuring (˜0.9-3.8 kbar), at a

  12. A Palaeoproterozoic multi-stage hydrothermal alteration system at Nalunaq gold deposit, South Greenland

    NASA Astrophysics Data System (ADS)

    Bell, Robin-Marie; Kolb, Jochen; Waight, Tod Earle; Bagas, Leon; Thomsen, Tonny B.

    2017-03-01

    Nalunaq is an orogenic, high gold grade deposit situated on the Nanortalik Peninsula, South Greenland. Mineralisation is hosted in shear zone-controlled quartz veins, located in fine- and medium-grained amphibolite. The deposit was the site of Greenland's only operating metalliferous mine until its closure in 2014, having produced 10.67 t of gold. This study uses a combination of field investigation, petrography and U/Pb zircon and titanite geochronology to define a multi-stage hydrothermal alteration system at Nalunaq. A clinopyroxene-plagioclase-garnet(-sulphide) alteration zone (CPGZ) developed in the Nanortalik Peninsula, close to regional peak metamorphism and prior to gold-quartz vein formation. The ca. 1783-1762-Ma gold-quartz veins are hosted in reactivated shear zones with a hydrothermal alteration halo of biotite-arsenopyrite-sericite-actinolite-pyrrhotite(-chlorite-plagioclase-löllingite-tourmaline-titanite), which is best developed in areas of exceptionally high gold grades. Aplite dykes dated to ca. 1762 Ma cross-cut the gold-quartz veins, providing a minimum age for mineralisation. A hydrothermal calcite-titanite alteration assemblage is dated to ca. 1766 Ma; however, this alteration is highly isolated, and as a result, its field relationships are poorly constrained. The hydrothermal alteration and mineralisation is cut by several generations of ca. 1745-Ma biotite granodiorite accompanied by brittle deformation. A ca. 1745-Ma lower greenschist facies hydrothermal epidote-calcite-zoisite alteration assemblage with numerous accessory minerals forms halos surrounding the late-stage fractures. The contrasting hydrothermal alteration styles at Nalunaq indicate a complex history of exhumation from amphibolite facies conditions to lower greenschist facies conditions in an orogenic belt which resembles modern Phanerozoic orogens.

  13. A Palaeoproterozoic multi-stage hydrothermal alteration system at Nalunaq gold deposit, South Greenland

    NASA Astrophysics Data System (ADS)

    Bell, Robin-Marie; Kolb, Jochen; Waight, Tod Earle; Bagas, Leon; Thomsen, Tonny B.

    2016-07-01

    Nalunaq is an orogenic, high gold grade deposit situated on the Nanortalik Peninsula, South Greenland. Mineralisation is hosted in shear zone-controlled quartz veins, located in fine- and medium-grained amphibolite. The deposit was the site of Greenland's only operating metalliferous mine until its closure in 2014, having produced 10.67 t of gold. This study uses a combination of field investigation, petrography and U/Pb zircon and titanite geochronology to define a multi-stage hydrothermal alteration system at Nalunaq. A clinopyroxene-plagioclase-garnet(-sulphide) alteration zone (CPGZ) developed in the Nanortalik Peninsula, close to regional peak metamorphism and prior to gold-quartz vein formation. The ca. 1783-1762-Ma gold-quartz veins are hosted in reactivated shear zones with a hydrothermal alteration halo of biotite-arsenopyrite-sericite-actinolite-pyrrhotite(-chlorite-plagioclase-löllingite-tourmaline-titanite), which is best developed in areas of exceptionally high gold grades. Aplite dykes dated to ca. 1762 Ma cross-cut the gold-quartz veins, providing a minimum age for mineralisation. A hydrothermal calcite-titanite alteration assemblage is dated to ca. 1766 Ma; however, this alteration is highly isolated, and as a result, its field relationships are poorly constrained. The hydrothermal alteration and mineralisation is cut by several generations of ca. 1745-Ma biotite granodiorite accompanied by brittle deformation. A ca. 1745-Ma lower greenschist facies hydrothermal epidote-calcite-zoisite alteration assemblage with numerous accessory minerals forms halos surrounding the late-stage fractures. The contrasting hydrothermal alteration styles at Nalunaq indicate a complex history of exhumation from amphibolite facies conditions to lower greenschist facies conditions in an orogenic belt which resembles modern Phanerozoic orogens.

  14. Identifying Predictors of Arsenic Bioavailability in Low-Sulfide, Quartz-Hosted Gold Deposits: Case Study at the Empire Mine State Historic Park, CA, USA

    NASA Astrophysics Data System (ADS)

    Foster, A. L.; Alpers, C. N.; Burlak Regnier, T.; Blum, A.; Petersen, E. U.; Basta, N. T.; Whitacre, S.; Casteel, S. W.; Kim, C. S.

    2016-12-01

    Introduction: This study addressed a need to identify geochemical and mineralogical parameters that are significantly correlated with arsenic bioavailability at historically-mined, low-sulfide, quartz-hosted ("lode") gold deposits. The study location was the Empire Mine State Historic Park (EMSHP), a site that is typical of many lode deposits in California in that arsenic is a primary contaminant of concern. Methods: A total of 25 large-volume sediment/mine waste samples were collected from sites in the EMSHP, homogenized, and dry sieved (< 250 micron). The following datasets were collected from the 25 samples (or a subset thereof as indicated): (1) in vivo relative As bioavailability (juvenile swine; n = 12); (2) in vitro relative As bioaccessibility (n = 25); (3) solid-phase chemistry (XRF; n = 25); (4) quantitative mineralogy (n =25); (5) Bulk As- and iron (Fe) speciation (synchrotron X-ray absorption spectroscopy, XAS, n =19); (6) point-based micron-scale composition (electron microprobe, n =12); and (7) micron-scale mineralogical and compositional mapping (QEMSCAN, n = 12). The matrix of bivariate correlations among these datasets was evaluated using a cutoff criterion for significance of p < 0.05. Results:Arsenic bioavailability was positively and significantly correlated with the abundance of Fe (hydr)oxide, the relative abundance of As-bearing hydroxide and As concentration in Fe hydroxide (datasets 4, 5, and 6, respectively). The relative abundance of As associated with Al-bearing secondary minerals (determined by As-XAS) was also positively and significantly correlated with datasets (1) and (2), but the correlation quality was lower. The relative abundance of other arsenic-bearing secondary minerals (e.g., jarosite, calcium arsenate, arseniosiderite) as determined by As XAS had positive correlations with bioaccessibility and/or bioavailability, but the correlations were not statistically significant. We ascribe this result to the fact that these phases

  15. Geological setting of the Paleoproterozoic Rosebel gold district, Guiana Shield, Suriname

    NASA Astrophysics Data System (ADS)

    Daoust, Caroline; Voicu, Gabriel; Brisson, Harold; Gauthier, Michel

    2011-10-01

    The Rosebel gold district is hosted in a Paleoproterozoic greenstone belt of the Guiana Shield and has many characteristics that enable classification of the ores as an orogenic gold deposit. Host rocks have undergone several phases of deformation. However, gold deposition occurred late in the structural history of the belt, and is considered part of a late regional metallogenic event with respect to the geotectonic evolution of the Guiana Shield. Economic gold mineralization is hosted in felsic to mafic volcanic rocks and two sedimentary successions that are differentiated into turbiditic and arenitic depositional packages. The detailed lithostratigraphic characterization and the geochemistry enable the correlation of the local rock types with the Paramaka, the Armina, and the Rosebel formations respectively. The Rosebel district comprises eight discrete gold deposits distributed along two major structures. The northernmost structure is a sub-vertical WNW-ESE shear zone that preserves evidence of dextral strike-slip followed by normal faulting. The southern structure is an east-west reverse fault along which gold deposits are mainly hosted in the footwall. Gold mineralization is associated with quartz vein arrays developed along pre-existing structural heterogeneities, such as stratigraphic contacts and fold hinges. Four main sets of veins are recognized in the district: shear veins, north-south tension veins, stacks of north-dipping tension veins, and anticline-hosted tension veins. Mineralized quartz veins are typically associated with a wallrock alteration assemblage comprising sericite, chlorite, carbonate, tourmaline, pyrite, pyrrhotite, and plagioclase. The presence of a WNW-ESE dextral strike-slip structure, an east-west reverse fault, and north-south tension veins are consistent with the formation of a Riedel system during a simple shear event. All vein sets cut deformed sedimentary rocks that were deposited in a pull-apart basin, which together with their

  16. Noble gases, K, U, Th, and Pb in native gold

    NASA Astrophysics Data System (ADS)

    Engster, O.; Niedermann, S.; Thalmann, C.; Frei, R.; Kramers, J.; KräHenbühl, U.; Liu, Y. Z.; Hofmann, B.; Boer, R. H.; Reimold, W. U.; Bruno, L.

    1995-12-01

    We present determinations of the noble gas and Pb isotopic abundances and of K, Th, and U concentrations of native gold. Our results demonstrate that gold is an excellent carrier for crustal volatiles, but direct dating of gold using the U, Th-4He, 40K-40Ar, and U fission Xe methods was not successful for various reasons. The main significance of this work is the great sensitivity of gold for trapped gases as well as for gases that were produced in situ which gives the prospects of using gold and its fluid and solid inclusions for the study of paleogas composition. Numerous nuclear effects characterize the noble gas inventory of placer gold from Switzerland and Italy, vein gold from Italy, South Africa, and Venezuela, and lode gold from South Africa. The degassing patterns obtained by mass spectrometry show a low-temperature release of volatiles around 500°C from fluid inclusions mainly in vein gold and a high-temperature release from solid inclusions and the gold itself. The low-temperature volatiles represent species that were trapped when the gold crystallized. We investigated the following trapped species: the isotopes of He, Ne, Ar, Kr, Xe, and Pb, and the abundances of K, U, Th, H2O, and CO2. The crustal gases trapped by gold comprise 3He from 6Li(n,α)3H → β- → 3He, 4He and 40Ar from the U, Th, and K decay, and Xe from 238U fission. We observe 4He/40Ar = 3.9 for the radiogenic trapped gases of tertiary gold and a ratio of 1.4 for Archean gold. These ratios are consistent with the production ratios from U and K at the respective times and demonstrate that gold can be used as a sampler of ancient atmospheric gases. The concentrations of U and Th range from a few parts per billion to a few parts per million, and those of K and Pb range up to some tens of parts per million. The antiquity of trapped Pb is indicated by the Pb-Pb model age of about 3000 Ma for the lead extracted from vein gold and quartz of the Lily gold mine (South Africa). Gold also

  17. Quartz-sericite and argillic alterations at the Peschanka Cu-Mo-Au deposit, Chukchi Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Marushchenko, L. I.; Baksheev, I. A.; Nagornaya, E. V.; Chitalin, A. F.; Nikolaev, Yu. N.; Kal'ko, I. A.; Prokofiev, V. Yu.

    2015-05-01

    The porphyry Peschanka copper-molybdenum-gold deposit and the Nakhodka ore field located in the Baimka ore trend on the western Chukchi Peninsula are spatially related to monzonitic rocks of the Early Cretaceous Egdykgych Complex. Two types of quartz-sericite metasomatic rocks (QSR) have been identified at both the deposits and the ore field: (I) chlorite-quartz-muscovite rock with bornite and chalcopyrite (porphyry type) and (II) tourmaline-quartz-carbonate-muscovite ± phengite rock accompanied by veins with base-metal mineralization (subepithermal or transitional type), as well as carbonate-quartz-illite rock (argillic alteration) accompanied by veins with precious metal mineralization (epithermal type). The QSR I chlorite evolves from chamosite to clinochlore, which is caused by increasing H2S activity in mineralizing fluid and precipitation of sulfide minerals. The QSR I clinochlore is significantly depleted in silica as compared with that from the rocks affected by argillic alteration. The chemical composition of muscovite from both quartz-sericite alterations is similar. The QSR II carbonates evolve from calcite through dolomite to siderite, which results from the increasing activity of CO2 followed by the decreasing activity of H2S in mineralizing fluid. The Mn content in dolomite is similar to that in beresite (quartz-muscovite-carbonate-pyrite metasomatic rock) of the intrusion-related gold deposits. Illite from argillic alteration is depleted in Al as compared with that of postvolcanic epithermal Au-Ag deposits. However, carbonates from the discussed argillic alteration rhodochrosite and Mn-rich dolomite are similar to those from quartz-illite rock at postvolcanic epithermal Au-Ag deposits.

  18. U-Pb zircon and 40Ar/39Ar geochronology of sericite from hydrothermal alteration zones: new constraints for the timing of Ediacaran gold mineralization in the Sukhaybarat area, western Afif terrane, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Harbi, Hesham M.; Ali, Kamal A.; McNaughton, Neal J.; Andresen, Arild

    2017-07-01

    The Sukhaybarat East and Red Hill deposits, in the northeastern part of the Arabian Shield, are mesothermal vein-type gold deposits hosted by late Cryogenian-Ediacaran intrusive rocks of the Idah suites (diorite, tonalite, granodiorite) and, at Sukhaybarat East, also by Ediacaran metasedimentary rocks. Gold mineralization comprises quartz-arsenopyrite veins (Sukhaybarat East), quartz-carbonate-pyrite veins (Red Hill), and subordinate gold-base metal sulfide veins. In the Red Hill deposit, alteration is complicated due to multiple overprinting hydrothermal events and is characteristically affected by pervasive, pink quartz-K-feldspar-hematite alteration which is overprinted by potassic alteration characterized by a quartz-biotite-carbonate-muscovite/sericite-rutile-apatite assemblage. This assemblage is associated with molybdenite veins which appear to form late in the paragenetic sequence and may represent either evolution of the ore fluid composition, or a later, unrelated mineralized fluids. Hydrothermal alteration at the Sukhaybarat East deposit is dominated by quartz-carbonate-sericite-arsenopyrite assemblages. Zircon from ore-hosting tonalite at Sukhaybarat East yields a U-Pb age of 629 ± 6 Ma, and biotite from the same rock gives an 40Ar/39Ar age of 622 ± 23 Ma. The 40Ar/39Ar age is within the uncertainty range for the U-Pb age of the host intrusion and is interpreted as a minimally disturbed cooling age for the tonalite. In the Red Hill area, granodiorite was emplaced at 615 ± 5 Ma, whereas muscovite/sericite separated from a mineralized sample of a quartz-carbonate-pyrite vein, that was overprinted by molybdenite-bearing veinlets, yields an 40Ar/39Ar age of 597 ± 8 Ma. We interpreted this age to represent the maximum age of the molybdenite mineralization and the probable minimum age of gold mineralization in the Red Hill deposit.

  19. Lead isotope compositions as guides to early gold mineralization: The North Amethyst vein system, Creede district, Colorado

    USGS Publications Warehouse

    Foley, Nora K.; Ayuso, Robert A.

    1994-01-01

    Pb isotope compositions from the late stage of the North Amethyst vein system and from the Bondholder and central and southern Creede mining districts are more radiogenic than the host volcanic rocks of the central cluster of the San Juan volcanic field. Our Pb isotope results indicate that early Au mineralization of the North Amethyst area may represent the product of an older and relatively local hydrothermal system distinct from that of the younger base metal and Ag mineralization found throughout the region. Fluids that deposited Au minerals may have derived their Pb isotope composition by a greater degree of interaction with shallow, relatively less radiogenic volcanic wall rocks. The younger, base metal and Ag-rich mineralization that overprints the Au mineralization in the North Amethyst area clearly has a more radiogenic isotopic signature, which implies that the later mineralization derived a greater component of its Pb from Proterozoic source rocks, or sediments derived from them.Paragenetically early sulfide-rich vein assemblages have the least radiogenic galenas and generally also have the highest Au contents. Thus, identification of paragenetically early vein assemblages with relatively unradiogenic Pb isotope compositions similar to those of the North Amethyst area provides an additional exploration tool for Au in the central San Juan Mountains area.

  20. SIMS Investigations on Growth and Sector Zoning in Natural Hydrothermal Quartz: Isotopic and Trace Element Analyses

    NASA Astrophysics Data System (ADS)

    May, E.; Vennemann, T. W.; Baumgartner, L. P.; Meisser, N.

    2014-12-01

    Quartz is the most abundant mineral in the Earth's crust and is found in virtually every geological context. Despite its ubiquity and the detailed studies on the conditions of quartz crystallization, some questions concerning its growth and sector zoning with regard to trace element incorporation and oxygen isotope fractionations and the implications thereof for interpretations on the conditions of formation remain (e.g., Jourdan et al., 2009). This study presents new in-situ measurements of trace element and oxygen isotope ratios on natural hydrothermal quartz from an extensional gold-bearing quartz vein in the western Swiss Alps. The temperature of formation of the veins is estimated by quartz-hematite oxygen isotope thermometry to be about 360°C. A detailed SEM-CL study of this sample shows cyclic lamellar growth, alternating with phases of dissolution that are directly followed by macro-mosaic growth of the quartz, before returning to a cyclic lamellar growth again. Trace element concentrations (measured for Na, K, Li, Al, and Ti) notably showed Al/Si variations of three orders of magnitude and coupled Al and Li variations, likely substituting for Si in different growth zones with lower values in macro-mosaic zones precipitating after the period of dissolution. The oxygen isotope composition of the crystal, in contrast, is homogeneous through all growth zones (δ18O values between 15.6‰ and 16.2‰) indicating that the fluid must have been buffered by the host-rock and/or the source of the fluid remained the same despite the period of quartz dissolution. Furthermore, the temperature during crystallization of the quartz crystal has likely also remained similar. The fact that no variations are measured in oxygen isotope compositions but some variations in trace element contents may suggest that changes in pressure were important during the formation of this quartz crystal. Give the pressure effects on the solubility of quartz (Fournier and Potter, 1982), both

  1. First Evidence of Epithermal Gold Occurrences in the SE Afar Rift, Republic of Djibouti

    NASA Astrophysics Data System (ADS)

    Moussa, Nima; Fouquet, Yves; Caminiti, Antoine Marie; Le Gall, Bernard; Rolet, Joel; Bohn, Marcel; Etoubleau, Joel; Delacourt, Christophe; Jalludin, Mohamed

    2010-05-01

    The Republic of Djibouti, located at the SE part of the Afar volcanic Triangle, is characterized by intense tectonic and bimodal volcanic activity, and is emplaced over an earlier magmatic rift system, as old as 25-30 Ma. Each magmatic event is accompanied by hydrothermal activity. Few works have been so far published on hydrothermal mineralization in the Afar area. Mineralization generally occur as veins and are mainly associated with acidic volcanic intrusions along the fractures at the edges of grabens established during the last 4 Ma. Eighty samples from hydrothermal quartz ± carbonate veins and breccias were studied on 9 different sites representative of 4 main volcanic events ranging in age from early Miocene up to Present. Gold was found in excess of 200 ppb in 30% of the samples. Mineralogical analyses based on optical reflected light microscopy, X-Ray diffractometry, X-Ray fluorescence, inductively coupled plasma mass spectroscopy and electron microprobe, led us to identify two types of gold mineralization (i) native gold, electrum, hessite and sulfides (chalcopyrite, pyrite, bornite, ± sphalerite, and galena) in massive quartz breccias and banded chalcedony, (ii) gold, electrum, hematite, magnetite, trace minerals (argentite) and adularia in banded chalcedony. Another group without gold is characterized by quartz, pyrite ± goethite. Secondary minerals are characterized by goethite, native silver and native copper. Arsenic is enriched in pyrite in samples with a high gold content. The bimodal volcanism, the occurrence of adularia, the native gold and electrum in banded silica veins, are classically observed in neutral epithermal systems. The discovery of this type of mineralization in a recent-active continental rift system supplies new insights about hydrothermal processes associated with volcanic activity in a spreading context. Keywords: Republic of Djibouti, Afar Triangle, Hydrothermal, Epithermal system, Gold

  2. First evidence of epithermal gold occurrences in the SE Afar Rift, Republic of Djibouti

    NASA Astrophysics Data System (ADS)

    Moussa, N.; Fouquet, Y.; Le Gall, B.; Caminiti, A. M.; Rolet, J.; Bohn, M.; Etoubleau, J.; Delacourt, C.; Jalludin, M.

    2012-06-01

    The geology of the Republic of Djibouti, in the SE Afar Triangle, is characterized by intense tectonic and bimodal volcanic activity that began as early as 25-30 Ma. Each magmatic event was accompanied by hydrothermal activity. Mineralization generally occurs as gold-silver bearing chalcedony veins and is associated with felsic volcanism. Eighty samples from mineralized hydrothermal chalcedony, quartz ± carbonate veins and breccias were studied from ten sites representing four major volcanic events that range in age from early Miocene to the present. The most recent veins are controlled by fractures at the edges of grabens established during the last 4 Myr. Gold in excess of 200 ppb is present in 30% of the samples, with values up to 16 ppm. Mineralogical compositions allowed us to identify different types of mineralization corresponding to different depths in the hydrothermal system: (1) surface and subsurface mineralization characterized by carbonate chimneys, gypsum, silica cap and quartz ± carbonate veins that are depleted in metals and Au; (2) shallow banded chalcedony ± adularia veins related to boiling that contain up to 16 ppm Au, occurring as native gold and electrum with pyrite, and tetradymite; (3) quartz veins with sulfides, and (4) epidote alteration in the deepest hydrothermal zones. Samples in which pyrite is enriched in As tend to have a high Au content. The association with bimodal volcanism, the occurrence of adularia and the native Au and electrum in banded chalcedony veins are typical of epithermal systems and confirm that this type of mineralization can occur in a young intracontinental rift system.

  3. Geology and geochemistry of the shear-hosted Julie gold deposit, NW Ghana

    NASA Astrophysics Data System (ADS)

    Amponsah, Prince Ofori; Salvi, Stefano; Béziat, Didier; Siebenaller, Luc; Baratoux, Lenka; Jessell, Mark W.

    2015-12-01

    The Leo Man Craton in West Africa is host to numerous economic gold deposits. If some regions, such as the SW of Ghana, are well known for world-class mineralizations and have been extensively studied, gold occurrences elsewhere in the craton have been discovered only in the last half a century or so, and very little is known about them. The Julie gold deposit, located in the Paleoproterozoic Birimian terrane of NW Ghana, is one such case. This deposit is hosted in a series of granitoid intrusives of TTG composition, and consists of a network of deformed, boudinaged quartz lodes (A-type veins) contained within an early DJ1 E-W trending shear zone with dextral characteristics. A conjugate set of veins (C-type) perpendicular to the A-type veins contains low grade mineralization. The main ore zone defines a lenticular corridor about 20-50 m in width and about 3.5 km along strike, trending E-W and dipping between 30 and 60°N. The corridor is strongly altered, by an assemblage of sericite + quartz + ankerite + calcite + tourmaline + pyrite. This is surrounded by a second alteration assemblage, consisting of albite + sericite + calcite + chlorite + pyrite + rutile, which marks a lateral alteration that fades into the unaltered rock. Mass balance calculations show that during alteration overall mass was conserved and elemental transfer is generally consistent with sulfidation, sericitization and carbonatization of the host TTG. Gold is closely associated with pyrite, which occurs as disseminated grains in the veins and in the host rock, within the mineralized corridor. SEM imagery and LA-ICP-MS analyses of pyrites indicate that in A-type veins gold is associated with bismuth, tellurium, lead and silver, while in C-type veins it is mostly associated with silver. Pyrites in A-type veins contain gold as inclusions and as free gold on its edges and fractures, while pyrites from C-type veins contains mostly free gold. Primary and pseudosecondary fluid inclusions from both

  4. Shock metamorphism of deformed quartz

    NASA Technical Reports Server (NTRS)

    Gratz, Andrew J.; Christie, John; Tyburczy, James; Ahrens, Thomas; Pongratz, Peter

    1988-01-01

    The effect produced by shock loading (to peak pressures of 12 and 24) on deformed synthetic quartz containing a dislocation and abundant bubbles and small inclusions was investigated, and the relationships between preexisting dislocation density shock lamellae in the target material were examined. The resultant material was found to be inhomogeneously deformed and extremely fractured. Results of TEM examinations indicate that no change in dislocation density was caused by shock loading except in regions containing shock lamellae, where the dislocation density was lowered. The shock-induced defects tend to nucleate on and be controlled by preexisting stress concentrators; shock lamellae, glassy veins, and most curviplanar defects form in tension, presumably during release. An extremely mobile silica fluid is formed and injected into fractures during release, which forcibly removes crystalline fragments from vein walls. It is concluded that shock deformation in quartz is dominated by fracture and melting.

  5. Shock metamorphism of deformed quartz

    NASA Technical Reports Server (NTRS)

    Gratz, Andrew J.; Christie, John; Tyburczy, James; Ahrens, Thomas; Pongratz, Peter

    1988-01-01

    The effect produced by shock loading (to peak pressures of 12 and 24) on deformed synthetic quartz containing a dislocation and abundant bubbles and small inclusions was investigated, and the relationships between preexisting dislocation density shock lamellae in the target material were examined. The resultant material was found to be inhomogeneously deformed and extremely fractured. Results of TEM examinations indicate that no change in dislocation density was caused by shock loading except in regions containing shock lamellae, where the dislocation density was lowered. The shock-induced defects tend to nucleate on and be controlled by preexisting stress concentrators; shock lamellae, glassy veins, and most curviplanar defects form in tension, presumably during release. An extremely mobile silica fluid is formed and injected into fractures during release, which forcibly removes crystalline fragments from vein walls. It is concluded that shock deformation in quartz is dominated by fracture and melting.

  6. Geology and geochemistry of the Clear Creek intrusion-related gold occurrences, Tintina Gold Province, Yukon, Canada

    USGS Publications Warehouse

    Marsh, E.E.; Goldfarb, R.J.; Hart, C.J.R.; Johnson, C.A.

    2003-01-01

    The Clear Creek gold occurrences lie within deformed lower greenschist-facies rocks of the western Selwyn basin. They consist of auriferous, sheeted quartz veins that cut six Cretaceous stocks and their hornfels. The veins contain 1-2% combined pyrite and arsenopyrite, with lesser pyrrhotite, bismuthinite, and scheelite, as well as 2-5 g/t Au. New 40Ar/39Ar geochronology of hydrothermal micas indicates that the veins formed within 1-2 million years of granitoid emplacement. Fluid inclusion microthermometry defines a parent ore fluid of -81 mol.% H2O, 14 mol.% CO2, 4 mol.% NaCl ?? KCl, and 1 mol.% CH4, which unmixed into a low- and high-salinity immiscible pair. This suggests a more saline parent fluid and a greater degree of fluid unmixing relative to the other occurrences in the eastern Tintina Gold Province. Inclusions trapped in As- and Bi-rich, high-gold grade veins have homogenization temperatures of 300-350??C, whereas inclusions found in more Ag- and Pb-rich veins are characterized by temperatures of 250-300??C. Fluid inclusion geobarometry suggests hydro-fracturing and gold deposition at 5-7 km depth. The ??18O values of quartz samples range from 13-16??? (per mil) and ??34S for sulfides are also consistent between -3.0???, 0???, with the exception of some outliers from the Contact Zone of the Pukelman stock that indicate a lower temperature second phase of mineralization. It remains uncertain as to whether the Clear Creek ore fluids were exsolved from magmas at depth or from devolatilization reactions within the contact metamorphic aureoles of the intrusions.

  7. Varicose Veins

    MedlinePlus

    ... has surface (superficial) veins that are connected to deep veins by bridging (perforator) veins. Unlike arteries, which ... the valve leaflets and can develop in the deep, perforator, or superficial veins. View this table: View ...

  8. Varicose Veins

    MedlinePlus

    Varicose veins are swollen, twisted veins that you can see just under the skin. They usually occur in ... of the body. Hemorrhoids are a type of varicose vein. Your veins have one-way valves that help ...

  9. Anomalous concentrations of gold, silver, and other metals in the Mill Canyon area, Cortez quadrangle, Eureka and Lander Counties, Nevada

    USGS Publications Warehouse

    Elliott, James E.; Wells, John David

    1968-01-01

    The Mill Canyon area is in the eastern part of the Cortez window of the Roberts Mountains thrust belt in the Cortez quadrangle, north-central Nevada. Gold and silver ores have been mined from fissure veins in Jurassic quartz monzonite and in the bordering Wenban Limestone of Devonian age. Geochemical data show anomalies of gold, silver, lead, zinc, copper, arsenic, antimony, mercury, and tellurium. Geologic and geochemical studies indicate that a formation favorable for gold deposition, the Roberts Mountains Limestone of Silurian age, may be found at depth near the mouth of Mill Canyon.

  10. Magmatic-hydrothermal origin of the early Triassic Laodou lode gold deposit in the Xiahe-Hezuo district, West Qinling orogen, China: implications for gold metallogeny

    NASA Astrophysics Data System (ADS)

    Jin, Xiao-ye; Li, Jian-wei; Hofstra, Albert H.; Sui, Ji-xiang

    2017-08-01

    The Xiahe-Hezuo district in the West Qinling orogen contains numerous Au-(As-Sb) and Cu-Au-(W) deposits. The district is divided into eastern and western zones by the Xiahe-Hezuo Fault. The western zone is exposed at a shallow level and contains sediment-hosted disseminated Au-(As-Sb) deposits, whereas the eastern zone is exposed at a deeper level and contains Cu-Au-(W) skarn and lode gold deposits within or close to granitic intrusions. The Laodou gold deposit in the eastern zone consists of auriferous quartz-sulfide-tourmaline and minor quartz-stibnite veins that are structurally controlled by fault zones transecting the Laodou quartz diorite porphyry stock and enveloped by potassic and phyllic alteration. Both the veins and alteration halos commonly contain quartz, sericite, tourmaline, pyrite, and arsenopyrite, with minor galena, sphalerite, chalcopyrite, tetrahedrite, and enargite. Gold occurs mainly as invisible gold in pyrite or arsenopyrite and locally as inclusions less than 50 μm in diameter. The zircon U-Pb age of 247.6 ± 1.3 Ma (2 σ) on the host quartz diorite porphyry and the sericite 40Ar/39Ar plateau ages of 249.1 ± 1.6 and 249.0 ± 1.5 Ma (2 σ) on two ore-related hydrothermal sericite samples are within analytical errors of one another. At the formation temperature (275 °C) inferred from microthermometric measurements of fluid inclusion, sericite and tourmaline yield calculated δDH2O values of -70 to -45‰ and δ 18OH2O of 5.8 to 9.7‰, while quartz yields calculated δ 18OH2O values of 5.1˜5.7‰. Hydrothermal tourmaline in quartz-sulfide-tourmaline veins has δ 11B of -11.2 to -0.9‰ (mean of -6.3‰) that are similar to the values of magmatic tourmaline (-8.9 to -5.5‰ with a mean of -6.8‰) in the host quartz diorite porphyry. The δ 34S values of sulfide minerals range from -5.9 to +5.8‰ with a mean of -0.6‰ that is typical of magmatic sulfur. Pyrite from hydrothermally altered quartz diorite porphyry and quartz

  11. Magmatic-hydrothermal origin of the early Triassic Laodou lode gold deposit in the Xiahe-Hezuo district, West Qinling orogen, China: implications for gold metallogeny

    NASA Astrophysics Data System (ADS)

    Jin, Xiao-ye; Li, Jian-wei; Hofstra, Albert H.; Sui, Ji-xiang

    2016-12-01

    The Xiahe-Hezuo district in the West Qinling orogen contains numerous Au-(As-Sb) and Cu-Au-(W) deposits. The district is divided into eastern and western zones by the Xiahe-Hezuo Fault. The western zone is exposed at a shallow level and contains sediment-hosted disseminated Au-(As-Sb) deposits, whereas the eastern zone is exposed at a deeper level and contains Cu-Au-(W) skarn and lode gold deposits within or close to granitic intrusions. The Laodou gold deposit in the eastern zone consists of auriferous quartz-sulfide-tourmaline and minor quartz-stibnite veins that are structurally controlled by fault zones transecting the Laodou quartz diorite porphyry stock and enveloped by potassic and phyllic alteration. Both the veins and alteration halos commonly contain quartz, sericite, tourmaline, pyrite, and arsenopyrite, with minor galena, sphalerite, chalcopyrite, tetrahedrite, and enargite. Gold occurs mainly as invisible gold in pyrite or arsenopyrite and locally as inclusions less than 50 μm in diameter. The zircon U-Pb age of 247.6 ± 1.3 Ma (2σ) on the host quartz diorite porphyry and the sericite 40Ar/39Ar plateau ages of 249.1 ± 1.6 and 249.0 ± 1.5 Ma (2σ) on two ore-related hydrothermal sericite samples are within analytical errors of one another. At the formation temperature (275 °C) inferred from microthermometric measurements of fluid inclusion, sericite and tourmaline yield calculated δDH2O values of -70 to -45‰ and δ 18OH2O of 5.8 to 9.7‰, while quartz yields calculated δ 18OH2O values of 5.1˜5.7‰. Hydrothermal tourmaline in quartz-sulfide-tourmaline veins has δ 11B of -11.2 to -0.9‰ (mean of -6.3‰) that are similar to the values of magmatic tourmaline (-8.9 to -5.5‰ with a mean of -6.8‰) in the host quartz diorite porphyry. The δ 34S values of sulfide minerals range from -5.9 to +5.8‰ with a mean of -0.6‰ that is typical of magmatic sulfur. Pyrite from hydrothermally altered quartz diorite porphyry and quartz

  12. Age constraints on Tarkwaian palaeoplacer and lode-gold formation in the Tarkwa-Damang district, SW Ghana

    USGS Publications Warehouse

    Pigois, J.-P.; Groves, D.I.; Fletcher, I.R.; McNaughton, N.J.; Snee, L.W.

    2003-01-01

    Two major epigenetic gold-forming events are recorded in the world-class gold province of southwest Ghana. A pre-Tarkwaian event was the source of the world-class Tarkwa palaeoplacers whereas post-Birimian and Tarkwaian deformation, which was related to the Eburnean orogeny, gave rise to the world-class (e.g. Prestea) to giant (e.g. Obuasi) orogenic gold deposits which have made the region famous for more than 2,500 years. A maximum age of 2133 ?? 4 Ma for Tarkwaian sedimentation is provided by 71 of 111 concordant SHRIMP II U Pb dates from detrital zircons in Tarkwaian clastic rocks from Damang and Bippo Bin, northeast of Tarkwa. The overall data distribution broadly overlaps the relatively poorly constrained ages of Birimian volcanism and associated Dixcove-type granitoid emplacement, indicating syntectonic development of the Tarkwaian sedimentary basin. These zircon ages argue against derivation of the palaeoplacer gold from an orogenic gold source related to the compressional phase of an orogeny significantly older than the Eburnean orogeny. Instead, they suggest that the gold source was either orogenic gold lodes related to an earlier compressional phase of a diachronous Eburnean orogeny or ca. 2200-2100 Ma intrusion-related gold lode. The CO2-rich fluid inclusions in associated vein-quartz pebbles are permissive of either source. At the Damang deposit, an epigenetic, orogenic lode-gold system clearly overprinted, and sulphidised low-grade palaeoplacer hematite magnetite gold occurrences in the Banket Series conglomerate within the Tarkwaian sedimentary sequence. Gold mineralisation is demonstrably post-peak metamorphism, as gold-related alteration assemblages overprint metamorphic assemblages in host rocks. In alteration zones surrounding the dominant, subhorizontal auriferous quartz veins, there are rare occurrences of hydrothermal xenotime which give a SHRIMP U Pb age of 2063 ?? 9 Ma for gold mineralisation. The similar structural timing of epigenetic gold

  13. Mercury contamination from historical gold mining in California

    USGS Publications Warehouse

    Alpers, Charles N.; Hunerlach, Michael P.; May, Jason T.; Hothem, Roger L.

    2005-01-01

    Mercury contamination from historical gold mines represents a potential risk to human health and the environment. This fact sheet provides background information on the use of mercury in historical gold mining and processing operations in California, with emphasis on historical hydraulic mining areas. It also describes results of recent USGS projects that address the potential risks associated with mercury contamination. Miners used mercury (quicksilver) to recover gold throughout the western United States. Gold deposits were either hardrock (lode, gold-quartz veins) or placer (alluvial, unconsolidated gravels). Underground methods (adits and shafts) were used to mine hardrock gold deposits. Hydraulic, drift, or dredging methods were used to mine the placer gold deposits. Mercury was used to enhance gold recovery in all the various types of mining operations; historical records indicate that more mercury was used and lost at hydraulic mines than at other types of mines. On the basis of USGS studies and other recent work, a better understanding is emerging of mercury distribution, ongoing transport, transformation processes, and the extent of biological uptake in areas affected by historical gold mining. This information has been used extensively by federal, state, and local agencies responsible for resource management and public health in California.

  14. Quartz crystal fabrication facility

    NASA Astrophysics Data System (ADS)

    Ney, R. J.

    1980-05-01

    The report describes the design and operation of a five chamber, interconnected vacuum system, which is capable of cleaning, plating, and sealing precision quartz crystal units in ceramic flatpack enclosures continuously in a high vacuum environment. The production rate design goal was 200 units per eight hour day. A unique nozzle beam gold deposition source was developed to operate for extended periods of time without reloading. The source puts out a narrow beam of gold typically in the order of 2 1/2 deg included cone angle. Maximum deposition rates are in the order of 400 a/min at 5.5 in. 'throw' distance used. Entrance and exit air lock chambers expedite the material throughput, so that the processing chambers are at high vacuum for extended periods of time. A stainless steel conveyor belt, in conjunction with three vacuum manipulators, transport the resonator components to the various work stations. Individual chambers are normally separated from each other by gate valves. The crystal resonators, mounted in flatpack frames but unplated, are loaded into transport trays in a lid-frame-lid sequency for insertion into the system and exit as completed crystal units. The system utilizes molybdenum coated ball bearings at essentially all friction surfaces. The gold sources and plating mask heads are equipped with elevators and gate valves, so that they can be removed from the system for maintenance without exposing the chambers to atmosphere.

  15. Gold placer and Quaternary stratigraphy of the Jabal Mokhyat area, southern Najd Province, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Schmidt, D.L.; Puffett, W.P.; Campbell, W.L.; Al-Koulak, Z. H.

    1981-01-01

    An ancient gold placer at Jabal Mokhyat (lat 20?12.2'N., long 43?28'E.), about 90 km east of Qalat Bishah in the southern Najd Province, Kingdom of Saudi Arabia, was studied in 1973. Seven hundred and twenty-eight samples in 25 measured sections were collected along trenches and pits 2.5 m in depth and 2,600 m in total length. Alluvium was thicker than the excavation depth along about 50 percent of the trench length. The average gold content was 4.4 mg per m3, and the highest grade trench contained 40 mg gold per m 3. Because fine particulate gold is rare in the alluvium, a few large particles, 1 to 5 mm in diameter, greatly affected the sampling results. The ancient placer diggings are in small headwater wadis distributed over a 30-km 2 area, and the total dug area is about 1.2 km2. The placer produced an estimated 50 kg of gold and was worked about 2,600 + 250 years ago. The potential for a present-day placer operation is small. The gold is sparsely distributed in locally derived, flood-deposited, immature gravels throughout a stratigraphic section that consists of 1) calichified, saprolitic bedrock of Precambrian age; 2) basal, intensely calichified, saprolitic gravel (0-3 m thick) of Pleistocene age; 3) disconformable, slightly consolidated gravel and sand (0-1 m thick) of late Pleistocene age containing sparse, disseminated caliche; 4) firm loessic silt (0-1 m thick) of early Holocene age; and 5) loose sand and gravel (0.3-1 m thick) of late Holocene age. The loessic silt accumulated during the Holocene pluvial. The top of the loessic silt unit is dated at about 6,000 years B.P. by using charcoal from hearths of ancient man. Following the Holocene pluvial, the climate became arid, and extreme desiccation resulted in abundant eolian sand that progressively diluted the late Holocene gravels. The remnants of the pre-Holocene stratigraphy suggest similar climatic cycles during the Pleistocene. Abundant, sparsely mineralized, gold-bearing quartz veins (0-1 m wide

  16. Integration of new geologic mapping and satellite-derived quartz mapping yields insights into the structure of the Roberts Mountains allochthon applicable to assessments for concealed Carlin-type gold deposits

    USGS Publications Warehouse

    Holm-Denoma, Christopher S.; Hofstra, Albert H.; Rockwell, Barnaby W.; Noble, Paula J.

    2012-01-01

    Geologic mapping and remote sensing across north-central Nevada enable recognition of a thick sheet of Middle and Upper Ordovician Valmy Formation quartzite that structurally overlies folded and faulted Ordovician through Devonian stratigraphic units of the Roberts Mountains allochthon. In the northern Independence Mountains and nearby Double Mountain area, the Valmy Formation is in fault contact with Ordovician through Silurian, predominantly clastic, sedimentary rocks of the Roberts Mountains allochthon that were deformed prior to, or during, emplacement of the Valmy thrust sheet. Similar structural relations are recognized discontinuously for 200 kilometers along the strike of the Roberts Mountains allochthon in mapping guided by regional remote-sensing-based (ASTER) quartz maps. Overall thicknesses of deformed Roberts Mountains allochthon units between the base of the Valmy and the top of underlying carbonate rocks that host large Carlin-type gold deposits varies on the order of hundreds of meters but is not known to exceed 700 meters. The base of the Valmy thrust sheet is a complimentary datum in natural resource exploration and mineral resource assessment for concealed Carlin-type gold deposits.

  17. Formation of parting in quartz

    NASA Astrophysics Data System (ADS)

    Jørgen Kjøll, Hans; Eske Sørensen, Bjørn

    2014-05-01

    This paper presents hydrothermal quartz with macroscopic planar parting from the Mesoproterozoic Modum complex in southern Norway. Similar macroscopic parting in hydrothermal quartz with macroscopic planar structures has only been described from two localities in the world; Madagascar (Flörke et al., 1981) and Southern California (Murdoch et al., 1938). The study area consists of well foliated and banded sillimanite- garnet- amphibolite- mica gneiss that is cut at high angle by hydrothermal veins containing albite, chlinoclore, hornblende, hydroxyl apatite and quartz. The rim of the veins is generally made up of almost pure end-member euhedral albite. Then there is vugs with euhedral hornblende (10-25cm long) and euhedral hydroxyl apatite with size ranging from mm scale to several cm. Some places the quartz encloses apatite and hornblende. The quartz is anhedral, inequigranular with undulose extinction bordering sub grain rotation. It has large planar penetrative parting faces with pearly luster; however this is not consistent throughout the outcrop and some places the penetrative faces disappears and the quartz has a conchoidal fracture. The planar faces continue throughout the specimens with a few mm spacing. Thin sections oriented perpendicular to the most pronounced planar structure show lamellas that extinguishes at small angles (2 degrees) to each other. EBSD mapping of the planar faces shows two orientations {0-111} and {1-101}, corresponding to the r- and z-faces respectively, separated by irregular boundaries. The misorientation between these two crystallographic orientations on the parting is a 60 degree rotation on [0 0 1] in correspondence to the dauphiné twin law. Investigations conducted on thin sections cut orthogonal to the parting shows that the parting cuts and offsets the dauphiné twins, indicating a late genesis of the parting. However some internal stress induced movement of the twins are visible. SEM-CL documents three generations of quartz

  18. Mineralogy of Copper-Gold Deposit, Masjid Daghi Area, Jolfa, IRAN

    NASA Astrophysics Data System (ADS)

    Zenoozi, Roya

    2010-05-01

    The Copper-Gold deposit of Masjid Daghi area is located in the Jolfa quadrangle (scale 1:100,000), East Azerbaijan Province, north-west Iran. The deposit, hosting by sub-volcanic bodies comprise of quartz monzonite composition whose intruded the Tertiary volcanic and volcanic-sedimentary rocks and turbidities. The Tertiary volcanic rocks consist of andesite, trachy andesite and quartz andesite. These mineral-bearing bodies related to Late Eocene sub-volcanic activities which intrudded the Eocene volcanic rocks. Mineralography, XRD and SEM studies showed that the variations in mineralization of the area. The main agent of mineralization is the intrusion of Late Eocene sub volcanic bodies inside the Tertiary volcanic units. The mineralography studies revealed two main groups of mineralization as oxides and sulfides. The sulfide minerals formed as veins, vein lets and stock work.The economic minerals comprise of native gold, copper sulfides. The native gold occurring in siliceous veins and almost as inclusions inside the sulfides minerals such as chalcopyrite. The copper sulfides, contain pyrite, chalcopyrite and chalco-pyrrhoyite. Pyrite is main sulfide in the area and formed as disseminations, cavity filling and colloform. The amount of pyrite, chalcopyrite and chalco-pyrrhoyite increases with depth. Supergene alteration produced digenite, covellite, bornite, and malachite. The alteration occurred as potassic, phyllic, argillic and propylitic minerals. Furthermore, selective sercitic, sericitic-chloritic and alunitic alterations are seen around the mineralized veins. The mineralography studies indicate that pyrite is main mineral phase and native gold occurred in silicious vein almost as inclusions inside the sulfide mineral. Most of economic mineral formed as veins, vein lets, disseminated, cavity filling and colloform which related to intrusions of Late Eocene quartz monzonite bodies into the Eocene volcanic rocks and turbiditse. Some types of alterations such as

  19. Relantionships between gold mineralization and granite - Discussion with the support of a pluridisciplinary study of the Passa Tres gold deposit (South Brazil)

    NASA Astrophysics Data System (ADS)

    Dressel, Bárbara; Chauvet, Alain; Trzaskos, Barbara; Biondi, Joao Carlos; Bruguier, Olivier; Monie, Patrick; Villanova, Sandro; Bazille, Jose

    2016-04-01

    The Passa Três Granite, located at East of the Paraná State is elongated following a NNE-SSW direction. This sienogranite is emplaced within metapelites of the meso to neoproterozoic Açungui Group, between the Morro Agudo and Lancinha transcurrent faults, comprising the N040°E trending Lancinha Transcurrent Fault System. Gold mineralization within the Passa Três Granite is constituted by huge quartz veins with sulfides, variable quantities of fluorite and carbonates, forming orebodies with different internal textures, including massive, banded, sheared and brecciated. Structural data indicate the existence of two major fault systems, one N-S and the other E-W, with dips of 15-45°W and 20-75°S, respectively. Both NS and EW systems are interpreted to be contemporaneous and conjugate. Normal motions are everywhere suspected and main mineralized veins are located at opening sites at these fault systems, such as pull-aparts. The structural model suggests that the normal motion can be initiated by shearing along a "guide" level, in which sulfides and clay minerals are concentrated. This configuration can be observed at several scales, such as field, hand samples and thin section. Mineralized veins mainly contain, in addition to the quartz of the gangue, sulphides (pyrite, chalcopyrite, galena, molybdenite), fluorite, chlorite, muscovite, sericite, and carbonate. The presence of sericite, kaolinite and chlorite indicate the occurrence of, at least, propylitic and phyllic-type alterations, both in core of the granite and best-expressed at the rim of quartz-rich orebodies. Gold occurs as native grains in core of the quartz veins, within fractures that affect pyrite and frequently exhibiting normal motions consistent with the one observed at larger scale and systematically associated with chalcopyrite and galena. Quartz veins are sometimes bordered by aplitic dike. Additionally, some of the veins can exhibit a very thin margin of adularia minerals that seems to

  20. Tectonic setting of synorogenic gold deposits of the Pacific Rim

    USGS Publications Warehouse

    Goldfarb, R.J.; Phillips, G.N.; Nokleberg, W.J.

    1998-01-01

    More than 420 million oz of gold were concentrated in circum-Pacific synorogenic quartz loades mainly during two periods of continental growth, one along the Gondwanan margin in the Palaeozoic and the other in the northern Pacific basin between 170 and 50 Ma. These ores have many features in common and can be grouped into a single type of lode gold deposit widespread throughout clastic sedimentary-rock dominant terranes. The auriferous veins contain only a few percent sulphide minerals, have gold:silver ratios typically greater than 1:1, show a distinct association with medium grade metamorphic rocks, and may be associated with large-scale fault zone. Ore fluids are consistently of low salinity and are CO2-rich. In the early and middle Palaeozoic in the southern Pacific basin, a single immense turbidite sequence was added to the eastern margin of Gondwanaland. Deformation of these rocks in southeastern Australia was accompanied by deposition of at least 80 million oz of gold in the Victorian sector of the Lachlan fold belt mainly during the Middle and Late Devonian. Lesser Devonian gold accumulations characterized the more northerly parts of the Gondwanan margin within the Hodgkinson-Broken River and Thomson fold belts. Additional lodes were emplaced in this flyschoid sequence in Devonian or earlier Palaeozoic times in what is now the Buller Terrane, Westland, New Zealand. Minor post-Devonian growth of Gondwanaland included terrane collision and formation of gold-bearing veins in the Permian in Australia's New England fold belt and in the Jurassic-Early Cretaceous in New Zealand's Otago schists. Collision and accretion of dozens of terranes for a 100-m.y.-long period against the western margin of North America and eastern margin of Eurasia led to widespread, lattest Jurassic to Eocene gold veining in the northern Pacific basin. In the former location, Late Jurassic and Early Cretaceous veins and related placer deposits along the western margin of the Sierra Nevada

  1. Quartz ball value

    NASA Technical Reports Server (NTRS)

    Goetz, C.; Ingle, W. M.

    1979-01-01

    Quartz ball valve consisting of two quartz joints sealed back-to-back and seated in quartz sockets perform at temperatures of up to 1,250 C and in corrosive chemical environments without contamination or degradation.

  2. Preliminary mineralogic, fluid inclusion, and stable isotope study of the Mahd adh Dhahab gold mine, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Rye, Robert O.; Hall, W.E.; Cunningham, C.G.; Czamanske, G.K.; Afifi, A.M.; Stacey, J.S.

    1983-01-01

    The Mahd adh Dhahab mine, located about 280 km northeast of Jiddah, Kingdom of Saudi Arabia, has yielded more than 2 million ounces of gold from periodic production during the past 3,000 years. A new orebody on the southern side of the ancient workings, known as the South orebody, is being developed by Gold Fields-Mahd adh Dhahab Limited. A suite of samples was collected from the newly exposed orebody for preliminary mineralogic, stable isotope, fluid inclusion, and geochemical studies. The Mahd adh Dhahab deposit is in the carapace of a Proterozoic epizonal rhyolite stock that domed pyroclastic and metasedimentary rocks of the Proterozoic Halaban group. Ore of gold, silver, copper, zinc, tellurium, and lead is associated with north-trending, steeply dipping quartz veins in a zone 1,000 m long and 400 m wide. The veins include an assemblage of quartz-chlorite-pyrite-hematite-chalcopyrite-sphalerite-precious metals, which is similar to the mineral assemblage at the epithermal deposit at Creede, Colorado. The primary ore contains abundant chalcopyrite, sphalerite, and pyrite in addition to a complex precious metal assemblage. Gold and silver occur principally as minute grains of telluride minerals disseminated in quartz-chlorite-hematite and as inclusions in chalcopyrite and sphalerite. Telluride minerals include petzite, hessite, and sylvanite. Free gold is present but not abundant. All of the vein-quartz samples contained abundant, minute inclusions of both low-density, vapor-rich fluids and liquid-rich fluids. Primary fluid inclusions yielded homogenization temperatures of from 110? to 238? C. Preliminary light-stable isotope studies of the sulfide minerals and quartz showed that all of the d34S values are between 1.2 and 6.3 per mil, which is a typical range for hydrothermal sulfide minerals that derive their sulfur from an igneous source. The data-suggest that the sulfide sulfur isotope geochemistry was controlled by exchange with la large sulfur isotope

  3. Paleoproterozoic gold deposits in the Bald Hill and Coyote areas, Western Tanami, Western Australia

    NASA Astrophysics Data System (ADS)

    Bagas, Leon; Huston, David L.; Anderson, James; Mernagh, Terrence P.

    2007-01-01

    Significant gold deposits in the western Tanami region of Western Australia include deposits in the Bald Hill and Coyote areas. The ca. 1,864 Ma Bald Hill sequence of turbiditic and mafic volcanic rocks hosts the Kookaburra and Sandpiper deposits and a number of smaller prospects. The ca. 1,835 Ma turbiditic Killi Killi Formation hosts the Coyote deposit and several nearby prospects. The Kookaburra deposit forms as a saddle reef within a syncline, and the Sandpiper deposit is localized within graphitic metasedimentary rocks along a limb of an anticline. Gold in these deposits is hosted by anastomosing quartz-(-pyrite-arsenopyrite) veins within quartz-sericite schist with disseminated arsenopyrite, pyrite, and marcasite (after pyrrhotite). Based on relative timing relationships with structural elements, the auriferous veins are interpreted to have been emplaced before or during the ca. 1,835-1,825 Ma Tanami Orogeny (regional D1). Gold deposition is thought to have been caused by pressure drops associated with saddle reef formation (Kookaburra) and chemical reactions with graphitic rocks (Sandpiper). The Coyote deposit, the largest in the western Tanami region, consists of a number of ore lenses localized along the limbs of the Coyote Anticline, which formed during the Tanami Orogeny. The largest lenses are associated with the Gonzalez Fault, which is located along the steeply dipping southern limb of this fold. Gold was introduced at ca. 1,790 Ma into dilatant zones that formed in local perturbations along this fault during later reactivation (regional D5) towards the end of a period of granite emplacement. Gold is associated with quartz-chlorite-pyrite-(arsenopyrite-galena-sphalerite) veins with narrow (< 5 mm) chloritic selvages. A quartz-muscovite-biotite-K-feldspar-(tourmaline-actinolite-arsenopyrite) assemblage, which is interpreted to relate to granite emplacement, overprints the regional greenschist facies metamorphic assemblage. The mineralogical similarity

  4. The role of decarbonization and structure in the Callie gold deposit, Tanami Region of northern Australia

    NASA Astrophysics Data System (ADS)

    Williams, Nicholas C.

    2007-01-01

    The Callie deposit is the largest (6.0 Moz Au) of several gold deposits in the Dead Bullock Soak goldfield of the Northern Territory’s Tanami Region, 550 km northwest of Alice Springs. The Callie ore lies within corridors, up to 180 m wide, of sheeted en echelon quartz veins where they intersect the 500-m-wide hinge of an ESE-plunging F1 anticlinorium. The host rocks are the Blake beds, of the Paleoproterozoic Dead Bullock Formation, which consist of a > 350-m-thick sequence of lower greenschist facies graphitic turbidites and mudstones overlying in excess of 100 m of thickly bedded siltstones and fine sandstones. The rocks are Fe-rich and dominated by assemblages of chlorite and biotite, both of which are of hydrothermal and metamorphic origin. A fundamental characteristic of the hydrothermal alteration is the removal of graphite, a process which is associated with bleaching and the development of bedding-parallel bands of coarse biotite augen. Gold is found only in quartz veins and only where they cut decarbonized chloritic rock with abundant biotite augen and no sulfide minerals. Auriferous quartz veins differ from barren quartz veins by the presence of ilmenite, apatite, xenotime, and gold and the absence of sulfide minerals. The assemblage of gold-ilmenite-apatite-xenotime indicates a linked genesis and mobility of Ti, P, and Y in the mineralizing fluids. Geochemical analysis of samples throughout the deposit shows that gold only occurs in sedimentary rocks with high FeO/(FeO+Fe2O3) and low C/(C+CO2) ratios (> 0.8 and < 0.2, respectively). This association can be explained by reactions that convert C from reduced graphitic host rocks into CO2 and reduce ferric iron in the host rocks to ferrous iron in biotite and chlorite. These reactions would increase the CO2 content of the fluid, facilitating the transport of Ti, P, and Y from the host rocks into the veins. Both CO2 and CH4 produced by reaction of H2O with graphite, effervesced under the lower confining

  5. The transition from porphyry- to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study

    NASA Astrophysics Data System (ADS)

    Müller, Daniel; Kaminski, Klaus; Uhlig, Stephan; Graupner, Torsten; Herzig, Peter M.; Hunt, Steve

    2002-02-01

    The exceptionally large gold resource at Ladolam (>1,300 metric tons of gold), Lihir Island, resulted from the transition of an early-stage, low-grade porphyry gold system to a low-sulfidation epithermal gold event. This transition was probably triggered by rapid decompression during the partial slope failure of Luise stratovolcano and accompanied by the ingress of seawater. The original porphyry stage is indicated by remnant hydrothermal breccia clasts of strongly biotite-magnetite altered monzodiorite with disseminated pyrite ± chalcopyrite and poorly developed pyrite ± quartz stockwork veins. The breccias are overprinted by biotite-magnetite alteration and their matrix is strongly mineralized with disseminated auriferous pyrite. The breccias are cut by late-stage epithermal quartz-chalcedony-illite-adularia-pyrite veins and associated illite-adularia alteration that locally contain bonanza gold grades of up to 120 g/t. Isotope data suggest a magmatic source of sulfur in the gold-bearing fluids at Ladolam. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00126-001-0230-y

  6. Low-sulfur epithermal gold mineralization at Inca de Oro, northern Chile: Mineralogy and fluid inclusions

    NASA Astrophysics Data System (ADS)

    Palacios M., C.; Lahsen A., A.; Sylvester, H.

    1992-10-01

    Gold mineralization during the Late Cretaceous produced an epithermal deposit of the low-sulfur (adularia-sericite) type, consisting of disseminated gold, gold-copper veins, and stockworks in Jurassic volcanic rocks and Upper Cretaceous quartz monzodiorite and quartz diorite intrusions. The host rock of the disseminated deposits is a silica cap, which represents the near-surface expression of the epithermal system, and the ore mineralogy consists of pyrite, gold, and minor cinnabar. Silicic alteration is represented by cryptocrystalline quartz, and argillic and advanced alteration by kaolinite, jarosite, and minor alunite. Fluid inclusion studies indicate that alteration occurred at 100-200°C from fluids with a salinity of 0.5-5 wt% NaCl equiv. These were probably acid-sulfate waters formed by oxidation of H 2S at the water table. In veins and stockworks, the ore assemblage consists of pyrite, gold, sphalerite, argentite, galena, electrum, chalcopyrite, copper-sulfosalts, bismuthinite, molybdenite, and cinnabar. Adularia-illite-chlorite alteration is closely connected with the stockorrk and vein mineralization. Alteration assemblage and fluid inclusion studies suggest mineralization by near-neutral alkali-chloride boiling fluids at 225-250°C, ranging in salinity from 1 to 14 wt% NaCl equiv., and pressure estimates based on fluid-inclusion data suggest a depth of 300-400 m below the paleosurface. Fracture permeability, combined with a large geothermal gradient, favored the circulation of fluids and development of the geothermal system that caused the mineralization and associated alteration.

  7. Multistage gold mineralization in the Wa-Lawra greenstone belt, NW Ghana: The Bepkong deposit

    NASA Astrophysics Data System (ADS)

    Amponsah, Prince Ofori; Salvi, Stefano; Didier, Béziat; Baratoux, Lenka; Siebenaller, Luc; Jessell, Mark; Nude, Prosper Mackenzie; Gyawu, Eugene Adubofour

    2016-08-01

    The Bepkong gold deposit is one of several gold camps in the Paleoproterozoic Wa-Lawra greenstone belt in northwest Ghana. These deposits lay along the Kunche-Atikpi shear zone, which is part of the larger transcurrent Jirapa shear zone. The formation of these shear zones can be attributed to the general ESE-WNW major shortening that took place in the Wa-Lawra belt. Gold mineralization in the Bepkong deposit mainly occurs within graphitic shales and volcaniclastic rocks. The ore consists of four N-S trending lenticular bodies, plunging steeply to the south, that are lithologically and structurally controlled. Their shape and thickness are variable, though a general strike length of 560 m and an overall thickness of 300 m can be defined. An alteration mineral assemblage characterises the ore, and consists of chlorite-calcite-sericite-quartz-arsenopyrite-pyrite. Pyrite, as distinct from arsenopyrite, is not limited to the altered rocks and occurs throughout the area. At Bepkong, gold is associated with arsenopyrite and pyrite, which occur disseminated in the mineralized wall rock, flanking Type-1 quartz veins, or within fractures crossing these veins. Textural observations indicate the early formation of abundant arsenopyrite, followed by pyrite, with chalcopyrite, galena, sphalerite and pyrrhotite occurring as inclusions within pyrite and altered arsenopyrite. Detailed petrography, coupled with SEM, LA-ICP-MS and EMP analyses, indicate that gold in the Bepkong deposit occurs in three distinct forms: (i) invisible gold, mostly in arsenopyrite (ii); visible gold as micron-size grains within fractures and altered rims of arsenopyrite, as well as at the interface of sulphide grains; (iii) free visible gold in fractures in quartz veins and their selvages. We interpret the invisible gold to have co-precipitated with the early-formed arsenopyrite. The small visible gold grains observed within the sulphide interfaces, altered arsenopyrite, fractures and grain boundaries

  8. Gold deposits and occurrences of the Greater Caucasus, Georgia Republic: Their genesis and prospecting criteria

    USGS Publications Warehouse

    Kekelia, S.A.; Kekelia, M.A.; Kuloshvili, S.I.; Sadradze, N.G.; Gagnidze, N.E.; Yaroshevich, V.Z.; Asatiani, G.G.; Doebrich, J.L.; Goldfarb, R.J.; Marsh, E.E.

    2008-01-01

    The south-central part of the Greater Caucasus region, Georgia Republic, represents an extremely prospective region for significant orogenic gold deposits. Gold-bearing quartz veins are concentrated in two extensive WNW-trending belts, the Mestia-Racha and Svaneti districts, within the northern margin of the Southern Slope Zone of the Great Caucasus orogen. This metalliferous region is dominated by Early to Middle Jurassic slates, which are part of a terrane that likely accreted to the continental margin from late Paleozoic to Jurassic. The slates were subsequently intruded by both Middle to Late Jurassic and Neogene granitoids. Quartz veins in the more carbonaceous slate units are most consistently enriched in As, Au, Hg, Sb, and W, and show mineralization styles most consistent with typical orogenic gold deposits. Quartz veins in the Mestia-Racha district were mined in Soviet times for As, Sb, and W, but many of these are now being recognized as gold resource targets. The veins occur in the footwall of a thrust fault between the Southern Slope zone and an earlier accreted terrane, the Main Zone, to the north. Many veins in the district continue along strike for > 1??km and some cut Neogene intrusions, constraining ore formation to the most recent 4 to 5??million years. Gold deposition thus correlates with final collision of the Arabian plate to the south and uplift of the ore-hosting Greater Caucasus. The Zopkhito deposit, previously mined for antimony, contains an estimated 55??t Au at a cutoff grade of 0.5??g/t. The veins are localized in an area where smaller-order structures show a major change in strike from N-S to more E-W trends. A pyrite-arsenopyrite ore stage includes gold concentrated in both sulfide phases; it is overprinted by a later stibnite-dominant stage. Fluid-inclusion studies of ore samples from the Zopkhito deposit indicate minimum trapping temperatures of 300 to 350????C and 200 to 300????C for the two stages, respectively, and minimum

  9. Metamorphism and gold mineralization in the Blue Ridge, Southernmost Appalachians

    USGS Publications Warehouse

    Stowell, H.H.; Lesher, C.M.; Green, N.L.; Sha, P.; Guthrie, G.M.; Sinha, A.K.

    1996-01-01

    Lode gold mineralization in the Blue Ridge of the southernmost Appalachians is hosted by metavolcanic rocks (e.g., Anna Howe mine, AL; Royal Vindicator mine, GA), metaplutonic rocks (e.g., Hog Mountain mine, AL), and metasedimentary rocks (e.g., Lowe, Tallapoosa, and Jones Vein mines, AL). Most gold occurs in synkinematic quartz ?? plagioclase ?? pyrite ?? pyrrhotite ?? chlorite veins localized along polydeformational faults that juxtapose rocks with significantly different peak metamorphic mineral assemblages. Mineralogy, chemistry, and O and H isotope studies suggest that the three types of host rocks have undergone differing amounts and types of alteration during mineralization. Limited wall-rock alteration in metavolcanic- and metasediment-hosted deposits, and relatively extensive wall-rock alteration in granitoid-hosted deposits, suggests that most deposits formed from fluids that were close to equilibrium with metavolcanic and metasedimentary rocks. Stable isotope compositions of the fluids calculated from vein minerals and vein selvages are consistent with a predominantly metasedimentary fluid source, but vary from deposit to deposit (-22 to -47??? ??D, 4-5??? ??18O, and 5-7??? ??34S at Anna Howe and Royal Vindicator; -48 to -50??? ??D, 9-13??? ??18O, and ca. 19??? ??34S at Lowe and Jones Vein; and -22 to -23??? ??D, 8-11??? ??18O, 9-10??? ??34S, and -6 ??13C at Hog Mountain). Silicate mineral thermobarometry of vein, vein selvage, and wall-rock mineral assemblages indicate that mineralization and regional metamorphism occured at greenschist to amphibolite facies (480?? ?? 75??C at Anna Howe, 535?? ?? 50??C at 6.4 ?? 1 kbars at Lowe, 530?? ?? 50??C at 6.9 ?? 1 kbars at Tallapoosa, and 460?? ?? 50??C at 5.5 ?? 1 kbars at Hog Mountain). Oxygen isotope fractionation between vein minerals and selvage minerals consistently records equilibration temperatures that are similar to or slightly lower than those estimated from silicate thermometry. Auriferous veins

  10. Antimony and arsenic behaviours in soils from three abandoned gold mining areas in northern Portugal

    NASA Astrophysics Data System (ADS)

    Carvalho, Paula; Neiva, Ana; Silva, Maria

    2013-04-01

    The Valongo anticline located 18 km at East of Porto is characterized by the occurrence of several gold deposits, which were exploited until the end of the nineteenth century. This anticline comprises Cambrian to Carboniferous metasediments. The Cambrian schist-graywacke complex crops out in the western limb of the anticline and is intersected by several Sb-Au quartz veins, mainly Montalto and Tapada. At the eastern limb of the anticline, As-Au quartz veins cut Ordovician black slates and were exploited at the Banjas mine. The Sb-Au quartz veins contain mainly quartz, arsenopyrite, pyrrhotite, pyrite, marcasite, sphalerite, chalcophyrite, galena, gold, tetrahedrite, jamesonite, plagionite, berthierite, stibnite, antimony and carbonates. The As-Au quartz veins consist of quartz, arsenopyrite, pyrite, pyrrhotite, cobaltite, glaucodote, sphalerite, boulangerite, tetrahedrite and siderite. Stibnite and arsenopyrite are the most abundant sulphides in Sb-Au and As-Au quartz veins, respectively. Therefore, antimony and arsenic are potential contaminants in the surrounding environments of these old mines. The principal component analysis (PCA) was applied to organic matter, pH, cation exchange capacity, clay size particle and reducible, oxidizable and aqua regia Fe, Mn, As and Sb concentrations obtained by the BCR method in 29 soil samples. The PCA shows a substantial distinction between Sb and As behaviours in soils from the old mining areas of Montalto, Tapada and Banjas. The arsenic concentration ranges between 16.98 mg/kg and 1116 mg/kg, whereas the Sb concentration ranges from 6.4 mg/kg to 21775 mg/kg. The antimony is statistically more correlated with Fe and Mn in the oxides fraction, whereas As in the reducible fraction dependents on pH values. Moreover, Fe and Mn concentrations in the oxidizable fraction are highly correlated with the organic matter, suggesting that pyrite, the main host mineral of Fe, was probably totally altered. However, the As concentration in

  11. 43 CFR 3864.1-3 - Millsites for quartz mills or reduction works.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Millsites for quartz mills or reduction... APPLICATIONS Millsite Patents § 3864.1-3 Millsites for quartz mills or reduction works. In case the owner of a quartz mill or reduction works is not the owner or claimant of a vein or lode claim the law permits...

  12. 43 CFR 3864.1-3 - Millsites for quartz mills or reduction works.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Millsites for quartz mills or reduction... APPLICATIONS Millsite Patents § 3864.1-3 Millsites for quartz mills or reduction works. In case the owner of a quartz mill or reduction works is not the owner or claimant of a vein or lode claim the law permits...

  13. 43 CFR 3864.1-3 - Millsites for quartz mills or reduction works.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Millsites for quartz mills or reduction... APPLICATIONS Millsite Patents § 3864.1-3 Millsites for quartz mills or reduction works. In case the owner of a quartz mill or reduction works is not the owner or claimant of a vein or lode claim the law permits...

  14. Textures, trace elements, and Pb isotopes of sulfides from the Haopinggou vein deposit, southern North China Craton: implications for discrete Au and Ag-Pb-Zn mineralization

    NASA Astrophysics Data System (ADS)

    Li, Zhan-Ke; Li, Jian-Wei; Cooke, David R.; Danyushevsky, Leonid; Zhang, Lejun; O'Brien, Hugh; Lahaye, Yann; Zhang, Wen; Xu, Hai-Jun

    2016-12-01

    The Haopinggou deposit in the Xiong'ershan district, southern margin of the North China Craton, comprises numerous Au and Ag-Pb-Zn veins hosted in metamorphic rocks of the Late Archean to early Paleoproterozoic Taihua Group. Two stages of mineralization have been recognized: Stage 1 pyrite-quartz veins and Stage 2 Pb-Zn-sulfide veins. Some pyrite-quartz veins are surrounded or cut by Pb-Zn-sulfide veins, others occur as independent veins. Six generations of pyrite have been identified at Haopinggou: Py1 to Py3 in Stage 1 and Py4 to Py6 in Stage 2. Pyrites from Stage 1 are enriched in Au, As, Co, Ni, and Bi, whereas Stage 2 pyrites contain higher Ag, Pb, Zn, Sn, and Sb. Invisible Au mostly occurs as lattice-bound gold in Py2 (up to 92 ppm Au) and Py3 (up to 127 ppm Au) and has a close relationship with As. Native Au grains are also present in Py3 and likely resulted from mobilization and reprecipitation of the invisible Au previously locked in the precursor pyrite. This view is supported by extensive plastic deformation in Stage 1 pyrite as revealed by electron backscatter diffraction analysis. In Stage 2, Ag is mostly present as lattice-bound silver closely associated with Sb in galena (up to 798 ppm Ag). A variety of silver minerals are also present as inclusions within galena or as interstitial grains. These silver minerals were likely formed via Ag-Cu exchange reaction between tetrahedrite and galena or represent exsolution from galena due to a temperature decrease. Pb isotopic compositions differ remarkably between Stage 1 and Stage 2 sulfides, indicating different sources of lead. Pb in Stage 2 Pb-Zn-sulfide veins is consistent with the Haopinggou porphyry close to the veins. The field, textural, compositional, and lead isotopic data led us to conclude that the early gold-bearing pyrite-quartz veins and late silver-bearing Pb-Zn-sulfide veins likely formed from distinct fluid systems related to discrete mineralization events. Our study suggests that Au and Ag

  15. Geologic and isotopic investigation of the South Willow creek gold prospect, Madison County, Montana

    SciTech Connect

    Saunders, M.M.; Ripley, E.M.

    1985-01-01

    The South Willow Creek gold prospect is located in the southwestern part of the Potosi tungsten district, southwest Montana. Gold-quartz veins occur in the Bismark shear zone within granodiorite host rocks of the late Cretaceous-early Tertiary Tobacco Root batholith. Four well developed zones of progressive alteration are found adjacent to faults and veins in the area. Gold occurs in solid solution with silver as inclusion in pyrite and alone with quartz. The highest gold assay values occur closest to the Bismark shear zone. Sulfur isotope values for pyrite, galena, and molybdenum range from -6.5 to +1.7 per thousands. Pyrite-galena and pyrite-molybdenum ..delta.. values indicate sulfide deposition temperatures ranging from 220 to 265/sup 0/C. Isotopic values suggest that deposition occurred from a fluid with a delta/sup 34/S value of near 0 per thousand, at redox conditions near those of the ..sigma..sulfate/..sigma..sulfide boundary. Mineral assemblages and delta/sup 34/S values are consistent with gold transport as a chloride complex under acid oxidizing conditions. Increases in pH and decreases in temperature accompanying wallrock alteration are the likely causes of gold deposition. Sericite deltaD values are variable, ranging from -69 to -136 per thousand. Computed delta/sup 18/O/sub H/sub 2/O/ and deltaD/sub H/sub 2/O/ values are most easily interpreted as indicating a predominantly magmatic fluid source, with locally variable contributions of meteoric water. However, non-equilibrium delta/sup 18/O values of coexisting quartz and sericite, and the deltaD values of sericite, both suggest that isotopic exchange rates were variable, and limit the unambiguous determination of fluid source.

  16. Insights Into the Formation of Deep Hydrothermal Quartz From the Porphyry-Copper- Molybdenum Deposit at Butte, Montana

    NASA Astrophysics Data System (ADS)

    Mercer, C. N.; Reed, M. H.

    2007-12-01

    We combine SEM-cathodoluminescence (SEM-CL) images of magmatic and hydrothermal quartz with trace elements and quartz precipitation temperatures to elucidate the formation of deep quartz veins in a porphyry-style deposit. Trace elements (Ti, K, Al, and Fe) were measured by EPMA along traverses crossing CL textural boundaries and quartz precipitation temperatures were calculated using the Ti in quartz (TitaniQ) geothermometer (Wark and Watson, 2006). We examined Butte granite, quartz porphyry, and five deep vein types, including biotite crackles and early dark micaceous (EDM) veins (potassic alteration), barren quartz/quartz-molybdenum veins lacking alteration, and pyrite-quartz veins with sericitic alteration. Magmatic quartz shows concentric zoning that is cross-cut by CL-dark quartz veins. Complex textures in hydrothermal quartz indicate multiple quartz-precipitation episodes corresponding to different physical conditions of quartz growth. Concentrations of Ti have a strong positive correlation with CL brightness. K and Al concentrations show a weak relationship with CL brightness but they generally vary in unison. Fe concentrations do not appear to correlate with CL brightness or concentrations of other trace elements. TitaniQ temperatures range from 710 to 730°C in plutonic quartz, 625 to 750°C in porphyry quartz, and 650 to 730°C in barren quartz veins, overlapping with magmatic quartz. Biotite crackles and EDM vein temperatures are generally cooler than magmatic quartz and barren quartz veins, ranging from 660°C to less than 480°C, a temperature limited by our Ti detection limit. SEM-CL brightness boundaries do not necessarily match quartz grain boundaries. Careful examination of these boundaries in comparison with our existing trace element data, along with new electron backscatter diffraction (EBSD) mapping will help clarify the roles of diffusion, dissolution, and recrystallization in forming the CL textures. TitaniQ geothermometer results show that

  17. Noble Gases in Alpine Gold: U/Th-He Dating and Excesses of Radiogenic He and AR

    NASA Astrophysics Data System (ADS)

    Eugster, O.; Hofmann, B.; Krahenbuhl, U.; Neuenschwander, J.

    1992-07-01

    Gold precipitates in hydrothermal fluids along with other heavy elements, such as Ag and Pt. In order to explore the possibility of dating the formation of gold we determined the concentrations of U, Th, and their decay product ^4He, as well as the K and ^40Ar concentrations in vein-type gold and in placer gold samples. The gold-quartz veins at Brusson in the south-western alps were formed approximately 32 Ma ago during an episode of tectonic uplift (Diamond, 1990). Alpine material was deposited as sediment layers in the region of central Switzerland and placer gold is thus relatively abundant in the rivers of the Napf area. We washed placer gold from the river Grosse Fontanne in 1990 and 1991. Placer gold that had been collected from the river Kruempelgraben in 1933 and a sample of vein-type free gold grown on quartz rock from the Brusson area (Val d'Ayas) have been obtained from the Museum of Natural History in Bern. Table 1 gives the results. Most of the ^4He is released above 1050 degrees C, that is when gold melts, indicating that gold is extremely well retentive for He. From the ^4He concentration of (269 +- 20) x 10^-8 cm^3 STP/g, (0.4 +- 0.1) ppm U, and (0.9 +- 0.3) ppm Th for vein-type gold we calculate a U/Th-He age of (36 +- 8)Ma. This age agrees within errors with the proposed age of 32 Ma. The data given in Table 1 show that all placer gold samples contain excesses of radiogenic ^4He and ^40Ar relative to the concentrations expected from the U/Th and K decay, respectively, if we assume a formation age of 32 Ma. The quartz sample is depleted in ^4He but strongly enriched in radiogenic ^40Ar. The excess of ^40Ar(sub)rad is easier to explain than that of ^4He. Vein-type gold and placer gold contain quartz inclusions (Schmid, 1973). The high ^40Ar(sub)rad content of quartz (Table 1) indicates that the ^40Ar(sub)rad excess of gold originates from quartz inclusions. Excess ^4He in gold must be of radiogenic origin. Taking ^20Ne and ^36Ar as a measure for the

  18. Stable Isotopes (O, H, and S) in the Muteh Gold Deposit, Golpaygan Area, Iran

    SciTech Connect

    Abdollahi, M. J. Karimpour, M. H.; Kheradmand, A.; Zarasvandi, A. R.

    2009-06-15

    The Muteh gold district with nine gold deposits is located in the Sanandaj-Sirjan metamorphic zone. Gold mineralization occurs in a pre-Permian complex which mainly consists of green schists, meta-volcanics, and gneiss rocks. Shear zones are the host of gold mineralization. Gold paragenesis minerals include pyrite, chalcopyrite, pyrrhotite, and secondary minerals. Pyrites occur as pre-, syn-, and post-metamorphism minerals. To determine the source of the ore-bearing fluids, fifty samples were selected for petrographical and stable isotope studies. The mean values of 12.4 per mille , and -42 per mille for {delta}{sup 18}O and {delta}D isotopes, respectively, and a mean value of 7.75 per mille of calculated fractionation factors for {delta}{sup 18}O H{sub 2}O, from quartz veins indicate that metamorphic host rocks are the most important source for the fluids and gold mineralization. Three generations of pyrite can be distinguished showing a wide range of {delta}{sup 34}S. Gold mineralization is closely associated with intense hydrothermal alteration along the ductile shear zones. The characteristics of the gold mineralization in the study area are similar to those of orogenic gold deposits elsewhere.

  19. Electromagnetic, magnetic, and gravimetric surveys at the Bi'r Jarbuah gold prospect, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Miller, C.H.; Showail, A.A.; Bazzari, M.A.; Khoja, J.A.; Hajour, M.O.

    1990-01-01

    A detailed search for gold and associated minerals was begun in the Bi'r Jarbuah area in 1988. Crone electromagnetic (CEM), magnetic, and gravimetric surveys were run in the areas of greatest interest. Anomalous areas are most interesting in the southern part of the area where linear magnetic and gravity anomalies trend east-northeast and overlap in large part. They are most prominent at or near the south end of a diorite pluton where some quartz veins mined by the ancients also trend northeast. A second area, at the extreme southern end of the survey, contains a large CEM anomaly that coincides with northeast-trending magnetic and gravity anomalies. Although this second area is largely overlain by alluvium, a major quartz vein strikes to the northeast in the adjacent bedrock.

  20. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types

    USGS Publications Warehouse

    Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M.; Hagemann, S.G.; Robert, F.

    1998-01-01

    The so-called 'mesothermal' gold deposits are associated with reginally metamorphosed terranes of all ages. Ores were formed during compressional to transpressional deformation processes at convergent plate margins in accretionary and collisional orogens. In both types of orogen, hydrated marine sedimentary and volcanic rocks have been added to continental margins during tens to some 100 million years of collision. Subduction-related thermal events, episodically raising geothermal gradients within the hydrated accretionary sequences, initiate and drive long-distance hydrothermal fluid migration. The resulting gold-bearing quartz veins are emplaced over a unique depth range for hydrothermal ore deposits, with gold deposition from 15-20 km to the near surface environment. On the basis of this broad depth range of formation, the term 'mesothermal' is not applicable to this deposit types as a whole. Instead, the unique temporal and spatial association of this deposit type with orogeny means that the vein systems are best termed orogenic gold deposits. Most ores are post-orogenic with respect to to tectonism of their immediate host rocks, but are simultaneously syn-orogenic with respect to ongoing deep-crustal, subduction-related thermal processes and the prefix orogenic satisfies both these conditions. On the basis of their depth of formation, the orogenic deposits are best subdivided into epizonal (12 km) classes.

  1. Vein Problems Related to Varicose Veins

    MedlinePlus

    ... varicose veins include venous lakes, reticular veins, and hemorrhoids. Venous lakes are varicose veins that appear on ... flat blue veins often seen behind the knees. Hemorrhoids are varicose veins in and around the anus. ...

  2. Structural geology mapping using PALSAR data in the Bau gold mining district, Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Pour, Amin Beiranvand; Hashim, Mazlan

    2014-08-01

    The application of optical remote sensing data for geological mapping is difficult in the tropical environment. The persistent cloud coverage, dominated vegetation in the landscape and limited bedrock exposures are constraints imposed by the tropical climate. Structural geology investigations that are searching for epithermal or polymetallic vein-type ore deposits can be developed using Synthetic Aperture Radar (SAR) remote sensing data in tropical/sub-tropical regions. The Bau gold mining district in the State of Sarawak, East Malaysia, on the island of Borneo has been selected for this study. The Bau is a gold field similar to Carlin style gold deposits, but gold mineralization at Bau is much more structurally controlled. Geological analyses coupled with the Phased Array type L-band Synthetic Aperture Radar (PALSAR) remote sensing data were used to detect structural elements associated with gold mineralization. The PALSAR data were used to perform lithological-structural mapping of mineralized zones in the study area and surrounding terrain. Structural elements were detected along the SSW to NNE trend of the Tuban fault zone and Tai Parit fault that corresponds to the areas of occurrence of the gold mineralization in the Bau Limestone. Most of quartz-gold bearing veins occur in high-angle faults, fractures and joints within massive units of the Bau Limestone. The results show that four deformation events (D1-D4) in the structures of the Bau district and structurally controlled gold mineralization indicators, including faults, joints and fractures are detectable using PALSAR data at both regional and district scales. The approach used in this study can be more broadly applicable to provide preliminary information for exploration potentially interesting areas of epithermal or polymetallic vein-type mineralization using the PALSAR data in the tropical/sub-tropical regions.

  3. Gold distribution in As-deficient pyrite and telluride mineralogy of the Yangzhaiyu gold deposit, Xiaoqinling district, southern North China craton

    NASA Astrophysics Data System (ADS)

    Bi, Shi-Jian; Li, Jian-Wei; Zhou, Mei-Fu; Li, Zhan-Ke

    2011-12-01

    The Mesozoic Yangzhaiyu lode gold deposit is situated in the southern edge of the North China craton. Gold mineralization is hosted in Archean amphibolite facies metamorphic rocks, and consists mainly of auriferous quartz veins. Pyrite is the predominant sulfide mineral, with minor amounts of chalcopyrite, sphalerite, and galena. Based on morphology and paragenesis, there are three generations of pyrite, termed as first generation (G1), second generation (G2), and third generation (G3). They have distinct contents, occurrences, and distribution patterns of gold. The coarse-grained, euhedral G1 pyrite contains negligible to low levels of gold, whereas both invisible and visible gold are present in the fine- to medium-grained G2 pyrite that is characterized by abundance of microfractures and porosities, forming a foam-like texture. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) depth profiles indicate that invisible gold occurs either as solid solution or as nanoparticles of gold-bearing tellurides in the G2 pyrite. Visible gold is widespread and present as irregular grains and stringers of native gold mostly along grain boundaries or filling microfractures of pyrite, likely resulting from remobilization of invisible gold once locked in the G2 pyrite. The G3 pyrite, invariably intergrown with chalcopyrite, sphalerite, and galena, contains the highest levels of invisible gold. There is a positive correlation between Au, Ag, and Te, indicating that gold occurs as submicroscopic Au-bearing telluride inclusions in the host minerals. Whenever gold, either invisible or visible, is present, As is always below or only marginally higher than the detection limit of LA-ICP-MS. This indicates that As played an insignificant role in gold mineralization. Tellurides are widespread in the auriferous quartz veins, consisting mainly of petzite, calaverite, hessite, altaite, and tellurobismuthite. Native gold commonly occurs as intergrowths with tellurides

  4. Invisible gold distribution on pyrite and ore-forming fluid process of the Huangshan orogenic-type gold deposit of Zhejiang, SE China: implications from mineralogy, trace elements, impurity and fluid inclusion studies

    NASA Astrophysics Data System (ADS)

    Sundarrajan, Vijay Anand; Li, Zilong; Hu, Yizhou; Fu, Xuheng; Zhu, Yuhuo

    2016-07-01

    The Huangshan orogenic-type gold deposit in Zhejiang of SE China occurred in quartz-pyrite veins. It is hosted by phyllonite that underwent greenschist-facies metamorphism along a large Jiangshan-Shaoxing tectonic belt with a NE-SW direction. Trace elemental characteristics, ore-forming process and invisible gold on different forms of pyrite and quartz are studied. The Au associated pyrite can be classified into two categories; recrystallized pyrite and euhedral pyrite. The precipitation of invisible Au on pyrite is mainly derived by Co and Ni with AuHS2 - complex in the mineralizing fluids in different events. The XPS results revealed that valence states of Au3+ replaced 2Fe2+ in the pyrite and Au0 replaced Si4+ in the quartz structure. The electron paramagnetic resonance and trace elemental results suggested that the element pairs of Ge-Li-Al in quartz and Mn-Co-Ni in pyrite have distinct impurities as identified. A fluid inclusion study showed that the auriferous quartz is characterized by low-saline and CO2-rich fluids. Coexistence of the type I-type III inclusions and same range of homogenization temperature with different mode are evidences of immiscible fluid process. The temperature-pressure values of ca. 250 °C/1250 bar and ca. 220 °C/780 bar for gold precipitation have been calculated by intersection of coexisting fluids during the entrapment. The Huangshan orogenic-type gold deposit may be associated with the Wuyi-Yunkai orogeny during the early Paleozoic, including an upper-mid greenschist-facies metamorphism (450-420 Ma). All the features suggest that the Huangshan gold deposit is probably a product linking with the early Paleozoic orogeny in South China.

  5. Invisible gold distribution on pyrite and ore-forming fluid process of the Huangshan orogenic-type gold deposit of Zhejiang, SE China: implications from mineralogy, trace elements, impurity and fluid inclusion studies

    NASA Astrophysics Data System (ADS)

    Sundarrajan, Vijay Anand; Li, Zilong; Hu, Yizhou; Fu, Xuheng; Zhu, Yuhuo

    2017-04-01

    The Huangshan orogenic-type gold deposit in Zhejiang of SE China occurred in quartz-pyrite veins. It is hosted by phyllonite that underwent greenschist-facies metamorphism along a large Jiangshan-Shaoxing tectonic belt with a NE-SW direction. Trace elemental characteristics, ore-forming process and invisible gold on different forms of pyrite and quartz are studied. The Au associated pyrite can be classified into two categories; recrystallized pyrite and euhedral pyrite. The precipitation of invisible Au on pyrite is mainly derived by Co and Ni with AuHS2 - complex in the mineralizing fluids in different events. The XPS results revealed that valence states of Au3+ replaced 2Fe2+ in the pyrite and Au0 replaced Si4+ in the quartz structure. The electron paramagnetic resonance and trace elemental results suggested that the element pairs of Ge-Li-Al in quartz and Mn-Co-Ni in pyrite have distinct impurities as identified. A fluid inclusion study showed that the auriferous quartz is characterized by low-saline and CO2-rich fluids. Coexistence of the type I-type III inclusions and same range of homogenization temperature with different mode are evidences of immiscible fluid process. The temperature-pressure values of ca. 250 °C/1250 bar and ca. 220 °C/780 bar for gold precipitation have been calculated by intersection of coexisting fluids during the entrapment. The Huangshan orogenic-type gold deposit may be associated with the Wuyi-Yunkai orogeny during the early Paleozoic, including an upper-mid greenschist-facies metamorphism (450-420 Ma). All the features suggest that the Huangshan gold deposit is probably a product linking with the early Paleozoic orogeny in South China.

  6. Geology, mineralization, and geochronology of the Qianhe gold deposit, Xiong'ershan area, southern North China Craton

    NASA Astrophysics Data System (ADS)

    Tang, Ke-Fei; Li, Jian-Wei; Selby, David; Zhou, Mei-Fu; Bi, Shi-Jian; Deng, Xiao-Dong

    2013-08-01

    The Qianhe gold deposit in the Xiong'ershan area is located along the southern margin of the Archean-Paleoproterozoic North China Craton. The deposit consists of six orebodies that are hosted in Paleoproterozoic andesites to basaltic andesites and structurally controlled by roughly EW-trending faults. Individual orebodies comprise auriferous quartz veins and disseminated Au-bearing pyrite within hydrothermally altered rocks on both sides of, or close to, the veins. Ore-related hydrothermal alteration has produced various mixtures of K-feldspar, quartz, sericite, chlorite, epidote, carbonate, and sulfides. Pyrite is the most important ore mineral, associated with minor amounts of galena, sphalerite, and chalcopyrite. Other trace minerals include molybdenite, arsenopyrite, scheelite, rutile, xenotime, and parisite. Gold occurs mostly as native gold and electrum enclosed in pyrite or along microfractures of sulfides and quartz. Microthermometric measurements of primary inclusions in auriferous quartz suggest that gold and associated minerals were precipitated in the range of 160-305 °C from aqueous or carbonic-aqueous fluids with salinities of 6-22 wt% NaCl equiv. Samples of molybdenite coexisting with Au-bearing pyrite have Re-Os model ages of 134-135 Ma, whereas ore-related hydrothermal sericite separates yield 40Ar/39Ar plateau ages between 127 and 124 Ma. The Re-Os and 40Ar/39Ar ages are remarkably consistent with zircon U-Pb ages (134.5 ± 1.5 and 127.2 ± 1.4 Ma; 1 σ) of the biotite monzogranite from the Heyu-intrusive complex and granitic dikes in and close to the Qianhe gold mine, indicating a close temporal and thus possibly genetic relationship between gold mineralization and granitic magmatism in the area. Fluid inclusion waters extracted from auriferous quartz have δD values of -80 to -72 ‰, whereas the calculated δ 18OH2O values range from 3.1 to 3.8 ‰. The hydrogen and oxygen isotopes from this study and previous work indicate that ore fluids

  7. Orogenic-type copper-gold-arsenic-(bismuth) mineralization at Flatschach (Eastern Alps), Austria

    NASA Astrophysics Data System (ADS)

    Raith, Johann G.; Leitner, Thomas; Paar, Werner H.

    2015-10-01

    Structurally controlled Cu-Au mineralization in the historic Flatschach mining district (Styria, Austria) occurs in a NE-SW to NNE-WSW oriented vein system as multiple steep-dipping calcite-(dolomite)-quartz veins in amphibolite facies metamorphic rocks (banded gneisses/amphibolites, orthogneisses, metagranitoids) of the poly-metamorphosed Austroalpine Silvretta-Seckau nappe. Vein formation postdated ductile deformation events and Eoalpine (Late Cretaceous) peak metamorphism but predated Early to Middle Miocene sediment deposition in the Fohnsdorf pull-apart basin; coal-bearing sediments cover the metamorphic basement plus the mineralized veins at the northern edge of the basin. Three gold-bearing ore stages consist of a stage 1 primary hydrothermal (mesothermal?) ore assemblage dominated by chalcopyrite, pyrite and arsenopyrite. Associated minor minerals include alloclasite, enargite, bornite, sphalerite, galena, bismuth and matildite. Gold in this stage is spatially associated with chalcopyrite occurring as inclusions, along re-healed micro-fractures or along grain boundaries of chalcopyrite with pyrite or arsenopyrite. Sericite-carbonate alteration is developed around the veins. Stage 2 ore minerals formed by the replacement of stage 1 sulfides and include digenite, anilite, "blue-remaining covellite" (spionkopite, yarrowite), bismuth, and the rare copper arsenides domeykite and koutekite. Gold in stage 2 is angular to rounded in shape and occurs primarily in the carbonate (calcite, Fe-dolomite) gangue and less commonly together with digenite, domeykite/koutekite and bismuth. Stage 3 is a strongly oxidized assemblage that includes hematite, cuprite, and various secondary Cu- and Fe-hydroxides and -carbonates. It formed during supergene weathering. Stage 1 and 2 gold consists mostly of electrum (gold fineness 640-860; mean = 725; n = 46), and rare near pure gold (fineness 930-940; n = 6). Gold in stage 3 is Ag-rich electrum (fineness 350-490, n = 12), and has a

  8. Mineral resource of the month: gold

    USGS Publications Warehouse

    George, Micheal W.

    2009-01-01

    The article presents information on the valuable mineral called gold. It states that early civilizations valued gold because of its scarcity, durability and characteristics yellow color. By the late 20th century, gold was used as an industrial metal because of its unique physicochemical properties. The U.S. has several productive deposits of gold, including placer, gold-quartz lode, epithermal and Carlin-type gold deposits.

  9. Iron isotope constraints on the mineralization processes of the Sandaowanzi telluride gold deposit, NE China

    NASA Astrophysics Data System (ADS)

    Li, Xingxing; Liu, Junlai; Lu, Di; Ren, Shunli; Liu, Zhengyang

    2016-04-01

    Iron isotopes have been widely applied to interpret the fluid evolution, supergene alteration and the metallogenic material sources of the hydrothermal deposit. It may also have significant potentials on the research of the deposit. The Sandaowanzi telluride gold deposit, located in the Great Hinggan Range metallogenic Belt in NE China, is a large epithermal gold deposit of low-sulphidation type. It has a total reserve of ≥25t of Au and an average of 15 g/t. Gold-bearing quartz veins or gold lodes strike to the NW and dip 50-80°northeastward. Ore bodies, including low-grade ores along margins and high-grade ores in the central parts, principally occur in quartz veins. More than the 95 percent Au budgets are hosted in gold-silver tellurides. A six-stage paragenetic sequence of mineralization is revealed according to the compositions and microstructures of the mineral assemblages. Although sulfide minerals in the bonanza quartz veins are rare, pyrite are widespread in quartz veins and altered host rocks. Meanwhile there are always chalcopyrite veins within bonanza quartz veins. Pyrite Fe isotope compositions from different levels (from +50m to +210m) of the main ore body of the Sandaowanzi gold ore deposit are investigated. There is an overall variation in δ57Fe values from -0.09 to +0.99 (av. 0.33). Among them, twenty three samples from different mining levels give positiveδ57Fe values, with the maximum positive value at the economic bonanza ores (level +130m). Four samples, however, possess negative values, one at level 170m, one at level 130m, and two at level 50m, respectively. The two negative values from the levels 170m and 130m are near the cores of the high grade ore body. The two negative values from the level 50m occur at one end of the lode ore body. The above data set shows that the δ57Fe values are not homogeneous at different levels of the ore body. On the other hand, a general trend for the positive values is that the highest δ57Fe value is

  10. Gold remobilisation and formation of high grade ore shoots driven by dissolution-reprecipitation replacement and Ni substitution into auriferous arsenopyrite

    NASA Astrophysics Data System (ADS)

    Fougerouse, Denis; Micklethwaite, Steven; Tomkins, Andrew G.; Mei, Yuan; Kilburn, Matt; Guagliardo, Paul; Fisher, Louise A.; Halfpenny, Angela; Gee, Mary; Paterson, David; Howard, Daryl L.

    2016-04-01

    Both gold-rich sulphides and ultra-high grade native gold oreshoots are common but poorly understood phenomenon in orogenic-type mineral systems, partly because fluids in these systems are considered to have relatively low gold solubilities and are unlikely to generate high gold concentrations. The world-class Obuasi gold deposit, Ghana, has gold-rich arsenopyrite spatially associated with quartz veins, which have extremely high, localised concentrations of native gold, contained in microcrack networks within the quartz veins where they are folded. Here, we examine selected samples from Obuasi using a novel combination of quantitative electron backscatter diffraction analysis, ion microprobe imaging, synchrotron XFM mapping and geochemical modelling to investigate the origin of the unusually high gold concentrations. The auriferous arsenopyrites are shown to have undergone partial replacement (∼15%) by Au-poor, nickeliferous arsenopyrite, during localised crystal-plastic deformation, intragranular microfracture and metamorphism (340-460 °C, 2 kbars). Our results show the dominant replacement mechanism was pseudomorphic dissolution-reprecipitation, driven by small volumes of an infiltrating fluid that had relatively low ƒS2 and carried aqueous NiCl2. We find that arsenopyrite replacement produced strong chemical gradients at crystal-fluid interfaces due to an increase in ƒS2 during reaction, which enabled efficient removal of gold to the fluid phase and development of anomalously gold-rich fluid (potentially 10 ppm or more depending on sulphur concentration). This process was facilitated by precipitation of ankerite, which removed CO2 from the fluid, increasing the relative proportion of sulphur for gold complexation and inhibited additional quartz precipitation. Gold re-precipitation occurred over distances of 10 μm to several tens of metres and was likely a result of sulphur activity reduction through precipitation of pyrite and other sulphides. We suggest

  11. Geology of the Ishmas gold district, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Doebrich, Jeff L.; White, Willis M.

    1991-01-01

    The Ishmas gold district was mapped at 1:25,000 scale to place auriferous mineralization into geologic perspective, to assist in creating an ore-deposit model, and to aid in devising a strategy for subsequent exploration elsewhere in the Jabal Ishmas-Wadi Tathlith gold belt. The precratonic evolution of the district began with the deposition of a tholeiitic mafic volcanic and volcaniclastic sequence that was intruded by diabase and gabbro. Basaltic to rhyodacitic volcanism following a calc-alkaline evolutionary trend ensued. Subsequent deposition of a thick wacke and sandstone unit represented the final phase in the volcano sedimentary accumulation. The emplacement of a large lopolithic layered-gabbro complex marked the end of the precratonic evolutionary cycle. The district coincides with the boundary of two allochthonous terranes. The collisional Nabitah orogeny represents the suturing of the two terranes. The effects of this event are manifested by numerous north-trending, steeply dipping faults, shear zones, and mylonite belts, as well as diapiric serpentinite. During the waning stages of the orogeny, auriferous quartz pods were precipitated in dilatant structures within the north-trending shear zones by deep-seated circulating fluids. The emplacement of a tonalite stock was closely followed by the formation of N. 20°-35° W. -trending faults. These faults influenced the emplacement of dacite porphyry stocks and associated auriferous quartz veins. The auriferous veins are massive, tabular open-fracture fillings that are spatially, temporally, and genetically related to the dacite porphyry. The emplacement of a quartz monzodiorite stock was responsible for additional auriferous quartz vein mineralization that is almost exclusively hosted by the intrusion. A nearly random orientation of the veins indicates that no regional structure influenced their formation. The formation of a series of N. 60°-80° W -trending faults represents the final episode in the

  12. Mineralogy, mineral chemistry, and paragenesis of gold, silver, and base-metal ores of the North Amethyst vein system, San Juan Mountains, Mineral County, Colorado

    USGS Publications Warehouse

    Foley, Nora K.; Caddey, Stanton W.; Byington, Craig B.; Vardiman, David M.

    1993-01-01

    Mineralogic, lead-isotopic, and fluid-inclusion characteristics of the younger association are similar to those of ores of the southern and central parts of the Creede mining district. In contrast, the gold and manganese-silicate assemblages of the older association are rare to absent in the southern and central parts of the district. The local and early occurrence of the manganese and gold assemblages may indicate that they formed in a small hydrothermal cell that predated the extensive hydrothermal system from which ores of the central and southern parts of the Creede district are proposed to have been deposited (Bethke, 1988). If similar early-stage cells were present in the southern and central parts of the district, they may have been replaced or overprinted by later assemblages, and they may remain to be discovered. In the latter case, mineral assemblages that formed at early stages in the paragenesis hold the most promise for gold exploration.

  13. Microstructures of shocked quartz

    SciTech Connect

    Gratz, A.J.; Nellis, W.J.

    1991-12-01

    Shock recovery experiments show three phases in shocked single-crystal quartz: melt-glass in a thin network connecting quartz crystallites containing transformation lamellae of diapletic glass. Both melting and solid-state amorphization occur, but in separate regions of the sample. These results are consistent with real-time measurements and suggest that the high-pressure of shocked quartz is six-coordinated glass. Stishovite probably is not synthesized in more than trace amounts along the Hugoniot.

  14. Structural and alteration controls on gold mineralization the of the amphibolite facies Detour Lake Deposit, Canada

    NASA Astrophysics Data System (ADS)

    Dubosq, Renelle; Schneider, David

    2016-04-01

    The 15M oz Detour Lake deposit is a Neoarchean orogenic gold ore body located in the northern most region of the Abitibi district within the Superior Province. The mine is an open pit design in the high strain zone of the Sunday Lake Deformation Zone (SLDZ). The ductile-brittle SLDZ parallels the broadly E-W Abitibi greenstone belt and the deposit is situated in a dilation zone between volcanoclastic rocks of the Caopatina Assemblage and Lower Detour Lake Formation, consisting of ultramafic talc-chlorite-sericite schist. The Upper Detour Lake Formation consists of pillowed and massive flows and hyloclastic units crosscut by minor felsic to intermediate dykes. All of the formations are sub-vertical, north-dipping units with stretching lineations indicating dip-slip motion. The Detour deposit differs from other classic ore deposits in the dominantly greenschist facies Abitibi Subprovince by possessing an amphibolite facies metamorphic assemblage of actinolite-biotite-plagioclase-almandine. Consequently, the typical indicator minerals used to identify alteration and mineralization, such as secondary biotite, may not be useful. Petrological and geochemical analyses have revealed at least four populations of biotite: 1) large euhedral crystals located within quartz-carbonate veins, 2) small, euhedral zoned crystals present as alteration haloes, 3) very small, anhedral to subhedral indistinct crystal present in mafic volcanic host rock, and 4) large euhedral crystals defining the main metamorphic foliation in the metasediments. Extensive examination of mineral assemblages, alteration products, and vein structure in rock core across barren and mineralized zones has documented over a dozen vein types which can be grouped into two main categories: 1) sulfidized quartz-carbonate veins associated with biotite alteration and 2) late carbonate veins. Gold grades do not prove to be dependent on vein type but rather on the host rock composition: the highest ore grades are present

  15. Constraints of mineralogical characterization of gold ore: Implication for genesis, controls and evolution of gold from Kundarkocha gold deposit, eastern India

    NASA Astrophysics Data System (ADS)

    Sahoo, P. R.; Venkatesh, A. S.

    2015-01-01

    Gold mineralization in Kundarkocha gold deposit occurs in the eastern Indian Craton that is hosted by sheared quartz-carbonate-sulfide veins emplaced within the graphitic schist, carbonaceous phyllite and talc-chlorite-serpentine schist belongs to Gorumahisani-Badampahar schist belt of Iron Ore Group. Gold mineralization exhibits both lithological and structural controls in the study area, albeit the stratigraphic control is more ubiquitously observed. Detailed mineralogical characterization coupled with electron probe microanalysis of the sulfide phases reveal the occurrences of gold in three distinct forms (i) as lattice-bound form within sulfides especially enriched in arsenopyrite, loellingite, pyrite, pyrrhotite and chalcopyrite in decreasing order of abundance; (ii) as micro inclusions or nano-scale gold inclusions within pyrite and arsenopyrite especially along the growth zones and micro-fractures as substrates and (iii) as free milling nugget gold grains either along the grain boundaries of sulfides or within the host rocks. Three generations of pyrite (Py-I, Py-II and Py-III) and arsenopyrite (Asp-I, Asp-II, Asp-III) have been identified based on textural, morphological characteristics and mineral chemistry. The lattice-bound gold content in pyrite and arsenopyrite varies from 600 to 2700 ppm and 900 to 3600 ppm respectively and increase in concentration of such refractory gold is seen in the order of chalcopyrite > pyrrhotite > pyrite > loellingite/arsenopyrite. The evolutionary stages of different forms of gold include remobilization of the lattice-bound grains in pyrite and arsenopyrite (Py-I and Asp-I) and re-concentration along the zoned-pyrite and arsenopyrite (Py-II and Asp-II) and ultimately as native gold/nuggets surrounding the sulfides as well as within the main mineralized zone. Lattice-bound gold distribution could have resulted due to metamorphic devolatilization reactions which are further aided by the influx of hydrothermal fluids. These

  16. Geochemical constraints on the genesis of the Scheelite dome intrusion-related gold deposit, Tombstone gold belt, Yukon, Canada

    USGS Publications Warehouse

    Mair, J.L.; Goldfarb, R.J.; Johnson, C.A.; Hart, C.J.R.; Marsh, E.E.

    2006-01-01

    The Scheelite dome intrusion-related gold deposit, western Selwyn basin, Yukon, is hosted in hornfelsed metasedimentary strata that lie adjacent to the exposed apices of a monzogranite to quartz monzonite plutonic complex of the mid-Cretaceous Tombstone-Tungsten magmatic belt, Tintina gold province, Alaska and Yukon. A variety of mineralization styles occur throughout a 10- ?? 3-km east-trending corridor and include reduced Au- and W-rich skarns, Au, W- and Ag-Pb-Zn-Sb-rich quartz tension-vein arrays, and multiphase fault veins and isolated zones of Au-rich sericite-carbonate altered rock. Integrated U-Pb SHRIMP data for magmatic zircon and Ar-Ar data for magmatic and hydrotbermal biotite indicate that gold mineralization occurred within 1 to 2 m.y. of magma emplacement. Fluid inclusion, oxygen isotope, and arsenopyrite geothermometry data indicate that hydrothermal minerals formed at depths of 6 to 9 km over a temperature range from 550??C. High-temperature Au-rich skarns formed at >400??C, whereas vein-hosted mineralization formed at 280?? to 380??C. In skarns, Au is strongly associated with enrichments of Bi, Te, W, and As, whereas a variety of Au-rich veins occur, with Asrich (type 1), and Te- and W-rich (type 2) end members. Silver-Pb-Zn-Sb veins are typically Au poor and represent the latest and lowest temperature phase in the hydrothermal paragenesis. The fluid inclusion data indicate that all mineralization styles were formed from low-salinity (???4 wt % NaCl equiv) aqueous-carbonic fluids, consistent with the composition of fluid inclusions within infilled miarolitic cavities in the intrusive rocks. However, the nonaqueous fluid was predominantly CH4 in skarn, CO2 in Au-Te and Au-W veins, and a fluid with roughly equal amounts Of CO2, CH4, and N2 in Au-As and Ag-Pb-Zn-Sb veins. Oxygen isotope data are consistent with a mineralizing fluid of predominantly magmatic origin that was variably modified to more positive ??18O values during interaction with 18O

  17. Passive airborne EM and ground IP\\resistivity results over the Romero intermediate sulphidation epithermal gold deposits, Dominican Republic

    NASA Astrophysics Data System (ADS)

    Legault, Jean M.; Niemi, Jeremy; Brett, Jeremy S. Zhao, Shengkai; Han, Zihao; Plastow, Geoffrey C.

    2016-04-01

    The Romero gold-copper-zinc-silver deposits are located in the Province of San Juan, Dominican Republic, ~165 km west-north-west of Santo Domingo. Romero and Romero South orebodies contain stratabound gold mineralisation with copper, silver and zinc of intermediate sulphidation (IS), epithermal style. The gold mineralisation is associated with disseminated to semi-massive sulphides, sulphide veinlets and quartz-sulphide veins within quartz-pyrite, quartz-illite-pyrite and illite-chlorite-pyrite alteration. Ground direct current (DC) resistivity and induced polarisation (IP) supported by ground magnetics remain the preferred geophysical targeting tools for drill follow-up along with geologic mapping and geochemistry. However, Z-axis tipper electromagnetics (ZTEM) passive airborne electromagnetics (AEM) and magnetics have recently also been applied with success for reconnaissance mapping of deep alteration and fault structures regionally. The airborne ZTEM-magnetic surveys, supported by three-dimensional (3D) inversions, show good correlation with the ground IP\\resistivity surveys in the Romero and Romero South gold-copper-zinc-silver IS deposit area. The results have provided targets for ground follow-up and deep targeted drilling, and were successful in identifying a previously unknown deep (>500 m) continuity between the Romero and Romero South deposits.

  18. Fracture, fluid flow and paleostress at Sunrise Dam Gold Mine, W. Australia

    NASA Astrophysics Data System (ADS)

    Blenkinsop, Thomas; Sanderson, David; Nugus, Michael

    2017-04-01

    Some of the clearest examples of Interactions between fracture, fluid flow, pore fluid pressure and differential stress can be inferred from underground observations in mines. This study examines the inferred stress conditions and resulting fracture network that constitutes a stockwork type ore body at Sunrise Dam gold mine, Western Australia. Stockworks in mine workings are particularly instructive for such analyses, because the abundance of veins allows cross-cutting relationships to be observed, which are commonly hard to see in situations of lower fracture intensity or incomplete outcrop. Sunrise Dam has produced in excess of 8.5Moz of gold since 1989, with current Mineral Resources and Ore Reserves at 58.96Mt@2.41g/t Au (4.55Moz) and 21.45Mt@1.87g/t Au (1.29Moz), respectively. The stockwork examined is in the Astro ore body, and consists of three sets of extensional veins and one set of low-angle strike-slip shear veins. Cross-cutting relationships suggest broadly contemporaneous formation of all fracture sets, which are also related by a common quartz-carbonate mineralogy. The extensional veins intersect the shear veins along the direction of shear, a geometry that can be predicted for certain stress ratios. Combined with observations and paleostress inferences from other parts of the mine, the veining and gold mineralisation can be associated with a D4 strike-slip shearing event, which had a maximum compressive stress plunging gently NE. Fracture intensity varies by 50% on a scale of 10s of metres. The stockwork formed by repeated extensional and shear failure events, showing fluctuations in pore fluid pressure and stress conditions, which would have required fracture healing/sealing in order for the deformation to spread throughout the stockwork volume.

  19. Gangue mineral textures and fluid inclusion characteristics of the Santa Margarita Vein in the Guanajuato Mining District, Mexico

    NASA Astrophysics Data System (ADS)

    Moncada, Daniel; Bodnar, Robert

    2012-06-01

    Successful exploration for mineral deposits requires tools that the explorationist can use to distinguish between targets with high potential for mineralization and those with lower economic potential. In this study, we describe a technique based on gangue mineral textures and fluid inclusion characteristics that has been applied to identify an area of high potential for gold-silver mineralization in the epithermal Ag-Au deposits at Guanajuato, Mexico. The Guanajuato mining district in Mexico is one of the largest silver producing districts in the world with continuous mining activity for nearly 500 years. Previous work conducted on the Veta Madre vein system that is located in the central part of this district identified favorable areas for further exploration in the deepest levels that have been developed and explored. The resulting exploration program discovered one of the richest gold-silver veins ever found in the district. This newly discovered vein that runs parallel to the Veta Madre was named the Santa Margarita vein. Selected mineralized samples from this vein contain up to 249 g/t of Au and up to 2,280 g/t Ag. Fluid inclusions in these samples show homogenization temperatures that range from 184 to 300°C and salinities ranging from 0 to 5 wt.% NaCl. Barren samples show the same range in homogenization temperature, but salinities range only up to 3 wt.% NaCl. Evidence of boiling was observed in most of the samples based on fluid inclusions and/or quartz and calcite textures. Liquid-rich inclusions with trapped illite are closely associated with high silver grades. The presence of assemblages of vapor-rich-only fluid inclusions, indicative of intense boiling or "flashing", shows the best correlation with high gold grades.

  20. Gangue mineral textures and fluid inclusion characteristics of the Santa Margarita Vein in the Guanajuato Mining District, Mexico

    NASA Astrophysics Data System (ADS)

    Moncada, Daniel; Bodnar, Robert J.

    2012-06-01

    Successful exploration for mineral deposits requires tools that the explorationist can use to distinguish between targets with high potential for mineralization and those with lower economic potential. In this study, we describe a technique based on gangue mineral textures and fluid inclusion characteristics that has been applied to identify an area of high potential for gold-silver mineralization in the epithermal Ag-Au deposits at Guanajuato, Mexico. The Guanajuato mining district in Mexico is one of the largest silver producing districts in the world with continuous mining activity for nearly 500 years. Previous work conducted on the Veta Madre vein system that is located in the central part of this district identified favorable areas for further exploration in the deepest levels that have been developed and explored. The resulting exploration program discovered one of the richest gold-silver veins ever found in the district. This newly discovered vein that runs parallel to the Veta Madre was named the Santa Margarita vein. Selected mineralized samples from this vein contain up to 249 g/t of Au and up to 2,280 g/t Ag. Fluid inclusions in these samples show homogenization temperatures that range from 184 to 300°C and salinities ranging from 0 to 5 wt.% NaCl. Barren samples show the same range in homogenization temperature, but salinities range only up to 3 wt.% NaCl. Evidence of boiling was observed in most of the samples based on fluid inclusions and/or quartz and calcite textures. Liquid-rich inclusions with trapped illite are closely associated with high silver grades. The presence of assemblages of vapor-rich-only fluid inclusions, indicative of intense boiling or "flashing", shows the best correlation with high gold grades.

  1. Lebediny gold deposit, Central Aldan: Mineral parageneses, stages, and formation conditions

    NASA Astrophysics Data System (ADS)

    Dobrovol'skaya, M. G.; Razin, M. V.; Prokof'ev, V. Yu.

    2016-07-01

    The mineral parageneses and succession of their formation are considered for the first time for the Zverevsky, Orekhovy, and Vodonosny ore lodes of the Lebediny gold deposit and the Radostny prospect in the Central Aldan ore district, which are genetically related to the epoch of Mesozoic tectonomagmatic reactivation. The orebodies, represented by two morphological varieties—ribbonlike lodes and steeply dipping veins—are hosted in lower part of the Vendian-Cambrian dolomitic sequence, which is cut through by Mesozoic subalkaline intrusive bodies. The chemistry of fahlore and rare minerals, including native gold and bismuth, altaite, aikinite, tetradymite, and sulfosalts of lillianite series, has been studied. Native gold is related to the late hydrothermal process and occurs in skarn and in quartz-tremolite-sulfide and quartz-carbonate-sulfide veins. The data on stable sulfur (δ34S) isotopes of sulfides, oxygen (δ18O) and carbon (δ13C) isotopes of carbonates, as well as on fluid inclusions in various generations of tremolite and quartz, provide evidence for the heterogeneity of ore-bearing solutions, their relationships to magmatism, the depth of the source feeding each specific lode, and different sources of ore-forming hydrothermal solutions.

  2. Sclerotherapy of Varicose Veins and Spider Veins

    MedlinePlus

    ... Index A-Z Sclerotherapy of Varicose Veins and Spider Veins Sclerotherapy uses injections from a very fine, ... Sclerotherapy? What is Sclerotherapy of Varicose Veins and Spider Veins? Sclerotherapy is a minimally invasive treatment used ...

  3. Source of boron in the Palokas gold deposit, northern Finland: evidence from boron isotopes and major element composition of tourmaline

    NASA Astrophysics Data System (ADS)

    Ranta, Jukka-Pekka; Hanski, Eero; Cook, Nick; Lahaye, Yann

    2017-06-01

    The recently discovered Palokas gold deposit is part of the larger Rompas-Rajapalot gold-mineralized system located in the Paleoproterozoic Peräpohja Belt, northern Finland. Tourmaline is an important gangue mineral in the Palokas gold mineralization. It occurs as tourmalinite veins and as tourmaline crystals in sulfide-rich metasomatized gold-bearing rocks. In order to understand the origin of tourmaline in the gold-mineralized rocks, we have investigated the major element chemistry and boron isotope composition of tourmaline from three areas: (1) the Palokas gold mineralization, (2) a pegmatitic tourmaline granite, and (3) the evaporitic Petäjäskoski Formation. Based on textural evidence, tourmaline in gold mineralization is divided into two different types. Type 1 is located within the host rock and is cut by rock-forming anthophyllite crystals. Type 2 occurs in late veins and/or breccia zones consisting of approximately 80% tourmaline and 20% sulfides, commonly adjacent to quartz veins. All the studied tourmaline samples belong to the alkali-group tourmaline and can be classified as dravite and schorl. The δ11B values of the three localities lie in the same range, from 0 to -4‰. Tourmaline from the Au mineralization and from the Petäjäskoski Formation has similar compositional trends. Mg is the major substituent for Al; inferred low Fe3+/Fe2+ ratios and Na values (<0.8 atoms per formula unit (apfu)) of all tourmaline samples suggest that they precipitated from reduced, low-salinity fluids. Based on the similar chemical and boron isotope composition and the Re-Os age of molybdenite related to the tourmaline-sulfide-quartz veins, we propose that the tourmaline-forming process is a result of a single magmatic-hydrothermal event related to the extensive granite magmatism at around 1.79-1.77 Ga. Tourmaline was crystallized throughout the hydrothermal process, which resulted in the paragenetic variation between type 1 and type 2. The close association of

  4. Source of boron in the Palokas gold deposit, northern Finland: evidence from boron isotopes and major element composition of tourmaline

    NASA Astrophysics Data System (ADS)

    Ranta, Jukka-Pekka; Hanski, Eero; Cook, Nick; Lahaye, Yann

    2016-11-01

    The recently discovered Palokas gold deposit is part of the larger Rompas-Rajapalot gold-mineralized system located in the Paleoproterozoic Peräpohja Belt, northern Finland. Tourmaline is an important gangue mineral in the Palokas gold mineralization. It occurs as tourmalinite veins and as tourmaline crystals in sulfide-rich metasomatized gold-bearing rocks. In order to understand the origin of tourmaline in the gold-mineralized rocks, we have investigated the major element chemistry and boron isotope composition of tourmaline from three areas: (1) the Palokas gold mineralization, (2) a pegmatitic tourmaline granite, and (3) the evaporitic Petäjäskoski Formation. Based on textural evidence, tourmaline in gold mineralization is divided into two different types. Type 1 is located within the host rock and is cut by rock-forming anthophyllite crystals. Type 2 occurs in late veins and/or breccia zones consisting of approximately 80% tourmaline and 20% sulfides, commonly adjacent to quartz veins. All the studied tourmaline samples belong to the alkali-group tourmaline and can be classified as dravite and schorl. The δ11B values of the three localities lie in the same range, from 0 to -4‰. Tourmaline from the Au mineralization and from the Petäjäskoski Formation has similar compositional trends. Mg is the major substituent for Al; inferred low Fe3+/Fe2+ ratios and Na values (<0.8 atoms per formula unit (apfu)) of all tourmaline samples suggest that they precipitated from reduced, low-salinity fluids. Based on the similar chemical and boron isotope composition and the Re-Os age of molybdenite related to the tourmaline-sulfide-quartz veins, we propose that the tourmaline-forming process is a result of a single magmatic-hydrothermal event related to the extensive granite magmatism at around 1.79-1.77 Ga. Tourmaline was crystallized throughout the hydrothermal process, which resulted in the paragenetic variation between type 1 and type 2. The close association of

  5. Geology and geochemistry of epithermal precious metal vein systems in the intra-oceanic arcs of Palau and Yap, western Pacific

    USGS Publications Warehouse

    Rytuba, J.J.; Miller, W.R.

    1990-01-01

    The Palau and Yap arcs are part of an intra-oceanic island-arc-trench system which separates the Pacific and Philippine plates in the western Pacific Ocean. The 350-km-long Palau arc consists of over 200 islands while the 400-km-long Yap arc located to the north has only four major islands exposed. Four of the largest islands in Palau are composed primarily of early Eocene to mid-Miocene volcanic rocks and the four islands comprising Yap contain only Miocene volcanic rocks. Basalt and basaltic andesites of the Babelthuap Formation are the oldest volcanic rocks in Palau and are characterized by high MgO, Ni and Cr and low TiO2 and have a boninitic affinity. They form the central and southeastern parts of Babelthuap Island. Oligocene arc tholeiite flows having an age of 34-35.5 Ma comprise most of the three smaller volcanic islands in Palau and the western part of Babelthuap. The youngest volcanic rocks are dacitic intrusions having an age of 22.7-23.2 Ma. The Yap arc is unusual in that metamorphic rocks up to amphibolite grade form most of the islands. These are underlain by a melange composed of igneous and volcanic clasts as well as clasts from a dismembered copper-gold skarn deposit. Miocene volcanic rocks consisting of flows and volcaniclastic deposits overlie the melange and metamorphic complex. An epithermal precious-metal vein system hosted by flows and flow breccias of the Babelthuap Formation occurs in an area 1.5 km by 1 km on the southeast side of Babelthuap Island. Over 50 veins and mineralized breccias ranging up to 2 m in width and having a strike length up to 500 m contain from trace to 13.0 ppm gold. The veins consist of quartz with varying amounts of sulfides and iron oxides after sulfides and the mineralized breccias consist of brecciated country rock cemented by quartz and iron oxides after sulfides. The veins and mineralized breccias generally dip within 15?? of vertical and have two preferred orientations, north-northwest and north

  6. Simulation of quartz resonators

    NASA Astrophysics Data System (ADS)

    Weinmann, M.; Radius, R.; Mohr, R.

    Quartz resonators are suitable as novel sensor elements in the field of profilometry and three dimensional measurement techniques. This application requires a tailoring of the oscillator circuit which is performed by a network analysis program. The equivalent network parameters are computed by a finite element analysis. The mechanical loading of the quartz is modeled by a viscous damping approach.

  7. Trace Analysis in Quartz.

    DTIC Science & Technology

    1984-03-01

    impurities in quartz at the parts per million range. The technique selected was atomic absorption and a procedure was devised for determining lithium, sodium ...the followirc: quartz, impurity, silica, lithium, sodium , potassium, aluminum, fluoride, fluoride glass, analysis, determination and amorphous. A... Niobate , Indium, Phosphorous and Indium Phosphide. Almost all of the samples were analyzed using the analytical procedure developed in this laboratory

  8. Mineralogy and geochemistry of the IRG Misky gold deposit, southern Peru

    NASA Astrophysics Data System (ADS)

    Palacios, Silvia; Alfonso, Pura; Proenza, Joaquín Antonio

    2014-05-01

    The Misky gold deposit is one of the several Intrusion Related gold deposits that occur in the ocoña river basin, southern Peru. They are hosted in magmatic rocks from the Nazca-Palpa-Ocoña belt, from the Coastal Batholith. In this study, a petrologic and geochemical characterisation of the host rocks of the Misky deposit is presented to contribute to prove the deposit model. XRD, electron microscopy and electron microprobe analyses were used to characterize the ore and major and trace elements of host rocks were analysed by ICP-Ms. The Misky deposit, Cretaceous in age, consists mainly in quartz veins of lenticular morphology that can be more than 3 Km long and less than 1 m wide. At least two generations of magmatic host rocks are differentiated by the field relationships. The older generation is composed of plutonic rocks of the Incahuasi Unit constituted by diorites, quartz-monzonites, quartz-diorites and granodiorites in minor amounts. These rocks are crosscut by dykes of gabbro, tonalite and quartz diorite porphyries. Parallel to these dykes there is a NEE-SWW fault system. Gold veins are emplaced filling these fractures. Gabbro is rich in hornblende and present titanite reaction rims around ilmenite, which suggests relatively reduced conditions and high H2O contents. Hydrothermal alteration, associated with the gold mineralization, produced sericitization, chloritization and silicification in the surroundings of the veins. The Misky deposit has a Au-As-Pb-Zn-Cu association. Gold appears mainly in veins disseminationed in the host rocks near the contact with these veins. Gold occurs as enclosed grains within pyrite, or as electrum located in fractures of pyrite. In addition other sulphides as sphalerite, galena and chalcopyrite are abundant. Arsenopyrite, sulphosalts, bismuthinite and native bismuth also occur in lesser amounts. Calcocite, malachite and hematite are supergene minerals. The gold content can reach up to 130 pp Au and up to 0.6 wt% Cu. Major

  9. Complex fragmentation and silicification structures in fault zones: quartz mineralization and repeated fragmentation along the Fountain Range Fault (Mt. Isa Inlier, Australia)

    NASA Astrophysics Data System (ADS)

    Seybold, Lina; Blenkinsop, Tom; Heuss, Soraya; Ord, Alison; Kruhl, Jörn H.

    2015-04-01

    In large-scale fault zones fracture networks are commonly generated by high volumes of pressurized fluids, followed by quartz precipitation. In this way large amounts of quartz are formed as microcrystalline masses and as complex vein systems, with partly highly different textures, as a result of different formation processes. Based on field and microstructural data and the quantification of vein patterns, the spatial and temporal connection between fragmentation, quartz crystallization and fluid and material flow along the Fountain Range Fault at Fountain Springs was investigated. Dextral strike-slip led to up to 25 km horizontal displacement along the fault. Due to various fragmentation and quartz formation processes, a ca. 100 m high, 80 - 100 m wide and km-long quartz ridge with numerous vein systems and variable microfabrics was formed. Locally, lenses of highly altered metamorphic wall-rocks occur in the quartz zone. Where exposed, the contact to wall rocks is sharp. Millimetre- to decimetre-thick quartz veins penetrate the wall-rocks only within metre distance from the contact. Several clearly distinguishable fine-grained reddish, brownish to dark and pigment-rich quartz masses form up to 50 m wide and up to several 100 m long steep lenses that build the major part of the silicified fault zone. A chronology can be established. Some of these lenses are oriented slightly oblique to the general trend of the quartz zone, in agreement with the supposed dextral strike slip along the fault. Numerous generations of typically µm-cm thick quartz veins transect the microcrystalline quartz masses and, locally, form anisotropic networks. In the quartz masses, angular fragments often composed of quartz with, again, internal fragmentation structures, indicate earlier fracturing and silicification events. Within the veins, quartz forms geodes, locally filled with fine-grained reddish quartz and palisade structures with feathery textures and fluid-inclusion zoning

  10. Oxygen, hydrogen, and sulfur isotope studies in the Juneau gold belt, southeastern Alaska: constraints on the origin of hydrothermal fluids

    USGS Publications Warehouse

    Goldfarb, R.J.; Newberry, R.J.; Pickthorn, W.J.; Gent, C.A.

    1991-01-01

    The ??18O values of gold-bearing quartz from the Juneau gold belt range from 15.2 to 20.8???, indicating that ore fluid values ranged from 7.2 to 12.8??? at an estimated temperature of 300??C. Hydrothermal micas from many of the deposits are characterized by ??D values of -75 to -53???, and ore fluids were calculated to have values of -35 to -15???. In contrast, extracted fluid inclusion waters have a broad range of ??D values, from -48 in relatively undeformed quartz to about -110??? for some of the more deformed quartz veins. This range of more than 60??? reflects various mixtures from inclusions containing isotopically heavy, primary ore fluids and those containing low-temperature, isotopically light meteoric waters that were trapped in late fractures during uplift of the veins to shallow crustal levels. These results indicate a deep crustal source for the ore fluids, most likely of metamorphic origin. The provinciality of ??34S data suggests a regional metamorphic fluid of approximately -6??? that acquired much of its sulfur from lithologies near sites of ore deposition. -from Authors

  11. Varicose veins

    PubMed Central

    2011-01-01

    Introduction Varicose veins are caused by poorly functioning valves in the veins, and decreased elasticity of the vein wall, allowing pooling of blood within the veins, and their subsequent enlargement. Varicose veins affect up to 40% of adults, and are more common in obese people, and in women who have had more than two pregnancies. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical question: What are the effects of treatments in adults with varicose veins? We searched: Medline, Embase, The Cochrane Library and other important databases up to January 2010 (Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 39 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: compression stockings, endovenous laser, injection sclerotherapy, radiofrequency ablation, self-help (advice, avoidance of tight clothing, diet, elevation of legs, exercise), and surgery (stripping, avulsion, powered phlebectomy). PMID:21477400

  12. Tectonostratigraphic setting of the Mother Lode gold belt, south of Placerville, California

    SciTech Connect

    Landefeld, L.A.

    1985-01-01

    Gold-quartz veins and alteration of the Mother Lode gold belt south of Placerville are hosted by the Melones fault zone (MFZ) in the south and by its splays in the north. The MFZ changes from south to north in the following manner: ductilely deformed serpentinite-hosted tectonic melange to a broad zone of ductile shearing to a 1 km wide mylonite-phyllonite zone. These strata have common protoliths but differ in metamorphic rank, structural style, gold deposit morphology and production, which can be explained by: 1) greatest uplift of the Sierran block in the south during Basin and Range tilting, 2) irregular shape of the Jura-Triassic convergent margin of western North America coupled with oblique convergence, 3) vertical and lateral variations in age, metamorphic rank and structural style typical of an active arc and basin which is forming while closing, 4) composition and volume of diagenetic, burial and later dynamic metamorphic fluids, 5) rheology and composition of different lithologies. The Mother Lode vein system formed as the MFZ locked up. The ore-forming fluids rose km's up the MFZ to form the vein system during repeated late-stage brittle faulting. As accretion ground to a halt in the MFZ, the accretion shifted west to emplace the Franciscan complex.

  13. Geochemical and mineralogical characterization of the abandoned Valzinco (lead-zinc) and Mitchell (gold) mine sites prior to reclamation, Spotsylvania County, Virginia

    USGS Publications Warehouse

    Hammarstrom, Jane M.; Johnson, Adam N.; Seal, Robert R., II; Meier, Allen L.; Briggs, Paul L.; Piatak, Nadine M.

    2006-01-01

    The Virginia gold-pyrite belt, part of the central Virginia volcanic-plutonic belt, hosts numerous abandoned metal mines. The belt extends from about 50 km south of Washington, D.C., for approximately 175 km to the southwest into central Virginia. The rocks that comprise the belt include metamorphosed volcanic and clastic (noncarbonate) sedimentary rocks that were originally deposited during the Ordovician). Deposits that were mined can be classified into three broad categories: 1. volcanic-associated massive sulfide deposits, 2. low-sulfide quartz-gold vein deposits, 3. gold placer deposits, which result from weathering of the vein deposits The massive sulfide deposits were historically mined for iron and pyrite (sulfur), zinc, lead, and copper but also yielded byproduct gold and silver. The most intensely mineralized and mined section of the belt is southwest of Fredericksburg, in the Mineral district of Louisa and Spotsylvania counties. The Valzinco Piatak lead-zinc mine and the Mitchell gold prospect are abandoned sites in Spotsylvania County. As a result of environmental impacts associated with historic mining, both sites were prioritized for reclamation under the Virginia Orphaned Land Program administered by the Virginia Department of Mines, Minerals, and Energy (VDMME). This report summarizes geochemical data for all solid sample media, along with mineralogical data, and results of weathering experiments on Valzinco tailings and field experiments on sediment accumulation in Knights Branch. These data provide a framework for evaluating water-rock interactionsand geoenvironmental signatures of long-abandoned mines developed in massive sulfide deposits and low-sulfide gold-quartz vein deposits in the humid temperate ecosystem domain in the eastern United States.

  14. QUARTZ FIBER ELECTROSCOPES

    DOEpatents

    Henderson, R.P.

    1957-09-17

    An instrument carried unobtrusively about the person such as in a finger ring to indicate when that person has been exposed to an unusual radiation hazard is described. A metallized quartz fiber is electrically charged to indicate a full scale reading on an etched glass background. The quartz fiber and the scale may be viewed through a magnifying lens for ease of reading. Incident radiation will ionize gaseous particles in the sealed structure thereby allowing the charge to leak off the quartz fiber with its resulting movement across the scale proportionally indicating the radiation exposure.

  15. Quartz Crystal Clocks

    NASA Technical Reports Server (NTRS)

    1976-01-01

    General Time Corporation, under contract to NASA, developed a quartz crystal for obtaining a stable time base from which all mission times could be derived. This later became basis of consumer clocks and watches with accuracy of one minute a year, watches useful in timing sports events as well as general use. When quartz is electrically stimulated it can vibrate millions of times a second. Since timepieces use a vibrating body to keep up time, incredibly fast vibration of a quartz crystal--up to 4,194,304 beats a second opened a new horizon in accuracy.

  16. Varicose Veins and Spider Veins

    MedlinePlus

    ... are sold in medical supply and drugstores. Prescription-strength gradient compression hose, which offer the greatest amount ... the face. Exercise regularly to improve your leg strength, circulation, and vein strength. Focus on exercises that ...

  17. The Suzdal gold-sulfide deposit in the black shale of Eastern Kazakhstan

    NASA Astrophysics Data System (ADS)

    Kovalev, K. R.; Kalinin, Yu. A.; Polynov, V. I.; Kydyrbekov, E. L.; Borisenko, A. S.; Naumov, E. A.; Netesov, M. I.; Klimenko, A. G.; Kolesnikova, M. K.

    2012-07-01

    The Suzdal gold-sulfide deposit is situated in the northwestern part of the West Kalba gold belt in Eastern Kazakhstan and belongs to the genetic type of stringer-disseminated mineralized zones hosted in the Lower Carboniferous black-shale volcanic-carbonate-terrigenous sequences. Mineralization is controlled by the NE-trending Suzdal Fault. In the north, the deposit borders on the Early Triassic Semeytau volcanic-plutonic structure. Mineralization is superposed on the Late Paleozoic complex of metadolerite and quartz porphyry dikes. Ore deposition was a long-term process comprising four stages. The first stage was related to deposition of slightly auriferous pyrite syngenetic to host rocks. The second stage is characterized by formation of the first productive (with invisible gold) fine-acicular arsenopyrite mineralization accompanied by sericitization and localized in the tectonic zone. The stockwork ore with pocket-disseminated base-metal mineralization and free microscopic gold of the third stage is hosted in silicified rocks. The ore formation has been completed by quartz-stibnite veins superposed on all preceding types of mineralization. According to Ar/Ar dating of sericite, a chronological gap between the second and the third stages is estimated at 33 Ma. The deposit is an example of polygenetic and multistage mineralization.

  18. Map showing mineral resource assessment for vein and replacement deposits of gold, silver, copper, lead, zinc, manganese, and tungsten in the Butte 1 degree by 2 degrees Quadrangle, Montana

    USGS Publications Warehouse

    Elliott, J.E.; Wallace, C.A.; Lee, G.K.; Antweiler, J.C.; Lidke, D.J.; Rowan, L.C.; Hanna, W.F.; Trautwein, C.M.; Dwyer, J.L.; Moll, S.H.

    1992-01-01

    The purpose of this report is to assess the potential for undiscovered vein and replacement deposits of gold, silver, copper, lead, zinc, manganese, and tungsten in the Butte 1 °X2° quadrangle. This quadrangle, in west-central Montana, is one of the most mineralized and productive regions in the United States. Its mining districts, including the world famous Butte or Summit Valley district, have produced a variety of metallic and nonmetallic mineral commodities valued at more than $6.4 billion. Because of its importance as a mineral producing region, the Butte quadrangle was selected for study by the U.S. Geological Survey under the Conterminous United States Mineral Assessment Program (CUSMAP). Under this program, new data on geology, geochemistry, geophysics, geochronology, mineral resources, and remote sensing were collected and synthesized. The field and laboratory studies were also supported by funding from the Geologic Framework and Synthesis Program and the Wilderness Program. The methods used in resource assessment include a compilation of all data into data sets, the development of a descriptive model for vein and replacement deposits in the quadrangle, and the analysis of data using techniques provided by the Geographic Information System (GIS). This map is one of a number of reports and maps on the Butte 1 °X2° quadrangle. Other publications resulting from this study include U.S. Geological Survey Miscellaneous Investigations Series Maps 1-2050-A (Rowan and Segal, in press) and I-2050-B (Purdy and Rowan, in press); Miscellaneous Field Studies Map MF-1925 (Wallace, 1987); and Open-File Reports 86-292 (Wallace and others, 1986) and 86--0632 (Elliott and others, 1986). Reports on mineral resource assessment for several other types of deposits in the Butte quadrangle are in preparation.

  19. The geomicrobiology of gold.

    PubMed

    Reith, Frank; Lengke, Maggy F; Falconer, Donna; Craw, David; Southam, Gordon

    2007-11-01

    , Cupriavidus (Ralstonia) metallidurans, Plectonema boryanum); (2) gaining metabolic energy by utilizing gold-complexing ligands (for example, thiosulphate by A. ferrooxidans) or (3) using gold as metal centre in enzymes (Micrococcus luteus). C. metallidurans containing biofilms were detected on gold grains from two Australian sites, indicating that gold bioaccumulation may lead to gold biomineralization by forming secondary 'bacterioform' gold. Formation of secondary octahedral gold crystals from gold(III) chloride solution, was promoted by a cyanobacterium (P. boryanum) via an amorphous gold(I) sulphide intermediate. 'Bacterioform' gold and secondary gold crystals are common in quartz pebble conglomerates (QPC), where they are often associated with bituminous organic matter possibly derived from cyanobacteria. This may suggest that cyanobacteria have played a role in the formation of the Witwatersrand QPC, the world's largest gold deposit.

  20. Vacuum electrolysis of quartz

    DOEpatents

    King, James Claude

    1976-01-13

    The disclosure is directed to a method for processing quartz used in fabricating crystal resonators such that transient frequency change of resonators exposed to pulse irradiation is virtually eliminated. The method involves heating the crystal quartz in a hydrogen-free atmosphere while simultaneously applying an electric field in the Z-axis direction of the crystal. The electric field is maintained during the cool-down phase of the process.

  1. Mineralisation footprints and regional timing of the world-class Siguiri orogenic gold district (Guinea, West Africa)

    NASA Astrophysics Data System (ADS)

    Lebrun, Erwann; Thébaud, Nicolas; Miller, John; Roberts, Malcolm; Evans, Noreen

    2016-10-01

    Siguiri is a world-class orogenic gold district hosted in the weakly metamorphosed Upper Birimian to Lower Tarkwa Group sedimentary rocks of the Siguiri Basin (Guinea). The district is characterised by a protracted deformation history associated with four main deformation events: D1S is a N-S compression; D2S is an E-W compression progressively evolving into an early-D3S transpression and then into a late-D3S NNW-SSE transtension and D4S is a NE-SW compression. Field observations, petrography and geochemistry at three key deposits of the Siguiri district (Bidini, Sintroko PB1 and Kosise) suggest a polyphase hydrothermal history that can be subdivided into four hydrothermal events. The first hydrothermal event was associated with the development of barren bedding-parallel and en-echelon V2S quartz-dominated-(pyrite) veins. The second hydrothermal event is characterised by the development of V3A pyrite-ankerite veins late during D3S. Laser ablation-ICP-MS data show that this vein set contains high gold contents of up to 43.3 ppm, in substitution in pyrite crystal lattice, representing a minor first gold mineralisation event. The third and most prominently developed hydrothermal event is late D3S and represents the second and principal gold mineralisation event. This mineralisation event led to two distinct mineralisation textures. The first texture is best exposed in the Kosise deposit and is characterised by gold-bearing quartz-ankerite-arsenopyrite conjugate V3B veins. Although the bulk of the gold is hosted in native gold grains in V3B veins, LA-ICP-MS analyses show that gold also substitutes in the arsenopyrite crystal lattice (up to 55.5 ppm). The second mineralisation texture is best expressed in the Sanu Tinti deposit and consists of disseminated barren pyrite hosted in a polymict conglomerate. The second and third hydrothermal events are both structurally controlled by a series of early-D3S N-S, NE-SW, WNW-ESE and E-W sub-vertical incipient structures

  2. Mineralisation footprints and regional timing of the world-class Siguiri orogenic gold district (Guinea, West Africa)

    NASA Astrophysics Data System (ADS)

    Lebrun, Erwann; Thébaud, Nicolas; Miller, John; Roberts, Malcolm; Evans, Noreen

    2017-04-01

    Siguiri is a world-class orogenic gold district hosted in the weakly metamorphosed Upper Birimian to Lower Tarkwa Group sedimentary rocks of the Siguiri Basin (Guinea). The district is characterised by a protracted deformation history associated with four main deformation events: D1S is a N-S compression; D2S is an E-W compression progressively evolving into an early-D3S transpression and then into a late-D3S NNW-SSE transtension and D4S is a NE-SW compression. Field observations, petrography and geochemistry at three key deposits of the Siguiri district (Bidini, Sintroko PB1 and Kosise) suggest a polyphase hydrothermal history that can be subdivided into four hydrothermal events. The first hydrothermal event was associated with the development of barren bedding-parallel and en-echelon V2S quartz-dominated-(pyrite) veins. The second hydrothermal event is characterised by the development of V3A pyrite-ankerite veins late during D3S. Laser ablation-ICP-MS data show that this vein set contains high gold contents of up to 43.3 ppm, in substitution in pyrite crystal lattice, representing a minor first gold mineralisation event. The third and most prominently developed hydrothermal event is late D3S and represents the second and principal gold mineralisation event. This mineralisation event led to two distinct mineralisation textures. The first texture is best exposed in the Kosise deposit and is characterised by gold-bearing quartz-ankerite-arsenopyrite conjugate V3B veins. Although the bulk of the gold is hosted in native gold grains in V3B veins, LA-ICP-MS analyses show that gold also substitutes in the arsenopyrite crystal lattice (up to 55.5 ppm). The second mineralisation texture is best expressed in the Sanu Tinti deposit and consists of disseminated barren pyrite hosted in a polymict conglomerate. The second and third hydrothermal events are both structurally controlled by a series of early-D3S N-S, NE-SW, WNW-ESE and E-W sub-vertical incipient structures

  3. Geology of the Mother Load gold belt and adjacent foothills metamorphic belt, California

    SciTech Connect

    Landefeld, L.A.

    1985-01-01

    The late Jurassic Mother Lode gold-quartz vein system south of the Consumnes River is hosted by portions of 1) a submarine volcanic arc and overlying epiclastic basin, and 2) the ultramafic-mafic plutonic subarc basement. During accretion to the Paleozoic shelf of western North America, the subarc basement tectonically intruded the disrupted arc basin, incorporating hanging wall lithologies to produce the tectonic melange of the Melones fault zone (MFZ). Late orogenic dikes intrude the margins of the MFZ and adjacent wall rocks. These dikes were altered during the gold-quartz vein formation. The proximal to medial volcanic strata are, from oldest to youngest: 1) island arc tholeiitic pillow basalts, 2) a thin radiolarian chert bed grading into 3) a submarine volcaniclastic sequence, and 4) sporadically distributed flows of calc-alkaline basalt through boninite. Cessation of volcanic activity is marked by the deposition of an organic carbon-rich epiclastic sequence. The intensely folded strata in JT rocks east of the MFZ may be basinward lateral equivalents of the JT strata west of the MFZ. Differences in style of deformation and metamorphic rank in the strata are typical of vertical and lateral variations in basins where one part is passive and another part is tectonically active as the basin closes.

  4. Morphology and composition of gold in a lateritic profile, Fazenda Pison “Garimpo”, Amazon, Brazil

    NASA Astrophysics Data System (ADS)

    Larizzatti, J. H.; Oliveira, S. M. B.; Butt, C. R. M.

    2008-05-01

    This study describes the morphological evolution of gold grains in a lateritic weathering profile in an equatorial rainforest climate. Primary sources of gold are quartz veins associated with shallow granophyric intrusion. Gold grains were found in fresh ore, saprolite, transition zones, ferruginous duricrust, red latosol, and yellow latosol. Irregularly shaped grains predominate, with smaller proportions of dendritic and prismatic forms. Gold grains are weathered in the uppermost 10 m of the regolith. Mean gold grain size is maximum in the duricrust (>125 μm) and decreases progressively upward into the yellow latosol (<90 μm). Voids and corrosion pits appear on grain surfaces, and progressive rounding is observed from the bottom of the profile to the top. Gold grains can be classified as either homogeneous or zoned with respect to their chemical composition. Homogeneous grains contain 2-15% Ag (mean 8.3%). Zoned grains have more variable Ag contents; grain cores have means of approximately 10% or 23% Ag, with Ag-poor zones of approximately 3.7% Ag along internal discontinuities and/or outer rims. Formation of Ag-poor rims is due to preferential depletion of silver. Processes responsible for duricrust formation may preserve some grains as large aggregates, but subsequent transformation into latosol further modifies them.

  5. Superparamagnetic core/shell GoldMag nanoparticles: size-, concentration- and time-dependent cellular nanotoxicity on human umbilical vein endothelial cells and the suitable conditions for magnetic resonance imaging.

    PubMed

    Gong, Mingfu; Yang, Hua; Zhang, Song; Yang, Yan; Zhang, Dong; Qi, Yueyong; Zou, Liguang

    2015-03-25

    GoldMag nanoparticles (GMNPs) possess the properties of colloid gold and superparamagnetic iron oxide nanoparticles, which make them useful for delivery, separation and molecular imaging. However, because of the nanometer effect, GMNPs are highly toxic. Thus, the biosafety of GMNPs should be fully studied prior to their use in biomedicine. The main purpose of this study was to evaluate the nanotoxicity of GMNPs on human umbilical vein endothelial cells (HUVECs) and determine a suitable size, concentration and time for magnetic resonance imaging (MRI). Transmission electron microscopy showed that GMNPs had a typical shell/core structure, and the shell was confirmed to be gold using energy dispersive spectrometer analysis. The average sizes of the 30 and 50 nm GMNPs were 30.65 ± 3.15 and 49.23 ± 5.01 nm, respectively, and the shell thickness were 6.8 ± 0.65 and 8.5 ± 1.36 nm, respectively. Dynamic light scattering showed that the hydrodynamic diameter of the 30 and 50 nm GMNPs were 33.2 ± 2.68 and 53.12 ± 4.56 nm, respectively. The r 2 relaxivity of the 50 nm GMNPs was 98.65 mM(-1) s(-1), whereas it was 80.18 mM(-1) s(-1) for the 30 nm GMNPs. The proliferation, cytoskeleton, migration, tube formation, apoptosis and ROS generation of labeled HUVECs depended on the size and concentration of GMNPs and the time of exposure. Because of the higher labeling rate, the 50 nm GMNPs exhibited a significant increase in nanotoxicity compared with the 30 nm GMNPs at the same concentration and time. At no more than 25 μg/mL and 12 hours, the 50 nm GMNPs exhibited no significant nanotoxicity in HUVECs, whereas no toxicity was observed at 50 μg/mL and 24 hours for the 30 nm GMNPs. These results demonstrated that the nanotoxicity of GMNPs in HUVECs depended on size, concentration and time. Exposure to larger GMNPs with a higher concentration for a longer period of time resulted in a higher labeling rate and ROS level for HUVECs. Coupled with r 2 relaxivity, it was suggested

  6. Pressure, temperature, and timing of mineralization of the sedimentary rock-hosted orogenic gold deposit at Klipwal, southeastern Kaapvaal Craton, South Africa

    NASA Astrophysics Data System (ADS)

    Chinnasamy, Sakthi Saravanan; Uken, Ron; Reinhardt, Jürgen; Selby, David; Johnson, Spencer

    2015-08-01

    Gold mineralization in the Klipwal Shear Zone (KSZ) at the Klipwal Gold Mine is confined to laminated quartz-carbonate lodes, stringers, and associated alteration in sandstone and siltstone of the Delfkom Formation in the upper Mozaan Group of the Mesoarchaean Pongola Supergroup. The moderately dipping brittle-ductile KSZ strikes N-S with an oblique-reverse, sinistral sense of shear. The deformational events that are recognized include an early compressional phase that produced anastomosing shears defined by shear fabrics with numerous shear-parallel laminated quartz-carbonate fault-fill veins and, in places, extensional quartz vein stockworks, and a late brittle reactivation phase that produced fault breccias, displacing earlier extensional veins. Three closely spaced economic reefs (lodes) are developed: the main R-reef constitutes the KSZ, while the J- and H-reefs represent footwall splays. Alteration comprises chlorite, muscovite, epidote, feldspar, and carbonates along with pyrite, arsenopyrite, and chalcopyrite ± pyrrhotite. An inner alteration zone is dominated by laminated quartz-carbonate veins with alternating quartz-carbonate-rich and muscovite-chlorite-rich laminae, whereas the proximal zone is characterized by alteration halos of K-feldspar, albite, epidote, chlorite, and muscovite along with carbonates and associated quartz veins. Chlorite thermometry from the inner and proximal zones yielded temperatures of 267 to 312 °C. Arsenopyrite compositions provide temperatures in the same range, 255 to 318 °C. Fluid inclusion microthermometry and Raman spectrometry of quartz veins in the mineralized reefs reveal the presence of metamorphogenic aqueous-gaseous fluid with an average salinity of 6.5 wt% NaCl equiv. Fluid compositions and estimated pressure-temperature (P-T) range (1.1 to 2.5 kbar at 255 to 318 °C) are typical of orogenic gold deposits. Devolatilization during the regional facies metamorphism of the Pongola Supergroup is considered the likely

  7. Mineralogical and geochemical features of promising types of gold mineralization in the western Altai-Sayany folded region (Russia)

    NASA Astrophysics Data System (ADS)

    Chernykh, Alexandr

    2013-04-01

    The western Altai-Sayany folded region is one of the oldest mining regions of Russia. Typical gold deposits are quartz-viens and skarns, which formation is associated with intrusion of island-arc and collision granitoids. Due to the fact that the traditional gold ore base of the region has already been largely worked out, the necessity of prospecting for new gold deposits has arisen. On the basis of available data, one may state that the outlook for the development of gold-mining industry of the Altai-Sayany region is concerned with gold mineralization in weathering crusts, epithermal gold-silver, gold-porhyry and gold-sulfide formations. The total gold resource potential of these object types is estimated by us at the level of 2000 t. The gold mineralization of epithermal gold-silver formation is confined to Early-Middle Devonian volcanic-plutonic belt. Here, gold-bearing zones of beresitization, argillization, sulfidization and silicification are discovered among volcanites. Maximum contents of noble metals are found in quartz-sulfide veins among sulfidized (arsenic pyrite, pyrite, galenite, sphalerite and fahlore, etc.) and silicified volcanic and subvolcanic rocks. Ore zones are marked by anomalously high content of Au, Ag, Pb, Zn, As, Sb, Hg not only in bedrocks, but also in haloes of dispersion in loose deposits. Gold-sulfide mineralization in terrigenous carbonaceous strata is confined to Late Riphean, Early Cambrian and Devonian metamorphosed complexes. This rocks were formed in the marginal sea basins. Metamorphism and repeated tectono-magmatic activation in the region resulted in redistribution and accumulation of gold. Gold-ore zones are marked by intensive silicification and sulfidization and are characterized mostly by occurrences of multiple generations of pyrite and arsenic pyrite. Gold occurs both in free state and in sulphides. Geochemistry of gold-ore zones can be characterized by associated elevated content of As, Ag, Sb, Cu, Hg. Gold

  8. Gold deposits of the northern margin of the North China craton: Multiple late Paleozoic-Mesozoic mineralizing events

    USGS Publications Warehouse

    Hart, C.J.R.; Goldfarb, R.J.; Qiu, Y.; Snee, L.; Miller, L.D.; Miller, M.L.

    2002-01-01

    The northern margin of the North China craton is well-endowed with lode gold deposits hosting a resource of approximately 900 tonnes (t) of gold. The ???1,500-km-long region is characterized by east-trending blocks of metamorphosed Archean and Proterozoic strata that were episodically uplifted during Variscan, Indosinian, and Yanshanian deformational and magmatic events. At least 12 gold deposits from the Daqinshan, Yan-Liao (includes the Zhangjiakou, Yanshan, and Chifeng gold districts), and Changbaishan gold provinces contain resources of 20-100 t Au each. Most deposits are hosted in uplifted blocks of Precambrian metamorphic rocks, although felsic Paleozoic and Mesozoic plutons are typically proximal and host ???30% of the deposits. The lodes are characterized by sulfide-poor quartz veins in brittle structures with low base metal values and high Au:Ag ratios. Although phyllic alteration is most common, intensive alkali feldspar metasomatism characterizes the Wulashan, Dongping, and Zhongshangou deposits, but is apparently coeval with Variscan alkalic magmatism only at Wulashan. Stepwise 40Ar-39Ar geochronology on 16 samples from gangue and alteration phases, combined with unpublished SHRIMP U-Pb dates on associated granitoids, suggest that gold mineralizing events occured during Variscan, Indosinian, and Yanshanian orogenies at circa 350, 250, 200, 180, 150, and 129 Ma. However, widespread Permo-Triassic (???250 Ma) and Early Jurassic (???180 Ma) thermal events caused variable resetting of most of the white mica and K-feldspar argon spectra, as well as previously reported K-Ar determinations. Compiled and new stable isotope and fluid inclusion data show that most ??18O values for ore-stage veins range from 8 to 14???, indicating a fluid in equilibrium with the Precambrian metamorphic basement rocks; ??D values from fluid inclysions range widely from -64 to -154???, which is indicative of a local meteoric component in some veins; and highly variable ??34S data

  9. Greenstone-hosted lode-gold mineralization at Dungash mine, Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Zoheir, Basem; Weihed, Pär

    2014-11-01

    The auriferous quartz ± carbonate veins at Dungash mine, central Eastern Desert of Egypt, are confined to ∼E-trending dilation zones within variably foliated/sheared metavolcanic/volcaniclastic rocks. The vein morphology and internal structures demonstrate formation concurrent with a dextral shear system. The latter is attributed to flexural displacement of folded, heterogeneous rock blocks through transpression increment, late in the Neoproterozoic deformation history of the area. Geochemistry of the host metavolcanic/metavolcaniclastic rocks from the mine area suggests derivation from a low-K, calc-alkaline magma in a subduction-related, volcanic arc setting. In addition, chemistry of disseminated Cr-spinels further constrain on the back-arc basin setting and low-grade metamorphism, typical of gold-hosting greenstone belts elsewhere. Mineralogy of the mineralized veins includes an early assemblage of arsenopyrite-As-pyrite-gersdorffite ± pyrrhotite, a transitional pyrite-Sb-arsenopyrite ± gersdorffite assemblage, and a late tetrahedrite-chalcopyrite-sphalerite-galena-gold assemblage. Based on arsenopyrite and chlorite geothermometers, formation of gold-sulfide mineralization occurred between ∼365 and 280 °C. LA-ICP-MS measurements indicate the presence of refractory Au in arsenian pyrite (up to 53 ppm) and Sb-bearing arsenopyrite (up to 974 ppm). Abundant free-milling gold associated with the late sulfide assemblage may have been mobilized and re-distributed by circulating, lower temperature ore fluids in the waning stages of the hydrothermal system. Based on the isotopic values of vein quartz and carbonate, the calculated average δ18OH2O values of the ore fluids are 5.0 ± 1.4‰ SMOW for quartz, and 3.3 ± 1.4‰ for vein carbonate. The measured carbonate δ13C values correspond to ore fluids with δ13CCO2 = -6.7 ± 0.7‰ PDB. These results suggest a mainly metamorphic source for ore fluids, in good agreement with the vein morphology, textures and

  10. Varicose vein - noninvasive treatment

    MedlinePlus

    Sclerotherapy; Laser therapy - varicose veins; Radiofrequency vein ablation; Endovenous thermal ablation; Ambulatory phlebectomy; Transilluminated power phlebotomy; Endovenous laser ablation; Varicose ...

  11. Laser therapy for leg veins.

    PubMed

    Kunishige, Joy H; Goldberg, Leonard H; Friedman, Paul M

    2007-01-01

    Visible veins on the leg are a common cosmetic concern affecting approximately 80% of women in the United States (Engel A, Johnson MI, Haynes SG. Health effects of sunlight exposure in the United States: results from the first national health and nutrition examination survey, 1971-1974. Arch Dermatol 1988;124:72-9). Without a quick and noninvasive treatment available, leg veins present a therapeutic challenge. This challenge has been tackled by the design of lasers with longer pulse durations, and the use of lasers with longer wavelengths and cooling devices. Recent studies show the efficacy of laser treatment beginning to approach that of sclerotherapy, the gold standard. This review outlines the principles guiding laser treatment, the current available options, and a clinically oriented approach to treating leg veins.

  12. Geological and Geochemical Criteria for the Estimation of the Area of The Lesser Hinggan for the Endogenous Gold Mineralization (The Far East, Russia)

    NASA Astrophysics Data System (ADS)

    Yurchenko, Yuriy

    2015-04-01

    intergrown with quartz, pyrite, arsenopyrite, galena in areas of intensive dislocation metamorphism and quartz-vein formation, accompanied by hydrothermal-metasomatic alteration of the bedrock in the mineral facies propylite, beresites and argillisites; 4. The transition some alluvial gold from lowland to the talus slope approaching the watershed areas; 5. The structural-geological similarity the area of the Lesser Hinggan with the gold mining areas of China and the northwestern part (Russia) of the Bureya array (Tandzhigou (Juanjiegou) (China), Noninskoe (Russia), Prognoznoe (Russia) and others). The Projected endogenous gold mineralization on the Lesser Hinggan include gold-quartz (including low-sulfide component) ore-formation type in the form of thin and not sustain the strike quartz veins in the surrounding strata (for example, gold deposit Lysoya Gora) and genetically related to the Early Cretaceous Hinggan-Olonoy complex of the subvolcanic felsic small intrusions . The ore-formation types associated with gold-bearing weathering crusts, carbon ("black") schist and ferruginous quartzite are the perspective in the area of the Lesser Hinggan also.

  13. Optical contacting of quartz

    NASA Technical Reports Server (NTRS)

    Payne, L. L.

    1982-01-01

    The strength of the bond between optically contacted quartz surfaces was investigated. The Gravity Probe-B (GP-B) experiment to test the theories of general relativity requires extremely precise measurements. The quartz components of the instruments to make these measurements must be held together in a very stable unit. Optical contacting is suggested as a possible method of joining these components. The fundamental forces involved in optical contacting are reviewed and relates calculations of these forces to the results obtained in experiments.

  14. Quartz ball valve

    NASA Technical Reports Server (NTRS)

    Goetz, C.; Ingle, W. M. (Inventor)

    1980-01-01

    A ball valve particularly suited for use in the handling of highly corrosive fluids is described. It is characterized by a valve housing formed of communicating segments of quartz tubing, a pair of communicating sockets disposed in coaxial alignment with selected segments of tubing for establishing a pair of inlet ports communicating with a common outlet port, a ball formed of quartz material supported for displacement between the sockets and configured to be received alternately thereby, and a valve actuator including a rod attached to the ball for selectively displacing the ball relative to each of the sockets for controlling fluid flow through the inlet ports.

  15. Ore-fluid evolution at the Getchell Carlin-type gold deposit, Nevada, USA

    USGS Publications Warehouse

    Cline, J.S.; Hofstra, A.A.

    2000-01-01

    Minerals and fluid-inclusion populations were examined using petrography, microthermometry, quadrupole mass-spectrometer gas analyses and stable-isotope studies to characterize fluids responsible for gold mineralization at the Getchell Carlin-type gold deposit. The gold-ore assemblage at Getchell is superimposed on quartz-pyrite vein mineralization associated with a Late-Cretaceous granodiorite stock that intruded Lower-Paleozoic sedimentary rocks. The ore assemblage, of mid-Tertiary age, consists of disseminated arsenian pyrite that contains submicrometer gold, jasperoid quartz, and later fluorite and orpiment that fill fractures and vugs. Late ore-stage realgar and calcite enclose ore-stage minerals. Pre-ore quartz trapped fluids with a wide range of salinities (1 to 21 wt.% NaCl equivalent), gas compositions (H2O, CO2, and CH4), and temperatures (120 to >360??C). Oxygen- and hydrogen-isotope ratios indicate that pre-ore fluids likely had a magmatic source, and were associated with intrusion of the granodiorite stock and related dikes. Ore-stage jasperoid contains moderate salinity, aqueous fluid inclusions trapped at 180 to 220??C. Ore fluids contain minor CO2 and trace H2S that allowed the fluid to react with limestone host rocks and transport gold, respectively. Aqueous inclusions in fluorite indicate that fluid temperatures declined to ~175??C by the end of ore-stage mineralization. As the hydrothermal system collapsed, fluid temperatures declined to 155 to 115??C and realgar and calcite precipitated. Inclusion fluids in ore-stage minerals have high ??D(H2O) and ??18O(H2O) values that indicate that the fluid had a deep source, and had a metamorphic or magmatic origin, or both. Late ore-stage fluids extend to lower ??D(H2O) values, and have a wider range of ??18O(H2O) values suggesting dilution by variably exchanged meteoric waters. Results show that deeply sourced ore fluids rose along the Getchell fault system, where they dissolved carbonate wall rocks and

  16. Huebnerite veins near Round Mountain, Nye County, Nevada

    SciTech Connect

    Shawe, D.R.; Foord, E.E.; Conklin, N.M.

    1984-01-01

    Small huebnerite-bearing quartz veins occur in and near Cretaceous (about 95 m.y. old) granite east and south of Round Mountain. The veins are short, lenticular, and strike mostly northeast and northwest in several narrow east-trending belts. The quartz veins were formed about 80 m.y. ago near the end of an episode of doming and metamorphism of the granite and emplacement of aplite and pegmatite dikes in and near the granite. An initial hydrothermal stage involved deposition of muscovite, quartz, huebnerite, fluorite, and barite in the veins. Veins were then sheared, broken, and recrystallized. A second hydrothermal stage, possibly associated with emplacement of a rhyolite dike swarm and granodiorite stock about 35 m.y. ago, saw deposition of more muscovite, quartz, fluorite, and barite, and addition of scheelite, tetrahedrite-tennantite, several sulfide minerals, and chalcedony. Finally, as a result of near-surface weathering, secondary sulfide and numerous oxide, tungstate, carbonate, sulfate, phosphate, and silicate minerals formed in the veins. Depth of burial at the time of formation of the veins, based on geologic reconstruction, was about 3-3.5 km. The initial hydrothermal stage ended with deposition of quartz at a temperature of about 210/sup 0/C and pressures of about 240 to 280 bars from fluids with salinity of about 5 wt % sodium chloride. Fluorite then was deposited at about 250/sup 0/ to 280/sup 0/C from solutions of similar salinity and containing a small amount of carbon dioxide. During shearing that followed initial mineralization, quartz was recrystallized at a temperature of 270/sup 0/ to 290/sup 0/C and in association with fluids of about 5 wt % sodium chloride equivalent and containing carbon dioxide. Late-stage fluorite was deposited from fluids with similar salinity but devoid of carbon dioxide at a temperature of about 210/sup 0/C. 76 refs., 38 figs., 8 tabs.

  17. Genetic aspects of a gold deposit in high grade Cambro-Ordovician metasediments, Nova Scotia: geological, mineral, geochemical and isotopic evidence

    SciTech Connect

    Smith, P.K.

    1985-01-01

    The Cochrane Hill gold deposit is hosted by amphibolite grade turbidite metasediments of the Cambro-Ordovician Goldenville Formation. Interbedded pelitic, semipelitic and psammite host sediments were polydeformed, metamorphosed and intruded by granitoid plutons during the Devonian Acadian Orogeny. Six distinct types of quartz veins are recognized from the 30m wide mineralized zone. Textural evidence suggests that vein emplacement commenced prior to deformation and ceased after the termination of the Acadian Orogeny. Essential mineralogy of the veins is quartz, plagioclase, phyllo-silicates, aluminosilicates, amphiboles and garnet. Arsenopyrite, pyrrhotite, loellingite, pyrite, marcasite, sphalerite, galena, chalcopyrite, Fe-Ti oxides and gold are the ore minerals. FeO/MgO, Na/sub 2/O/K/sub 2/O and Al/sub 2/O/sub 3//K/sub 2/O ratios in biotite and muscovite increase in the ore zone. Whole rock geochemistry of pelitic lithologies shows marked increases in TiO/sub 2//MgO, TiO/sub 2//Fe/sub 3/O/sub 3/, TiO/sub 2//P/sub 2/O/sub 5/ and Na O/K/sub 2/O ratios across the ore horizon. In the psammitic units TiO/sub 2//P/sub 2/O/sub 5/ shows marked increase whereas CaO/MgO and Na/sub 2/O/K/sub 2/O ratios decrease slightly in the auriferous zone. Fluid inclusion temperatures from quartz vary from 260 to +450/sup 0/C. Preliminary lead isotope data on galenas from Cochrane Hill are substantially more radiogenic than whole rock leads from the Goldenville Formation. These lead isotopic data, which are similar to those from granite-hosted mineral deposits together with other lines of evidence, support a granite related epigenetic gold models.

  18. A discussion of 'Anomalous quartz from the Roter Kamm impact crater, Namibia - Evidence for post-impact hydrothermal activity?'

    NASA Technical Reports Server (NTRS)

    Roedder, Edwin

    1990-01-01

    This paper presents arguments against the statement made by Koeberl et al. (1989) to the effect that various differences between the quartz of the three quartz pebbles from the Roter Kamm impact crater (Namibia) and the quartz of the pegmatites present in the basement rocks of this crater can be best interpreted as evidence that the pebbles were formed (or 'recrystallized') by a post-impact hydrothermal system. Arguments are presented that suggest that the three quartz pebbles are, most likely, fragments of a preimpact vein quartz of hydrothermal origin.

  19. Pan-African shear zone-hosted gold mineralization in the Arabian-Nubian shield

    NASA Astrophysics Data System (ADS)

    Abu-Alam, Tamer; Grosch, Eugene; Abd El Monsef, Mohamed

    2013-04-01

    A new tectonic model of the exhumation mechanism of the Arabian-Nubian Shield will be presented at the EGU2013 by Abu-Alam and Stüwe (2013). According to this new tectonic model, the shear zones of the Arabian-Nubian Shield can be classified into two types; deep-seated and relatively shallow shear zones. The deep-seated shear zones are accompanied with deep sub-horizontal crustal channel flows which are response to the exhumation of the metamorphic complexes from the peak condition depth to a shallower crustal level (ductile-brittle transition). An example of these deep-seated shear zones is the Najd Fault System - the largest shear zone on the Earth. At the ductile-brittle transition crustal level, the deep-seated shear zones were overprinted by a greenschist facies condition or the ?2 and ?3 of the principle stresses may be flipped with each other. This flipping can produce other conjugate shallow shear zones in a greenschist facies conditions. The Egyptian gold deposits can be classified into three main types (Botros, 2004), These are stratabound deposits, non-stratabound deposits and placer gold deposits. The non-stratabound deposits are the most common (ex: Sukari, Wadi Allaqi, Abu Marawat, Atalla, El-Sid and Atud gold mines). They are found in form of vein type mineralization or as disseminated mineralization hosted in volcanics and volcaniclastic rocks (volcanogenic massive sulphides). Spatial and temporal relationships between gold veins and structures in the Arabian-Nubian Shield suggest a genetic relationship between mineralization and major tectonic events. At Sukari, Wadi Allaqi and Abu Marawat areas, the gold is hosted in quartz veins parallel to a deep-seated NW-SE to NNW-SSE shear zones. For Atud, El-Sid and Atalla area, the gold is hosted in NE-SW veins parallel to a shallow shear zone but at the conjugate point with a deep-seated NW-SE shear zone. According to the new tectonic model, we propose the following model for gold formation (non

  20. Are modern geothermal waters in northwest Nevada forming epithermal gold deposits?

    USGS Publications Warehouse

    Breit, George N.; Hunt, Andrew G.; Wolf, Ruth E.; Koenig, Alan E.; Fifarek, Richard; Coolbaugh, Mark F.

    2010-01-01

    Hydrothermal systems currently are active near some gold deposits in northwestern Nevada. Possible links of these modern systems to gold mineralization were evaluated by chemically and isotopically analyzing water samples from the Brady, Dixie Valley, Humboldt House, San Emidio-Empire, Soda Lake, and Wabuska geothermal areas. In addition, quartz veins from Humboldt House and the adjacent Florida Canyon Mine were analyzed to compare ore and gangue phases with those predicted to form from proximal hydrothermal fluids.Nearly all water samples are alkali-chloride-type. Total dissolved solids range from 800 to 3900 mg/L, and pH varies from 5.6 to 7.8. Geochemical modeling with SOLVEQ, WATCH, and CHILLER predict the precipitation of silica in all systems during cooling. Anhydrite, calcite, barite, pyrite, base-metal sulfides, and alumino-silicates are variably saturated at calculated reservoir temperatures and also precipitate during boiling/cooling of some fluids. Measured dissolved gold concentrations are low (<0.2μg/L), but are generally consistent with contents predicted by equilibrium of sampled solutions with elemental gold at reservoir temperatures.  Although the modern geothermal waters can precipitate ore minerals, the low gold and other ore metal concentrations require very large fluid volumes to form a deposit of economic interest.

  1. Geological and geochemical implications of the genesis of the Qolqoleh orogenic gold mineralisation, Kurdistan Province (Iran)

    NASA Astrophysics Data System (ADS)

    Taghipour, Batoul; Ahmadnejad, Farhad

    2015-03-01

    The Qolqoleh gold deposit is located in the northwestern part of the Sanandaj-Sirjan Zone (SSZ), within the NE-SW trending Qolqoleh shear zone. Oligocene granitoids, Cretaceous meta-limestones, schists and metavolcanics are the main lithological units. Chondrite-normalised REE patterns of the ore-hosting metavolcanics indicate REE enrichment relative to hanging wall (chlorite-sericite schist) and footwall (meta-limestone) rocks. The pattern also reflects an enrichment in LREE relative to HREE. It seems that the LREE enrichment is related to the circulation of SO42- and CO2-bearing fluids and regional metamorphism in the Qolqoleh shear zone. Both positive and negative Eu anomalies are observed in shear-zone metavolcanics. These anomalies are related to the degree of plagioclase alteration during gold mineralisation and hydrothermal alteration. In progressing from a metavolcanic protomylonite to an ultramylonite, significant changes occurred in the major/trace element and REE concentration. Utilising an Al-Fe-Ti isocon for the ore-hosting metavolcanics shows that Sc, Y, K, U, P, and M-HREE (except Eu) are relatively unchanged; S, As, Ag, Au, Ca, LOI, Rb and LREE are enriched, and Sr, Ba, Eu, Cr, Co and Ni decrease with an increasing degree of deformation. Based on geochemical features and comparison with other well-known shear zones in the world, the study area is best classified as an Isovolume-Gain (IVG) type shear zone and orogenic type gold mineralisation. Based on the number of phases observed at room temperature and their microthermometric behaviour, three fluid inclusion types have been recognised in quartz-sulphide and quartz-calcite veins: Type I monophase aqueous inclusions, Type II two-phase liquid-vapour (L-V) inclusions which are subdivided into two groups based on the homogenisation temperature (Th): a) L-V inclusions with Th from 205 to 255°C and melting temperature of last ice (Tm) from -3 to -9°C. b) L-V inclusions with higher Th from 335 to 385

  2. The Wassa deposit: A poly-deformed orogenic gold system in southwest Ghana - Implications for regional exploration

    NASA Astrophysics Data System (ADS)

    Perrouty, Stéphane; Jessell, Mark W.; Bourassa, Yan; Miller, John; Apau, Daniel; Siebenaller, Luc; Velásquez, Germán; Baratoux, Lenka; Aillères, Laurent; Béziat, Didier; Salvi, Stefano

    2015-12-01

    The Ashanti greenstone belt in southwest Ghana hosts many gold deposits distinguished by different timing and structural contexts. This study investigates the evolution of the Wassa system by integrating field and geophysical observations. This 4 million ounces (past production and current resources) gold deposit is interpreted to represent the oldest gold mineralization event in West Africa with gold-bearing pyrites aligned and stretched within the S1 ductile fabric. Mineralized quartz-carbonate veins were strongly deformed during the D1 deformation event. Three additional folding events are characterized by hectometer-scale tight to isoclinal folds, by a kilometer-scale synform fold centered on the mine and by a late recumbent metric-scale folds. Because of its early timing, the Wassa system represents a new poly-deformed deposit type in West Africa and highlights a potential for new discoveries in the underexplored meta-volcanic and meta-sedimentary Sefwi Group. Timing of the gold mineralization at the Wassa mine makes this deposit type a possible candidate for the source of the gold contained in the Tarkwa paleoplacer.

  3. Quartz crystal growth

    DOEpatents

    Baughman, Richard J.

    1992-01-01

    A process for growing single crystals from an amorphous substance that can undergo phase transformation to the crystalline state in an appropriate solvent. The process is carried out in an autoclave having a lower dissolution zone and an upper crystallization zone between which a temperature differential (.DELTA.T) is maintained at all times. The apparatus loaded with the substance, solvent, and seed crystals is heated slowly maintaining a very low .DELTA.T between the warmer lower zone and cooler upper zone until the amorphous substance is transformed to the crystalline state in the lower zone. The heating rate is then increased to maintain a large .DELTA.T sufficient to increase material transport between the zones and rapid crystallization. .alpha.-Quartz single crystal can thus be made from fused quartz in caustic solvent by heating to 350.degree. C. stepwise with a .DELTA.T of 0.25.degree.-3.degree. C., increasing the .DELTA.T to about 50.degree. C. after the fused quartz has crystallized, and maintaining these conditions until crystal growth in the upper zone is completed.

  4. The Kharapeh orogenic gold deposit: Geological, structural, and geochemical controls on epizonal ore formation in West Azerbaijan Province, Northwestern Iran

    USGS Publications Warehouse

    Niroomand, Shojaeddin; Goldfarb, Richard J.; Moore, Farib; Mohajjel, Mohammad; Marsh, Erin E.

    2011-01-01

    The Kharapeh gold deposit is located along the northwestern margin of the Sanandaj–Sirjan Zone (SSZ) in the West Azerbaijan province, Iran. It is an epizonal orogenic gold deposit formed within the deformed zone between central Iran and the Arabian plate during the Cretaceous–Tertiary Zagros orogeny. The deposit area is underlain by Cretaceous schist and marble, as well as altered andesite and dacite dikes. Structural analysis indicates that the rocks underwent tight to isoclinal recumbent folding and were subsequently co-axially refolded to upright open folds during a second deformation. Late- to post-tectonic Cenozoic granites and granodiorites occur northeast of the deposit area. Mineralization mainly is recognized within NW-trending extensional structures as veins and breccia zones. Normal faults, intermediate dikes, and quartz veins, oriented subparallel to the axial surface of the Kharapeh antiform, indicate synchronous extension perpendicular to the fold axis during the second folding event. The gold-bearing quartz veins are >1 km in length and average about 6 m in width; breccia zones are 10–50 m in length and ≤1 m in width. Hydrothermal alteration mainly consists of silicification, sulfidation, chloritization, sericitization, and carbonatization. Paragenetic relationships indicate three distinct stages—replacement and silicification, brecciation and fracture filling, and cataclastic brecciation—with the latter two being gold-rich. Fluid inclusion data suggest mineral deposition at temperatures of at least 220–255°C and depths of at least 1.4–1.8 km, from a H2O–CO2±CH4 fluid of relatively high salinity (12–14 wt.% NaCl equiv.), which may reflect metamorphism of passive margin carbonate sequences. Ore fluid δ18O values between about 7‰ and 9‰ suggest no significant meteoric water input, despite gold deposition in a relatively shallow epizonal environment. Similarities to other deposits in the SSZ suggest that the deposit formed as

  5. Gold grade of epithermal gold ore at Lamuntet, Brang Rea, West Sumbawa District, West Nusa Tenggara Province, Indonesia

    NASA Astrophysics Data System (ADS)

    Ernawati, Rika; Idrus, Arifudin; TBMP, Himawan

    2017-06-01

    Lamuntet is one of gold ore mining area carried out by the Artisanal Small scale Gold Mining (ASGM) located in West Sumbawa, Indonesia. Most of the miners at this area are not the local miners but also those from other regions. Mineralization of this area is strong identified as low sulfidation epithermal system. There are two blocks of this mining location, namely, Ngelampar block with an area of 0.164 km2 and Song block with an area of 0.067 km2. This study was focused on Ngelampar block. The characteristic of epithermal system is the existence of quartz vein with comb, vuggy, and sugary texture. The aim of this research was to analyze the gold grade and other metals, such as Cu, Ag, Pb, As, Zn, and Hg. The research methods included literature study from previous researches, field work, laboratory work, and interpretation. The literature study was performed on previous researches with similar study area. The field work comprised of direct observation and sampling. Fieldwork was done for a week to obtain gold ore/vein. Sixteen samples were analyzed to obtain the grade of ore/metal. The Hg laboratory analysis was then performed on the six samples with the highest gold grade. Laboratory works were conducted at Intertek Jakarta by using Fire Assay (FA) for gold grade and Atomic Absorption Spectrophotometry (AAS) for Cu, Ag, Pb, As, Zn, and Hg. Results of the analysis showed the range of Au was grade (0.1 ppm - 27.8 ppm), Cu was 26 ppm -1740 ppm, Pb was 101 ppm- >4000 ppm, Zn of 73 ppm- >10,000 ppm, Ag of 3 ppm -185 ppm, As was 150 ppm-6530 ppm, and Hg of 0.08 ppm - 1.89 ppm. L1 and L15 had high grade for all values (Au, Ag, Zn, Cu, As, and Hg). Gold mineralization was formed as electrum because of Ag content is higher than 20%. Associated minerals of the samples in the study area were galena, sphalerite, arsenopyrite, and chalcopyrite which showed the characteristic of rich base metal of Pb, Zn, and Cu at LS epithermal.

  6. The compression pathway of quartz

    SciTech Connect

    Thompson, Richard M.; Downs, Robert T.; Dera, Przemyslaw

    2011-11-07

    The structure of quartz over the temperature domain (298 K, 1078 K) and pressure domain (0 GPa, 20.25 GPa) is compared to the following three hypothetical quartz crystals: (1) Ideal {alpha}-quartz with perfectly regular tetrahedra and the same volume and Si-O-Si angle as its observed equivalent (ideal {beta}-quartz has Si-O-Si angle fixed at 155.6{sup o}). (2) Model {alpha}-quartz with the same Si-O-Si angle and cell parameters as its observed equivalent, derived from ideal by altering the axial ratio. (3) BCC quartz with a perfectly body-centered cubic arrangement of oxygen anions and the same volume as its observed equivalent. Comparison of experimental data recorded in the literature for quartz with these hypothetical crystal structures shows that quartz becomes more ideal as temperature increases, more BCC as pressure increases, and that model quartz is a very good representation of observed quartz under all conditions. This is consistent with the hypothesis that quartz compresses through Si-O-Si angle-bending, which is resisted by anion-anion repulsion resulting in increasing distortion of the c/a axial ratio from ideal as temperature decreases and/or pressure increases.

  7. A quartz crystal biosensor for measurement in liquids.

    PubMed

    Kösslinger, C; Drost, S; Aberl, F; Wolf, H; Koch, S; Woias, P

    1992-01-01

    The detection of anti-human immunodeficiency virus (HIV) antibodies by means of synthetic HIV peptide immobilized on a piezoelectric quartz sensor is demonstrated. The measurement set-up consists of an oscillator circuit, a suitably modified AT-cut thickness-shear-mode quartz crystal with gold electrodes, which is housed in a special reaction vessel, and a computer-controlled frequency counter for the registration of the measured frequency values. The quartz crystal is adapted for a steady operation in liquids at a frequency of 20 MHz. In phosphate-buffered saline solution the oscillator reaches a stability of about 0.5 Hz within a few seconds, of about 2 Hz within 10 min and about 30 Hz within 1 h. The frequency shift due to the adsorption of various proteins to the uncoated sensor surface has been investigated. It can be shown that a stable adsorptive binding of proteins to an oscillating gold surface is feasible and can be used for the immobilization of a receptor layer (e.g. HIV peptide). Specific binding of the anti-HIV monoclonal antibody to the HIV peptide immobilized on the quartz sensor is demonstrated. Control experiments show, however, additional unspecific binding. According to the experiments, the Sauerbrey formula gives a sufficiently accurate value for the decrease of the resonant frequency due to adsorption or binding of macromolecular proteins on the quartz crystal surface.

  8. Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling mountains, central China

    USGS Publications Warehouse

    Mao, J.; Goldfarb, R.J.; Zhang, Z.; Xu, W.; Qiu, Y.; Deng, J.

    2002-01-01

    The gold-rich Xiaoqinling-Xiong'ershan region in eastern Shaanxi and western Henan provinces, central China, lies about 30-50 km inland of the southern margin of the North China craton. More than 100 gold deposits and occurrences are concentrated in the Xiaoqinling (west), Xiaoshan (middle), and Xiong'ershan (east) areas. Late Archean gneiss of the Taihua Group, and Middle Proterozoic metavolcanic rocks of the Xiong'er Group are the main host rocks for the deposits. Mesozoic granitoids (ca. 178-104 Ma) are present in most gold districts, but deposits are typically hosted in the Precambrian basement rocks hundreds of meters to as far as 10 km from the intrusions and related hornfels zones. Deposits in the Xiaoqinling and Xiaoshan areas are best classified as orogenic gold deposits, with ores occurring in a number of distinct belts both in quartz veins and disseminated in altered metamorphic rocks. Alteration assemblages are dominated by quartz, sericite, pyrite, and carbonate minerals. The ore-forming fluids were low salinity, CO2-rich, and characterized by isotopically heavy ??18O. Four deposits (Dongchuang, Wenyu, Yangzhaiyu, and Dahu) in the Xiaoqinling area each contain resources of about 1 Moz Au. Some of the gold deposits in the Xiong'ershan area represent more shallowly emplaced tellurium-enriched orogenic systems, which include resources of approximately 1-1.5 Moz Au at Shanggong and Beiling (or Tantou). Others are epithermal deposits (e.g., Qiyugou and Dianfang) that are hosted in volcanic breccia pipes. Isotopic dates for all gold deposits, although often contradictory, generally cluster between 172-99 Ma and are coeval with emplacement of the post-kinematic granitoids. The gold deposits formed during a period of relaxation of far-field compressional stresses, clearly subsequent to the extensive Paleozoic-early Mesozoic accretion of are terranes and the Yangtze craton onto the southern margin of the North China craton. Hydrothermal and magmatic events

  9. What Causes Varicose Veins?

    MedlinePlus

    ... weak or damaged, blood can back up and pool in your veins. This causes the veins to ... pressure in your veins due to overweight or obesity or pregnancy. Rate This Content: NEXT >> Updated: February ...

  10. Spider Vein Removal

    MedlinePlus

    Spider veins: How are they removed? I have spider veins on my legs. What options are available ... M.D. Several options are available to remove spider veins — thin red lines or weblike networks of ...

  11. What Are Varicose Veins?

    MedlinePlus

    ... page from the NHLBI on Twitter. What Are Varicose Veins? Español Varicose (VAR-i-kos) veins are swollen, ... can form in other parts of the body. Varicose veins are a common condition. They usually cause few ...

  12. Improving the management of varicose veins.

    PubMed

    Onida, Sarah; Lane, Tristan R A; Davies, Alun H

    2013-01-01

    Up to 30% of the UK population are affected by varicose veins. They are a manifestation of increased venous pressure in the lower limb caused by impaired venous return. Primary varicosities result from poor drainage from the superficial to the deep venous system. Secondary varicosities arise as a result of underlying pathology impeding venous drainage, such as deep venous thrombosis or increased intra-abdominal pressure caused by a mass, pregnancy or obesity. Patients with bleeding varicose veins should be referred to a vascular service immediately. Referral is also indicated in the following cases: symptomatic primary or recurrent varicose veins; lower limb skin changes thought to be caused by chronic venous insufficiency; superficial vein thrombosis and suspected venous incompetence; a venous leg ulcer or healed venous leg ulcer. Imaging is crucial in the assessment of the superficial and deep venous system to enable assessment of venous competence. The gold standard imaging technique is colour duplex ultrasonography. Duplex ultrasound should be used to confirm the diagnosis of varicose veins and the extent of truncal reflux, and to plan treatment for patients with suspected primary or recurrent varicose veins. Superficial vein ligation, phlebectomy and stripping have been the mainstay of treatment. In recent years, new techniques have been developed that are minimally invasive, enabling treatment of superficial venous incompetence with reduced morbidity. NICE recommends that endothermal ablation, in the form of radiofrequency or laser treatment, should be offered as treatment for patients with confirmed varicose veins and truncal reflux.

  13. Force chain forming quartz in an ultramylonite

    NASA Astrophysics Data System (ADS)

    Kilian, Rüdiger; Morales, Luiz F. G.; Peters, Max

    2014-05-01

    boundaries, some of which can be interpreted as subgrain boundaries, mainly related to prism-a and rhomb-a slip, suggesting the activation of crystal-plastic processes. Alternative texture forming processes (e.g. growth textures) are also discussed. The texture in the foliation parallel clusters is thought to be an inherited texture from lower strain stages in the ultramylonite, as it is mostly present in the least deformed parts of the ultramylonite. However, we suggest that the texture formed in the foliation oblique clusters is related to a dynamic formation of force chains between quartz grains, where differential stresses become high enough for plastic yielding. The presence of force chains questions whether ultramylonites necessarily need to possess a linear viscous rheology, even if microstructures would indicate a diffusion creep mechanism. Pennacchioni G., Menegon L., Leiss B., Nestola F., Bromiley G., 2010: Development of crystallographic preferred orientation and microstructure during plastic deformation of natural coarse?grained quartz veins. Journal of Geophysical Research, Vol. 115, B12405

  14. Veins in the northern part of the Boulder batholith, Montana

    USGS Publications Warehouse

    Pinckney, D.M.

    1965-01-01

    About 20 miles north of Butte and extending nearly to Helena, is an area of 350 square miles containing hundreds of veins and altered zones. The bedrock of the area is 1) late Cretaceous volcanic rocks, forerunners of the Boulder batholith, 2) the Boulder batholith of late Cretaceous to early Tertiary age and 3) two groups of Tertiary volcanic rocks lying on the eroded batholith. The veins are post-batholith and pre-Tertiary in age. The veins are largely either quartz-sulfide veins of mesothermal type or chalcedony veins of epithermal type. The relations of these two types of veins have been the subject of conflicting ideas for 60 years. Three workers have proposed three different genetic classifications. This report shows that the quartz veins and the chalcedony veins are closely related parts of a strongly zoned hypogene vein system. Strong zonal patterns were established using the grain size of quartz (or pyrite vs. carbonate in one district) as well as features of the altered rocks. The scale of the zoning ranges from single veins through groups of veins or mining districts to the entire mineralized area. Single veins are zoned around a core of coarse-grained quartz; the quartz outward from the core becoming progressively finer-grained. The cores are zoned around eight major centers and several lesser ones. The centers and their nearby related veins are assigned to central, intermediate, and peripheral zones. Nearly all of the veins around the edge of the mineralized area are chalcedony. Envelopes of altered rocks consist of seven major bands representing three major groups of constituents, aluminum silicates, iron-bearing minerals, and silica. Plagioclase altered successively to montomorillite, kaolinite, and sericite; potassium feldspar altered to sericite (aluminum silicate group). Biotite released iron which formed successively, iron oxides, iron-bearing carbonate, and pyrite (iron-bearing minerals). Excess silica formed silicified bands. Constituents for

  15. QUARTZ FIBER ELECTROSCOPES

    DOEpatents

    Henderson, R.P.

    1956-04-17

    This patent pertains to quartz fiber electroscopes of small size for use by personnel to monitor nuclear radiation. The invention resides tn a novel way of charging the electroscope whereby the charging of the electroscope whereby the charging of the electroscope is carried out without obtaining contact with the fiber system or its support and the electroscope can therefore be constructed without a protective cap to prevent wrongful discharge. The electroscope is charged by placing a voltage between an electrode located in close proximity to the element to be charged and the electroscope me metallic case. ABSTRACTS

  16. Hydrocarbon- and ore-bearing basinal fluids: a possible link between gold mineralization and hydrocarbon accumulation in the Youjiang basin, South China

    NASA Astrophysics Data System (ADS)

    Gu, X. X.; Zhang, Y. M.; Li, B. H.; Dong, S. Y.; Xue, C. J.; Fu, S. H.

    2012-08-01

    The Youjiang basin, which flanks the southwest edge of the Yangtze craton in South China, contains many Carlin-type gold deposits and abundant paleo-oil reservoirs. The gold deposits and paleo-oil reservoirs are restricted to the same tectonic units, commonly at the basinal margins and within the intrabasinal isolated platforms and/or bioherms. The gold deposits are hosted by Permian to Triassic carbonate and siliciclastic rocks that typically contain high contents of organic carbon. Paragenetic relationships indicate that most of the deposits exhibit an early stage of barren quartz ± pyrite (stage I), a main stage of auriferous quartz + arsenian pyrite + arsenopyrite + marcasite (stage II), and a late stage of quartz + calcite + realgar ± orpiment ± native arsenic ± stibnite ± cinnabar ± dolomite (stage III). Bitumen in the gold deposits is commonly present as a migrated hydrocarbon product in mineralized host rocks, particularly close to high grade ores, but is absent in barren sedimentary rocks. Bitumen dispersed in the mineralized rocks is closely associated and/or intergrown with the main stage jasperoidal quartz, arsenian pyrite, and arsenopyrite. Bitumen occurring in hydrothermal veins and veinlets is paragenetically associated with stages II and III mineral assemblages. These observations suggest an intimate relationship between bitumen precipitation and gold mineralization. In the paleo-petroleum reservoirs that typically occur in Permian reef limestones, bitumen is most commonly observed in open spaces, either alone or associated with calcite. Where bitumen occurs with calcite, it is typically concentrated along pore/vein centers as well as along the wall of pores and fractures, indicating approximately coeval precipitation. In the gold deposits, aqueous fluid inclusions are dominant in the early stage barren quartz veins (stage I), with a homogenization temperature range typically of 230°C to 270°C and a salinity range of 2.6 to 7.2 wt% NaCl eq

  17. The gold nuggets of the lower Pliocene Alhambra Formation (Betic Cordillera, Southern Spain)

    NASA Astrophysics Data System (ADS)

    Somma, Roberta; Bonvegna, Piero; Sanchez-Navas, Antonio

    2017-04-01

    The present research was devoted to the geochemical and textural characterization of gold nuggets extracted from auriferous siliciclastic deposits of the lower Pliocene continental Alhambra Formation (Betic Cordillera, Southern Spain). This Formation is mainly composed of metamorphic lithoclasts deriving both by the erosion of the Mulhacen Unit of the Nevado-Filabride Complex and the reworking of the upper Tortonian marine Dudar-Pinos Genil Formation, on its turn previously formed by erosion of the Veleta Unit of the Nevado-Filabride Complex. Particularly, the studied gold nuggets were separated from 1m3 of auriferous conglomerates sampled along the right side of the Genil River, in the abandoned Lancha de Cenes Mine, exploited since Roman time for gold mining. The recovered gold nuggets were 24 for a total weight of 0.125 g/m3. Textural analysis of gold nuggets was made by means mechanical sieving and visual comparison of roundness and form. They are sand-sized rounded to sub-rounded grains with spheroidal and cubic form. Surface analyses of the nuggets by SEM-EDS indicated that external portions show textures more porous than in the nuggets nuclei. Chemical analyses by EMPA indicated that they are constituted by pure gold with Ag and Hg as trace elements. The gold mine capacity of the studied auriferous deposits is at least of 0.125 g/m3 (lower than 0.5 g/m3; minimum value to be gold mine economically exploitable). Notwithstanding this value, the auriferous conglomerates of the Alhambra Formation reveal to be interesting under a gold mine exploitation point of view because of the gold high pureness degree. Finally, under a geological point of view, considering that the Alhambra Formation is mainly composed of lower Pliocene alluvial fan conglomerates and sandstones formed during the uplift of the Sierra Nevada, the selected gold nuggets are secondary deposits originally derived from primary deposits related to hydrothermal gold-bearing quartz veins included in

  18. Paragenesis and geochemistry of ore minerals in the epizonal gold deposits of the Yangshan gold belt, West Qinling, China

    NASA Astrophysics Data System (ADS)

    Li, Nan; Deng, Jun; Yang, Li-Qiang; Goldfarb, Richard J.; Zhang, Chuang; Marsh, Erin; Lei, Shi-Bin; Koenig, Alan; Lowers, Heather

    2014-04-01

    Six epizonal gold deposits in the 30-km-long Yangshan gold belt, Gansu Province are estimated to contain more than 300 t of gold at an average grade of 4.76 g/t and thus define one of China's largest gold resources. Detailed paragenetic studies have recognized five stages of sulfide mineral precipitation in the deposits of the belt. Syngenetic/diagenetic pyrite (Py0) has a framboidal or colloform texture and is disseminated in the metasedimentary host rocks. Early hydrothermal pyrite (Py1) in quartz veins is disseminated in metasedimentary rocks and dikes and also occurs as semi-massive pyrite aggregates or bedding-parallel pyrite bands in phyllite. The main ore stage pyrite (Py2) commonly overgrows Py1 and is typically associated with main ore stage arsenopyrite (Apy2). Late ore stage pyrite (Py3), arsenopyrite (Apy3), and stibnite occur in quartz ± calcite veins or are disseminated in country rocks. Post-ore stage pyrite (Py4) occurs in quartz ± calcite veins that cut all earlier formed mineralization. Electron probe microanalyses and laser ablation-inductively coupled plasma mass spectrometry analyses reveal that different generations of sulfides have characteristic of major and trace element patterns, which can be used as a proxy for the distinct hydrothermal events. Syngenetic/diagenetic pyrite has high concentrations of As, Au, Bi, Co, Cu, Mn, Ni, Pb, Sb, and Zn. The Py0 also retains a sedimentary Co/Ni ratio, which is distinct from hydrothermal ore-related pyrite. Early hydrothermal Py1 has high contents of Ag, As, Au, Bi, Cu, Fe, Sb, and V, and it reflects elevated levels of these elements in the earliest mineralizing metamorphic fluids. The main ore stage Py2 has a very high content of As (median value of 2.96 wt%) and Au (median value of 47.5 ppm) and slightly elevated Cu, but relatively low values for other trace elements. Arsenic in the main ore stage Py2 occurs in solid solution. Late ore stage Py3, formed coevally with stibnite, contains relatively

  19. Quartz Crystal Microbalance Data

    SciTech Connect

    Baxamusa, S H

    2011-11-16

    We are using a Qpod quartz crystal microbalance (manufactured by Inficon) for use as a low-volume non-volatile residue analysis tool. Inficon has agreed to help troubleshoot some of our measurements and are requesting to view some sample data, which are attached. The basic principle of an NVR analysis is to evaporate a known volume of solvent, and weigh the remaining residue to determine the purity of the solvent. A typical NVR analysis uses 60 g of solvent and can measure residue with an accuracy of +/- 0.01 mg. The detection limit is thus (0.01 mg)/(60 g) = 0.17 ppm. We are attempting to use a quartz crystal microbalance (QCM) to make a similar measurement. The attached data show the response of the QCM as a 5-20 mg drop of solvent evaporates on its surface. The change in mass registered by the QCM after the drop evaporates is the residue that deposits on the crystal. On some measurements, the change in mass in less than zero, which is aphysical since the drop will leave behind {>=}0 mass of residue. The vendor, Inficon, has agreed to look at these data as a means to help troubleshoot the cause.

  20. Effect of pH and addition of salt on the adsorption behavior of lysozyme on gold, silica, and titania surfaces observed by quartz crystal microbalance with dissipation monitoring.

    PubMed

    Nezu, Takashi; Masuyama, Tomoyuki; Sasaki, Kaori; Saitoh, Setsuo; Taira, Masayuki; Araki, Yoshima

    2008-07-01

    The adsorption behaviors of lysozyme on dentally related Au, SiO2, and TiO2 surfaces were investigated by a quartz crystal microbalance with dissipation monitoring (QCM-D) method. Frequency shifts indicated that while lysozyme (pI 11) was fairly adsorbed on the SiO2 (pI 1.9) surface at both pH 3 and 7, it was adsorbed on TiO2 (pI 6.3) surface only at pH 7. However, adsorption was disturbed by 50 mM NaCl. These results strongly suggested an electrostatic nature of the adsorption behavior. Though a large-scale adsorption of the lysozyme on Au sensor was pH-insensitive, softness of the adlayer as seen from the dissipation profile was pH-dependent, indicating an interaction of another type. With all the surfaces, the small dissipation change indicated a stiff lysozyme adlayer. Results of this study revealed that the controlled electrostatic interaction between the material surface and lysozyme might be a useful method for imparting antibacterial property to the dental materials.

  1. Exploration of gold occurrences in alteration zones at Dungash district, Southeastern Desert of Egypt using ASTER data and geochemical analyses

    NASA Astrophysics Data System (ADS)

    Salem, S. M.; El Sharkawi, M.; El-Alfy, Z.; Soliman, N. M.; Ahmed, S. E.

    2016-05-01

    The present study aims at exploration of new gold occurrences in the alteration zones at Dungash district. Processed ASTER images band ratios 7/6 × 4/6 and (7 + 9/8), field geology and mineralogical and geochemical data help characterize three types of alterations in three areas 1 to 3 that may be targeted for Au exploration. Area1 confined to the metavolcanics located in the SE of Dungash gold mine and revealed silicified and sericitized type alterations, composed of quartz, epidote, chlorite, biotite and opaque minerals mainly pyrite and chalcopyrite. Area2 occurs in the gabbro-diorite rocks at Abu Meraiwa area NE of Dungash gold mine, which are rich in kaolinite, illite, sericite, pyrite, arsenopyrite and chalcopyrite that record kaolinitized alteration. Area3 is hosted in carbonaceous listwaenized serpentinite thus indicating the role of listwaenitization type alteration in ore genesis. It is composed of calcite, chromite, pyrite, arsenopyrite, chalcopyrite and Ni-bearing sulphides. Au contents in area 1 range between 0.12 and 14.91 ppm, and between 6.1 and 16.3 ppm in area 2, while gold values in area 3 vary from <0.01 to 0.03 ppm. Dungash district is comprised of Pan-African assemblages of ophiolitic ultramafics thrusted over the island arc metavolcanics of dacitic- andesite composition. Gabbro-diorite rocks are intruded in the ultramafics and the acidic metavolcanics as well as diorite-quartz diorite suite intruded in the intermediate metavolcanics. Several acidic dykes, granitic dykes and quartz veins cut through the different rocks types.

  2. ORIGIN OF QUARTZ IN COAL.

    USGS Publications Warehouse

    Ruppert, Leslie F.; Cecil, C. Blaine; Stanton, Ronald W.

    1984-01-01

    Both a scanning electron microscope and an electron microprobe (EMP) were used in this study to analyze the cathodoluminescence properties of quartz grains in samples of the Upper Freeport coal bed because quartz grains in coal are small (silt sized) and below the resolution capabilities of a standard luminoscope. Quartz grains were identified by the detection of silicon alone with energy dispersive X-ray units attached to both the SEM and the EMP.

  3. The Compression Pathway of Quartz

    NASA Astrophysics Data System (ADS)

    Dera, P. K.; Thompson, R. M.; Downs, R. T.

    2011-12-01

    The important Earth material quartz may constitute as much as 20% of the upper continental crust. Quartz is composed solely of corner-sharing SiO4 silica tetrahedra, a primary building block of many of the Earth's crustal and mantle minerals, lunar and Martian minerals, and meteoritic minerals. Quartz is therefore an outstanding model material for investigating the response of this fundamental structural unit to changes in P, T, and x. These facts have spawned a vast literature of experimental and theoretical studies of quartz at ambient and non-ambient conditions. Investigations into the behavior of quartz at high pressure have revealed an anomalous distortion in the silicate tetrahedron with pressure not typically seen in other silicates. The tetrahedron assumes a very distinct geometry, becoming more like the Sommerville tetrahedron of O'Keeffe and Hyde (1996) as pressure increases. Traditionally, this distortion has been considered a compression mechanism for quartz, along with Si-O-Si angle-bending and a very small component of bond compression. However, tetrahedral volume decreases by only 1% between 0.59 GPa and 20.25 GPa, while unit cell volume decreases by 21%. Therefore, most of the compression in quartz is happening in tetrahedral voids, not in the silicate tetrahedron, and the distortion of the silicate tetrahedron may not be the direct consequence of decreasing volume in response to increasing pressure. The structure of quartz at high temperature and high pressure, including new structural refinements from synchrotron singe-crystal data collected to 20.25 GPa, is compared to the following three hypothetical quartz crystals: (1) Ideal quartz with perfectly regular tetrahedra and the same volume and Si-O-Si angle as its observed. (2) Model quartz with the same Si-O-Si angle and cell parameters as its observed equivalent, derived from ideal by altering the axial ratio. (3) BCC quartz with a perfectly body-centered cubic arrangement of oxygen anions and

  4. Quartz Crystal Fabrication Facility.

    DTIC Science & Technology

    1980-05-01

    34 platforms. Each platform is supported by four ball coasters engaging a ground plate. The elevation of the chamber end flanges are adjusted by shimming of the...support shaft is rotated and moved in the vertical direction until the source aperture appears centered in the mask and in the skimmer aperture, as...gold source evaporators, and controls for mask head operation. Closed loop temperature regulators with thermocouple sensors are provided for heater

  5. Controls on quartz silt formation by crystalline defects.

    PubMed

    Kumar, R; Jefferson, I F; O'hara-Dhand, K; Smalley, I J

    2006-04-01

    Silt composed predominately of quartz occurs abundantly in the sedimentary material found in deposits worldwide. Its origin is still the subject of many debates, but one acknowledged source is due to glacial grinding. To examine this problem and test the apparent contradictory evidence in the literature, a series of experiments were performed. In these experiments, the Bromhead ring shear apparatus was used as it can simulate glacial grinding due to its uninterrupted shearing action; hence, it provides an effective reproduction of glacial grinding. Experiments conducted on unweathered sand-sized vein quartz produced little silt, while use of sand from a sedimentary deposit, Leighton Buzzard sand, produced plentiful silt. Experimental results suggest that there is an internal mineralogical control on the formation of quartz silt particles. It is argued that the processes involved in the formation of quartz introduce defects (Moss defects) into the low-quartz crystal structure, demonstrated by the presence of peaks in the particle size curve around 20 microm. This indicates that there is a lithological control for the silt yielded under weathering, and this could explain why a pronounced mode at around 20-60 micirom is commonly observed in silts, such as loess.

  6. Tip to midpoint observations on syntectonic veins, Ouachita orogen, Arkansas: Trading space for time

    NASA Astrophysics Data System (ADS)

    Cervantes, Pablo; Wiltschko, David V.

    2010-08-01

    By examining a vein from its tip to center, we have established the transition from a single filled fracture at the vein tip to typical 'crack-seal' textures observed in fibered, laminated veins. The vein is contained in the boudin neck of a sandstone layer within the Lower Ordovician Mazarn Formation, Benton Uplift, Ouachita orogen. The tip of the vein is composed of one or more isolated veinlets, defined as quartz-filled narrow (5-25 μm) fractures parallel to the larger vein's long dimension. Scanned SEM-based cathodoluminescence shows that quartz laminae of the same orientation and thickness are found throughout the vein. Wall-normal fibers first appear in the vein where detrital grains are cut by multiple veinlets, each veinlet mimicking the crystallographic orientation of the detrital grain, whereas later veinlets reflect the established crystallographic orientation of the fiber. Fibers throughout the vein retain evidence of having been formed by repeated fracturing and filling of a pre-existing grain (at the vein walls) or fiber. However, recrystallization later modified the fibers by obliterating some evidence of the veinlets and moving fiber walls. Boudin formation provided the extension site that localized fracturing and vein filling. The vein grows by the repeated addition of veinlets in the neck region. Recrystallization altered the shape of previously formed fibers.

  7. Multiple origins of Canadian Cordilleran gold deposits: geologic-tectonic constraints

    SciTech Connect

    Nesbitt, B.E.; Murowchick, J.B.; Muehlenbachs, K.

    1985-01-01

    Detailed examination of geologic and geochemical characteristics of lode gold deposits in the Canadian Cordillera indicates that there are at least two different, yet synchronous styles of gold mineralization: Mother Lode and Epithermal. Epithermal type deposits are hosted by Late Jurassic to Tertiary intermediate to felsic volcanic units in accreted island arc terrains. They have many characteristics in common with the better known US epithermal deposits including potassic, silicic and low pH alteration zones, quartz-chalcedony-calcite-barite gangue and Au/Ag, < 1.0. Mother Lode vein systems are found in most terrains of the Canadian Cordillera and typically show a spatial correlation with major Early Cretaceous to Tertiary transcurrent or thrust faults, but no consistent correlation with felsic plutons. Host rocks for Mother Lode deposits include a wide variety of rock types with a nearly ubiquitous association with serpentinites. All of the units hosting ore have been metamorphosed to low to middle greenschist facies. Mother Lode deposits are accompanied by ankeritic, albitic, sericitic and silicic alteration, have a characteristic gangue assemblage of, Qz, Carb, Alb, Mariposite +/- Scheelite, Asp, Py, Po, Cp and a Au/Ag > 1. The deposits appear to have formed from deep circulation of meteoric water in major fracture zones, typically transcurrent faults. Subsequent upward movement and cooling of the fluids caused deposition of gold and associated gangue. Geologic and geochemical similarities of Mother Lode deposits to Archean gold deposits indicate that such an origin may well have been responsible for many Archean deposits, as well.

  8. Quartz resonator processing system

    DOEpatents

    Peters, Roswell D. M.

    1983-01-01

    Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.

  9. Gold ore-forming fluids of the Tanami region, Northern Australia

    NASA Astrophysics Data System (ADS)

    Mernagh, Terrence P.; Wygralak, Andrew S.

    2007-01-01

    Fluid inclusion studies have been carried out on major gold deposits and prospects in the Tanami region to determine the compositions of the associated fluids and the processes responsible for gold mineralization. Pre-ore, milky quartz veins contain only two-phase aqueous inclusions with salinities ≤19 wt% NaCl eq. and homogenization temperatures that range from 110 to 410°C. In contrast, the ore-bearing veins typically contain low to moderate salinity (<14 wt% NaCl eq.), H2O + CO2 ± CH4 ± N2-bearing fluids. The CO2-bearing inclusions coexist with two-phase aqueous inclusions that exhibit a wider range of salinities (≤21 wt% NaCl eq.). Post-ore quartz and carbonate veins contain mainly two-phase aqueous inclusions, with a last generation of aqueous inclusions being very CaCl2-rich. Salinities range from 7 to 33 wt% NaCl eq. and homogenization temperatures vary from 62 to 312°C. Gold deposits in the Tanami region are hosted by carbonaceous or iron-rich sedimentary rocks and/or mafic rocks. They formed over a range of depths at temperatures from 200 to 430°C. The Groundrush deposit formed at the greatest temperatures and depths (260-430°C and ≤11 km), whereas deposits in the Tanami goldfield formed at the lowest temperatures (≥200°C) and at the shallowest depths (1.5-5.6 km). There is also evidence in the Tanami goldfield for late-stage isothermal mixing with higher salinity (≤21 wt% NaCl eq.) fluids at temperatures between 100 and 200°C. Other deposits (e.g., The Granites, Callie, and Coyote) formed at intermediate depths and at temperatures ranging from 240 to 360°C. All ore fluids contained CO2 ± N2 ± CH4, with the more deeply formed deposits being enriched in CH4 and higher level deposits being enriched in CO2. Fluids from deposits hosted mainly by sedimentary rocks generally contained appreciable quantities of N2. The one exception is the Tanami goldfield, where the quartz veins were dominated by aqueous inclusions with rare CO2-bearing

  10. Internal vein texture and vein evolution of the epithermal Shila-Paula district, southern Peru

    NASA Astrophysics Data System (ADS)

    Chauvet, Alain; Bailly, Laurent; André, Anne-Sylvie; Monié, Patrick; Cassard, Daniel; Tajada, Fernando Llosa; Vargas, Juan Rosas; Tuduri, Johann

    2006-07-01

    The epithermal Shila-Paula Au-Ag district is characterized by numerous veins hosted in Tertiary volcanic rocks of the Western Cordillera (southern Peru). Field studies of the ore bodies reveal a systematic association of a main E-W vein with secondary N55-60°W veins—two directions that are also reflected by the orientation of fluid-inclusion planes in quartz crystals of the host rock. In areas where this pattern is not recognized, such as the Apacheta sector, vein emplacement seems to have been guided by regional N40°E and N40°W fractures. Two main vein-filling stages are identified. stage 1 is a quartz-adularia-pyrite-galena-sphalerite-chalcopyrite-electrum-Mn silicate-carbonate assemblage that fills the main E-W veins. stage 2, which contains most of the precious-metal mineralization, is divided into pre-bonanza and bonanza substages. The pre-bonanza substage consists of a quartz-adularia-carbonate assemblage that is observed within the secondary N45-60°W veins, in veinlets that cut the stage 1 assemblage, and in final open-space fillings. The two latter structures are finally filled by the bonanza substage characterized by a Fe-poor sphalerite-chalcopyrite-pyrite-galena-tennantite-tetrahedrite-polybasite-pearceite-electrum assemblage. The ore in the main veins is systematically brecciated, whereas the ore in the secondary veins and geodes is characteristic of open-space crystallization. Microthermometric measurements on sphalerite from both stages and on quartz and calcite from stage 2 indicate a salinity range of 0 to 15.5 wt% NaCl equivalent and homogenization temperatures bracketed between 200 and 330°C. Secondary CO2-, N2- and H2S-bearing fluid inclusions are also identified. The age of vein emplacement, based on 40Ar/39Ar ages obtained on adularia of different veins, is estimated at around 11 Ma, with some overlap between adularia of stage 1 (11.4±0.4 Ma) and of stage 2 (10.8±0.3 Ma). A three-phase tectonic model has been constructed to explain the

  11. Mineral zoning and gold occurrence in the Fortuna skarn mine, Nambija district, Ecuador

    NASA Astrophysics Data System (ADS)

    Markowski, Agnès; Vallance, Jean; Chiaradia, Massimo; Fontboté, Lluìs

    2006-07-01

    The Fortuna oxidized gold skarn deposit is located in the northern part of the Nambija gold district, southern Ecuador. It has been subdivided into four mineralized sites, covering a distance of 1 km, which are named from north to south: Cuerpo 3, Mine 1, Mine 2, and Southern Sector. Massive skarn bodies occur in K-Na metasomatized volcanic and volcaniclastic rocks of the Triassic Piuntza unit. They appear to result from selective replacement of volcaniclastic rocks. Very minor presence of bioclast relicts suggests the presence of subordinate limestone. Endoskarn type alteration with development of Na-rich plagioclase, K-feldspar, epidote, actinolite, anhedral pyroxene, and titanite affects a quartz-diorite porphyritic intrusion which crops out below the skarn bodies in Mine 2 and the Southern Sector. Endoskarn alteration in the intrusion grades into a K-feldspar ± biotite ± magnetite assemblage (K-alteration), suggesting that skarn formation is directly related to the quartz-diorite porphyritic intrusion, the latter being probably emplaced between 141 and 146 Ma. The massive skarn bodies were subdivided into a dominant brown garnet skarn, a distal green pyroxene-epidote skarn, and two quartz-rich varieties, a blue-green garnet skarn and light green pyroxene-garnet skarn, which occur as patches and small bodies within the former skarn types. The proximal massive brown garnet skarn zone is centered on two 060° trending faults in Mine 2, where the highest gold grades (5-10 g/t) were observed. It grades into a distal green pyroxene-epidote skarn zone to the North (Cuerpo 3). Granditic garnet shows iron enrichment from the proximal to the distal zone. Diopsidic pyroxene exhibits iron and manganese enrichment from proximal to distal zones. The retrograde stage is weakly developed and consists mainly of mineral phases filling centimeter-wide veins, vugs, and interstices between garnet and pyroxene grains. The main filling mineral is quartz, followed by K

  12. The effect of chrome adhesion layer on quartz resonator aging.

    SciTech Connect

    Wessendorf, Kurt O.; Ohlhausen, James Anthony

    2011-03-01

    This SAND report documents a late start LDRD designed to determine the possible aging effects of a quartz resonator gold adhesion layer. Sandia uses quartz resonators for applications. These applications require a very stable frequency source with excellent aging (low drift) characteristics. These parts are manufactured by one of our qualified vendors outside Sandia Laboratories, Statek Corp. Over the years we, Sandia and the vendor, have seen aging variations that have not been completely explained by the typical mechanisms known in the industry. One theory was that the resonator metallization may be contributing to the resonator aging. This LDRD would allow us to test and analyze a group of resonators with known differentiating metallization and via accelerated aging determine if a chrome adhesion layer used to accept the final gold plating may contribute to poor aging. We worked with our main vendor to design and manufacture a set of quartz resonators with a wide range of metallization thickness ratios between the chrome and gold that will allow us determine the cause of this aging and which plating thickness ratios provide the best aging performance while not degrading other key characteristics.

  13. Gold-porphyric mineralization of the Kara ore knot in eastern Transbaikal as a new type of auriferous mineralization in East Siberia

    NASA Astrophysics Data System (ADS)

    Zhmodik, S. M.; Roslyakov, N. A.; Spiridonov, A. M.; Kozachenko, I. V.

    2009-07-01

    On the basis of new data, the authors substantiate the occurrence of gold-porphyric large-volume mineralization, atypical for Transbaikal, within the Sretensk-Kara ore region situated in the zone of the Mongol-Okhotsk suture separating the area of proterozoids of the Stanovoi zone from early mesozoids of Southeastern Transbaikal. The auriferous mineralization is presented by three spatially superposed exploitation-genetic types: (1) veined; (2) mineralized zones; and (3) dispersed and streaky-impregnated (stockwork). All these types and the whole set of granodiorite-dioritic stock with dispersed and streaky-impregnated mineralization, zones of kali-sparization and sulfidization (in fact, by stockwork), and the dykes of quartz dioritic porphyrites were formed as a result of the occurrence of a unified ore-magmatic system and constitute a large-volume deposit corresponding, by all the features, to the gold-porphyric type.

  14. Reconnaissance investigations of ancient gold mines in the southern part of the Wadi Bidah District, Jabal Ibrahim and Al Aqiq quadrangles, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Worl, R.G.; Smith, C.W.

    1982-01-01

    Ancient gold mines in the southern part of the Wadi Bidah district, Kingdom of Saudi Arabia, are located either within lenses of ferruginous chert or in large felsic intrusions of Precambrian age. All are associated with quartz veins, stringers, and stockworks. Samples from both types of deposits have low silver and base-metal contents; samples from deposits within ferruginous chert have anomalous arsenic contents. None of the deposits are large enough to be considered as prime exploration targets at this time. Analytical results from the Bani Sar deposit, which is located within felsic plutonic rocks, are encouraging, but additional surface investigations are needed to define the size and extent of the mineralized zone. Deposits associated with ferruginous chert are also of exploration interest. Anomalous gold contents and other evidence of mineralization were found along a considerable exposure of the metasedimentary unit that contains the chert lenses.

  15. Geology of the world-class Kiaka polyphase gold deposit, West African Craton, Burkina Faso

    NASA Astrophysics Data System (ADS)

    Fontaine, Arnaud; Eglinger, Aurélien; Ada, Koumangdiwè; André-Mayer, Anne-Sylvie; Reisberg, Laurie; Siebenaller, Luc; Le Mignot, Elodie; Ganne, Jérôme; Poujol, Marc

    2017-02-01

    The Kiaka gold deposit is a major resource in West Africa, with measured and indicated resources of 124 Mt at 1.09 g/t Au (3.9 Moz) and inferred resources of 27 Mt at 0.83 g/t Au (0.8 Moz). Located within the Manga-Fada N'Gourma greenstone and plutonic belt in south of the Burkina Faso, the deposit is hosted by a metamorphosed volcano-sedimentary sequence of lithic-, quartz-biotite metagreywackes, aluminosilicate-bearing metapelites and garnet-orthopyroxene-bearing schists and volcanic units. Structural observations indicate four local deformation events: DK1, DK2 and DK3 and DK4. Respectively, these events are linked to regional D1 E-W compression, D2 NW-SE compression and lastly, D3- and D4-related reactivations along D2 shear zones. The S2 foliation and D2 shear zones are developed during lower amphibolite facies metamorphism whereas retrogression occurs during D3-4 reactivations along these shear zones at upper greenschist facies conditions. The emplacement of a dioritic intrusion, dated at 2140 ± 7 Ma (Concordia U-Pb age on magmatic zircon), is interpreted to be contemporaneous with sinistral displacement along mineralized, NE-trending D2 shear zones. The intersection of these shears zones and the Markoye shear zone (dextral-reverse D1 and sinistral-reverse D2 reactivations) controlled the final geometry of the host rocks and the ore zones. Four subparallel elongated ore bodies are mainly hosted within D2-related shear zones and some are developed in an apparent axial plane of a F2 isoclinal fold. Detailed petrographic studies have identified two main types of hydrothermal alteration associated with two stages of gold mineralization. The stage (1) corresponds to replacement zones with biotite and clinozoisite during the D2 event associated with pyrrhotite ± pyrite, chalcopyrite (disseminated gold stage). The stage (2) occurs during reactivations of the D2-related auriferous shear zones (vein stage) and is characterized by diopside ± actinolite D3 veins and

  16. The Thermal Evolution of the Benton and Broken Bow uplifts, Ouachita Orogen, Arkansas and Oklahoma from Quartz-Calcite Thermometry and Fluid Inclusion Thermobarometry

    NASA Astrophysics Data System (ADS)

    Piper, J.; Wiltschko, D.

    2011-12-01

    To understand the fluid temperature and pressure during the Ouachita orogeny, we use isotopic analysis of syntectonic veins and adjacent host material, quartz-calcite oxygen isotope thermometry and fluid inclusion analysis. The veins were at or near isotopic equilibrium with their host rocks; neither the host nor veins have been isotopically reset. The average isotopic variation in δ18O between vein and host is 2.4% ± 1.7% and 0.7% ± 1.7% for quartz and calcite, respectively. The temperature of vein formation from quartz-calcite oxygen isotope thermometry is about 210°-430°C. Although this is a large range, the temperature does not vary systematically in the exposed Ordovician through Mississippian rocks. The lack of isotopic difference between host and vein suggests that the host oxygen determined that of the veins. This in turn suggests that the fluid in the rocks did not change regionally. The vitrinite reflectance/temperature of the host rocks increases with restored stratigraphic depth more than that calculated with the quart-calcite thermometer in veins. Fluid inclusion analysis in vein quartz constrains homogenization temperatures to be from 106°-285°C. Isochores from fluid inclusion analyses were constrained using quartz-calcite thermometry and vitrinite reflectance temperatures to calculate vein formation pressures of 0.3-4.7 kbars. These pressures correspond to vein formation depths up to 19 km assuming an unduplicated stratigraphic section. Using burial curves and a reasonable range of geothermal gradients places vein formation between 300 to 315 Ma, i.e., Early to Middle Pennsylvanian.

  17. Geology of the Barite Hill gold-silver deposit in the southern Carolina slate belt

    USGS Publications Warehouse

    Clark, S.H.B.; Gray, K.J.; Back, J.M.

    1999-01-01

    hydrothermal activity in a failed massive sulfide system or in a separate event; (3) sulfides and silica-barite rock recrystallized during regional deformation and greenschist facies metamorphism related to the Middle to Late Ordovician collision of the Carolina terrane with the North American continental plate; (4) quartz, barite, and gold were remobilized and formed veins that cut across cleavage; (5) orebodies were offset along high-angle faults; and (6) during weathering, base metal sulfides and barite dissolved and reprecipitated as supergene euhedral barite crystals that line ferric iron oxide-hydroxide gossans.

  18. Electrochemical Quartz Crystal Nanobalance

    NASA Astrophysics Data System (ADS)

    Inzelt, György

    The method of piezoelectric microgravimetry (nanogravimetry) using an electrochemical quartz crystal microbalance (EQCM) or nanobalance (EQCN) can be considered as a novel and much more sensitive version of electrogravimetry. The EQCN technique has become a widely used technique in several areas of electrochemistry, electroanalytical chemistry, bioelectrochemistry, etc. [1-10]. Obviously, mass changes occurring during adsorption, sorption, electrosorption, electrodeposition, or spontaneous deposition can be followed, which is very helpful for the elucidation of reaction mechanism via identification of the species accumulated on the surface. These investigations include metal and alloy deposition, underpotential deposition, electroplating, synthesis of conducting polymers by electropolymerization, adsorption of biologically active materials, and analytical determination of small ions and biomolecules. Of course, the opposite processes, i.e., spontaneous dissolution, electrodissolution, corrosion, can also be studied. Electrochemical oscillations, in which the formation and oxidation of chemisorbed molecular fragments play a determining role, have been studied, too. The majority of the investigations have been devoted to ion and solvent transport associated with the redox transformations of electrochemically active polymers. Similar studies have been carried out regarding polynuclear surface layers such as metal hexacyanometalates as well as inorganic and organic microcrystals of different compositions.

  19. Hydrogen speciation in synthetic quartz

    USGS Publications Warehouse

    Aines, R.D.; Kirby, S.H.; Rossman, G.R.

    1984-01-01

    The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH- concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH- is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si ??? 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. ?? 1984 Springer-Verlag.

  20. Oxygen isotope exchange with quartz during pyrolysis of silver sulfate and silver nitrate.

    PubMed

    Schauer, Andrew J; Kunasek, Shelley A; Sofen, Eric D; Erbland, Joseph; Savarino, Joel; Johnson, Ben W; Amos, Helen M; Shaheen, Robina; Abaunza, Mariana; Jackson, Terri L; Thiemens, Mark H; Alexander, Becky

    2012-09-30

    Triple oxygen isotopes of sulfate and nitrate are useful metrics for the chemistry of their formation. Existing measurement methods, however, do not account for oxygen atom exchange with quartz during the thermal decomposition of sulfate. We present evidence for oxygen atom exchange, a simple modification to prevent exchange, and a correction for previous measurements. Silver sulfates and silver nitrates with excess (17)O were thermally decomposed in quartz and gold (for sulfate) and quartz and silver (for nitrate) sample containers to O(2) and byproducts in a modified Temperature Conversion/Elemental Analyzer (TC/EA). Helium carries O(2) through purification for isotope-ratio analysis of the three isotopes of oxygen in a Finnigan MAT253 isotope ratio mass spectrometer. The Δ(17)O results show clear oxygen atom exchange from non-zero (17)O-excess reference materials to zero (17)O-excess quartz cup sample containers. Quartz sample containers lower the Δ(17)O values of designer sulfate reference materials and USGS35 nitrate by 15% relative to gold or silver sample containers for quantities of 2-10 µmol O(2). Previous Δ(17)O measurements of sulfate that rely on pyrolysis in a quartz cup have been affected by oxygen exchange. These previous results can be corrected using a simple linear equation (Δ(17)O(gold) = Δ(17)O(quartz) * 1.14 + 0.06). Future pyrolysis of silver sulfate should be conducted in gold capsules or corrected to data obtained from gold capsules to avoid obtaining oxygen isotope exchange-affected data. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Application of kinematic vorticity and gold mineralization for the wall rock alterations of shear zone at Dungash gold mining, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Kassem, Osama M. K.; Abd El Rahim, Said H.; El Nashar, EL Said R.; AL Kahtany, Kaled M.

    2016-11-01

    The use of porphyroclasts rotating in a flowing matrix to estimate mean kinematic vorticity number (Wm) is important for quantifying the relative contributions of pure and simple shear in wall rocks alterations of shear zone at Dungash gold mine. Furthermore, it shows the relationship between the gold mineralization and deformation and also detects the orientation of rigid objects during progressive deformation. The Dungash gold mine area is situated in an EW-trending quartz vein along a shear zone in metavolcanic and metasedimentary host rocks in the Eastern Desert of Egypt. These rocks are associated with the major geologic structures which are attributed to various deformational stages of the Neoproterozoic basement rocks. We conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. The kinematic vorticity number for the metavolcanic and metasedimentary samples in the Dungash area range from 0.80 to 0.92, and together with the strain data suggest deviations from simple shear. It is concluded that nappe stacking occurred early during the underthrusting event probably by brittle imbrication and that ductile strain was superimposed on the nappe structure during thrusting. Furthermore, we conclude that disseminated mineralization, chloritization, carbonatization and silicification of the wall rocks are associated with fluids migrating along shearing, fracturing and foliation of the metamorphosed wall rocks.

  2. Homestake Vein, False Color

    NASA Image and Video Library

    2011-12-07

    This false-color view of a mineral vein called Homestake comes from the panoramic camera Pancam on NASA Mars Exploration Rover Opportunity. The vein is about the width of a thumb and about 18 inches 45 centimeters long.

  3. Deep vein thrombosis - discharge

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000027.htm Deep vein thrombosis - discharge To use the sharing features ... page, please enable JavaScript. You were treated for deep vein thrombosis ( DVT ). This is a condition in ...

  4. Varicose vein stripping

    MedlinePlus

    ... noninvasive treatment Varicose veins Venous insufficiency Patient Instructions Surgical wound care - open Varicose veins - what to ask your doctor Review Date 6/6/2016 ... Interventional Radiology & Surgical Critical Care, Philadelphia, PA. Review provided by VeriMed ...

  5. Portal Vein Thrombosis

    PubMed Central

    Mallet, Thierry; Soltys, Remigiusz; Loarte, Pablo

    2015-01-01

    Portal vein thrombosis (PVT) is the blockage or narrowing of the portal vein by a thrombus. It is relatively rare and has been linked with the presence of an underlying liver disease or prothrombotic disorders. We present a case of a young male who presented with vague abdominal symptoms for approximately one week. Imaging revealed the presence of multiple nonocclusive thrombi involving the right portal vein, the splenic vein, and the left renal vein, as well as complete occlusion of the left portal vein and the superior mesenteric vein. We discuss pathogenesis, clinical presentation, and management of both acute and chronic thrombosis. The presence of PVT should be considered as a clue for prothrombotic disorders, liver disease, and other local and general factors that must be carefully investigated. It is hoped that this case report will help increase awareness of the complexity associated with portal vein thrombosis among the medical community. PMID:25802795

  6. Focus on Varicose Veins

    MedlinePlus

    ... veins no longer work. Under the pressure of gravity these veins can continue to expand and, in ... flow from the legs toward the heart against gravity, while preventing reverse flow back down the legs. ...

  7. Deep Vein Thrombosis

    MedlinePlus

    ... vein swells, the condition is called thrombophlebitis. A deep vein thrombosis can break loose and cause a serious problem in the lung, called a pulmonary embolism. Sitting still for a long time can make ...

  8. Gold Rush!

    ERIC Educational Resources Information Center

    Brahier, Daniel J.

    1997-01-01

    Describes a mathematical investigation of gold--how it is weighed, stored, used, and valued. For grades 3-4, children estimate the value of treasure chests filled with gold coins and explore the size and weight of gold bars. Children in grades 5-6 explore how gold is mined and used, and how the value of gold changes over time. (PVD)

  9. Gold-bearing skarns

    USGS Publications Warehouse

    Theodore, Ted G.; Orris, Greta J.; Hammerstrom, Jane M.; Bliss, James D.

    1991-01-01

    In recent years, a significant proportion of the mining industry's interest has been centered on discovery of gold deposits; this includes discovery of additional deposits where gold occurs in skarn, such as at Fortitude, Nevada, and at Red Dome, Australia. Under the classification of Au-bearing skarns, we have modeled these and similar gold-rich deposits that have a gold grade of at least 1 g/t and exhibit distinctive skarn mineralogy. Two subtypes, Au-skarns and byproduct Au-skarns, can be recognized on the basis of gold, silver, and base-metal grades, although many other geological factors apparently are still undistinguishable largely because of a lack of detailed studies of the Au-skarns. Median grades and tonnage for 40 Au-skarn deposits are 8.6 g/t Au, 5.0 g/t Ag, and 213,000 t. Median grades and tonnage for 50 byproduct and Au-skarn deposits are 3.7 g/t Au, 37 g/t Ag, and 330,000 t. Gold-bearing skarns are generally calcic exoskarns associated with intense retrograde hydrosilicate alteration. These skarns may contain economic amounts of numerous other commodities (Cu, Fe, Pb, Zn, As, Bi, W, Sb, Co, Cd, and S) as well as gold and silver. Most Au-bearing skarns are found in Paleozoic and Cenozoic orogenic-belt and island-arc settings and are associated with felsic to intermediate intrusive rocks of Paleozoic to Tertiary age. Native gold, electru, pyrite, pyrrhotite, chalcopyrite, arsenopyrite, sphalerite, galena, bismuth minerals, and magnetite or hematite are the most common opaque minerals. Gangue minerals typically include garnet (andradite-grossular), pyroxene (diopside-hedenbergite), wollastonite, chlorite, epidote, quartz, actinolite-tremolite, and (or) calcite.

  10. Thermoelectrically-cooled quartz microbalance

    NASA Technical Reports Server (NTRS)

    Mckeown, D.

    1975-01-01

    Temperature of microbalance can be maintained at ambient temperature or held at some other desired temperature. Microbalance has tow-stage thermoelectric device that controls temperature of quartz crystal. Heat can be pumped to or from balance by Peltier effect.

  11. Time scales of porphyry Cu deposit formation: insights from titanium diffusion in quartz

    USGS Publications Warehouse

    Mercer, Celestine N.; Reed, Mark H.; Mercer, Cameron M.

    2015-01-01

    Porphyry dikes and hydrothermal veins from the porphyry Cu-Mo deposit at Butte, Montana, contain multiple generations of quartz that are distinct in scanning electron microscope-cathodoluminescence (SEM-CL) images and in Ti concentrations. A comparison of microprobe trace element profiles and maps to SEM-CL images shows that the concentration of Ti in quartz correlates positively with CL brightness but Al, K, and Fe do not. After calibrating CL brightness in relation to Ti concentration, we use the brightness gradient between different quartz generations as a proxy for Ti gradients that we model to determine time scales of quartz formation and cooling. Model results indicate that time scales of porphyry magma residence are ~1,000s of years and time scales from porphyry quartz phenocryst rim formation to porphyry dike injection and cooling are ~10s of years. Time scales for the formation and cooling of various generations of hydrothermal vein quartz range from 10s to 10,000s of years. These time scales are considerably shorter than the ~0.6 m.y. overall time frame for each porphyry-style mineralization pulse determined from isotopic studies at Butte, Montana. Simple heat conduction models provide a temporal reference point to compare chemical diffusion time scales, and we find that they support short dike and vein formation time scales. We interpret these relatively short time scales to indicate that the Butte porphyry deposit formed by short-lived episodes of hydrofracturing, dike injection, and vein formation, each with discrete thermal pulses, which repeated over the ~3 m.y. generation of the deposit.

  12. Dating native gold by noble gas analyses

    NASA Technical Reports Server (NTRS)

    Niedermann, S.; Eugster, O.; Hofmann, B.; Thalmann, CH.; Reimold, W. U.

    1993-01-01

    Our recent work on He, Ne, and Ar in Alpine gold samples has demonstrated that gold is extremely retentive for He and could thus, in principle, be used for U/Th-He-4 dating. For vein-type gold from Brusson, Northern Italy, we derived a U/Th-He-4 age of 36 Ma, in agreement with the K-Ar formation age of associated muscovites and biotites. However, in placer gold from the Napf area, Central Switzerland, we observed large excesses of both He-4 and radiogenic Ar-40 (Ar-40 sub rad, defined as Ar-40-295.5-Ar-.36). The gas release systematics indicate two distinct noble gas components, one of which is released below about 800 C and the other one at the melting point of gold (1064 C). We now present results of He and Xe measurements in a 1 g placer gold sample from the river Kruempelgraben, as well as He and Ar data for Brusson vein-type gold and for gold from the Lily Gold Mine, South Africa. We calculate reasonable U/Th-He-4 as well as U-Xe ages based on those gases which are released at approximately 800 C. Probably the low-temperature components represent in-situ-produced radiogenic He and fission Xe, whereas the gases evolving when gold melts have been trapped during gold formation. Therefore, only the low-temperature components are relevant for dating purposes.

  13. Dating native gold by noble gas analyses

    NASA Technical Reports Server (NTRS)

    Niedermann, S.; Eugster, O.; Hofmann, B.; Thalmann, CH.; Reimold, W. U.

    1993-01-01

    Our recent work on He, Ne, and Ar in Alpine gold samples has demonstrated that gold is extremely retentive for He and could thus, in principle, be used for U/Th-He-4 dating. For vein-type gold from Brusson, Northern Italy, we derived a U/Th-He-4 age of 36 Ma, in agreement with the K-Ar formation age of associated muscovites and biotites. However, in placer gold from the Napf area, Central Switzerland, we observed large excesses of both He-4 and radiogenic Ar-40 (Ar-40 sub rad, defined as Ar-40-295.5-Ar-.36). The gas release systematics indicate two distinct noble gas components, one of which is released below about 800 C and the other one at the melting point of gold (1064 C). We now present results of He and Xe measurements in a 1 g placer gold sample from the river Kruempelgraben, as well as He and Ar data for Brusson vein-type gold and for gold from the Lily Gold Mine, South Africa. We calculate reasonable U/Th-He-4 as well as U-Xe ages based on those gases which are released at approximately 800 C. Probably the low-temperature components represent in-situ-produced radiogenic He and fission Xe, whereas the gases evolving when gold melts have been trapped during gold formation. Therefore, only the low-temperature components are relevant for dating purposes.

  14. Metal and fluid sources in a potential world-class gold deposit: El-Sid mine, Egypt

    NASA Astrophysics Data System (ADS)

    Helmy, Hassan; Zoheir, Basem

    2015-04-01

    Lode gold mineralization at the El-Sid mine area is associated with the ca. 600 Ma Fawakhir granite intrusion, which cuts the ~737 Ma ophiolite nappes in the Central Eastern Desert of Egypt. The mineralized quartz veins are hosted by ~E- and NE-trending fault/fracture sets cutting the western boundary of the intrusion and sheared ophiolites. The results of electron microprobe analyses of gold-associated hydrothermal sulfide and silicate minerals suggest that Au was mobilized alongside Ni, Co, Cr and As from the adjacent ophiolitic serpentinite. After granite emplacement, hydrothermal fluids interacted with the sheared serpentinite, leaching metals and re-depositing them in the faults/fractures and adjacent wall rock in a cyclic process. Low-salinity aqueous-carbonic fluids with significant quantities of volatile species (CO2, CH4, and N2 ± H2S) leached and transported Au from deep to shallow crustal levels. Carbon dioxide had a buffering effect on the Au-bearing hydrothermal solution, maintaining its pH within a narrow near-neutral range, where elevated gold concentration was transported by complexation with reduced magmatic sulfur in a reducing environment. Gold deposition along fault/fracture conduits in the Fawakhir granite and adjacent serpentinite resulted from interplay of pressure drop, fluctuations in oxygen and sulfur fugacities, and exsolution of the volatile phases. Infiltration of meteoric water may have contributed to the formation of the late stage gold-sulfide mineralization that formed at shallower levels during terrane uplift. Sulfidation of the Fe-rich magmatic minerals was, on the other hand, the overriding process in the wall rock as evidenced by abundant disseminated sulfides with gold inclusions. Considering the structural control by regional shear zones (fluid conduits) and the voluminous granitic and ophiolitic rocks (metal sources), a high tonnage gold deposit amenable to open pit mining at the El-Sid mine area is very likely.

  15. Prototype vein contrast enhancer

    NASA Astrophysics Data System (ADS)

    Zeman, Herbert D.; Lovhoiden, Gunnar; Vrancken, Carlos

    2004-07-01

    A proof-of-principle prototype Vein Contrast Enhancer (VCE) has been designed and constructed. The VCE is an instrument that makes vein access easier by capturing an infrared image of peripheral veins, enhancing the vein-contrast using software image processing, and projecting the enhanced vein-image back onto the skin using a modified commercial projector. The prototype uses software alignment to achieve alignment accuracy between the captured infrared image and the projected visible image of better than 0.06 mm. Figure 1 shows the prototype demonstrated in our laboratory.

  16. Yasny lode-placer cluster: Geological and structural features and gold potential

    NASA Astrophysics Data System (ADS)

    Mel'nikov, A. V.; Stepanov, V. A.

    2014-03-01

    The geological and structural features and gold potential of the Yasny lode-placer cluster in Amur province have been investigated. The lode-placer cluster is an intrusive domal uplift elongated in the nearmeridional direction and surrounded by Neogene loose sediments. The cluster comprises placers that yielded 15 t gold mined from there and small occurrences of gold-quartz and gold-base-metal lodes. Association of native gold with cinnabar in the Yasny Creek placer allows us to forecast a new source of gold-mercury mineralization in the basin of this creek, which could be compared with the Kyuchyus deposit in Yakutia. Gold nuggets 79 kg in total weight were mined from Gar-2 River placer. They are comparable in weight and association with quartz to the world's largest Holtermann Plate nugget from Australia. Gold-quartz lodes have been forecasted in the basin of the Gar-2 Creek.

  17. Microchemical signature of alluvial gold from two contrasting terrains in Cameroon

    NASA Astrophysics Data System (ADS)

    Omang, B. O.; Suh, C. E.; Lehmann, B.; Vishiti, A.; Chombong, N. N.; Fon, A. N.; Egbe, J. A.; Shemang, E. M.

    2015-12-01

    The microchemical signature of alluvial gold particles has wide application in constraining their primary sources. In this study, we apply this concept to investigate the composition of gold-bearing alloys from alluvial samples draining two geologically distinct terrains in southern and eastern Cameroon where the search for primary gold has remained elusive. The first set of gold grains (Lom grains) are from the Lom river drainage system with predominantly metasedimentary Pan-African rocks in the catchment region while the second set of grains (Nyong grains) are from the Mbal and Ebap tributaries of the Nyong river draining over a Paleoproterozoic complex comprising metamorphosed ultramafic rocks, amphibolites and granulitic gneisses. The gold grains recovered from these fluvial networks after panning were first studied under an electron microscope in order to evaluate their morphological features and subsequently embedded in epoxy resin, polished, and their compositions determined by both electron microprobe (EMPA) and laser ablation (LA-ICP-MS) techniques. The Lom grains are irregular to sub rounded with extensively pitted surfaces while the Nyong grains are predominantly rounded, oblong and with smooth surfaces. Nyong grains are devoid of inclusions while galena and pyrite are entombed in the Lom grains. Both set of grains are essentially Au-Ag alloys although the Ag content of the cores of the Nyong grains from both EMPA and LA-ICP-MS analytical techniques are significantly lower (0.05-6.07 wt% Ag; 93.54-99.29 wt% Au) than for Lom gold (0.06-22.75 wt% Ag; 78.76-99.86 wt% Au). X-ray element distribution maps do not show any zonal variation in core composition suggesting the gold grains derived from lode sources with single episode of hydrothermal gold deposition. Also the Nyong grains have significant amounts of Pt, Pd and Cr suggesting a link with ultramafic rocks while the Lom grains have substantial Sb and Zn levels pointing to hydrothermal quartz veining as

  18. Microstructural evolution of syntaxial veins formed by advective flow

    NASA Astrophysics Data System (ADS)

    Hilgers, Christoph; Dilg-Gruschinski, Karin; Urai, Janos L.

    2004-03-01

    Veins are common in Earth's crust, and are formed by a wide range of processes, which lead to crystal growth in dilation sites. The first-order processes in vein formation have been identified, but it is much less clear how these can be diagnosed from field studies. In order to better understand the microstructural evolution during vein growth, we grew veins of analogue material [alum, KAl(SO4)2·12H2O] in a transmitted-light cell from an advecting supersaturated fluid. Real-time observation shows the effects of flow rate and supersaturation on the evolving microstructure: (1) along-vein trends in growth rate caused by decreasing supersaturation, and (2) growth competition between clear crystals in the absence of nucleation and primary fluid inclusions. Although the overall trends in growth rate are in agreement with previous work, the local effects at the scale of individual grains reported here are less well understood; these new data form a basis for better interpretation of natural microstructures. To explore the possible effects of experimentally observed processes during vein growth, we simulate the growth kinetics of a quartz vein at various conditions of advective flow in Earth's crust. Results show that in general the along-vein changes in growth rate occur at length scales much larger than a typical outcrop.

  19. The late cretaceous Donlin Creek gold deposit, Southwestern Alaska: Controls on epizonal ore formation

    USGS Publications Warehouse

    Goldfarb, R.J.; Ayuso, R.; Miller, M.L.; Ebert, S.W.; Marsh, E.E.; Petsel, S.A.; Miller, L.D.; Bradley, D.; Johnson, Chad; McClelland, W.

    2004-01-01

    The Donlin Creek gold deposit, southwestern Alaska, has an indicated and inferred resource of approximately 25 million ounces (Moz) Au at a cutoff grade of 1.5 g/t. The ca. 70 Ma deposit is hosted in the Late Cretaceous Kuskokwim flysch basin, which developed in the back part of the are region of an active continental margin, on previously accreted oceanic terranes and continental fragments. A hypabyssal, mainly rhyolitic to rhyodacitic, and commonly porphyritic, 8- ?? 3-km dike complex, part of a regional ca. 77 to 58 Ma magmatic arc, formed a structurally competent host for the mineralization. This deposit is subdivided into about one dozen distinct prospects, most of which consist of dense quartz ?? carbonate veinlet networks that fill north-northeast-striking extensional fractures in the northeast-trending igneous rocks. The sulfide mineral assemblage is dominated by arsenopyrite, pyrite, and, typically younger, stibnite; gold is refractory within the arsenopyrite. Sericitization, carbonatization, and suffidation were the main alteration processes. Fluid inclusion studies of the quartz that hosts the resource indicate dominantly aqueous ore fluids with also about 3 to 7 mol percent CO2 ?? CH4 and a few tenths to a few mole percent NaCl + KCl. The gold-bearing fluids were mainly homogeneously trapped at approximately 275?? to 300??C and at depths of 1 to 2 km. Some of the younger stibnite may have been deposited by late-stage aqueous fluids at lower temperature. Measured ??18O values for the gold-bearing quartz range between 11 and 25 per mil; the estimated ??18O fluid values range from 7 to 12 per mil, suggesting a mainly crustally derived fluid. A broad range of measured ??D values for hydrothermal micas, between -150 and -80 per mil, is suggestive of a contribution from devolatilization of organic matter and/or minor amounts of mixing with meteoric fluids. Gold-associated hydrothermal sulfide minerals are characterized by ??34S values mainly between -16 and

  20. Brazil's premier gold province. Part II: geology and genesis of gold deposits in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero

    NASA Astrophysics Data System (ADS)

    Lobato, Lydia; Ribeiro-Rodrigues, Luiz; Vieira, Frederico

    2001-07-01

    Orogenic, gold deposits are hosted by rocks of the Archean Rio das Velhas greenstone belt in the Quadrilátero Ferrífero region, Minas Gerais state, Brazil, one of the major gold provinces in the world. The gold deposits occur at the base of the mafic-ultramafic succession, with the most important orebodies controlled by E-W-striking, strike-slip faults. The main mineralization styles are (1) structurally controlled, sulfide replacement zones in banded iron formation (BIF); (2) disseminated sulfide minerals and gold in hydrothermally altered rocks along shear zones; and (3) auriferous quartz-carbonate-sulfide veins and veinlets in mafic, ultramafic, and felsic volcanic rocks, and also in clastic sedimentary rocks. The most common host rocks for ore are metamorphosed oxide- and carbonate-facies banded iron (± iron-rich metachert) formations (e.g., the Cuiabá, São Bento and Raposos deposits) and the lapa seca unit, which is a local term for intensely carbonatized rock (e.g., the giant Morro Velho mine with >450 t of contained gold). Metabasalts host most of the remaining gold deposits. Mineralogical characteristics and fluid inclusion studies suggest variations in the H2O/CO2 ratio of a low-salinity, near-neutral, reducing, sulfur-bearing, ore fluid. The presence of abundant CH4-rich inclusions is related to reduction of the original H2O-CO2 fluid via interaction with carbonaceous matter in the wallrocks. Oxygen fugacity was close to that of graphite saturation, with variations likely to have been influenced by reaction with the carbonaceous matter. Carbon-rich phyllites and schists, which commonly bound ore-bearing horizons, seem to have played both a physical and chemical role in localizing hydrothermal mineral deposition. Microtextural studies indicate that gold deposition was mainly related to desulfidation reactions, and was paragenetically coeval with precipitation of arsenic-rich iron sulfide minerals. Carbon isotope data are compatible with dissolution of

  1. Petrology, composition, and age of intrusive rocks associated with the Quartz Hill molybdenite deposit, southeastern Alaska.

    USGS Publications Warehouse

    Hudson, T.; Smith, James G.; Elliott, R.L.

    1979-01-01

    A large porphyry molybdenum deposit (Quartz Hill deposit) was recently discovered in the heart of the Coast Range batholithic complex about 70 km E of Ketchikan, SE Alaska. Intrusive rocks associated with the mineral deposit form two composite epizonal to hypabyssal stocks and many dikes in country rocks. All observed metallization and alteration is within the Quartz Hill stock. Molybdenite forms fracture coatings and occurs in veins with quartz. Alteration is widespread and includes development of secondary quartz, pyrite, K-feldspar, biotite, white mica, chlorite, and zeolite. Field relations indicate that the stocks were emplaced after regional uplift and erosion of the Coast Range batholithic complex, and K-Ar data show that intrusion and alteration took place in late Oligocene time, about 27 to 30 Ma ago. Data from the Ketchikan quadrangle indicate that porphyry molybdenum metallization in the Coast Range batholithic complex is associated with regionally extensive but spotty, middle Tertiary or younger, felsic magmatism. -from Authors

  2. The Tintina Gold Belt - A global perspective

    USGS Publications Warehouse

    Goldfarb, Richard J.; Hart, Craig J.R.; Miller, Marti L.; Miller, Lance D.; Farmer, G. Lang; Groves, David I.; Tucker, T.L.; Smith, M.T.

    1999-01-01

    The so-called Tintina Gold Belt extends for more than 1000 km along the length of the northern North American Cordillera. Middle to Late Cretaceous Au deposits within the belt have various similar characteristics, among which are a spatial and temporal association with magmatism; Bi-W-Te signatures in deposits hosted by granitod stocks and As-Sb signatures where hosted by sedimentary rocks and dyke systems; and δ180 values consistently > 12 per mil for Au-bearing quartz. Nevertheless significant differences in structural styles, levels of deposit emplacement, ore-fluid chemistry, and Au grades suggest that the characteristics represent a broad range of deposit types. Many of these are best classified as orogenic Au deposits in the Yukon-Tanana terrane, as epithermal and porphyry-style Au deposits in the Kuskokwim region, and as Au-bearing, granite-related veins and stockworks, replacements, and skarns, as well as associated polymetallic lodes, in central Yukon. The diverse types of Au deposits and associated plutons of the Tintina Gold Belt collectively define a 45-m.y.-long period of arc magmatism that migrated northwesterly, for about 1000 km, across the active collisional margin of Cretaceous northwestern North America. The initiation of fluid flow and plutonism in Albian time seems to correlate with the onset of oblique subduction and dextral strike-slip on the Denali-Farewell, Tintina-Kaltag, and related fault systems. Initial Au-vein formation and subduction-related magmatism at about 115-110 Ma (e.g., including the Goodpaster and Fortymile districts), within the seaward side of the Yukon-Tanana terrane, correlate with the arrival of the Wrangellia superterrane off the continental margin. Dextral translation of the allochthonous Wrangellia block was associated with the migration of the thermal pulse to the northwest at about 95-90 Ma. Orogenic (or so­ called mesotherrnal) and granitoid-related Au deposits formed across the width of the Yukon

  3. Role of Substrate on Quartz Cementation in Quartz Aggregates

    NASA Astrophysics Data System (ADS)

    Farver, J. R.; Winslow, D.; Onasch, C.

    2010-12-01

    Quartz cementation in quartz aggregates has been experimentally investigated. The starting material was disaggregated detrital quartz grains from the well-sorted, mature St. Peter Sandstone. The ‘as-is’ grains have patches of iron oxide coatings and some have euhedral overgrowths that contain iron oxide dust rims. In addition a set of experiments was run using grains that were cleaned by soaking in sodium hydrosulfite and sodium bisulfate solutions to remove exposed iron oxide coatings. Experimental charges consisted of amorphous silica powder (≈30 mg) to provide a source of silica for the quartz cement, AlCl3 powder (≈3 mg) to provide a tracer for Cathodoluminescence (CL) identification of cement formed during the experiment, 25 wt% NaCl brine solution (≈25 mg) to increase the silica solubility and to better mimic oil field brines, and the natural quartz grains (100-130 mg). The charges were weld-sealed in Au capsules and run in cold-seal pressure vessels at 250°C to 450°C at 150 MPa confining pressure for up to 8 weeks. After the experiments, the samples were vacuum impregnated with a low viscosity epoxy containing a blue dye. After curing, the sample charge was sawn in half along its long axis and one half was polished (to 1 micron diamond paste) for analysis. The nature and amount of quartz cement in the samples were determined by a combination of CL, light microscopy, and scanning electron microscopy. Photomosaics of the samples were created and the amount of cement, porosity, and average grain sizes were determined by point-counting. The cement formed during the experiment was easily recognized from the quartz grains (and previous overgrowths) by the difference in luminescence. The results indicate the amorphous silica powder provides a ready source for silica for quartz cementation due to its greater solubility than the quartz. The cementation rates are rapid (>14% cement formed in 2 weeks at 450°C and >7% in 8 weeks at 250°C). Compared to

  4. Geology of Unga Island and the northwestern part of Popof Island: Chapter 2 in A geological and geophysical study of the gold-silver vein system of Unga Island, Southwestern Alaska

    USGS Publications Warehouse

    Riehle, James R.; Wilson, Frederic H.; Shew, Nora B.; White, Willis H.

    1999-01-01

    The first geologic map of Unga Island was published by Atwood (1911; scale 1:250,000), who correctly inferred the middle Tertiary age of the volcanic rocks and made the important distinction between the lava flows and the intrusive domes. Although Burk's (1964) reconnaissance map of the Alaska Peninsula (scale 1:250,000) has been modified in some respects, it does correct Atwood's map by replacing the Kenai Formation on northwestern Unga Island with the Unga Conglomerate and by recognizing the older Stepovak Formation elsewhere on Unga and Popof Islands.U.S. Geological Survey (USGS) field studies that were focused on the mineral-resource potential of the Alaska Peninsula began in the late 1970's. These studies led to a geologic map of the Port Moller quadrangle--including Unga Island--at 1:250,000 scale (Wilson and others, 1995), as well as summaries of mineral occurrences and geochronological studies (Wilson and others, 1988, 1994) and a formal revision of the stratigraphic units of the Alaska Peninsula (Detterman and others, 1996). As follow-up to the regional studies, a detailed study of the vein systems on Unga Island was undertaken as a collaborative effort between USGS and private industry (White and Queen, 1989). The fieldwork leading to the present report and geologic map was started in 1978 (Riehle and others, 1982) and was completed as part of the vein study. The objective was a better understanding of the geologic setting of the vein systems: the geologic history of the host rocks, the structural controls on the veins, and the types of processes that likely caused the mineralization.

  5. Metamorphism and gold mineralization of the Kenticha Katawicha area: Adola belt, southern Ethiopia

    NASA Astrophysics Data System (ADS)

    Tsige, Lulu

    2006-05-01

    I present geological and mineral chemistry results aiming at understanding the relationship between metamorphism and gold mineralization in the N-trending Neoproterozoic Kenticha-Katawicha area in the Adola belt of southern Ethiopia. The Kenticha-Katawicha area comprises low-grade metamorphic rocks including pelitic schists, marble, graphite schists and Fe-Mn quartzites (Kenticha marine metasedimentary rocks) and serpentinites and talc-tremolite-chlorite schists with podiform chromites (Kenticha ophiolite). Lenses of high-grade amphibolite schist are also locally present within the Kenticha-Katawicha area. These rocks are sandwiched between high-grade para- and ortho-gneisses, migmatites, schists and amphibolites. Post-orogenic granites intrude the metamorphic sequences. Mineral assemblages and textural data obtained from the high-grade rocks indicate that the dominant metamorphic condition is of upper amphibolite facies. Garnet-biotite (garnet-core-matrix-biotite) and amphibole-plagioclase geothermometry gave estimates for peak metamorphic temperatures of 630-650 °C and pressure of 7 kbar for the high-grade rocks. On the other hand, the low-grade rocks recrystallized in the greenschist facies conditions. The estimated peak T- P values for the high-grade rocks suggest a burial to ˜25 km depth and a clockwise P- T path is deduced from mineral thermometry and the textural and paragenetic relations. This combined with the geochemistry of the magmatic rocks and clockwise P- T is consistent with a collision setting in which rocks of the calc-alkaline, volcanic-arc, and oceanic fragments are assembled. In the study area, gold occurs in quartz veins and veinlets in lenses of biotite schists within ultramafic rocks that are confined to shear zones. Fluid inclusion studies of gold quartz veins and veinlets indicate a H 2O- and CO 2-rich fluid with low salinity (<5 wt% NaCl equivalent). The gold mineralization in the area is post-peak regional metamorphism and is

  6. Microscopy and Cathodoluminescence Spectroscopy Characterization of Quartz Exhibiting Different Alkali-Silica Reaction Potential.

    PubMed

    Kuchařová, Aneta; Götze, Jens; Šachlová, Šárka; Pertold, Zdeněk; Přikryl, Richard

    2016-02-01

    Different quartz types from several localities in the Czech Republic and Sweden were examined by polarizing microscopy combined with cathodoluminescence (CL) microscopy, spectroscopy, and petrographic image analysis, and tested by use of an accelerated mortar bar test (following ASTM C1260). The highest alkali-silica reaction potential was indicated by very fine-grained chert, containing significant amounts of fine-grained to cryptocrystalline matrix. The chert exhibited a dark red CL emission band at ~640 nm with a low intensity. Fine-grained orthoquartzites, as well as fine-grained metamorphic vein quartz, separated from phyllite exhibited medium expansion values. The orthoquartzites showed various CL of quartz grains, from blue through violet, red, and brown. Two CL spectral bands at ~450 and ~630 nm, with various intensities, were detected. The quartz from phyllite displayed an inhomogeneous dark red CL with two CL spectral bands of low intensities at ~460 and ~640 nm. The massive coarse-grained pegmatite quartz from pegmatite was assessed to be nonreactive and displayed a typical short-lived blue CL (~480 nm). The higher reactivity of the fine-grained hydrothermal quartz may be connected with high concentrations of defect centers, and probably with amorphized micro-regions in the quartz, respectively; indicated by a yellow CL emission (~570 nm).

  7. Pb-Sr isotopic evidence for contribution of deep crustal fluid to the Hishikari epithermal gold deposit, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Hosono, Takahiro; Nakano, Takanori

    2004-05-01

    The gold-bearing quartz-adularia veins of the world-class Hishikari mine in southwestern Japan occur in a geological regime where the rocks of the upper to middle crust are simple and their chemical and Sr-Nd-Pb isotopic compositions are well studied. Detailed comparison of Pb and Sr isotopic data of the Hishikari veins with those of all possible source materials demonstrates that metals in the veins were essentially derived from a mixture of magmatic fluid with a deep crustal fluid that originated near the boundary between the Shimanto middle crust and the underlying subcontinental crustal materials. We propose that the release of the deep crustal fluid was triggered by intrusion of the Shishimano rhyodacite magma related to timing of the mineralization. This fluid mixture carried metals to the brittle upper crust along fissures created by extensional stress forming the ore deposits. Although the deep crustal fluid has not been paid much attention, it may be distributed over a large scale in the deep crust from the continent to the arc system and play an important role in the genesis of magmatic-hydrothermal ore deposits and in the generation of flow-induced deep tremor.

  8. Arkachan: A new gold-bismuth-siderite-sulfide type of deposits in the West Verkhoyansky tin district, Yakutia

    NASA Astrophysics Data System (ADS)

    Gamyanin, G. N.; Vikent'eva, O. V.; Prokof'ev, V. Yu.; Bortnikov, N. S.

    2015-11-01

    The formation sequence of orebodies, chemical composition of gangue and ore minerals, fluid inclusions, REE patterns, 40Ar/39Ar isotopic age, and relationships of stable isotopes (C, O, S) in minerals of the Arkachan gold-bismuth-siderite-sulfide deposit have been studied. The deposit has been localized in the Kuranakh Anticlinorium of the Verkhoyansky Fold-Nappe Belt at the intersection of the near-meridional Kygyltas and the NE-trending North Tirekhtyakh faults. The orebodies are extended (>2 km) and steeply dipping zones of veins and veinlets are hosted in Carbonaceous and Permian sandstones and siltstones deformed in anticlines and cut through by dikes pertaining to diorite-granodiorite-granite association. The deposit was formed during hydrothermal-metamorphic, productive main gold, silver-polymetallic, and silver-antimony stages. The orebodies are largely composed of quartz and siderite; arsenopyrite, pyrite, and pyrrhotite are widespread; bismuthinite, chalcopyrite, sphalerite, galena, and bismuth sulfosalts (gustavite, cosalite, matildite) are less abundant. The REE patterns of carbonates and quartz are characterized by a negative Eu anomaly. Three types of fluid inclusions (FI) in quartz and carbonates are distinguished: (I) liquid H2O + CO2 ± CH4 + NaCl, (II) gaseous CO2 ± CH4, and (III) aqueous salt solutions. The homogenization temperature and salinity of FI I vary from 385 to 280°C and 18.8 to 26.2 wt % NaCl equiv, respectively, whereas in FI III these parameters vary from 261 to 324°C and 3.7 to 9.5 wt % NaCl equiv. The pressure is estimated at 1830 to 1060 bar. The δ18O of quartz II associated with siderite I, native gold, and sulfosalts changes from +13.6 to 16.3‰(SMOW); δ18O and δ13C of siderite I related to gold-ore stage vary from +13.6 to +17.7‰ (SMOW) and from-6.0 to-3.0 (PDB). A wide range of δ34S from-5.7 to 16.0‰ (CDT) has been obtained for sulfides. The isotopic 40Ar/39Ar age of muscovite is 101.9 ± 1.4 Ma. The isotopic

  9. Vein of Galen Aneurysms

    PubMed Central

    Komiyama, M.; Nakajima, H.; Nishikawa, M.; Yamanaka, K.; Iwai, Y.; Yasui, T.; Morikawa, T.; Kitano, S.; Sakamoto, H.; Nishio, A.

    2001-01-01

    Summary Eleven patients with so-called “vein of Galen aneurysms ” are reported, six of whom presented with vein of Galen aneurysmal malformations (four with choroidal type and two with mural type malformations). The remaining five patients presented with vein of Galen aneurysmal dilatations secondarily due to an arteriovenous malformation in one patient, an arteriovenous fistula in another, dural arteriovenous fistulas in two patients, and a varix in another. Treatments for these patients were individualised with consideration given to the clinical manifestations and the angioarchitecture of their lesions. Endovascular intervention played a critical role in the treatment of these vein of Galen aneurysms. PMID:20663385

  10. Quartz crystal microbalance apparatus for study of viscous liquids at high temperatures

    NASA Astrophysics Data System (ADS)

    Acharya, Biplav; Sidheswaran, Meera A.; Yungk, Ronald; Krim, Jacqueline

    2017-02-01

    A design for a Quartz Crystal Microbalance (QCM) setup for use with viscous liquids at temperatures of up to 300 °C is reported. The system response for iron and gold coated QCM crystals to two common lubricant base oils, polyalphaolefin and halocarbon, is reported, yielding results that are consistent with theoretical predictions that incorporate electrode nanoscale surface roughness into their analysis.

  11. Laser welding of fused quartz

    DOEpatents

    Piltch, Martin S.; Carpenter, Robert W.; Archer, III, McIlwaine

    2003-06-10

    Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.

  12. Constraints on the composition of ore fluids and implications for mineralising events at the Cleo gold deposit, Eastern Goldfields Province, Western Australia

    USGS Publications Warehouse

    Brown, S.M.; Johnson, C.A.; Watling, R.J.; Premo, W.R.

    2003-01-01

    The Cleo gold deposit, 55 km south of Laverton in the Eastern Goldfields Province of Western Australia, is characterised by banded iron-formation (BIF)-hosted ore zones in the gently dipping Sunrise Shear Zone and high-grade vein-hosted ore in the Western Lodes. There is evidence that gold mineralisation in the Western Lodes (which occurred at ca 2655 Ma) post-dates the majority of displacement along the Sunrise Shear Zone, but it remains uncertain if the ore in both structures formed simultaneously or separately. Overall, the Pb, Nd, Sr, C. O and S isotopic compositions of ore-related minerals from both the Western Lodes and ore zones in the Sunrise Shear Zone are similar. Early low-salinity aqueous-carbonic fluids and late high-salinity fluids with similar characteristics are trapped in inclusions in quartz veins from both the Sunrise Shear Zone and the Western Lodes. The early CO2, CO2-H2O, and H2O- dominant inclusions are interpreted as being related to ore formation, and to have formed from a single low-salinity aqueous-carbonic fluid as a result of intermittent fluid immiscibility. Homogenisation temperatures indicate that these inclusions were trapped at approximately 280??C and at approximately 4 km depth, in the deeper epizonal range. Differences between the ore zones are detected in the trace-element composition of gold samples, with gold from the Sunrise Shear Zone enriched in Ni, Pb, Sn, Te and Zn, and depleted In As, Bi, Cd, Cu and Sb, relative to gold from the Western Lodes. Although there are differences in gold composition between the Sunrise Shear Zone and Western Lodes, and hence the metal content of ore fluids may have varied slightly between the different ore zones, no other systematic fluid or solute differences are detected between the ore zones. Given the fact that the ore fluids in each zone have very similar bulk properties, the considerable differences in gold grade, sulfide mineral abundance, and ore textures between the two ore zones

  13. Geology and mineralogy of the Santo Nino Ag-Pb-Zn vein, Fresnillo District, Mexico

    SciTech Connect

    Gemmell, J.B.; Zantop, H.; Birnie, R.W.

    1985-01-01

    The Santo Nino Ag-Pb-Zn vein is the major producer of the Fresnillo District, located 750 km NW of Mexico City. It is over 2.4 km long, more than 480 m in vertical extent, more than 2.5 m wide overall, and has average grades of >600 gm/t Ag and <2% combined Pb and Zn. The vein is hosted by a tilted sequence of Cretaceous graywackes, shales and andesitic volcanics and extends upward into a Lower Tertiary conglomerate. Up to 5 separate opening events occurred along the vein, resulting in discontinuous stages of brecciation and crustiform banding. Ore mineral zonation is well developed both vertically and laterally and closely reflects metal and metal ratio distributions. Ore minerals are sphalerite, galena, pyrite, chalcopyrite, arsenopyrite, marcasite, pyrrhotite, acanthite, native silver, and three coexisting solid solution series, pyrargyrite-proustite, polybasite-arsenopolybasite, and tetrahedrite-tennantite in a gangue of quartz, calcite, clay, sericite,and chlorite. A 5-stage paragenetic sequence can be established: 1) pyrite, arsenopyrite, quartz, 2) sphalerite, galena, chalcopyrite, quartz, 3) tetrahedrite, pyrargyrite, polybasite, quartz, 4) acanthite, native silver, calcite, quartz, and 5) calcite. Preliminary microprobe analyses indicate that the Ag-rich solid solution series are Sb-rich in the central and upper portions of the vein and As-rich at deeper levels.

  14. Mechanical and ultrastructural evaluation of quartz post-endodontic reconstructions.

    PubMed

    Majori, M; Bedini, R; Altamura, C; Filippini, P; Caiazza, S

    2004-01-01

    Aesthetics is a very important element in dentistry, but requires the support of good mechanical performance. Quartz fiber used in post-endodontic reconstruction is an aesthetic material, although there is little research concerning its mechanical properties. This study evaluated the retentive property of post-endodontic reconstruction, composed of a quartz fiber post. Different thermal stresses were applied in vitro to post-endodontic reconstructions, in order to simulate oral thermal action on post-system dental structure linkage. We chose 30 human extracted teeth, endodontically treated and restored, and then divided them into three groups of 10 teeth. A different treatment was applied to each group before mechanical testing: in the 1st group no treatment was done (controls); in the 2nd group teeth were subjected, in a climatic chamber, to 10 thermo-cycles between 4 degrees C and 58 degrees C; in the 3rd group teeth were stored in a saline solution at 37 degrees C for 48 hr. The teeth then underwent tensile shear stress tests at break point using a computerized electronic dynamometer. After mechanical testing, two teeth from each group were longitudinally half-sectioned, sputter-coated in gold and observed by scanning electron microscopy (SEM). The extracted quartz fiber post of each tooth also underwent SEM observation. Mechanical test results demonstrated that thermal cyclic variations could affect bond stability between dental structures and posts in quartz fiber reconstructions, whereas their bond strength seemed unaffected by humidity increases. Quartz fiber post SEM observation demonstrated a homogeneous structure and a regular fiber disposition. Dental root canal morphology SEM images always showed a different thickness in the cement layer. (Journal of Applied Biomaterials & Biomechanics 2004; 2: 156-61).

  15. Support for varicose veins.

    PubMed Central

    Fentem, P H; Goddard, M; Gooden, B A

    1976-01-01

    A method has been devised to allow reliable comparison of different strengths and constructions of support hosiery. Five garments were evaluated for the compression they exerted on the leg and their ability to limit the distension of a model varicose vein. Stockings and tights which provide modest compression can achieve worthwhile control of vein distension. PMID:1247807

  16. Prepancreatic preduodenal portal vein.

    PubMed

    Lal, N S; Kuruvila, A P; Natesh, P B; Koshy, M M; Anandakumar, M

    1992-10-01

    We report a 17 year old girl with prepancreatic and preduodenal portal vein. She presented with recurrent vomiting. Barium study revealed malrotation of the gut. Laparotomy confirmed malrotation of the gut with a prepancreatic and preduodenal portal vein. The patient is asymptomatic after gastrojejunostomy and vagotomy.

  17. How Are Varicose Veins Diagnosed?

    MedlinePlus

    ... injected into your veins. The dye outlines your veins on x-ray images. An angiogram can help your doctor confirm whether you have varicose veins or another condition. Rate This Content: NEXT >> Updated: ...

  18. Vein graft failure

    PubMed Central

    Owens, Christopher D.; Gasper, Warren J.; Rahman, Amreen S.; Conte, Michael S

    2013-01-01

    Following the creation of an autogenous lower extremity bypass graft, the vein must undergo a series of dynamic structural changes to stabilize the arterial hemodynamic forces. These changes, commonly referred to as remodeling, include an inflammatory response, the development of a neointima, matrix turnover, and cellular proliferation and apoptosis. The sum total of these processes results in dramatic alterations in the physical and biomechanical attributes of the arterialized vein. The most clinically obvious and easily measured of these is lumen remodeling of the graft. However, though somewhat less precise, wall thickness, matrix composition, and endothelial changes can be measured in vivo within the healing vein graft. Recent translational work has demonstrated the clinical relevance of remodeling as it relates to vein graft patency and the systemic factors influencing it. By correlating histologic and molecular changes in the vein, insights into potential therapeutic strategies to prevent bypass failure and areas for future investigation are explored. PMID:24095042

  19. Controls on mineralisation in the Sierra Foothills gold province, central California, USA: A GIS-based reconnaissance prospectivity analysis

    USGS Publications Warehouse

    Bierlein, F.P.; Northover, H.J.; Groves, D.I.; Goldfarb, R.J.; Marsh, E.E.

    2008-01-01

    The assessment of spatial relationships between the location, abundance and size of orogenic-gold deposits in the highly endowed Sierra Foothills gold province in California, via the combination of field studies and a GIS-based analysis, illustrates the power of such an approach to the characterisation of important parameters of mineral systems, and the prediction of districts likely to host economic mineralisation. Regional- to deposit-scale reconnaissance mapping suggests that deposition of gold-bearing quartz veins occurred in second- and third-order, east-over-west thrusts during regional east - west compression and right-lateral transpression. At the district-scale, significant zones of mineralisation correspond with such transpressional reactivation zones and dilational jogs that developed during the Late Jurassic - Early Cretaceous along the misaligned segments of first-order faults throughout the Sierra Nevada Foothills Metamorphic Belt. Field-based observations and interpretation of GIS data (including solid geology, structural elements, deposit locations, magnetics, gravity) also highlight the importance of structural permeability contrasts, rheological gradients, and variations in fault orientation for localising mineralisation. Although this approach confirms empirical findings and produces promising results at the province scale, enhanced geological, structural, geophysical and geochronological data density is required to generate regionally consistent, high-quality input layers that improve predictive targeting at the goldfield to deposit-scale.

  20. Genetic Aspects of Gold Mineralization at Some Occurrences in the Eastern Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Abd El Monsef, M.; Slobodník, M.; Salem, I. A.

    2012-04-01

    The Eastern Desert of Egypt is well known as a gold-mining area since ancient times, there're more than 95 gold deposits and occurrences spread the whole area covered by the basement rocks of Precambrian age. The basement rocks of the Eastern Desert of Egypt constitute the Nubian Shield that has formed a continuous part of the Arabian-Nubian Shield before the opening of Red Sea (Oligocene-Early Miocene). Commonly, the system of gold-bearing quartz veins in the Eastern Desert is clearly structural controlled related to brittle-ductile shear zones that mostly developed during late deformational stages of the evolution history for basement rocks in the Eastern Desert. This running study principally aims to contribute the mineral resource potential of the gold deposits in Egypt, so particularly Fatira, Gidami and Atalla occurrences have been involved into a comprehensive study based on field, structural, mineralogical, geochemical and genetic investigations. It is intended to better understanding for the characteristics, distribution controls, conditions and age of mineralization in relation to the age of the hosting rocks intrusion to find if there're genetic links between the gold mineralization and the evolution of the host intrusive complex. Several authors suggested that the gold mineralization was related to the intrusion of the (postorogenic) Younger granites. Other authors interpret these deposits as products of hydrothermal activity induced either by metamorphism or cooling effects of early Paleozoic magmatism or as combined metamorphic/magmatic episodes. The prime focus will be directed to the ore itself and the associated hydrothermal alteration zones based on detailed maps and well-distributed samples network and geochemical anomalies distribution. The laboratory studies included microscopic examination (reflecting and transmitting microscopy) to allow for determination of the hosting rocks types and mineralogical changes related to the gold mineralization

  1. New insights into the relationship between quartz and various post quartz phases

    NASA Astrophysics Data System (ADS)

    Campana, Carlos; Müser, Martin H.

    2004-03-01

    Atomistic computer simulations are presented which suggest that the pressure-induced transition from low quartz to quartz II at 21 GPa is irreversible. While quartz II is ferroelastic in principle, the transition itself is coelastic, as the shape of the newly formed crystal is predetermined by the handedness of low quartz. Upon releasing the pressure, quartz II remains stable down to 5 GPa, where it transforms into another polymorph of similar symmetry. The shape of the post quartz polymorph can be 'switched' elastically between 'left' and 'right' by passing through an intermittent low quartz phase.

  2. Genesis of the vein-type tungsten mineralization at Nyakabingo (Rwanda) in the Karagwe-Ankole belt, Central Africa

    NASA Astrophysics Data System (ADS)

    Dewaele, S.; De Clercq, F.; Hulsbosch, N.; Piessens, K.; Boyce, A.; Burgess, R.; Muchez, Ph.

    2016-02-01

    The vein-type tungsten deposit at Nyakabingo in the central Tungsten belt of Rwanda is located in the eastern flank of the complex Bumbogo anticlinal structure. The host rock is composed of alternating sequences of sandstones, quartzites, and black pyritiferous metapelitic rocks. Two types of W-mineralized quartz veins have been observed: bedding-parallel and quartz veins that are at high angle to the bedding, which are termed crosscutting veins. Both vein types have been interpreted to have been formed in a late stage of a compressional deformation event. Both vein types are associated with small alteration zones, comprising silicification, tourmalinization, and muscovitization. Dating of muscovite crystals at the border of the veins resulted in a maximum age of 992.4 ± 1.5 Ma. This age is within error similar to the ages obtained for the specialized G4 granites (i.e., 986 ± 10 Ma). The W-bearing minerals formed during two different phases. The first phase is characterized by scheelite and massive wolframite, while the second phase is formed by ferberite pseudomorphs after scheelite. These minerals occur late in the evolution of the massive quartz veins, sometimes even in fractures that crosscut the veins. The ore minerals precipitated from a H2O-CO2-CH4-N2-NaCl-(KCl) fluid with low to moderate salinity (0.6-13.8 eq. wt% NaCl), and minimal trapping temperatures between 247 and 344 °C. The quartz veins have been crosscut by sulfide-rich veins. Based on the similar setting, mineralogy, stable isotope, and fluid composition, it is considered that both types of W-mineralized quartz veins formed during the same mineralizing event. Given the overlap in age between the G4 granites and the mineralized quartz veins, and the typical association of the W deposits in Rwanda, but also worldwide, with granite intrusions, W originated from the geochemically specialized G4 granites. Intense water-rock interaction and mixing with metamorphic fluids largely overprinted the

  3. Comparison of metasomatic reactions between a common CO2-rich vein fluid and diverse wall rocks: intensive variables, mass transfers, and Au mineralization at Alleghany, California

    USGS Publications Warehouse

    Böhlke, J.K.

    1989-01-01

    The gold deposits at Alleghany, California, are typical of many epigenetic gold-bearing hydrothermal vein systems in metamorphic terranes worldwide. Detailed analyses of alteration halos in serpentinite, mafic amphibolite, and granite wall rocks at Alleghany indicate that widely contrasting deposit types, ranging from fuchsite-carbonate schists to pyrite-albitites, resulted when different wall rocks interacted with the same externally derived CO2-rich hydrothermal vein fluid. Patterns of element redistribution within halos and among lithologic units suggest a complex process involving fluid flow along vein fractures and diffusion (?? infiltration) normal to the veins. Wall rocks locally controlled both the directions and magnitudes of chemical fluxes across vein walls. -from Author

  4. Positronium physisorption at quartz surfaces

    NASA Astrophysics Data System (ADS)

    Saniz, Rolando; Freeman, Arthur; Barbiellini, Bernardo; Platzman, Phil

    2007-03-01

    The possibility of having positronium (Ps) physisorbed at a material surface is of great fundamental interest, since it can lead to new insight regarding quantum sticking and is a necessary first step to try to obtain a Ps2 molecule on a material host. Experimental evidence for physisorbed Ps at the surface of quartz was reported some years ago, but firm theoretical support for such a conclusion was lacking. With the FLAPW method we calculated the electronic structure and dielectric function of α-quartz and obtained the interaction potential with a Ps atom on its surface. We show that there is indeed a bound state with an energy of ˜0.19 eV, which is reasonably close to the experimental estimates of 0.14 - 0.17 eV. A brief energy analysis in terms of the Langmuir-Hinshelwood mechanism further shows that the formation of a Ps2 molecule at quartz surface would be possible. Sferlazzo, Berko, Canter, Phys. Rev. B 3, 6067 (1985). Wimmer, Krakauer, Weinert, Freeman, Phys. Rev. B 24, 864 (1981).

  5. Site-specific characterization of Castromil Brownfield area related to gold mining activities.

    PubMed

    Ferreira da Silva, Eduardo; Serrano Pinto, Luís; Patinha, Carla; Cardoso Fonseca, Edmundo

    2004-03-01

    Castromil is one of the gold mining areas in Portugal that has been abandoned since 1940. This area, which was first mined in Roman times, is located within a Hercynian granite body near the contact with Silurian metasediments. Gold is essentially disseminated along veins in the silicified granite, running NW-SE, related with a shear zone and frequently associated with sulphides (arsenopyrite and basically pyrite). In paragenetic terms, three stages of mineralization are considered: ferro-arseniferous (quartz + arsenopyrite I + pyrite I + pyrrhotite + bismuth), zinciferous (sphalerite + chalcopyrite), and remobilization (arsenopyrite II + galena + gold). Due to the lack of laws and environmental education, Castromil is today a gold mining heritage site where we can detect the consequences of an incautious exploration (tailings, wells and adits located in the old explored zone) and where a residential area is located. In order to characterize the actual state of the old mining area the trace metal contamination of soils and waters by mining activities was investigated. In the studied area 106 soil samples, 15 waters and 20 plants were sampled and analysed. The soil samples were analysed for 32 elements by ICP-AES. Waters were analysed by ionic chromatography and ICP-MS for major and trace elements. Plants were analysed for As, Fe and Pb by AAS. The results are discussed taking into account the risk-based standards for soils and groundwater's (target and intervention values) proposed by Swartjes (1999). The results show elevated concentration of As and Pb which were found in soils collected from agricultural areas. Foodstuff plants species collected in the Castromil agricultural area show high concentrations of As in the leaves (cabbage and lettuce) and in the tubers (potatoes). Groundwaters in the mining area contain high concentrations of As that exceeds the intervention values. The area must to be subject to a remediation process, considering the actual risks to

  6. Deep Vein Thrombosis (DVT)

    MedlinePlus

    ... helps reduce the chances that your blood will pool and clot. You should wear these stockings during ... Make lifestyle changes. Lose weight and quit smoking. Obesity and smoking increase your risk of deep vein ...

  7. The Tuscarora Au-Ag district: Eocene volcanic-hosted epithermal deposits in the Carlin gold region, Nevada

    USGS Publications Warehouse

    Castor, S.B.; Boden, D.R.; Henry, C.D.; Cline, J.S.; Hofstra, A.H.; McIntosh, W.C.; Tosdal, R.M.; Wooden, J.P.

    2003-01-01

    The Tuscarora mining district contains the oldest and the only productive Eocene epithermal deposits in Nevada. The district is a particularly clear example of association of low-sulfidation deposits with igneous activity and structure, and it is unusual in that it consists of two adjoining but physically and chemically distinct types of low-sulfidation deposits. Moreover, Tuscarora deposits are of interest because they formed contemporaneously with nearby, giant Carlin-type gold deposits. The Tuscarora deposits formed within the 39.9 to 39.3 Ma Tuscarora volcanic field, along and just outside the southeastern margin of the caldera-like Mount Blitzen volcanic center. Both deposit types formed at 39.3 Ma, contemporaneous with the only major intrusive activity in the volcanic field. No deposits are known to have formed during any of the intense volcanic phases of the field. Intrusions were the apparent heat source, and structures related to the Mount Blitzen center were conduits for hydrothermal circulation. The ore-forming fluids interacted dominantly with Eocene igneous rocks. The two deposit types occur in a northern silver-rich zone that is characterized by relatively high Ag/Au ratios (110-150), narrow alteration zones, and quartz and carbonate veins developed mostly in intrusive dacite, and in a southern gold-rich zone that is typified by relatively low Ag/Au ratios (4-14), more widespread alteration, and quartz-fissure and stockwork veins commonly developed in tuffaceous sedimentary rocks. The deposit types have similar fluid inclusion and Pb and S isotope characteristics but different geochemical signatures. Quartz veins from both zones have similar thermal and paragenetic histories and contain fluid inclusions that indicate that fluids cooled from between 260?? and 230??C to less than 200??C. Fluid boiling may have contributed to precious-metal deposition. Veins in both zones have relatively high As and Sb and low Bi, Te, and W. The silver zone has high Ca

  8. Mineralogical and stable isotope studies of gold-arsenic mineralisation in the Sams Creek peralkaline porphyritic granite, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Faure, Kevin; Brathwaite, Robert L.

    2006-03-01

    At Sams Creek, a gold-bearing, peralkaline granite porphyry dyke, which has a 7 km strike length and is up to 60 m in thickness, intrudes camptonite lamprophyre dykes and lower greenschist facies metapelites and quartzites of the Late Ordovician Wangapeka formation. The lamprophyre dykes occur as thin (< 3 m) slivers along the contacts of the granite dyke. δ18Omagma values (+5 to +8‰, VSMOW) of the A-type granite suggest derivation from a primitive source, with an insignificant mature crustal contribution. Hydrothermal gold-sulphide mineralisation is confined to the granite and adjacent lamprophyre; metapelite country rocks have only weak hydrothermal alteration. Three stages of hydrothermal alteration have been identified in the granite: Stage I alteration (high fO2) consisting of magnetite-siderite±biotite; Stage II consisting of thin quartz-pyrite veinlets; and Stage III (low fO2) consisting of sulphides, quartz and siderite veins, and pervasive silicification. The lamprophyre is altered to an ankerite-chlorite-sericite assemblage. Stage III sulphide veins are composed of arsenopyrite + pyrite ± galena ± sphalerite ± gold ± chalcopyrite ± pyrrhotite ± rutile ± graphite. Three phases of deformation have affected the area, and the mineralised veins and the granite and lamprophyre dykes have been deformed by two phases of folding, the youngest of which is Early Cretaceous. Locally preserved early-formed fluid inclusions are either carbonic, showing two- or three-phases at room temperature (liquid CO2-CH4 + liquid H2O ± CO2 vapour) or two-phase liquid-rich aqueous inclusions, some of which contain clathrates. Salinities of the aqueous inclusions are in the range of 1.4 to 7.6 wt% NaCl equiv. Final homogenisation temperatures (Th) of the carbonic inclusions indicate minimum trapping temperatures of 320 to 355°C, which are not too different from vein formation temperatures of 340-380°C estimated from quartz-albite stable isotope thermometry. δ18O values

  9. Rajkonkoski gold-telluride ore occurrence: A new high prospective type of complex noble metal mineralization in the Karelian Proterozoic

    NASA Astrophysics Data System (ADS)

    Ivashchenko, V. I.; Sundblad, K.; Toritsin, A. N.; Golubev, A. I.; Lavrov, O. B.

    2008-11-01

    The Rajkonkoski ore occurrence is located within the region of the Karelian craton (AR2) and the Svecofennian folded belt (PR1) conjugation. It is presented by quartz-carbonate veins in metadoleriles and a zone of brecciation, crumple, and silification of carbonaceous shales within the volcanites of the Soanlakhtinsky suite (PR1). Ore mineralization in black shales and quartz veins has features of genetic similarity presenting different levels of the ore system controlled by different range strike-slip fault dislocations. At the Rajkonkoski ore occurrence, 41 ore minerals have been identified: 12 tellurides (native tellurium, hedleyite, pilsenite, tsumoite, tellurobismuthite, hessite, stuetzite, radclidzhite, joseite-B, altaite, volynskite, petzite); 4 bismuth-tellurides of the following compositions Bi3Te, Bi3Te2, BiTe4, PbBiTe; 3 selenides (clausthalite, tellurolaitakarite, native selenium); and 12 native metals (gold, silver, electrum, copper, iron, lead, tin, bismuth, osmiridium). The contents of the main ore minerals in places exceed 10%, and the concentrations of elements reach as follows: Cu and Pb, 5%; Zn, Bi, 1%; Se, 219 ppm; Te, 171 ppm; Sb, 3 ppm; As, 5 ppm; Ag, >0.1%; Au, 35.28 ppm. Ore mineralization is formed during the temperature interval from 550°C up to <170oC in the conditions of high activity of Se and Te, and beginning from medium temperatures (>300°C) complete miscibilities galenite-clausthalite and galenite-altaite are observed. In aggregate with a wide temperature interval (>400°C) of ore process evolution and mineral specia variety of telluride and native metal mineralizations, the original “torsion” of different temperature mineralizations makes it possible to determine the affiliation of the Rajkonkoski ore occurrence to the xenothermal type deposits or epithermal “alkaline,” gold-telluride A-type characterized by a close connection with magmatism of increased alkalinity and the original geochemical (Te-V-F) and mineral

  10. Concentration of gold in in situ laterites from Mato Grosso

    NASA Astrophysics Data System (ADS)

    Michel, Dominique

    1987-07-01

    The gold concentration studied is located in lateritic soils overlying Precambrian schists of the Cuiaba Group in Mato Grosso, Brazil. The following five horizons may be recognized from bottom to top: (1) a gray-blue altered schist horizon, (2) a red argillaceous alterite, (3) a horizon characterized by iron oxihydroxide-rich pebbles and quartz fragments in an iron oxihydroxide-rich matrix and clays, (4) an iron crust, and (5) the present soil. The most significant gold content is found in the third horizon just below the iron crust. According to geological study and morphological observations of the gold particles, the gold ore mined today is the result of two combined processes, i.e., the ferrallitic alteration of quartz lodes enclosed in schists and the effect of the red argillaceous alterite which acts as an impervious structure preventing the largest gold grains from migrating downward during their mechanical concentration.

  11. Microthermometric and stable isotopic (O and H) characteristics of fluid inclusions in the porphyry related Çöpler (İliç - Erzincan) gold deposit, central eastern Turkey

    NASA Astrophysics Data System (ADS)

    Canbaz, Oktay; Gökce, Ahmet

    2014-06-01

    The Çöpler gold deposit occurs within the stockwork of quartz hosted by the Çöpler granitoid (Eosen) and by surrounding metasediments of Keban metamorphic (Late Paleozoic - Early Mesozoic) and the Munzur limestones (Late Carboniferous - Early Cretaceous). Native gold accompanied by small amounts of chalcopyrite, pyrite, magnetite, maghemite, hematite, fahlerz, marcasite, bornite, galena, sphalerite, specular hematite, goethite, lepidochrosite and bravoitic pyrite within the stockwork ore veinlets. In addition, epidote (pistazite - zoisite), garnet, scapolite, chlorite, tremolite/actinolite, muscovite and opaque minerals were determined within the veinlets occurred in skarn zones. The study of fluid inclusions in quartz veinlets showed that the hydrothermal fluids contain CaCl2, MgCl2 and NaCl and the salinities of the two phases (L+V) inclusions range from 1.7 to 20.6% NaCl equivalent. Salinity values up to 44% were determined within the halite bearing three phases inclusions. Their homogenization temperature values have a wide range from 145.0 to 380.0°C, indicative of catathermal/hypothermal to epithermal conditions. The δ 18O and δD values of the fluid inclusion waters from the Çöpler granitoid correspond to those assigned to Primary Magmatic Water, those from the metasediments of Keban metamorphics fall outside of the Primary Magmatic and are within the Metamorphic Water field. A sample from a quartz vein within the skarn zone hosted by the Munzur limestones has a particularly low δD value. The results suggest that fluids derived from the granitoids were mixed with those derived from the metasediments of Keban metamorphics and the the Munzur limestones and resulting in quartz veinlets in these lithologies and the formation of stockwork ores. In view of the occurrence, the features described and processes envisaged for this study area may be applicable in similar settings.

  12. The geology of the Morro Velho gold deposit in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil

    USGS Publications Warehouse

    Vial, Diogenes Scipioni; DeWitt, Ed; Lobato, Lydia Maria; Thorman, Charles H.

    2007-01-01

    The Morro Velho gold deposit, Quadrilátero Ferrífero region, Minas Gerais, Brazil, is hosted by rocks at the base of the Archean Rio das Velhas greenstone belt. The deposit occurs within a thick carbonaceous phyllite package, containing intercalations of felsic and intermediate volcaniclastic rocks and dolomites. Considering the temporal and spatial association of the deposit with the Rio das Velhas orogeny, and location in close proximity to a major NNW-trending fault zone, it can be classified as an orogenic gold deposit. Hydrothermal activity was characterized by intense enrichment in alteration zones of carbonates, sulfides, chlorite, white mica±biotite, albite and quartz, as described in other Archean lode-type gold ores. Two types of ore occur in the deposit: dark gray quartz veins and sulfide-rich gold orebodies. The sulfide-rich orebodies range from disseminated concentrations of sulfide minerals to massive sulfide bodies. The sulfide assemblage comprises (by volume), on average, 74% pyrrhotite, 17% arsenopyrite, 8% pyrite and 1% chalcopyrite. The orebodies have a long axis parallel to the local stretching lineation, with continuity down the plunge of fold axis for at least 4.8 km. The group of rocks hosting the Morro Velho gold mineralization is locally referred to as lapa seca. These were isoclinally folded and metamorphosed prior to gold mineralization. The lapa seca and the orebodies it hosts are distributed in five main tight folds related to F1 (the best examples are the X, Main and South orebodies, in level 25), which are disrupted by NE- to E-striking shear zones. Textural features indicate that the sulfide mineralization postdated regional peak metamorphism, and that the massive sulfide ore has subsequently been neither metamorphosed nor deformed. Lead isotope ratios indicate a model age of 2.82 ± 0.05 Ga for both sulfide and gold mineralization. The lapa seca are interpreted as the results of a pre-gold alteration process and may be

  13. Frequency retrace of quartz oscillators

    NASA Astrophysics Data System (ADS)

    Euler, F.; Yannoni, N. F.

    Frequency retrace measurements are reported on oven controlled quartz oscillators utilizing AT and SC cut plated and BVA resonators. Prior to full aging, the retrace error is added to the aging effect. With well-aged resonators, after one or several on-off cycles, the frequency settles at a new level characteristic for intermittent operation. Severe frequency shifts have sometimes been found after the first restart following prolonged continuous operation. SC cut resonators appear to show distinctly smaller retrace errors than AT cut.

  14. Structural setting of gold deposits in the Oudalan-Gorouol volcano-sedimentary belt east of the Markoye Shear Zone, West African Craton

    NASA Astrophysics Data System (ADS)

    Tshibubudze, Asinne; Hein, Kim A. A.

    2013-04-01

    shears crosscut northwest-trending thrust-folds, or where northwest-trending thrust-folds coalesce with north-northeast trending shears. An intimate relationship thus exists between D1 and D2 structures and gold mineralisation in the OGB. Gold in sheeted-stockwork veins is hosted in competent rocks units including conglomerate beds, greywacke, quartzite, monzonite dykes, pyroxenite-gabbro sills and D1 buck quartz veins. Gold in fine veinlets may also be hosted in massive shale units.

  15. Integrating geologic and satellite imagery data for high-resolution mapping and gold exploration targets in the South Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Zoheir, Basem; Emam, Ashraf

    2012-05-01

    The granitoid-greenstone belts of the Arabian-Nubian Shield are well-endowed with lode gold and massive sulfide ores. Although generally characterized by excellent outcrops and arid desert realm, poor accessibility and lack of finance have been always retardant to detailed geologic mapping of vast areas of the shield. Lack of comprehensive geological information and maps at appropriate scales would definitely hinder serious exploration programs. In this study, band ratioing, principal component analysis (PCA), false-color composition (FCC), and frequency filtering (FFT-RWT) of ASTER and ETM+ data have substantially improved visual interpretation for detailed mapping of the Gebel Egat area in South Eastern Desert of Egypt. By compiling field, petrographic and spectral data, controls on gold mineralization have been assessed in terms of association of gold lodes with particular lithological units and structures. Contacts between foliated island arc metavolcanics and ophiolites or diorite are likely to be favorable loci for auriferous quartz veins, especially where the NW-SE foliation is deflected into steeply dipping NNW-trending shear planes. High-resolution mapping of the greenstone belt, structures and alteration zones associated with gold lodes in the study area suggests that dilatation by foliation deflection was related to emplacement of the Egat granitic intrusion, attendant with a sinistral transpression regime (i.e., ˜640-550 Ma?). Gold mineralization associated with granitoid intrusions in transpression-induced pull-apart structures elsewhere in the Eastern Desert (e.g., Fawakhir, Sukari and Hangaliya mines) emphasize the reliability of this setting as a model for gold exploration targets in greenstone terrains of Egypt, and may be elsewhere in the Arabian-Nubian Shield.

  16. Possible genetic link between I-type granite and orogenic gold deposits in Egypt (metamorphic-magmatic interaction?)

    NASA Astrophysics Data System (ADS)

    Abd El Monsef, Mohamed

    2015-04-01

    The orogenic gold deposits are a distinctive type of deposits that revealed unique temporal and spatial association with an orogeny. Where, the system of gold veins and related ore minerals was confined to hydrothermal solutions formed during compressional to transpressional deformation processes at convergent plate margins in accretionary and collisional orogens, with the respect to ongoing deep-crustal, subduction-related thermal processes. In Egypt, most of vein-type and dyke-type gold mineralization are restricted to granitic rocks or at least near of granitic intrusion that seems to have had an important influence on gold mineralization. Shear zone-related, mesothermal gold deposits of Fatira and Gidami mines in the northern Eastern Desert of Egypt are found within granitic bodies or at the contact between granites and metavolcanic rocks. The hosting-granitic rocks in Fatira and Gidami areas are mainly of granodioritic composition (I-Type granite) which is related to calc-alkaline magmatic series. However, Fatira granitoids were developed within island arc tectonic settings related to mature island arc system (Late-orogenic stage), at relatively low temperature (around 660° C) and medium pressure between (5 - 10 Kbar). On the other hand, Gidami granitoids were developed during the collision stage in continental arc regime related to active continental margin (Syn-orogeny), which were crystallized at relatively high temperature (700-720° C) and low pressure (around 0.1 Kbar). The ore mineralogy includes pyrite, chalcopyrite, sphalerite, covellite, ilmenite, goethite ± pyrrhotite ± pentlandite ± galena ± molybdenite. Native gold is detected only in Gidami mineralization as small inclusions within pyrite and goethite or as tiny grains scattered within quartz vein (in close proximity to the sulfides). In Fatira deposits, it is detected only by microprobe analysis within the crystal lattice of pyrite and jarosite. Fluid inclusions study for the mineralized

  17. Constraints on the development of orogenic style gold mineralisation at Mineral de Talca, Coastal Range, central Chile: evidence from a combined structural, mineralogical, S and Pb isotope and geochronological study

    NASA Astrophysics Data System (ADS)

    Firth, Emily A.; Holwell, David A.; Oliver, Nicholas H. S.; Mortensen, James K.; Rovardi, Matthew P.; Boyce, Adrian J.

    2015-08-01

    Mineral de Talca is a rare occurrence of Mesozoic, gold-bearing quartz vein mineralisation situated within the Coastal Range of northern Chile. Quartz veins controlled by NNW-SSE-trending faults are hosted by Devonian-Carboniferous metasediments of greenschist facies and younger, undeformed granitoid and gabbro intrusions. The principal structural control in the area is the easterly dipping, NNW-SSE-trending El Teniente Fault, which most likely developed as an extensional normal fault in the Triassic but was later reactivated as a strike-slip fault during subsequent compression. A dilational zone in the El Teniente Fault appears to have focussed fluid flow, and an array of NW-SE-trending veins is present as splays off the El Teniente Fault. Mineralised quartz veins typically up to a metre thick occur in three main orientations: (1) parallel to and within NNW-SSE-trending, E-dipping faults throughout the area; (2) along NW-SE-trending, NE-dipping structures which may also host andesite dykes; and (3) rarer E-W-trending, subvertical veins. All mineralised quartz veins show evidence of multiple fluid events with anastomosing and crosscutting veins and veinlets, some of which contain up to 3.5 vol.% base metal sulphides. Mineralogically, Au is present in three textural occurrences, identified by 3D CT scanning: (1) with arsenopyrite and pyrite in altered wall rock and along the margins of some of the veins; (2) with Cu-Pb-Zn sulphides within quartz veins; and (3) as nuggets and clusters of native Au within quartz. Fluid inclusion work indicates the presence of CO2-CH4-bearing fluids with homogenisation temperatures of ˜350 °C and aqueous fluids with low-moderate salinities (0.4-15.5 wt% NaCl eq.) with homogenisation temperatures in the range of 161-321 °C. The presence of Au with arsenopyrite and pyrite in structurally controlled quartz veins and in greenschist facies rocks with evidence of CO2-bearing fluids is consistent with an orogenic style classification for

  18. NMR characterization of shocked quartz

    SciTech Connect

    Boslough, M.B.; Cygan, R.T.; Assink, R.A.; Kirkpatrick, R.J.

    1994-03-01

    We have characterized experimentally and naturally-shocked quartz (both synthetic and natural samples) by solid state nuclear magnetic resonance (NMR) spectroscopy. Relaxation analysis of experimentally-shocked samples provides a means for quantitative characterization of the amorphous/disordered silica component NMR spectra demonstrate that magnetization in both the amorphous and crystalline components follows power-law behavior as a function of recycle time. This observation is consistent with the relaxation of nuclear spins by paramagnetic impurities. A fractal dimension can be extracted from the power-law exponent associated with each phase, and relative abundances can be extracted from integrated intensities of deconvolved peaks. NMR spectroscopy of naturally-shocked sandstone from Meteor Crater, Arizona (USA) led to the discovery of a new amorphous hydroxylated silica phase. Solid state NMR spectra of both experimentally and naturally shocked quartz were unexpectedly rich in microstructural information, especially when combined with relaxation analysis and cross-polarization studies. We suggest solid state NMR as a potentially useful tool for examining shock-induced microstructural changes in other inorganic compounds, with possible implications for shock processing of structural ceramics.

  19. Impact polymorphs of quartz: experiments and modelling

    NASA Astrophysics Data System (ADS)

    Price, M. C.; Dutta, R.; Burchell, M. J.; Cole, M. J.

    2013-09-01

    We have used the light gas gun at the University of Kent to perform a series of impact experiments firing quartz projectiles onto metal, quartz and sapphire targets. The aim is to quantify the amount of any high pressure quartz polymorphs produced, and use these data to develop our hydrocode modelling to enable the predict ion of the quantity of polymorphs produced during a planetary scale impact.

  20. Hydrothermal quartz formation during fluctuations of brittle shear-zone activity and fluid flow: grain growth and deformation structures of the Pfahl shear zone (Germany)

    NASA Astrophysics Data System (ADS)

    Yilmaz, T.; Prosser, G.; Liotta, D.; Kruhl, J. H.

    2012-12-01

    The Bavarian Pfahl shear zone is a WNW-ESE trending dextral strike-slip shear zone at the SW margin of the Bohemian Massif (Central Europe). It was discontinuously active during decreasing PT-conditions, i.e. from ductile to brittle, from the late-Carboniferous to the late-Cretaceous - Paleocene times. Triassic hydrothermal activity produced a 150 km long and 30-100 m wide quartz dyke along the main fault, surrounded by sheared basement rocks. Within a zone of >10 m metasomatism transformed the wall rocks to mostly kaolinite, chlorite and phyllosilicates. The quartz dyke exhibits a layered to lenticular and partly symmetric structure with different types of quartz masses, transected by a complex quartz vein network. This already indicates pulses of fluid flux and fragmentation during the lifetime of the shear zone. Analyses by optical microscopy, cathodoluminescence (CL) and SEM-EDX reveal at least four subsequent stages of quartz crystallization and fragmentation. (i) The oldest generation of quartz is represented by a homogeneous dark grey to reddish quartz mass made up by ~10-20 μm-sized crystals. It contains mm- to cm-sized angular wall-rock fragments, completely altered to kaolinite, indicating intense wall-rock alteration prior to the earliest event of silica precipitation. This rules out the possibility that the quartz mass developed from silicification of the wall rocks. This first type of quartz occurs as cm- to dm-large angular fragments in (ii) a light grey to pink quartz mass formed by ~10-50 μm-sized crystals. The different colours result from variable types and amounts of inclusions. Quartz of both generations shows random crystallographic orientations and complex inclusion structures. It probably developed during two fragmentation events and possibly from a silica gel precursor that crystallized after precipitation. (iii) The third quartz generation formed as a set of mm- to dm-wide veins roughly parallel to the trend of the Pfahl zone

  1. Pelvic Vein Embolisation in the Management of Varicose Veins

    SciTech Connect

    Ratnam, Lakshmi A.; Marsh, Petra; Holdstock, Judy M.; Harrison, Charmaine S.; Hussain, Fuad F.; Whiteley, Mark S.; Lopez, Anthony

    2008-11-15

    Pelvic vein incompetence is common in patients with atypical varicose veins, contributing to their recurrence after surgery. Therefore, refluxing pelvic veins should be identified and treated. We present our experience with pelvic vein embolisation in patients presenting with varicose veins. Patients presenting with varicose veins with a duplex-proven contribution from perivulval veins undergo transvaginal duplex sonography (TVUS) to identify refluxing pelvic veins. Those with positive scans undergo embolisation before surgical treatment of their lower limb varicose veins. A total of 218 women (mean age of 46.3 years) were treated. Parity was documented in the first 60 patients, of whom 47 (78.3%) were multiparous, 11 (18.3%) had had one previous pregnancy, and 2 (3.3%) were nulliparous. The left ovarian vein was embolised in 78%, the right internal iliac in 64.7%, the left internal iliac in 56.4%, and the right ovarian vein in 42.2% of patients. At follow-up TVUS, mild reflux only was seen in 16, marked persistent reflux in 6, and new reflux in 3 patients. These 9 women underwent successful repeat embolisation. Two patients experienced pulmonary embolisation of the coils, of whom 1 was asymptomatic and 1 was successfully retrieved; 1 patient had a misplaced coil protruding into the common femoral vein; and 1 patient had perineal thrombophlebitis. The results of our study showed that pelvic venous embolisation by way of a transjugular approach is a safe and effective technique in the treatment of pelvic vein reflux.

  2. Portal vein thrombosis.

    PubMed

    Basit, Syed Abdul; Stone, Christian D; Gish, Robert

    2015-02-01

    Portal vein thrombosis (PVT) is a rare event in the general medical setting that commonly complicates cirrhosis with portal hypertension, and can also occur with liver tumors. The diagnosis is often incidental when a thrombus is found in the portal vein on imaging tests. However, PVT may also present with clinical symptoms and can progress to life-threatening complications of ischemic hepatitis, liver failure, and/or small intestinal infarction. This article reviews the pathophysiology of this disorder, with a major focus on PVT in patients with cirrhosis, and presents detailed guidelines on optimal diagnostic and therapeutic strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Polymer-coated quartz crystal microbalance chemical sensor for heavy cations in water.

    PubMed

    Sartore, L; Barbaglio, M; Penco, M; Bergese, P; Bontempi, E; Colombi, P; Depero, L E

    2009-02-01

    A flow type quartz crystal microbalance (QCM) (bio)chemical sensor was developed for the real time determination of heavy metal ions that is suitable for environmental monitoring. A new process has been developed which enables to obtain surface-modified gold electrodes with high heavy metal ions complexing ability. The sensing performances of the piezoelectric sensor used in a flow-through setup were investigated by monitoring the frequency variation induced by the presence of heavy metal ions, such as copper and lead, as model ions, in aqueous media. X-Ray Reflectivity (XRR) and Atomic Force Microscopy (AFM) were carried out to characterize the unmodified and modified gold surfaces.

  4. Fluid inclusion gas chemistry as a potential minerals exploration tool: Case studies from Creede, CO, Jerritt Canyon, NV, Coeur d'Alene district, ID and MT, southern Alaska mesothermal veins, and mid-continent MVT's

    USGS Publications Warehouse

    Landis, G.P.; Hofstra, A.H.

    1991-01-01

    Recent advances in instrumentation now permit quantitative analysis of gas species from individual fluid inclusions. Fluid inclusion gas data can be applied to minerals exploration empirically to establish chemical (gas composition) signatures of the ore fluids, and conceptually through the development of genetic models of ore formation from a framework of integrated geologic, geochemical, and isotopic investigations. Case studies of fluid inclusion gas chemistry from ore deposits representing a spectrum of ore-forming processes and environments are presented to illustrate both the empirical and conceptual approaches. We consider epithermal silver-gold deposits of Creede, Colorado, Carlin-type sediment-hosted disseminated gold deposits of Jerritt Canyon, Nevada, metamorphic silver-base-metal veins of the Coeur d'Alene district, Idaho and Montana, gold-quartz veins in accreted terranes of southern Alaska, and the mid-continent base-metal sulfide deposits of Mississippi Valley-Type (MVT's). Variations in gas chemistry determine the redox state of the ore fluids, provide compositional input for gas geothermometers, characterize ore fluid chemistry (e.g., CH4CO2, H2SSO2, CO2/H2S, organic-rich fluids, gas-rich and gas-poor fluids), identify magmatic, meteoric, metamorphic, shallow and deep basin fluids in ore systems, locate upwelling plumes of magmatic-derived volatiles, zones of boiling and volatile separation, interfaces between contrasting fluids, and important zones of fluid mixing. Present techniques are immediately applicable to exploration programsas empirical studies that monitor fluid inclusion gas threshold concentration levels, presence or absence of certain gases, or changes in gas ratios. We suggest that the greater contribution of fluid inclusion gas analysis is in the integrated and comprehensive chemical dimension that gas data impart to genetic models, and in the exploration concepts based on processes and environments of ore formation derived from

  5. Lode-gold mineralization in the Tanami region, northern Australia

    NASA Astrophysics Data System (ADS)

    Huston, David L.; Vandenberg, Leon; Wygralak, Andrew S.; Mernagh, Terrence P.; Bagas, Leon; Crispe, Andrew; Lambeck, Alexis; Cross, Andrew; Fraser, Geoff; Williams, Nick; Worden, Kurt; Meixner, Tony; Goleby, Bruce; Jones, Leonie; Lyons, Pat; Maidment, David

    2007-01-01

    The Tanami region of northern Australia has emerged over the last two decades as the largest gold-producing region in the Northern Territory. Gold is hosted by epigenetic quartz veins in sedimentary and mafic rocks, and by sulfide-rich replacement zones within iron formation. Although limited, geochronological data suggest that most mineralization occurred at about 1,805-1,790 Ma, during a period of extensive granite intrusion, although structural relationships suggest that some deposits predate this period. There are three main goldfields in the Tanami region: the Dead Bullock Soak goldfield, which hosts the world-class Callie deposit; The Granites goldfield; and the Tanami goldfield. In the Dead Bullock Soak goldfield, deposits are hosted by carbonaceous siltstone and iron formation where a late (D5) structural corridor intersects an early F1 anticlinorium. In The Granites goldfield, deposits are hosted by highly sheared iron formation and are interpreted to predate D5. The Tanami goldfield consists of a large number of small, mostly basalt-hosted deposits that probably formed at a high structural level during D5. The D5 structures that host most deposits formed in a convergent structural regime with σ 1 oriented between E-W and ENE-WSW. Structures active during D5 include NE-trending oblique thrust (dextral) faults and ESE-trending (sinistral) faults that curve into N- to NNW-trending reverse faults localized in supracrustal belts between and around granite complexes. Granite intrusions also locally perturbed the stress field, possibly localizing structures and deposits. Forward modeling and preliminary interpretations of reflection seismic data indicate that all faults extend into the mid-crust. In areas characterized by the N- to NW-trending faults, orebodies also tend to be N- to NW-trending, localized in dilational jogs or in fractured, competent rock units. In areas characterized by ESE-trending faults, the orebodies and veins tend to strike broadly east

  6. Effects of accumulated film layers on the accuracy of quartz film thickness monitors

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Miller, W. E.

    1978-01-01

    The effect of accumulation layers on the accuracy of quartz thin-film thickness monitors is evaluated. Use of an expanded plane wave ultrasonic propagation theory correctly accounts for observed experimental data. The magnitude of the maximum errors calculated for simply reversing the order of a series of aluminum gold deposits is on the order of 5%. If one totally neglects intervening layers, multiple film propagation and nonlinearity can produce errors greater than 50%.

  7. Homestake Vein in Color

    NASA Image and Video Library

    2011-12-07

    This color view from NASA Mars Exploration Rover Opportunity of a mineral vein called Homestake and is found to be rich in calcium and sulfur. Homestake is near the edge of the Cape York segment of the western rim of Endeavour Crater.

  8. Portal vein thrombosis.

    PubMed

    Chawla, Yogesh K; Bodh, Vijay

    2015-03-01

    Portal vein thrombosis is an important cause of portal hypertension. PVT occurs in association with cirrhosis or as a result of malignant invasion by hepatocellular carcinoma or even in the absence of associated liver disease. With the current research into its genesis, majority now have an underlying prothrombotic state detectable. Endothelial activation and stagnant portal blood flow also contribute to formation of the thrombus. Acute non-cirrhotic PVT, chronic PVT (EHPVO), and portal vein thrombosis in cirrhosis are the three main variants of portal vein thrombosis with varying etiological factors and variability in presentation and management. Procoagulant state should be actively investigated. Anticoagulation is the mainstay of therapy for acute non-cirrhotic PVT, with supporting evidence for its use in cirrhotic population as well. Chronic PVT (EHPVO) on the other hand requires the management of portal hypertension as such and with role for anticoagulation in the setting of underlying prothrombotic state, however data is awaited in those with no underlying prothrombotic states. TIPS and liver transplant may be feasible even in the setting of PVT however proper selection of candidates and type of surgery is warranted. Thrombolysis and thrombectomy have some role. TARE is a new modality for management of HCC with portal vein invasion.

  9. [Deep vein thrombosis prophylaxis.

    PubMed

    Sandoval-Chagoya, Gloria Alejandra; Laniado-Laborín, Rafael

    2013-01-01

    Background: despite the proven effectiveness of preventive therapy for deep vein thrombosis, a significant proportion of patients at risk for thromboembolism do not receive prophylaxis during hospitalization. Our objective was to determine the adherence to thrombosis prophylaxis guidelines in a general hospital as a quality control strategy. Methods: a random audit of clinical charts was conducted at the Tijuana General Hospital, Baja California, Mexico, to determine the degree of adherence to deep vein thrombosis prophylaxis guidelines. The instrument used was the Caprini's checklist for thrombosis risk assessment in adult patients. Results: the sample included 300 patient charts; 182 (60.7 %) were surgical patients and 118 were medical patients. Forty six patients (15.3 %) received deep vein thrombosis pharmacologic prophylaxis; 27.1 % of medical patients received deep vein thrombosis prophylaxis versus 8.3 % of surgical patients (p < 0.0001). Conclusions: our results show that adherence to DVT prophylaxis at our hospital is extremely low. Only 15.3 % of our patients at risk received treatment, and even patients with very high risk received treatment in less than 25 % of the cases. We have implemented strategies to increase compliance with clinical guidelines.

  10. Squash vein yellowing virus

    USDA-ARS?s Scientific Manuscript database

    Cucurbits are an important crop of temperate, subtropical and tropical regions of the world. Squash vein yellowing virus (SqVYV) is a major viral pathogen of cucurbits. This chapter provides an overview of the biology of SqVYV and the disease it causes....

  11. Cucumber vein yellowing virus

    USDA-ARS?s Scientific Manuscript database

    Cucurbits are an important crop of temperate, subtropical and tropical regions of the world. Cucumber vein yellowing virus (CVYV) is a major viral pathogen of cucurbits. This chapter provides an overview of the biology of CVYV and the disease it causes....

  12. Portal Vein Thrombosis

    PubMed Central

    Chawla, Yogesh K.; Bodh, Vijay

    2015-01-01

    Portal vein thrombosis is an important cause of portal hypertension. PVT occurs in association with cirrhosis or as a result of malignant invasion by hepatocellular carcinoma or even in the absence of associated liver disease. With the current research into its genesis, majority now have an underlying prothrombotic state detectable. Endothelial activation and stagnant portal blood flow also contribute to formation of the thrombus. Acute non-cirrhotic PVT, chronic PVT (EHPVO), and portal vein thrombosis in cirrhosis are the three main variants of portal vein thrombosis with varying etiological factors and variability in presentation and management. Procoagulant state should be actively investigated. Anticoagulation is the mainstay of therapy for acute non-cirrhotic PVT, with supporting evidence for its use in cirrhotic population as well. Chronic PVT (EHPVO) on the other hand requires the management of portal hypertension as such and with role for anticoagulation in the setting of underlying prothrombotic state, however data is awaited in those with no underlying prothrombotic states. TIPS and liver transplant may be feasible even in the setting of PVT however proper selection of candidates and type of surgery is warranted. Thrombolysis and thrombectomy have some role. TARE is a new modality for management of HCC with portal vein invasion. PMID:25941431

  13. The Quartz Analog Watch: A Wonder Machine.

    ERIC Educational Resources Information Center

    Crane, H. Richard, Ed.

    1993-01-01

    Summarizes how a quartz watch works. Discusses the quartz crystal, its form, and how its frequency is set to a standard; the integrated circuit chip that drives the crystal in vibration, scales its frequency down, and forms pulses that turn the motor; and the motor that drives the gear train that turns the hands. (ZWH)

  14. The Quartz Analog Watch: A Wonder Machine.

    ERIC Educational Resources Information Center

    Crane, H. Richard, Ed.

    1993-01-01

    Summarizes how a quartz watch works. Discusses the quartz crystal, its form, and how its frequency is set to a standard; the integrated circuit chip that drives the crystal in vibration, scales its frequency down, and forms pulses that turn the motor; and the motor that drives the gear train that turns the hands. (ZWH)

  15. Sealed-in-quartz resistance heater

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B.

    1980-01-01

    Electric resistance quartz heater operates at 1,400 F without developing excessively hot spots that can fail prematurely. Since resistance element is sealed in quartz, heater can be used in hostile environments. Sealed construction also keeps heater from contaminating heated object.

  16. Precise Sealing of Fused-Quartz Ampoules

    NASA Technical Reports Server (NTRS)

    Debnan, W. J. J.; Clark, I. O.

    1982-01-01

    New technique rapidly evacuates and seals fused-quartz ampoule with precise clearance over contents without appreciably thinning ampoule walls. Quartz plug is lowered into working section of ampoule after ampoule has been evacuated. Plug is then fused to ampoule walls, forming vacuum seal. New technique maintains wall strength and pumping speed.

  17. Coexisting serpentine and quartz from carbonate-bearing serpentinized peridotite in the Samail Ophiolite, Oman

    NASA Astrophysics Data System (ADS)

    Streit, Elisabeth; Kelemen, Peter; Eiler, John

    2012-11-01

    Tectonically exposed mantle peridotite in the Oman Ophiolite is variably serpentinized and carbonated. Networks of young carbonate veins are prevalent in highly serpentinized peridotite, particularly near low-temperature alkaline springs emanating from the peridotite. An unusual feature in some samples is the coexistence of serpentine and quartz, which is not commonly observed in serpentinites. This assemblage is unstable with respect to serpentine + talc or talc + quartz under most conditions. Serpentine in the carbonated serpentinites in this study is more iron rich than in most serpentinites reported in previous studies, and samples with co-existing quartz contain the most iron-rich serpentines. Calculations of thermodynamic equilibria in the MgO-SiO2-H2O-CO2 system suggest that serpentine + quartz may be a stable assemblage at low temperatures (e.g., <~15-50 °C) and is stabilized to higher temperatures by preferential cation substitutions in serpentine over talc. Based on these calculations, serpentine + quartz assemblages could result from serpentinization at near-surface temperatures. Clumped isotope thermometry of carbonate veins yields temperatures within error of the observed temperatures in Oman groundwater for all samples analyzed, while the δ18O of water calculated to be in equilibrium with carbonate precipitated at those temperatures is within error of the observed isotopic composition of Oman groundwater for the majority of samples analyzed. As groundwater geochemistry suggests that carbonate precipitation and serpentinization occur concomitantly, this indicates that both hydration and carbonation of peridotite are able to produce extensive alteration at the relatively low temperatures of the near-surface weathering environment.

  18. Sinter-vein correlations at Buckskin Mountain, National district, Humboldt County, Nevada

    USGS Publications Warehouse

    Vikre, P.G.

    2007-01-01

    At Buckskin Mountain (elev 2,650 m, 8,743 ft), Humboldt County, Nevada, a hydrothermal system, imposed on a middle Miocene volcanic sequence with contrasting permeabilities and tensile strengths, produced alteration assemblages controlled by elevation, from Hg-mineralized sinter to subjacent precious metal veins over a vertical distance exceeding 790 m. Sinter and epiclastic deposits, interpreted to be remnant paleosurface basinal strata enclosed by 16.6 to 16.1 Ma rhyolites, overlie older volcaniclastic basinal deposits and were part of a regional fluvial-lacustrine system developed among ca. 16 to 12 Ma basalt-rhyolite eruptive centers throughout the northern Great Basin. Because of contrasting erosional resistance among altered and unaltered rocks, Buckskin Mountain represents inverse topography with sinter and silicified epiclastic deposits at the summit. Sinter and veins, correlated by common elements, similar mineralogy, age constraints, textures, S isotope compositions, and fluid inclusion microthermometry, were deposited by sinter-vein fluid, the first of two sequential hydrothermal fluid regimes that evolved in response to magmatism, tectonism, hydrology, and topography. Thermal quenching of distally derived sinter-vein fluid in planar conduits caused deposition of banded quartz-silicate-selenide-sulfide veins ???270 to > 440 m below sinter at 16.1 Ma; vei??ns were initially enveloped by zoned selvages of proximal K-feldspar + K-mica + quartz + pyrite and distal illite + chlorite + calcite + pyrite. Mixing of sinter-vein fluid with local meteoric water in saturated basinal deposits caused deposition of silica, Hg-Se-S-Cl minerals, and precious metals in sinter and epiclastic deposits. Elevated ???Se/???S in sinter-vein fluid, and the relatively large stability fields of reduced aqueous selenide species in the temperature range of 250?? to <100??C, enabled (but was not the cause of) codeposition of selenide-sulfide minerals and common element associations

  19. Arsenic speciation and mobility in surface water at Lucky Shot Gold Mine, Alaska.

    PubMed

    Torrance, Keith; Keenan, Helen; Munk, Leeann; Hagedorn, Birgit

    2012-12-01

    Historical mining in Alaska has created a legacy of approximately 6,830 abandoned mine sites which include adits, tailing piles and contaminated land that continue to impact surface and groundwater quality through run-off and leaching of potentially toxic metals, especially arsenic (As). One such site is the Lucky Shot Gold Mine in Hatcher Pass, south-central Alaska, which operated from 1920 until 1942, mining gold-bearing quartz veins hosted in a Cretaceous tonalite intrusion. Arsenopyrite (FeAsS) and pyrite (FeS(2)) present in the quartz veins contribute to elevated As levels in water draining, abandoned mine adits. As future underground mining at Lucky Shot may further adversely impact water quality, baseline geochemical studies were undertaken to assess As mobility in the vicinity of the mine adits. Water samples were collected from streams, adits and boreholes around the mine and analysed for major and minor elements using inductively coupled plasma-mass spectrometry (ICP-MS) and for anions by ion chromatography (IC). Arsenic species separation was performed in the field to determine the ratio of inorganic As(III)/As(V) using anion-exchange chromatography, following established methods. It was determined that water draining the adits had elevated levels of As roughly seventy times the United States Environmental Protection Agency Drinking Water Standard of 10 μg L(-1), although this was rapidly diluted downstream in Craigie Creek to <2 μg L(-1). Adit and surface water pH was circum-neutral and displayed no characteristics of acid mine drainage. Despite being well oxygenated, As(III) is the dominant As species in adit water, accounting for close to 100 % of total As. The proportion of As(V) increases downstream of the adits, as some As(III) is oxidized, but the speciation enhances arsenic mobility at the site. The δ(18)O measurements indicate that the water in the system has a short residence time as it is very similar to meteoric water, supporting the

  20. Colloidal and physical transport textures exhibited by electrum and naumannite in bonanza epithermal veins from western USA, and their significance

    USGS Publications Warehouse

    Saunders, James A.; Vikre, Peter G.; Unger, Derick L.; Beasley, Lee

    2010-01-01

    It is reasonably clear that disequilibrium or “far-from equilibrium” conditions lead to the formation of silica colloids and their deposition in many epithermal deposits. This implies ore-forming solutions had elevated concentrations of dissolved silica, well in excess of amorphous silica saturation. We have previously demonstrated that such colloidal silica particles were deposited in epithermal veins as silica gels and opal, which may later progress along a path to crystallize into more thermodynamically favored (less-soluble) silica phases such as quartz and chalcedony. Also, in some deposits, amorphous silica is co-deposited with precious-metal minerals, such as electrum in the banded super-bonanza ores of the Sleeper deposit (NV). Ore-mineral textures from some western USA bonanza epithermal ores indicate that two precious-metal phases (electrum and naumannite, Ag2Se) form colloidal particles that are transported by ore-forming fluids and are deposited either by aggregation (by sticking to other precious metal-particles) to make dendrites, or are deposited on the “lee” side of protrusion along vein walls (or perhaps by both processes). We can infer by analogy to silica that this also implies that ore-forming solutions contained elevated (supersaturated) dissolved concentrations of both gold and silver that formed colloidal particles under disequilibrium (often chaotic) conditions. Thus physical transport and deposition textures seem to indicate the presence of strongly precious-metal-enriched ore forming fluids, which led to (not surprisingly) the bonanza grades of these remarkable ores. What causes such a precious-metal-rich solution is debatable, but that is the subject of our continued investigations.

  1. Flexural-slip generated bedding-parallel veins from central Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Fowler, T. J.

    1996-12-01

    Thin continuous laminated bedding-parallel quartz veins (BPVs) with slip-striated and fibred vein walls occur within slates, or at their contact with sandstones, on the limbs of chevron folds in the Bendigo-Castlemaine goldfields, southeastern Australia. Two microstructural Types of BPV (I and II) have been previously recognized, and are confirmed in this study. Both types are concluded to have formed during and/or after crenulation cleavage (the first tectonic axial planar structure) in the wallrock slates, and during flexural-slip folding. Type I BPVs consist of syntaxial phyllosilicate inclusion trails, parallel to bedding, enclosing inclined inclusion bands, the latter formed by detachment of wallrock phyllosilicate particles from the walls of pressure solution-segmented discordant tension veins. Type I BPVs are formed by bedding-parallel shear, and grow in width by propagation of the discordant veins into the BPV walls. Type II veins are composed of quartz bands separated by wallrock slate seams which have split away from the vein wall during dilatant shear opening. They incorporate numerous torn-apart fragments of crenulated wallrock slate. Type I BPV inclusion band average spacing of 0.5 mm probably represents the magnitude of slip increments during stick-slip flexural-slip folding activity.

  2. Association of gold with uraninite and pyrobitumen in the metavolcanic rock hosted hydrothermal Au-U mineralisation at Rompas, Peräpohja Schist Belt, northern Finland

    NASA Astrophysics Data System (ADS)

    Molnár, Ferenc; Oduro, Harry; Cook, Nick D. J.; Pohjolainen, Esa; Takács, Ágnes; O'Brien, Hugh; Pakkanen, Lassi; Johanson, Bo; Wirth, Richard

    2016-06-01

    The Peräpohja Schist Belt comprises a supracrustal sequence of quartzites, mafic volcanics and volcaniclastics, carbonate rocks, black shales, mica schists and greywackes which were deposited from ca. 2.44 to ~1.91 Ga, during the rifting of the Archaean basement in the eastern part of the Fennoscandian shield. Metamorphism and multiple folding of the basin fill took place during the Svecofennian orogeny (1.9-1.8 Ga) followed by intrusions of late-orogenic (1.84-1.80 Ga) and post-orogenic granitoids (1.79-1.76 Ga). The Rompas Au-U mineralisation is hosted by deformed calcsilicate veins in mafic volcanic rocks and locally contains very high grade (>10,000 g/t Au) gold pockets with strict spatial association of gold minerals to uraninite and pyrobitumen. Chemical ages from the unaltered domains in the structure of uraninite indicate a 1.95-1.90 Ga age for the deposition of the primary, high temperature (e.g. U/Th < 100 in uraninite) hydrothermal uranium mineralisation. These data are in agreement with the results of previous U-Pb dating of uraninite by SIMS. Textural evidence suggests that metamorphic recrystallisation of the uraninite-bearing quartz-dolomite veins into calcsilicate mineral assemblages during the Svecofennian orogeny (1.9-1.8 Ga) was followed by a hydrocarbon-bearing fluid flow event and radiolytic polymerisation of hydrocarbons around grains of uraninite. Gold precipitated during a subsequent hydrothermal process in the fractures of uraninite, as well as in the cracks and on the botryoidal surfaces of uraninite-pyrobitumen nodules. Remobilisation and redeposition of uranium by these hydrothermal events produced secondary uraninite grains with chemical ages between 1.85 and 1.65 Ga. Native gold is associated with galena, altaite, hunchunite, nickeline and rare cobaltite, Pb-bearing maldonite, pyrite, pyrrhotite, chalcopyrite, molybdenite and titanite. Raman spectra show disordered structure of undeformed pyrobitumen nodules in contrast with the well

  3. Gold ores related to shear zones, West Santa Comba-Fervenza Area (Galicia, NW Spain): A mineralogical study

    NASA Astrophysics Data System (ADS)

    Castroviejo, R.

    1990-12-01

    Recent research has discovered high-grade Au ores in NNE-SSW trending shear zones in metamorphic proterozoic and palaeozoic terranes, some 40 km NW of Santiago de Compostela (NW Spain). The orebodies are bound to late-stage Hercynian structures, mainly due to brittle deformation, which are superimposed on earlier ductile shear zones, cutting through various catazonal lithologies, including ortho- and paragneisses, amphibolites, eclogites, and granites. Ore mineralogy, alteration, and ore textures define a frame whose main features are common to all prospects in the area. Main minerals are arsenopyrite and pyrite — accompanied by quartz, adularia, sericite, ± (tourmaline, chlorite, carbonates, graphite), as main gangue minerals -with subordinate amounts of boulangerite, bismuthinite, kobellite, jamesonite, chalcopyrite, marcasite, galena, sphalerite, rutile, titanite, scheelite, beryl, fluorite, and minor native gold, electrum, native bismuth, fahlore, pyrrhotite, mackinawite, etc., defining a meso-catathermal paragenesis. Detailed microscopic study allows the author to propose a general descriptive scheme of textural classification for this type of ore. Most of the ores fill open spaces or veins, seal cracks or cement breccias; disseminated ores with replacement features related to alteration (mainly silicification, sericitization, and adularization) are also observed. Intensive and repeated cataclasis is a common feature of many ores, suggesting successive events of brittle deformation, hydrothermal flow, and ore precipitation. Gold may be transported and accumulated in any of these events, but tends to be concentrated in later ones. The origin of the gold ores is explained in terms of hydrothermal discharge, associated with mainly brittle deformation and possibly related to granitic magmas, in the global tectonic frame of crustal evolution of West Galicia. The mineralogical and textural study suggests some criteria which will be of practical value for

  4. Deep-Subterranean Microbial Habitats in the Hishikari Epithermal Gold Mine: Active Thermophilic Microbial Communities and Endolithic Ancient Microbial Relicts.

    NASA Astrophysics Data System (ADS)

    Hirayama, H.; Takai, K.; Inagaki, F.; Horikoshi, K.

    2001-12-01

    Deep subterranean microbial community structures in an epithermal gold-silver deposit, Hishikari gold mine, southern part of Kyusyu Japan, were evaluated through the combined use of enrichment culture methods and culture-independent molecular surveys. The geologic setting of the Hishikari deposit is composed of three lithologies; basement oceanic sediments of the Cretaceous Shimanto Supergroup, Quaternary andesites, and auriferous quartz vein. We studied the drilled core rock of these, and the geothermal hot waters from the basement aquifers collected by means of the dewatering system located at the deepest level in the mining sites. Culture-independent molecular phylogenetic analyses of PCR-amplified ribosomal DNA (rDNA) recovered from drilled cores suggested that the deep-sea oceanic microbial communities were present as ancient indigenous relicts confined in the Shimanto basement. On the other hand, genetic signals of active thermophilic microbial communities, mainly consisting of thermophilic hydrogen-oxidizer within Aquificales, thermophilic methanotroph within g-Proteobacteria and yet-uncultivated bacterium OPB37 within b-Proteobacteria, were detected with these of oceanic relicts from the subterranean geothermal hot aquifers (temp. 70-100ºC). Successful cultivation and FISH analyses strongly supported that these thermophilic lithotrophic microorganisms could be exactly active and they grew using geochemically produced hydrogen and methane gasses as nutrients. Based on these results, the deep-subsurface biosphere occurring in the Hishikari epithermal gold mine was delineated as endolithic ancient microbial relicts and modern habitats raising active lithotrophic thermophiles associated with the geological and geochemical features of the epithermal gold deposit.

  5. [Puncture of the brachiocephalic vein].

    PubMed

    Schlarb, K

    1986-09-01

    A specific central vein catheter for puncture of the brachiocephalic vein has been developed which is provided with a valve by which air-embolism and unwanted bleeding from the catheter are eliminated. Typical and often serious complications, which can develop on insertion of central vein catheter, can nearly be totally avoided by the puncture technique described.

  6. The Fortuna gold skarn, Nambija district, Ecuador - A mineralogical and fluid inclusion study

    NASA Astrophysics Data System (ADS)

    Markowski, A.; Fontboté, L.; Chiaradia, M.

    2003-04-01

    north. Other retrograde minerals are K-feldspar, plagioclase, quartz and calcite. These minerals, together with epidote and chlorite, occur mainly within cm-wide veins (N40E-N60E) and irregular open spaces. Thinner calcite veinlets do not show preferential orientation. Native gold (Ag content: 5.9 to 14.6 wt%, traces of Cu and Hg) occurs with calcite and quartz within garnet fractures or between mineral joints. Hematite seems to appear more frequently than pyrite when gold is present and could indicate a high oxygen fugacity during gold deposition. Quartz inclusions have homogenization temperatures between 350°C and 200°C, low salinities (1.2-6.0 wt% NaCl eq.), and variable liquid/vapor ratios.

  7. Transcutaneous laser treatment of leg veins.

    PubMed

    Meesters, Arne A; Pitassi, Luiza H U; Campos, Valeria; Wolkerstorfer, Albert; Dierickx, Christine C

    2014-03-01

    Leg telangiectasias and reticular veins are a common complaint affecting more than 80% of the population to some extent. To date, the gold standard remains sclerotherapy for most patients. However, there may be some specific situations, where sclerotherapy is contraindicated such as needle phobia, allergy to certain sclerosing agents, and the presence of vessels smaller than the diameter of a 30-gauge needle (including telangiectatic matting). In these cases, transcutaneous laser therapy is a valuable alternative. Currently, different laser modalities have been proposed for the management of leg veins. The aim of this article is to present an overview of the basic principles of transcutaneous laser therapy of leg veins and to review the existing literature on this subject, including the most recent developments. The 532-nm potassium titanyl phosphate (KTP) laser, the 585-600-nm pulsed dye laser, the 755-nm alexandrite laser, various 800-983-nm diode lasers, and the 1,064-nm neodymium yttrium-aluminum-garnet (Nd:YAG) laser and various intense pulsed light sources have been investigated for this indication. The KTP and pulsed dye laser are an effective treatment option for small vessels (<1 mm). The side effect profile is usually favorable to that of longer wavelength modalities. For larger veins, the use of a longer wavelength is required. According to the scarce evidence available, the Nd:YAG laser produces better clinical results than the alexandrite and diode laser. Penetration depth is high, whereas absorption by melanin is low, making the Nd:YAG laser suitable for the treatment of larger and deeply located veins and for the treatment of patients with dark skin types. Clinical outcome of Nd:YAG laser therapy approximates that of sclerotherapy, although the latter is associated with less pain. New developments include (1) the use of a nonuniform pulse sequence or a dual-wavelength modality, inducing methemoglobin formation and enhancing the optical absorption

  8. Using the concentration-volume (C-V) fractal model in the delineation of gold mineralized zones within the Tepeoba porphyry Cu-Mo-Au, Balikesir, NW Turkey

    NASA Astrophysics Data System (ADS)

    Kumral, Mustafa; Abdelnasser, Amr; Karaman, Muhittin; Budakoglu, Murat

    2016-04-01

    The Tepeoba porphyry Cu-Mo-Au mineralization that located at the Biga peninsula (W Turkey) developed around the Eybek pluton concentrated at its southern contact. This mineralization that hosted in the hornfels rocks of Karakaya Complex is associated with three main alteration zones; potassic, phyllic and propylitic alterations along the fault controlled margins of the Eybek pluton and quartz stockwork veining as well as brecciation zones. As well as two mineralized zones were occurred in the mine area; hypogene and oxidation/supergene zone. The hypogene zone has differentiated alteration types; high potassic and low phyllic alteration, while the oxidation/supergene zone has high phyllic and propylitic alterations. This work deals with the delineation of gold mineralized zone within this porphyry deposit using the concentration-volume (C-V) fractal model. Five zones of gold were calculated using its power-law C-V relationship that revealed that the main phase of gold mineralization stated at 5.3083 ppm Au concentration. In addition, the C-V log-log plot shows that the highly and moderately Au mineralization zone developed in western part of deposit correlated with oxidation zone related to propylitic alteration. On the other hand, its weakly mineralization zone has a widespread in the hypogene zone related to potassic alteration. This refers to the enrichment of gold and depletion of copper at the oxidation/supergene zone is due to the oxidation/supergene alteration processes that enrich the deposits by the meteoric water. Keywords: Concentration-volume (C-V) fractal model; gold mineralized zone; Tepeoba porphyry Cu-Mo-Au; Balikesir; NW Turkey.

  9. Mechanical twinning in small quartz crystals

    NASA Astrophysics Data System (ADS)

    Laughner, J. W.; Newnham, R. E.; Cross, L. E.

    1982-02-01

    Quartz is known to be ferrobielastic; that is, quartz crystals have domain states (Dauphiné twins) which differ in their elastic compliance values and which can be switched by an appropriately oriented stress. Polycrystalline quartz has also been reported (Tullis 1970) to show preferential orientation of these domains following application of large uniaxial stresses. These experiments were designed to study twinning of synthetic quartz “grains” (minimum size 0.07×0.07×0.02 cm) in specially-constructed composites and of grains in three natural quartz aggregates — a quartzite, a novaculite, and a jasper. Backreflection X-ray techniques were used to verify twinning in the composite grains, while special electroding and electrical detection allowed the twinning processes to be examined in “real time.” Small synthetic quartz crystals were found to behave identically to the massive samples previously studied. Electrical pulses due to the reversal of piezoelectric coefficient d 11 in twinned quartz were detected from quartzite and from the man-made composites. Novaculite also gave electrical pulses which were probably from twinning (evidenced by the correlation of expected and observed pulse sizes and shapes), while no pulses from the jaspers indicative of twinning were detected. Grain size distribution differences are considered the main structural reason for the different behaviors.

  10. [Subclavian vein catheterization].

    PubMed

    Felsch, G; Richter, G

    1975-08-15

    On the basis of experiences with more than 500 catherizations of the subclavian vein, which were performed partly infraclavicularly, partly supraclavicularly, the two methods were critically estimated and compared with regard to their effectivity and complications. The range of indications is enlarged from the access through the veins for taking blood samples and the infusion therapy over the measurement of the central venous blood pressure to the floating catheterization, temporary external pacemaker stimulation and emergency dialysis. The mastering of the two techniques of puncture provides a high measure of security for the emergency case. On the assumption of an approach secundum artem and knowing and taking into consideration the possibilities of complication, which are particularly referred to, the two ways seem to be approximately of the same value.

  11. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Chemical controls on alteration and mineralization

    USGS Publications Warehouse

    Henley, R.W.; Berger, B.R.

    2011-01-01

    Large bulk-tonnage high-sulfidation gold deposits, such as Yanacocha, Peru, are the surface expression of structurally-controlled lode gold deposits, such as El Indio, Chile. Both formed in active andesite-dacite volcanic terranes. Fluid inclusion, stable isotope and geologic data show that lode deposits formed within 1500. m of the paleo-surface as a consequence of the expansion of low-salinity, low-density magmatic vapor with very limited, if any, groundwater mixing. They are characterized by an initial 'Sulfate' Stage of advanced argillic wallrock alteration ?? alunite commonly with intense silicification followed by a 'Sulfide' Stage - a succession of discrete sulfide-sulfosalt veins that may be ore grade in gold and silver. Fluid inclusions in quartz formed during wallrock alteration have homogenization temperatures between 100 and over 500 ??C and preserve a record of a vapor-rich environment. Recent data for El Indio and similar deposits show that at the commencement of the Sulfide Stage, 'condensation' of Cu-As-S sulfosalt melts with trace concentrations of Sb, Te, Bi, Ag and Au occurred at > 600 ??C following pyrite deposition. Euhedral quartz crystals were simultaneously deposited from the vapor phase during crystallization of the vapor-saturated melt occurs to Fe-tennantite with progressive non-equilibrium fractionation of heavy metals between melt-vapor and solid. Vugs containing a range of sulfides, sulfosalts and gold record the changing composition of the vapor. Published fluid inclusion and mineralogical data are reviewed in the context of geological relationships to establish boundary conditions through which to trace the expansion of magmatic vapor from source to surface and consequent alteration and mineralization. Initially heat loss from the vapor is high resulting in the formation of acid condensate permeating through the wallrock. This Sulfate Stage alteration effectively isolates the expansion of magmatic vapor in subsurface fracture arrays

  12. Static and Dynamic Behavior of Quartz Resonators

    DTIC Science & Technology

    1979-07-01

    representative of a long line of 110] W. J. Spencer and W. L. Smith , "Precision crystal frequency stan- dards," in Poc. 15th AFC3, May-June 1961, pp...1963, pp. 248- 266. The actual frequency instabilities observed in quartz crystal 1121 W. L. Smith and W. J. Spencer, "Quartz crystal thermometer for...for improved appear in Proc. 33rd AFCS, May-June 1979. quartz crystal oscillator performance," IEEE Trans. Instrum. [411 G. Theobald , G. Marianneau, R

  13. Epidote-Bearing Veins in the State 2-14 Drill Hole: Implications for Hydrothermal Fluid Composition

    NASA Astrophysics Data System (ADS)

    Caruso, L. J.; Bird, D. K.; Cho, M.; Liou, J. G.

    1988-11-01

    Epidote-bearing veins in State 2-14 drill core from 900 to 2960 m depth were examined using backscattered electron microscopy and electron probe microanalysis to characterize the mineralogy, parageneses, texture, and composition of vein minerals. In order of decreasing abundance, minerals in epidote-bearing veins are pyrite, calcite, K-feldspar, quartz, anhydrite, hematite, chlorite, Fe-Cu-Zn sulfides, actinolite, titanite, and allanite. The downhole distribution of minerals in epidote-bearing veins (+ pyrite and quartz) varies as a function of depth and includes: (1) calcite above ˜2000 m, (2) K-feldspar between 1700 and 2745 m, (3) anhydrite between 2195 and 2745 m, (4) hematite ± sulfides above 2773 m, and (5) actinolite below ˜2890 m. Where present, K-feldspar was the first mineral to precipitate in veins followed by epidote. In all other veins, epidote was the earliest vein mineral to form. Calcite, quartz, anhydrite, hematite, and sulfides were paragenetically later. Compositional zoning, common in most vein epidotes, is typically symmetric with Al-rich cores and Fe3+ -rich rims. The minimum mole fraction of Ca2Fe3Si3O12(OH) (XPs) in vein epidotes decreases systematically with increasing depth from ˜0.33 at 906 m to ˜0.21 at 2900 m, and the maximum XPs at any given depth is greater than 0.33. Thermodynamic analyses of phase relations among vein-filling minerals and aqueous solutions at depths near 1867 m and 300°C indicate that the modern reservoir fluid in the Salton Sea geothermal system is in equilibrium with calcite + hematite + quartz + epidote (XPs = 0.33) ± anhydrite. The predicted fugacity of CO2 (˜14 bars) for the modern Salton Sea brine is in close agreement with the calculated value of fCO2 for the 1867 m production fluid. Theoretical phase diagrams in the system CaO-K2O-Fe2O3-Al2O3-SiO2-H2O-O2-S2-CO2 demonstrate that the mineralogies and mineral parageneses recorded hi epidote-bearing veins and the observed variations in Al-Fe3+ content of

  14. Data on procedural handling and complications of pulmonary vein isolation using the pulmonary vein ablation catheter GOLD®.

    PubMed

    Leitz, Patrick; Güner, Fatih; Wasmer, Kristina; Foraita, Philip; Pott, Christian; Dechering, Dirk Georg; Zellerhoff, Stephan; Kochhäuser, Simon; Lange, Philipp Sebastian; Eckardt, Lars; Mönnig, Gerold

    2016-05-01

    The second-generation multi-electrode-phased radiofrequency pulmonary vein ablation catheter (PVAC GOLD(®)) was redesigned with the intent to improve its safety and efficacy. Using a prospectively designed single-centre database, we retrospectively analysed 128 consecutive patients (102 paroxysmal and 43 female) who underwent their first pulmonary vein isolation with the PVAC GOLD(®). The analysis focused on procedural data as well as in-hospital complications. Baseline characteristics of the patient collective were as follows: mean age 57.9 years, mean CHA2DS2-VASC was 1.73 ± 1.30; structural heart disease was present in seven patients. The PVAC GOLD(®) exhibited procedure durations of 123.1 min ± 27.9, duration of energy delivery was 18.3 min ± 11.4, and fluoroscopy duration was 16.0 min ± 7.7. The redesigned catheter shows major complication [major bleeding, transitory ischaemic attack (TIA), and pericardial tamponade] rates of 2.3% (n = 3). The overall rate of adverse events was 5.4% (n = 7). Bleeding complications were observed in three patients (2.3%), in particular there were two cases (1.6%) of minor bleeding and one case (0.8%) of major bleeding. Two patients suffered pericardial effusion, but there was no need for pericardiocentesis. Besides one TIA, there was no other thrombo-embolic event. Furthermore, one case of post-procedural fever was observed. No deaths, stroke, or haemorrhagic shock occurred. Of the 510 pulmonary veins, 508 could be reached with the PVAC GOLD(®) device using a non-steerable long sheath. The PVAC GOLD(®) seems to have an acceptable safety profile. The handling is comparable with the previous generation PVAC(®). Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  15. Quartz-Enhanced Photoacoustic Spectroscopy: A Review

    PubMed Central

    Patimisco, Pietro; Scamarcio, Gaetano; Tittel, Frank K.; Spagnolo, Vincenzo

    2014-01-01

    A detailed review on the development of quartz-enhanced photoacoustic sensors (QEPAS) for the sensitive and selective quantification of molecular trace gas species with resolved spectroscopic features is reported. The basis of the QEPAS technique, the technology available to support this field in terms of key components, such as light sources and quartz-tuning forks and the recent developments in detection methods and performance limitations will be discussed. Furthermore, different experimental QEPAS methods such as: on-beam and off-beam QEPAS, quartz-enhanced evanescent wave photoacoustic detection, modulation-cancellation approach and mid-IR single mode fiber-coupled sensor systems will be reviewed and analysed. A QEPAS sensor operating in the THz range, employing a custom-made quartz-tuning fork and a THz quantum cascade laser will be also described. Finally, we evaluated data reported during the past decade and draw relevant and useful conclusions from this analysis. PMID:24686729

  16. Fabrication of a novel quartz micromachined gyroscope

    NASA Astrophysics Data System (ADS)

    Xie, Liqiang; Xing, Jianchun; Wang, Haoxu; Wu, Xuezhong

    2015-04-01

    A novel quartz micromachined gyroscope is proposed in this paper. The novel gyroscope is realized by quartz anisotropic wet etching and 3-dimensional electrodes deposition. In the quartz wet etching process, the quality of Cr/Au mask films affecting the process are studied by experiment. An excellent mask film with 100 Å Cr and 2000 Å Au is achieved by optimization of experimental parameters. Crystal facets after etching seriously affect the following sidewall electrodes deposition process and the structure's mechanical behaviours. Removal of crystal facets is successfully implemented by increasing etching time based on etching rate ratios between facets and crystal planes. In the electrodes deposition process, an aperture mask evaporation method is employed to prepare electrodes on 3-dimensional surfaces of the gyroscope structure. The alignments among the aperture masks are realized by the ABM™ Mask Aligner System. Based on the processes described above, a z-axis quartz gyroscope is fabricated successfully.

  17. Quartz-enhanced photoacoustic spectroscopy: a review.

    PubMed

    Patimisco, Pietro; Scamarcio, Gaetano; Tittel, Frank K; Spagnolo, Vincenzo

    2014-03-28

    A detailed review on the development of quartz-enhanced photoacoustic sensors (QEPAS) for the sensitive and selective quantification of molecular trace gas species with resolved spectroscopic features is reported. The basis of the QEPAS technique, the technology available to support this field in terms of key components, such as light sources and quartz-tuning forks and the recent developments in detection methods and performance limitations will be discussed. Furthermore, different experimental QEPAS methods such as: on-beam and off-beam QEPAS, quartz-enhanced evanescent wave photoacoustic detection, modulation-cancellation approach and mid-IR single mode fiber-coupled sensor systems will be reviewed and analysed. A QEPAS sensor operating in the THz range, employing a custom-made quartz-tuning fork and a THz quantum cascade laser will be also described. Finally, we evaluated data reported during the past decade and draw relevant and useful conclusions from this analysis.

  18. Quartz Mountain/Oklahoma Summer Arts Institute.

    ERIC Educational Resources Information Center

    Frates, Mary Y.; Madeja, Stanley S.

    1982-01-01

    Describes the Quartz Mountain Oklahoma Summer Arts Institute program. It is designed to nurture artistic talent and to provide intensive arts experiences in music, dance, theater, and the visual arts for talented students aged 14-18. (AM)

  19. Quartz Mountain/Oklahoma Summer Arts Institute.

    ERIC Educational Resources Information Center

    Frates, Mary Y.; Madeja, Stanley S.

    1982-01-01

    Describes the Quartz Mountain Oklahoma Summer Arts Institute program. It is designed to nurture artistic talent and to provide intensive arts experiences in music, dance, theater, and the visual arts for talented students aged 14-18. (AM)

  20. New hole centers in natural quartz

    NASA Astrophysics Data System (ADS)

    Maschmeyer, D.; Lehmann, G.

    1983-11-01

    In natural citrines five new hole centers were detected and analyzed by electron paramagnetic resonance. An additional one was observed in rose-colored quartz crystals with radiation defects as the cause of coloration. Characteristic hyperfine patterns due to an adjacent aluminum impurity were resolved in the spectra of three of these centers. Their relations to other hole centers of well-known structure in quartz and fused silica are discussed and possible models for their structures are proposed.

  1. Quartz resonator fluid monitors for vehicle applications

    SciTech Connect

    Cernosek, R.W.; Martin, S.J.; Wessendorf, K.O.; Terry, M.D.; Rumpf, A.N.

    1994-09-01

    Thickness shear mode (TSM) quartz resonators operating in a new {open_quotes}Lever oscillator{close_quotes} circuit are used as monitors for critical automotive fluids. These monitors respond to the density and viscosity of liquids contacting the quartz surface. Sensors have been developed for determining the viscosity characteristics of engine lubricating oil, the state-of-charge of lead-acid storage batteries, and the concentration variations in engine coolant.

  2. Method of making a quartz resonator

    DOEpatents

    Vig, John R.; Filler, Raymond L.; Peters, R. Donald; Frank, James M.

    1981-01-01

    A quartz resonator is made from a chemically polished quartz plate. The plate is placed in an enclosure fitted with at least three mounting clips to receive the plate. The plate is secured to the clips with an electrically conductive adhesive capable of withstanding operation at 350 degrees C. The assembly is cleaned and a metallic electrode deposited onto the plate until the desired frequency is reached. The enclosure is then hermetically sealed. The resulting resonator can consistently withstand extremely high shocks.

  3. Three sets of crystallographic sub-planar structures in quartz formed by tectonic deformation

    NASA Astrophysics Data System (ADS)

    Derez, Tine; Pennock, Gill; Drury, Martyn; Sintubin, Manuel

    2016-05-01

    In quartz, multiple sets of fine planar deformation microstructures that have specific crystallographic orientations parallel to planes with low Miller-Bravais indices are commonly considered as shock-induced planar deformation features (PDFs) diagnostic of shock metamorphism. Using polarized light microscopy, we demonstrate that up to three sets of tectonically induced sub-planar fine extinction bands (FEBs), sub-parallel to the basal, γ, ω, and π crystallographic planes, are common in vein quartz in low-grade tectonometamorphic settings. We conclude that the observation of multiple (2-3) sets of fine scale, closely spaced, crystallographically controlled, sub-planar microstructures is not sufficient to unambiguously distinguish PDFs from tectonic FEBs.

  4. Electron Impact Ionization Cross Sections of Gold, Chromium and Iron

    DTIC Science & Technology

    1976-01-01

    experiment, the atom beam was collected on a gold-coated quartz crystal which served as a 203transducer to a Kronos film thickness monitor. By... Kronos Inc., 1647-7 W. Sepul- veda Blvd., Torrance, Calif. 90501 21. V.W. Hughes, H.L. Scbultz (ed.), Methods of Experimental Physics, Vol. 4A

  5. PROCESS FOR THE CONCENTRATION OF ORES CONTAINING GOLD AND URANIUM

    DOEpatents

    Gaudin, A.M.; Dasher, J.

    1958-06-10

    ABS>A process is described for concentrating certain low grade uranium and gold bearing ores, in which the gangue is mainly quartz. The production of the concentrate is accomplished by subjecting the crushed ore to a froth floatation process using a fatty acid as a collector in conjunction with a potassium amyl xanthate collector. Pine oil is used as the frothing agent.

  6. The metamorphosed molybdenum vein-type deposit of the Alpeinerscharte, Tyrol (Austria) and its relation to Variscan granitoids

    NASA Astrophysics Data System (ADS)

    Melcher, F.; Prochaska, W.; Raith, J. G.; Saini-Eidukat, B.

    1996-05-01

    The molybdenite deposit of the Alpeinerscharte (Austria) is situated in Variscan greenschist- to amphibolite-facies metamorphosed granodiorites and granites of the western Tauern Window. These granitoids represent strongly fractionated calc-alkaline I-type magmas with minor S-type components and reveal post-orogenic affinities. Molybdenum contents (average 4.3 ppm) are slightly above the general background of average granites. Molybdenite mineralization is restricted to narrow quartz veins and quartz vein selvages which are presently composed of biotite and (almandine-grossular) garnet. These selvages show geochemical features typical of intermediate argillic alteration in a hydrothermal system postdating granite intrusion: instability of plagioclase causes removal of Na, Ba, Sr, Pb and Eu, while K and Ca remain nearly constant. Rare earth elements (apart from Eu) and metals are extremely enriched. Application of Fe-Mg exchange (garnet-biotite) and oxygen isotope (quartz-garnet, quartz-plagioclase) geothermometers to vein selvage mineral assemblages reveals temperatures of the late-Alpine (35 55 Ma) metamorphic overprint (˜540 °C, 7 10 kbar). Leucocratic rocks composed of mainly orthoclase and plagioclase are occasionally spatially related to molybdenite-bearing veins; they are interpreted as episyenites formed by hydrothermal alteration of the host granite. This episyenitic alteration is characterized by a mass loss of ca. 30%, relative enrichment of plagioclase components, extreme depletion of Si, and minor depletion of Fe, Zn, Cu and Mo.

  7. Investigating Alpine fissure rutilated quartz to constrain timing and conditions of post-metamorphic hydrothermal fluid flow

    NASA Astrophysics Data System (ADS)

    Shulaker, D. Z.; Schmitt, A. K.; Zack, T.; Bindeman, I. N.

    2013-12-01

    Rutilated quartz, aka Venus' hair, is finely-acicular rutile intergrown with host quartz generated by fluid-mediated co-crystallization. It is commonly found in hydrothermal veins, including the renown cleft mineral locations of the Swiss Alps. Previous studies of Alpine cleft mineralizations used rare hydrothermal monazite [1] and titanite [2] to constrain vein formation to ~13.5-15.2 Ma, postdating peak metamorphism by ~2-4 Ma. Temperature (T) estimates of 150-450°C are based on fluid inclusions and bulk quartz-mineral oxygen isotope exchange equilibria, and formation pressures (P) are 0.5-2.5 kbar (for a geothermal gradient of 30°C/km) [2]. The potential of rutilated quartz as a thermochronometer, however, has not been harnessed previously. Here, we present the first results of age and P-T determinations for rutilated quartz from six locations in the Swiss Alps (San Gottardo; Feldbach, Binntal; Pi Aul, Vals; Faido, Leventina; Elm, Steinbach; Binntal). Samples were cut and mounted in epoxy discs to expose rutile (0.03 to 1 mm in diameter) and its host quartz which was also imaged in cathodoluminescence (CL). CL images for half of the samples' host quartz exhibited strong sector zoning, while others reveal only weak CL zonation. Isotopic and trace element analyses were carried out by SIMS using a CAMECA ims1270 for U-Pb, O-isotopes, and Ti-in-quartz, and a LA-ICP-MS system (213 nm New Wave laser coupled to an Agilent 7500a) for Zr-in-rutile. U-Pb rutile ages average 15.5×2.0 Ma (2σ). T estimates are 352-575°C (rutile-quartz oxygen isotopes in touching domains), 470-530°C (Zr-in-rutile assuming P = 0.5 and equilibrium with host-rock zircon), and 251-391°C (Ti-in-quartz at assumed P = 0.5 kbar and aTiO2 = 1). CL zones are isotopically unzoned. Rutile-quartz oxygen isotopes are pressure insensitive, whereas Zr-in-rutile and Ti-in-quartz are minimum temperatures. These results demonstrate that rutilated quartz can constrain timing and conditions of post

  8. Gold Coating

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Epner Technology Inc. responded to a need from Goddard Space Flight Center for the ultimate in electroplated reflectivity needed for the Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA). Made of beryllium, the MOLA mirror was coated by Epner Technology Laser Gold process, specially improved for the project. Improved Laser Gold- coated reflectors have found use in an epitaxial reactor built for a large semiconductor manufacturer as well as the waveguide in Braun-Thermoscan tympanic thermometer and lasing cavities in various surgical instruments.

  9. Geology, alteration, age, and origin of iron oxide-apatite deposits in Upper Eocene quartz monzonite, Zanjan district, NW Iran

    NASA Astrophysics Data System (ADS)

    Nabatian, Ghasem; Ghaderi, Majid; Corfu, Fernando; Neubauer, Franz; Bernroider, Manfred; Prokofiev, Vsevolod; Honarmand, Maryam

    2014-02-01

    Iron oxide-apatite deposits are present in Upper Eocene pyroxene-quartz monzonitic rocks of the Zanjan district, northwestern Iran. Mineralization occurred in five stages: (1) deposition of disseminated magnetite and apatite in the host rock; (2) mineralization of massive and banded magnetite ores in veins and stockwork associated with minor brecciation and calcic alteration of host rocks; (3) deposition of sulfide ores together with potassic alteration; (4) formation of quartz and carbonate veins and sericite, chlorite, epidote, silica, carbonate, and tourmaline alteration; and (5) supergene alteration and weathering. U-Pb dating of monazite inclusions in the apatite indicates an age of 39.99 ± 0.24 Ma, which is nearly coeval with the time of emplacement of the host quartz monzonite, supporting the genetic connection. Fluid inclusions in the apatite have homogenization temperatures of about 300 °C and oxygen isotopic compositions of the magnetite support precipitation from magmatic fluids. Late-stage quartz resulted from the introduction of a cooler, less saline, and isotopically depleted fluid. The iron oxide-apatite deposits in the Tarom area of the Zanjan district are typical of a magmatic-hydrothermal origin and are similar to the Kiruna-type deposits with respect to mineral assemblages, fabric and structure of the iron ores, occurrence of the ore bodies, and wall rock alteration.

  10. Fluid inclusions in quartz crystals from South-West Africa

    USGS Publications Warehouse

    Kvenvolden, K.A.; Roedder, E.

    1971-01-01

    Quartz crystals from calcite veins of unknown age in Precambrian metasedimentary rocks at Geiaus No. 6 and Aukam farms in South-West Africa contain both primary and secondary inclusions filled with one or a variable combination of: organic liquid, moderately saline aqueous liquid, dark-colored solid, and vapor. Analysis of these materials by microscopy and by gas chromatography and mass spectrometry shows the presence of constituents of both low and high molecular weights. The former include CH4, C2H6, C3H8 and possibly C4H10 as well as CO, CO2, H2O, N2 and H2. High molecular weight components are dominantly n-alkanes and isoprenoid hydrocarbons. The n-alkanes range from at least n-C10 to n-C33. Concentrations of n-alkanes larger than n-C17 decrease regularly with increasing carbon number. An homologous series of isoprenoid hydrocarbons ranging from at least C14 to C20 is present in unusually high concentrations. Pristane (C19) is most abundant, and C17 isoprenoid is least abundant. The molecular composition and distribution of hydrocarbons suggest biological precursors for these components. Consideration of data provided by freezing, crushing and heating experiments suggests that the pressures at the time these in part supercritical fluids were trapped probably exceeded 30-40 atm, and the minimum trapping temperature was about 120-160??C. Both primary and secondary inclusions apparently containing only organic materials were trapped by the growth of the host quartz from aqueous solution. The data obtained neither prove nor preclude Precambrian, Paleozoic or younger sources for the organic materials. ?? 1971.

  11. Gold Nanoantennas

    SciTech Connect

    2012-01-01

    An array of gold nanoantennas laced into an artificial membrane enhances the fluorescence intensity of three different molecules when they pass through plasmonic hot spots in the array. Watch for the blue, green and red flashes. The photobleaching at the end of each fluorescence event (white flashes) is indicative of single molecule observations.

  12. An experimental verification of the possible influence of gas nano-bubbles on the response of an electrochemical quartz crystal microbalance.

    PubMed

    Tsionsky, Vladimir; Kaverin, Alexander; Daikhin, Leonid; Katz, Galina; Gileadi, Eliezer

    2005-04-21

    Electrochemical removal of oxygen and hydrogen from aqueous solution in the vicinity of gold electrodes, with simultaneous measurements of the response of the quartz crystal microbalance, show no evidence of gas nano-bubbles attached to the surface, irrespective of its roughness and hydrophobicity. The contact between gold and frozen electrolyte, which forms a liquid-like layer between them, also does not contain gas bubbles. These statements could be extended to nano-bubbles with characteristic dimensions larger than a few nanometers.

  13. Gallium arsenide/gold nanostructures deposited using plasma method

    SciTech Connect

    Mangla, O.; Roy, S.; Annapoorni, S.

    2016-05-23

    The fabrication of gallium arsenide (GaAs) nanostructures on gold coated glass, quartz and silicon substrates using the high fluence and highly energetic ions has been reported. The high fluence and highly energetic ions are produced by the hot, dense and extremely non-equilibrium plasma in a modified dense plasma focus device. The nanostructures having mean size about 14 nm, 13 nm and 18 nm are deposited on gold coated glass, quartz and silicon substrates, respectively. The optical properties of nanostructures studied using absorption spectra show surface plasmon resonance peak of gold nanoparticles. In addition, the band-gap of GaAs nanoparticles is more than that of bulk GaAs suggesting potential applications in the field of optoelectronic and sensor systems.

  14. Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Amer, Reda; Kusky, Timothy; El Mezayen, Ahmed

    2012-01-01

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Phased Array L-band Synthetic Aperture Radar (PALSAR) images covering the Um Rus area in the Central Eastern Desert of Egypt were evaluated for mapping geologic structure, lithology, and gold-related alteration zones. The study area is covered by Pan-African basement rocks including gabbro and granodiorite intruded into a variable mixture of metavolcanics and metasediments. The first three principal component analyses (PCA1, PCA2, PCA3) in a Red-Green-Blue (RGB) of the visible through shortwave-infrared (VNIR + SWIR) ASTER bands enabled the discrimination between lithological units. The results show that ASTER band ratios ((2 + 4)/3, (5 + 7)/6, (7 + 9)/8) in RGB identifies the lithological units and discriminates the granodiorite very well from the adjacent rock units.The granodiorites are dissected by gold-bearing quartz veins surrounded by alteration zones. The microscopic examination of samples collected from the alteration zones shows sericitic and argillic alteration zones. The Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) supervised classification methods were applied using the reference spectra of the USGS spectral library. The results show that these classification methods are capable of mapping the alteration zones as indicated by field verification work. The PALSAR image was enhanced for fracture mapping using the second moment co-occurrence filter. Overlying extracted faults and alteration zone classification images show that the N30E and N-S fractures represent potential zones for gold exploration. It is concluded that the proposed methods can be used as a powerful tool for ore deposit exploration.

  15. Caldera-related gold mineralization of the El Limón mining district, western Nicaragua

    NASA Astrophysics Data System (ADS)

    Malone, Gary B.; Stoiber, Richard E.

    1987-08-01

    The town of El Limón, the center of a small gold mining district, lies 36 km northeast of León, Nicaragua. This paper reports on the sequence of volcanic rocks in the district, the structures in these volcanics and the relationship of the gold veins to them.

  16. Lithogeochemistry and fluid inclusions of an Au-Ag vein deposit in a granodiorite intrusive

    SciTech Connect

    Hahn, R.; Ikramuddin, M.

    1985-01-01

    Forty-eight samples of altered and unaltered rocks and quartz veins from the Acme mine in northeast Washington, an Au-Ag vein deposit in a granodiorite intrusive, have been analyzed for SiO/sub 2/, Al/sub 2/O/sub 3/, Fe/sub 2/O/sub 3/, Feo, MgO, CaO, Na/sub 2/O, K/sub 2/O, TiO/sub 2/, MnO, P/sub 2/O/sub 5/, H/sub 2/O, CO/sub 2/, Ag, Au, Ba, Cu, Pb, Rb, Sr, Tl, and Zn. A comparison of major and trace elements shows that the altered granodiorite is enriched in SiO/sub 2/, Fe/sub 2/O/sub 3/, K/sub 2/O, Ag, Au, Ba, Cu, Pb, Rb, Tl, and Zn and depleted in Al/sub 2/O/sub 3/, FeO, MgO, CaO, Na/sub 2/O, TiO/sub 2/, MnO, P/sub 2/O/sub 5/, and Sr. The average contents of Au in unaltered and altered granodiorite and quartz veins are 9 ppb. 270 ppb and 1020 ppb respectively. The average Ba/Tl ratio in the altered samples decrease and average Rb/Sr and Tl/Sr ratios increase. K, Rb, and Tl are enriched in the altered granodiorite by factors of 1.5, 1.6, and 1.4 respectively. Tl is not enriched relative to Rb and K in the altered samples due to the high temperature of the deposit. The Ba/Tl, K/Tl and K/Rb ratios do not show complete separation of altered from unaltered samples. However, the Ba/Tl and K/Tl ratios in the quartz vein are significantly lower than the unaltered and altered granodiorite. This is due to the enrichment of Tl over K and Rb in the quartz veins. The Rb/Sr and Tl/Sr ratios are higher in the altered granodiorite and quartz veins compared to unaltered samples. The enrichment of Tl and presence of low Ba/Tl and high Rb/Sr and Tl/Sr ratios in a granodiorite indicate that the rocks are hydrothermally altered and represent a possible Au-Ag target.

  17. Quartz resonator state-of-charge monitor for lead-acid batteries

    SciTech Connect

    Cernosek, R.W.; Martin, S.J.; Wessendorf, K.O.; Rumpf, A.N.

    1994-06-01

    We have demonstrated that a thickness shear mode quartz resonator can be used as a real-time, in situ monitor of the state-of-charge of lead-acid batteries. The resonator is sensitive to hanges in the density and viscosity of the sulfuric acid electrolyte. Both of these liquid parameters vary monotonically with the battery state-of-charge. This new monitor is more precise than sampling hydrometers, and since it is compatible with the Corrosive electrolyte environment, it can be used for in situ monitoring. A TSM resonator consists of gold electrodes deposited on opposite surfaces of a thin AT-cut quartz crystal. When an RF voltage is applied to the electrodes, a shear strain is introduced in the piezoelectric quartz and mechanical resonance occurs between the surfaces. A liquid in contact with one of the quartz surfaces is viscously entrained, which perturbs the resonant frequency and resonance magnitude. If the surface is smooth, the changes in both frequency and magnitude are proportional to ({rho}{eta}) {sup {1/2}}, where {rho} is the liquid density and {eta} is the viscosity.

  18. Detection of H3N2 canine influenza virus using a Quartz Crystal Microbalance.

    PubMed

    Kim, Yong Kwan; Lim, Seong-In; Cho, Yoon-Young; Choi, Sarah; Song, Jae-Young; An, Dong-Jun

    2014-11-01

    Label-free technology-based Quartz Crystal Microbalance (QCM) is an emerging tool in biological research. In this study, QCM was applied successfully for the rapid diagnosis of H3N2 canine influenza virus (CIV) infection. ProLinker™ B, a calixcrown derivative, enables antibodies to be attached to a gold-coated quartz surface and positioned in a regular pattern with the correct orientation. The ProLinker-coated quartz-based assay detected H3N2 CIV at lower concentrations (2(2) HA unit) than a commercial immunochromatography Ag kit (2(3) HA unit). Three independent experiments in which H3N2 CIV-positive reference samples were applied to an anti-CIV nucleoprotein (NP) monoclonal antibody immobilized on a quartz surface yielded standard deviations (SD) of ≤5%, indicating high reproducibility. In addition, the QCM assay with a cut-off value (-140 Hz) showed 97.1% (34/35) sensitivity and 94.7% (36/38) specificity in testing 73 field saliva samples, respectively. Thus, the QCM assay described herein will be a valuable tool for the rapid diagnosis of H3N2 CIV infection with high sensitivity and specificity, and should overcome several of the disadvantages and limitations inherent in the commercial immunochromatography Ag kit.

  19. Quartz resonator state-of-charge monitor for lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Cernosek, R. W.; Martin, S. J.; Wessendorf, K. O.; Rumpf, A. N.

    We have demonstrated that a thickness shear mode quartz resonator can be used as a real-time, in situ monitor of the state-of-charge of lead-acid batteries. The resonator is sensitive to changes in the density and viscosity of the sulfuric acid electrolyte. Both of these liquid parameters vary monotonically with the battery state-of-charge. This new monitor is more precise than sampling hydrometers, and since it is compatible with the corrosive electrolyte environment, it can be used for in situ monitoring. A TSM resonator consists of gold electrodes deposited on opposite surfaces of a thin AT-cut quartz crystal. When an RF voltage is applied to the electrodes, a shear strain is introduced in the piezoelectric quartz and mechanical resonance occurs between the surfaces. A liquid in contact with one of the quartz surfaces is viscously entrained, which perturbs the resonant frequency and resonance magnitude. If the surface is smooth, the changes in both frequency and magnitude are proportional to (rho(eta))(exp (1/2)), where rho is the liquid density and eta is the viscosity.

  20. Infrared imaging of varicose veins

    NASA Astrophysics Data System (ADS)

    Noordmans, Herke Jan; de Zeeuw, Raymond; Verdaasdonk, Ruud M.; Wittens, Cees H. A.

    2004-06-01

    It has been established that varicose veins are better visualized with infrared photography. As near-infrared films are nowadays hard to get and to develop in the digital world, we investigated the use of digital photography of varicose veins. Topics that are discussed are illumination setup, photography and digital image enhancement and analysis.

  1. Examining the Effect of Water on the Strength of Quartz Using Polycrystalline Quartz Aggregates

    NASA Astrophysics Data System (ADS)

    Barbery, A. M.; Holyoke, C. W., III; Kronenberg, A. K.; Fukuda, J. I.

    2015-12-01

    Quartzite rheology has been extensively studied to model the strength of continental crust. Previous studies have shown that the presence of water in fluid inclusions weakens polycrystalline quartz, and this weakening is usually related to water fugacity. However, no attempt has been made to determine the effect of water content on the strength of quartz. We have deformed hot-pressed quartz aggregates with low water contents at a pressure of 1.5 GPa, a temperature of 1200°C, and strain rates of 10-4 to 10-6/s. Fine synthetic quartz powders were hot-pressed at 1120°C and 1.5 GPa for 24 hours to create quartzites with a grain size of ~20 microns and water contents of <150 H/106Si. The water band in FTIR spectra collected from the hot-pressed quartz aggregates is similar to the broad water band observed in natural quartzites (i.e. free water in fluid inclusions) rather than the spectra observed in synthetic quartz crystals. Results of deformation experiments indicate that the strain rate sensitivity of the strength of these quartz aggregates is consistent with deformation by dislocation creep (n~3.5). Microstructures observed in samples from these experiments include undulatory extinction, flattened grains, and bulging grain boundaries, which are also consistent with dislocation creep. The strength of these quartz aggregates deformed with low water contents (<150 H/106 Si) are an order of magnitude greater than the strengths predicted by polycrystalline quartz flow laws derived from quartzites with high (>2000 H/106Si) water contents. Our results indicate that quartz strength is dependent on water content, in addition to being dependent on water fugacity.

  2. Detrital zircon without detritus: a result of 496-Ma-old fluid-rock interaction during the gold-lode formation of Passagem, Minas Gerais, Brazil

    NASA Astrophysics Data System (ADS)

    Cabral, Alexandre Raphael; Zeh, Armin

    2015-01-01

    Zircon and xenotime occur in tourmaline-rich hydrothermal pockets in the auriferous lode of Passagem de Mariana, a world-class gold deposit. Zircon grains show pristine oscillatory zoning, but many of them are altered, exhibiting porous domains filled with graphite. Uranium-Pb dating of zircon, using in-situ laser ablation-inductively coupled plasma-mass spectrometry, yields ages between 3.2 and 2.65 Ga, which match those for detrital zircon of the footwall quartzite of the > 2.65-Ga-old Moeda Formation. Discordant analyses point to zircon-age resetting during the Brasiliano orogeny at ca. 500 Ma. This interpretation is supported by U-Pb dating of euhedral xenotime immediately adjacent to altered zircon within the same tourmaline pocket. The xenotime grains give a Concordia age of 496.3 ± 2.0 Ma, which is identical to that determined for monazite of a quartz-hematite vein-type deposit (i.e., jacutinga lode) in the region (Itabira), another important mineralisation style of gold. The occurrence of relatively abundant inherited detrital zircon, but absence of rock fragments in the tourmaline pocket investigated here, implies that detrital material was completely replaced by tourmaline. The graphite overprint on the altered detrital zircon attests to a reducing fluid, which was likely formed by fluid-rock interaction with carbonaceous phyllite of the Batatal Formation, the host rock of the Passagem lode.

  3. Prospects of gold mineralization in the Gilgit-Baltistan Province of Pakistan

    NASA Astrophysics Data System (ADS)

    Shah, M. T.; Khan, S. D.; Tahirkheli, T.; Ahmad, L.; Miandad, S.; Rehman, A. U.; Ali, L.

    2012-12-01

    mainly pyrite and chalcopyrite with subordinate amount of bornite and tetrahedrite. Surface leaching of these phases to malachite, azurite and limonite is common. Quartz veining, silicification, carbonization and at places brecciation are the common features of these alteration zones. The concentrations of gold were found in the range of 3ppb to 112ppb, <5- 95ppb, 1ppb to 545ppb, 1ppb to 385 and 1ppb to 318ppb in the alteration zones of Golo Das, Bagrot valley, Shigri Bala, Machulu and Ranthak areas respectively. The barren rock samples have generally <5ppb gold. This is indicative of the multi-times enrichment of gold in the alteration zones. The sulfide mineralization along with gold in the alteration zones could be attributed to the hydrothermal/epithermal activity involving meteoric, igneous and or metamorphic fluid individually or mixture of these. The occurrence of dioritic intrusions (igneous fluid source) and the transitional dilated zones (metamorphic fluid source) on the major reactivated thrust fault (i.e., NSZ) in the vicinity of these alteration zones strengthen these observations. However, isotopic studies are underway to solve this problem. This study suggests that the alteration zones in the studied areas have the potential to be explored in detail for possible economical gold mineralization.

  4. The economics of vein disease.

    PubMed

    Sales, Clifford M; Podnos, Joan; Levison, Jonathan

    2007-09-01

    The management of cosmetic vein problems requires a very different approach than that for the majority of most other vascular disorders that occur in a vascular surgery practice. This article focuses on the business aspects of a cosmetic vein practice, with particular attention to the uniqueness of these issues. Managing patient expectations is critical to the success of a cosmetic vein practice. Maneuvering within the insurance can be difficult and frustrating for both the patient and the practice. Practices should use cost accounting principles to evaluate the success of their vein work. Vein surgery--especially if performed within the office--can undergo an accurate break-even analysis to determine its profitability.

  5. The management of varicose veins.

    PubMed

    Lin, Fan; Zhang, Shiyi; Sun, Yan; Ren, Shiyan; Liu, Peng

    2015-01-01

    This study aimed to review the current management modalities for varicose veins. There are a variety of management modalities for varicose veins. The outcomes of the treatment of varicose veins are different. The papers on the management of varicose veins were reviewed and the postoperative complications and efficacy were compared. Foam sclerotherapy and radiofrequency ablation were associated with less pain and faster recovery than endovenous laser ablation and surgical stripping. Patients undergoing endovenous laser ablation and radiofrequency ablation are most likely to have a faster recovery time and earlier return to work in comparison with those undergoing conventional high ligation and stripping. A randomized controlled study in multiple centers is warranted to verify which approach is better than others for the treatment of varicose veins.

  6. The Management of Varicose Veins

    PubMed Central

    Lin, Fan; Zhang, Shiyi; Sun, Yan; Ren, Shiyan; Liu, Peng

    2015-01-01

    This study aimed to review the current management modalities for varicose veins. There are a variety of management modalities for varicose veins. The outcomes of the treatment of varicose veins are different. The papers on the management of varicose veins were reviewed and the postoperative complications and efficacy were compared. Foam sclerotherapy and radiofrequency ablation were associated with less pain and faster recovery than endovenous laser ablation and surgical stripping. Patients undergoing endovenous laser ablation and radiofrequency ablation are most likely to have a faster recovery time and earlier return to work in comparison with those undergoing conventional high ligation and stripping. A randomized controlled study in multiple centers is warranted to verify which approach is better than others for the treatment of varicose veins. PMID:25594661

  7. Geology and lithogeochemistry of the Ren gold prospect, Elko County, Nevada - the role of rock sampling in exploration for deep Carlin-type deposits

    USGS Publications Warehouse

    Albino, G.V.

    1994-01-01

    The Ren gold prospect, Elko County, Nevada, is in the northern part of the Carlin trend, two kilometers northwest of the recently-discovered, high-grade Purple Vein deposit. The Ren area is underlain mainly by Paleozoic sedimentary rocks, consisting of limestone, calcareous siltstone, and mudstone of the eastern (carbonate) assemblage, overlain in thrust contact by chert, quartzite, and mudstone of the western (siliceous) assemblage. Cretaceous(?) granodiorite porphyry and hornblende porphyry dikes have intruded the sedimentary rocks along north-striking faults. Three stages of mineralization include a pre- or syntectonic base metal-barite assemblage, a middle stage of Ag- and Sb-rich jasperoid, and a late Au-rich stage responsible for the potentially economic mineralization at the prospect. The latter two stages of alteration and mineralization were focused along steep east-dipping faults and dikes, and the nearly flat-lying contact between lower massive limestone and laminated calcareous siltstone. Mineralization is present between 380 and 500 m below the surface. Alteration includes decalcification and weak silicification in siltstone, and formation of massive jasperoid in the upper part of the limestone unit. Alteration of dikes is mainly sericite-quartz-pyrite, with late pyrite-quartz-kaolinite. The element suite characteristic of Au-stage mineralization includes Au, As, and Hg with minor Ag and Hg; Ag and Sb are most enriched in the earlier jasperoid event. Haloes of As and Hg extend at least 80 m above the Au mineralization, but no anomalies are present at the surface. Gold anomalies are more widespread, and extend to shallower depths, but are less coherent. ?? 1994.

  8. Pelvic venous reflux in males with varicose veins and recurrent varicose veins.

    PubMed

    Dabbs, Emma B; Dos Santos, Scott J; Shiangoli, Irenie; Holdstock, Judith M; Beckett, David; Whiteley, Mark S

    2017-01-01

    Objectives To report on a male cohort with pelvic vein reflux and associated primary and recurrent lower limb varicose veins. Methods Full lower limb duplex ultrasonography revealed significant pelvic contribution in eight males presenting with bilateral lower limb varicose veins. Testicular and internal iliac veins were examined with either one or a combination of computed tomography, magnetic resonance venography, testicular, transabdominal or transrectal duplex ultrasonography. Subsequently, all patients received pelvic vein embolisation, prior to leg varicose vein treatment. Results Pelvic vein reflux was found in 23 of the 32 truncal pelvic veins and these were treated by pelvic vein embolisation. Four patients have since completed their leg varicose vein treatment and four are undergoing leg varicose vein treatments currently. Conclusion Pelvic vein reflux contributes towards lower limb venous insufficiency in some males with leg varicose veins. Despite the challenges, we suggest that pelvic vein reflux should probably be investigated and pelvic vein embolisation considered in such patients.

  9. Adsorption of goethite onto quartz and kaolinite

    USGS Publications Warehouse

    Goldberg, M.C.; Weiner, Eugene R.; Boymel, P.M.

    1984-01-01

    The adsorption of colloidal goethite onto quartz and kaolinite substrates has been studied as a function of pH and NaCl concentration. Goethite adsorption was measured quantitatively by Fourier-transform infrared spectroscopy. The results indicate that adsorption onto both substrates is due primarily to coulombic forces; however, the pH dependence of adsorption is very different for the two substrates. This is explained by the fact that the surface charge on quartz is entirely pH-dependent, while kaolinite has surface faces which carry a permanent negative charge. Adsorption of goethite on to kaolinite increases markedly with increasing NaCl concentration, while adsorption onto quartz is relatively independent of NaCl concentration. This can be explained by the influence of NaCl concentration upon the development of surface charge on the substrates. A method is described for separating surface-bound goethite from free goethite.

  10. Synthetic quartz with high ultraviolet transmission.

    PubMed

    Ballman, A A; Dodd, D M; Kuebler, N A; Laudise, R A; Wood, D L; Rudd, D W

    1968-07-01

    Quartz has been synthesized under hydrothermal conditions at rates of 1.78 mm/day in the presence of LiNO(2) in Ag lined and Ag plated systems, and it is shown that such quartz has optical transmission between 1500 A and 3 micro equal, and in some cases superior to, natural quartz. The uv cutoff at about 1500 A has been shown to be associated with Fe whose concentration may be reduced by procedures that reduce the concentration of charge compensating H+ in the lattice (growth in LiNO(2)) and by procedures which reduce the concentration of Fe in solutions (inert conditions). Transmission near 3 micro is affected by OH which can be reduced by LiNO(2).

  11. Basic Material Quartz and Related Innovations

    NASA Astrophysics Data System (ADS)

    Ballato, A.

    Although material quartz is of scientific interest in its own right, its volume of usage and variety of applications dictate its technological importance.The technological prominence of α-quartz stems largely from the presence of piezoelectricity, combined with extremely low acoustic loss. It was one of the minerals with which the Brothers Curie first established the piezoelectric effect in 1880. In the early 1920s, the quartz resonator was first used for frequency stabilization. Temperature-compensated orientations (the AT and BT shear cuts) were introduced in the 1930s, and assured the technology's success. By the late 1950s, growth of cultured bars became commercially viable, and in the early 1970s, cultured quartz use for electronic applications first exceeded that of the natural variety. The discovery of cuts that addressed compensation of stress and temperature transient effects occurred in the 1970s, and led to the introduction of compound cuts such as the SC, which hasboth a zero temperature coefficient of frequency, and is simultaneously stress-compensated [1-5]. Between 109 and 1010 quartz units per year were produced by 2000 at frequencies from below 1 kHz to above 10 GHz. Categories of application include resonators, filters, delay lines, transducers, sensors, signal processors, and actuators. Particularly noteworthy are the bulk- and surface-wave resonators; their uses span the gamut from disposable timepieces to highest precision oscillators for position-location, and picosecond timing applications. Stringent high-shock and high-pressure sensor operations are also enabled. Table 2.1 shows the major applications of quartz crystals. These applications are discussed subsequently in greater detail. For general background and historical developments, see [1,6-11].

  12. Biomineralization of gold: biofilms on bacterioform gold.

    PubMed

    Reith, Frank; Rogers, Stephen L; McPhail, D C; Webb, Daryl

    2006-07-14

    Bacterial biofilms are associated with secondary gold grains from two sites in Australia. 16S ribosomal DNA clones of the genus Ralstonia that bear 99% similarity to the bacterium Ralstonia metallidurans-shown to precipitate gold from aqueous gold(III) tetrachloride-were present on all DNA-positive gold grains but were not detected in the surrounding soils. These results provide evidence for the bacterial contribution to the authigenic formation of secondary bacterioform gold grains and nuggets.

  13. Scanning hall probe microscopy (SHPM) using quartz crystal AFM feedback.

    PubMed

    Dede, M; Urkmen, K; Girişen, O; Atabak, M; Oral, A; Farrer, I; Ritchie, D

    2008-02-01

    Scanning Hall Probe Microscopy (SHPM) is a quantitative and non-invasive technique for imaging localized surface magnetic field fluctuations such as ferromagnetic domains with high spatial and magnetic field resolution of approximately 50 nm and 7 mG/Hz(1/2) at room temperature. In the SHPM technique, scanning tunneling microscope (STM) or atomic force microscope (AFM) feedback is used to keep the Hall sensor in close proximity of the sample surface. However, STM tracking SHPM requires conductive samples; therefore the insulating substrates have to be coated with a thin layer of gold. This constraint can be eliminated with the AFM feedback using sophisticated Hall probes that are integrated with AFM cantilevers. However it is very difficult to micro fabricate these sensors. In this work, we have eliminated the difficulty in the cantilever-Hall probe integration process, just by gluing a Hall Probe chip to a quartz crystal tuning fork force sensor. The Hall sensor chip is simply glued at the end of a 32.768 kHz or 100 kHz Quartz crystal, which is used as force sensor. An LT-SHPM system is used to scan the samples. The sensor assembly is dithered at the resonance frequency using a digital Phase Locked Loop circuit and frequency shifts are used for AFM tracking. SHPM electronics is modified to detect AFM topography and the frequency shift, along with the magnetic field image. Magnetic domains and topography of an Iron Garnet thin film crystal, NdFeB demagnetised magnet and hard disk samples are presented at room temperature. The performance is found to be comparable with the SHPM using STM feedback.

  14. Diversity of primary CL textures in quartz from porphyry environments: implication for origin of quartz eyes

    NASA Astrophysics Data System (ADS)

    Vasyukova, O. V.; Kamenetsky, V. S.; Goemann, K.; Davidson, P.

    2013-10-01

    Porphyry-style mineralization is related to the intrusion and crystallization of small stocks, which can be of different compositions (from intermediate to felsic) and can intrude into different host rocks (from magmatic to sedimentary). We used cathodoluminescence and electron probe microanalysis to study the internal textures of more than 300 quartz eyes from six porphyry deposits, Panguna (Papua New Guinea), Far Southeast porphyry (Philippines), Batu Hijau (Indonesia), Antapaccay (Peru), Rio Blanco (Chile) and Climax (USA). Significant diversity of the internal textures in quartz eyes was revealed, sometimes even within a single sample. Quartz grains with Ti-rich cores surrounded by Ti-poor mantles were found next to the grains showing the opposite Ti distribution or only slight Ti fluctuations.We propose that diversity of the internal patterns in quartz eyes can actually reflect in situ crystallization history, and that prolonged crystallization after magma emplacement under conditions of continuous cooling can account for the observed features of internal textures. Formation of quartz eyes begins at high temperatures with crystallization of high titanium Quartz 1, which as the melt becomes more and more evolved and cooler, is overgrown by low Ti Quartz 2. Subsequent fluid exsolution brings about dramatic change in the melt composition: OH - , alkalis and other Cl-complexed elements partition into the fluid phase, whereas Ti stays in the melt, contributing to a rapid increase in Ti activity. Separation of the fluid and its further cooling causes disequilibrium in the system, and the Quartz 2 becomes partially resorbed. Exsolution of the fluid gradually builds up the pressure until it exceeds the yield strength of the host rocks and they then fracture. This pressure release most likely triggers crystallization of Quartz 3, which is higher in Ti than Quartz 2 because Ti activity in the melt is higher and pressure of crystallization is lower. As a result of the

  15. Electroacoustic polymer microchip as an alternative to quartz crystal microbalance for biosensor development.

    PubMed

    Gamby, Jean; Lazerges, Mathieu; Girault, Hubert H; Deslouis, Claude; Gabrielli, Claude; Perrot, Hubert; Tribollet, Bernard

    2008-12-01

    Laser photoablation of poly(ethylene terephthalate) (PET), a flexible dielectric organic polymer, was used to design an acoustic miniaturized DNA biosensor. The microchip device includes a 100-microm-thick PET layer, with two microband electrodes patterned in photoablated microchannels on one side and a depressed photoablated disk decorated by gold sputtered layer on the other side. Upon application of an electric signal between the two electrodes, an electroacoustic resonance phenomenon at approximately 30 MHz was established through the microelectrodes/PET/ gold layer interface. The electroacoustic resonance response was fitted with a series RLC motional arm in parallel with a static Co arm of a Buttlerworth-Van Dyke equivalent circuit: admittance spectra recorded after successive cycles of DNA hybridization on the gold surface showed reproducible changes on R, L, and C parameters. The same hybridizations runs were performed concomitantly on a 27-MHz (9 MHz, third overtone) quartz crystal microbalance in order to validate the PET device developed for bioanalysis applications. The electroacoustic PET device, approximately 100 times smaller than a microbalance quartz crystal, is interesting for the large-scale integration of acoustic sensors in biochips.

  16. Quartz: Anomalous Weakness of Synthetic Crystals.

    PubMed

    Griggs, D T; Blacic, J D

    1965-01-15

    The strength of a synthetic quartz crystal drops rapidly at 400 degrees C, and at 600 degrees C is a hundredfold lower than at 300 degrees C. Large plastic deformations can be produced without fracture. The predominant mechanism of deformation is translation gliding. The preferred explanation for this anomalous weakness is that this synthetic quartz contains water which has hydrolyzed the silicon-oxygen bonds. The silanol groups so formed are presumed to be rendered sufficiently mobile by elevating the temperature to 400 degrees C so that they align themselves in dislocation lines and move through the crystal with the dislocation under the small applied shear stress.

  17. Thiol- and Biotin-Labeled Probes for Oligonucleotide Quartz Crystal Microbalance Biosensors of Microalga Alexandrium Minutum

    PubMed Central

    Lazerges, Mathieu; Perrot, Hubert; Rabehagasoa, Niriniony; Compère, Chantal

    2012-01-01

    Two quartz crystal microbalance oligonucleotide biosensors of a toxic microalga gene sequence (Alexandrium Minutum) have been designed. Grafting on a gold surface of 20-base thiol- or biotin-labeled probe, and selective hybridization with the complementary 20-base target, have been monitored in situ with a 27 MHz quartz crystal microbalance under controlled hydrodynamic conditions. The frequency of the set up is stable to within a few hertz, corresponding to the nanogram scale, for three hour experiments. DNA recognition by the two biosensors is efficient and selective. Hybridization kinetic curves indicate that the biosensor designed with the thiol-labeled probe is more sensitive, and that the biosensor designed with the biotin-labeled probe has a shorter time response and a higher hybridization efficiency. PMID:25585927

  18. Thiol- and biotin-labeled probes for oligonucleotide quartz crystal microbalance biosensors of microalga alexandrium minutum.

    PubMed

    Lazerges, Mathieu; Perrot, Hubert; Rabehagasoa, Niriniony; Compère, Chantal

    2012-07-04

    Two quartz crystal microbalance oligonucleotide biosensors of a toxic microalga gene sequence (Alexandrium Minutum) have been designed. Grafting on a gold surface of 20-base thiol- or biotin-labeled probe, and selective hybridization with the complementary 20-base target, have been monitored in situ with a 27 MHz quartz crystal microbalance under controlled hydrodynamic conditions. The frequency of the set up is stable to within a few hertz, corresponding to the nanogram scale, for three hour experiments. DNA recognition by the two biosensors is efficient and selective. Hybridization kinetic curves indicate that the biosensor designed with the thiol-labeled probe is more sensitive, and that the biosensor designed with the biotin-labeled probe has a shorter time response and a higher hybridization efficiency.

  19. Geological setting and timing of the cassiterite vein type mineralization of the Kalima area (Maniema, Democratic Republic of Congo)

    NASA Astrophysics Data System (ADS)

    Dewaele, S.; Muchez, Ph; Burgess, R.; Boyce, A.

    2015-12-01

    The Central African Mesoproterozoic Karagwe-Ankole belt in the Great Lakes area (DRCongo, Rwanda, Burundi, Uganda and Tanzania) forms a metallogenic province that hosts a variety of granite-related mineralization, which contains cassiterite, columbite-tantalite, wolframite/ferberite, spodumene and beryl. The Kalima area in the Maniema province of the DRCongo forms one of the most important areas for cassiterite mineralization in the eastern part of the DRCongo, even after many decades of exploitation. The mineralization dominantly consists of quartz veins that are hosted in Mesoproterozoic metasediments at the contact with granitic rocks of the Kalima granite (Avuanga and Yubuli) or directly crosscutting these granitic rocks (Atondo). Only limited - and mainly unmineralized pegmatites - have been described in the Lutshurukuru area. Mineralized quartz veins - and some granite bodies - intruded following the regional tectonic foliation or existing fracture zones, confirming the late-to post-tectonic origin of the fertile granite system. The emplacement of the quartz veins resulted in an alteration of the metasedimentary and granitic host-rocks, mainly resulting in muscovitization, tourmalinization and silicification. Cassiterite itself formed relatively late during vein formation and is associated with muscovite in fractures in or along the margins of the quartz veins. 40Ar-39Ar age dating of muscovite of an unmineralized pegmatite from the Lutshurukuru area gave an excellent plateau age of 1024 ± 5.5 Ma, while the muscovite associated with mineralization gave plateau ages of 986 ± 5.3 Ma for the Atondo deposit and 992.4 ± 5.4 Ma for the Yubuli deposit. The rather large spread in ages between the supposed parental granite/pegmatite and quartz veins is interpreted to reflect different magmatic events in the evolution of a composite granite system, starting at ∼1020 Ma and ending with mineralized quartz vein formation at ∼990 Ma. The latter age corresponds with

  20. A structural analysis of the Minas da Panasqueira vein network and related fracture generations

    NASA Astrophysics Data System (ADS)

    Jacques, Dominique; Vieira, Romeu; Muchez, Philippe; Sintubin, Manuel

    2014-05-01

    The Minas da Panasqueira is a world-class W-Cu-Sn vein-type deposit, situated within the Central Iberian Zone of the Palaeozoic Iberian Massif (Portugal). The deposit consists of a network of subhorizontal, sill-like massive quartz veins situated above the southwestern extremity of a greisen cupola, within regionally metamorphosed, isoclinally folded, lower-greenschist slates and greywackes. The greisen cupola is part of a larger intrusive complex, emplaced during the late- to post-tectonic stage of the Variscan orogeny. The late-Variscan granitoid(s) underlying the Panasqueira deposit is considered to have served as a major metal source. The structure of the network of subhorizontal extension veins, consists of numerous planar vein lobes that are separated by host-rock bridges and merge at branch-points. A structural analysis demonstrates that not only within the Panasqueira mine, but also on a more regional scale, one or more generations of flat-lying fractures are present. The veins clearly exploited these pre-existing discontinuities, as confirmed by (1) the vein geometry being directly influenced by variations in the orientation of the initial fracture sets and (2) the geometry of the rock bridges and overlapping vein morphologies, consistently showing straight-line propagating crack tips. If veining is governed by a preferential, strongly developed anisotropy in the host rock, the hypothesis of vein lobes and rock bridges forming during propagation of the parent crack by tip-line bifurcation and confinement processes (Foxford et al., 2000) does not seem plausible. Instead, we propose that the rock bridges formed from several, initially separate and small veinlets that eventually overlapped in an en echelon arrangement during progressive propagation and inflation. Bending of the rock bridges and incipient vein rotation indicate that veining occurred near the brittle-ductile transition. Using a quantitative analysis of bridge orientations, vein aspect ratios

  1. Is It Real Gold?

    ERIC Educational Resources Information Center

    Harris, Harold H.

    1999-01-01

    Features acid tests for determining whether jewelry is "real" gold or simply gold-plated. Describes the carat system of denoting gold content and explains how alloys are used to create various shades of gold jewelry. Addresses the question of whether gold jewelry can turn a wearer's skin green by considering various oxidation reactions.…

  2. Is It Real Gold?

    ERIC Educational Resources Information Center

    Harris, Harold H.

    1999-01-01

    Features acid tests for determining whether jewelry is "real" gold or simply gold-plated. Describes the carat system of denoting gold content and explains how alloys are used to create various shades of gold jewelry. Addresses the question of whether gold jewelry can turn a wearer's skin green by considering various oxidation reactions.…

  3. Vein matching using artificial neural network in vein authentication systems

    NASA Astrophysics Data System (ADS)

    Noori Hoshyar, Azadeh; Sulaiman, Riza

    2011-10-01

    Personal identification technology as security systems is developing rapidly. Traditional authentication modes like key; password; card are not safe enough because they could be stolen or easily forgotten. Biometric as developed technology has been applied to a wide range of systems. According to different researchers, vein biometric is a good candidate among other biometric traits such as fingerprint, hand geometry, voice, DNA and etc for authentication systems. Vein authentication systems can be designed by different methodologies. All the methodologies consist of matching stage which is too important for final verification of the system. Neural Network is an effective methodology for matching and recognizing individuals in authentication systems. Therefore, this paper explains and implements the Neural Network methodology for finger vein authentication system. Neural Network is trained in Matlab to match the vein features of authentication system. The Network simulation shows the quality of matching as 95% which is a good performance for authentication system matching.

  4. QD: A quartz declinometer of classic type

    NASA Astrophysics Data System (ADS)

    Lauridsen, E. K.

    A declinometer with quartz fibre suspension is described. The magnet is a bar with the mirror fixed on the plane face and the magnet is firmly attached to the stirrup which can be clamped during transport. The theory of the suspended system is described in three dimensions and all details of measurement are given.

  5. A method of calculating quartz solubilities in aqueous sodium chloride solutions

    USGS Publications Warehouse

    Fournier, R.O.

    1983-01-01

    The aqueous silica species that form when quartz dissolves in water or saline solutions are hydrated. Therefore, the amount of quartz that will dissolve at a given temperature is influenced by the prevailing activity of water. Using a standard state in which there are 1,000 g of water (55.51 moles) per 1,000 cm3 of solution allows activity of water in a NaCl solution at high temperature to be closely approximated by the effective density of water, pe, in that solution, i.e. the product of the density of the NaCl solution times the weight fraction of water in the solution, corrected for the amount of water strongly bound to aqueous silica and Na+ as water of hydration. Generally, the hydration of water correction is negligible. The solubility of quartz in pure water is well known over a large temperature-pressure range. An empirical formula expresses that solubility in terms of temperature and density of water and thus takes care of activity coefficient and pressure-effect terms. Solubilities of quartz in NaCl solutions can be calculated by using that equation and substituting pe, for the density of pure water. Calculated and experimentally determined quartz solubilities in NaCl solutions show excellent agreement when the experiments were carried out in non-reactive platinum, gold, or gold plus titanium containers. Reactive metal containers generally yield dissolved silica concentrations higher than calculated, probably because of the formation of metal chlorides plus NaOH and H2. In the absence of NaOH there appears to be no detectable silica complexing in NaCl solutions, and the variation in quartz solubility with NaCl concentration at constant temperature can be accounted for entirely by variations in the activity of water. The average hydration number per molecule of dissolved SiO2 in liquid water and NaCl solutions decreases from about 2.4 at 200??C to about 2.1 at 350??C. This suggests that H4SiO4 may be the dominant aqueous silica species at 350??C, but other

  6. Quartz crystal microbalances for quantitative biosensing and characterizing protein multilayers.

    PubMed

    Rickert, J; Brecht, A; Göpel, W

    1997-01-01

    The use of quartz crystal microbalances (QCMs) for quantitative biosensing and characterization of protein multilayers is demonstrated in three case studies. Monolayers of QCM-based affinity biosensors were investigated first. Layers of a thiol-containing synthetic peptide constituting an epitope of the foot-and-mouse-disease virus were formed on gold electrodes via self-assembly. The binding of specific antibodies to epitope-modified gold electrodes was detected for different concentrations of antibody solutions. Oligolayers were studied in a second set of experiments. Dextran hydrogels were modified by thrombin inhibitors. The QCM response was used in a competitive binding assay to identify inhibitors for thrombin at different concentrations. Multilayers of proteins formed by self-assembly of a biotin-conjugate and streptavidin were investigated next. The QCM frequency response was monitored as a function of layer thickness up to 20 protein layers. A linear frequency decay was observed with increasing thickness. The decay per layer remained constant, thus indicating perfect mass coupling to the substrate. Frequency changes a factor of four higher were obtained in buffer solution as compared to measurements in dry air. This indicates a significant incorporation of water (75% weight) in the protein layers. This water behaves like a solid concerning the shear mode coupling to the substrate. The outlook discusses briefly the need for controlled molecular engineering of overlayers for subsequent QCM analysis, and the importance of an additional multiparameter analysis with other transducer principles and with additional techniques of interface analysis to characterize the mechanical coupling of overlayers as biosensor coatings. A promising trend concerns the use of QCM-arrays for screening experiments.

  7. Comparison of fluid inclusions in coexisting (cogenetic?) wolframite, cassiterite, and quartz from St. Michael's Mount and Cligga Head, Cornwall, England

    NASA Astrophysics Data System (ADS)

    Campbell, Andrew R.; Panter, Kurt S.

    1990-03-01

    The St. Michael's Mount occurrence and Cligga Head deposit are typical examples of W-Sn mineralization in the Cornwall district in S.W. England. Mineralization consists of quartz, wolframite, cassiterite, and various amounts of base metal sulfides in sheeted veins. Associated alteration includes greisenization and argillization. In both areas textural evidence for contemporaneous deposition of the ore minerals, wolframite and cassiterite, with quartz is generally ambiguous. Previous studies state that the quartz and wolframite are intergrown, but do not address the genetic relation between them. In this study microthermometry was performed on fluid inclusions in wolframite, cassiterite, and quartz. The inclusions in wolframite were observed using an infrared microscope and those in cassiterite and quartz were observed with visible light. At St. Michael's Mount Th values for primary inclusions in quartz average 311°C and in wolframite average 369°C. Salinities average 7.3 eq. wt% NaCl in quartz and 4.2 eq. wt% NaCl in wolframite. At Cligga Head, the average Th values for primary inclusions in the various minerals are: cassiterite, 352°C; wolframite, 324°C; and quartz, 295°C. Fluid inclusion salinities average 5.3 eq. wt% NaCl in cassiterite, 3.9 eq. wt% in wolframite, and 6.0 eq. wt% NaCl in quartz. The magnitude of the changes in Th measurements between minerals cannot be accounted for by post trapping changes and therefore must be due to actual differences in the temperatures of deposition. These data suggest that the ore minerals, wolframite and cassiterite, were deposited earlier than the associated quartz, even though conclusive textural evidence is lacking. Wolframite and cassiterite were deposited at about the same temperature at St. Michael's Mount but at Cligga Head cassiterite was deposited at higher temperatures than wolframite. Certainly in these areas the gangue minerals do not provide reasonable estimates of the depositional conditions of the ore

  8. In search of early life: Carbonate veins in Archean metamorphic rocks as potential hosts of biomarkers

    NASA Astrophysics Data System (ADS)

    Peters, Carl A.; Piazolo, Sandra; Webb, Gregory E.; Dutkiewicz, Adriana; George, Simon C.

    2016-11-01

    The detection of early life signatures using hydrocarbon biomarkers in Precambrian rocks struggles with contamination issues, unspecific biomarkers and the lack of suitable sedimentary rocks due to extensive thermal overprints. Importantly, host rocks must not have been exposed to temperatures above 250 °C as at these temperatures biomarkers are destroyed. Here we show that Archean sedimentary rocks from the Jeerinah Formation (2.63 billion yrs) and Carawine Dolomite (2.55 billion yrs) of the Pilbara Craton (Western Australia) drilled by the Agouron Institute in 2012, which previously were suggested to be suitable for biomarker studies, were metamorphosed to the greenschist facies. This is higher than previously reported. Both the mineral assemblages (carbonate, quartz, Fe-chlorite, muscovite, microcline, rutile, and pyrite with absence of illite) and chlorite geothermometry suggest that the rocks were exposed to temperatures higher than 300 °C and probably ∼400 °C, consistent with greenschist-facies metamorphism. This facies leads to the destruction of any biomarkers and explains why the extraction of hydrocarbon biomarkers from pristine drill cores has not been successful. However, we show that the rocks are cut by younger formation-specific carbonate veins containing primary oil-bearing fluid inclusions and solid bitumens. Type 1 veins in the Carawine Dolomite consist of dolomite, quartz and solid bitumen, whereas type 2 veins in the Jeerinah Formation consist of calcite. Within the veins fluid inclusion homogenisation temperatures and calcite twinning geothermometry indicate maximum temperatures of ∼200 °C for type 1 veins and ∼180 °C for type 2 veins. Type 1 veins have typical isotopic values for reprecipitated Archean sea-water carbonates, with δ13CVPDB ranging from - 3 ‰ to 0‰ and δ18OVPDB ranging from - 13 ‰ to - 7 ‰, while type 2 veins have isotopic values that are similar to hydrothermal carbonates, with δ13CVPDB ranging from - 18

  9. Neonatal renal vein thrombosis.

    PubMed

    Brandão, Leonardo R; Simpson, Ewurabena A; Lau, Keith K

    2011-12-01

    Neonatal renal vein thrombosis (RVT) continues to pose significant challenges for pediatric hematologists and nephrologists. The precise mechanism for the onset and propagation of renal thrombosis within the neonatal population is unclear, but there is suggestion that acquired and/or inherited thrombophilia traits may increase the risk for renal thromboembolic disease during the newborn period. This review summarizes the most recent studies of neonatal RVT, examining its most common features, the prevalence of acquired and inherited prothrombotic risk factors among these patients, and evaluates their short and long term renal and thrombotic outcomes as they may relate to these risk factors. Although there is some consensus regarding the management of neonatal RVT, the most recent antithrombotic therapy guidelines for the management of childhood thrombosis do not provide a risk-based algorithm for the acute management of RVT among newborns with hereditary prothrombotic disorders. Whereas neonatal RVT is not a condition associated with a high mortality rate, it is associated with significant morbidity due to renal impairment. Recent evidence to evaluate the effects of heparin-based anticoagulation and thrombolytic therapy on the long term renal function of these patients has yielded conflicting results. Long term cohort studies and randomized trials may be helpful to clarify the impact of acute versus prolonged antithrombotic therapy for reducing the morbidity that is associated with neonatal RVT. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. [Characteristics of Raman spectra of minerals in the veins of Wenchuan earthquake fault zone].

    PubMed

    Xie, Chao; Zhou, Ben-gang; Liu, Lei; Zhou, Xiao-cheng; Yi, Li; Chen, Zhi; Cui, Yue-ju; Li, Jing; Chen, Zheng-wei; Du, Jian-guo

    2015-01-01

    Quartz in the veins at the Shenxigou section of Wenchuan earthquake fault zone was investigated by micro-Raman spectroscopic measurement, and the distribution of compressive stress in the fault zone was estimated by the frequency shifts of the 464 cm-1 vibrational mode of quartz grains in the veins. It was showed that the 464 cm-1 peak arising from the quartz grains in the veins near the fault plane shifts by 3. 29 cm-1 , and the corresponding compressive stress is 368. 63 MPa, which is significantly lower than the stress accumulation on both sides due to multi-stage events. Stress accumulation increased with moving away from the fault plane in the footwall with the offset of the 464 cm-1 peak arising from the quartz grains in the veins increasing, which can reach 494. 77 MPa at a distance of 21 m with a high offset of 4. 40 cm-1 of the 464 cm-1 peak. The compressive stress gets the maximum value of 519.87 MPa at a distance of 10 m from the fault plane in the hanging wall with the offset of the 464 cm-1 peak arising from the quartz grains in the veins being 4. 62 cm-1, followed by a sudden drop in stress accumulation, and it drops to 359. 59 MPa at a distance of 17 m. Because of moving away from the foult plane at the edge of the foult zone, the stress drops to 359. 59 MPa with a small value of 464 cm-1 peak offset 3. 21 cm-1 at a distance of 27 m from the fault plane in the hanging wall due to the little effect by the fault activity. Therefore, the stress of Wenchuan earthquake fault zone is partially released, but the rest of the stress distribution is uneven, and there is also a high stress accumulation in somewhere in the fault zone, which reflects that the mechanical properties of the rocks in the fault zone have a characteristic of unevenness in space.

  11. What Is Deep Vein Thrombosis?

    MedlinePlus

    ... deep vein of the leg can break off, travel to the lungs, and block blood flow. Rate This Content: NEXT >> Updated: October 28, 2011 Twitter Facebook YouTube Google+ SITE INDEX ACCESSIBILITY PRIVACY STATEMENT FOIA NO FEAR ACT ...

  12. Method to quantify tail vein injection technique in small animals.

    PubMed

    Groman, Ernest V; Reinhardt, Christopher P

    2004-01-01

    Injection errors, which are often not readily recognized, can greatly impact the outcome of a pre-clinical research study. As a result, unrecognized misadministration of test compounds can render a high cost to the biomedical community. In this report, we propose six criteria for a reagent designed to assess tail vein injection technique in small animals and suggest a reagent, colloidal gold labeled with the stable isotope 197Au, that satisfies these criteria, thereby describing and validating for the first time a method to quantify technical compliance in tail vein injections. In an application of this reagent, we show the degree of variation experienced by technologists performing tail vein injection procedures in mice. In this study, mice were manually restrained and received an injection in the tail vein. One hour after injection, the mice were euthanized, various organs including the tail (the site of the injection) were collected, and their gold content was quantified by neutron activation. The three experienced animal technologists in the study were tested for tail vein injection proficiency in 30 mice. Prior to the study, the supervisor stated that a misinjection occurs when more than 10% of the intended volume remains in the tail. In light of this criterion, 12 of the 30 injections were misadministered: two with technologist 1, three with technologist 2, and seven with technologist 3. Although she was able to correctly rank the injection skills of the three technologists used in this experiment, i.e., technologist 1 and 2 more better skilled than technologist 3, the supervisor greatly underestimated the extent and degree of injection failures for the procedure. The results of the study illustrate the potential problems associated with the technical compliance with this common laboratory procedure and suggest that there is a need to validate injection methods and a need to monitor technical competence. Application of reagents similar to colloidal gold and

  13. Early Yellowstone hotspot magmatism and gold metallogeny

    NASA Astrophysics Data System (ADS)

    Hames, Willis; Unger, Derick; Saunders, James; Kamenov, George

    2009-11-01

    High-grade epithermal gold deposits in the Northern Great Basin have long been associated with regional Miocene basaltic to rhyolitic volcanism. Previous models for the low-sulfidation epithermal gold ores in this region have generally portrayed the bimodal magmas as a source of heat to drive large-scale convection of meteoritic water that leached gold from crustal sources and deposited it in hydrothermal vein systems, or required that the gold evolve from fractionated silicic magmas. New data of the present study indicate a more direct genetic link to the plume-related basaltic magmas of the region. Laser 40Ar/ 39Ar incremental heating plateau ages for single crystals of adularia from several of these low-sulfidation epithermal gold deposits range from 16.6 Ma to 15.5 Ma. Adularia from the Jumbo deposit yields three concordant plateau ages with a combined statistical result of 16.54 ± 0.04 Ma (95% confidence level, MSWD = 0.23). Plateau ages for adularia from other deposits in the region, and from gold-bearing veins in the Owyhee Mountains of southwestern Idaho, yield similar ages up to ~16.5 Ma, however some veins are as young as ca. 15.5 Ma and the grain-to-grain ages for a given sample can vary by up to ca. 0.5 Ma. Observed variations in age among the adularia crystals of a given rock sample indicate varying amounts of extraneous argon, and also loss of radiogenic 40Ar, among the population of grains for a particular sample. The single-crystal results are interpreted to indicate a 16.5-15.5 Ma interval for formation of gold-bearing adularia veins in the region. The initiation and duration of this gold-forming event appears contemporaneous (within uncertainties) with the basaltic volcanism at the Steens Mountain section and an ensuing one-million-year episode of basaltic volcanism from multiple centers in the region ( Brueseke et al., 2007). Trace amounts of lead are alloyed with gold in the deposits studied. The isotopic compositions of this lead are not

  14. [Surgery of essential varicose veins].

    PubMed

    Maraval, M

    1994-03-15

    Idiopathic varicose veins of the lower limbs are a frequent but benign disorder. Surgery is only a moment in the course of the disease. Although not the only treatment of essential varicose veins, surgery by an experienced team performing crossectomy, stripping by intussusception using a stripper, and phlebectomy gives fully satisfactory results, both to patient and to physician, in over 80% of cases. New techniques were recently developed that, at present, have not confirmed early hopes.

  15. Instantaneous healing of micro-fractures during coseismic slip: Evidence from microstructure and Ti in quartz geochemistry within an exhumed pseudotachylyte-bearing fault in tonalite

    NASA Astrophysics Data System (ADS)

    Bestmann, Michel; Pennacchioni, Giorgio; Mostefaoui, Smail; Göken, Mathias; de Wall, Helga

    2016-06-01

    Exhumed faults within the tonalitic Adamello pluton (Southern Alps) were seismic at depth as indicated by the presence of pseudotachylytes (solidified friction-induced melts). During cooling of tonalite, early-formed joints were first exploited by localized ductile shear zones associated with deposition of quartz veins (at ~ 500 °C), and later by pseudotachylyte-bearing cataclastic faults (at ~ 250-300 °C ambient temperature). Adjacent to pseudotachylytes, quartz of the host tonalite shows pervasive thin (1-10 μm wide) healed micro-fractures and ultra-fine (1-2 μm grain size) recrystallized aggregates along micro-shear zones. Under cathodoluminescence (CL) the healed micro-fractures have a darker gray shade than the host "magmatic" quartz that reflects a change in Ti concentrations ([Ti]) as indicated by NanoSIMS measurements. [Ti] vary from 35-55 ppm in the CL-lighter host quartz to 10-13 ppm along the CL-darker healed micro-fractures. These [Ti] were inherited by the ultra-fine recrystallized aggregates that overprinted both the magmatic quartz and the healed micro-fractures during the high temperature transient related to frictional seismic slip. Based on Ti-in-quartz thermometry, we infer that micro-fracture healing occurred at higher temperatures than the ambient temperatures of faulting (250-300 °C at 0.2 GPa), for which [Ti] < 1 ppm would be expected. Micro-fracture healing can be ascribed to the stage of seismic slip of faults on the basis of the observation that: (i) they are absent in the host rock surrounding high-T quartz veins un-exploited by faults; and (ii) they locally occur at the tip of pseudotachylyte injection veins filling new fractures developed during the propagation of the earthquake rupture. The relatively high [Ti] of micro-fractures are therefore interpreted to reflect quartz healing by a fluid overheated during the initial stages of frictional seismic slip and escaping from fault surface through the damage zone. This suggests that

  16. Plastic Deformation of Quartz: Unfinished business?

    NASA Astrophysics Data System (ADS)

    Paterson, M. S.

    2011-12-01

    Starting at Harvard in the mid-1930's, David Griggs built a series of high pressure machines for experimental rock deformation. One persistent aim was to achieve the plastic deformation of quartz. Each time he built a new machine for higher pressure and/or temperature, one of the first materials he tested would be quartz. This search went on through a 500 MPa liquid-medium machine at temperatures up to 300°C, then with a gas-medium machine for temperatures up to 800°C, and finally with a solid-medium machine for higher pressures and temperatures. Quartz proved stubbornly resistant to deformation except at extremely high stresses until, finally and somewhat serendipitously, it was found possible to deform quartz at relatively low stresses in the presence of water under special conditions. The breakthrough came in an experiment in a 1500 MPa solid-medium apparatus in which talc was used as pressure medium. At the temperature of the experiment, the talc dehydrated and so released water. Under these conditions, natural quartz proved to be very weak and to readily undergo plastic deformation, a phenomenon that became known as "hydrolytic weakening". Soon after this discovery, it was also found that certain synthetic single crystals could be easily deformed ab initio. These crystals were from a particular set that had been grown rapidly under hydrothermal conditions and had incorporated water during growth. Attempts in our laboratory to weaken crystals in a gas-medium apparatus at around 300 MPa by cooking dry quartz in the presence of added water were all unsuccessful, although we could deform wet synthetic crystals. There was considerable speculation about a role of high pressure in promoting hydrolytic weakening, but the dilemma was eventually clarified by electron microscope studies by Fitz Gerald and coworkers. These studies showed that crystals that had been subjected to high pressure and temperature in the solid-medium apparatus were extensively microcracked

  17. Columbium-, rare-earth-element-, and thorium-bearing veins near Salmon Bay, Southeastern Alaska. Open file report

    SciTech Connect

    Warner, J.D.

    1989-01-01

    In 1984 and 1985 the Bureau of Mines investigated radioactive carbonate veins near Salmon Bay, southeastern Alaska, for concentrations of columbium and associated metals. The veins cut units of graywacke, conglomerate, argillite, and limestone and range in width from less than an inch to greater than 10 ft and have a length ranging from less than a hundred to greater than 1,000 ft. Mineralogy of the veins is complex, and includes thorite, the rare-earth-element minerals monazite, parisite, and bastnaesite, and a columbium mineral that is speculated to be columbite. Gangue minerals include ankerite, dolomite, siderite, quartz and albite. More than seventy veins were sampled but only three contain elevated metal concentrations along a significant strike length. These resources are small compared to columbium, REE, and thorium resources elsewhere in the world.

  18. Controlled Atrial Fibrillation after Pulmonary Vein Stenting

    PubMed Central

    Park, Young-Ah; Seo, Jiwon

    2017-01-01

    When there is no pulmonary vein reconnection after catheter ablation for atrial fibrillation, patients can experience recurrence of atrial fibrillation without clear evidence of non-pulmonary vein foci. We describe a patient with significant pulmonary vein stenosis and recurrent atrial fibrillation after four ablation procedures. After successful pulmonary vein stenting, the symptoms were resolved, and sinus rhythm was maintained for 2 years without treatment with antiarrhythmic medication. We believe pulmonary vein stenting potentially controlled atrial fibrillation by providing pulmonary vein pressure relief or by compressing the epicardial triggers occurring at the pulmonary vein ostium. PMID:28765746

  19. Ultrasensitive quartz crystal microbalance integrated with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Goyal, Abhijat

    energy loss channel and hence causing an increase in the Q-factor. Measurement of out-of-plane vibrations of the quartz crystals using a laser based optical vibrometer revealed that the out-of-plane vibrations of QCM increase from 13 pm to 26 pm when carbon nanotubes are removed from the surface of the resonator---directly confirming the suppression of the out-of-plane motion on the resonator surface by carbon nanotubes. Additionally, the QCMs were used to study the gas adsorption and desorption behavior of nominally "open-ended" isolated and nominally "close-ended" bundled SWNTs. Using the ultrasensitive QCM, we were able to probe gas storage properties of carbon nanotubes. It was found that carbon nanotubes can adsorb large amount of gas molecules not only in the cylindrical pore that they enclose, but also on their external surface. Four different gases were tested, namely Helium, Nitrogen, Argon, and SF6. It was found that the change in resonance frequency and quality factor for the "fill in" and "evacuation" of gases from carbon nanotubes exhibited a characteristic ˜ MW relationship, where MW is the atomic/molecular weight of gas species adsorbed. Such a behavior was consistently observed both for change in resonance frequency and Q-factor during the events of "fill in" and "evacuation" in the case of bare quartz with gold electrode, gold electrode covered with nominally isolated "open-ended" SWNTs, and gold electrode with nominally bundled "close-ended" SWNTs. In the case of bare quartz with gold electrode, the observed change in resonance frequency and Q-factor and their characteristic ˜ MW relationship can be explained on the basis of the viscous dissipation arising due to gas ambient through the Gordon-Kanazawa equation. In the case of QCM with carbon nanotubes, the change in Q-factor and its characteristic ˜ MW relationship could be explained on the basis of enhanced viscous dissipation arising due to surface roughness or modified Gordon Kanazawa equation

  20. Millimeter And Submillimeter-Wave Integrated Circuits On Quartz

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran; Mazed, Mohammad; Siegel, Peter; Smith, R. Peter

    1995-01-01

    Proposed Quartz substrate Upside-down Integrated Device (QUID) relies on UV-curable adhesive to bond semiconductor with quartz. Integrated circuits including planar GaAs Schottky diodes and passive circuit elements (such as bandpass filters) fabricated on quartz substrates. Circuits designed to operate as mixers in waveguide circuit at millimeter and submillimeter wavelengths. Integrated circuits mechanically more robust, larger, and easier to handle than planar Schottky diode chips. Quartz substrate more suitable for waveguide circuits than GaAs substrate.

  1. Locating difficult veins for venepuncture and cannulation.

    PubMed

    Shaw, Sally Jane

    2017-02-15

    Vein location and assessment are essential to improve the success rates for vascular access. However, problems remain with first attempt success rates for peripheral cannulation and locating difficult veins. Practitioners may not be aware of developments in technology and aids to assist in the location and assessment of veins to achieve vascular access. This article provides an overview of two vein location aids that can be used to locate difficult veins: the IV-eye vein imager and the Vacuderm tourniquet. It discusses the patient factors that can increase the difficulty of vein assessment and location, and emphasises the importance of vessel health and preservation, and vein palpation. Practitioners should be experienced and skilled in the assessment of veins, and they are encouraged to revisit how they locate and assess veins.

  2. Optical processing furnace with quartz muffle and diffuser plate

    DOEpatents

    Sopori, Bhushan L.

    1996-01-01

    An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy.

  3. Effect of irradiation and thermal annealing on quartz materials luminescence

    NASA Astrophysics Data System (ADS)

    Korovkin, M. V.; Ananyeva, L. G.

    2017-01-01

    X-ray and gamma-quanta irradiation of radiation-resistant quartz materials including natural and synthetic quartz crystals and high-purity quartzite causes the luminescence in the ultraviolet range (365 nm), thermally stimulated luminescence and radiofrequency electromagnetic emission. Preliminary radiation and thermal annealing improves luminescence properties of quartz materials.

  4. Complex fragmentation and silicification structures in fault zones: quartz crystallization and repeated fragmentation in the Rusey fault zone (Cornwall/UK)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Tim I.; Blenkinsop, Tom; Duschl, Florian; Kruhl, Jörn H.

    2015-04-01

    Silicified fault rocks typically show structures resulting from various stages of fragmentation and quartz crystallization. Both processes interact episodically and result in complex structures on various scales, which require a wide spectrum of analysis tools. Based on field and microstructural data, the spatial-temporal connection between deformation, quartz crystallization and fluid and material flow along the Rusey fault zone was investigated. The fault can be examined in detail in three dimensions on the north Cornwall coast, UK. It occurs within Carboniferous sandstones, siltstones, mudstones and slates of the Culm basin, and is likely to have had a long history. The fault rocks described here formed during the younger events, possibly due to Tertiary strike-slip reactivation. Frequent fragmentation, flow and crystallization events and their interaction led to various generations of complex-structured quartz units, among them quartz-mantled and partly silicified wall-rock fragments, microcrystalline quartz masses of different compositions and structures, and quartz vein patterns of various ages. Lobate boundaries of quartz masses indicate viscous flow. Fragments are separated by quartz infill, which contains cm-sized open pores, in which quartz crystals have pyramidal terminations. Based on frequent occurrence of feathery textures and the infill geometry, quartz crystallization from chalcedony appears likely, and an origin from silica gel is discussed. Fragmentation structures are generally fractal. This allows differentiation between various processes, such as corrosive wear, wear abrasion and hydraulic brecciation. Material transport along the brittle shear zone, and displacement of the wall-rocks, were at least partly governed by flow of mobile fluid-quartz-particle suspensions. The complex meso- to microstructures were generated by repeated processes of fragmentation, quartz precipitation and grain growth. In general, the brittle Rusey fault zone

  5. Quartz Channel Fabrication for Electrokinetically Driven Separations

    SciTech Connect

    Arnold, D.W.; Ashby, C.I.H.; Bailey, C.G.; Kravitz, S.H., Warren, M.E.; Matzke, C.M.

    1998-12-01

    For well resolved electrokinetic separation, we L tilize crystalline quartz to micromachine a uniformly packe Q&iKLmnel. Packing features are posts 5 Vm on a side with:} pm spacing and etched