Science.gov

Sample records for quasar absorption-line constraints

  1. Narrow UV Absorption Line Outflows from Quasars

    NASA Astrophysics Data System (ADS)

    Hamann, F.; Simon, L.; Rodriguez Hidalgo, P.; Capellupo, D.

    2012-08-01

    Narrow absorption line (NAL) outflows are an important yet poorly understood part of the quasar outflow phenomenon. We discuss one particular NAL outflow that has high speeds, time variability, and moderate ionizations like typical BAL flows, at an estimated location just ˜5 pc from the quasar. It also has a total column density and line widths (internal velocity dispersions) ˜100 times smaller than BALs, with no substantial X-ray absorption. We argue that radiative shielding (in the form of an X-ray/warm absorber) is not critical for the outflow acceleration and that the moderate ionizations occur in dense substructures that have an overall small volume filling factor in the flow. We also present new estimates of the overall incidence of quasar outflow lines; e.g., ˜43% of bright quasars have a C IV NAL outflow while ˜68% have a C IV outflow line of any variety (NAL, BAL, or mini-BAL).

  2. Polarization and Broad Absorption Lines in Quasars

    NASA Astrophysics Data System (ADS)

    Antonucci, Robert

    1990-12-01

    OI 287 is a unique extragalactic source. It appears to take one property from each class of object. It is either some kind of missing link, or a new type of activity. Because of the high optical polarization, OI 287 has been classified with the blazars. However, every other blazar is variable in optical flux, polarization, and polarization angle., while OI 287 is constant at V=17, P=8%, and theta=145 degrees. Also, every other blazar has a radio source dominated by an intense flat-spectrum core, while OI 287 has an upper limit of 2% of the total 20cm flux in the core. The only group of quasars which ever shows even moderate (2-5%) constant optical polarization is the broad absorption line (BAL) objects, e.g. PHL 5200 and H1413+113. Among the BAL quasars, PHL 5200 and H1413+113 have exceptionally smooth deep, attached absorption lines, and also the highest polarization. We want to know whether OI 287 is a BAL quasar. It would be the first definite radio loud example. If it is a BAL quasar then the high polarization is really related to (and perhaps the key to) the BAL phenomenon, and we can use the techniques of spectropolarimetry to help unlock the BAL geometry. The UV spectral shape would also provide help determining the cause of polarization.

  3. Quasar Absorption Line Survey - Cycle 4 High

    NASA Astrophysics Data System (ADS)

    Bahcall, John

    1994-01-01

    The Absorption Line Survey of bright quasars provides a homogeneous data base for studying fundamental questions about the origin and evolution of gaseous systems in the universe. The initial results determine at small redshifts the number densities of Ly-ALPHA systems, of metal-lines and extragalactic halos, of Lyman-limit systems, of associated absorption systems, and the shapes and intensities of quasar emission lines and spectral energy distributions. The survey reveals that much of the sky is covered by high or very high velocity metal-line clouds present in the Galactic halo. A larger sample, which includes the requested Cycle 3 observations, is required to answer many important questions. For example, what is the correlation function of Ly-ALPHA systems at small redshifts? What fraction of the metal, the Ly-ALPHA, and the Ly-limit systems are associated with galaxies and what are the characteristic sizes of the outer gaseous regions of different types of galaxies? Do absorbing systems show evidence of the large-scale structure seen with galaxies and clusters of galaxies? The observations requested in Cycle 3 will extend the region of coverage of the Key Project sample from the redshift range of z = 0.0 to 1.0 (Cycles 1& 2) to z = 0.0 to 1.6 (Cycles 1-3). THIS FILE CONTAINS THE HIGH PRIORITY OBSERVATIONS FROM CYCLES 2 and 3 WHICH WERE NOT COMPLETED IN THOSE CYCLES.

  4. Broad Absorption Line Quasars and Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Wills, B. J.

    2009-12-01

    Luminous QSOs are signposts to galaxy evolution. Local supermassive black holes are the faded relics of quasars in their heyday at redshifts ˜2. Relationships between the masses of these local supermassive black holes and their host galaxy bulges reveal an intimate link, fundamental to galaxy evolution: the newly evolving galaxy fuels the seed black hole through its accretion disk and by loss of angular momentum and energy in the form of outflowing winds. As the central engine approaches Eddington luminosities, winds drive away dusty gas, revealing a luminous QSO and halting star formation in the galaxy bulge. Relativistic winds are manifested in powerful radio jets in ˜10% of quasars, and sub-relativistic winds are revealed by broad blueshifted absorption troughs in the “broad absorption line” (BAL) quasars. Historically, BALs avoid powerful radio quasars. Here we examine the BALs to investigate this inverse connection.

  5. Broad Absorption Line Quasar catalogues with Supervised Neural Networks

    SciTech Connect

    Scaringi, Simone; Knigge, Christian; Cottis, Christopher E.; Goad, Michael R.

    2008-12-05

    We have applied a Learning Vector Quantization (LVQ) algorithm to SDSS DR5 quasar spectra in order to create a large catalogue of broad absorption line quasars (BALQSOs). We first discuss the problems with BALQSO catalogues constructed using the conventional balnicity and/or absorption indices (BI and AI), and then describe the supervised LVQ network we have trained to recognise BALQSOs. The resulting BALQSO catalogue should be substantially more robust and complete than BI-or AI-based ones.

  6. Observational Cosmology Using Absorption Lines in Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Aghaee, A.

    2016-09-01

    Distant, highly luminous quasars are important cosmological probes for a variety of astrophysical questions: the first generation of galaxies, the star formation history and metal enrichment in the early Universe, the growth of the first super massive black holes (SMBHs), the role of feedback from quasars and SMBHs in galaxy evolution, the epoch of reionization, etc. In addition, they are used as background illuminating source that reveal any object located by chance on the line of sight. I will present our group works in these issues that can be done using absorption lines in the quasar spectra.

  7. Quasar Absorption Lines and SDSS Galaxies

    NASA Astrophysics Data System (ADS)

    Shoemaker, Emileigh Suzanne; Scott, Jennifer E.; Oldak, Katarzyna

    2017-01-01

    We present the results of a study of the sightlines of 45 low redshift quasars (0.06 < z < 0.85) observed with HST/COS that lie within the footprint of the Sloan Digital Sky Survey. We use both the SDSS DR12 galaxy photometric data, including photometric redshifts, and the measured properties of the absorbers along with the known absorption characteristics of the intergalactic medium and the circumgalactic medium of galaxies to assign the most probable galaxy matches for each absorber in the sample, using estimated galaxy luminosities and virial radii as a discriminator. We show that the scheme can recover known galaxy-absorber matches found from spectroscopic data and thus provides a method for identifying likely pairs in photometric data sets as well as targets for spectroscopic follow up.

  8. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    NASA Astrophysics Data System (ADS)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo; Jiang, Peng; Liu, Bo; Liu, Wenjuan; Pan, Xiang; Shi, Xiheng; Wang, Jianguo; Wang, Tinggui; Yang, Chenwei; Zhang, Shaohua; Miller, Lauren P.

    2017-04-01

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ∼700 and ∼1400 km s‑1 relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do not change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V-band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ∼700 km s‑1 has a density in the range of 109 to 1010 cm‑3 and a distance of ∼1 pc, and the gas with blueshift velocity of ∼1400 km s‑1 has a density of 103 cm‑3 and a distance of ∼1 kpc.

  9. Polarization and Broad Absorption Lines in Quasars-Repeat

    NASA Astrophysics Data System (ADS)

    Antonucci, Robert

    1990-12-01

    OI 287 is a unique extragalactic source. It appears to take one property from each class of object. It is either some kind of missing link, or a new type of activity. Because of the high optical polarization, OI 287 has been classified with the blazars. However, every other blazar is variable in optical flux, polarization, and polarization angle., while OI 287 is constant at V=17, P=8%, and theta=145 degrees. Also, every other blazar has a radio source dominated by an intense flat-spectrum core, while OI 287 has an upper limit of 2% of the total 20cm flux in the core. The only group of quasars which ever shows even moderate (2-5%) constant optical polarization is the broad absorption line (BAL) objects, e.g. PHL 5200 and H1413+113. Among the BAL quasars, PHL 5200 and H1413+113 have exceptionally smooth deep, attached absorption lines, and also the highest polarization. We want to know whether OI 287 is a BAL quasar. It would be the first definite radio loud example. If it is a BAL quasar then the high polarization is really related to (and perhaps the key to) the BAL phenomenon, and we can use the techniques of spectropolarimetry to help unlock the BAL geometry. The UV spectral shape would also provide help determining the cause of polarization.

  10. PG 1411 + 442 - The nearest broad absorption line quasar

    NASA Technical Reports Server (NTRS)

    Malkan, Matthew A.; Green, Richard F.; Hutchings, John B.

    1987-01-01

    IUE observations reveal strong, moderately broad absorption troughs in the blue wings of the C IV and N V emission lines of the quasar PG 1411 + 442. No absorption from weakly ionized gas is detected. The emission-line strengths and overall shape of the ultraviolet/optical/near-infrared/far-infrared continuum of the new broad absorption line quasar are within the range normally measured in quasars. Its redshift is low enough to allow the morphology of the host galaxy to be studied in deep broad-band and intermediate-band CCD images. The galaxy appears to be a large spiral with a very long arm or tail. The inclination angle is 57 deg, which rules out the possibility that the line of sight to the nucleus intersects a large path length in a galactic disk.

  11. Monitoring the variability of intrinsic absorption lines in quasar spectra , ,

    SciTech Connect

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ∼10{sup 3}-10{sup 5} cm{sup –3} and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage.

  12. Probing Quasar Winds Using Intrinsic Narrow Absorption Lines

    NASA Astrophysics Data System (ADS)

    Culliton, Christopher S.; Charlton, Jane C.; Eracleous, Michael; Roberts, Amber; Ganguly, Rajib; Misawa, Toru; Muzahid, Sowgat

    2017-01-01

    Quasar outflows are important for understanding the accretion and growth processes of the central black hole. Furthermore, outflows potentially have a role in providing feedback to the galaxy, and halting star formation and infall of gas. The geometry and density of these outflows remain unknown, especially as a function of ionization and velocity. Having searched ultraviolet spectra at both high redshift (VLT/UVES; 1.4absorption lines (NALs) that are intrinsic to (physically associated with) the quasar. We identify intrinsic NALs with a wide range of properties, including ejection velocity, coverage fraction, and ionization level. We also consider the incidence of intrinsic absorbers as a function of quasar properties (optical, radio and X-ray fluxes), and find that radio properties and quasar orientation are influential in determining if a quasar is likely to host an intrinsic system. We find that there is a continuum of properties within the intrinsic NAL sample, rather than discrete families, ranging from partially covered CIV systems with black Lya and with a separate low ionization gas phase to partially covered NV systems with partially covered Lya and without detected low ionization gas. Additionally, we construct a model describing the spatial distributions, geometries, and varied ionization structures of intrinsic NALs.

  13. Monitoring the Variability of Intrinsic Absorption Lines in Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ~103-105 cm-3 and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage. Based on data collected at Subaru telescope, which is operated by the National Astronomical Observatory of Japan. Based on observations obtained at the European Southern Observatory at La Silla, Chile in programs 65.O-0063(B), 65.O-0474(A), 67.A-0078(A), 68.A-0461(A), 69.A-0204(A), 70.B-0522(A), 072.A-0346(A), 076.A-0860(A), 079.B-0469(A), and 166.A-0106(A).

  14. Outflow and hot dust emission in broad absorption line quasars

    SciTech Connect

    Zhang, Shaohua; Zhou, Hongyan; Wang, Huiyuan; Wang, Tinggui; Xing, Feijun; Jiang, Peng; Zhang, Kai E-mail: whywang@mail.ustc.edu.cn

    2014-05-01

    We have investigated a sample of 2099 broad absorption line (BAL) quasars with z = 1.7-2.2 built from the Sloan Digital Sky Survey Data Release Seven and the Wide-field Infrared Survey. This sample is collected from two BAL quasar samples in the literature and is refined by our new algorithm. Correlations of outflow velocity and strength with a hot dust indicator (β{sub NIR}) and other quasar physical parameters—such as an Eddington ratio, luminosity, and a UV continuum slope—are explored in order to figure out which parameters drive outflows. Here β{sub NIR} is the near-infrared continuum slope, which is a good indicator of the amount of hot dust emission relative to the accretion disk emission. We confirm previous findings that outflow properties moderately or weakly depend on the Eddington ratio, UV slope, and luminosity. For the first time, we report moderate and significant correlations of outflow strength and velocity with β{sub NIR} in BAL quasars. It is consistent with the behavior of blueshifted broad emission lines in non-BAL quasars. The statistical analysis and composite spectra study both reveal that outflow strength and velocity are more strongly correlated with β{sub NIR} than the Eddington ratio, luminosity, and UV slope. In particular, the composites show that the entire C IV absorption profile shifts blueward and broadens as β{sub NIR} increases, while the Eddington ratio and UV slope only affect the high and low velocity part of outflows, respectively. We discuss several potential processes and suggest that the dusty outflow scenario, i.e., that dust is intrinsic to outflows and may contribute to the outflow acceleration, is most likely.

  15. DISCOVERY OF THE TRANSITION OF A MINI-BROAD ABSORPTION LINE INTO A BROAD ABSORPTION LINE IN THE SDSS QUASAR J115122.14+020426.3

    SciTech Connect

    Hidalgo, Paola Rodriguez; Eracleous, Michael; Charlton, Jane; Hamann, Fred; Murphy, Michael T.; Nestor, Daniel

    2013-09-20

    We present the detection of a rare case of dramatic strengthening in the UV absorption profiles in the spectrum of the quasar J115122.14+020426.3 between observations {approx}2.86 yr apart in the quasar rest frame. A spectrum obtained in 2001 by the Sloan Digital Sky Survey shows a C IV ''mini-broad'' absorption line (FWHM = 1220 km s{sup -1}) with a maximum blueshift velocity of {approx}9520 km s{sup -1}, while a later spectrum from the Very Large Telescope shows a significantly broader and stronger absorption line, with a maximum blueshift velocity of {approx}12, 240 km s{sup -1} that qualifies as a broad absorption line. A similar variability pattern is observed in two additional systems at lower blueshifted velocities and in the Ly{alpha} and N V transitions as well. One of the absorption systems appears to be resolved and shows evidence for partial covering of the quasar continuum source (C{sub f} {approx} 0.65), indicating a transverse absorber size of, at least, {approx}6 Multiplication-Sign 10{sup 16} cm. In contrast, a cluster of narrower C IV lines appears to originate in gas that fully covers the continuum and broad emission line sources. There is no evidence for changes in the centroid velocity of the absorption troughs. This case suggests that at least some of the absorbers that produce ''mini-broad'' and broad absorption lines in quasar spectra do not belong to intrinsically separate classes. Here, the ''mini-broad'' absorption line is most likely interpreted as an intermediate phase before the appearance of a broad absorption line due to their similar velocities. While the current observations do not provide enough constraints to discern among the possible causes for this variability, future monitoring of multiple transitions at high resolution will help achieve this goal.

  16. FR-II Broad Absorption Line Quasars and the Life Cycle of Quasars

    SciTech Connect

    Gregg, M D; Becker, R H; de Vries, W

    2006-01-05

    By combining the Sloan Digitized Sky Survey Third Data Release quasar list with the VLA FIRST survey, we have identified five objects having both broad absorption lines in their optical spectra and FR-II radio morphologies. We identify an additional example of this class from the FIRST Bright Quasar Survey, J1408+3054. Including the original FR-II-BAL object, J1016+5209, brings the number of such objects to eight. These quasars are relatively rare; finding this small handful has required the 45,000-large quasar sample of SDSS. The FR-II-BAL quasars exhibit a significant anti-correlation between radio-loudness and the strength of the BAL features. This is easily accounted for by the evolutionary picture in which quasars emerge from cocoons of BAL-producing material which stifle the development of radio jets and lobes. There is no such simple explanation for the observed properties of FR-II-BALs in the unification-by-orientation model of quasars. The rarity of the FR-II-BAL class implies that the two phases do not coexist for very long in a single quasar, perhaps less than 10{sup 5} years, with the combined FR-II, high ionization broad absorption phase being even shorter by another factor of 10 or more.

  17. The Physical Nature of Polar Broad Absorption Line Quasars

    NASA Technical Reports Server (NTRS)

    Ghost, Kajal; Punsly, Brian

    2007-01-01

    It has been shown based on radio variability arguments that some BALQSOs (broad absorption line quasars) are viewed along the polar axis (o rthogonal to accretion disk) in the recent article of Zhou et a. Thes e arguments are based on the brightness temperature, T(sub b) exceedi ng 10(exp 12) K which leads to the well-known inverse Compton catastr ophe unless the radio jet is relativistic and is viewed along its axi s. In this letter, we expand the Zhou et al sample of polar BALQSOs u sing their techniques applied to SDSS DR5. In the process, we clarify a mistake in their calculation of brightness temperature. The expanded sample of high T(sub b) BALQSOS, has an inordinately large fraction of LoBALQSOs (low ionization BALQSOs). We consider this an important clue to understanding the nature of the polar BALQSOs. This is expec ted in the polar BALQSO analytical/numerical models of Punsly that pr edicted that LoBALQSOs occur when the line of sight is very close to the polar axis, where the outflow density is the highest.

  18. The VLBI structure of radio-loud Broad Absorption Line quasars

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Jiang, D. R.; Gu, M.

    2016-02-01

    The nature and origin of Broad Absorption Line (BAL) quasars and their relationship to non-BAL quasars are an open question. The BAL quasars are probably normal quasars seen along a particular line of sight. Alternatively, they are young or recently refueled. The high resolution radio morphology of BAL quasars is very important to understand the radio properties of BAL quasars. We present VLBA observations at L and C bands for a sample of BAL quasars. The observations will help us to explore the VLBI radio properties, and distinguish the present models of explaining BAL phenomena.

  19. Time-Variable Complex Metal Absorption Lines in the Quasar HS 1603+3820

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Eracleous, Michael; Charlton, Jane C.; Tajitsu, Akito

    2005-08-01

    We present a new spectrum of the quasar HS 1603+3820 taken 1.28 yr (0.36 yr in the quasar rest frame) after a previous observation with Subaru+HDS. The new spectrum enables us to search for time variability as an identifier of intrinsic narrow absorption lines (NALs). This quasar shows a rich complex of C IV NALs within 60,000 km s-1 of the emission redshift. On the basis of covering factor analysis, Misawa et al. found that the C IV NAL system at zabs=2.42-2.45 (system A, at a shift velocity of vsh=8300-10,600 km s-1 relative to the quasar) was intrinsic to the quasar. With our new spectrum, we perform time variability analysis, as well as covering factor analysis, to separate intrinsic NALs from intervening NALs for eight C IV systems. Only system A, which was identified as an intrinsic system in the earlier paper by Misawa et al., shows a strong variation in line strength (Wobs~10.4-->19.1 Å). We speculate that a broad absorption line (BAL) could be forming in this quasar (i.e., many narrower lines will blend together to make a BAL profile). We illustrate the plausibility of this suggestion with the help of a simulation in which we vary the column densities and covering factors of the NAL complex. Under the assumption that a change of ionization state causes the variability, a lower limit can be placed on the electron density (ne>~3×104cm-3) and an upper limit on the distance from the continuum source (r<=6 kpc). On the other hand, if the motion of clumpy gas causes the variability (a more likely scenario), the crossing velocity and the distance from the continuum source are estimated to be vcross>8000 km s-1 and r<3 pc. In this case, the absorber does not intercept any flux from the broad emission line region, but only flux from the UV continuum source. If we adopt the dynamical model of Murray et al., we can obtain a much more strict constraint on the distance of the gas parcel from the continuum source, r<0.2 pc. Based on data collected at the Subaru

  20. Ca II AND Na I QUASAR ABSORPTION-LINE SYSTEMS IN AN EMISSION-SELECTED SAMPLE OF SDSS DR7 GALAXY/QUASAR PROJECTIONS. I. SAMPLE SELECTION

    SciTech Connect

    Cherinka, B.; Schulte-Ladbeck, R. E.

    2011-10-15

    The aim of this project is to identify low-redshift host galaxies of quasar absorption-line systems by selecting galaxies that are seen in projection onto quasar sightlines. To this end, we use the Seventh Data Release of the Sloan Digital Sky Survey to construct a parent sample of 97,489 galaxy/quasar projections at impact parameters of up to 100 kpc to the foreground galaxy. We then search the quasar spectra for absorption-line systems of Ca II and Na I within {+-}500 km s{sup -1} of the galaxy's velocity. This yields 92 Ca II and 16 Na I absorption systems. We find that most of the Ca II and Na I systems are sightlines through the Galactic disk, through high-velocity cloud complexes in our halo, or Virgo Cluster sightlines. Placing constraints on the absorption line rest equivalent width significance ({>=}3.0{sigma}), the local standard of rest velocity along the sightline ({>=}345 km s{sup -1}), and the ratio of the impact parameter to the galaxy optical radius ({<=}5.0), we identify four absorption-line systems that are associated with low-redshift galaxies at high confidence, consisting of two Ca II systems (one of which also shows Na I) and two Na I systems. These four systems arise in blue, {approx}L*{sub r} galaxies. Tables of the 108 absorption systems are provided to facilitate future follow-up.

  1. Discovery of an X-ray Violently Variable Broad Absorption Line Quasar

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Gutierrez, Carlos M.; Punsly, Brian; Chevallier, Loic; Goncalves, Anabela C.

    2006-01-01

    In this letter, we report on a quasar that is violently variable in the X-rays, XVV. It is also a broad absorption line quasar (BALQSO) that exhibits both high ionization and low ionization UV absorption lines (LoBALQSO). It is very luminous in the X-rays (approximately 10(exp 46) ergs s(sup -l) over the entire X-ray band). Surprisingly, this does not over ionize the LoBAL outflow. The X-rays vary by a factor of two within minutes in the quasar rest frame, which is shorter than 1/30 of the light travel time across a scale length equal to the black hole radius. We concluded that the X-rays are produced in a relativistic jet beamed toward earth in which variations in the Doppler enhancement produce the XVV behavior.

  2. Radiatively driven winds for different power law spectra. [for explaining narrow and broad quasar absorption lines

    NASA Technical Reports Server (NTRS)

    Beltrametti, M.

    1980-01-01

    The analytic solutions for radiatively driven winds are given for the case in which the winds are driven by absorption of line and continuum radiation. The wind solutions are analytically estimated for different parameters of the central source and for different power law spectra. For flat spectra, three sonic points can exist; it is shown, however, that only one of these sonic points is physically realistic. Parameters of the central source are given which generate winds of further interest for explaining the narrow and broad absorption lines in quasars. For the quasar model presented here, winds which could give rise to the narrow absorption lines are generated by central sources with parameters which are not realistic for quasars.

  3. A Comprehensive Study of Broad Absorption Line Quasars. I. Prevalence of HeI* Absorption Line Multiplets in Low-ionization Objects

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Juan; Zhou, Hongyan; Ji, Tuo; Yuan, Weimin; Wang, Ting-Gui; Jian, Ge; Shi, Xiheng; Zhang, Shaohua; Jiang, Peng; Shu, Xinwen; Wang, Huiyuan; Wang, Shu-Fen; Sun, Luming; Yang, Chenwei; Liu, Bo; Zhao, Wen

    2015-03-01

    Neutral helium multiplets, He i* λ λ 3189,3889,10830, are very useful diagnostics for the geometry and physical conditions of the absorbing gas in quasars. So far only a handful of He i* detections have been reported. Using a newly developed method, we detected the He i*λ 3889 absorption line in 101 sources of a well-defined sample of 285 Mg ii broad absorption line (BAL) quasars selected from SDSS DR5. This has increased the number of He i* BAL quasars by more than one order of magnitude. We further detected He i*λ 3189 in 50% (52/101) of the quasars in the sample. The detection fraction of He i* BALs in Mg ii BAL quasars is ∼35% as a whole, and it increases dramatically with increasing spectral signal-to-noise ratio (S/N), from ∼18% at S/N ≤slant 10 to ∼93% at S/N ≥slant 35. This suggests that He i* BALs could be detected in most Mg ii LoBAL quasars, provided the spectra S/N is high enough. Such a surprisingly high He i* BAL fraction is actually predicted from photoionization calculations based on a simple BAL model. The result indicates that He i* absorption lines can be used to search for BAL quasars at low z, which cannot be identified by ground-based optical spectroscopic surveys with commonly seen UV absorption lines. Using He i* λ3889, we discovered 19 BAL quasars at z\\lt 0.3 from the available SDSS spectral database. The fraction of He i* BAL quasars is similar to that of LoBAL objects.

  4. Quasar Absorption Lines from Radiative Shocks: Implications for Multiphase Outflows and Feedback

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, C.-A.

    2012-08-01

    Photoionization modeling of certain low-ionization broad absorption lines in quasars implies very compact (ΔR ˜0.01 pc), galaxy-scale (R˜ kpc) absorbers blueshifted by several 1000 km s-1. While these are likely signatures of quasar outflows, the lifetimes of such compact absorbers are too short for them to be direct ejecta from a nuclear wind. Instead, I argue that the absorbing clouds must be transient and created in situ. Following arguments detailed by Faucher-Giguère, Quataert, & Murray (2011), I show that a model in which the cool absorbers form in radiative shocks arising when a quasar blast wave impacts an interstellar cloud along the line of sight successfully explains the key observed properties. Using this radiative shock model, the outflow kinetic luminosities for three luminous quasars are estimated to be Ėk ≍ 2-5% LAGN (with corresponding momentum fluxes Ṗ ≍2-15 LAGN/c), consistent with feedback models of the M-σ relation. These energetics are similar to those recently inferred of molecular outflows in local ultra-luminous infrared galaxies and in post-starburt winds, suggesting that active galactic nuclei (AGN) are capable of driving such outflows. Radiative shocks probably affect the multiphase structure of outflows in a range of other systems, potentially including narrower and higher-ionization quasar absorption lines, and compact intergalactic absorbers ejected by star formation and/or AGN activity.

  5. Discovery of Broad Soft X-ray Absorption Lines from the Quasar Wind in PDS 456

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Braito, V.; Nardini, E.; Behar, E.; O'Brien, P. T.; Tombesi, F.; Turner, T. J.; Costa, M. T.

    2016-06-01

    High-resolution soft X-ray spectroscopy of the prototype accretion disk wind quasar, PDS 456, is presented. Here, the XMM-Newton reflection grating spectrometer spectra are analyzed from the large 2013-2014 XMM-Newton campaign, consisting of five observations of approximately 100 ks in length. During the last observation (OBS. E), the quasar is at a minimum flux level, and broad absorption line (BAL) profiles are revealed in the soft X-ray band, with typical velocity widths of {σ }{{v}}˜ {{10,000}} km s-1. During a period of higher flux in the third and fourth observations (OBS. C and D, respectively), a very broad absorption trough is also present above 1 keV. From fitting the absorption lines with models of photoionized absorption spectra, the inferred outflow velocities lie in the range ˜ 0.1{--}0.2c. The absorption lines likely originate from He and H-like neon and L-shell iron at these energies. A comparison with earlier archival data of PDS 456 also reveals a similar absorption structure near 1 keV in a 40 ks observation in 2001, and generally the absorption lines appear most apparent when the spectrum is more absorbed overall. The presence of the soft X-ray BALs is also independently confirmed by an analysis of the XMM-Newton EPIC spectra below 2 keV. We suggest that the soft X-ray absorption profiles could be associated with a lower ionization and possibly clumpy phase of the accretion disk wind, where the latter is known to be present in this quasar from its well-studied iron K absorption profile and where the wind velocity reaches a typical value of 0.3c.

  6. THE INTRINSIC FRACTIONS AND RADIO PROPERTIES OF LOW-IONIZATION BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    Dai Xinyu; Shankar, Francesco; Sivakoff, Gregory R.

    2012-10-01

    Low-ionization (Mg II, Fe II, and Fe III) broad absorption line quasars (LoBALs) probe a relatively obscured quasar population and could be at an early evolutionary stage for quasars. We study the intrinsic fractions of LoBALs using the Sloan Digital Sky Survey (SDSS), Two Micron All Sky Survey, and Faint Images of the Radio Sky at Twenty cm survey. We find that the LoBAL fractions of the near-infrared (NIR) and radio samples are approximately 5-7 times higher than those measured in the optical sample. This suggests that the fractions measured in the NIR and radio bands are closer to the intrinsic fractions of the populations, and that the optical fractions are significantly biased due to obscuration effects, similar to high-ionization broad absorption line quasars (HiBALs). Considering a population of obscured quasars that do not enter the SDSS, which could have a much higher LoBAL fraction, we expect that the intrinsic fraction of LoBALs could be even higher. We also find that the LoBAL fractions decrease with increasing radio luminosities, again, similarly to HiBALs. In addition, we find evidence for increasing fractions of LoBALs toward higher NIR luminosities, especially for FeLoBALs with a fraction of {approx}18% at M{sub K{sub s}}< -31 mag. This population of NIR-luminous LoBALs may be at an early evolutionary stage of quasar evolution. To interpret the data, we use a luminosity-dependent model for LoBALs that yields significantly better fits than those from a pure geometric model.

  7. XMM-NEWTON OBSERVATIONS OF THE RADIO-LOUD BROAD ABSORPTION LINE QUASAR FBQS J131213.5+231958

    SciTech Connect

    Mathur, Smita; Dai Xinyu E-mail: dai@nhn.ou.ed

    2010-12-15

    We present XMM-Newton observations of the broad absorption line (BAL) quasar FBQS J131213.5+231958. The X-ray spectrum of the source can be well described by an absorbed power-law model in which the absorber is either ionized or only partially covers the continuum source. This can explain the apparent lack of absorption observed in the Chandra spectrum with low signal-to-noise ratio. While the power-law slope of the spectrum is similar to that of non-BAL radio-loud quasars, the Eddington luminosity ratio is likely to be significantly higher than the mean. This shows that in high-mass black holes (BHs), high Eddington accretion may not result in as steep of a spectrum as in lower-mass BHs. This provides important constraints for accretion disk models. It also provides support to the idea that BAL quasars, at least their radio-loud subclass, represent an early evolutionary stage of quasars.

  8. SimBAL: A Spectral Synthesis Approach to Analyzing Broad Absorption Line Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Terndrup, Donald M.; Leighly, Karen; Gallagher, Sarah; Richards, Gordon T.

    2017-01-01

    Broad Absorption Line quasars (BALQSOs) show blueshifted absorption lines in their rest-UV spectra, indicating powerful winds emerging from the central engine. These winds are essential part of quasars: they can carry away angular momentum and thus facilitate accretion through a disk, they can distribute chemically-enriched gas through the intergalactic medium, and they may inject kinetic energy to the host galaxy, influencing its evolution. The traditional method of analyzing BALQSO spectra involves measuring myriad absorption lines, computing the inferred ionic column densities in each feature, and comparing with the output of photonionization models. This method is inefficient and does not handle line blending well. We introduce SimBAL, a spectral synthesis fitting method for BALQSOs, which compares synthetic spectra created from photoionization model results with continuum-normalized observed spectra using Bayesian model calibration. We find that we can obtain an excellent fit to the UV to near-IR spectrum of the low-redshift BALQSO SDSS J0850+4451, including lines from diverse ionization states such as PV, CIII*, SIII, Lyalpha, NV, SiIV, CIV, MgII, and HeI*.

  9. Resolution Effects on Quasar Absorption Line Studies of ΛCDM Simulations

    NASA Astrophysics Data System (ADS)

    Kacprzak, Glenn; Ceverino, D.; Churchill, C. W.; Murphy, M. T.; Evans, J. L.

    2009-01-01

    The technique of using background quasars to study absorption lines produced by gaseous halos of foreground galaxies provides a uniquely powerful tool to probe the gas-galaxy and IGM interface. With absorption lines, we are capable of studying the kinematic, chemical, and ionization conditions of galactic halos over all redshifts out to projected galactocentric radii of several 100 kpc. However, interpreting these data can be difficult. We have recently begun to produce similar absorption line observations of galaxies and their gaseous halos in LCDM cosmological simulations in order to constrain the dynamic interaction of the galaxy/halo/cosmic web environment and the distribution of gas within halos. The simulations are performed using the Eulerian Gasdynamics plus N-body Adaptive Refinement Tree (ART) code, were the highest resolution gas cells are 20-100 pc. However, absorption lines are primarily produced/observed in the halos of galaxies where the resolution is lower. Here, we quantify how varying the resolution affects the measured absorption velocity spreads, number of clouds, and covering fractions of halo gas within the simulated galaxies. This is an important step toward understanding the interplay between halo gas kinematics and small scale structure. It is crucial that we understand these effects in order to correctly interpret our observations.

  10. A variable P v broad absorption line and quasar outflow energetics

    NASA Astrophysics Data System (ADS)

    Capellupo, D. M.; Hamann, F.; Barlow, T. A.

    2014-10-01

    Broad absorption lines (BALs) in quasar spectra identify high-velocity outflows that might exist in all quasars and could play a major role in feedback to galaxy evolution. The viability of BAL outflows as a feedback mechanism depends on their kinetic energies, as derived from the outflow velocities, column densities, and distances from the central quasar. We estimate these quantities for the quasar, Q1413+1143 (redshift ze = 2.56), aided by the first detection of P V λλ1118, 1128 BAL variability in a quasar. In particular, P V absorption at velocities where the C IV trough does not reach zero intensity implies that the C IV BAL is saturated and the absorber only partially covers the background continuum source (with characteristic size <0.01 pc). With the assumption of solar abundances, we estimate that the total column density in the BAL outflow is log NH ≳ 22.3 cm-2. Variability in the P V and saturated C IV BALs strongly disfavours changes in the ionization as the cause of the BAL variability, but supports models with high column density BAL clouds moving across our lines of sight. The observed variability time of 1.6 yr in the quasar rest frame indicates crossing speeds >750 km s-1 and a radial distance from the central black hole of ≲ 3.5 pc, if the crossing speeds are Keplerian. The total outflow mass is ˜4100 M⊙, the kinetic energy ˜4 × 1054 erg, and the ratio of the outflow kinetic energy luminosity to the quasar bolometric luminosity is ˜0.02 (at the minimum column density and maximum distance), which might be sufficient for important feedback to the quasar's host galaxy.

  11. Composite Spectra of Broad Absorption Line Quasars in SDSS-III BOSS

    NASA Astrophysics Data System (ADS)

    Herbst, Hanna; Hamann, Fred; Paris, Isabelle; Capellupo, Daniel M.

    2017-01-01

    We present preliminary results from a study of broad absorption line (BAL) quasars in the SDSS-III BOSS survey. We’re particularly interested in BALs because they arise from quasar outflows, which may be a source of feedback to the host galaxy. We analyze median composite spectra for BOSS QSOs in the redshift range 2.1 to 3.4 sorted by the strength of the BAL absorption troughs, parameterized by the Balnicity Index (BI), to study trends in the emission and absorption properties of BAL quasars. The wavelength coverage and high number of quasars observed in the BOSS survey allow us to examine BALs in the Lyman forest. Our main preliminary results when sorting the quasars by BI are 1) doublet absorption lines such as P V 1128A show a 1:1 ratio across all BI, indicating large column densities at all BI. This suggests that weaker BAL troughs result from smaller covering fractions rather than lower column densities. 2) The He II emission line, which is a measure of the far-UV/near-UV hardness of the ionizing continuum, is weaker in the larger BI composite spectra, indicating a far-UV spectral softening correlated with BI. This is consistent with the radiatively-driven BAL outflows being helped by intrinsically weaker ionizing continuum shapes (e.g., Baskin, Laor, and Hamann 2013). We also find a trend for slightly redder continuum slopes in the larger BI composite spectra, suggesting that the slope differences in the near-UV are also intrinsic.

  12. The radio core and jet in the broad absorption-line quasar PG 1700+518

    NASA Astrophysics Data System (ADS)

    Yang, J.; Wu, F.; Paragi, Z.; An, T.

    2012-01-01

    The blueshifted broad absorption lines (BAL) or troughs are observed in active galactic nuclei (AGNs) when our line of sight is intercepted by a high-speed outflow (wind), likely originating in the accretion disc. The outflow or wind can shed light on the internal structure obscured by the AGN torus. Recently, it has been shown that this outflow is rotating in the BAL quasar PG 1700+518, further supporting the accretion disc origin of the wind. With the purpose of giving independent constraints on the wind geometry, we performed high-resolution European very long baseline interferometry (VLBI) Network (EVN) observations at 1.6 GHz in 2010. Combining the results with the Very Large Array (VLA) archival data at 8.4 GHz, we present its jet structure on scales of parsec (pc) to kiloparsec (kpc) for the first time. The source shows two distinct jet features in east-west direction with a separation of around 4 kpc. The eastern feature, which has so far been assumed to hide the core, is a kpc-scale hotspot, which is completely resolved out in the EVN image. In the western jet feature, we find a compact jet component, which pinpoints the position of the central black hole in the galaxy. Jet components on both sides of the core are additionally detected in the north-west-south-east direction, and they show a symmetric morphology on scale of <1 kpc. This two-sided jet feature is not common in the known BAL quasars and indicates that the jet axis is far away from the line of sight. Furthermore, it is nearly parallel to the scattering plane revealed earlier by optical polarimetry. By analogy to polar-scattered Seyfert 1 galaxies, we conclude that the jet likely has a viewing angle around 45°. The analogy is further supported by the recent report of significant cold absorption in the soft X-rays, a nearly unique feature to polar-scattered Seyfert galaxies. Finally, our observations have confirmed the earlier finding that the majority of radio emission in this galaxy arises

  13. A Survey for Intervening CIV Absorption-Line Systems Using SDSS Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Monier, Eric M.; Nestor, D. B.; Daino, M. M.; Quider, A. M.; Rao, S. M.; Turnshek, D. A.

    2006-06-01

    Intervening CIV absorption-line systems are readily found in Sloan Digital Sky Survey (SDSS) quasar spectra at redshifts z > 1.5. Given the large number of absorbers, high statistical accuracy is possible in comparison to what was possible in the past. Here we present preliminary results on the incidence and evolution of the CIV systems as a function of CIV rest equivalent width. The absorber incidence is proportional to the product of gas cross-section and co-moving number density of absorbers, while the rest equivalent width is related to their kinematic spread. We discuss the interpretation of our results.

  14. Thomson Thick X-Ray Absorption in a Broad Absorption Line Quasar, PG 0946+301.

    PubMed

    Mathur; Green; Arav; Brotherton; Crenshaw; deKool; Elvis; Goodrich; Hamann; Hines; Kashyap; Korista; Peterson; Shields; Shlosman; van Breugel W; Voit

    2000-04-20

    We present a deep ASCA observation of a broad absorption line quasar (BALQSO) PG 0946+301. The source was clearly detected in one of the gas imaging spectrometers, but not in any other detector. If BALQSOs have intrinsic X-ray spectra similar to normal radio-quiet quasars, our observations imply that there is Thomson thick X-ray absorption (NH greater, similar1024 cm-2) toward PG 0946+301. This is the largest column density estimated so far toward a BALQSO. The absorber must be at least partially ionized and may be responsible for attenuation in the optical and UV. If the Thomson optical depth toward BALQSOs is close to 1, as inferred here, then spectroscopy in hard X-rays with large telescopes like XMM would be feasible.

  15. Spectropolarimetry of PKS 0040-005 and the orientation of broad absorption line quasars

    NASA Astrophysics Data System (ADS)

    Brotherton, M. S.; De Breuck, C.; Schaefer, J. J.

    2006-10-01

    We have used the Very Large Telescope (VLT) to obtain spectropolarimetry of the radio-loud, double-lobed broad absorption line (BAL) quasar PKS 0040-005. We find that the optical continuum of PKS 0040-005 is intrinsically polarized at 0.7 per cent with an electric vector position angle nearly parallel to that of the large-scale radio axis. This result is naturally explained in terms of an equatorial scattering region seen at a small inclination, building a strong case that the BAL outflow is not equatorial. In conjunction with other recent results concerning BAL quasars, the era of simply characterizing these sources as `edge-on' is over. Based on observations collected at the European Southern Observatory, Paranal, project 71.B-0121(A). E-mail: mbrother@uwyo.edu (MSB); cdbreuc@eso.org (CDB); schaefjj@ufl.edu (JJS) ‡ ESO Visitor.

  16. C IV Broad Absorption Line Acceleration in Sloan Digital Sky Survey Quasars

    NASA Astrophysics Data System (ADS)

    Grier, C. J.; Brandt, W. N.; Hall, P. B.; Trump, J. R.; Filiz Ak, N.; Anderson, S. F.; Green, Paul J.; Schneider, D. P.; Sun, M.; Vivek, M.; Beatty, T. G.; Brownstein, Joel R.; Roman-Lopes, Alexandre

    2016-06-01

    We present results from the largest systematic investigation of broad absorption line (BAL) acceleration to date. We use spectra of 140 quasars from three Sloan Digital Sky Survey programs to search for global velocity offsets in BALs over timescales of ≈2.5-5.5 years in the quasar rest frame. We carefully select acceleration candidates by requiring monolithic velocity shifts over the entire BAL trough, avoiding BALs with velocity shifts that might be caused by profile variability. The C iv BALs of two quasars show velocity shifts consistent with the expected signatures of BAL acceleration, and the BAL of one quasar shows a velocity-shift signature of deceleration. In our two acceleration candidates, we see evidence that the magnitude of the acceleration is not constant over time; the magnitudes of the change in acceleration for both acceleration candidates are difficult to produce with a standard disk-wind model or via geometric projection effects. We measure upper limits to acceleration and deceleration for 76 additional BAL troughs and find that the majority of BALs are stable to within about 3% of their mean velocities. The lack of widespread acceleration/deceleration could indicate that the gas producing most BALs is located at large radii from the central black hole and/or is not currently strongly interacting with ambient material within the host galaxy along our line of sight.

  17. Surprises from a Deep ASCA Spectrum of the Broad Absorption Line Quasar PHL 5200

    NASA Technical Reports Server (NTRS)

    Mathur, Smita; Matt, G.; Green, P. J.; Elvis, M.; Singh, K. P.

    2002-01-01

    We present a deep (approx. 85 ks) ASCA observation of the prototype broad absorption line quasar (BALQSO) PHL 5200. This is the best X-ray spectrum of a BALQSO yet. We find the following: (1) The source is not intrinsically X-ray weak. (2) The line-of-sight absorption is very strong, with N(sub H) = 5 x 10(exp 23)/sq cm. (3) The absorber does not cover the source completely; the covering fraction is approx. 90%. This is consistent with the large optical polarization observed in this source, implying multiple lines of sight. The most surprising result of this observation is that (4) the spectrum of this BALQSO is not exactly similar to other radio-quiet quasars. The hard X-ray spectrum of PHL 5200 is steep, with the power-law spectral index alpha approx. 1.5. This is similar to the steepest hard X-ray slopes observed so far. At low redshifts, such steep slopes are observed in narrow-line Seyfert 1 (NLS1) galaxies, believed to be accreting at a high Eddington rate. This observation strengthens the analogy between BALQSOs and NLS1 galaxies and supports the hypothesis that BALQSOs represent an early evolutionary state of quasars. It is well accepted that the orientation to the line of sight determines the appearance of a quasar: age seems to play a significant role as well.

  18. BROAD ABSORPTION LINE VARIABILITY ON MULTI-YEAR TIMESCALES IN A LARGE QUASAR SAMPLE

    SciTech Connect

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.; Hall, P. B.; Anderson, S. F.; Hamann, F.; Lundgren, B. F.; Myers, Adam D.; Pâris, I.; Petitjean, P.; Ross, Nicholas P.; Shen, Yue; York, Don

    2013-11-10

    We present a detailed investigation of the variability of 428 C IV and 235 Si IV broad absorption line (BAL) troughs identified in multi-epoch observations of 291 quasars by the Sloan Digital Sky Survey-I/II/III. These observations primarily sample rest-frame timescales of 1-3.7 yr over which significant rearrangement of the BAL wind is expected. We derive a number of observational results on, e.g., the frequency of BAL variability, the velocity range over which BAL variability occurs, the primary observed form of BAL-trough variability, the dependence of BAL variability upon timescale, the frequency of BAL strengthening versus weakening, correlations between BAL variability and BAL-trough profiles, relations between C IV and Si IV BAL variability, coordinated multi-trough variability, and BAL variations as a function of quasar properties. We assess implications of these observational results for quasar winds. Our results support models where most BAL absorption is formed within an order-of-magnitude of the wind-launching radius, although a significant minority of BAL troughs may arise on larger scales. We estimate an average lifetime for a BAL trough along our line-of-sight of a few thousand years. BAL disappearance and emergence events appear to be extremes of general BAL variability, rather than being qualitatively distinct phenomena. We derive the parameters of a random-walk model for BAL EW variability, finding that this model can acceptably describe some key aspects of EW variability. The coordinated trough variability of BAL quasars with multiple troughs suggests that changes in 'shielding gas' may play a significant role in driving general BAL variability.

  19. Multi-Sightline Observation of Narrow Absorption Lines in Lensed Quasar SDSS J1029+2623

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Saez, Cristian; Charlton, Jane C.; Eracleous, Michael; Chartas, George; Bauer, Franz E.; Inada, Naohisa; Uchiyama, Hisakazu

    2016-07-01

    We exploit the widely separated images of the lensed quasar SDSS J1029+2623 ({z}{em} = 2.197, θ = 22.″5) to observe its outflowing wind through two different sightlines. We present an analysis of three observations, including two with the Subaru telescope in 2010 February and 2014 April, separated by four years, and one with the Very Large Telescope, separated from the second Subaru observation by ˜2 months. We detect 66 narrow absorption lines (NALs), of which 24 are classified as intrinsic NALs that are physically associated with the quasar based on partial coverage analysis. The velocities of intrinsic NALs appear to cluster around values of {v}{ej} ˜ 59,000, 43,000, and 29,000 km s-1, which is reminiscent of filamentary structures obtained by numerical simulations. There are no common intrinsic NALs at the same redshift along the two sightlines, implying that the transverse size of the NAL absorbers should be smaller than the sightline distance between two lensed images. In addition to the NALs with large ejection velocities of {v}{ej} > 1000 km s-1, we also detect broader proximity absorption lines (PALs) at {z}{abs} ˜ {z}{em}. The PALs are likely to arise in outflowing gas at a distance of r ≤ 620 pc from the central black hole with an electron density of n e ≥8.7 × 103 cm-3. These limits are based on the assumption that the variability of the lines is due to recombination. We discuss the implications of these results on the three-dimensional structure of the outflow.

  20. THE PHYSICAL CONDITIONS OF THE INTRINSIC N V NARROW ABSORPTION LINE SYSTEMS OF THREE QUASARS

    SciTech Connect

    Wu Jian; Charlton, Jane C.; Misawa, Toru; Eracleous, Michael; Ganguly, Rajib E-mail: misawatr@shinshu-u.ac.j

    2010-10-20

    We employ detailed photoionization models to infer the physical conditions of intrinsic narrow absorption line systems found in high-resolution spectra of three quasars at z = 2.6-3.0. We focus on a family of intrinsic absorbers characterized by N V lines that are strong relative to the Ly{alpha} lines. The inferred physical conditions are similar for the three intrinsic N V absorbers, with metallicities greater than 10 times the solar value (assuming a solar abundance pattern), and with high ionization parameters (log U {approx} 0). Thus, we conclude that the unusual strength of the N V lines results from a combination of partial coverage, a high ionization state, and high metallicity. We consider whether dilution of the absorption lines by flux from the broad emission line region can lead us to overestimate the metallicities and we find that this is an unlikely possibility. The high abundances that we infer are not surprising in the context of scenarios in which metal enrichment takes place very early on in massive galaxies. We estimate that the mass outflow rate in the absorbing gas (which is likely to have a filamentary structure) is less than a few M{sub sun} yr{sup -1} under the most optimistic assumptions, although it may be embedded in a much hotter, more massive outflow.

  1. Fast outflows in broad absorption line quasars and their connection with CSS/GPS sources

    NASA Astrophysics Data System (ADS)

    Bruni , G.; Mack, K.-H.; Montenegro-Montes, F. M.; Brienza, M.; González-Serrano, J. I.

    2016-02-01

    Broad absorption line quasars are among the objects presenting the fastest outflows. The launching mechanism itself is not completely understood. Models in which they could be launched from the accretion disk, and then curved and accelerated by the effect of the radiation pressure, have been presented. We conducted an extensive observational campaign, from radio to optical band, to collect information about their nature and test the models present in the literature, the main dichotomy being between a young scenario and an orientation one. We found a variety of possible orientations, morphologies, and radio ages, not converging to a particular explanation for the BAL phenomenon. From our latest observations in the m- and mm-band, we obtained an indication of a lower dust abundance with respect to normal quasars, thus suggesting a possible feedback process on the host galaxy. Also, in the low-frequency regime we confirmed the presence of CSS components, sometime in conjunction with a GPS one already detected at higher frequencies. Following this, about 70 % of our sample turns out to be in a GPS or CSS+GPS phase. We conclude that fast outflows, responsible for the BAL features, can be more easily present among objects going through a restarting or just-started radio phase, where radiation pressure can substantially contribute to their acceleration.

  2. The Hubble Space Telescope Quasar Absorption Line Key Project: The Unusual Absorption-Line System in the Spectrum of PG 2302+029---Ejected or Intervening?

    NASA Astrophysics Data System (ADS)

    Jannuzi, B. T.; Hartig, G. F.; Kirhakos, S.; Sargent, W. L. W.; Turnshek, D. A.; Weymann, R. J.; Bahcall, J. N.; Bergeron, J.; Boksenberg, A.; Savage, B. D.; Schneider, D. P.; Wolfe, A. M.

    1996-10-01

    We report the discovery of a high-ionization broad absorption line system at a redshift of zabs = 0.695 in the spectrum of the zem = 1.052 radio-quiet quasar PG 2302+029. Broad absorption with FWHM from 3000 to 5000 km s-1 is detected from C IV, N V, and O VI in Hubble Space Telescope (HST) Faint Object Spectrograph spectra of the quasar. A narrow-line system (FWHM ~ 250 km s-1) at zabs = 0.7016 is resolved from the broad blend and includes absorption by Ly alpha and the C IV, N V, and O VI doublets. No absorption by low-ionization metal species (e.g., Si II and Mg II) is detected in the HST or ground-based spectra for either the broad or the narrow system. The centroids of the broad system lines are displaced by ~56,000 km s-1 to the blue of the quasar's broad emission lines. The reddest extent of the broad-line absorption is more than 50,000 km s-1 from the quasar. The properties of this system are unprecedented, whether it is an intervening or an ejected system.

  3. The Hubble Space Telescope Quasar Absorption Line Key Project: The Unusual Absorption-Line System in the Spectrum of PG 2302+029--Ejected or Intervening?

    NASA Technical Reports Server (NTRS)

    Jannuzi, B. T.; Hartig, G. F.; Kirhakos, S.; Sargent, W. L. W.; Turnshek, D. A.; Weymann, R. J.; Bahcall, J. N.; Bergeron, J.; Boksenberg, A.; Savage, B. D.; Schneider, D. P.; Wolfe, A. M.

    1996-01-01

    We report the discovery of a high-ionization broad absorption line system at a redshift of z(sub abs) = 0.695 in the spectrum of the z(sub em) = 1.052 radio-quiet quasar PG 2302+029. Broad absorption with FWHM from 3000 to 5000 km/s is detected from C iv, N v, and O vi in Hubble Space Telescope (HST) Faint Object Spectrograph spectra of the quasar. A narrow-line system (FWHM approx. 250 km/s) at z(sub abs) = 0.7016 is resolved from the broad blend and includes absorption by Ly alpha and the C iv, N v, and O vi doublets. No absorption by low-ionization metal species (e.g., Si II and Mg II) is detected in the HST or ground-based spectra for either the broad or the narrow system. The centroids of the broad system lines are displaced by approx. 56,000 km/s to the blue of the quasar's broad emission lines. The reddest extent of the broad-line absorption is more than 50,000 km/s from the quasar. The properties of this system are unprecedented, whether it is an intervening or an ejected system.

  4. Constraining the variation of the fine-structure constant with observations of narrow quasar absorption lines

    SciTech Connect

    Songaila, A.; Cowie, L. L.

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10{sup –5}, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (– 0.59 ± 0.55) × 10{sup –5} in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10{sup –5}, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (– 0.47 ± 0.53) × 10{sup –5}. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (– 0.01 ± 0.26) × 10{sup –5}. We conclude that spectroscopic measurements of

  5. Evidence for two spatially separated UV continuum emitting regions in the Cloverleaf broad absorption line quasar

    NASA Astrophysics Data System (ADS)

    Sluse, D.; Hutsemékers, D.; Anguita, T.; Braibant, L.; Riaud, P.

    2015-10-01

    Testing the standard Shakura-Sunyaev model of accretion is a challenging task because the central region of quasars where accretion takes place is unresolved with telescopes. The analysis of microlensing in gravitationally lensed quasars is one of the few techniques that can test this model, yielding to the measurement of the size and of temperature profile of the accretion disc. We present spectroscopic observations of the gravitationally lensed broad absorption line quasar H1413+117, which reveal partial microlensing of the continuum emission that appears to originate from two separated regions: a microlensed region, corresponding the compact accretion disc; and a non-microlensed region, more extended and contributing to at least 30% of the total UV-continuum flux. Because this extended continuum is occulted by the broad absorption line clouds, it is not associated with the host galaxy, but rather with light scattered in the neighbourhood of the central engine. We measure the amplitude of microlensing of the compact continuum over the rest-frame wavelength range 1000-7000 Å. Following a Bayesian scheme, we confront our measurements to microlensing simulations of an accretion disc with a temperature varying as T ∝ R-1/ν. We find a most likely source half-light radius of R1/2 = 0.61 × 1016cm (i.e., 0.002 pc) at 0.18 μm, and a most-likely index of ν = 0.4. The standard disc (ν = 4/3) model is not ruled out by our data, and is found within the 95% confidence interval associated with our measurements. We demonstrate that, for H1413+117, the existence of an extended continuum in addition to the disc emission only has a small impact on the inferred disc parameters, and is unlikely to solve the tension between the microlensing source size and standard disc sizes, as previously reported in the literature. Based on observations made with ESO Telescopes at the Paranal Observatory (Chile). ESO program ID: 386.B-0337.Appendices A and B are available in electronic form

  6. Constraining the Variation of the Fine-structure Constant with Observations of Narrow Quasar Absorption Lines

    NASA Astrophysics Data System (ADS)

    Songaila, A.; Cowie, L. L.

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10-5, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (- 0.59 ± 0.55) × 10-5 in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10-5, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (- 0.47 ± 0.53) × 10-5. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (- 0.01 ± 0.26) × 10-5. We conclude that spectroscopic measurements of quasar absorption lines are not yet capable of

  7. Quasar Absorption Lines: The Evolution of Galactic Gas Over Cosmic Time

    NASA Astrophysics Data System (ADS)

    Charlton, J.

    1996-12-01

    A view of the formation and evolution of galaxies and structure over the whole history of the Universe requires observations both of stars and of gas. From the stars in galaxies, now observed in deep images back in time to less than a billion years past the Big Bang, we can study the evolution of galaxy morphology and of star formation rates. Direct observation of gas in the Universe at all epochs is also possible, using absorption spectra of quasars as a probe of intervening material. This absorption arises not only from the gas in developed galaxies and in their environments, but also from the clumps of gas that will eventually combine to form galaxies, and from the gas spread through the Universe that is gradually flowing into the galaxies. This study of gas through quasar absorption lines has opened the possibility of observing directly the formation of galaxies through the assembly of their gas over time. Furthermore, with high resolution spectroscopy, the substructures observed in absorption profiles provide information about the internal workings of galaxies. This talk will present an overview of progress toward a comprehensive picture of the formation and evolution of galaxies through quasar absorption line studies. The absorption profiles that are observed due to the passage of the quasar light through a given structure are a convolution of several properties of the gas, including its spatial and kinematic distribution, its chemical composition, and its state of ionization. Illustrative models will be utilized to show how these various factors affect the appearance of synthetic spectra. Beginning with the philosophy ``what you see is what you get'', the kinematic spectral signatures of higher redshift absorbers will be modeled by familiar components of nearby galaxies: a rotating disk, an isothermal halo, and gas in radial inflow. A combination of these basic models goes a long way toward producing a variety of complex absorption profiles which are in fact

  8. Dramatically Variable C IV Mini-Broad Absorption Line System in the Quasar HS 1603+3820

    NASA Astrophysics Data System (ADS)

    Misawa, T.; Eracleous, M.; Charlton, J. C.; Chartas, G.; Kashikawa, N.

    2008-10-01

    We observed the quasar HS 1603+3820 (z_{em} = 2.542, first discovered by Dobrzycki et al. 1996) six times over an interval of 4.2 yrs (1.2 yrs in the quasar rest frame) using the High Dispersion Spectrograph on Subaru telescope. The purpose was to study the mini-broad absorption line (mini-BAL; FWHM ˜ 1,000 km s^{-1}) that is blue-shifted from the quasar by ˜ 9,500 km s^{-1}. We found significant time variability, which supported the physical association of the mini-BAL gas with an outflow from the quasar. We have narrowed down the cause of the variability to two possible scenarios. We also used archival Chandra x-ray data to study the x-ray properties of this quasar. The results constrain the location of the absorbing gas relative to the overall outflow.

  9. Broad absorption line variability on multi-year timescales in a large quasar sample

    NASA Astrophysics Data System (ADS)

    Filiz Ak, Nurten

    Outflows launched near the central supermassive black holes (SMBHs) are a common and important component of active galactic nuclei (AGNs). Outflows in luminous AGNs (i.e., quasars) play a key role in mass accretion onto SMBH as well as in the feedback into host galaxies. The most prominent signature of such outflows appears as broad absorption lines (BALs) that are blueshifted from the emission line with a few thousands km s--1 velocities. In this dissertation, I place further constrains upon the size scale, internal structure, dynamics, and evolution of the outflows investigating profiles, properties, and variation characteristics of BAL troughs. I present observational results on BAL troughs in a large quasar sample utilizing spectroscopic observations from the Sloan Digital Sky Survey spanning on multi-year timescales. The results presented here, for the first time, provide a large and well-defined variability data base capable of discriminating between time-dependent hydrodynamic wind calculations in a statistically powerful manner. In a study of 582 quasars, I present 21 examples of BAL trough disappearance. Approximately 3.3% of BAL quasars show disappearing C IV trough on rest-frame timescales of 1.1--3.9 yr. BAL disappearance appears to occur mainly for shallow and weak or moderate-strength absorption troughs but not the strongest ones. When one BAL trough in a quasar spectrum disappears, the other present troughs usually weaken. Possible causes of such coordinated variations could be disk-wind rotation or variations of shielding gas that lead to variations of ionizing-continuum radiation. I present a detailed study on the variability of 428 C IV and 235 Si IV BAL troughs using a systematically observed sample of 291 BAL quasars. BAL variation distributions indicate that BAL disappearance is an extreme type of general BAL variability, rather than a qualitatively distinct phenomenon. The high observed frequency of BAL variability on multi-year timescales is

  10. Is there a connection between broad absorption line quasars and narrow-line Seyfert 1 galaxies?

    SciTech Connect

    Grupe, Dirk; Nousek, John A.

    2015-02-01

    We consider whether broad absorption line quasars (BAL QSOs) and narrow-line Seyfert 1 galaxies (NLS1s) are similar, as suggested by Brandt and Gallagher and Boroson. For this purpose, we constructed a sample of 11 BAL QSOs from existing Chandra and Swift observations. We found that BAL QSOs and NLS1s both operate at high Eddington ratios L/L{sub Edd}, although BAL QSOs have slightly lower L/L{sub Edd}. BAL QSOs and NLS1s in general have high Fe ii/Hβ and low [O iii]/Hβ ratios following the classic “Boroson and Green” eigenvector 1 relation. We also found that the mass accretion rates M-dot of BAL QSOs and NLS1s are more similar than previously thought, although some BAL QSOs exhibit extreme mass accretion rates of more than 10 M{sub ⊙} yr{sup −1}. These extreme mass accretion rates may suggest that the black holes in BAL QSOs are relativistically spinning. Black hole masses in BAL QSOs are a factor of 100 larger than NLS1s. From their location on a M−σ plot, we find that BAL QSOs contain fully developed black holes. Applying a principal component analysis to our sample, we find eigenvector 1 to correspond to the Eddington ratio L/L{sub Edd}, and eigenvector 2 to black hole mass.

  11. The Hubble Space Telescope quasar absorption line key project. III - First observational results on Milky Way gas

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Lu, Limin; Bahcall, John N.; Bergeron, Jacqueline; Boksenberg, Alec; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Lockman, Felix J.; Sargent, W. L. W.

    1993-01-01

    Absorption lines found near zero redshift due to Milky Way disk and halo gas in the spectra of 15 quasars observed with the Faint Object Spectrograph (FOS) of the HST at a resolution of about 230 km/s are reported. Results show that Milky Way absorption lines comprise about 44 percent of all absorption lines seen in the first group of Key Project FOS spectra. Milky Way lines were observed for 3C 273 and H1821 + 643. Limits to the Mg-to-H abundance ratio obtained for very high velocity Mg II absorption detections imply gas-phase Mg abundances for the very high velocity gas ranging from more than 0.059 to more than 0.32 times the solar abundance. In all cases where high-velocity H I emission is seen, corresponding high-velocity metal-line absorption is observed.

  12. Discovery of Hα Absorption in the Unusual Broad Absorption Line Quasar SDSS J083942.11+380526.3

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro; Iwata, Ikuru; Ohta, Kouji; Ando, Masataka; Akiyama, Masayuki; Tamura, Naoyuki

    2006-11-01

    We discovered Hα absorption in the broad Hα emission line of an unusual broad absorption line quasar, SDSS J083942.11+380526.3, at z=2.318, through near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) on the Subaru telescope. The presence of nonstellar Hα absorption is known only in the Seyfert galaxy NGC 4151 to date; thus, our discovery is the first case for quasars. The Hα absorption line is blueshifted by 520 km s-1 relative to the Hα emission line, and its redshift almost coincides with those of UV low-ionization metal absorption lines. The width of the Hα absorption (~340 km s-1) is similar to those of the UV low-ionization absorption lines. These facts suggest that the Hα and low-ionization metal absorption lines are produced by the same low-ionization gas, which has a substantial amount of neutral gas. The column density of the neutral hydrogen is estimated to be ~1018 cm-2 by assuming a gas temperature of 10,000 K from the analysis of the curve of growth. The continuum spectrum is reproduced by a reddened [E(B-V)~0.15 mag for the SMC-like reddening law] composite quasar spectrum. Furthermore, the UV spectrum of SDSS J083942.11+380526.3 shows a remarkable similarity to that of NGC 4151 in its low state, suggesting that the physical condition of the absorber in SDSS J083942.11+380526.3 is similar to that of NGC 4151 in the low state. As proposed for NGC 4151, SDSS J083942.11+380526.3 may also be seen through the edge of the obscuring torus. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  13. Dependence of the Broad Absorption Line Quasar Fraction on Radio Luminosity

    NASA Astrophysics Data System (ADS)

    Shankar, Francesco; Dai, Xinyu; Sivakoff, Gregory R.

    2008-11-01

    We find that the fraction of classical broad absorption line quasars (BALQSOs) among the FIRST radio sources in the Sloan Data Release 3, is 20.5+ 7.3-5.9% at the faintest radio powers detected (L1.4 GHz ~ 1032 erg s-1), and rapidly drops to lesssim8% at L1.4 GHz ~ 3 × 1033 erg s-1. Similarly, adopting the broader absorption index (AI) definition of Trump et al., we find the fraction of radio BALQSOs to be 44+ 8.1-7.8%, reducing to 23.1+ 7.3-6.1% at high luminosities. While the high fraction at low radio power is consistent with the recent near-IR estimates by Dai et al., the lower fraction at high radio powers is intriguing and confirms previous claims based on smaller samples. The trend is independent of the redshift range, the optical and radio flux selection limits, or the exact definition of a radio match. We also find that at fixed optical magnitude, the highest bins of radio luminosity are preferentially populated by non-BALQSOs, consistent with the overall trend. We do find, however, that those quasars identified as AI-BALQSOs but not under the classical definition do not show a significant drop in their fraction as a function of radio power, further supporting independent claims that these sources, characterized by lower equivalent width, may represent an independent class from the classical BALQSOs. We find the balnicity index, a measure of the absorption trough in BALQSOs, and the mean maximum wind velocity to be roughly constant at all radio powers. We discuss several plausible physical models which may explain the observed fast drop in the fraction of the classical BALQSOs with increasing radio power, although none is entirely satisfactory. A strictly evolutionary model for the BALQSO and radio emission phases requires a strong fine-tuning to work, while a simple geometric model, although still not capable of explaining polar BALQSOs and the paucity of FRII BALQSOs, is statistically successful in matching the data if part of the apparent radio

  14. Investigating the radio-loud phase of broad absorption line quasars

    NASA Astrophysics Data System (ADS)

    Bruni, G.; González-Serrano, J. I.; Pedani, M.; Benn, C. R.; Mack, K.-H.; Holt, J.; Montenegro-Montes, F. M.; Jiménez-Luján, F.

    2014-09-01

    Context. Broad absorption lines (BALs) are present in the spectra of ~20% of quasars (QSOs); this indicates fast outflows (up to 0.2c) that intercept the observer's line of sight. These QSOs can be distinguished again into radio-loud (RL) BAL QSOs and radio-quiet (RQ) BAL QSOs. The first are very rare, even four times less common than RQ BAL QSOs. The reason for this is still unclear and leaves open questions about the nature of the BAL-producing outflows and their connection with the radio jet. Aims: We explored the spectroscopic characteristics of RL and RQ BAL QSOs with the aim to find a possible explanation for the rarity of RL BAL QSOs. Methods: We identified two samples of genuine BAL QSOs from SDSS optical spectra, one RL and one RQ, in a suitable redshift interval (2.5 < z < 3.5) that allowed us to observe the Mg ii and Hβ emission lines in the adjacent near-infrared (NIR) band. We collected NIR spectra of the two samples using the Telescopio Nazionale Galileo (TNG, Canary Islands). By using relations known in the literature, we estimated the black-hole mass, the broad-line region radius, and the Eddington ratio of our objects and compared the two samples. Results: We found no statistically significant differences from comparing the distributions of the cited physical quantities. This indicates that they have similar geometries, accretion rates, and central black-hole masses, regardless of whether the radio-emitting jet is present or not. Conclusions: These results show that the central engine of BAL QSOs has the same physical properties with and without a radio jet. The reasons for the rarity of RL BAL QSOs must reside in different environmental or evolutionary variables. Figure 3 is available in electronic form at http://www.aanda.org

  15. X-RAYS FROM A RADIO-LOUD COMPACT BROAD ABSORPTION LINE QUASAR 1045+352 AND THE NATURE OF OUTFLOWS IN RADIO-LOUD BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    Kunert-Bajraszewska, Magdalena; Katarzynski, Krzysztof; Siemiginowska, Aneta; Janiuk, Agnieszka

    2009-11-10

    We present new results on X-ray properties of radio-loud broad absorption line (BAL) quasars and focus on broadband spectral properties of a high-ionization BAL (HiBAL) compact steep spectrum (CSS) radio-loud quasar 1045+352. This HiBAL quasar has a very complex radio morphology indicating either strong interactions between a radio jet and the surrounding interstellar medium or a possible re-start of the jet activity. We detected 1045+352 quasar in a short 5 ksec Chandra ACIS-S observation. We applied theoretical models to explain spectral energy distribution of 1045+352 and argue that non-thermal, inverse-Compton (IC) emission from the innermost parts of the radio jet can account for a large fraction of the observed X-ray emission. In our analysis, we also consider a scenario in which the observed X-ray emission from radio-loud BAL quasars can be a sum of IC jet X-ray emission and optically thin corona X-ray emission. We compiled a sample of radio-loud BAL quasars that were observed in X-rays to date and report no correlation between their X-ray and radio luminosity. However, the radio-loud BAL quasars show a large range of X-ray luminosities and absorption columns. This is consistent with the results obtained earlier for radio-quiet BAL quasars and may indicate an orientation effect in BAL quasars or more complex dependence between X-ray emission, radio emission, and an orientation based on the radio morphology.

  16. A Census of Intrinsic Narrow Absorption Lines in the Spectra of Quasars at z = 2-4

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael; Ganguly, Rajib; Tytler, David; Kirkman, David; Suzuki, Nao; Lubin, Dan

    2007-07-01

    We use Keck HIRES spectra of 37 optically bright quasars at z=2-4 to study narrow absorption lines that are intrinsic to the quasars (intrinsic NALs, produced in gas that is physically associated with the quasar central engine). We identify 150 NAL systems, which contain 124 C IV, 12 N V, and 50 Si IV doublets, of which 18 are associated systems (within 5000 km s-1 of the quasar redshift). We use partial coverage analysis to separate intrinsic NALs from NALs produced in cosmologically intervening structures. We find 39 candidate intrinsic systems (28 reliable determinations and 11 that are possibly intrinsic). We estimate that 10%-17% of C IV systems at blueshifts of 5000-70,000 km s-1 relative to quasars are intrinsic. At least 32% of quasars contain one or more intrinsic C IV NALs. Considering N V and Si IV doublets showing partial coverage as well, at least 50% of quasars host intrinsic NALs. This result constrains the solid angle subtended by the absorbers to the background source(s). We identify two families of intrinsic NAL systems, those with strong N V absorption and those with negligible absorption in N V but with partial coverage in the C IV doublet. We discuss the idea that these two families represent different regions or conditions in accretion disk winds. Of the 26 intrinsic C IV NAL systems, 13 have detectable low-ionization absorption lines at similar velocities, suggesting that these are two-phase structures in the wind rather than absorbers in the host galaxy. We also compare possible models for quasar outflows, including radiatively accelerated disk-driven winds, magnetocentrifugally accelerated winds, and pressure-driven winds, and we discuss ways of distinguishing between these models observationally. The data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration

  17. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    SciTech Connect

    Luo, B.; Brandt, W. N.; Scott, A. E.; Alexander, D. M.; Gandhi, P.; Stern, D.; Teng, S. H.; Arévalo, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Koss, M.; Ogle, P.; Puccetti, S.; Saez, C.; and others

    2014-10-10

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ{sub eff} ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.

  18. Weak Hard X-Ray Emission from Two Broad Absorption Line Quasars Observed with NuStar: Compton-Thick Absorption or Intrinsic X-Ray Weakness?

    NASA Technical Reports Server (NTRS)

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..; Fabian, A. C.; Farrah, D.; Fiore, F.; Fuerst, F.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R.; Madsen, K. K.; Matt, G.; Ogle, P.; Risaliti, G.; Saez, C.; Teng, S. H.; Walton, D. J.; Zhang, W. W.

    2013-01-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  19. WEAK HARD X-RAY EMISSION FROM TWO BROAD ABSORPTION LINE QUASARS OBSERVED WITH NuSTAR: COMPTON-THICK ABSORPTION OR INTRINSIC X-RAY WEAKNESS?

    SciTech Connect

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Hickox, R.; Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Fabian, A. C.; Farrah, D.; Fiore, F.; Hailey, C. J.; Matt, G.; Ogle, P.; and others

    2013-08-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain Almost-Equal-To 400-600 hard X-ray ({approx}> 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed (N{sub H} {approx}< 10{sup 24} cm{sup -2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N{sub H} Almost-Equal-To 7 Multiplication-Sign 10{sup 24} cm{sup -2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K{alpha} line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  20. Ratio of Dust to Metal Abundance in Quasar Absorption Line Systems from 1.9 < z < 3.3

    NASA Astrophysics Data System (ADS)

    Stawinski, Stephanie; Malhotra, Sangeeta

    2017-01-01

    Measuring the ratio of dust to metal abundance in quasar absorption line systems will provide insight to the chemical evolution of galaxies, dust formation, and dust properties in the early universe. Quasar absorption systems allow us to study the abundance of dust from many different redshifts, in this project up to z ~ 3.3 for absorber redshift. The absorption bump at 2175 Å is a broad, but strong, dust feature within the UV-optical wavelength range. This feature, if detected, can be directly related to the optical depth of the dust in the absorbing systems. However, the 2175 Å bump is very broad, having a full-width half-maximum approximately 350 * (1 + z) Å, and therefore hard to distinguish from a single spectrum. To find this bump, it is important to co-add many quasar spectra. In this project, we look at how the abundance of dust compares to that of metals for 105 quasar spectra with strong damped Lyman alpha systems with absorber redshifts ranging from 1.9 < z < 3.3. From these spectra, we created a composite spectrum to analyze the 2175 Å bump and the absorption of heavy elements. We will present the results including the strength of the 2175 Å feature found in our composite spectrum.

  1. H{beta} LINE WIDTHS AS AN ORIENTATION INDICATOR FOR LOW-IONIZATION BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    Punsly, Brian; Zhang Shaohua E-mail: brian.punsly@comdev-usa.co

    2010-12-20

    There is evidence from radio-loud quasars to suggest that the distribution of the H{beta} broad emission line (BEL) gas is arranged in a predominantly planar orientation, and this result may well also apply to radio-quiet quasars. This would imply that the observed FWHM of the H{beta} BELs is dependent on the orientation of the line of sight to the gas. If this view is correct then we propose that the FWHM can be used as a surrogate, in large samples, to determine the line of sight to the H{beta} BELs in broad absorption line quasars (BALQSOs). The existence of broad UV absorption lines (BALs) means that the line of sight to BALQSOs must also pass through the BAL out-flowing gas. It is determined that there is a statistically significant excess of narrow-line profiles in the SDSS DR7 archival spectra of low-ionization broad absorption line quasars (LoBALQSOs), indicating that BAL gas flowing close to the equatorial plane does not commonly occur in these sources. We also find that the data is not well represented by random lines of sight to the BAL gas. Our best fit indicates two classes of LoBALQSOs, the majority ({approx}2/3) are polar outflows that are responsible for the enhanced frequency of narrow-line profiles, and the remainder are equatorial outflows. We further motivated the line of sight explanation of the narrow-line excess in LoBALQSOs by considering the notion that the skewed distribution of line profiles is driven by an elevated Eddington ratio in BALQSOs. We constructed a variety of control samples comprised of non-LoBALQSOs matched to a de-reddened LoBALQSO sample in redshift, luminosity, black hole mass, and Eddington ratio. It is demonstrated that the excess of narrow profiles persists within the LoBALQSO sample relative to each of the control samples with no reduction of the statistical significance. Thus, we eliminate the possibility that the excess narrow lines seen in the LoBALQSOs arise from an enhanced Eddington ratio.

  2. A Bayesian Method For Finding Galaxies That Cause Quasar Absorption Lines

    NASA Astrophysics Data System (ADS)

    Shoemaker, Emileigh Suzanne; Laubner, David Andrew; Scott, Jennifer E.

    2016-01-01

    We present a study of candidate absorber-galaxy pairs for 39 low redshift quasar sightlines (0.06 < z < 0.85) using a statistical approach to match absorbers with galaxies near the quasar lines of sight. Of the 75 quasars observed with HST/Cosmic Origins Spectrograph (COS) and archived on the Mikulski Archive for Space Telescopes (MAST), 39 overlap with the footprint of the Sloan Digital Sky Survey (SDSS). We downloaded the COS linelists for these quasar spectra from MAST and queried the SDSS DR12 database for photometric data on all galaxies within 1 Mpc of each of these quasar lines of sight. We calculated photometric redshifts for all the SDSS galaxies using the Bayesian Photometric Redshift code. We used all these absorber and galaxy data as input into an absorber-galaxy matching code which also employs a Bayesian scheme, along with known statistics of the intergalactic medium and circumgalactic media of galaxies, for finding the most probable galaxy match for each absorber. We compare our candidate absorber-galaxy matches to existing studies in the literature and explore trends in the absorber and galaxy properties among the matched and non-matched populations. This method of matching absorbers and galaxies can be used to find targets for follow up spectroscopic studies.

  3. Probing low-redshift galaxies using quasar absorption lines with an emphasis on Ca II absorption

    NASA Astrophysics Data System (ADS)

    Sardane, Gendith M.

    2016-05-01

    We searched for intervening CaII absorption in nearly 95,000 quasar spectra with i≤20 from the Sloan Digital Sky Survey(SDSS) data releases DR7+DR9. Our identification of >400 CaII systems is the largest compilation of CaII absorbers in a blind search. (Abstract shortened by ProQuest.).

  4. Using Quasar Pairs to put Constraints on Cosmological Parameters

    NASA Astrophysics Data System (ADS)

    Johnson, Louis; Pâris, Isabelle

    2017-01-01

    For the last five billion years the universe has been expanding in size at an increasing rate. With modern technology we are able to observe objects at very high redshift, which were created in the early universe. Being able to analyze and observe these objects allows us to put specific constraints on the universe (age, size, dark matter fraction…etc). Looking at the spectra of highly redshifted objects, such as quasars, we can see a series of absorption lines called the Lyman alpha forest. The angular correlation in the Lyman alpha spectra of quasar pairs allows us to measure the size of the absorbing objects. This works best at very small-scale (below one arcmin). The most recent use of this method consisted of 32 quasar pairs and only two of those had a sky separation below 1 arcmin (Coppolani et al., 2006). The sample size that is used in this work is from the SDSS-III DR12. This catalog has over 1500 quasar pairs below two arcmin separation, giving us much lower error bars, and therefore putting much better constraints on the cosmological parameters that can be inferred from the correlation function.

  5. The Hubble Space Telescope quasar absorption line key project. 6: Properties of the metal-rich systems

    NASA Technical Reports Server (NTRS)

    Bergeron, Jacqueline; Petitjean, Patrick; Sargent, W. L. W.; Bahcall, John N.; Boksenberg, Alec; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Savage, Blair D.; Schneider, Donald P.

    1994-01-01

    We present an analysis of the properties of a sample of 18 metal-rich, low-redshift z(sub abs) much less than z(sub em) absorbers seen in low- and medium-resolution spectra obtained for the Quasar Absorption Line Key Project with the Hubble Space Telescope Faint Object Spectrograph (HST/FOS). For most of the C IV and Lyman-limit systems, observations in the optical wavelength range of the expected associated Mg II absorption are available. As at high redshift (z approximately 2), there are two subclasses of absorbers which are characterized by the presence or absence of MG II absorption. However, some low-redshift Mg II and Fe absorptions originate from regions optically thin to UV ionizing photons and thus, at low redshift, the low-ionization systems do not always trace high opacities, as is the case at high redshift. This implies that the mean ionization state of metal-rich, optically thin absorbing clouds falls with decreasing redshift, which is consistent with the hypothesis that the gas is photoionized by the metagalactic UV background radiation field. Two main constraints are derived from the analysis of the Lyman-limit sample, assuming photoionization models are valid. First, a low opacity to ionizing photons (tau(sub LL) approximately less than 1), as observed for several Mg II-Fe II systems at z approximately 0.5, sets limits on the ionization level of hydrogen, thus on the total hydrogen column density and the heavy element abundances, (Z/H) approximately -0.5 to -0.3. Second, the dimensions of individual Mg II clouds are smaller than at high redshift by a factor 3-10. At z approximately greater than 0.6, the O VI absorption doublet is detected in four of the five z(sub abs) much less than z(sub em) systems for which the O VI wavelength range has been observed, whereas the associated N V doublet is detected in only two cases. This suggests that the presence of a high-ionization O VI phase is a general property of z approximately 0.6-1 absorption systems

  6. Limits on variations in fundamental constants from 21-cm and ultraviolet Quasar absorption lines.

    PubMed

    Tzanavaris, P; Webb, J K; Murphy, M T; Flambaum, V V; Curran, S J

    2005-07-22

    Quasar absorption spectra at 21-cm and UV rest wavelengths are used to estimate the time variation of x [triple-bond] alpha(2)g(p)mu, where alpha is the fine structure constant, g(p) the proton g factor, and m(e)/m(p) [triple-bond] mu the electron/proton mass ratio. Over a redshift range 0.24 < or = zeta(abs) < or = 2.04, (Deltax/x)(weighted)(total) = (1.17 +/- 1.01) x 10(-5). A linear fit gives x/x = (-1.43 +/- 1.27) x 10(-15) yr(-1). Two previous results on varying alpha yield the strong limits Deltamu/mu = (2.31 +/- 1.03) x 10(-5) and Deltamu/mu=(1.29 +/- 1.01) x10(-5). Our sample, 8 x larger than any previous, provides the first direct estimate of the intrinsic 21-cm and UV velocity differences 6 km s(-1).

  7. Nustar Reveals an Intrinsically X-ray Weak Broad Absorption Line Quasar in the Ultraluminous Infrared Galaxy Markarian 231

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Brandt. W. N.; Harrison, F. A.; Luo, B.; Alexander, D. M.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W.; Fabian, A. C.; Farrah, D.; Fiore, F.; Gandhi, P.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R. C.; Madsen, K. K.; Ptak, A. F.; Rigby, Jane Rebecca; Risaliti, G.; Saz, C.; Stern, D.; Veilleux, S.; Walton, D. J.; Wik, D. R.; Zhang, W. W.

    2014-01-01

    We present high-energy (3-30 keV) NuSTAR observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5-8 keV) data from Chandra. The source was detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5-30 keV) X-ray spectrum suggests the active galactic nucleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin N(sub H) approx. 1.2(sup +0.3) sub-0.3) x 10(exp 23) / sq cm) column. The intrinsic X-ray luminosity L(sub 0.5-30 Kev) approx. 1.0 x 10(exp 43) erg /s) is extremely weak relative to the bolometric luminosity where the 2-10 keV to bolometric luminosity ratio is approx. 0.03% compared to the typical values of 2-15%. Additionally, Mrk 231 has a low X-ray-to-optical power law slope alpha(sub 0X) approx. -1.7. It is a local example of a low-ionization broad absorption line (LoBAL) quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may be a result of the super-Eddington accretion occurring in the nucleus of this ULIRG, and may also be naturally related to the powerful wind event seen in Mrk 231, a merger remnant escaping from its dusty cocoon.

  8. Unveiling the Intrinsic X-Ray Properties of Broad Absorption Line Quasars with a Relatively Unbiased Sample

    NASA Astrophysics Data System (ADS)

    Morabito, Leah K.; Dai, Xinyu; Leighly, Karen M.; Sivakoff, Gregory R.; Shankar, Francesco

    2014-05-01

    There is growing evidence of a higher intrinsic fraction of broad absorption line quasars (BALQSOs) than that obtained in optical surveys, on which most previous X-ray studies of BALQSOs have focused. Here we present Chandra observations of 18 BALQSOs at z ~ 2, selected from a near-infrared (Two Micron All Sky Survey) sample, where the BALQSO fraction is likely to be close to the intrinsic fraction. We measure photon indices using the stacked spectra of the optically faint (i - Ks >= 2.3 mag) and optically bright (i - Ks < 2.3 mag) samples to be Γ ~= 1.5-2.1. We constrain their intrinsic column density by modeling the X-ray fractional hardness ratio, finding a mean column density of 3.5 × 1022 cm-2 assuming neutral absorption. We incorporate Sloan Digital Sky Survey optical measurements (rest frame UV) to study the broadband spectral index between the X-ray and UV bands, and compare this to a large sample of normal quasars. We estimate that the optically faint BALQSOs are X-ray weaker than the optically bright ones, and the entire sample of BALQSOs are intrinsically X-ray weak when compared to normal active galactic nuclei (AGNs). Correcting for magnification of X-ray emission via gravitational lensing by the central black hole viewed at large inclination angles makes these BALQSOs even more intrinsically X-ray weak. Finally, we estimate AGN kinetic feedback efficiencies of a few percent for an X-ray wind of 0.3c in high-ionization BALQSOs. Combined with energy carried by low-ionization BALQSOs and UV winds, the total kinetic energy in BALQSOs can be sufficient to provide AGN kinetic feedback required to explain the co-evolution between black holes and host galaxies.

  9. Discovery of two broad absorption line quasars at redshift about 4.75 using the Lijiang 2.4 m telescope

    NASA Astrophysics Data System (ADS)

    Yi, WeiMin; Wu, XueBing; Wang, FeiGe; Yang, JinYi; Yang, Qian; Bai, JinMing

    2015-09-01

    The ultraviolet broad absorption lines have been seen in the spectra of quasars at high redshift, and are generally considered to be caused by outflows with velocities from thousands kilometers per second to one tenth of the speed of light. They provide crucial implications for the cosmological structures and physical evolutions related to the feedback of active galactic nuclei (AGNs). Recently, through a dedicated program of optically spectroscopic identifications of selected quasar candidates at redshift 5 by using the Lijiang 2.4 m telescope, we discovered two luminous broad absorption line quasars (BALQSOs) at redshift about 4.75. One of them may even have the potentially highest absorption Balnicity Index (BI) ever found to date, which is remarkably characterized by its deep, broad absorption lines and sub-relativistic outflows. Further physical properties, including the metal abundances, variabilities, evolutions of the supermassive black holes (SMBH) and accretion disks associated with the feedback process, can be investigated with multi-wavelength follow-up observations in the future.

  10. A CHANDRA SURVEY OF THE X-RAY PROPERTIES OF BROAD ABSORPTION LINE RADIO-LOUD QUASARS

    SciTech Connect

    Miller, B. P.; Brandt, W. N.; Garmire, G. P.; Gibson, R. R.; Shemmer, O. E-mail: niel@astro.psu.edu E-mail: rgibson@astro.washington.edu

    2009-09-10

    This work presents the results of a Chandra study of 21 broad absorption line (BAL) radio-loud quasars (RLQs). We conducted a Chandra snapshot survey of 12 bright BAL RLQs selected from Sloan Digital Sky Survey Data/Faint Images of the Radio Sky data and possessing a wide range of radio and C IV absorption properties. Optical spectra were obtained nearly contemporaneously with the Hobby-Eberly Telescope; no strong flux or BAL variability was seen between epochs. In addition to the snapshot targets, we include in our sample nine additional BAL RLQs possessing archival Chandra coverage. We compare the properties of (predominantly high-ionization) BAL RLQs to those of non-BAL RLQs as well as to BAL radio-quiet quasars (RQQs) and non-BAL RQQs for context. All 12 snapshots and 8/9 archival BAL RLQs are detected, with observed X-ray luminosities less than those of non-BAL RLQs having comparable optical/UV luminosities by typical factors of 4.1-8.5. (BAL RLQs are also X-ray weak by typical factors of 2.0-4.5 relative to non-BAL RLQs having both comparable optical/UV and radio luminosities.) However, BAL RLQs are not as X-ray weak relative to non-BAL RLQs as are BAL RQQs relative to non-BAL RQQs. While some BAL RLQs have harder X-ray spectra than typical non-BAL RLQs, some have hardness ratios consistent with those of non-BAL RLQs, and there does not appear to be a correlation between X-ray weakness and spectral hardness, in contrast to the situation for BAL RQQs. RLQs are expected to have X-ray continuum contributions from both accretion-disk corona and small-scale jet emission. While the entire X-ray continuum in BAL RLQs cannot be obscured to the same degree as in BAL RQQs, we calculate that the jet is likely partially covered in many BAL RLQs. We comment briefly on implications for geometries and source ages in BAL RLQs.

  11. UNSHIFTED METASTABLE He I* MINI-BROAD ABSORPTION LINE SYSTEM IN THE NARROW-LINE TYPE 1 QUASAR SDSS J080248.18+551328.9

    SciTech Connect

    Ji, Tuo; Zhou, Hongyan; Jiang, Peng; Wang, Tinggui; Wang, Huiyuan; Liu, Wenjuan; Yang, Chenwei; Ge, Jian; Hamann, Fred; Komossa, S.; Yuan, Weimin; Zuther, Jens; Lu, Honglin; Zuo, Wenwen

    2015-02-10

    We report the identification of an unusual absorption-line system in the quasar SDSS J080248.18+551328.9 and present a detailed study of the system, incorporating follow-up optical and near-IR spectroscopy. A few tens of absorption lines are detected, including He I*, Fe II*, and Ni II*, which arise from metastable or excited levels, as well as resonant lines in Mg I, Mg II, Fe II, Mn II, and Ca II. All of the isolated absorption lines show the same profile of width Δv ∼ 1500 km s{sup –1} centered at a common redshift as that of the quasar emission lines, such as [O II], [S II], and hydrogen Paschen and Balmer series. With narrow Balmer lines, strong optical Fe II multiplets, and weak [O III] doublets, its emission-line spectrum is typical for that of a narrow-line Seyfert 1 galaxy (NLS1). We have derived reliable measurements of the gas-phase column densities of the absorbing ions/levels. Photoionization modeling indicates that the absorber has a density of n {sub H} ∼ (1.0-2.5) × 10{sup 5} cm{sup –3} and a column density of N {sub H} ∼ (1.0-3.2) × 10{sup 21} cm{sup –2} and is located at R ∼100-250 pc from the central supermassive black hole. The location of the absorber, the symmetric profile of the absorption lines, and the coincidence of the absorption- and emission-line centroid jointly suggest that the absorption gas originates from the host galaxy and is plausibly accelerated by stellar processes, such as stellar winds and/or supernova explosions. The implications for the detection of such a peculiar absorption-line system in an NLS1 are discussed in the context of coevolution between supermassive black hole growth and host galaxy buildup.

  12. Quasistellar Objects: Intervening Absorption Lines

    NASA Astrophysics Data System (ADS)

    Charlton, J.; Churchill, C.; Murdin, P.

    2000-11-01

    Every parcel of gas along the line of sight to a distant QUASAR will selectively absorb certain wavelengths of continuum light of the quasar due to the presence of the various chemical elements in the gas. Through the analysis of these quasar absorption lines we can study the spatial distributions, motions, chemical enrichment and ionization histories of gaseous structures from REDSHIFT five unti...

  13. High Dust Depletion in two Intervening Quasar Absorption Line Systems with the 2175 Å Extinction Bump at z ~ 1.4

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Ge, Jian; Prochaska, J. Xavier; Wang, Junfeng; Zhou, Hongyan; Wang, Tinggui

    2010-12-01

    We present the column densities of heavy elements and dust depletion studies in two strong Mg II absorption systems at z ~ 1.4 displaying the 2175 Å dust extinction feature. Column densities are measured from low-ionization absorption lines using an Apparent Optical Depth Method on the Keck/ESI spectra. We find that the dust depletion patterns resemble that of cold diffuse clouds in the Milky Way (MW). The values, [Fe/Zn] ≈-1.5 and [Si/Zn]<-0.67, are among the highest dust depletion measured for quasar absorption line systems. In another 2175 Å absorber at z = 1.64 toward the quasar SDSS J160457.50+220300.5, Noterdaeme et al. reported a similar dust depletion measurement ([Fe/Zn] = -1.47 and [Si/Zn] = -1.07) and detected C I and CO absorption lines on its VLT/UVES spectrum. We conclude that heavy dust depletion (i.e., a characteristic of cold dense clouds in MW) is required to produce a pronounced 2175 Å extinction bump. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  14. A Candidate for an Intrinsic Dusty Absorber with a Metal-rich Damped Lyα Absorption Line System in the Quasar J170542.91+354340.2

    NASA Astrophysics Data System (ADS)

    Pan, Xiang; Zhou, Hongyan; Ge, Jian; Jiang, Peng; Yang, Bin; Lu, Honglin; Ji, Tuo; Zhang, Shaohua; Shi, Xiheng

    2017-02-01

    We present a detailed analysis of the unusual damped Lyα absorption line system (DLA) toward the quasar SDSS J170542.91+354340.2 at a redshift of 2, previously reported by Noterdaeme et al. as one of the very few CO absorbers known to date at high z. This DLA is exceptional in that: (1) its extinction curve is similar to peculiar Milky Way sightlines penetrating star formation regions; (2) its absorption components are redshifted at a speed of several hundred km s‑1 compared to broad Balmer emission lines; (3) its gas-phase metallicity is super-solar as evaluated from more than 30 absorption lines; (4) detection of residual flux in the DLA trough and variability of {{C}} {{IV}} absorption is possible. Based on these facts, we argue that this dusty DLA is a good candidate for an intrinsic quasar 2175 Å absorber, and can originate from star formation regions of the quasar’s host galaxy. We discuss in detail the gas and dust properties, and the dust depletion. Follow-up observations, such as spectropolarimetry and optical/infrared spectroscopy, will help to confirm the system’s intrinsic nature and to explore how dust grains behave in the extreme environments proximate to quasars.

  15. Results of Monitoring the Dramatically Variable C IV Mini-Broad Absorption Line System in the Quasar HS 1603+3820

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Eracleous, Michael; Charlton, Jane C.; Kashikawa, Nobunari

    2007-05-01

    We present six new and two previously published high-resolution spectra of the quasar HS 1603+3820 (zem=2.542) taken over an interval of 4.2 yr (1.2 yr in the quasar rest frame). The observations were made with the High Dispersion Spectrograph on the Subaru telescope and the Medium Resolution Spectrograph on the Hobby-Eberly Telescope. The purpose was to study the narrow absorption lines (NALs). We use time variability and coverage fraction analysis to separate intrinsic absorption lines, which are physically related to the quasar, from intervening absorption lines. By fitting models to the line profiles, we derive the parameters of the respective absorbers as a function of time. Only the mini-BAL system at zabs~2.43 (vshift~9500 km s-1) shows both partial coverage and time variability, although two NAL systems possibly show evidence of partial coverage. We find that all the troughs of the mini-BAL system vary in concert and its total equivalent width variations resemble those of the coverage fraction. However, no other correlations are seen between the variations of different model parameters. Thus, the observed variations cannot be reproduced by a simple change of ionization state or by motion of a homogeneous parcel of gas across the cylinder of sight. We propose that the observed variations are a result of rapid continuum fluctuations, coupled with coverage fraction fluctuations caused by a clumpy screen of variable optical depth located between the continuum source and the mini-BAL gas. An alternative explanation is that the observed partial coverage signature is the result of scattering of continuum photons around the absorber, thus the equivalent width of the mini-BAL can vary as the intensity of the scattered continuum changes. Based on data collected at the Subaru telescope, which is operated by the National Astronomical Observatory of Japan.

  16. Upper limits on the 21 cm power spectrum at z = 5.9 from quasar absorption line spectroscopy

    NASA Astrophysics Data System (ADS)

    Pober, Jonathan C.; Greig, Bradley; Mesinger, Andrei

    2016-11-01

    We present upper limits on the 21 cm power spectrum at z = 5.9 calculated from the model-independent limit on the neutral fraction of the intergalactic medium of x_{H I} < 0.06 + 0.05 (1σ ) derived from dark pixel statistics of quasar absorption spectra. Using 21CMMC, a Markov chain Monte Carlo Epoch of Reionization analysis code, we explore the probability distribution of 21 cm power spectra consistent with this constraint on the neutral fraction. We present 99 per cent confidence upper limits of Δ2(k) < 10-20 mK2 over a range of k from 0.5 to 2.0 h Mpc-1, with the exact limit dependent on the sampled k mode. This limit can be used as a null test for 21 cm experiments: a detection of power at z = 5.9 in excess of this value is highly suggestive of residual foreground contamination or other systematic errors affecting the analysis.

  17. Joint Lyman α emitters - quasars reionization constraints

    NASA Astrophysics Data System (ADS)

    Baek, S.; Ferrara, A.; Semelin, B.

    2012-06-01

    We present a novel method to investigate c reionization, using joint spectral information on high-redshift Lyman α emitters (LAEs) and quasi-stellar objects (QSOs). Although LAEs have been proposed as reionization probes, their use is hampered by the fact their Lyα line is damped not only by intergalactic H I but also internally by dust. Our method allows us to overcome such degeneracy. First, we carefully calibrate a reionization simulation with QSO absorption line experiments. Then we identify LAEs (? and equivalent width >20 Å) in two simulation boxes at z= 5.7 and 6.6 and we build synthetic images/spectra of a prototypical LAE. The surface brightness maps show the presence of a scattering halo extending up to 150 kpc from the galaxye. For each LAE we then select a small box of (10 h-1 Mpc)3 around it and derive the optical depth τ along three viewing axes. At redshift 5.7, we find that the Lyα transmissivity ?, almost independent of the halo mass. This constancy arises from the conspiracy of two effects: (i) the intrinsic Lyα line width and (ii) the infall peculiar velocity. At higher redshift, z= 6.6, where ? the transmissivity is instead largely set by the local H I abundance and ? consequently increases with halo mass, Mh, from 0.15 to 0.3. Although outflows are present, they are efficiently pressure confined by infall in a small region around the LAE; hence they only marginally affect transmissivity. Finally, we cast line of sight originating from background QSOs passing through foreground LAEs at different impact parameters, and compute the quasar transmissivity (?). At small impact parameters, d < 1 cMpc, a positive correlation between ? and Mh is found at z= 5.7, which tends to become less pronounced (i.e. flatter) at larger distances. Quantitatively, a roughly 10× increase (from 5 × 10-3 to 6 × 10-2) of ? is observed in the range log Mh= (10.4-11.6). This correlation becomes even stronger at z= 6.6. By cross-correlating ? and ?, we can obtain a

  18. NuSTAR reveals an intrinsically X-ray weak broad absorption line quasar in the ultraluminous infrared galaxy Markarian 231

    SciTech Connect

    Teng, Stacy H.; Rigby, J. R.; Brandt, W. N.; Luo, B.; Harrison, F. A.; Grefenstette, B. W.; Madsen, K. K.; Alexander, D. M.; Gandhi, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Fabian, A. C.; Farrah, D.; Fiore, F.; Hailey, C. J.; Hickox, R. C.; Ptak, A. F.; and others

    2014-04-10

    We present high-energy (3-30 keV) NuSTAR observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5-8 keV) data from Chandra. The source was detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5-30 keV) X-ray spectrum suggests the active galactic nucleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin (N{sub H}∼1.2{sub −0.3}{sup +0.3}×10{sup 23} cm{sup –2}) column. The intrinsic X-ray luminosity (L {sub 0.5–30} {sub keV} ∼ 1.0 × 10{sup 43} erg s{sup –1}) is extremely weak relative to the bolometric luminosity where the 2-10 keV to bolometric luminosity ratio is ∼0.03% compared to the typical values of 2%-15%. Additionally, Mrk 231 has a low X-ray-to-optical power law slope (α{sub OX} ∼ –1.7). It is a local example of a low-ionization broad absorption line quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may be a result of the super-Eddington accretion occurring in the nucleus of this ULIRG, and may also be naturally related to the powerful wind event seen in Mrk 231, a merger remnant escaping from its dusty cocoon.

  19. The FAST BAL Monitoring Campaign: Multi-epoch Constraints on Quasar Outflows

    NASA Astrophysics Data System (ADS)

    Arraki, Kenza S.; Haggard, D.; Anderson, S.; Green, P.; Aldcroft, T.

    2012-01-01

    Kinetic energy carried by AGN winds and jets may rival radiation as the dominant feedback mechanism regulating galaxy-SMBH co-evolution. Though outflows likely accompany all luminous accretion disks, broad absorption line quasars (BALQSOs) provide the most dramatic astrophysical examples; their massive outflows display P-Cygni profiles that span velocities up to 0.3c and are visible in the spectra of 15-40% of optically-selected quasars. Spectroscopic variability studies of BALQSOs probe the structure, stability, location, and dynamics of the emitting and absorbing gas near the SMBH and can provide insight into connections between AGN feedback and host galaxy formation and evolution. We report on a multi-year spectroscopic campaign that monitors seventeen BALQSOs (identified originally in the SDSS) using the Fred Lawrence Whipple Observatory's 1.5m telescope's FAST spectrograph. These targets have Chandra X-ray data and have been repeatedly observed with FAST, in regular cadences from one day to two years -- a 6 year cadence is planned for spring 2012. We identify variability in the broad absorption line region, assess its significance, magnitude, and frequency and discuss the constraints these investigations can place on QSO outflows

  20. The Redshifted Hydrogen Balmer and Metastable He 1 Absorption Line System in Mini-FeLoBAL Quasar SDSS J112526.12+002901.3: A Parsec-scale Accretion Inflow?

    NASA Astrophysics Data System (ADS)

    Shi, Xi-Heng; Jiang, Peng; Wang, Hui-Yuan; Zhang, Shao-Hua; Ji, Tuo; Liu, Wen-Juan; Zhou, Hong-Yan

    2016-10-01

    The accretion of the interstellar medium onto central super-massive black holes is widely accepted as the source of the gigantic energy released by the active galactic nuclei. However, few pieces of observational evidence have been confirmed directly demonstrating the existence of the inflows. The absorption line system in the spectra of quasar SDSS J112526.12+002901.3 presents an interesting example in which the rarely detected hydrogen Balmer and metastable He i absorption lines are found redshifted to the quasar's rest frame along with the low-ionization metal absorption lines Mg ii, Fe ii, etc. The repeated SDSS spectroscopic observations suggest a transverse velocity smaller than the radial velocity. The motion of the absorbing medium is thus dominated by infall. The He i* lines present a powerful probe to the strength of ionizing flux, while the Balmer lines imply a dense environment. With the help of photoionization simulations, we find that the absorbing medium is exposed to the radiation with ionization parameter U ≈ 10-1.8, and the density is n({{H}})≈ {10}9 {{cm}}-3. Thus the absorbing medium is located ˜4 pc away from the central engine. According to the similarity in the distance and physical conditions between the absorbing medium and the torus, we strongly propose the absorption line system as a candidate for the accretion inflow, which originates in the inner surface of the torus.

  1. Absorption-line Spectroscopy of Gravitationally Lensed Galaxies: Further Constraints on the Escape Fraction of Ionizing Photons at High Redshift

    NASA Astrophysics Data System (ADS)

    Leethochawalit, Nicha; Jones, Tucker A.; Ellis, Richard S.; Stark, Daniel P.; Zitrin, Adi

    2016-11-01

    The fraction of ionizing photons escaping from high-redshift star-forming galaxies is a key obstacle in evaluating whether galaxies were the primary agents of cosmic reionization. We previously proposed using the covering fraction of low-ionization gas, measured via deep absorption-line spectroscopy, as a proxy. We now present a significant update, sampling seven gravitationally lensed sources at 4 < z < 5. We show that the absorbing gas in our sources is spatially inhomogeneous, with a median covering fraction of 66%. Correcting for reddening according to a dust-in-cloud model, this implies an estimated absolute escape fraction of ≃19% ± 6%. With possible biases and uncertainties, collectively we find that the average escape fraction could be reduced to no less than 11%, excluding the effect of spatial variations. For one of our lensed sources, we have sufficient signal-to-noise ratio to demonstrate the presence of such spatial variations and scatter in its dependence on the Lyα equivalent width, consistent with recent simulations. If this source is typical, our lower limit to the escape fraction could be reduced by a further factor ≃2. Across our sample, we find a modest anticorrelation between the inferred escape fraction and the local star formation rate, consistent with a time delay between a burst and leaking Lyman continuum photons. Our analysis demonstrates considerable variations in the escape fraction, consistent with being governed by the small-scale behavior of star-forming regions, whose activities fluctuate over short timescales. This supports the suggestion that the escape fraction may increase toward the reionization era when star formation becomes more energetic and burst-like.

  2. The dependence of C IV broad absorption line properties on accompanying Si IV and Al III absorption: relating quasar-wind ionization levels, kinematics, and column densities

    SciTech Connect

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.; Trump, J. R.; Hall, P. B.; Anderson, S. F.; Hamann, F.; Myers, Adam D.; Pâris, I.; Petitjean, P.; Ross, Nicholas P.; Shen, Yue; York, Don

    2014-08-20

    We consider how the profile and multi-year variability properties of a large sample of C IV Broad Absorption Line (BAL) troughs change when BALs from Si IV and/or Al III are present at corresponding velocities, indicating that the line of sight intercepts at least some lower ionization gas. We derive a number of observational results for C IV BALs separated according to the presence or absence of accompanying lower ionization transitions, including measurements of composite profile shapes, equivalent width (EW), characteristic velocities, composite variation profiles, and EW variability. We also measure the correlations between EW and fractional-EW variability for C IV, Si IV, and Al III. Our measurements reveal the basic correlated changes between ionization level, kinematics, and column density expected in accretion-disk wind models; e.g., lines of sight including lower ionization material generally show deeper and broader C IV troughs that have smaller minimum velocities and that are less variable. Many C IV BALs with no accompanying Si IV or Al III BALs may have only mild or no saturation.

  3. Active Galactic Nuclei Probed by QSO Absorption Lines

    NASA Astrophysics Data System (ADS)

    Misawa, Toru

    2007-07-01

    Quasars are the extremely bright nuclei found in about 10% of galaxies. A variety of absorption features (known collectively as quasar absorption lines) are detected in the rest-frame UV spectra of these objects. While absorption lines that have very broad widths originate in gas that is probably physocally related to the quasars, narrow absorption lines (NALs) were thought to arise in galaxies and/or in the intter-alacttic medium between the quasars and us. Using high-resolution spectra of quasars, it is found that a substantial fraction of NALs arise in gas in the immediate vicinity of the quasars. A dramatically variable, moderately-broad absorption line in the spectrum of the quasar HS 1603+3820l is also found. The variability of this line is monitored in a campaign with Subaru telescope. These observational results are compared to models for outflows from the quasars, specifically, models for accretion disk winds and evaporating obscuring tori. It is quite important to determine the mechanism of outflow because of its cosmological implications. The outflow could expel angular momentum from the accretion disk and enable quasars to accrete and shine. In addition, the outflow may also regulate star formation in the early stages of the assembly of the host galaxy and enrich the interstellar and intergalactic medium with metals.

  4. Searching for Variability of NV Intrinsic Narrow Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Rodruck, Michael; Charlton, Jane C.; Ganguly, Rajib

    2017-01-01

    The majority of quasar absorption line systems with NV detected are found within the associated region (within 5000km/s of the quasar redshift) and many/most are believed to be related to the quasar accretion disk wind or outflows. The most definite evidence that these NV absorbers are "intrinsic" is partial covering of the quasar continuum source and/or broad line region. Over 50 quasars containing NV narrow absorption lines have observations obtained at different times with the Keck/HIRES and the VLT/UVES spectrographs at high resolution. The interval between these observations range from months to a decade in the quasar rest frame. While variability is common for intrinsic broad and mini-broad absorption lines, intrinsic narrow absorption lines have been found to be less likely to vary, though systematic studies with large, high quality datasets have been limited. The variability timescales are useful for deriving gas densities and thus the distances from the central engines. This is important in mapping the quasar surroundings, understanding the accretion disk wind mechanism, and assessing the effect the wind has on the galaxy surroundings. We report on the results of a systematic study of variability of NV NALs, exploiting the overlap of targets for observations in the archives of Keck and VLT, and discuss the consequences for interpretation of the origin of intrinsic narrow absorption lines.

  5. Balmer Absorption Lines in FeLoBALs

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Iwata, I.; Ohta, K.; Tamura, N.; Ando, M.; Akiyama, M.; Kiuchi, G.; Nakanishi, K.

    2007-10-01

    We discovered non-stellar Balmer absorption lines in two many-narrow-trough FeLoBALs (mntBALs) by the near-infrared spectroscopy with Subaru/CISCO. Presence of the non-stellar Balmer absorption lines is known to date only in the Seyfert galaxy NGC 4151; thus our discovery is the first cases for quasars. Since all known active galactic nuclei with Balmer absorption lines share similar characteristics, it is suggested that there is a population of BAL quasars which have unique structures at their nuclei or unique evolutionary phase.

  6. Unveiling the X-ray/UV properties of disk winds in active galactic nuclei using broad and mini-broad absorption line quasars

    NASA Astrophysics Data System (ADS)

    Giustini, M.

    2016-05-01

    We present the results of the uniform analysis of 46 XMM-Newton observations of six BAL and seven mini-BAL QSOs belonging to the Palomar-Green Quasar catalogue. Moderate-quality X-ray spectroscopy was performed with the EPIC-pn, and allowed to characterise the general source spectral shape to be complex, significantly deviating from a power law emission. A simple power law analysis in different energy bands strongly suggests absorption to be more significant than reflection in shaping the spectra. If allowing for the absorbing gas to be either partially covering the continuum emission source or to be ionised, large column densities of the order of 1022-1024 cm-2 are inferred. When the statistics was high enough, virtually every source was found to vary in spectral shape on various time scales, from years to hours. All in all these observational results are compatible with radiation driven accretion disk winds shaping the spectra of these intriguing cosmic sources.

  7. Absorption-Line Studies of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Shull, J. Michael

    We propose to undertake a "reverberation analysis" of the variable absorption lines ill two Seyfert Galaxies (NGC 4051 and Mrk 279) to help understand the origin of intrinsic absorption lines in AGNs. Stich an analysis is a powerful tool for elucidating the radial distribution of absorbing gas in the broad-line region (BLR) and narrow-line region (NLR). Only two Seyferts have previously been studied with this technique: NGC 4151 (Bromage el al. 1985; Clavel et al. 1987) and NGC 3516 (Voit, Shull, and Begelman 1987). The absorption features have been interpreted as an outflow of ionized clouds from the nuclear region or from an accretion disk affected by UV/X-ray heating. Neither the source of the absorbing gas in these Seyferts nor the "gene" which distingishes them from other Seyferts is known. Until the 1984 onset of absorption in Mrk 279, broad self-absorbed. lines had been observed only in Seyferts of low intrinsic luminosity, such as NGC 4051. Mrk 279 is intrinsically much brighter, and therefore more quasar-like, than the other three absorptionline Seyfert I's in the CfA sample. Thus, it may show how the absorption phenomenon changes at higher luminosity and could bridge the gap between the low luminosity absorption-line Seyferts and the well-studied broad absorption-line (BAL) QSO's. In addition, Mrk 279's significant redshift will allow us to study, for the first time, the Ly-alpha line in an absorption-line Seyfert. With 3 US-1 shifts for each of these two underobserved Seyferts, we can double the number of objects in which absorption-line variability has been studied and investigate why the absorption-line strengths correlate or anti-correlate with the UV continuum.

  8. Constraints on the temperature inhomogeneity in quasar accretion discs from the ultraviolet-optical spectral variability

    NASA Astrophysics Data System (ADS)

    Kokubo, Mitsuru

    2015-05-01

    The physical mechanisms of the quasar ultraviolet (UV)-optical variability are not well understood despite the long history of observations. Recently, Dexter & Agol presented a model of quasar UV-optical variability, which assumes large local temperature fluctuations in the quasar accretion discs. This inhomogeneous accretion disc model is claimed to describe not only the single-band variability amplitude, but also microlensing size constraints and the quasar composite spectral shape. In this work, we examine the validity of the inhomogeneous accretion disc model in the light of quasar UV-optical spectral variability by using five-band multi-epoch light curves for nearly 9 000 quasars in the Sloan Digital Sky Survey (SDSS) Stripe 82 region. By comparing the values of the intrinsic scatter σint of the two-band magnitude-magnitude plots for the SDSS quasar light curves and for the simulated light curves, we show that Dexter & Agol's inhomogeneous accretion disc model cannot explain the tight inter-band correlation often observed in the SDSS quasar light curves. This result leads us to conclude that the local temperature fluctuations in the accretion discs are not the main driver of the several years' UV-optical variability of quasars, and consequently, that the assumption that the quasar accretion discs have large localized temperature fluctuations is not preferred from the viewpoint of the UV-optical spectral variability.

  9. More Constraints on the Physical Conditions of the Kinematically Complex, Multiphase Absorption Line System at z=0.93 toward PG1206+459

    NASA Astrophysics Data System (ADS)

    Rosenwasser, Ben; Muzahid, Sowgat; Norris, Jackson; Charlton, Jane C.

    2015-01-01

    We present the results of photo- and collisional ionization modeling of the strong MgII absorption system at redshift z~0.93 towards the quasar PG1206+459. This system has been extensively studied over the last two decades (Churchill & Charlton 1999; Ding et al. 2003; Tripp et al. 2011) using a combination of spectra from Keck/HIRES, HST/FOS, HST/STIS, and HST/COS. Here we present newconstraints using the most complete spectral coverage including more recent observations of OVI and the Lyman series from HST/COS. Numerous absorption components are seen over a large velocity spread (~1500km/s), and multiple ionization phases are required to account for the detected transitions, which include MgI, MgII, FeII, SiII, SiIII, SiIV, CII, CIII, CIV, SIII, SIV, SV, SVI, NIII, NIV, NV, OIII, OIV, OV, OVI, and NeVIII. Considering the new constraints, we revisit the question of the physical nature of the structures that produce this absorber.

  10. Quasars Probing Quasars. IV. Joint Constraints on the Circumgalactic Medium from Absorption and Emission

    NASA Astrophysics Data System (ADS)

    Hennawi, Joseph F.; Prochaska, J. Xavier

    2013-03-01

    We have constructed a sample of 29 close projected quasar pairs where the background quasar spectrum reveals absorption from optically thick H I gas associated with the foreground quasar. These unique sightlines allow us to study the quasar circumgalactic medium (CGM) in absorption and emission simultaneously, because the background quasar pinpoints large concentrations of gas where Lyα emission, resulting from quasar-powered fluorescence, resonant Lyα scattering, and/or cooling radiation, is expected. A sensitive search (1σ surface-brightness limits of SB_{Ly\\alpha } \\simeq 3{\\; \\times \\; 10^{-18}}\\,erg\\,s^{-1\\,cm^{-2}\\,arcsec^{-2}}) for diffuse Lyα emission in the environments of the foreground (predominantly radio-quiet) quasars is conducted using Gemini/GMOS and Keck/LRIS slit spectroscopy. We fail to detect large-scale ~100 kpc Lyα emission, either at the location of the optically thick absorbers or in the foreground quasar halos, in all cases except a single system. We interpret these non-detections as evidence that the gas detected in absorption is shadowed from the quasar UV radiation due to obscuration effects, which are frequently invoked in unified models of active galactic nuclei. Small-scale R <~ 50 kpc extended Lyα nebulosities are detected in 34% of our sample, which are likely the high-redshift analogs of the extended emission-line regions (EELRs) commonly observed around low-redshift (z < 0.5) quasars. This may be fluorescent recombination radiation from a population of very dense clouds with a low covering fraction illuminated by the quasar. We also detect a compact high rest-frame equivalent width (W Lyα > 50 Å) Lyα-emitter with luminosity L Lyα = 2.1 ± 0.32 × 1041 erg s-1 at small impact parameter R = 134 kpc from one foreground quasar, and argue that it is more likely to result from quasar-powered fluorescence, than simply be a star-forming galaxy clustered around the quasar. Our observations imply that much deeper

  11. QUASARS PROBING QUASARS. IV. JOINT CONSTRAINTS ON THE CIRCUMGALACTIC MEDIUM FROM ABSORPTION AND EMISSION

    SciTech Connect

    Hennawi, Joseph F.; Prochaska, J. Xavier

    2013-03-20

    We have constructed a sample of 29 close projected quasar pairs where the background quasar spectrum reveals absorption from optically thick H I gas associated with the foreground quasar. These unique sightlines allow us to study the quasar circumgalactic medium (CGM) in absorption and emission simultaneously, because the background quasar pinpoints large concentrations of gas where Ly{alpha} emission, resulting from quasar-powered fluorescence, resonant Ly{alpha} scattering, and/or cooling radiation, is expected. A sensitive search (1{sigma} surface-brightness limits of SB{sub Ly{alpha}}{approx_equal}3 Multiplication-Sign 10{sup -18} erg s{sup -1} cm{sup -2} arcsec{sup -2}) for diffuse Ly{alpha} emission in the environments of the foreground (predominantly radio-quiet) quasars is conducted using Gemini/GMOS and Keck/LRIS slit spectroscopy. We fail to detect large-scale {approx}100 kpc Ly{alpha} emission, either at the location of the optically thick absorbers or in the foreground quasar halos, in all cases except a single system. We interpret these non-detections as evidence that the gas detected in absorption is shadowed from the quasar UV radiation due to obscuration effects, which are frequently invoked in unified models of active galactic nuclei. Small-scale R {approx}< 50 kpc extended Ly{alpha} nebulosities are detected in 34% of our sample, which are likely the high-redshift analogs of the extended emission-line regions (EELRs) commonly observed around low-redshift (z < 0.5) quasars. This may be fluorescent recombination radiation from a population of very dense clouds with a low covering fraction illuminated by the quasar. We also detect a compact high rest-frame equivalent width (W{sub Ly{alpha}} > 50 A) Ly{alpha}-emitter with luminosity L{sub Ly{alpha}} = 2.1 {+-} 0.32 Multiplication-Sign 10{sup 41} erg s{sup -1} at small impact parameter R = 134 kpc from one foreground quasar, and argue that it is more likely to result from quasar-powered fluorescence

  12. A CONSTRAINT ON QUASAR CLUSTERING AT z = 5 FROM A BINARY QUASAR

    SciTech Connect

    McGreer, Ian D.; Fan, Xiaohui; Eftekharzadeh, Sarah; Myers, Adam D.

    2016-03-15

    We report the discovery of a quasar pair at z = 5 separated by 21″. Both objects were identified as quasar candidates using simple color selection techniques applied to photometric catalogs from the Canada–France–Hawaii Telescope (CFHT) Legacy Survey (CFHTLS). Spectra obtained with the MMT present no discernible offset in redshift between the two objects; on the other hand, there are clear differences in the emission line profiles and in the multiwavelength spectral energy distributions that strongly disfavor the hypothesis that they are gravitationally lensed images of a single quasar. Both quasars are surprisingly bright given their proximity (a projected separation of ∼135 kpc), with i = 19.4 and i = 21.4. Previous measurements of the luminosity function demonstrate that luminous quasars are extremely rare at z = 5; the existence of this pair suggests that quasars have strong small-scale clustering at high redshift. Assuming a real-space correlation function of the form ξ(r) ∝ (r/r{sub 0}){sup −2}, this discovery implies a correlation length of r{sub 0} ≳ 20h{sup −1} Mpc, consistent with a rapid strengthening of quasar clustering at high redshift as seen in previous observations and predicted by theoretical models where feedback effects are inefficient at shutting down black hole growth at high redshift.

  13. A Constraint on Quasar Clustering at z = 5 from a Binary Quasar

    NASA Astrophysics Data System (ADS)

    McGreer, Ian D.; Eftekharzadeh, Sarah; Myers, Adam D.; Fan, Xiaohui

    2016-03-01

    We report the discovery of a quasar pair at z = 5 separated by 21″. Both objects were identified as quasar candidates using simple color selection techniques applied to photometric catalogs from the Canada-France-Hawaii Telescope (CFHT) Legacy Survey (CFHTLS). Spectra obtained with the MMT present no discernible offset in redshift between the two objects; on the other hand, there are clear differences in the emission line profiles and in the multiwavelength spectral energy distributions that strongly disfavor the hypothesis that they are gravitationally lensed images of a single quasar. Both quasars are surprisingly bright given their proximity (a projected separation of ˜135 kpc), with i = 19.4 and i = 21.4. Previous measurements of the luminosity function demonstrate that luminous quasars are extremely rare at z = 5 the existence of this pair suggests that quasars have strong small-scale clustering at high redshift. Assuming a real-space correlation function of the form ξ(r) ∝ (r/r0)-2, this discovery implies a correlation length of r0 ≳ 20h-1 Mpc, consistent with a rapid strengthening of quasar clustering at high redshift as seen in previous observations and predicted by theoretical models where feedback effects are inefficient at shutting down black hole growth at high redshift. Observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  14. The Early Universe Probed by QSO Absorption Lines

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Iye, Masanori

    2000-12-01

    High-z QSOs are valuable probes of the early universe and provide us information on the era of galaxy formation. QSOs can also be used as background sources against intervening objects such as proto-galactic clouds and faint foreground galaxies. These intervening objects produce absorption lines in the spectra of background QSOs. Gas clouds producing metal absorption lines are thought to exist in the halos of intervening galaxies and are used to evaluate the metal abundances of galaxies at high redshifts. In the course of studying the evolution of metal absorption lines, it was found that the number of absorbers per unit redshift interval increases in the vicinity of QSOs, especially of radio-loud QSOs. The reason of such an excess of metal absorption lines remains still unclear. In this paper, the authors review the absorption properties and enigmas of quasar absorption lines.

  15. A catalogue of absorption-line systems in QSO spectra

    NASA Astrophysics Data System (ADS)

    Ryabinkov, A. I.; Kaminker, A. D.; Varshalovich, D. A.

    2003-12-01

    We present a new catalog of absorption-line systems identified in the quasar spectra. It contains data on 821 QSOs and 8558 absorption systems comprising 16 139 absorption lines with measured redshifts in the QSO spectra. The catalog includes absorption-line systems consisting of lines of heavy elements, lines of neutral hydrogen, Lyman limit systems, damped Lyα absorption systems, and broad absorption-line systems. Using the data of the present catalog we also discuss redshift distributions of absorption-line systems. Tables 1 and 2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/412/707

  16. Observational constraints on the structure and evolution of quasars

    NASA Astrophysics Data System (ADS)

    Kelly, Brandon C.

    2008-01-01

    I use X-ray and optical data to investigate the structure of quasars, and its dependence on luminosity, redshift, black hole mass, and Eddington ratio. In order to facilitate my work, I develop new statistical methods of accounting for measurement error, non-detections, and survey selection functions. The main results of this thesis follow. (1) The statistical uncertainty in the broad line mass estimates can lead to significant artificial broadening of the observed distribution of black hole mass. (2) The z = 0.2 broad line quasar black hole mass function falls off approximately as a power law with slope ~ 2 for M BH [Special characters omitted.] 10 8 [Special characters omitted.] . (3) Radio-quiet quasars become more X-ray quiet as their optical/UV luminosity, black hole mass, or Eddington ratio increase, and more X-ray loud at higher redshift. These correlations imply that quasars emit a larger fraction of their bolometric luminosity through the accretion disk component, as compared to the corona component, as black hole mass and Eddington ratio increase. (4) The X- ray spectral slopes of radio-quiet quasars display a non-monotonic trend with Eddington ratio, where the X-ray continuum softens with increasing Eddington ratio until L/L Edd ~ 0.3, and then begins to harden. This observed non- monotonic trend may be caused by a change in the structure of the disk/corona system at L/L Edd ~ 0.3, possibly due to increased radiation pressure. (5) The characteristic time scales of quasar optical flux variations increase with increasing M BH , and are consistent with disk orbital or thermal time scales. In addition the amplitude of short time scale variability decreases with increasing M BH . I interpret quasar optical light curves as being driven by thermal fluctuations, which in turn are driven by some other underlying stochastic process with characteristic time scale long compared to the disk thermal time scale. The stochastic model I use is able to explain both short

  17. EVIDENCE FOR PHOTOIONIZATION-DRIVEN BROAD ABSORPTION LINE VARIABILITY

    SciTech Connect

    Wang, Tinggui; Yang, Chenwei; Wang, Huiyuan; Ferland, Gary

    2015-12-01

    We present a qualitative analysis of the variability of quasar broad absorption lines using the large multi-epoch spectroscopic data set of the Sloan Digital Sky Survey Data Release 10. We confirm that variations of absorption lines are highly coordinated among different components of the same ion or the same absorption component of different ions for C iv, Si iv, and N v. Furthermore, we show that the equivalent widths (EWs) of the lines decrease or increase statistically when the continuum brightens or dims. This is further supported by the synchronized variations of emission and absorption-line EWs when the well-established intrinsic Baldwin effect for emission lines is taken into account. We find that the emergence of an absorption component is usually accompanied by the dimming of the continuum while the disappearance of an absorption-line component is accompanied by the brightening of the continuum. This suggests that the emergence or disappearance of a C iv absorption component is only the extreme case, when the ionic column density is very sensitive to continuum variations or the continuum variability the amplitude is larger. These results support the idea that absorption-line variability is driven mainly by changes in the gas ionization in response to continuum variations, that the line-absorbing gas is highly ionized, and in some extreme cases, too highly ionized to be detected in UV absorption lines. Due to uncertainties in the spectroscopic flux calibration, we cannot quantify the fraction of quasars with asynchronized continuum and absorption-line variations.

  18. Microlensing Constraints on Broad Absorption and Emission Line Flows in the Quasar H1413+117

    NASA Astrophysics Data System (ADS)

    O'Dowd, Matthew J.; Bate, Nicholas F.; Webster, Rachel L.; Labrie, Kathleen; Rogers, Joshua

    2015-11-01

    We present new integral field spectroscopy of the gravitationally lensed broad absorption line (BAL) quasar H1413+117, covering the ultraviolet restframe spectral range. We observe strong microlensing signatures in lensed image D, and we use this microlensing to simultaneously constrain both the broad emission and broad absorption line gas. The wavelength independence of image D magnifications across the broad emission lines (BELs) indicates a lower limit on the broad emission line region (BELR) size equal to the Einstein radius (ER) of the system: ≳11 {(< M> /{M}⊙ )}0.5 lt-day for a lens redshift of 1.4 and ≳15 {(< M> /{M}⊙ )}0.5 lt-day for zL = 0.94. Lensing simulations verify that the observed wavelength independence is very unlikely for BELRs with significant velocity stratification at size scales below an ER. We perform spectral decomposition to derive the intrinsic BEL and continuum spectrum, subject to BAL absorption. We reconstruct the intrinsic BAL absorption profile, whose features allow us to constrain outflow kinematics in the context of a disk-wind model. We find a very sharp, blueshifted onset of absorption of 1500 km s-1 in both C iv and N v, which may correspond to an inner edge of a disk-wind’s radial outflow. The lower ionization Si iv and Al iii have higher-velocity absorption onsets, consistent with a decreasing ionization parameter with radius in an accelerating outflow. There is evidence of strong absorption in the BEL component, which indicates a high covering factor for absorption over two orders of magnitude in outflow radius.

  19. CONSTRAINTS ON THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT z {approx} 5 IN THE COSMOS FIELD

    SciTech Connect

    Ikeda, H.; Matsuoka, K.; Kajisawa, M.; Nagao, T.; Taniguchi, Y.; Shioya, Y.; Enoki, M.; Capak, P.; Masters, D.; Scoville, N. Z.; Civano, F.; Koekemoer, A. M.; Morokuma, T.; Salvato, M.; Schinnerer, E.

    2012-09-10

    We present the result of our low-luminosity quasar survey in the redshift range of 4.5 {approx}< z {approx}< 5.5 in the COSMOS field. Using the COSMOS photometric catalog, we selected 15 quasar candidates with 22 < i' < 24 at z {approx} 5 that are {approx}3 mag fainter than the Sloan Digital Sky Survey quasars in the same redshift range. We obtained optical spectra for 14 of the 15 candidates using FOCAS on the Subaru Telescope and did not identify any low-luminosity type-1 quasars at z {approx} 5, while a low-luminosity type-2 quasar at z {approx} 5.07 was discovered. In order to constrain the faint end of the quasar luminosity function at z {approx} 5, we calculated the 1{sigma} confidence upper limits of the space density of type-1 quasars. As a result, the 1{sigma} confidence upper limits on the quasar space density are {Phi} < 1.33 Multiplication-Sign 10{sup -7} Mpc{sup -3} mag{sup -1} for -24.52 < M{sub 1450} < -23.52 and {Phi} < 2.88 Multiplication-Sign 10{sup -7} Mpc{sup -3} mag{sup -1} for -23.52 < M{sub 1450} < -22.52. The inferred 1{sigma} confidence upper limits of the space density are then used to provide constraints on the faint-end slope and the break absolute magnitude of the quasar luminosity function at z {approx} 5. We find that the quasar space density decreases gradually as a function of redshift at low luminosity (M{sub 1450} {approx} -23), being similar to the trend found for quasars with high luminosity (M{sub 1450} < -26). This result is consistent with the so-called downsizing evolution of quasars seen at lower redshifts.

  20. Absorption Line Analysis to Interprete and Constrain Cosmological Simulations of Galaxy Evolution with Feedback

    NASA Astrophysics Data System (ADS)

    Churchill, Christopher

    2011-10-01

    The mammoth challenge for contemporary studies of galaxy formation and evolution are to establish detailed models in the cosmological context in which both the few parsec scale physics within galaxies are self-consistently unified and made consistent with the observed universe of galaxies. They key diagnostics reside with the gas physics, which dictate virtually every aspect of galaxy formation and evolution. The small scale physics includes stellar feedback, gas cooling, heating, and advection and the multiphase interstellar medium; the large scale physics includes intergalactic accretion, local merging, effects of supernovae driven winds, and the development of extended metal-enriched gas halos.Absorption line data have historically proven to be {and shall in the future} virtually the most powerful tool for understanding gas physics on all spatial scales over the majority of the age of the universe- the key to success. Simply stated, absorption lines are one of astronomy's most powerful observational windows on the universe {galaxy formation, galaxy winds, IGM metal enrichment, etc.}. The high quality and vast numbers of absorption line data {obtained with HST and FUSE} probe a broad range of gas structures {ISM, HVCs, halos, IGM} over the full cosmic span when galaxies are actively evolving.We propose to use LCDM hydrodynamic cosmological simulations employing a Eulerian Gasdynamics plus N-body Adaptive Refinement Tree {ART} code to develop and refine our understanding of stellar feedback physics and its role in governing the gas physics that regulates the evolution of galaxies and the IGM. We aim to substantially progress our understanding of all possible gas phases embedded within and extending far from galaxies. Our methodology is to apply a series of quantitative observational constraints from absorption line systems to better understand extended galaxy halos and the influence of the cosmological environment of the simulated galaxies: {1} galaxy halos

  1. Future dark energy constraints from measurements of quasar parallax: Gaia, SIM and beyond

    NASA Astrophysics Data System (ADS)

    Ding, Fiona; Croft, Rupert A. C.

    2009-08-01

    A consequence of the Earth's well-measured motion with respect to the cosmic microwave background is that over a 10-yr period it will travel a distance of ~800au. As first pointed out by Kardashev in 1986, this distance can be used as a baseline to carry out astrometric measurements of quasar parallaxes, so that only microarcsecond precision is necessary to detect parallax shifts of objects at gigaparsec distances. Such precision will soon be approached with the launch of the astrometric satellites Gaia and Space Interferometry Mission (SIM). We use a Fisher matrix formalism to investigate the constraints that these and future, even more ambitious, missions may be able to place on the cosmological distance scale and the parameters describing dark energy. We find that by observing around a million quasars as planned, an extended 10yr Gaia mission should have the capability to detect quasar parallax shifts at the 2.8σ level and so measure the Hubble constant to within 25 kms-1. For the interferometer SIM (in its currently proposed SIMLite configuration) a Key Project using 2.4 per cent of the total mission time to observe 750 quasars could detect the effect at the 2σ level and dedicated use of the instrument at the 3.3σ level. In a concordance cosmological model, Gaia and dedicated SIMLite only weakly constrain the presence of a cosmological constant at the ~1σ levels. We also investigate a range of future mission concepts, such as an interferometer similar in scope and design to NASA's Terrestrial Planet Finder. This could in principle measure the dark energy parameters w0 and wa with precision and , respectively, yielding a Figure of Merit larger than the stage IV experiments considered in the report of the Dark Energy Task Force. Unlike perhaps all other probes of dark energy there appear to be no obvious astrophysical sources of systematic error on these measurements. There is however uncertainty regarding the statistical errors. As well as measurement error

  2. VizieR Online Data Catalog: HeI* in broad absorption line QSOs (Liu+, 2015)

    NASA Astrophysics Data System (ADS)

    Liu, W.-J.; Zhou, H.; Ji, T.; Yuan, W.; Wang, T.-G.; Jian, G.; Shi, X.; Zhang, S.; Jiang, P.; Shu, X.; Wang, H.; Wang, S.-F.; Sun, L.; Yang, C.; Liu, B.; Zhao, W.

    2015-04-01

    Neutral helium multiplets, HeI*λλ3189, 3889, 10830, are very useful diagnostics for the geometry and physical conditions of the absorbing gas in quasars. So far only a handful of HeI* detections have been reported. Using a newly developed method, we detected the HeI*λ3889 absorption line in 101 sources of a well-defined sample of 285 MgII broad absorption line (BAL) quasars selected from SDSS DR5. This has increased the number of HeI* BAL quasars by more than one order of magnitude. We further detected HeI*λ3189 in 50% (52/101) of the quasars in the sample. The detection fraction of HeI* BALs in MgII BAL quasars is ~35% as a whole, and it increases dramatically with increasing spectral signal-to-noise ratio (S/N), from ~18% at S/N<=10 to ~93% at S/N>=35. This suggests that HeI* BALs could be detected in most MgII LoBAL quasars, provided the spectra S/N is high enough. Such a surprisingly high HeI* BAL fraction is actually predicted from photoionization calculations based on a simple BAL model. The result indicates that HeI* absorption lines can be used to search for BAL quasars at low z, which cannot be identified by ground-based optical spectroscopic surveys with commonly seen UV absorption lines. Using HeI*λ3889, we discovered 19 BAL quasars at z<0.3 from the available SDSS spectral database. The fraction of HeI* BAL quasars is similar to that of LoBAL objects. (7 data files).

  3. The Sloan Digital Sky Survey Quasar Lens Search. III Constraints on Dark Energy From The Third Data Release Quasar Lens Catalog

    SciTech Connect

    Oguri, M; Inada, N; Strauss, M A; Kochanek, C S; Richards, G T; Schneider, D P; Becker, R H; Fukugita, M; Gregg, M D; Hall, P B; Hennawi, J F; Johnston, D E; Kayo, I; Keeton, C R; Pindor, B; Shin, M; Turner, E; White, R L; York, D G; Anderson, S F; Bahcall, N A; Brunner, R J; Burles, S; Castander, F J; Chiu, K; Clocchiatti, A; Einsenstein, D; Frieman, J; Kawano, Y; Lupton, R; Morokuma, T; Rix, H; Scranton, R; Sheldon, E S

    2007-09-12

    We present cosmological results from the statistics of lensed quasars in the Sloan Digital Sky Survey (SDSS) Quasar Lens Search. By taking proper account of the selection function, we compute the expected number of quasars lensed by early-type galaxies and their image separation distribution assuming a flat universe, which is then compared with 7 lenses found in the SDSS Data Release 3 to derive constraints on dark energy under strictly controlled criteria. For a cosmological constant model (w = -1) we obtain {Omega}{sub {Lambda}} = 0.74{sub -0.15}{sup +0.11}(stat.){sub -0.06}{sup +0.13}(syst.). Allowing w to be a free parameter we find {Omega}{sub M} = 0.26{sub -0.06}{sup +0.07}(stat.){sub -0.05}{sup +0.03}(syst.) and w = -1.1 {+-} 0.6(stat.){sub -0.5}{sup +0.3}(syst.) when combined with the constraint from the measurement of baryon acoustic oscillations in the SDSS luminous red galaxy sample. Our results are in good agreement with earlier lensing constraints obtained using radio lenses, and provide additional confirmation of the presence of dark energy consistent with a cosmological constant, derived independently of type Ia supernovae.

  4. Radiation pressure confinement - IV. Application to broad absorption line outflows

    NASA Astrophysics Data System (ADS)

    Baskin, Alexei; Laor, Ari; Stern, Jonathan

    2014-12-01

    A fraction of quasars present broad absorption lines, produced by outflowing gas with typical velocities of 3000-10 000 km s-1. If the outflowing gas fills a significant fraction of the volume where it resides, then it will be highly ionized by the quasar due to its low density, and will not produce the observed UV absorption. The suggestion that the outflow is shielded from the ionizing radiation was excluded by recent observations. The remaining solution is a dense outflow with a filling factor f < 10-3. What produces such a small f? Here, we point out that radiation pressure confinement (RPC) inevitably leads to gas compression and the formation of dense thin gas sheets/filaments, with a large gradient in density and ionization along the line of sight. The total column of ionized dustless gas is a few times 1022 cm-2, consistent with the observed X-ray absorption and detectable P V absorption. The predicted maximal columns of various ions show a small dependence on the system parameters, and can be used to test the validity of RPC as a solution for the overionization problem. The ionization structure of the outflow implies that if the outflow is radiatively driven, then broad absorption line quasars should have L/L_Eddgtrsim 0.1.

  5. Constraints on Primordial Non-Gaussianity from 800 000 Photometric Quasars.

    PubMed

    Leistedt, Boris; Peiris, Hiranya V; Roth, Nina

    2014-11-28

    We derive robust constraints on primordial non-Gaussianity (PNG) using the clustering of 800 000 photometric quasars from the Sloan Digital Sky Survey in the redshift range 0.5quasar halo bias at the largest scales, while discarding as little as possible of the data. The standard local-type PNG parameters f_{NL} and g_{NL} both imprint a k^{-2} scale-dependent effect in the bias. Constraining these individually, we obtain -49constraints lead to -105quasar clustering to the underlying dark matter. These are the strongest constraints obtained to date on PNG using a single population of large-scale structure tracers, and are already at the level of pre-Planck constraints from the cosmic microwave background. A conservative forecast for a Large Synoptic Survey Telescope (LSST)-like survey incorporating mode projection yields σ(f_{NL})∼5-competitive with the Planck result-highlighting the power of upcoming large scale structure surveys to probe the initial conditions of the Universe.

  6. Constraints on Primordial Non-Gaussianity from 800 000 Photometric Quasars

    NASA Astrophysics Data System (ADS)

    Leistedt, Boris; Peiris, Hiranya V.; Roth, Nina

    2014-11-01

    We derive robust constraints on primordial non-Gaussianity (PNG) using the clustering of 800 000 photometric quasars from the Sloan Digital Sky Survey in the redshift range 0.5 quasar halo bias at the largest scales, while discarding as little as possible of the data. The standard local-type PNG parameters fNL and gNL both imprint a k-2 scale-dependent effect in the bias. Constraining these individually, we obtain -49 constraints lead to -105 quasar clustering to the underlying dark matter. These are the strongest constraints obtained to date on PNG using a single population of large-scale structure tracers, and are already at the level of pre-Planck constraints from the cosmic microwave background. A conservative forecast for a Large Synoptic Survey Telescope (LSST)-like survey incorporating mode projection yields σ (fNL)˜5 —competitive with the Planck result—highlighting the power of upcoming large scale structure surveys to probe the initial conditions of the Universe.

  7. The Geometry of Quasar Outflows

    NASA Astrophysics Data System (ADS)

    Ganguly, Rajib

    2012-10-01

    Quasar outflows are important for understanding the accretion and growth processes of the central black hole, but also potentially play a role in feedback to the galaxy, halting star formation and infall of gas. A big uncertainty lies in the geometry and density of these outflows, especially as a function of ionization and velocity. We aim to tackle this using the archival COS M grating spectra of 266 quasars. We separate the geometry of outflows into two parts: the solid angle subtended around the black hole, and the distance of the outflow from the central engine. Large numbers of quasars with high resolution spectra are required for each aspect of this statistical investigation. First, we will determine which/how many absorption-line systems are intrinsic through both partial covering methods and statistical assessments. Second, we will consider the incidence of intrinsic absorbers as a function of quasar property {e.g., radio-loudness, SED shape, black hole mass, bolometric luminosity}. This will reveal what determines the solid angle. This can only be done at moderate redshifts where quasars with a larger range of properties are observable, and hence requires HST/COS. Third, we will use the wide range of diagnostic lines to constrain the physical conditions of the absorbers. We will target the CIII*1175 complex and apply photoionization models to constrain the densities and ionization parameters. This will provide the largest set yet of intrinsic absorbers with systematic distance constraints. In tandem with the solid angles, this work will inform models regarding the geometry of quasar outflows.

  8. High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.

    1996-01-01

    The report for this period includes three papers: 'Associated Absorption at Low and High Redshift'; 'Strong X-ray Absorption in a Broad Absorption Line Quasar: PHL5200'; and 'ASCA and ROSAT X-ray Spectra of High-Redshift Radio-Loud Quasars'. The first gives examples from both low and high redshift for combining information on absorbing material in active galactic nuclei from both x-ray and the UV. The second presents ASCA observations of the z = 1.98 prototype broad absorption line quasar (BALQSO): PHL 5200, detected with both the solid-state imaging spectrometers and the gas imaging spectometers. The third paper presents results on the x-ray properties of 9 high-redshift radio-loud quasars observed by ASCA and ROSAT, including ASCA observations of S5 0014+81 (z = 3.38) and S5 0836+71 (z = 2.17) and ROSAT observations of PKS 2126-158.

  9. Do Atoms Really "Emit" Absorption Lines?

    ERIC Educational Resources Information Center

    Brecher, Kenneth

    1991-01-01

    Presents three absorption line sources that enhance student understanding of the phenomena associated with the interaction of light with matter and help dispel the misconception that atoms "emit" absorption lines. Sources include neodymium, food coloring and other common household liquids, and fluorescent materials. (MDH)

  10. THE QUASAR-GALAXY CROSS SDSS J1320+1644: A PROBABLE LARGE-SEPARATION LENSED QUASAR

    SciTech Connect

    Rusu, Cristian E.; Iye, Masanori; Oguri, Masamune; Inada, Naohisa; Kayo, Issha; Shin, Min-Su; Sluse, Dominique; Strauss, Michael A.

    2013-03-10

    We report the discovery of a pair of quasars at z = 1.487, with a separation of 8.''585 {+-} 0.''002. Subaru Telescope infrared imaging reveals the presence of an elliptical and a disk-like galaxy located almost symmetrically between the quasars, in a cross-like configuration. Based on absorption lines in the quasar spectra and the colors of the galaxies, we estimate that both galaxies are located at redshift z = 0.899. This, as well as the similarity of the quasar spectra, suggests that the system is a single quasar multiply imaged by a galaxy group or cluster acting as a gravitational lens, although the possibility of a binary quasar cannot be fully excluded. We show that the gravitational lensing hypothesis implies that these galaxies are not isolated, but must be embedded in a dark matter halo of virial mass {approx}4 Multiplication-Sign 10{sup 14} h {sup -1}{sub 70} M{sub Sun} assuming a Navarro-Frenk-White model with a concentration parameter of c{sub vir} = 6, or a singular isothermal sphere profile with a velocity dispersion of {approx}670 km s{sup -1}. We place constraints on the location of the dark matter halo, as well as the velocity dispersions of the galaxies. In addition, we discuss the influence of differential reddening, microlensing, and intrinsic variability on the quasar spectra and broadband photometry.

  11. The Sloan Digital Sky Survey Quasar Lens Search. VI. Constraints on Dark Energy and the Evolution of Massive Galaxies

    SciTech Connect

    Oguri, Masamune; et al.

    2012-05-01

    We present a statistical analysis of the final lens sample from the Sloan Digital Sky Survey Quasar Lens Search (SQLS). The number distribution of a complete subsample of 19 lensed quasars selected from 50,836 source quasars is compared with theoretical expectations, with particular attention to the selection function. Assuming that the velocity function of galaxies does not evolve with redshift, the SQLS sample constrains the cosmological constant to \\Omega_\\Lambda=0.79^{+0.06}_{-0.07}(stat.)^{+0.06}_{-0.06}(syst.) for a flat universe. The dark energy equation of state is found to be consistent with w=-1 when the SQLS is combined with constraints from baryon acoustic oscillation (BAO) measurements or results from the Wilkinson Microwave Anisotropy Probe (WMAP). We also obtain simultaneous constraints on cosmological parameters and redshift evolution of the galaxy velocity function, finding no evidence for redshift evolution at z<1 in any combinations of constraints. For instance, number density evolution quantified as \

  12. THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH. VI. CONSTRAINTS ON DARK ENERGY AND THE EVOLUTION OF MASSIVE GALAXIES

    SciTech Connect

    Oguri, Masamune; Kayo, Issha; Fukugita, Masataka; Inada, Naohisa; Strauss, Michael A.; Shin, Min-Su; Bahcall, Neta A.; Kochanek, Christopher S.; Morokuma, Tomoki; Richards, Gordon T.; Rusu, Cristian E.; Frieman, Joshua A.; Schneider, Donald P.; York, Donald G.; White, Richard L.

    2012-05-15

    We present a statistical analysis of the final lens sample from the Sloan Digital Sky Survey Quasar Lens Search (SQLS). The number distribution of a complete subsample of 19 lensed quasars selected from 50,836 source quasars is compared with theoretical expectations, with particular attention given to the selection function. Assuming that the velocity function of galaxies does not evolve with redshift, the SQLS sample constrains the cosmological constant to {Omega}{sub {Lambda}} = 0.79{sup +0.06}{sub -0.07}(stat.){sup +0.06}{sub -0.06}(syst.) for a flat universe. The dark energy equation of state is found to be consistent with w = -1 when the SQLS is combined with constraints from baryon acoustic oscillation (BAO) measurements or results from the Wilkinson Microwave Anisotropy Probe (WMAP). We also obtain simultaneous constraints on cosmological parameters and redshift evolution of the galaxy velocity function, finding no evidence for redshift evolution at z {approx}< 1 in any combinations of constraints. For instance, number density evolution quantified as {nu}{sub n} {identical_to} dln {phi}{sub *}/dln (1 + z) and the velocity dispersion evolution {nu}{sub {sigma}} {identical_to} dln {sigma}{sub *}/dln (1 + z) are constrained to {nu}{sub n} = 1.06{sup +1.36}{sub -1.39}(stat.){sup +0.33}{sub -0.64}(syst.) and {nu}{sub {sigma}} = -0.05{sup +0.19}{sub -0.16}(stat.){sup +0.03}{sub -0.03}(syst.), respectively, when the SQLS result is combined with BAO and WMAP for flat models with a cosmological constant. We find that a significant amount of dark energy is preferred even after fully marginalizing over the galaxy evolution parameters. Thus, the statistics of lensed quasars robustly confirm the accelerated cosmic expansion.

  13. Terminal Velocity Infall in QSO Absorption Line Halos

    NASA Astrophysics Data System (ADS)

    Benjamin, Robert A.

    We explore the hypothesis that clouds detected in quasar absorption line systems are falling at a terminal velocity toward the center of high redshift gaseous galactic halos. Since both the ionization level and terminal velocity of halo clouds increase with increasing distance from the central galaxy, velocity resolved profiles of highly ionized gas are predicted to have a greater width than low ionization gas. A line of sight passing through the center of gaseous halo (an idealized damped Ly alpha system), yields low ionization absorption at the velocity of the galaxy, flanked by high ionization on either side. Reasonable halo parameters yield total velocity extents for C IV of Delta v_{C IV}=100-200 km s^{-1}, in agreement with many systems observed by Lu et al (1997). The remaining systems may better described by the rotating disk model of Prochaska & Wolfe (1998). Finally, observational tests are suggested for verifying or falsifying the terminal velocity hypothesis for these systems.

  14. CONSTRAINTS ON QUASAR LIFETIMES AND BEAMING FROM THE He II Ly{alpha} FOREST

    SciTech Connect

    Furlanetto, Steven R.; Lidz, Adam

    2011-07-10

    We show that comparisons of He II Ly{alpha} forest lines of sight to nearby quasar populations can strongly constrain the lifetimes and emission geometry of quasars. By comparing the He II and H I Ly{alpha} forests along a particular line of sight, one can trace fluctuations in the hardness of the radiation field (which are driven by fluctuations in the He II ionization rate). Because this high-energy background is highly variable-thanks to the rarity of the bright quasars that dominate it and the relatively short attenuation lengths of these photons-it is straightforward to associate features in the radiation field with their source quasars. Here we quantify how finite lifetimes and beamed emission geometries affect these expectations. Finite lifetimes induce a time delay that displaces the observed radiation peak relative to the quasar. For beamed emission, geometry dictates that sources invisible to the observer can still create a peak in the radiation field. We show that both these models produce substantial populations of 'bare' peaks (without an associated quasar) for reasonable parameter values (lifetimes {approx}10{sup 6}-10{sup 8} yr and beaming angles {approx}< 90 deg.). A comparison to existing quasar surveys along two He II Ly{alpha} forest lines of sight rules out isotropic emission and infinite lifetime at high confidence; they can be accommodated either by moderate beaming or lifetimes {approx}10{sup 7}-10{sup 8} yr. We also show that the distribution of radial displacements between peaks and their quasars can unambiguously distinguish these two models, although larger statistical samples are needed.

  15. Constraints on the relative sizes of intervening Mg II-absorbing clouds and quasar emitting regions

    NASA Astrophysics Data System (ADS)

    Lawther, D.; Paarup, T.; Schmidt, M.; Vestergaard, M.; Hjorth, J.; Malesani, D.

    2012-10-01

    Context. A significantly higher incidence of strong (rest equivalent width Wr > 1 Å) intervening Mg ii absorption is observed along gamma-ray burst (GRB) sight-lines relative to those of quasar sight-lines. A geometrical explanation for this discrepancy has been suggested: the ratio of the beam size of the source to the characteristic size of an Mg ii absorption system can influence the observed Mg ii equivalent width, if these two sizes are comparable. Aims: We investigate whether the differing beam sizes of the continuum source and broad-line region of Sloan Digital Sky Survey (SDSS) quasars produce a discrepancy between the incidence of strong Mg ii absorbers illuminated by the quasar continuum region and those of absorbers illuminated by both continuum and broad-line region light. Methods: We performed a semi-automated search for strong Mg ii absorbers in the SDSS Data Release 7 quasar sample. The resulting strong Mg ii absorber catalog is available at the CDS. We measured the sight-line number density of strong Mg ii absorbers superimposed on and off the quasar C iv λ 1550 and C iii] λ 1909 emission lines. Results: We see no difference in the sight-line number density of strong Mg ii absorbers superimposed on quasar broad emission lines compared to those superimposed on continuum-dominated spectral regions. This suggests that the Mg ii absorbing clouds typically observed as intervening absorbers in quasar spectra are larger than the beam sizes of both the continuum-emitting regions and broad line-emitting regions in the centers of quasars, corresponding to a lower limit of the order of 1017 cm for the characteristic size of an Mg ii absorbing cloud. Catalog of Mg II absorbers is available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/546/A67

  16. Constraints on Quasar Lifetimes and Beaming from the He II Lyα Forest

    NASA Astrophysics Data System (ADS)

    Furlanetto, Steven R.; Lidz, Adam

    2011-07-01

    We show that comparisons of He II Lyα forest lines of sight to nearby quasar populations can strongly constrain the lifetimes and emission geometry of quasars. By comparing the He II and H I Lyα forests along a particular line of sight, one can trace fluctuations in the hardness of the radiation field (which are driven by fluctuations in the He II ionization rate). Because this high-energy background is highly variable—thanks to the rarity of the bright quasars that dominate it and the relatively short attenuation lengths of these photons—it is straightforward to associate features in the radiation field with their source quasars. Here we quantify how finite lifetimes and beamed emission geometries affect these expectations. Finite lifetimes induce a time delay that displaces the observed radiation peak relative to the quasar. For beamed emission, geometry dictates that sources invisible to the observer can still create a peak in the radiation field. We show that both these models produce substantial populations of "bare" peaks (without an associated quasar) for reasonable parameter values (lifetimes ~106-108 yr and beaming angles <~ 90°). A comparison to existing quasar surveys along two He II Lyα forest lines of sight rules out isotropic emission and infinite lifetime at high confidence; they can be accommodated either by moderate beaming or lifetimes ~107-108 yr. We also show that the distribution of radial displacements between peaks and their quasars can unambiguously distinguish these two models, although larger statistical samples are needed.

  17. VizieR Online Data Catalog: QSOs narrow absorption line variability (Hacker+, 2013)

    NASA Astrophysics Data System (ADS)

    Hacker, T. L.; Brunner, R. J.; Lundgren, B. F.; York, D. G.

    2013-06-01

    Catalogues of 2,522 QAL systems and 33 variable NAL systems detected in SDSS DR7 quasars with repeat observations. The object identifiers, position coordinates, and plate-MJD-fibre designations are taken from the SpecObjAll table in the SDSS Catalogue Archive Server (CAS) while the quasar redshifts (zqso) are from Hewett & Wild (2010, Cat. J/MNRAS/405/2302). The absorption system redshift (zabs), system grade, and detected lines are outputs of the York et al. (2013, in. prep.) QAL detection pipeline. Some absorption lines are flagged based on alternate identifications (a), proximity of masked pixels (b), or questionable continuum fits (c). (3 data files).

  18. VERY LARGE TELESCOPE SPECTROPOLARIMETRY OF BROAD ABSORPTION LINE QSOs

    SciTech Connect

    DiPompeo, M. A.; Brotherton, M. S.; De Breuck, C.

    2011-03-15

    We present spectropolarimetry of 19 confirmed and four possible bright, southern broad absorption line (BAL) quasars from the European Southern Observatory Very Large Telescope. A wide range of redshifts is covered in the sample (from 0.9 to 3.4), and both low- and high-ionization quasars are represented, as well as radio-loud and radio-quiet BALQSOs. We continue to confirm previously established spectropolarimetric properties of BALQSOs, including the generally rising continuum polarization with shorter wavelengths and comparatively large fraction with high broadband polarization (6 of 19 with polarizations >2%). Emission lines are polarized less than or similar to the continuum, except in a few unusual cases, and absorption troughs tend to have higher polarizations. A search for correlations between polarization properties has been done, identifying two significant or marginally significant correlations. These are an increase in continuum polarization with decreasing optical luminosity (increasing absolute B magnitude) and decreasing C IV emission-line polarization with increased continuum polarization.

  19. Evidence for active galactic nucleus feedback in the broad absorption lines and reddening of MRK 231 {sup ,}

    SciTech Connect

    Leighly, Karen M.; Baron, Eddie; Lucy, Adrian B.; Terndrup, Donald M.; Dietrich, Matthias; Gallagher, Sarah C.

    2014-06-20

    We present the first J-band spectrum of Mrk 231, which reveals a large He I* λ10830 broad absorption line with a profile similar to that of the well-known Na I broad absorption line. Combining this spectrum with optical and UV spectra from the literature, we show that the unusual reddening noted by Veilleux et al. is explained by a reddening curve like those previously used to explain low values of total-to-selective extinction in Type Ia supernovae. The nuclear starburst may be the origin and location of the dust. Spatially resolved emission in the broad absorption line trough suggests nearly full coverage of the continuum emission region. The broad absorption lines reveal higher velocities in the He I* lines (produced in the quasar-photoionized H II region) compared with the Na I and Ca II lines (produced in the corresponding partially ionized zone). Cloudy simulations show that a density increase is required between the H II and partially ionized zones to produce ionic column densities consistent with the optical and IR absorption line measurements and limits, and that the absorber lies ∼100 pc from the central engine. These results suggest that the He I* lines are produced in an ordinary quasar BAL wind that impacts upon, compresses, and accelerates the nuclear starburst's dusty effluent (feedback in action), and the Ca II and Na I lines are produced in this dusty accelerated gas. This unusual circumstance explains the rarity of Na I absorption lines; without the compression along our line of sight, Mrk 231 would appear as an ordinary iron low-ionization, broad absorption line quasar.

  20. The Unusual Absorption Line System of PG 2302+029 -- Ejected or Intervening?

    NASA Astrophysics Data System (ADS)

    Jannuzi, Buell

    1997-07-01

    A high-ionization broad absorption line system {C IV, N V, and O VI doublets; FWHM 3, 000 to 5, 000 km s^-1; z_rmabs=0.7} in the HST FOS UV spectrum of PG 2302+029 {z=1.052} has unprecedented properties. A distinct narrow line system {FWHM <250 km s^-1, z_abs=0.702} is also resolved within the broad system. If produced by material intrinsic to the quasar then the absorbing gas has been ejected from the quasar at more than sim56, 000 km s^-1. This extremely large ejection velocity as well as its ``detached'' nature {the reddest extent of the broad line absorption is more than 50, 000 km s^-1 from the quasar rest frame} would be unlike any known intrinsic absorber in QSOs. Alternatively, the broad and narrow systems could be produced by gas in a foreground cluster or super-cluster of galaxies. However, previous examples of such absorption have always included absorption by low-ionization species {e.g. Mg II, Si II}, which are not detected in the PG 2302+029 systems. We will undertake STIS and WFPC2 observations designed to help to identify the cause of this absorption system and allow us to determine whether the system is an extreme example of previously known classes of quasar absorption lines or represents an entirely new phenomenon.

  1. Wide-Angle Quasar Feedback

    NASA Astrophysics Data System (ADS)

    Chartas, George; Strickland, Sarah

    We present results from the detection of relativistic winds launched near the innermost stable circular orbits of supermassive black holes. A recent detection of a powerful wind in the X-ray-bright narrow absorption line (NAL) z=1.51 quasar HS 0810+2554 strengthens the case that quasars play a significant role in feedback. In both deep Chandra and XMM-Newton observations of HS 0810 we detected blueshifted absorption lines implying outflowing velocities ranging from 0.1c and 0.4c. The presence of both an emission line at 6.8 keV and an absorption line at 7.8 keV in the spectral line profile of HS 0810 is a characteristic feature of a P-Cygni profile supporting the presence of an expanding outflowing highly ionized Fe absorber. A hard excess component is detected in the XMM-Newton observation of HS 0810 possibly originating from reflection off the disk. Modelling of the XMM-Newton spectrum constrains the inclination angle to be < 35° (68% confidence). The presence of relativistic winds in both low inclination angle NAL quasars as well as in high inclination angle BAL quasars implies that the solid angle of quasar winds may be quite large. The larger solid angle of quasar winds would also indicate that their contribution to the regulation of the host galaxy may be more important than previously thought.

  2. A survey of ultraviolet interstellar absorption lines

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C.; Jenkins, E. B.; Spitzer, L., Jr.; York, D. G.; Hill, J. K.; Savage, B. D.; Snow, T. P., Jr.

    1983-01-01

    A telescope-spectrometer on the Copernicus spacecraft made possible the measurement of many ultraviolet absorption lines produced by the interstellar gas. The present survey provides data on ultraviolet absorption lines in the spectra of 88 early-type stars. The stars observed are divided into four classes, including reddened stars, unreddened bright stars, moderately reddened bright stars, and unreddened and moderately reddened faint stars. Data are presented for equivalent width, W, radial velocity V, and rms line width, D, taking into account some 10 to 20 lines of N I, O I, Si II, P II, S II, Cl I, Cl II, Mn II, Fe II, Ni II, Cu II, and H2. The data are based on multiple scans for each line. Attention is given to details of observations, the data reduction procedure, and the computation of equivalent width, mean velocity, and velocity dispersion.

  3. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: RAPID C iv BROAD ABSORPTION LINE VARIABILITY

    SciTech Connect

    Grier, C. J.; Brandt, W. N.; Trump, J. R.; Schneider, D. P.; Hall, P. B.; Shen, Yue; Vivek, M.; Dawson, K. S.; Ak, N. Filiz; Chen, Yuguang; Denney, K. D.; Kochanek, C. S.; Peterson, B. M.; Green, Paul J.; Jiang, Linhua; McGreer, Ian D.; Pâris, I.; Tao, Charling; Bizyaev, Dmitry; and others

    2015-06-10

    We report the discovery of rapid variations of a high-velocity C iv broad absorption line trough in the quasar SDSS J141007.74+541203.3. This object was intensively observed in 2014 as a part of the Sloan Digital Sky Survey Reverberation Mapping Project, during which 32 epochs of spectroscopy were obtained with the Baryon Oscillation Spectroscopic Survey spectrograph. We observe significant (>4σ) variability in the equivalent width (EW) of the broad (∼4000 km s{sup −1} wide) C iv trough on rest-frame timescales as short as 1.20 days (∼29 hr), the shortest broad absorption line variability timescale yet reported. The EW varied by ∼10% on these short timescales, and by about a factor of two over the duration of the campaign. We evaluate several potential causes of the variability, concluding that the most likely cause is a rapid response to changes in the incident ionizing continuum. If the outflow is at a radius where the recombination rate is higher than the ionization rate, the timescale of variability places a lower limit on the density of the absorbing gas of n{sub e} ≳ 3.9 × 10{sup 5} cm{sup −3}. The broad absorption line variability characteristics of this quasar are consistent with those observed in previous studies of quasars, indicating that such short-term variability may in fact be common and thus can be used to learn about outflow characteristics and contributions to quasar/host-galaxy feedback scenarios.

  4. Monitoring Quasar Color Variability in Stripe 82

    NASA Astrophysics Data System (ADS)

    Rogerson, J. A.; Hall, P. B.; MacLeod, C.; Ivezić, Ž.

    2012-08-01

    Broad Absorption Line (BAL) trough variability is predominantly due to cloud motion transverse to our line of sight. The rate at which the variability occurs indicates the velocity of the cloud, and that can provide constraints on the cloud's distance from the central source. Measuring this requires detailed spectroscopy during a variability event. Such spectra have proven elusive, suggesting either the timescale of variability is too short to be caught, or too long to notice until a sufficient amount of time has passed. Photometric monitoring of BAL quasar colors may potentially be used as an early warning system to trigger time-resolved spectroscopic monitoring of BAL variability. Towards this end, we are analyzing both BAL and non-BAL color variability using time series photometry from Stripe 82 in the Sloan Digital Sky Survey.

  5. Constraints on the Extragalactic Background Light from Gamma-Ray Observations of High-Redshift Quasars

    NASA Astrophysics Data System (ADS)

    Madau, Piero; Phinney, E. Sterl

    1996-01-01

    We propose to use the detectability of energetic y-rays in the 10-200 GeV range from high-redshift quasars to set limits on the energy density and era of formation of the extragalactic background light (EBL) in the near-ultraviolet, optical, and near-infrared portion of the spectrum. We study a variety of EBL models based on recent estimates of the density of starlight at the present epoch, a detailed modeling of the transfer of ionizing radiation through the intergalactic medium and of the spectral energy distribution of young galaxies, and simple parameterizations of the star formation history. We demonstrate that a cosmic background of optical photons which is comparable to the integrated EBL contributed by ordinary galaxies and originates as near-ultraviolet radiation at redshift z ˜ 2 will make the universe optically thick to γ-ray photons above ˜30 GeV through electron-positron pair production. We also show that a detection by the EGRET instrument aboard the Compton Observatory of ≥15 GeV photons from the quasar 1633+382 (Mattox et al. 1993) would rule out models in which a diffuse optical background with an energy density several times in excess that of known galaxies was formed at z ˜ 2 by a new class of sources. The universe to intermediate redshifts is optically thin to pair production below ˜10 GeV.

  6. Low-redshift Lyman-alpha absorption lines and the dark matter halos of disk galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1992-01-01

    Ultraviolet observations of the low-redshift quasar 3C 273 using the Hubble Space Telescope have revealed many more Lyman-alpha absorption lines than would be expected from extrapolation of the absorption systems seen toward QSOs at z about 2. It is shown here that these absorption lines can plausibly be produced by gas at large radii in the disks of spiral and irregular galaxies; the gas is confined by the dark matter halos and ionized and heated by the extragalactic radiation field. This scenario does not require the extragalactic ionizing radiation field to decline as rapidly with decreasing z as the QSO emissivity. Observations of Ly-alpha absorption through the halos of known galaxies at low redshift will constrain both the extragalactic background and the properties of galactic halos.

  7. Spectrophotometry of six broad absorption line QSOs

    NASA Technical Reports Server (NTRS)

    Junkkarinen, Vesa T.; Burbidge, E. Margaret; Smith, Harding E.

    1987-01-01

    Spectrophotometric observations of six broad absorption-line QSOs (BALQSOs) are presented. The continua and emission lines are compared with those in the spectra of QSOs without BALs. A statistically significant difference is found in the emission-line intensity ratio for (N V 1240-A)/(C IV 1549-A). The median value of (N V)/(C IV) for the BALQSOs is two to three times the median for QSOs without BALs. The absorption features of the BALQSOs are described, and the column densities and limits on the ionization structure of the BAL region are discussed. If the dominant ionization mechanism is photoionization, then it is likely that either the ionizing spectrum is steep or the abundances are considerably different from solar. Collisional ionization may be a significant factor, but it cannot totally dominate the ionization rate.

  8. Polarization and Structure of Broad Absorption Line Quasi-Stellar Objects

    NASA Astrophysics Data System (ADS)

    Ogle, Patrick Michael

    This thesis is a spectropolarimetric survey of broad absorption line quasi-stellar objects (BAL QSO). We observed 36 BAL QSO at the Palomar and W. M. Keck Observatories. BAL QSO have higher polarization than other quasars, reinforcing the view that they are normal quasars viewed from an equatorial aspect. However, there is a wide distribution of polarization values, which may be due to intrinsic differences in the geometry or optical depth to scattering. No correlations are found among emission line or broad absorption line properties and continuum polarization, suggesting that these properties are regulated by internal differences unrelated to viewing angle. The continuum polarization of BAL QSO is weakly wavelength-dependent after correction for emission line dilution. In most objects, the polarisation rises to the blue, suggesting that dust scattering or absorption may be important. Broad emission line photons are polarized less than the continuum; and the position angle of the electric vector is rotated with respect to the continuum. The semi-forbidden C III) emission line is polarized differently than the C IV emission line, suggesting resonance scattering in the C III) emission line region. Resonantly scattered photons from the broad absorption line region are detected at high velocities red-ward and blue-ward of the C IV line center in the spectra of some objects. These photons are negatively polarized with respect to the continuum photons, showing that the broad absorption line region and the continuum scattering region are oriented perpendicular to each other. The polarization increases in the BAL troughs, due mainly to partial coverage of the central source by the broad absorption line region. The geometry of the intervening BAL clouds is skewed with respect to the continuum scattering region, which results in position angle rotations in the BAL. The variation of polarization with velocity in the BAL is consistent with a non-radial, accelerating outflow

  9. Studies of Quasar Outflows

    NASA Technical Reports Server (NTRS)

    Arav, Nahum

    2002-01-01

    The main aim of this research program is to determine the ionization equilibrium and abundances in quasar outflows. Especially in the broad absorption line QSO PG 0946+301. We find that the outflow's metalicity is consistent with being solar, while the abundance ratio of phosphorus to other metals is at least ten times solar. These findings are based on diagnostics that are not sensitive to saturation and partial covering effects in the BALs (Broad Adsorption Lines), which considerably weakened previous claims for enhanced metalicity. Ample evidence for these effects is seen in the spectrum.

  10. Dust depletion of Ca and Ti in QSO absorption-line systems

    NASA Astrophysics Data System (ADS)

    Guber, C. R.; Richter, P.

    2016-06-01

    Aims: To explore the role of titanium- and calcium-dust depletion in gas in and around galaxies, we systematically study Ti/Ca abundance ratios in intervening absorption-line systems at low and high redshift. Methods: We investigate high-resolution optical spectra obtained by the UVES instrument at the Very Large Telescope (VLT) and spectroscopically analyze 34 absorption-line systems at z ≤ 0.5 to measure column densities (or limits) for Ca ii and Ti ii. We complement our UVES data set with previously published absorption-line data on Ti/Ca for redshifts up to z ~ 3.8. Our absorber sample contains 110 absorbers including damped Lyman α systems (DLAs), sub-DLAs, and Lyman-Limit systems (LLS). We compare our Ti/Ca findings with results from the Milky Way and the Magellanic Clouds and discuss the properties of Ti/Ca absorbers in the general context of quasar absorption-line systems. Results: Our analysis indicates that there are two distinct populations of absorbers with either high or low Ti/Ca ratios with a separation at [Ti/Ca] ≈ 1. While the calcium-dust depletion in most of the absorbers appears to be severe, the titanium depletions are mild in systems with high Ti/Ca ratios. The derived trend indicates that absorbers with high Ti/Ca ratios have dust-to-gas ratios that are substantially lower than in the Milky Way. We characterize the overall nature of the absorbers by correlating Ti/Ca with other observables (e.g., metallicity, velocity-component structure) and by modeling the ionization properties of singly-ionized Ca and Ti in different environments. Conclusions: We conclude that Ca ii and Ti ii bearing absorption-line systems trace predominantly neutral gas in the disks and inner halo regions of galaxies, where the abundance of Ca and Ti reflects the local metal and dust content of the gas. Our study suggests that the Ti/Ca ratio represents a useful measure for the gas-to-dust ratio and overall metallicity in intervening absorption-line systems.

  11. Moderate resolution spectrophotometry of high redshift quasars

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1991-01-01

    A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.

  12. CONSTRAINTS ON BLACK HOLE GROWTH, QUASAR LIFETIMES, AND EDDINGTON RATIO DISTRIBUTIONS FROM THE SDSS BROAD-LINE QUASAR BLACK HOLE MASS FUNCTION

    SciTech Connect

    Kelly, Brandon C.; Hernquist, Lars; Siemiginowska, Aneta; Vestergaard, Marianne; Fan Xiaohui; Hopkins, Philip

    2010-08-20

    We present an estimate of the black hole mass function of broad-line quasars (BLQSOs) that self-consistently corrects for incompleteness and the statistical uncertainty in the mass estimates, based on a sample of 9886 quasars at 1 < z < 4.5 drawn from the Sloan Digital Sky Survey (SDSS). We find evidence for 'cosmic downsizing' of black holes in BLQSOs, where the peak in their number density shifts to higher redshift with increasing black hole mass. The cosmic mass density for black holes seen as BLQSOs peaks at z {approx} 2. We estimate the completeness of the SDSS as a function of the black hole mass and Eddington ratio, and find that at z > 1 it is highly incomplete at M {sub BH} {approx}< 10{sup 9} M {sub sun} and L/L{sub Edd} {approx}< 0.5. We estimate a lower limit on the lifetime of a single BLQSO phase to be t {sub BL} > 150 {+-} 15 Myr for black holes at z = 1 with a mass of M {sub BH} = 10{sup 9} M{sub sun}, and we constrain the maximum mass of a black hole in a BLQSO to be {approx}3 x 10{sup 10} M{sub sun}. Our estimated distribution of BLQSO Eddington ratios peaks at L/L {sub Edd} {approx} 0.05 and has a dispersion of {approx}0.4 dex, implying that most BLQSOs are not radiating at or near the Eddington limit; however, the location of the peak is subject to considerable uncertainty. The steep increase in number density of BLQSOs toward lower Eddington ratios is expected if the BLQSO accretion rate monotonically decays with time. Furthermore, our estimated lifetime and Eddington ratio distributions imply that the majority of the most massive black holes spend a significant amount of time growing in an earlier obscured phase, a conclusion which is independent of the unknown obscured fraction. These results are consistent with models for self-regulated black hole growth, at least for massive systems at z > 1, where the BLQSO phase occurs at the end of a fueling event when black hole feedback unbinds the accreting gas, halting the accretion flow.

  13. Ultraviolet interstellar absorption lines from low-z galaxies

    NASA Astrophysics Data System (ADS)

    Sahu, M. S.

    1997-05-01

    The importance of studying absorption lines from z<<0.1 galaxies are discussed. The Mg II λλ2796 and 2803 Å doublet absorption is sensitive to low column density gas and has been used to search for absorption lines from low-z galaxies. Recent studies of abundances and depletion patterns toward the Small Magellanic Cloud (Welty et al. 1997) and the NGC 1705 sightline (Sahu & Blades, 1997) are reviewed.

  14. THE JHU-SDSS METAL ABSORPTION LINE CATALOG: REDSHIFT EVOLUTION AND PROPERTIES OF Mg II ABSORBERS

    SciTech Connect

    Zhu Guangtun; Menard, Brice

    2013-06-20

    We present a generic and fully automatic method aimed at detecting absorption lines in the spectra of astronomical objects. The algorithm estimates the source continuum flux using a dimensionality reduction technique and nonnegative matrix factorization, and then detects and identifies metal absorption lines. We apply it to a sample of {approx}10{sup 5} quasar spectra from the Sloan Digital Sky Survey and compile a sample of {approx}40,000 Mg II- and Fe II-absorber systems, spanning the redshift range 0.4 < z < 2.3. The corresponding catalog is publicly available. We study the statistical properties of these absorber systems and find that the rest equivalent width distribution of strong Mg II absorbers follows an exponential distribution at all redshifts, confirming previous studies. Combining our results with recent near-infrared observations of Mg II absorbers, we introduce a new parameterization that fully describes the incidence rate of these systems up to z {approx} 5. We find the redshift evolution of strong Mg II absorbers to be remarkably similar to the cosmic star formation history over 0.4 < z < 5.5 (the entire redshift range covered by observations), suggesting a physical link between these two quantities.

  15. Detectability of cold streams into high-redshift galaxies by absorption lines

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Dekel, Avishai; Sternberg, Amiel; Gnat, Orly; Ceverino, Daniel

    2012-08-01

    Cold gas streaming along the dark matter filaments of the cosmic web is predicted to be the major source of fuel for disc buildup, violent disc instability and star formation in massive galaxies at high redshift. We investigate to what extent such cold gas is detectable in the extended circumgalactic environment of galaxies via Lyα absorption and selected low-ionization metal absorption lines. We model the expected absorption signatures using high-resolution zoom-in adaptive mesh refinement cosmological simulations. In the post-processing, we distinguish between self-shielded gas and unshielded gas. In the self-shielded gas, which is optically thick to Lyman continuum radiation, we assume pure collisional ionization for species with an ionization potential greater than 13.6 eV. In the optically-thin, unshielded gas, these species are also photoionized by the metagalactic radiation. In addition to absorption of radiation from background quasars, we compute the absorption line profiles of radiation emitted by the galaxy at the centre of the same halo. We predict the strength of the absorption signal for individual galaxies without stacking. We find that the Lyα absorption profiles produced by the streams are consistent with observations of absorption and emission Lyα profiles in high-redshift galaxies. Due to the low metallicities in the streams, and their low covering factors, the metal absorption features are weak and difficult to detect.

  16. Variation of Ionizing Continuum: The Main Driver of Broad Absorption Line Variability

    NASA Astrophysics Data System (ADS)

    He, Zhicheng; Wang, Tinggui; Zhou, Hongyan; Bian, Weihao; Liu, Guilin; Yang, Chenwei; Dou, Liming; Sun, Luming

    2017-04-01

    We present a statistical analysis of the variability of broad absorption lines (BALs) in quasars using the large multi-epoch spectroscopic data set of the Sloan Digital Sky Survey Data Release 12 (SDSS DR12). We divide the sample into two groups according to the pattern of the variation of C iv BAL with respect to that of a continuum: the equivalent widths (EW) of the BAL decreases (increases) when the continuum brightens (dims) as group T1; and the variation of the EW and the continuum in the opposite relation of group T2. We find that T2 has significantly ({P}{{T}}< {10}-6, Students T Test) higher EW ratios (R) of Si iv to C iv BAL than T1. Our result agrees with the prediction of photoionization models that {C}+3 column density increases (decreases) if there is a (or no) {C}+3 ionization front, while R decreases with the incident continuum. We show that BAL variabilities in at least 80% of quasars are driven by the variation of an ionizing continuum, while other models that predict uncorrelated BAL and continuum variability contribute less than 20%. Considering large uncertainty in the continuum flux calibration, the latter fraction may be much smaller. When the sample is binned into different time intervals between the two observations, we find significant difference in the distribution of R between T1 and T2 in all time-bins down to {{Δ }}T< 6 days, suggesting that the BAL outflow in a fraction of quasars has a recombination timescale of only a few days.

  17. A Kennicutt-Schmidt Law for Intervening Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Chelouche, Doron; Bowen, David V.

    2010-10-01

    We argue that most strong intervening metal absorption line systems, where the rest equivalent width of the Mg II λ2796 line is >0.5 Å, are interstellar material in, and outflowing from, star-forming disks. We show that a version of the Kennicutt-Schmidt law is readily obtained if the Mg II equivalent widths are interpreted as kinematic broadening from absorbing gas in outflowing winds originating from star-forming galaxies. Taking a phenomenological approach and using a set of observational constraints available for star-forming galaxies, we are able to account for the density distribution of strong Mg II absorbers over cosmic time. The association of intervening material with star-forming disks naturally explains the metallicity and dust content of strong Mg II systems, as well as their high H I column densities, and does not require the advection of metals from compact star-forming regions into the galaxy halos to account for the observations. We find that galaxies with a broad range of luminosities can give rise to absorption of a given rest equivalent width and discuss possible observational strategies to better quantify true galaxy-absorber associations and further test our model. We show that the redshift evolution in the density of absorbers closely tracks the star formation history of the universe and that strong intervening systems can be used to directly probe the physics of both bright and faint galaxies over a broad redshift range. In particular, in its simplest form, our model suggests that many of the statistical properties of star-forming galaxies and their associated outflows have not evolved significantly since z ~ 2. By identifying strong intervening systems with galaxy disks and quantifying a version of the Kennicutt-Schmidt law that applies to them, a new probe of the interstellar medium is found which provides complementary information to that obtained through emission studies of galaxies. Implications of our results for galaxy feedback and

  18. No Evidence for Variability of Intervening Absorption Lines toward GRB 060206: Implications for the MgII Incidence Problem

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro; Totani, Tomonori; Hattori, Takashi; Ohta, Kouji; Kawabata, Koji S.; Kobayashi, Naoto; Iye, Masanori; Nomoto, Ken'ichi; Kawai, Nobuyuki

    2009-02-01

    We examined the variability of absorption line strength of intervening systems along the line of sight to GRB 060206 at z = 4.05, utilizing low-resolution optical spectra obtained by the Subaru telescope from six to ten hours after the burst. Strong variabilities of FeII and MgII lines at z = 1.48 during t = 5--8hr have been reported for this GRB, and those have been used to support the idea of clumpy MgII cloudlets, which was originally proposed to explain the anomalously high incidence of MgII absorbers in the GRB spectra compared to quasars. However, our spectra with a higher signal-to-noise ratio do not show any evidence for variability in t = 6--10hr. There is a clear discrepancy between our data and those of Hao et al. (2007, ApJ, 659, L99) in the overlapping time interval. Furthermore, the line strengths in our data are in agreement with those observed at t ˜ 2hr by Thöne et al. (2008, A&A, 489, 37). We also detected FeII and MgII absorption lines for a system at z = 2.26; these lines do not show evidence for variability either. Therefore, we conclude that there is no strong evidence for the variability in the intervening absorption lines toward GRB 060206, offering poor support for the MgII cloudlet hypothesis by the GRB 060206 data.

  19. Quasar Metallicities and Host Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Leah, Simon E.; Hamann, F. W.

    2006-12-01

    From studies of galaxies in the local Universe we find the masses of the galactic spheroidal component corresponds with the mass of the central supermassive black hole (SMBH). This relation is known as the M(gal) M(BH) relation, and suggests a close relationship between the formation of the galaxy and the black hole. We study the metallicities near quasars at high redshift to observe this formation process in action. Associated absorption lines (AALs) provide us with a unique tool for this study, because these lines have a high probability of forming close to the quasar. Most of the work so far, using the emission lines, suggests that quasar environments are typically metal rich, with gas-phase metallicities near solar or higher at all observed redshifts. However, other independant abundance checks, such as AALs, are essential in order to confirm these results. We use very high resolution echelle spectra from VLT-UVES for 8 high redshift (z of 2 to z of 4.6) quasars, selected to contain candidate intrinsic absorbers, and ecompassing a typical rest-frame spectral range from approximatly 900 Angstroms to 2500 Angstroms, designed to include at least Lyman alpha and C IV spectral features. We perform one of the first analyses of absorption line metallicities in high redshift quasars and present lower limits on column densities, as well as estimates for the absorber locations relative to the quasar. We place rough estimates on the abundances where possible. We find covering fractions which vary with velocity, and a significant fraction of absorption lines which exhibit variability, indicating their intrinsic nature. Saturated lines inhibit concrete abundance analysis, but present excellent opportunities for future research proposals.

  20. Quasar microlensing

    NASA Astrophysics Data System (ADS)

    Schmidt, R. W.; Wambsganss, J.

    2010-09-01

    Quasar microlensing deals with the effect of compact objects along the line of sight on the apparent brightness of the background quasars. Due to the relative motion between quasar, lenses and observer, the microlensing magnification changes with time which results in uncorrelated brightness variations in the various images of multiple quasar systems. The amplitudes of the signal can be more than a magnitude with time scales of weeks to months to years. The effect is due to the “granular” nature of the gravitational microlenses—stars or other compact objects in the stellar mass range. Quasar microlensing allows to study the quasar accretion disk with a resolution of tens of microarcseconds, hence quasar microlensing can be used to explore an astrophysical field that is hardly accessible by any other means. Quasar microlensing can also be used to study the lensing objects in a statistical sense, their nature (compact or smoothly distributed, normal stars or dark matter) as well as transverse velocities. Quasar microlensing light curves are now being obtained from monitoring programs across the electromagnetic spectrum from the radio through the infrared and optical range to the X-ray regime. Recently, spectroscopic microlensing was successfully applied, it provides quantitative comparisons with quasar/accretion disk models. There are now more than a handful of systems with several-year long light curves and significant microlensing signal, lending to detailed analysis. This review summarizes the current state of the art of quasar microlensing and shows that at this point in time, observational monitoring programs and complementary intense simulations provide a scenario where some of the early promises of quasar microlensing can be quantitatively applied. It has been shown, e.g., that smaller sources display more violent microlensing variability, first quantitative comparison with accretion disk models has been achieved, and quasar microlensing has been used to

  1. Mapping of the Local Interstellar Medium using Absorption Line Spectroscopy

    NASA Astrophysics Data System (ADS)

    Penprase, Bryan Edward

    2017-01-01

    Using the Yale SMARTS 1.5-meter telescope at CTIO and the CHIRON spectrograph, we have developed a program for mapping the local interstellar medium using a sample of over 200 newly observed B stars previously unobserved using Na I absorption lines. This sample includes stars that extend out to map beyond the local bubble to 500 pc. The sample has been observed using high resolution absorption lines, and when combined with previously observed stars with Na I and Ca II data provides a more complete picture of the local ISM than previous surveys. The distances to the stars using the new GAIA database also allows for more accurate determination of distances to features in the lcoal ISM, and new maps of the structure of the ISM hav been prepared with the data.

  2. Double troughs in broad absorption line quasars and Ly-alpha-N V line-locking

    NASA Technical Reports Server (NTRS)

    Korista, Kirk T.; Voit, G. M.; Morris, Simon L.; Weymann, Ray J.

    1993-01-01

    It was investigated whether the double trough (DT) structure in the mean C IV BAL trough reported by Weymann et al. (1991) is real or due to statistical fluctuations of BAL troughs over random outflow velocities in a limited sample. A sample of 72 BAL QSOs with C IV BAL troughs was analyzed. It is found that only 22 percent of the sample explicitly exhibits the DT feature; when present the DTs are deep. A Monte Carlo simulation of the mean C IV BAL suggests that the DT feature is real at only the 95-98 percent level.

  3. EMERGENCE OF A BROAD ABSORPTION LINE OUTFLOW IN THE NARROW-LINE SEYFERT 1 GALAXY WPVS 007

    SciTech Connect

    Leighly, Karen M.; Casebeer, Darrin A.; Hamann, Fred; Grupe, Dirk

    2009-08-10

    We report results from a 2003 Far Ultraviolet Spectroscopic Explorer (FUSE) observation and reanalysis of a 1996 Hubble Space Telescope (HST) observation of the unusual X-ray transient Narrow-line Seyfert 1 galaxy WPVS 007. The HST Faint Object Spectrograph (FOS) spectrum revealed mini-BALs (broad absorption lines) with V {sub max} {approx} 900 km s{sup -1} and FWHM {approx}550 km s{sup -1}. The FUSE spectrum showed that an additional BAL outflow with V {sub max} {approx} 6000 km s{sup -1} and FWHM {approx}3400 km s{sup -1} had appeared. WPVS 007 is a low-luminosity object in which such a high-velocity outflow is not expected; therefore, it is an outlier on the M{sub V} /v {sub max} relationship. Template spectral fitting yielded apparent ionic columns, and a Cloudy analysis showed that the presence of P V requires a high-ionization parameter log(U) {>=} 0 and high-column density log(N {sub H}) {>=} 23 assuming solar abundances and a nominal spectral energy distribution (SED) for low-luminosity NLS1s with {alpha} {sub ox} = -1.28. A recent long Swift observation revealed the first hard X-ray detection and an intrinsic (unabsorbed) {alpha} {sub ox} {approx} -1.9. Using this SED in our analysis yielded lower column density constraints (log(N {sub H}) {>=} 22.2 for Z = 1, or log(N {sub H}) {>=} 21.6 if Z = 5). The X-ray weak continuum, combined with X-ray absorption consistent with the UV lines, provides the best explanation for the observed Swift X-ray spectrum. The large column densities and velocities implied by the UV data in any of these scenarios could be problematic for radiative acceleration. We also point out that since the observed P V absorption can be explained by lower total column densities using an intrinsically X-ray weak spectrum, we might expect to find P V absorption preferentially more often (or stronger) in quasars that are intrinsically X-ray weak.

  4. EMPCA and Cluster Analysis of Quasar Spectra: Sample Preparation and Validation

    NASA Astrophysics Data System (ADS)

    Wagner, Cassidy; Leighly, Karen; Macinnis, Francis; Marrs, Adam; Richards, Gordon T.

    2017-01-01

    All quasars are fundamentally similar, powered by accretion of matter onto a super massive black hole. However, patterns of differences can be identified through the emission lines. Quasar broad absorption lines have been postulated to be responsible for feedback in galaxy evolution. Principal component analysis (PCA) quantifies trends in emission lines of quasars that can be used to predict and reconstruct the underlying continuum in broad absorption line quasars.Richards et al. 2011 hypothesized that emission-line variance across the rest-UV spectrum is correlated with C IV blueshift and equivalent width. We fit their composite spectra, constructed based on these properties, to identify trends for the purpose of creating simulated spectra to test the weighted Expectation Maximization PCA (EMPCA; Bailey 2012) and cluster analysis method discussed in adjacent poster by Marrs et al.More than 800 SDSS spectra from Allen et al. 2011, with a redshift range of z = 2.2 - 2.3, were selected for analysis, particularly spectra with high signal to noise ratios, without broad absorption lines, and without numerous narrow absorption lines. Interstellar and intergalactic absorption lines add variance that contaminates the principal components. To remove these lines, we smoothed the spectra using a Fourier transform and a low-pass filter. We then used a line-finding and -removal program to remove or flag narrow absorption lines. From the principal components that resulted from the PCA analysis we were able to reconstruct the continua of a small sample of BAL QSOs.

  5. THE LARGE SKY AREA MULTI-OBJECT FIBER SPECTROSCOPIC TELESCOPE QUASAR SURVEY: QUASAR PROPERTIES FROM THE FIRST DATA RELEASE

    SciTech Connect

    Ai, Y. L.; Wu, Xue-Bing; Yang, Jinyi; Yang, Qian; Wang, Feige; Guo, Rui; Dong, Xiaoyi; Zuo, Wenwen; Shen, S.-Y.; Zhang, Y.-X.; Yuan, H.-L.; Song, Y.-H.; Yang, M.; Wu, H.; Shi, J.-R.; He, B.-L.; Lei, Y.-J.; Li, Y.-B.; Wang, Jianguo; Dong, Xiaobo; and others

    2016-02-15

    We present preliminary results of the quasar survey in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) first data release (DR1), which includes the pilot survey and the first year of the regular survey. There are 3921 quasars reliably identified, among which 1180 are new quasars discovered in the survey. These quasars are at low to median redshifts, with a highest z of 4.83. We compile emission line measurements around the Hα, Hβ, Mg ii, and C iv regions for the new quasars. The continuum luminosities are inferred from SDSS photometric data with model fitting, as the spectra in DR1 are non-flux-calibrated. We also compile the virial black hole mass estimates, with flags indicating the selection methods, and broad absorption line quasars. The catalog and spectra for these quasars are also available. Of the 3921 quasars, 28% are independently selected with optical–infrared colors, indicating that the method is quite promising for the completeness of the quasar survey. LAMOST DR1 and the ongoing quasar survey will provide valuable data for studies of quasars.

  6. Through BAL Quasars Brightly

    NASA Technical Reports Server (NTRS)

    Chartas, George

    2003-01-01

    We report on an observation of the broad absorption line (BAL) quasar PG 1115+080 performed with the XMM-Newton observatory. Spectral analysis reveals the second case of a relativistic X-ray-absorbing outflow in a BAL quasar. The first case was revealed in a recent observation of APM 08279+5255 with the Chandra X-Ray Observatory. As in the case of APM 08279+5255, the observed flux of PG 1115+080 is greatly magnified by gravitational lensing. The relatively high redshift (z=1.72) of the quasar places the redshifted energies of resonant absorption features in a sensitive portion of the XMM- Newton spectral response. The spectrum indicates the presence of complex low-energy absorption in the 0.2-0.6 keV observed energy band and high-energy absorption in the 2-5 keV observed energy band. The high-energy absorption is best modeled by two Gaussian absorption lines with rest-frame energies of 7.4 and 9.5 keV. Assuming that these two lines axe produced by resonant absorption due to Fe XXV, we infer that the X-ray absorbers are outflowing with velocities of approx. 0.10c and approx. 0.34c respectively. We have detected significant variability of the energies and widths of the X-ray BALs in PG 1115+080 and APM 08279+5255 over timescales of 19 and 1.8 weeks (proper time), respectively. The BAL variability observed from APM 08279+5255 supports our earlier conclusion that these absorbers are most likely launched at relatively small radii of less than 10(exp 16)(Mbh/M8)(sup 1/2) cm. A comparison of the ionization properties and column densities of the low-energy and high-energy absorbers indicates that these absorbers are likely distinct; however, higher spectral resolution is needed to confirm this result. Finally, we comment on prospects for constraining the kinematic and ionization properties of these X-ray BALs with the next generation of X-ray observatories.

  7. ON THE LINK BETWEEN ASSOCIATED Mg II ABSORBERS AND STAR FORMATION IN QUASAR HOSTS

    SciTech Connect

    Shen Yue; Menard, Brice E-mail: menard@pha.jhu.edu

    2012-04-01

    A few percent of quasars show strong associated Mg II absorption, with velocities (v{sub off}) lying within a few thousand km s{sup -1} from the quasar systemic redshift. These associated absorption line (AAL) systems are usually interpreted as absorbers that are either intrinsic to the quasar and its host, or arising from external galaxies clustering around the quasar. Using composite spectra of {approx}1800 Mg II AAL quasars selected from SDSS DR7 at 0.4 {approx}< z {approx}< 2, we show that quasars with AALs with v{sub off} < 1500 km s{sup -1} have a prominent excess in [O II] {lambda}3727 emission (detected at >7{sigma}) at rest relative to the quasar host, compared to unabsorbed quasars. We interpret this [O II] excess as due to enhanced star formation in the quasar host. Our results suggest that a significant fraction of AALs with v{sub off} < 1500 km s{sup -1} are physically associated with the quasar and its host. AAL quasars also have dust reddening lying between normal quasars and the so-called dust-reddened quasars. We suggest that the unique properties of AAL quasars can be explained if they are the transitional population from heavily dust-reddened quasars to normal quasars in the formation process of quasars and their hosts. This scenario predicts a larger fraction of young bulges, disturbed morphologies, and interactions of AAL quasar hosts compared to normal quasars. The intrinsic link between associated absorbers and quasar hosts opens a new window to probe massive galaxy formation and galactic-scale feedback processes, and provides a crucial test of the evolutionary picture of quasars.

  8. Correlations between different line-forming regions in quasar environments

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Hamann, Fred; Lundgren, Britt

    2017-01-01

    The early stage of massive galaxy evolution can involve outflows driven by a starburst or a central quasar plus cold mode accretion (infall) adding to the mass build-up in the galaxies. We are using SDSS-BOSS DR12 database to study the nature of infall and outflows in quasar environments by examining the relationships of their narrow absorption lines (NALs) at positive and negative velocity shifts to other quasar properties such as their broad absorption line (BAL) outflows, emission line characteristics, radio-loudness, and reddening by dust. We also test for extreme high-velocity NAL outflows (with speeds 0.1-0.2c) based on relationships to low-speed NALs and quasar properties, and we perform detailed analyses of particular cases of rich multi-component NAL complexes that might result from high-speed quasar outflows shredding and dispersing interstellar clouds in the host galaxies. Our results show that low-velocity NALs and rich NAL complexes correlate strongly with BALs, suggesting a physical relationship. Infalling systems are less common in quasars with BALs, suggesting that BAL outflows can halt or disrupt gas accretion. The extreme high-velocity NALs (at 0.1-0.2c) show a weak relationship to BALs and a strong dependence on low-velocity NALs, indicating that a significant fraction of these systems is ejected from the quasars (and are *not* unrelated intervening clouds). We find no correlations between radio flux and low-velocity NALs, infalling systems, or rich complexes, which indicates that none of these features are closely tied to quasar radio properties. We analyze the relationship of the N V/C IV line strengths (a possible abundance/metallicity probe) in emission versus absorption lines and find no correlation between them.

  9. A SIMPLE MODEL FOR QUASAR DEMOGRAPHICS

    SciTech Connect

    Conroy, Charlie; White, Martin

    2013-01-10

    We present a simple model for the relationship between quasars, galaxies, and dark matter halos from 0.5 < z < 6. In the model, black hole (BH) mass is linearly related to galaxy mass, and galaxies are connected to dark matter halos via empirically constrained relations. A simple 'scattered' light bulb model for quasars is adopted, wherein BHs shine at a fixed fraction of the Eddington luminosity during accretion episodes, and Eddington ratios are drawn from a lognormal distribution that is redshift independent. This model has two free, physically meaningful parameters at each redshift: the normalization of the M {sub BH}-M {sub gal} relation and the quasar duty cycle; these parameters are fit to the observed quasar luminosity function (LF) over the interval 0.5 < z < 6. This simple model provides an excellent fit to the LF at all epochs and also successfully predicts the observed projected two-point correlation of quasars from 0.5 < z < 2.5. It is significant that a single quasar duty cycle at each redshift is capable of reproducing the extant observations. The data are therefore consistent with a scenario wherein quasars are equally likely to exist in galaxies, and therefore dark matter halos, over a wide range in masses. The knee in the quasar LF is a reflection of the knee in the stellar-mass-halo-mass relation. Future constraints on the quasar LF and quasar clustering at high redshift will provide strong constraints on the model. In the model, the autocorrelation function of quasars becomes a strong function of luminosity only at the very highest luminosities and will be difficult to observe because such quasars are so rare. Cross-correlation techniques may provide useful constraints on the bias of such rare objects. The simplicity of the model allows for rapid generation of quasar mock catalogs from N-body simulations that match the observed LF and clustering to high redshift.

  10. AFGL atmospheric absorption line parameters compilation - 1982 edition

    NASA Astrophysics Data System (ADS)

    Rothman, L. S.; Gamache, R. R.; Barbe, A.; Goldman, A.; Gillis, J. R.; Brown, L. R.; Toth, R. A.; Flaud, J.-M.; Camy-Peyret, C.

    1983-08-01

    The latest edition of the AFGL atmospheric absorption line parameters compilation for the seven most active infrared terrestrial absorbers is described. Major modifications to the atlas for this edition include updating of water-vapor parameters from 0 to 4300 per cm, improvements to line positions for carbon dioxide, substantial modifications to the ozone bands in the middle to far infrared, and improvements to the 7- and 2.3-micron bands of methane. The atlas now contains about 181,000 rotation and vibration-rotation transitions between 0 and 17,900 per cm. The sources of the absorption parameters are summarized.

  11. AFGL atmospheric absorption line parameters compilation - 1980 version

    NASA Astrophysics Data System (ADS)

    Rothman, L. S.

    1981-03-01

    A new version of the AFGL atmospheric absorption line parameters compilation is now available. Major modifications since the last edition of 1978 include the strongest bands of water vapor, updated line positions for carbon dioxide, improved ozone parameters in the 5- and 10 micron regions, and updated and additional data for methane in the 3.5- and 7.7 micron regions. The atlas now contains over 159,000 rotational and vibration-rotation transitions from 0.3 to 17,880 per cm.

  12. What BOSS has taught us about Quasars.

    NASA Astrophysics Data System (ADS)

    Ross, Nicholas; SDSS-III BOSS Quasar Science Working Group

    2015-01-01

    This talk presents science highlights from the SDSS-III BOSS Quasar Survey, which has obtained spectra for over 300,000 quasars, 200,000 of which are at redshift z>2. Using this dataset, new measurements of the luminosity function have been made, with the faint end of the luminosity function now measured to z~5. New clustering results from DR12 are presented, and the weak luminosity dependence of quasar clustering at z~0.5 is also discussed.New studies of the broad absorption line (BAL) quasar population have also been performed, with a sample of BAL quasars from the original SDSS being re-observed. These new data have shown the disappearance of CIV BAL troughs and indeed the transformation of BAL QSOs to non-BAL QSOs. BAL disappearance, and emergence, events appear to be extremes of general BAL variability, and have shed light on accretion-disk wind models.We highlight the discovery of new classes of quasars including: a population of broad-line Mg II emitters found in a passive galaxy sample; objects with extremely red optical-to-mid infrared colors; objects with very curious UV line (LyA:NV) ratios and potentially the long-sought after high-redshift Type 2 Quasar population.Finally, we describe two new dedicated programs, one focusing on reverberation mapping, the other on X-ray selected quasars.A full list of papers connected to the BOSS Quasar Survey is given at: http://www.sdss3.org/science/publications.php

  13. Oscillator strength measurements of atomic absorption lines from stellar spectra

    NASA Astrophysics Data System (ADS)

    Lobel, Alex

    2011-05-01

    Herein we develop a new method to determine oscillator strength values of atomic absorption lines with state-of-the-art detailed spectral synthesis calculations of the optical spectrum of the Sun and of standard spectral reference stars. We update the log(gf) values of 911 neutral lines observed in the KPNO-FTS flux spectrum of the Sun and high-resolution echelle spectra (R = 80 000) of Procyon (F5 IV-V) and Eps Eri (K2 V) observed with large signal-to-noise (S/N) ratios of 2000 using the new Mercator-Hermes spectrograph at La Palma Observatory (Spain). We find for 483 Fe I, 85 Ni I, and 51 Si I absorption lines in the sample a systematic overestimation of the literature log(gf) values with central line depths below 15%. We employ a curve-of-growth analysis technique to test the accuracy of the new oscillator strength values and compare calculated equivalent line widths to the Moore, Minnaert, and Houtgast atlas of the Sun. The online SpectroWeb database at http://spectra.freeshell.org interactively displays the observed and synthetic spectra and provides the new log(gf) values together with important atomic line data. The graphical database is under development for stellar reference spectra of every spectral sub-class observed with large spectral resolution and S/N ratios.

  14. Quasar Metallicities and Host Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Simon, Leah; Hamann, F.

    2007-12-01

    From studies of galaxies in the local Universe we find the masses of the galactic spheroidal component corresponds with the mass of the central supermassive black hole (SMBH). This relation is known as the M(gal) - M(BH) relation, and suggests a close relationship between the formation of the galaxy and the black hole. We study the metallicities near quasars at high redshift to observe this formation process in action. Associated absorption lines (AALs) provide us with a unique tool for this study, because these lines have a high probability of forming close to the quasar. Most of the work so far, using the emission lines, suggests that quasar environments are typically metal rich, with gas-phase metallicities near solar or higher at all observed redshifts. However, other independent abundance checks, such as AALs, are essential in order to confirm these results. We use very high resolution echelle spectra from VLT-UVES, Keck-HIRES and Magellan-MIKE for 18 high redshift (z of 2 to z of 4.6) quasars, selected to contain candidate intrinsic absorbers, and encompassing a typical rest-frame spectral range from approximately 900 Angstroms to 2500 Angstroms, designed to include at least Lyman alpha and C IV spectral features. We perform one of the first analyses of absorption line metallicities in high redshift quasars and present column densities, as well as estimates for the absorber locations relative to the quasar. We place solid limits on the C/H abundances, and find a wide range of values, from one hundredth solar to several times solar. We find covering fractions which vary with velocity, indicating the intrinsic nature of the absorbing gas. Saturated lines inhibit concrete abundance analysis in some systems, but are still useful for placing limits based on Gaussian fits to the lines.

  15. No Evidence for Variability of Intervening Absorption Lines toward GRB 060206: Implications for the Mg II Incidence Problem

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Totani, T.; Hattori, T.; Ohta, K.; Kawabata, K. S.; Kobayashi, N.; Iye, M.; Nomoto, K.; Kawai, N.

    2009-05-01

    We examine variability of absorption line strength of intervening systems along the line of sight to GRB 060206 at z = 4.05, by the low-resolution optical spectra obtained by the Subaru telescope from six to ten hours after the burst. Strong variabilities of Fe II and Mg II lines at z = 1.48 during t = 5-8 hours have been reported for this GRB [8], and this has been used to support the idea of clumpy Mg II cloudlets that was originally proposed to explain the anomalously high incidence of Mg II absorbers in GRB spectra compared with quasars. However, our spectra with higher signal-to-noise ratio do not show any evidence for variability in t = 6-10 hours. There is a clear discrepancy between our data and Hao et al. data in the overlapping time interval. Furthermore, the line strengths in our data are in good agreement with those observed at t~2 hours by Thone et al. [22]. Therefore we conclude that there is no strong evidence for variability of intervening absorption lines toward GRB 060206, significantly weakening the support to the Mg II cloudlet hypothesis by the GRB 060206 data.

  16. Time-dependent excitation and ionization modelling of absorption-line variability due to GRB 080310

    NASA Astrophysics Data System (ADS)

    Vreeswijk, P. M.; Ledoux, C.; Raassen, A. J. J.; Smette, A.; De Cia, A.; Woźniak, P. R.; Fox, A. J.; Vestrand, W. T.; Jakobsson, P.

    2013-01-01

    We model the time-variable absorption of Fe II, Fe III, Si II, C II and Cr II detected in Ultraviolet and Visual Echelle Spectrograph (UVES) spectra of gamma-ray burst (GRB) 080310, with the afterglow radiation exciting and ionizing the interstellar medium in the host galaxy at a redshift of z = 2.42743. To estimate the rest-frame afterglow brightness as a function of time, we use a combination of the optical VRI photometry obtained by the RAPTOR-T telescope array, which is presented in this paper, and Swift's X-Ray Telescope (XRT) observations. Excitation alone, which has been successfully applied for a handful of other GRBs, fails to describe the observed column density evolution in the case of GRB 080310. Inclusion of ionization is required to explain the column density decrease of all observed Fe II levels (including the ground state 6D9/2) and increase of the Fe III 7S3 level. The large population of ions in this latter level (up to 10% of all Fe III) can only be explained through ionization of Fe II, as a large fraction of the ionized Fe II ions (we calculate 31% using the Flexible Atomic and Cowan codes) initially populate the 7S3 level of Fe III rather than the ground state. This channel for producing a significant Fe III 7S3 level population may be relevant for other objects in which absorption lines from this level, the UV34 triplet, are observed, such as broad absorption line (BAL) quasars and η Carinae. This provides conclusive evidence for time-variable ionization in the circumburst medium, which to date has not been convincingly detected. However, the best-fit distance of the neutral absorbing cloud to the GRB is 200-400 pc, i.e. similar to GRB-absorber distance estimates for GRBs without any evidence for ionization. We find that the presence of time-varying ionization in GRB 080310 is likely due to a combination of the super-solar iron abundance ([Fe/H] = +0.2) and the low H I column density (log N(H i) = 18.7) in the host of GRB 080310. Finally

  17. Improved and Quality-assessed Emission and Absorption Line Measurements in Sloan Digital Sky Survey Galaxies

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Sarzi, Marc; Schawinski, Kevin; Yi, Sukyoung K.

    2011-08-01

    We present a new database of absorption and emission-line measurements based on the entire spectral atlas from the Sloan Digital Sky Survey (SDSS) 7th data release of galaxies within a redshift of 0.2. Our work makes use of the publicly available penalized pixel-fitting (pPXF) and gas and absorption line fitting (gandalf) IDL codes, aiming to improve the existing measurements for stellar kinematics, the strength of various absorption-line features, and the flux and width of the emissions from different species of ionized gas. Our fit to the stellar continuum uses both standard stellar population models and empirical templates obtained by combining a large number of stellar spectra in order to fit a subsample of high-quality SDSS spectra for quiescent galaxies. Furthermore, our fit to the nebular spectrum includes an exhaustive list of both recombination and forbidden lines. Foreground Galactic extinction is implicitly treated in our models, whereas reddening in the SDSS galaxies is included in the form of a simple dust screen component affecting the entire spectrum that is accompanied by a second reddening component affecting only the ionized gas emission. In order to check for systematic departures from the rather standard set of assumptions that enters our models, we provide a quality assessment for our fit to the SDSS spectra in our sample, for both the stellar continuum and the nebular emissions and across different wavelength regions. This quality assessment also allows the identification of objects with either problematic data or peculiar features. We hope to foster the discovery potential of our database; therefore, our spectral fit is available to the community. For example, based on the quality assessment around the Hα and [N II] λ6584 lines, approximately 1% of the SDSS spectra classified as "galaxies" by the SDSS pipeline do in fact require additional broad lines to be matched, even though they do not show a strong continuum from an active nucleus, as

  18. IMPROVED AND QUALITY-ASSESSED EMISSION AND ABSORPTION LINE MEASUREMENTS IN SLOAN DIGITAL SKY SURVEY GALAXIES

    SciTech Connect

    Oh, Kyuseok; Yi, Sukyoung K.; Sarzi, Marc; Schawinski, Kevin

    2011-08-01

    We present a new database of absorption and emission-line measurements based on the entire spectral atlas from the Sloan Digital Sky Survey (SDSS) 7th data release of galaxies within a redshift of 0.2. Our work makes use of the publicly available penalized pixel-fitting (pPXF) and gas and absorption line fitting (gandalf) IDL codes, aiming to improve the existing measurements for stellar kinematics, the strength of various absorption-line features, and the flux and width of the emissions from different species of ionized gas. Our fit to the stellar continuum uses both standard stellar population models and empirical templates obtained by combining a large number of stellar spectra in order to fit a subsample of high-quality SDSS spectra for quiescent galaxies. Furthermore, our fit to the nebular spectrum includes an exhaustive list of both recombination and forbidden lines. Foreground Galactic extinction is implicitly treated in our models, whereas reddening in the SDSS galaxies is included in the form of a simple dust screen component affecting the entire spectrum that is accompanied by a second reddening component affecting only the ionized gas emission. In order to check for systematic departures from the rather standard set of assumptions that enters our models, we provide a quality assessment for our fit to the SDSS spectra in our sample, for both the stellar continuum and the nebular emissions and across different wavelength regions. This quality assessment also allows the identification of objects with either problematic data or peculiar features. We hope to foster the discovery potential of our database; therefore, our spectral fit is available to the community. For example, based on the quality assessment around the H{alpha} and [N II] {lambda}6584 lines, approximately 1% of the SDSS spectra classified as 'galaxies' by the SDSS pipeline do in fact require additional broad lines to be matched, even though they do not show a strong continuum from an active

  19. OT2_vkulkarn_3: Star Formation and Molecular Gas in Distant Galaxies: SPIRE Spectroscopy of Quasar Absorption Systems

    NASA Astrophysics Data System (ADS)

    Kulkarni, V.

    2011-09-01

    Absorption line systems in quasar spectra, especially the damped Lyman alpha (DLA) and sub-DLA absorbers, provide excellent venues for directly studying the interstellar medium (ISM) in distant galaxies, selected independently of the galaxy luminosities. DLAs/sub-DLAs provide most of the neutral gas reservoir for star formation at high redshifts. A few especially cold, dusty absorbers have been discovered using radio surveys and the Sloan Digital Sky Survey. These absorbers, far richer in dust/molecules than the general absorber population, give us rare opportunities to probe molecular gas and star formation at high redshift. Unfortunately, very few sub-mm observations exist for these unique quasar absorbers. Here we propose SPIRE spectroscopy of 5 quasars with strong absorbers that appear to have cold/dusty gas. The proposed data will efficiently cover a wide spectral range that is expected to be rich in transitions of many atomic and molecular species (e.g., C I, N II, CH+, CO, 13CO, C18O, H2O) at the absorber redshifts. These transitions will allow us to estimate molecular abundances, and physical conditions of the absorber gas such as temperature and density. Comparisons of these distant absorbers with Milky Way ISM will provide a step toward understanding how ISM evolves with time. The molecular lines will also give constraints on isotopic ratios such as 12CO/13CO, and the cosmic microwave background temperature at the absorber redshifts. Our data will also cover the redshifted [C II] 158 micron emission line, which can help to constrain the star formation rate in the absorber galaxies. The proposed data will thus provide several fresh insights into the stellar and interstellar content of distant galaxies, and pave the way for future ALMA observations. Additionally, the data will provide important constraints on the continuum SEDs of the background quasars. Herschel SPIRE is the only current instrument that can offer the wavelength coverage needed to

  20. XMM-Newton Spectroscopy of the X-ray Detected Broad Absorption Line QSO CSO 755

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2005-01-01

    We present the results from XMM-Newton observations of the highly optically polarized broad absorption line quasar (BALQSO) CSO 755. By analyzing its X-ray spectrum with a total of approximately 3000 photons we find that this source has an X-ray continuum of "typical" radio-quiet quasars, with a photon index of Gamma=1.83, and a rather flat (X-ray bright) intrinsic optical-to-X-ray spectral slope of alpha_ox=- 1.51. The source shows evidence for intrinsic absorption, and fitting the spectrum with a neutral-absorption model gives a column density of N_H approximately 1.2x10^22 cm^{-2}; this is among the lowest X-ray columns measured for BALQSOs. We do not detect, with high significance, any other absorption features in the X-ray spectrum. Upper limits we place on the rest-frame equivalent width of a neutral (ionized) Fe K-alpha line, less than =180 eV (less than =120 eV), and on the Compton-reflection component parameter, R less than =0.2, suggest that most of the X-rays from the source are directly observed rather than being scattered or reflected; this is also supported by the relatively flat intrinsic alpha ox we measure. The possibility that most of the X-ray flux is scattered due to the high level of UV-optical polarization is ruled out. Considering data for 46 BALQSOs from the literature, including CSO 755, we have found that the UV-optical continuum polarization level of BALQSOs is not correlated with any of their X-ray properties. A lack of significant short-term and long-term X-ray flux variations in the source may be attributed to a large black-hole mass in CSO 755. We note that another luminous BALQSO, PG 2112+059, has both similar shallow C IV BALs and moderate X-ray absorption.

  1. Probing the Circumgalactic Medium of Submillimeter Galaxies with QSO Absorption Line Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Hennawi, Joseph F.; Prochaska, Jason X.; Stockton, Alan N.; Mutel, Robert Lucien; Casey, Caitlin; Cooray, Asantha R.; Keres, Dusan

    2017-01-01

    We present first results from an ongoing survey to characterize the circumgalactic medium (CGM) of the massive high-redshift galaxieds detected as submillimeter galaxies (SMGs). By cross-matching far-infrared-selected galaxies from Herschel with spectroscopically confirmed quasars, we constructed a sample of 163 SMG-QSO pairs with separations less than 36". We observed 62 SMG-QSO pairs with the Very Large Array (VLA) and the Atacama Large Millimeter Array (ALMA). These observations obtained sub-arcsecond positions of 31 SMGs and identified seven previously-thought SMG-QSO pairs as submillimeter-luminous QSOs. We are currently conducting a redshift survey of the VLA/ALMA-confirmed SMGs and acquiring high S/N UV-optical specrtoscopy of the background QSOs. For the small sample of three VLA-confirmed SMG-QSO pairs that we have the complete data set, absorption line spectra of the background QSOs allow us to analyze the CGM of SMGs for the first time, providing insight into the fuel-supply ultimately powering their tremendous starbursts. Our observations reveal strong HI Ly-alpha absorption (rest-frame equivalent widths about 2-3 A) around all three SMGs; however, none exhibit compelling evidence for strong neutral absorbers (NHI > 1017.2 cm-2) or metal absorption, allowing us to place an 1-sigma upper limit on the covering factor of optically thick HI gas around SMGs of fC < 36.9%. This is significantly lower than the covering factor around the co-eval population of luminous QSOs. Theoretical models predict that the structure of the CGM is entirely determined by dark matter halo mass. Given that that SMGs are believed to inhabit massive dark matter halos comparable to those hosting quasars, this difference in covering factor is unexpected. Therefore, our results tentatively indicate that SMGs may not have substantial cool gas reservoirs in their halos and that they may inhabit much less massive halos than previously thought.

  2. Causes and effects of the first quasars.

    PubMed Central

    Rees, M J

    1993-01-01

    The light we observe from the most distant known quasars set out when the Universe was about 200 times denser than it is now and less than one-tenth of its present age. The existence of these objects implies that galaxy formation had already, at that early epoch, proceeded to the stage when massive (>10(8)M[symbol, see text]) objects had accumulated in the centers of at least some young galaxies. A specific model is presented to show that the evolution and luminosity function of quasars are compatible with the cold dark matter cosmogony. Most big galaxies probably passed through a quasar phase; the remnant black holes in nearby galaxies may reveal themselves via the flares that occur whenever a star passes too close to them and gets tidally disrupted. The rich absorption spectra of quasars serve as a probe of the intervening medium. The gas responsible for the Lyman alpha absorption lines may be due to primordial gas gravitationally confined in minihalos of dark matter--shallow potential wells whose evolution and relation to dwarf galaxies are briefly discussed. The patchy heat input into the intergalactic medium from early quasars could modulate the environment in which galaxies form, leading to large-scale spatial correlations in the galaxy distribution. This review concludes with general comments on the prospects for a fully quantitative understanding of galaxy formation. PMID:11607397

  3. Anomalous absorption line in the magneto-optical response of graphene.

    PubMed

    Gusynin, V P; Sharapov, S G; Carbotte, J P

    2007-04-13

    The intensity as well as position in energy of the absorption lines in the infrared conductivity of graphene, both exhibit features that are directly related to the Dirac nature of its quasiparticles. We show that the evolution of the pattern of absorption lines as the chemical potential is varied encodes the information about the presence of the anomalous lowest Landau level. The first absorption line related to this level always appears with full intensity or is entirely missing, while all other lines disappear in two steps. We demonstrate that if a gap develops, the main absorption line splits into two provided that the chemical potential is greater than or equal to the gap.

  4. Interstellar absorption lines in the spectrum of Gamma Velorum

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Bhavsar, S. P.

    1979-01-01

    Copernicus scans of selected interstellar absorption lines in the UV spectrum of Gamma Vel are analyzed, together with ground-based data, to obtain column densities for various ion states of C, N, O, Na, Mg, Al, Si, P, S, Cl, Ar, Ca, Mn, Fe, and CO. N I and O I are fitted to a single empirical curve of growth with a velocity parameter (b) of 8 km/s; Mg II, Si II, P II, S II, Mn II, and Fe II are fitted to another curve with b between 3 and 9 km/s. Abundance determinations relative to H I show that: (1) C, N, P, S, and Ar are probably close to their solar values; (2) O may be depleted by about a factor of 2; (3) Mg, Al, Si, Cl, Mn, and Fe are depleted by a factor of 4 or more: (4) Al is depleted by at least a factor of 10 in the H II region; and (5) both N V and O VI are present, but not C IV. The N V/O VI ratio implies that the electron temperature in the H II region is about 275,000 K.

  5. Optical variability properties of mini-BAL and NAL quasars

    NASA Astrophysics Data System (ADS)

    Horiuchi, Takashi; Misawa, Toru; Morokuma, Tomoki; Koyamada, Suzuka; Takahashi, Kazuma; Wada, Hisashi

    2016-08-01

    While narrow absorption lines (NALs) are relatively stable, broad absorption lines (BALs) and mini-BAL systems usually show violent time variability within a few years via a mechanism that is not yet understood. In this study, we examine the variable ionization state (VIS) scenario as a plausible mechanism, as previously suspected. Over three years, we performed photometric monitoring observations of four mini-BAL and five NAL quasars at zem ˜ 2.0-3.1 using the 105 cm Kiso Schmidt Telescope in u, g, and i bands. We also performed spectroscopic monitoring observation of one of our mini-BAL quasars (HS 1603+3820) using the 188 cm Okayama Telescope over the same period as the photometric observations. Our main results are as follows: (1) Structure function (SF) analysis revealed that the quasar UV flux variability over three years was not large enough to support the VIS scenario, unless the ionization condition of outflow gas is very low. (2) There was no crucial difference between the SFs of mini-BAL and NAL quasars. (3) The variability of the mini-BAL and quasar light curves was weakly synchronized with a small time delay for HS 1603+3820. These results suggest that the VIS scenario may need additional mechanisms such as variable shielding by X-ray warm absorbers.

  6. Interpreting the convergence of Lyman series absorption lines

    NASA Technical Reports Server (NTRS)

    Jenkins, Edward B.

    1990-01-01

    Spectra of quasars at high z often show absorption at the Lyman limit from intervening gas systems at intermediate z having N(H) approx. greater than 10(exp 7) cm(-2). In some circumstances, N(H) can be determined by measuring the strength of the Lyman limit absorption or the damping wings of Lyman - alpha. With a spectrum taken at low wavelength resolution, say, lambda/delta lambda approx. 10(exp 3), it is usually not possible to distinguish individual Lyman series lines near the limit, yet one can still discern how rapidly the average intensity drops off as the limit is approached from the long wavelength side. The purpose here is to point out the information which is available from measurements of this series convergence.

  7. Quasar Lifetimes and Black Hole Spins

    NASA Astrophysics Data System (ADS)

    Rafiee, Alireza; Hall, P. B.

    2007-12-01

    Wang et al. (2006) estimated a high average radiative efficiency of 30% to 35% for quasars (actively accreting black holes) at moderate redshift, strongly suggesting that all supermassive black holes are rotating very rapidly. Their method for determining radiative efficiencies has two advantages: it deals with changes in quantities rather than absolutes and it is independent of obscured sources. However, we have investigated the reliability of the assumptions made by Wang et al. and have found that their method is not independent of quasar lifetimes. Nonetheless, given constraints on quasar lifetimes, their method can be used to constrain quasar radiative efficiencies and black hole spins. Conversely, the range of radiative efficiencies possible for the full range of black hole spins can be used to constrain the average lifetimes of quasars (assuming that luminous quasars are not powered by radiatively inefficient accretion flows). We will present interrelated constraints on quasar lifetimes, Eddington ratios and radiative efficiencies (black hole spins) from a statistically complete sample of SDSS quasars with black hole mass estimates from Mg II. PBH and AR are supported in part by NSERC.

  8. Quasar Absorption in the UV: Probing the Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Weinberg, David; Katz, Neal

    1998-01-01

    The purpose of this project is to model the low-redshift Lyman-alpha forest and exploration of the relation between Lyman-alpha absorbers and galaxies. This paper shows that the simulation models that are so successful at explaining properties of the high-redshift forest also account for the most important results of observational studies of the low-redshift forest, from HST (especially the Quasar Absorption Line Key Project) and ground-based follow-up.

  9. Mining for Dust in Type 1 Quasars

    NASA Astrophysics Data System (ADS)

    Krawczyk, Coleman M.; Richards, Gordon T.; Gallagher, S. C.; Leighly, Karen M.; Hewett, Paul C.; Ross, Nicholas P.; Hall, P. B.

    2015-06-01

    We explore the extinction/reddening of ˜35,000 uniformly selected quasars with 0\\lt z≤slant 5.3 in order to better understand their intrinsic optical/ultraviolet (UV) spectral energy distributions. Using rest-frame optical-UV photometry taken from the Sloan Digital Sky Survey’s (SDSS) 7th data release, cross-matched to WISE in the mid-infrared, 2MASS and UKIDSS in the near-infrared, and GALEX in the UV, we isolate outliers in the color distribution and find them well described by an SMC-like reddening law. A hierarchical Bayesian model with a Markov Chain Monte Carlo sampling method was used to find distributions of power law indices and E(B-V) consistent with both the broad absorption line (BAL) and non-BAL samples. We find that, of the ugriz color-selected type 1 quasars in SDSS, 2.5% (13%) of the non-BAL (BAL) sample are consistent with E(B-V)\\gt 0.1 and 0.1% (1.3%) with E(B-V)\\gt 0.2. Simulations show both populations of quasars are intrinsically bluer than the mean composite, with a mean spectral index ({{α }λ }) of -1.79 (-1.83). The emission and absorption-line properties of both samples reveal that quasars with intrinsically red continua have narrower Balmer lines and stronger high-ionization emission lines, the latter indicating a harder continuum in the extreme-UV and the former pointing to differences in black hole mass and/or orientation.

  10. The Extended High A(V) Quasar Survey: Searching for Dusty Absorbers toward Mid-infrared-selected Quasars

    NASA Astrophysics Data System (ADS)

    Krogager, J.-K.; Fynbo, J. P. U.; Heintz, K. E.; Geier, S.; Ledoux, C.; Møller, P.; Noterdaeme, P.; Venemans, B. P.; Vestergaard, M.

    2016-11-01

    We present the results of a new spectroscopic survey for dusty intervening absorption systems, particularly damped Lyα absorbers (DLAs), toward reddened quasars. The candidate quasars are selected from mid-infrared photometry from the Wide-field Infrared Survey Explorer combined with optical and near-infrared photometry. Out of 1073 candidates, we secure low-resolution spectra for 108 using the Nordic Optical Telescope on La Palma, Spain. Based on the spectra, we are able to classify 100 of the 108 targets as quasars. A large fraction (50%) is observed to have broad absorption lines (BALs). Moreover, we find six quasars with strange breaks in their spectra, which are not consistent with regular dust reddening. Using template fitting, we infer the amount of reddening along each line of sight ranging from A(V) ≈ 0.1 to 1.2 mag (assuming a Small Magellanic Cloud extinction curve). In four cases, the reddening is consistent with dust exhibiting the 2175 Å feature caused by an intervening absorber, and for two of these, an Mg ii absorption system is observed at the best-fit absorption redshift. In the rest of the cases, the reddening is most likely intrinsic to the quasar. We observe no evidence for dusty DLAs in this survey. However, the large fraction of BAL quasars hampers the detection of absorption systems. Out of the 50 non-BAL quasars, only 28 have sufficiently high redshift to detect Lyα in absorption.

  11. VARIABLE REDDENING AND BROAD ABSORPTION LINES IN THE NARROW-LINE SEYFERT 1 GALAXY WPVS 007: AN ORIGIN IN THE TORUS

    SciTech Connect

    Leighly, Karen M.; Cooper, Erin; Grupe, Dirk; Terndrup, Donald M.; Komossa, S.

    2015-08-10

    We report the discovery of an occultation event in the low-luminosity narrow-line Seyfert 1 galaxy WPVS 007 in 2015 February and March. In concert with longer timescale variability, these observations place strong constraints on the nature and location of the absorbing material. Swift monitoring has revealed a secular decrease since ∼2010 accompanied by flattening of the optical and UV photometry that suggests variable reddening. Analysis of four Hubble Space Telescope COS observations since 2010, including a Director’s Discretionary time observation during the occultation, shows that the broad-absorption-line velocity offset and the C iv emission-line width both decrease as the reddening increases. The occultation dynamical timescale, the BAL variability dynamical timescale, and the density of the BAL gas show that both the reddening material and the broad-absorption-line gas are consistent with an origin in the torus. These observations can be explained by a scenario in which the torus is clumpy with variable scale height, and the BAL gas is blown from the torus material like spray from the crest of a wave. As the obscuring material passes into our line of sight, we alternately see high-velocity broad absorption lines and a clear view to the central engine, or low-velocity broad absorption lines and strong reddening. WPVS 007 has a small black hole mass, and correspondingly short timescales, and so we may be observing behavior that is common in BALQSOs, but is not typically observable.

  12. Isotopic ratios at z = 0.68 from molecular absorption lines toward B 0218+357

    NASA Astrophysics Data System (ADS)

    Wallström, S. H. J.; Muller, S.; Guélin, M.

    2016-11-01

    Isotopic ratios of heavy elements are a key signature of the nucleosynthesis processes in stellar interiors. The contribution of successive generations of stars to the metal enrichment of the Universe is imprinted on the evolution of isotopic ratios over time. We investigate the isotopic ratios of carbon, nitrogen, oxygen, and sulfur through millimeter molecular absorption lines arising in the z = 0.68 absorber toward the blazar B 0218+357. We find that these ratios differ from those observed in the Galactic interstellar medium, but are remarkably close to those in the only other source at intermediate redshift for which isotopic ratios have been measured to date, the z = 0.89 absorber in front of PKS 1830-211. The isotopic ratios in these two absorbers should reflect enrichment mostly from massive stars, and they are indeed close to the values observed toward local starburst galaxies. Our measurements set constraints on nucleosynthesis and chemical evolution models. The reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A96

  13. Galaxies on Top of Quasars: Probing Dwarf Galaxies in the SDSS

    NASA Astrophysics Data System (ADS)

    Straka, Lorrie; York, D. G.; Noterdaeme, P.; Srianand, R.; Bowen, D. V.; Khare, P.; Bishof, M.; Whichard, Z.; Kulkarni, V. P.

    2013-07-01

    Absorption lines from galaxies at intervening redshifts in quasar spectra are sensitive probes of metals and gas that are otherwise invisible due to distance or low surface brightness. However, in order to determine the environments these absorption lines arise in, we must detect these galaxies in emission as well. Galaxies on top of quasars (GOTOQs) are low-z galaxies found intervening with background quasars in the SDSS. These galaxies have been flagged for their narrow galactic emission lines present in quasar spectra in the SDSS. Typically, the low-z nature of these galaxies allows them to be easily detected in SDSS imaging. However, a number of GOTOQs (about 10%), despite being detected in spectral emission, are NOT seen in SDSS imaging. This implies that these may be dark galaxies, dwarf galaxies, or similarly low surface brightness galaxies. Additionally, about 25% of those detected in imaging are dwarf galaxies according to their L* values. Dwarf galaxies have long been underrepresented in observations compared to theory and are known to have large extents in dark matter. Given their prevalence here in our sample we must ask what role they play in quasar absorption line systems (QSOALS). Recent detections of 21-cm galaxies with few stars imply that aborted star formation in dark matter sub halos may produce QSOALS. Thus, this sub sample of galaxies offers a unique technique for probing dark and dwarf galaxies. The sample and its properties will be discussed, including star formation rates and dust estimates, as well as prospects for the future.

  14. Host Galaxies of Young Dust-Reddened Quasars

    NASA Astrophysics Data System (ADS)

    Urrutia, T.; Lacy, M.; Becker, R.; Glikman, E.

    2009-10-01

    We present results on a multiwavelength campaign to identify the nature of dust-reddened Type 1 quasars. These quasars were selected by matching FIRST, 2MASS and very red optical counterparts with r'-K > 5. We find a very high fraction of Low Ionization Broad Absorption Line Quasars (LoBALs) among AGN selected with this method, perhaps a sign of quasar feedback. From X-ray observations and Balmer decrement measurements, the obscuring dust is most likely located in a cold absorber such as the host galaxy, rather than from a torus near the AGN. Hubble ACS imaging of a sub-sample of these sources showed a very high fraction of interacting and merging systems. The quasars appear to be very young in which dust from the merging galaxies is still settling in. Spitzer IRS and MIPS data show star formation signatures and deep Silicate absorption features in these objects, but overall the quasar is the dominant source in the Mid-infrared.

  15. Absorption lines from magnetically driven winds in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Chakravorty, S.; Petrucci, P.-O.; Ferreira, J.; Henri, G.; Belmont, R.; Clavel, M.; Corbel, S.; Rodriguez, J.; Coriat, M.; Drappeau, S.; Malzac, J.

    2016-05-01

    Context. High resolution X-ray spectra of black hole X-ray binaries (BHBs) show blueshifted absorption lines suggesting the presence of outflowing winds. Furthermore, observations show that the disk winds are equatorial and they occur in the Softer (disk dominated) states of the outburst and are less prominent or absent in the Harder (power-law dominated) states. Aims: We want to test whether the self-similar magneto-hydrodynamic (MHD) accretion-ejection models can explain the observational results for accretion disk winds in BHBs. In our models, the density at the base of the outflow from the accretion disk is not a free parameter. This mass loading is determined by solving the full set of dynamical MHD equations without neglecting any physical term. Thus, the physical properties of the outflow depend on and are controlled by the global structure of the disk. Methods: We studied different MHD solutions characterized by different values of the disk aspect ratio (ɛ) and the ejection efficiency (p). We also generate two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. Such heating could be either from dissipation of energy due to MHD turbulence in the disk or from illumination of the disk surface. Warm solutions can have large (>0.1) values of p, which would imply larger wind mass loading at the base of the outflow. We use each of these MHD solutions to predict the physical parameters (distance, density, velocity, magnetic field, etc.) of an outflow. Motivated by observational results, we have put limits on the ionization parameter (ξ), column density, and timescales. Further constraints were derived for the allowed values of ξ from thermodynamic instability considerations, particularly for the Hard SED. These physical constraints were imposed on each of these outflows to select regions within it, which are consistent with the observed winds. Results: The cold MHD solutions are found to be

  16. Constraints on the optical polarization source in the luminous non-blazar quasar 3C 323.1 (PG 1545+210) from the photometric and polarimetric variability

    NASA Astrophysics Data System (ADS)

    Kokubo, Mitsuru

    2017-01-01

    We examine the optical photometric and polarimetric variability of the luminous type 1 non-blazar quasar 3C 323.1 (PG 1545+210). Two optical spectro-polarimetric measurements taken during the periods 1996-98 and 2003 combined with a V-band imaging polarimetric measurement taken in 2002 reveal that (1) as noted in the literature, the polarization of 3C 323.1 is confined only to the continuum emission, that is, the emission from the broad line region is unpolarized; (2) the polarized flux spectra show evidence of a time-variable broad absorption feature in the wavelength range of the Balmer continuum and other recombination lines; (3) weak variability in the polarization position angle (PA) of ˜ 4 deg over a time-scale of 4-6 years is observed; and (4) the V-band total flux and the polarized flux show highly correlated variability over a time-scale of one year. Taking the above-mentioned photometric and polarimetric variability properties and the results from previous studies into consideration, we propose a geometrical model for the polarization source in 3C 323.1, in which an equatorial absorbing region and an axi-asymmetric equatorial electron-scattering region are assumed to be located between the accretion disc and the broad line region. The scattering/absorbing regions can perhaps be attributed to the accretion disc wind or flared disc surface, but further polarimetric monitoring observations for 3C 323.1 and other quasars with continuum-confined polarization are needed to probe the true physical origins of these regions.

  17. THE FIRST HIGH-REDSHIFT QUASAR FROM Pan-STARRS

    SciTech Connect

    Morganson, Eric; De Rosa, Gisella; Decarli, Roberto; Walter, Fabian; Rix, Hans-Walter; Chambers, Ken; Burgett, William; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nick; Magnier, Eugene; Sweeney, Bill; Waters, Christopher; McGreer, Ian; Fan, Xiaohui; Greiner, Jochen; Price, Paul

    2012-06-15

    We present the discovery of the first high-redshift (z > 5.7) quasar from the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1 or PS1). This quasar was initially detected as an i{sub P1} dropout in PS1, confirmed photometrically with the SAO Wide-field InfraRed Camera at Arizona's Multiple Mirror Telescope (MMT) and the Gamma-Ray Burst Optical/Near-Infrared Detector at the MPG 2.2 m telescope in La Silla. The quasar was verified spectroscopically with the MMT Spectrograph, Red Channel and the Cassegrain Twin Spectrograph at the Calar Alto 3.5 m telescope. Its near-infrared spectrum was taken at the Large Binocular Telescope Observatory (LBT) with the LBT Near-Infrared Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research. It has a redshift of 5.73, an AB z{sub P1} magnitude of 19.4, a luminosity of 3.8 Multiplication-Sign 10{sup 47} erg s{sup -1}, and a black hole mass of 6.9 Multiplication-Sign 10{sup 9} M{sub Sun }. It is a broad absorption line quasar with a prominent Ly{beta} peak and a very blue continuum spectrum. This quasar is the first result from the PS1 high-redshift quasar search that is projected to discover more than 100 i{sub P1} dropout quasars and could potentially find more than 10 z{sub P1} dropout (z > 6.8) quasars.

  18. The Sloan Digital Sky Survey Quasar Catalog: Twelfth data release

    NASA Astrophysics Data System (ADS)

    Pâris, Isabelle; Petitjean, Patrick; Ross, Nicholas P.; Myers, Adam D.; Aubourg, Éric; Streblyanska, Alina; Bailey, Stephen; Armengaud, Éric; Palanque-Delabrouille, Nathalie; Yèche, Christophe; Hamann, Fred; Strauss, Michael A.; Albareti, Franco D.; Bovy, Jo; Bizyaev, Dmitry; Niel Brandt, W.; Brusa, Marcella; Buchner, Johannes; Comparat, Johan; Croft, Rupert A. C.; Dwelly, Tom; Fan, Xiaohui; Font-Ribera, Andreu; Ge, Jian; Georgakakis, Antonis; Hall, Patrick B.; Jiang, Linhua; Kinemuchi, Karen; Malanushenko, Elena; Malanushenko, Viktor; McMahon, Richard G.; Menzel, Marie-Luise; Merloni, Andrea; Nandra, Kirpal; Noterdaeme, Pasquier; Oravetz, Daniel; Pan, Kaike; Pieri, Matthew M.; Prada, Francisco; Salvato, Mara; Schlegel, David J.; Schneider, Donald P.; Simmons, Audrey; Viel, Matteo; Weinberg, David H.; Zhu, Liu

    2017-01-01

    We present the Data Release 12 Quasar catalog (DR12Q) from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III. This catalog includes all SDSS-III/BOSS objects that were spectroscopically targeted as quasar candidates during the full survey and that are confirmed as quasars via visual inspection of the spectra, have luminosities Mi [z = 2] < -20.5 (in a ΛCDM cosmology with H0 = 70 km s-1 Mpc-1, ΩM = 0.3, and ΩΛ = 0.7), and either display at least one emission line with a full width at half maximum (FWHM) larger than 500 km s-1 or, if not, have interesting/complex absorption features. The catalog also includes previously known quasars (mostly from SDSS-I and II) that were reobserved by BOSS. The catalog contains 297 301 quasars (272 026 are new discoveries since the beginning of SDSS-III) detected over 9376 deg2 with robust identification and redshift measured by a combination of principal component eigenspectra. The number of quasars with z > 2.15 (184 101, of which 167 742 are new discoveries) is about an order of magnitude greater than the number of z > 2.15 quasars known prior to BOSS. Redshifts and FWHMs are provided for the strongest emission lines (C iv, C iii], Mg ii). The catalog identifies 29 580 broad absorption line quasars and lists their characteristics. For each object, the catalog presents five-band (u, g, r, i, z) CCD-based photometry with typical accuracy of 0.03 mag together with some information on the optical morphology and the selection criteria. When available, the catalog also provides information on the optical variability of quasars using SDSS and Palomar Transient Factory multi-epoch photometry. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra, covering the wavelength region 3600-10 500 Å at a spectral resolution in the range 1300 < R < 2500, can be retrieved from

  19. A Comparison of the Circumgalactic Medium of Present-Day Dwarf and Milky Way Galaxies using Absorption Line Analysis through Hydrodynamic Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Vander Vliet, Jacob R.; Churchill, C. W.; Trujillo-Gomez, S.; Klimek, E. S.; Klypin, A. A.

    2014-01-01

    Dwarf galaxies are predicted to have a unique halo structure. They experience the same feedback as more massive galaxies but lack the strong gravitational potential. The structure and composition of gas around dwarfs should be different than for gas around massive galaxies. These differences would show up in quasar absorption spectra. We test this idea by examining mock quasar spectra of the circumgalactic medium of two simulated dwarf galaxies to determine the extent of their metal halos at redshift zero. The galaxies are from a cosmological zoom-in simulation using Eulerian Gasdynamics plus N-body Adaptive Refinement Tree (ART) code. Both galaxies have the same initial conditions but are simulated with different physical conditions. One uses only supernova feedback while the other adds in radiative pressure and an increase in star formation efficiency to recreate the correct stellar properties. We measure the absorption lines of several ions including MgII, CIV, OVI, SiIV, and Ly beta and compare the covering fraction, equivalent width distribution and the velocity distribution for both simulations. These are then compared to more massive halos to explore how the galaxy's mass affects their CGM structure.

  20. The Ultimate Multiwavelength Quasar Survey (ROSES-2011)

    NASA Astrophysics Data System (ADS)

    Richards, Gordon

    contributes to the evolution of galaxies is one of the most important questions in extragalactic astrophysics today. Our clustering and luminosity function analyses, using a rich multi-wavelength dataset, will provide important constraints on AGN feedback models. This project is directly relevant to our understanding of the evolution of galaxies and to NASA's goal of better understanding the Universe. Moreover, NASA's data archive is crucial to the project: it is only by using data from GALEX, 2MASS, Spitzer, and WISE that we can turn an incomplete, biased sample of optical quasars into the ultimate multi-wavelength quasar catalog.

  1. The Final SDSS High-redshift Quasar Sample of 52 Quasars at z>5.7

    NASA Astrophysics Data System (ADS)

    Jiang, Linhua; McGreer, Ian D.; Fan, Xiaohui; Strauss, Michael A.; Bañados, Eduardo; Becker, Robert H.; Bian, Fuyan; Farnsworth, Kara; Shen, Yue; Wang, Feige; Wang, Ran; Wang, Shu; White, Richard L.; Wu, Jin; Wu, Xue-Bing; Yang, Jinyi; Yang, Qian

    2016-12-01

    We present the discovery of nine quasars at z∼ 6 identified in the Sloan Digital Sky Survey (SDSS) imaging data. This completes our survey of z∼ 6 quasars in the SDSS footprint. Our final sample consists of 52 quasars at 5.7\\lt z≤slant 6.4, including 29 quasars with {z}{AB}≤slant 20 mag selected from 11,240 deg2 of the SDSS single-epoch imaging survey (the main survey), 10 quasars with 20≤slant {z}{AB}≤slant 20.5 selected from 4223 deg2 of the SDSS overlap regions (regions with two or more imaging scans), and 13 quasars down to {z}{AB}≈ 22 mag from the 277 deg2 in Stripe 82. They span a wide luminosity range of -29.0≤slant {M}1450≤slant -24.5. This well-defined sample is used to derive the quasar luminosity function (QLF) at z∼ 6. After combining our SDSS sample with two faint ({M}1450≥slant -23 mag) quasars from the literature, we obtain the parameters for a double power-law fit to the QLF. The bright-end slope β of the QLF is well constrained to be β =-2.8+/- 0.2. Due to the small number of low-luminosity quasars, the faint-end slope α and the characteristic magnitude {M}1450* are less well constrained, with α =-{1.90}-0.44+0.58 and {M}* =-{25.2}-3.8+1.2 mag. The spatial density of luminous quasars, parametrized as ρ ({M}1450\\lt -26,z)=ρ (z=6){10}k(z-6), drops rapidly from z∼ 5 to 6, with k=-0.72+/- 0.11. Based on our fitted QLF and assuming an intergalactic medium (IGM) clumping factor of C = 3, we find that the observed quasar population cannot provide enough photons to ionize the z∼ 6 IGM at ∼90% confidence. Quasars may still provide a significant fraction of the required photons, although much larger samples of faint quasars are needed for more stringent constraints on the quasar contribution to reionization.

  2. Variable Reddening and Broad Absorption Lines in the Narrow-line Seyfert 1 Galaxy WPVS 007: An Origin in the Torus

    NASA Astrophysics Data System (ADS)

    Leighly, Karen M.; Cooper, Erin; Grupe, Dirk; Terndrup, Donald M.; Komossa, S.

    2015-08-01

    We report the discovery of an occultation event in the low-luminosity narrow-line Seyfert 1 galaxy WPVS 007 in 2015 February and March. In concert with longer timescale variability, these observations place strong constraints on the nature and location of the absorbing material. Swift monitoring has revealed a secular decrease since ∼2010 accompanied by flattening of the optical and UV photometry that suggests variable reddening. Analysis of four Hubble Space Telescope COS observations since 2010, including a Director’s Discretionary time observation during the occultation, shows that the broad-absorption-line velocity offset and the C iv emission-line width both decrease as the reddening increases. The occultation dynamical timescale, the BAL variability dynamical timescale, and the density of the BAL gas show that both the reddening material and the broad-absorption-line gas are consistent with an origin in the torus. These observations can be explained by a scenario in which the torus is clumpy with variable scale height, and the BAL gas is blown from the torus material like spray from the crest of a wave. As the obscuring material passes into our line of sight, we alternately see high-velocity broad absorption lines and a clear view to the central engine, or low-velocity broad absorption lines and strong reddening. WPVS 007 has a small black hole mass, and correspondingly short timescales, and so we may be observing behavior that is common in BALQSOs, but is not typically observable. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 11733, 13015, and 14058.

  3. H i Absorption in the Steep-Spectrum Superluminal Quasar 3C 216.

    PubMed

    Pihlström; Vermeulen; Taylor; Conway

    1999-11-01

    The search for H i absorption in strong compact steep-spectrum sources is a natural way to probe the neutral gas contents in young radio sources. In turn, this may provide information about the evolution of powerful radio sources. The recently improved capabilities of the Westerbork Synthesis Radio Telescope have made it possible to detect a 0.31% (19 mJy) deep neutral atomic hydrogen absorption line associated with the steep-spectrum superluminal quasar 3C 216. The redshift (z=0.67) of the source shifts the frequency of the 21 cm line down to the ultra-high-frequency (UHF) band (850 MHz). The exact location of the H i-absorbing gas remains to be determined by spectral line VLBI observations at 850 MHz. We cannot exclude that the gas might be extended on galactic scales, but we think it is more likely to be located in the central kiloparsec. Constraints from the lack of X-ray absorption probably rule out obscuration of the core region, and we argue that the most plausible site for the H i absorption is in the jet-cloud interaction observed in this source.

  4. Discovery of a z = 6.1 Radio-Loud Quasar in the NDWFS

    SciTech Connect

    McGreer, I D; Becker, R H; Helfand, D J; White, R L

    2006-07-24

    From examination of only 4 deg{sup 2} of sky in the NOAO Deep Wide-Field Survey (NDWFS) region, we have identified the first radio-loud quasar at a redshift z > 6. The object, FIRST J1427385+331241, was discovered by matching the FLAMEX IR survey to FIRST survey radio sources with NDWFS counterparts. One candidate z > 6 quasar was found, and spectroscopy with the Keck II telescope confirmed its identification, yielding a redshift z = 6.12. The object is a Broad Absorption Line (BAL) quasar with an optical luminosity of M{sub B} {approx} -26.9 and a radio-to-optical flux ratio {approx} 60. Two Mg II absorptions systems are present at redshifts of z = 2.18 and z = 2.20. We briefly discuss the implications of this discovery for the high-redshift quasar population.

  5. THE 2dF REDSHIFT SURVEY. I. PHYSICAL ASSOCIATION AND PERIODICITY IN QUASAR FAMILIES

    SciTech Connect

    Fulton, C. C.; Arp, H. C. E-mail: arp@mpa-garching.mpg.de

    2012-08-01

    We have tested for physical association of candidate companion quasars with putative parent galaxies by virtue of Karlsson periodicity in quasar redshifts. We examined galaxies from the 2dF Galaxy Redshift Survey (2dFGRS) and quasars from the 2dF Quasar Redshift Survey (2QZ) in the two declination strips (at declinations 0 Degree-Sign and -30 Degree-Sign ) covered by the 2QZ, first filtering out galaxies and quasars using the respective survey masks and observation qualities as described, and using only quasars with z {>=} 0.5 to avoid the redshift region of mixed galaxies and quasars. Around each galaxy, quasars are detected as physically associated with a putative parent galaxy if their respective redshifts conform to empirically derived constraints based on an ejection hypothesis. We ran Monte Carlo control trials against the pure physical associations by replacing the actual redshifts of the candidate companion quasars with quasar redshifts drawn randomly from each respective right ascension hour. The constraints are grouping of quasar redshifts and Karlsson periodicity of quasar redshifts.

  6. The ultraviolet absorption spectrum of the quasar H1821+643 (z = 0.297)

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Jannuzi, Buell T.; Schneider, Donald P.; Hartig, George F.; Green, Richard F.

    1992-01-01

    High resolution UV observations of the nearby luminous quasar H1821+643 are reported. A complete sample of 38 absorption lines has been constructed. There are five strong extragalactic Ly-alpha absorption lines in the spectrum, all with observed equivalent widths greater than 0.45 A. The local number density of Ly-alpha systems with rest equivalent widths larger than 0.32 A is estimated to be 13 +/- 5 Ly-alpha lines per unit redshift. Some of the Ly-alpha systems with redshifts significantly different from the quasar appear to be associated with galaxies or with clusters of galaxies. Two of the Ly-alpha lines have the same redshift within 400 km/s as that of an emission-line galaxy located at a projected separation from the quasar of about 90 kpc. One of the Ly-alpha systems in H1821+643 occurs at an a absorption redshift approximately equal to the emission-line redshift of the quasar and is accompanied by absorption from the C IV and of VI doublets; this is an example of associated absorption for large-redshift quasars.

  7. The Sloan Digital Sky Survey quasar catalog: ninth data release

    NASA Astrophysics Data System (ADS)

    Pâris, I.; Petitjean, P.; Aubourg, É.; Bailey, S.; Ross, N. P.; Myers, A. D.; Strauss, M. A.; Anderson, S. F.; Arnau, E.; Bautista, J.; Bizyaev, D.; Bolton, A. S.; Bovy, J.; Brandt, W. N.; Brewington, H.; Browstein, J. R.; Busca, N.; Capellupo, D.; Carithers, W.; Croft, R. A. C.; Dawson, K.; Delubac, T.; Ebelke, G.; Eisenstein, D. J.; Engelke, P.; Fan, X.; Filiz Ak, N.; Finley, H.; Font-Ribera, A.; Ge, J.; Gibson, R. R.; Hall, P. B.; Hamann, F.; Hennawi, J. F.; Ho, S.; Hogg, D. W.; Ivezić, Ž.; Jiang, L.; Kimball, A. E.; Kirkby, D.; Kirkpatrick, J. A.; Lee, K.-G.; Le Goff, J.-M.; Lundgren, B.; MacLeod, C. L.; Malanushenko, E.; Malanushenko, V.; Maraston, C.; McGreer, I. D.; McMahon, R. G.; Miralda-Escudé, J.; Muna, D.; Noterdaeme, P.; Oravetz, D.; Palanque-Delabrouille, N.; Pan, K.; Perez-Fournon, I.; Pieri, M. M.; Richards, G. T.; Rollinde, E.; Sheldon, E. S.; Schlegel, D. J.; Schneider, D. P.; Slosar, A.; Shelden, A.; Shen, Y.; Simmons, A.; Snedden, S.; Suzuki, N.; Tinker, J.; Viel, M.; Weaver, B. A.; Weinberg, D. H.; White, M.; Wood-Vasey, W. M.; Yèche, C.

    2012-12-01

    We present the Data Release 9 Quasar (DR9Q) catalog from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III. The catalog includes all BOSS objects that were targeted as quasar candidates during the survey, are spectrocopically confirmed as quasars via visual inspection, have luminosities Mi[z = 2] < -20.5 (in a ΛCDM cosmology with H0 = 70 km s-1 Mpc-1, ΩM = 0.3, and ΩΛ = 0.7) and either display at least one emission line with full width at half maximum (FWHM) larger than 500 km s-1 or, if not, have interesting/complex absorption features. It includes as well, known quasars (mostly from SDSS-I and II) that were reobserved by BOSS. This catalog contains 87 822 quasars (78 086 are new discoveries) detected over 3275 deg2 with robust identification and redshift measured by a combination of principal component eigenspectra newly derived from a training set of 8632 spectra from SDSS-DR7. The number of quasars with z > 2.15 (61 931) is ~2.8 times larger than the number of z > 2.15 quasars previously known. Redshifts and FWHMs are provided for the strongest emission lines (C iv, C iii], Mg ii). The catalog identifies 7533 broad absorption line quasars and gives their characteristics. For each object the catalog presents five-band (u, g, r, i, z) CCD-based photometry with typical accuracy of 0.03 mag, and information on the morphology and selection method. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra cover the wavelength region 3600-10 500 Å at a spectral resolution in the range 1300 < R < 2500; the spectra can be retrieved from the SDSS Catalog Archive Server. We also provide a supplemental list of an additional 949 quasars that have been identified, among galaxy targets of the BOSS or among quasar targets after DR9 was frozen. Catalog is only available at the CDS via anonymous ftp to cdsarc

  8. Extreme Bal quasars from the Sloan Digital Sky Survey

    SciTech Connect

    Patrick B. Hall et al.

    2002-10-11

    The Sloan Digital Sky Survey has discovered a population of broad absorption line quasars with various extreme properties. Many show absorption from metastable states of Fe II with varying excitations; several objects are almost completely absorbed bluewards of Mg II; at least one shows stronger absorption from Fe III than Fe II, indicating temperatures T > 35000 K in the absorbing region; and one object even seems to have broad H{beta} absorption. Many of these extreme BALs are also heavily reddened, though ''normal'' BALs (particularly LoBALs) from SDSS also show evidence for internal reddening.

  9. Archival research on absorption lines in violently star-forming galaxies

    NASA Technical Reports Server (NTRS)

    Gallagher, J. S.

    1989-01-01

    A computerized analysis of a starburst model is discussed. The model proposes that the absorption line equivalent width should scale with the level of star forming activity. Archival International Ultraviolet Explorer (IUE) data on IUE spectra of luminous blue galaxies were compared with previous IUE observations of extragalactic HII regions and low luminosity galaxies. The comparisons are summarized and causes for offsets are discussed.

  10. Testing quasar unification: radiative transfer in clumpy winds

    NASA Astrophysics Data System (ADS)

    Matthews, J. H.; Knigge, C.; Long, K. S.; Sim, S. A.; Higginbottom, N.; Mangham, S. W.

    2016-05-01

    Various unification schemes interpret the complex phenomenology of quasars and luminous active galactic nuclei (AGN) in terms of a simple picture involving a central black hole, an accretion disc and an associated outflow. Here, we continue our tests of this paradigm by comparing quasar spectra to synthetic spectra of biconical disc wind models, produced with our state-of-the-art Monte Carlo radiative transfer code. Previously, we have shown that we could produce synthetic spectra resembling those of observed broad absorption line (BAL) quasars, but only if the X-ray luminosity was limited to 1043 erg s-1. Here, we introduce a simple treatment of clumping, and find that a filling factor of ˜0.01 moderates the ionization state sufficiently for BAL features to form in the rest-frame UV at more realistic X-ray luminosities. Our fiducial model shows good agreement with AGN X-ray properties and the wind produces strong line emission in, e.g., Lyα and C IV 1550 Å at low inclinations. At high inclinations, the spectra possess prominent LoBAL features. Despite these successes, we cannot reproduce all emission lines seen in quasar spectra with the correct equivalent-width ratios, and we find an angular dependence of emission line equivalent width despite the similarities in the observed emission line properties of BAL and non-BAL quasars. Overall, our work suggests that biconical winds can reproduce much of the qualitative behaviour expected from a unified model, but we cannot yet provide quantitative matches with quasar properties at all viewing angles. Whether disc winds can successfully unify quasars is therefore still an open question.

  11. Quasar Rain

    NASA Astrophysics Data System (ADS)

    Elvis, Martin

    2015-01-01

    Velocity resolved reverberation mapping (VRRM) has shown clear evidence for inflows in the broad emission line (BEL) region of active galactic nuclei: redshifted BELs at zero lag (AGNs, e.g. Arp 151, Bentz et al. 2010; Grier et al. 2013). While radiative transfer in rotating disks can give shorter red side lags than blue, a zero lag has to be along our line of sight, so it is hard to escape infall. The BEL region is normally considered to be rotating or in outflow so this result is a surprise. Infalling BEL gas cannot fall far without the need to lose angular momentum for accreting gas producing an accretion disk.I suggest that quasar continuum irradiation induced cooling instabilities (Chakravorty et al 2009; Krolik, McKee & Tarter 1981) lead to dense BEL clouds condensing out of the semi-ubiquitous warm absorber (WA) outflows found in AGNs and that these clouds may produce a VRRM inflow signature.Unlike WA gas, dense high column density BEL clouds are hard to accelerate with radiation pressure (Risaliti & Elvis 2010; Mushotzky, Solomon & Strittmatter 1972). BEL clouds will thus stall in the outflow and begin to fall back toward the central black hole after a dynamical time, 'raining out' of the WA medium. If these BEL clouds condense out before these outflows reach escape velocity [v(esc)] then this inflow can potentially produce the observed VRRM signature. As the clouds fall back in they will be moving on elliptical orbits supersonically through the WA gas with Mach number ~(2000 km/s)/(100km/s) ~20. This will produce comet-like structures with narrow opening angles, as seen in asymmetric X-ray absorbing 'eclipses' (Maiolino et al. 2010). They will survive only a few months, as required to avoid forming a disk. For this picture to work the condensation time must be less than the acceleration time to v(esc) and the destruction time must be longer than the dynamical time.

  12. New Quasar Studies Keep Fundamental Physical Constant Constant

    NASA Astrophysics Data System (ADS)

    2004-03-01

    a function of the redshift and the corresponding look-back time. The open circle is the measurement from the Oklo natural reactor. The horizontal long dashed lines show the area of the previous claim of variation of the fine structure constant. Clearly, the new UVES data are inconsistent with this range. A team of astronomers [1], led by Patrick Petitjean (Institut d'Astrophysique de Paris and Observatoire de Paris, France) and Raghunathan Srianand (IUCAA Pune, India) very carefully studied a homogeneous sample of 50 absorption systems observed with UVES and Kueyen along 18 distant quasars lines of sight. They recorded the spectra of quasars over a total of 34 nights to achieve the highest possible spectral resolution and the best signal-to-noise ratio. Sophisticated automatic procedures specially designed for this programme were applied. In addition, the astronomers used extensive simulations to show that they can correctly model the line profiles to recover a possible variation of alpha. The result of this extensive study is that over the last 10,000 million years, the relative variation of alpha must be less than 0.6 part per million. This is the strongest constraint from quasar absorption lines studies to date. More importantly, this new result does not support previous claims of a statistically significant change of alpha with time. Interestingly, this result is supported by another - less extensive - analysis, also conducted with the UVES spectrometer on the VLT [2]. Even though those observations were only concerned with one of the brightest known quasar HE 0515-4414, this independent study lends further support to the hypothesis of no variation of alpha. Even though these new results represent a significant improvement in our knowledge of the possible (non-) variation of one of the fundamental physical constants, the present set of data would in principle still allow variations that are comparatively large compared to those resulting from the measurements

  13. Exploring Redshifts of Galaxies in the Sightline Towards the z=0.223 Quasar PKS0312-770

    NASA Astrophysics Data System (ADS)

    Giandoni, S. S.; Kobulnicky, H. A.; Prochaska, J.; Hwang, S.; Kiminki, D. C.

    2003-12-01

    The study of quasars and the systems around them is one method of exploring how galaxies are formed and the overall large-scale structure of matter in the universe. Ultraviolet Hubble Space Telescope spectra taken toward the z=0.223 quasar PKS0312-770 have revealed intergalactic absorption lines at redshifts of z=0.2028, z=0.1983, z=1589, and z=0.1575. The purpose of this research was to measure the redshifts of a large number of galaxies in the sightline towards this quasar to search for clusters or groups of galaxies which are responsible for producing absorption lines at these specific redshifts. Redshifts were measured using data from 132 spectra that were taken with the Wide Field Reimaging CCD Camera on the 2.5 m Irènèe du Pont telescope at Las Campanas Observatory on October 30 through November 3, 2002. We detect an excess of galaxies at redshifts of z=0.15, z=0.19, and z=0.20 which may be responsible for the absorption line systems seen in the HST data and we identify probable galaxies associated with these intervening absorbers. We also identify an excess of galaxies near z=0.05 which may indicate a nearby cluster of galaxies which does not produce an absorption signature in the quasar's spectrum.

  14. SDSS J0246-0825: A New Gravitationally Lensed Quasar from the Sloan Digital Sky Survey

    SciTech Connect

    Inada, N; Burles, S; Gregg, M D; Becker, R H; Schechter, P L; Eisenstein, D J; Oguri, M; Castander, F J; Hall, P B; Johnston, D E; Pindor, B; Richards, G T; Schneider, D P; White, R L; Brinkmann, J; Szalay, A; York, D G

    2005-11-10

    We report the discovery of a new two-image gravitationally lensed quasar, SDSS J024634.11-082536.2 (SDSS J0246-0825). This object was selected as a lensed quasar candidate from the Sloan Digital Sky Survey (SDSS) by the same algorithm that was used to discover other SDSS lensed quasars (e.g., SDSS J0924+0219). Multicolor imaging with the Magellan Consortium's Walter Baade 6.5-m telescope and the spectroscopic observations using the W. M. Keck Observatory's Keck II telescope confirm that SDSS J0246-0825 consists of two lensed images ({Delta}{theta} = 1''.04) of a source quasar at z = 1.68. Imaging observations with the Keck telescope and the Hubble Space Telescope reveal an extended object between the two quasar components, which is likely to be a lensing galaxy of this system. From the absorption lines in the spectra of quasar components and the apparent magnitude of the galaxy, combined with the expected absolute magnitude from the Faber-Jackson relation, we estimate the redshift of the lensing galaxy to be z = 0.724. A highly distorted ring is visible in the Hubble Space Telescope images, which is likely to be the lensed host galaxy of the source quasar. Simple mass modeling predicts the possibility that there is a small (faint) lensing object near the primary lensing galaxy.

  15. Constraints on X-ray emissions from the reionization era

    NASA Astrophysics Data System (ADS)

    McQuinn, Matthew

    2012-10-01

    We examine the constraints on soft X-ray photon emissions from the reionization era. It is generally assumed that the Universe was reionized by ultraviolet photons radiated from massive stars. However, it has been argued that X-ray photons associated with the death of these stars would have contributed ˜10 per cent to the total number of ionizations via several channels. The parameter space for a significant component of cosmological reionization to be sourced by X-rays is limited by a few observations. We revisit the unresolved soft X-ray background constraint on high-redshift X-ray production and show that soft X-ray background measurements significantly limit the contribution to reionization from several potential sources: X-rays from X-ray binaries, from Compton scattering off supernovae-accelerated electrons, and from the annihilation of dark matter particles. We discuss the additional limits on high-redshift X-ray photon production from (1) z ˜ 3 measurements of metal absorption lines in quasar spectra, (2) the consensus that helium reionization was ending at z ≈ 3 and (3) measurements of the intergalactic medium's thermal history. We show that observations of z ˜ 3 metal lines allow little room for extra coeval soft X-ray emission from a non-standard X-ray sources. In addition, we show that the late reionization of helium makes it quite difficult to also ionize the hydrogen at z > 6 with a single source population (such as quasars) and that it likely requires the spectrum of ionizing emissions to soften with increasing redshift. However, we find that it is difficult to constrain an X-ray contribution to reionization from the intergalactic temperature history. We show that the intergalactic gas would have been heated to a narrower range of temperatures than is typically assumed at reionization, 2-3 × 104 K, with this temperature depending weakly on the ionizing sources' spectra.

  16. High-resolution optical and ultraviolet absorption-line studies of interstellar gas

    NASA Technical Reports Server (NTRS)

    Cowie, Lennox L.; Songaila, Antoinette

    1986-01-01

    Recent progress in the characterization of the interstellar medium (ISM) by means of optical and UV spectral data is summarized. The gas is studied by focusing on background stars whose spectra can be accurately modeled to provide the light source for the absorption-line scans. The capabilities of earth- and space-based instruments which have been and are used for the surveys are delineated. The distributions of diffuse gas densities and characteristics of the cold, warm and hot gas in the Galaxy are described in terms of the elemental abundances, kinetics and distributions of the gas. Particular note is taken of gas in the solar neighborhood and around SNR, and of absorption-line data of cosmological significance.

  17. Variability of the broad absorption lines in the QSO UM 232

    NASA Technical Reports Server (NTRS)

    Barlow, Thomas A.; Junkkarinen, Vesa T.; Burbidge, E. Margaret

    1989-01-01

    Low-resolution spectra of UM 232 taken in 1978, 1979, and 1988 at Lick Observatory are presented. Large changes in the Si IV lambda 1397, CIV lambda 1549, and Al III lambda 1857 broad absorption lines are apparent. The decrease in column density in all three ions and an observed brightening of the QSO suggests that these changes are due to an increase in the ionization level driven by an increase in the central source luminosity. This mechanism has been proposed by Smith and Penston to explain small changes in the absorption spectrum of the QSO 1246-057. The spectra of UM 232 show that the fractional decrease in optical depth is smaller at higher outflow velocies. The structure of the broad absorption-line region (BALR) is investigted by estimating an ionization parameter for each ion species as a function of velocity.

  18. Absorption line profiles in a companion spectrum of a mass losing cool supergiant

    NASA Technical Reports Server (NTRS)

    Rodrigues, Liliya L.; Boehm-Vitense, Erika

    1990-01-01

    Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10(exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.

  19. A method for measuring magnetic fields in sunspots using Zeeman-broadened absorption lines

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2017-04-01

    We present measurements of magnetic fields in several sunspots using high-resolution spectra obtained with the ESPARTACO spectrograph at the Universidad de los Andes, with the aim to explore experimental possibilities for students. Because the Zeeman line splitting is smaller than the line width, our work only observes broadened absorption lines. This broadening, however, can be measured and suitably modeled, giving realistic quantitative results.

  20. Synthetic absorption lines for a clumpy medium: a spectral signature for cloud acceleration in AGN?

    NASA Astrophysics Data System (ADS)

    Waters, Tim; Proga, Daniel; Dannen, Randall; Kallman, Timothy R.

    2017-01-01

    There is increasing evidence that the highly ionised multiphase components of AGN disc winds may be due to thermal instability. The ions responsible for forming the observed X-ray absorption lines may only exist in relatively cool clumps that can be identified with the so-called `warm absorbers'. Here we calculate synthetic absorption lines for such warm absorbers from first principles by combining 2D hydrodynamic solutions of a two-phase medium with a dense grid of photoionization models to determine the detailed ionization structure of the gas. Our calculations reveal that cloud disruption, which leads to a highly complicated velocity field (i.e. a clumpy flow), will only mildly affect line shapes and strengths when the warm gas becomes highly mixed but not depleted. Prior to complete disruption, clouds which are optically thin to the driving UV resonance lines will cause absorption at an increasingly blueshifted line of sight velocity as they are accelerated. This behavior will imprint an identifiable signature on the line profile if warm absorbers are enshrouded in an even broader absorption line produced by a high column of intercloud gas. Interestingly, we show that it is possible to develop a spectral diagnostic for cloud acceleration by differencing the absorption components of a doublet line, a result which can be qualitatively understood using a simple partial covering model. Our calculations also permit us to comment on the spectral differences between cloud disruption and ionization changes driven by flux variability. Notably, cloud disruption offers another possibility for explaining absorption line variability.

  1. Candidate Hα emission and absorption line sources in the Galactic Bulge Survey

    NASA Astrophysics Data System (ADS)

    Wevers, T.; Jonker, P. G.; Nelemans, G.; Torres, M. A. P.; Groot, P. J.; Steeghs, D.; Maccarone, T. J.; Hynes, R. I.; Heinke, C.; Britt, C.

    2017-04-01

    We present a catalogue of candidate Hα emission and absorption line sources and blue objects in the Galactic Bulge Survey (GBS) region. We use a point source catalogue of the GBS fields (two strips of (l × b) = (6° × 1°) centred at b = 1.5° above and below the Galactic Centre), covering the magnitude range 16 ≤ r΄ ≤ 22.5. We utilize (r΄ - i΄, r΄ - Hα) colour-colour diagrams to select Hα emission and absorption line candidates, and also identify blue objects (compared to field stars) using the r΄ - i΄ colour index. We identify 1337 Hα emission line candidates and 336 Hα absorption line candidates. These catalogues likely contain a plethora of sources, ranging from active (binary) stars, early-type emission line objects, cataclysmic variables (CVs) and low-mass X-ray binaries (LMXBs) to background active galactic nuclei (AGN). The 389 blue objects we identify are likely systems containing a compact object, such as CVs, planetary nebulae and LMXBs. Hot subluminous dwarfs (sdO/B stars) are also expected to be found as blue outliers. Cross-matching our outliers with the GBS X-ray catalogue yields 16 sources, including 7 (magnetic) CVs and 1 qLMXB candidate among the emission line candidates and 1 background AGN for the absorption line candidates. One of the blue outliers is a high-state AM CVn system. Spectroscopic observations combined with the multiwavelength coverage of this area, including X-ray, ultraviolet and (time-resolved) optical and infrared observations, can be used to further constrain the nature of individual sources.

  2. THE z = 5 QUASAR LUMINOSITY FUNCTION FROM SDSS STRIPE 82

    SciTech Connect

    McGreer, Ian D.; Fan Xiaohui; Jiang Linhua; Richards, Gordon T.; Strauss, Michael A.; Ross, Nicholas P.; White, Martin; Shen Yue; Schneider, Donald P.; Brandt, W. Niel; Myers, Adam D.; DeGraf, Colin; Glikman, Eilat; Ge Jian; Streblyanska, Alina

    2013-05-10

    We present a measurement of the Type I quasar luminosity function at z = 5 using a large sample of spectroscopically confirmed quasars selected from optical imaging data. We measure the bright end (M{sub 1450} < -26) with Sloan Digital Sky Survey (SDSS) data covering {approx}6000 deg{sup 2}, then extend to lower luminosities (M{sub 1450} < -24) with newly discovered, faint z {approx} 5 quasars selected from 235 deg{sup 2} of deep, coadded imaging in the SDSS Stripe 82 region (the celestial equator in the Southern Galactic Cap). The faint sample includes 14 quasars with spectra obtained as ancillary science targets in the SDSS-III Baryon Oscillation Spectroscopic Survey, and 59 quasars observed at the MMT and Magellan telescopes. We construct a well-defined sample of 4.7 < z < 5.1 quasars that is highly complete, with 73 spectroscopic identifications out of 92 candidates. Our color selection method is also highly efficient: of the 73 spectra obtained, 71 are high-redshift quasars. These observations reach below the break in the luminosity function (M{sub 1450}{sup *}{approx}-27). The bright-end slope is steep ({beta} {approx}< -4), with a constraint of {beta} < -3.1 at 95% confidence. The break luminosity appears to evolve strongly at high redshift, providing an explanation for the flattening of the bright-end slope reported previously. We find a factor of {approx}2 greater decrease in the number density of luminous quasars (M{sub 1450} < -26) from z = 5 to z = 6 than from z = 4 to z = 5, suggesting a more rapid decline in quasar activity at high redshift than found in previous surveys. Our model for the quasar luminosity function predicts that quasars generate {approx}30% of the ionizing photons required to keep hydrogen in the universe ionized at z = 5.

  3. OUTFLOW AND HOT DUST EMISSION IN HIGH-REDSHIFT QUASARS

    SciTech Connect

    Wang, Huiyuan; Xing, Feijun; Wang, Tinggui; Zhou, Hongyan; Zhang, Kai; Zhang, Shaohua

    2013-10-10

    Correlations of hot dust emission with outflow properties are investigated, based on a large z ∼ 2 non-broad absorption line quasar sample built from the Wide-field Infrared Survey and the Sloan Digital Sky Survey data releases. We use the near-infrared slope and the infrared to UV luminosity ratio to indicate the hot dust emission relative to the emission from the accretion disk. In our luminous quasars, these hot dust emission indicators are almost independent of the fundamental parameters, such as luminosity, Eddington ratio and black hole mass, but moderately dependent on the blueshift and asymmetry index (BAI) and FWHM of C IV lines. Interestingly, the latter two correlations dramatically strengthen with increasing Eddington ratio. We suggest that, in high Eddington ratio quasars, C IV regions are dominated by outflows so the BAI and FWHM (C IV) can reliably reflect the general properties and velocity of outflows, respectively. In low Eddington ratio quasars, on the other hand, C IV lines are primarily emitted by virialized gas so the BAI and FWHM (C IV) become less sensitive to outflows. Therefore, the correlations for the highest Eddington ratio quasars are more likely to represent the true dependence of hot dust emission on outflows and the correlations for the entire sample are significantly diluted by the low Eddington ratio quasars. Our results show that an outflow with a large BAI or velocity can double the hot dust emission on average. We suggest that outflows either contain hot dust in themselves or interact with the dusty interstellar medium or torus.

  4. Improved And Quality Assessed Emission And Absorption Line Measurements In Sloan Digital Sky Survey Galaxies

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Sarzi, M.; Schawinski, K.; Yi, S. K.

    2011-01-01

    We have established a new database of absorption and emission line measurements from the Sloan Digital Sky Survey 7th data release for the galaxies within a redshift of 0.2. This work used publicly available codes, pPXF(penalized pixel-fitting) and GANDALF(gas and absorption line fitting), to achieve robust spectral fits and reliable measurements. The absorption line strengths measured by SDSS pipeline are seriously contaminated by emission fill-in. We effectively separate emission lines from absorption lines. For instance, this work successfully extract [NI] doublet from Mgb and it leads to more realistic result of alpha enhancement on late-type galaxies compared to the previous database. Besides accurately measuring line strengths, the database will be provided with new parameters that are indicative of line strength measurement quality. Users can build a subset of database optimal for their studies using specific cuts in the fitting quality parameters as well as empirical signal-to-noise. Applying these parameters, we found galaxies with dramatically broad line regions among the galaxies with poor fitting quality parameters. We applied a new continuum finding prescriptions to newly identified BLRs and they turned out to be Seyfert I nuclei.

  5. New aspects of absorption line formation in intervening turbulent clouds - I. General principles

    NASA Astrophysics Data System (ADS)

    Levshakov, Sergei A.; Kegel, Wilhelm H.

    1997-07-01

    We study the formation of absorption lines in intervening clouds with stochastic velocity fields, accounting for the fact that actually only one line of sight is observed. Our results show that the introduction of the finite velocity correlation length leads to a new type of absorption line profiles which are asymmetric in general, may have different shifts of the centres of gravity, and look like barely resolved blends, i.e. could be interpreted in a standard Voigt fitting analysis as being caused by several independent clouds with different physical parameters. Numerical results are presented for the HI Lyalpha line with N_Hi=10^12,10^14,10^15 and 10^16cm^-2, T_kin=10^4 K, and different sets of turbulent parameters. The intensity fluctuations within the line profile caused by `turbulent noise' are investigated and the confidence belts for the absorption lines are calculated. We conclude that an exact measurement of the column densities of the absorbing atoms N_a from the observed values of the optical depths tau lambda is actually impossible for the case of the correlated velocity field. One can only determine a range of values within which N_a is to be found with a certain probability.

  6. PG 1700 + 518 - a low-redshift, broad absorption line QSO

    SciTech Connect

    Pettini, M.; Boksenberg, A.

    1985-07-01

    The first high-resolution optical spectra and lower resolution UV spectra of PG 1700 + 518, the only known broad-absorption-line (BAL) QSO at low emission redshift (0.288) are presented. The optical data were obtained with the Isaac Newton Telescope on the island of La Palma and the UV data with the International Ultraviolet Explorer satellite. The outstanding feature of the optical spectrum is a strong, broad Mg II absorption trough, detached from the Mg II emission line and indicative of ejection velocities of between 7000 and 18,000 km/s. Also detected were narrow (FWHM = 350 km/s) Mg II absorption lines at absolute z = 0.2698, which are probably related to the mass ejection phenomenon. It is concluded that the emission-line spectrum is similar to that of other low-redshift QSOs although there are some obvious differences from typical BAL QSOs, most notably in the unusually low level of ionization of both emission-line and broad absorption line gas. 21 references.

  7. First light with Trident: multi-platform synthetic quasar spectra

    NASA Astrophysics Data System (ADS)

    Silvia, Devin W.; Hummels, Cameron B.; Smith, Britton

    2017-01-01

    Observational efforts to better understand the nature of the intergalactic and circumgalactic media have relied heavily on the information encoded in the absorption line systems of quasar spectra. Numerical simulations of large-scale structure and galaxy evolution are well-suited to explore the properties of those same media owing to the relative ease with which one can access physical quantities from complex, three-dimensional data. However, a difficulty arises when one tries to make direct “apple-to-apples” comparisons between observed spectra and simulated data. In an effort to provide a common language capable of linking theory and observation, we announce the release of Trident. Trident is a publicly available software tool that enables the creation of realistic synthetic absorption spectra from virtually all widely-used hydrodynamics simulation codes. Through user-controlled levels of spectral realism, direct comparisons between simulated and observed data become not only possible, but greatly simplified. We present the methods for extracting artificial quasar sightlines and generating spectra as well as early-stage applications of those spectra to intergalactic and circumgalactic absorption line studies.

  8. A ghostly damped Ly α system revealed by metal absorption lines

    NASA Astrophysics Data System (ADS)

    Fathivavsari, H.; Petitjean, P.; Zou, S.; Noterdaeme, P.; Ledoux, C.; Krühler, T.; Srianand, R.

    2017-03-01

    We report the discovery of the first 'ghostly' damped Ly α absorption system (DLA), which is identified by the presence of absorption from strong low-ion species at zabs = 1.704 65 along the line of sight to the quasar SDSS J113341.29-005740.0 with zem = 1.704 41. No Ly α absorption trough is seen associated with these absorptions because the DLA trough is filled with the leaked emission from the broad emission-line region of the quasar. By modelling the quasar spectrum and analysing the metal lines, we derive log N(H I)(cm-2) ∼21.0 ± 0.3. The DLA cloud is small (≤0.32 pc), thus not covering entirely the broad-line region and is located at ≥39 pc from the central active galactic nucleus (AGN). Although the DLA is slightly redshifted relative to the quasar, its metallicity ([S/H] = -0.41 ± 0.30) is intermediate between what is expected from infalling and outflowing gas. It could be possible that the DLA is part of some infalling material accreting on to the quasar host galaxy through filaments, and that its metallicity is raised by mixing with the enriched outflowing gas emanating from the central AGN. Current DLA surveys miss these 'ghostly' DLAs, and it would be important to quantify the statistics of this population by searching the Sloan Digital Sky Survey (SDSS) data base using metal absorption templates.

  9. Changing Look Quasars

    NASA Astrophysics Data System (ADS)

    Green, Paul J.; MacLeod, Chelsea; Anderson, Scott F.; Eracleous, Michael; Ruan, John J.; Runnoe, Jessie C.; Graham, Matthew J.

    2017-01-01

    Accretion onto black holes (BH) illuminates fascinating physics from the stellar mass BHs in Galactic X-ray binaries (XRBs) to the supermassive black holes (SMBH) in Seyferts and quasars. Alas, BH accretion regions are too compact to be spatially resolved. Temporal changes in XRB spectral states have gone a long way to unravel the accretion physics in XRBs, and suggest powerful theoretical and observational analogies to quasars. However, simple mass scaling to SMBHs suggests impractically long timescales (millenia) for accretion state transitions in quasars. However, large spectral state changes in quasars have now been detected that both inform and invigorate debates about accretion theory and the nature of historical quasar classes (e.g., Type 1 vs Type 2). In the last couple of years, a dozen luminous "changing-look quasars" (CLQs) were discovered to exhibit strong, persistent changes in luminosity, accompanied by the dramatic emergence or disappearance of broad emission-line (BEL) components. The availability of repeat spectroscopy for large samples of quasars provided by Sloan Digital Sky Survey (SDSS) and its ongoing Time Domain Spectroscopic Survey (TDSS) now extend this rare and remarkable phenomenon to regimes of luminosity and redshift that overlap the huge cosmological samples of quasars in the SDSS. We review the current understanding of these events, and upcoming possibilities for their detection, characterization and modeling.

  10. A Massive X-ray Outflow From The Quasar PDS 456

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; O'Brien, P. T.; Ward, M. J.

    2003-01-01

    We report on XMM-Newton spectroscopic observations of the luminous, radio-quiet quasar PDS 456. The hard X-ray spectrum of PDS 456 shows a deep absorption trough (constituting 50% of the continuum) at energies above 7 keV in the quasar rest frame, which can be attributed to a series of blue-shifted K-shell absorption edges due to highly ionized iron. The higher resolution soft X-ray grating RGS spectrum exhibits a broad absorption line feature near 1 keV, which can be modeled by a blend of L-shell transitions from highly ionized iron (Fe XVII - XXIV). An extreme outflow velocity of approx. 50000 km/s is required to model the K and L shell iron absorption present in the XMM-Newton data. Overall, a large column density (N(sub H) = 5 x 10(exp 23)/sq cm) of highly ionized gas (log xi = 2.5) is required in PDS 456. A large mass outflow rate of approx. 10 solar mass/year (assuming a conservative outflow covering factor of 0.1 steradian) is derived, which is of the same order as the overall mass accretion rate in PDS 456. This represents a substantial fraction (approx. 10%) of the quasar energy budget, whilst the large column and outflow velocity place PDS 456 towards the extreme end of the broad absorption line quasar population.

  11. Narrow absorption lines with two observations from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei; Cao, Yue

    2015-07-01

    We assemble 3524 quasars from the Sloan Digital Sky Survey (SDSS) with repeated observations to search for variations of the narrow C IV λ λ 1548,1551 and Mg II λ λ 2796,2803 absorption doublets in spectral regions shortward of 7000 Å in the observed frame, which corresponds to time-scales of about 150-2643 d in the quasar rest frame. In these quasar spectra, we detect 3580 C IV absorption systems with zabs = 1.5188-3.5212 and 1809 Mg II absorption systems with zabs = 0.3948-1.7167. In term of the absorber velocity (β) distribution in the quasar rest frame, we find a substantial number of C IV absorbers with β < 0.06, which might be connected to absorption of quasar outflows. The outflow absorption peaks at υ ≈ 2000 km s^{-1} and drops rapidly below this peak value. Among 3580 C IV absorption systems, 52 systems (˜1.5 per cent) show obvious variations in equivalent widths in the absorber rest frame (Wr): 16 enhanced, 16 emerged, 12 weakened and 8 disappeared systems, respectively. We find that changes in Wrλ1548 are related neither to the time-scales of the two SDSS observations nor to absorber velocities in the quasar rest frame. Variable absorption in low-ionization species is important to constrain the physical conditions of the absorbing gas. There are two variable Mg II absorption systems measured from SDSS spectra detected by Hacker et al. However, in our Mg II absorption sample, we find that neither shows variable absorption with confident levels of >4σ for λ2796 lines and >3σ for λ2803 lines.

  12. High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. II. The Spring Equatorial Stripe

    SciTech Connect

    Fan, Xiaohui; Strauss, Michael A.; Schneider, Donald P.; Gunn, James E.; Lupton, Robert H.; Anderson, Scott F.; Voges, Wolfgang; Margon, Bruce; Annis, James; Bahcall, Neta A.

    2000-01-01

    This is the second paper in a series aimed at finding high-redshift quasars from five-color (u{sup '} g{sup '} r{sup '} i{sup '} z{sup '}) imaging data taken along the Celestial Equator by the Sloan Digital Sky Survey (SDSS) during its commissioning phase. In this paper, we present 22 high-redshift quasars (z>3.6) discovered from {approx}250 deg2 of data in the spring Equatorial Stripe, plus photometry for two previously known high-redshift quasars in the same region of the sky. Our success rate in identifying high-redshift quasars is 68%. Five of the newly discovered quasars have redshifts higher than 4.6 (z=4.62, 4.69, 4.70, 4.92, and 5.03). All the quasars have i{sup *} <20.2 with absolute magnitude - 28.8quasars show unusual emission and absorption features in their spectra, including an object at z=4.62 without detectable emission lines, and a broad absorption line (BAL) quasar at z=4.92. (c) (c) 2000. The American Astronomical Society.

  13. An X-ray-absorbed radio-quiet QSO with an intervening strong metal absorption-line system

    NASA Astrophysics Data System (ADS)

    Page, M. J.; Mittaz, J. P. D.; Carrera, F. J.

    2000-02-01

    We find evidence for significant X-ray absorption in the QSO RXJ005734.78-272827.4, along with strong absorption lines in its optical spectrum. We propose that the absorption lines are due to an intervening metal-line system at a redshift of z=0.628, and show that this intervening system is also the probable cause of the X-ray absorption. The intervening absorber is inferred to have an X-ray column of ~1022cm-2. This is the first time that an absorption-line system has been identified with an X-ray absorber in a radio-quiet object.

  14. A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7

    SciTech Connect

    Shen Yue; Richards, Gordon T.; Strauss, Michael A.; Hall, Patrick B.; Schneider, Donald P.; Snedden, Stephanie; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Viktor; Malanushenko, Elena; Oravetz, Dan; Pan, Kaike; Simmons, Audrey

    2011-06-01

    We present a compilation of properties of the 105,783 quasars in the Sloan Digital Sky Survey Data Release 7 (DR7) quasar catalog. In this product, we compile continuum and emission line measurements around the H{alpha}, H{beta}, Mg II, and C IV regions, as well as other quantities such as radio properties, and flags indicating broad absorption line quasars, disk emitters, etc. We also compile virial black hole mass estimates based on various calibrations. For the fiducial virial mass estimates we use the Vestergaard and Peterson (VP06) calibrations for H{beta} and C IV, and our own calibration for Mg II which matches the VP06 H{beta} masses on average. We describe the construction of this catalog and discuss its limitations. The catalog and its future updates will be made publicly available online.

  15. Modeling the distribution of Mg II absorbers around galaxies using background galaxies and quasars

    SciTech Connect

    Bordoloi, R.; Lilly, S. J.; Kacprzak, G. G.; Churchill, C. W.

    2014-04-01

    We present joint constraints on the distribution of Mg II absorption around high redshift galaxies obtained by combining two orthogonal probes, the integrated Mg II absorption seen in stacked background galaxy spectra and the distribution of parent galaxies of individual strong Mg II systems as seen in the spectra of background quasars. We present a suite of models that can be used to predict, for different two- and three-dimensional distributions, how the projected Mg II absorption will depend on a galaxy's apparent inclination, the impact parameter b and the azimuthal angle between the projected vector to the line of sight and the projected minor axis. In general, we find that variations in the absorption strength with azimuthal angles provide much stronger constraints on the intrinsic geometry of the Mg II absorption than the dependence on the inclination of the galaxies. In addition to the clear azimuthal dependence in the integrated Mg II absorption that we reported earlier in Bordoloi et al., we show that strong equivalent width Mg II absorbers (W{sub r} (2796) ≥ 0.3 Å) are also asymmetrically distributed in azimuth around their host galaxies: 72% of the absorbers in Kacprzak et al., and 100% of the close-in absorbers within 35 kpc of the center of their host galaxies, are located within 50° of the host galaxy's projected semi minor axis. It is shown that either composite models consisting of a simple bipolar component plus a spherical or disk component, or a single highly softened bipolar distribution, can well represent the azimuthal dependencies observed in both the stacked spectrum and quasar absorption-line data sets within 40 kpc. Simultaneously fitting both data sets, we find that in the composite model the bipolar cone has an opening angle of ∼100° (i.e., confined to within 50° of the disk axis) and contains about two-thirds of the total Mg II absorption in the system. The single softened cone model has an exponential fall off with azimuthal

  16. DISENTANGLING THE CIRCUMNUCLEAR ENVIRONS OF CENTAURUS A. II. ON THE NATURE OF THE BROAD ABSORPTION LINE

    SciTech Connect

    Espada, D.; Matsushita, S.; Sakamoto, K.; Peck, A. B.; Henkel, C.; Iono, D.; Israel, F. P.; Muller, S.; Petitpas, G.; Pihlstroem, Y.; Taylor, G. B.; Trung, D. V.

    2010-09-01

    We report on atomic gas (H I) and molecular gas (as traced by CO(2-1)) redshifted absorption features toward the nuclear regions of the closest powerful radio galaxy, Centaurus A (NGC 5128). Our H I observations using the Very Long Baseline Array allow us to discern with unprecedented sub-parsec resolution H I absorption profiles toward different positions along the 21 cm continuum jet in the inner 0.''3 (or 5.4 pc). In addition, our CO(2-1) data obtained with the Submillimeter Array probe the bulk of the absorbing molecular gas with little contamination by emission, which was not possible with previous CO single-dish observations. We shed light on the physical properties of the gas in the line of sight with these data, emphasizing the still open debate about the nature of the gas that produces the broad absorption line ({approx}55 km s{sup -1}). First, the broad H I line is more prominent toward the central and brightest 21 cm continuum component than toward a region along the jet at a distance {approx}20 mas (or 0.4 pc) further from the nucleus. This indicates that the broad absorption line arises from gas located close to the nucleus, rather than from diffuse and more distant gas. Second, the different velocity components detected in the CO(2-1) absorption spectrum match well with other molecular lines, such as those of HCO{sup +}(1-0), except the broad absorption line that is detected in HCO{sup +}(1-0) (and most likely related to that of the H I). Dissociation of molecular hydrogen due to the active galactic nucleus seems to be efficient at distances r {approx}< 10 pc, which might contribute to the depth of the broad H I and molecular lines.

  17. The Sloan Digital Sky Survey Reverberation Mapping Project: Quasar Reverberation Mapping Studies

    NASA Astrophysics Data System (ADS)

    Grier, Catherine; SDSS-RM Collaboration

    2017-01-01

    The Sloan Digital Sky Survey Reverberation Mapping Project (SDSS-RM) has completed its first three years of spectroscopic observations of a sample of ~850 quasars with the SDSS-III BOSS spectrograph. From January-July in 2014, 2015, and 2016, more than 55 epochs of spectroscopy were obtained for this quasar sample, and continued monitoring has been approved for 2017. Supporting photometric observations were also carried out at the Canada-France-Hawaii Telescope and the Steward Observatory Bok telescope. In addition, the SDSS-RM field overlaps with the Pan-STARRS 1 Medium Deep Field MD07, so we have photometric data for three years prior to the SDSS-RM observations, which considerably extends the time delay sensitivity of the campaign. Preliminary reverberation mapping results were presented by Shen et al. (2015) and the program has also yielded ancillary science results in regimes such as broad absorption line variability, quasar ensemble variability characteristics, quasar emission line studies, SDSS quasar redshift measurements, and host galaxy properties. I will discuss the current status of the SDSS-RM program, including recent reverberation mapping results from the wider 850-quasar sample using the full set of first-year photometric and spectroscopic data.

  18. ANOMALOUSLY STEEP REDDENING LAW IN QUASARS: AN EXCEPTIONAL EXAMPLE OBSERVED IN IRAS 14026+4341

    SciTech Connect

    Jiang Peng; Zhou Hongyan; Ji Tuo; Shu Xinwen; Liu Wenjuan; Dong Xiaobo; Wang Huiyuan; Wang Tinggui; Wang Jianguo

    2013-06-15

    A fraction of the heavily reddened quasars require a reddening curve that is even steeper than that of the Small Magellanic Cloud. In this paper, we thoroughly characterize the anomalously steep reddening law in quasars via an exceptional example observed in IRAS 14026+4341. By comparing the observed spectrum to the quasar composite spectrum, we derive a reddening curve in the rest-frame wavelength range of 1200-10000 A. It has a steep rise at wavelengths shorter than 3000 A, but no significant reddening at longer wavelengths. The absence of dust reddening in the optical continuum is confirmed by the normal broad-line Balmer decrement (the H{alpha}/H{beta} ratio) in IRAS 14026+4341. The anomalous reddening curve can be satisfactorily reproduced with a dust model containing silicate grains in a power-law size distribution, dn(a)/da{proportional_to}a {sup -1.4}, truncated at a maximum size of a{sub max} = 70 nm. The unusual size distribution may be caused by the destruction of large 'stardust' grains by quasar activities or a different dust formation mechanism (i.e., the in situ formation of dust grains in quasar outflows). It is also possible that the analogies of the dust grains observed near the Galactic center are responsible for the steep reddening curve. In addition, we find that IRAS 14026+4341 is a weak emission-line quasar (i.e., PHL 1811 analogies) with heavy dust reddening and blueshifted broad absorption lines.

  19. Quasars in the Galactic Anti-Center Area from LAMOST DR3

    NASA Astrophysics Data System (ADS)

    Huo, Zhi-Ying; Liu, Xiao-Wei; Shi, Jian-Rong; Xiang, Mao-Sheng; Huang, Yang; Yuan, Hai-Bo; Zhang, Jian-Nan; Zhang, Wei; Wang, Jian-Ling; Wu, Yu-Zhong; Cao, Zi-Huang; Zhang, Yong; Hou, Yong-Hui; Wang, Yue-Fei

    2017-03-01

    We present a sample of quasars discovered in an area near the Galactic Anti-Center covering 150^\\circ ≤ l≤ 210^\\circ and | b| ≤ 30^\\circ , based on LAMOST Data Release 3 (DR3). This sample contains 151 spectroscopically confirmed quasars. Among them 80 are newly discovered with LAMOST. All these quasars are very bright, with i magnitudes peaking around 17.5 mag. All the new quasars were discovered serendipitously from objects that were originally targeted with LAMOST as stars having bluer colors, except for a few candidates targeted as variable, young stellar objects. This bright quasar sample at low Galactic latitudes will help fill the gap in the spatial distribution of known quasars near the Galactic disk that are used to construct an astrometric reference frame for the purpose of accurate proper motion measurements that can be applied to, for example, Gaia. They are also excellent tracers to probe the kinematics and chemistry of the interstellar medium in the Milky Way disk and halo via absorption line spectroscopy.

  20. The extreme ultraviolet spectrum of the kinetically dominated quasar 3C 270.1

    NASA Astrophysics Data System (ADS)

    Punsly, Brian; Marziani, Paola

    2015-10-01

    Only a handful of quasars have been identified as kinetically dominated, their long-term time-averaged jet power, overline{Q}, exceeds the bolometric thermal emission, Lbol, associated with the accretion flow. This Letter presents the first extreme ultraviolet (EUV) spectrum of a kinetically dominated quasar, 3C 270.1. The EUV continuum flux density of 3C 270.1 is very steep, F_{ν } ˜ ν ^{-α _{EUV}}, αEUV = 2.98 ± 0.15. This value is consistent with the correlation of overline{Q}/L_{bol} and αEUV found in previous studies of the EUV continuum of quasars, the EUV deficit of radio loud quasars. Curiously, although ultraviolet broad absorption line (BAL) troughs in quasar spectra are anticorrelated with overline{Q}, 3C 270.1 has been considered a BAL quasar based on an SDSS spectrum. This claim is examined in terms of the EUV spectrum of O VI and the highest resolution C IV spectrum in the archival data and the SDSS spectrum. First, from [O III]4959,5007 (IR) observations and the UV spectral lines, it is concluded that the correct redshift for 3C 270.1 is 1.5266. It is then found that the standard measure of broad absorption, BALnicity = 0, for Mg II 2800, C IV 1549 and O VI 1032 in all epochs.

  1. Atlas of absorption lines from 0 to 17 900 cm(-1)

    NASA Technical Reports Server (NTRS)

    Park, J. H.; Rothman, L. S.; Rinsland, C. P.; Smith, M. A. H.; Richardson, D. J.; Larsen, J. C.

    1981-01-01

    Plots of absorption line strength versus line position for wavenumbers from 0 to 17,900 cm(-1) are shown for 20 atmospheric gases (H2O, CO2, O3, N2O, CO, CH4, O2, NO, SO2, NO2, NH3, HNO3, OH, HF, HCl, HBr, HI, ClO, OCS, H2CO). Also shown are similar plots of lower-state energy values for adsorption lines for the strongly adsorbing atmospheric gases (H2O, CO2, O3, and CH4) for wavenumbers from 0 to 5000 cm(-1).

  2. Neutral atomic absorption lines and far-UV extinction: Possible implications for depletions and grain parameters

    NASA Technical Reports Server (NTRS)

    Welty, Daniel E.

    1990-01-01

    Researchers examine nine lines of sight within the Galaxy and one in the Large Magellanic Cloud (LMC) for which data on both neutral atomic absorption lines (Snow 1984; White 1986; Welty, Hobbs, and York 1989) and far UV extinction (Bless and Savage 1972; Jenkins, Savage, and Spitzer 1986) are available, in order to test the assumption that variations in gamma/alpha will cancel in taking ratios of the ionization balance equation, and to try to determine to what extent that assumption has affected the aforementioned studies of depletions and grain properties.

  3. Neutral atomic absorption lines and far-UV extinction: Possible implications for depletions and grain parameters

    NASA Astrophysics Data System (ADS)

    Welty, Daniel E.

    1990-07-01

    Researchers examine nine lines of sight within the Galaxy and one in the Large Magellanic Cloud (LMC) for which data on both neutral atomic absorption lines (Snow 1984; White 1986; Welty, Hobbs, and York 1989) and far UV extinction (Bless and Savage 1972; Jenkins, Savage, and Spitzer 1986) are available, in order to test the assumption that variations in gamma/alpha will cancel in taking ratios of the ionization balance equation, and to try to determine to what extent that assumption has affected the aforementioned studies of depletions and grain properties.

  4. UNIFICATION OF LUMINOUS TYPE 1 QUASARS THROUGH C IV EMISSION

    SciTech Connect

    Richards, Gordon T.; Kruczek, Nicholas E.; Deo, Rajesh P.; Kratzer, Rachael M.; Gallagher, S. C.; Hall, Patrick B.; Hewett, Paul C.; Leighly, Karen M.; Shen, Yue

    2011-05-15

    Using a sample of {approx}30,000 quasars from the 7th Data Release of the Sloan Digital Sky Survey, we explore the range of properties exhibited by high-ionization, broad emission lines, such as C IV {lambda}1549. Specifically, we investigate the anti-correlation between continuum luminosity and emission-line equivalent width (the Baldwin Effect (BEff)) and the 'blueshifting' of the high-ionization emission lines with respect to low-ionization emission lines. Employing improved redshift determinations from Hewett and Wild, the blueshift of the C IV emission line is found to be nearly ubiquitous, with a mean shift of {approx}810 km s{sup -1} for radio-quiet (RQ) quasars and {approx}360 km s{sup -1} for radio-loud (RL) quasars. The BEff is present in both RQ and RL samples. We consider these phenomena within the context of an accretion disk-wind model that is modulated by the nonlinear correlation between ultraviolet and X-ray continuum luminosity. Composite spectra are constructed as a function of C IV emission-line properties in an attempt to reveal empirical relationships between different line species and the continuum. Within a two-component disk+wind model of the broad emission-line region (BELR), where the wind filters the continuum seen by the disk component, we find that RL quasars are consistent with being dominated by the disk component, while broad absorption line quasars are consistent with being dominated by the wind component. Some RQ objects have emission-line features similar to RL quasars; they may simply have insufficient black hole (BH) spin to form radio jets. Our results suggest that there could be significant systematic errors in the determination of L{sub bol} and BH mass that make it difficult to place these findings in a more physical context. However, it is possible to classify quasars in a paradigm where the diversity of BELR parameters is due to differences in an accretion disk wind between quasars (and over time); these differences are

  5. Quasars: A Progress Report.

    ERIC Educational Resources Information Center

    Weedman, Daniel

    1988-01-01

    Reports on some of the discoveries over the last quarter century regarding quasars including spectra and energy sources, formation and evolution, and cosmological probes. Describes some of the fundamental mysteries that remain. (CW)

  6. Multi-wavelength Monitoring of Lensed Quasars: Deciphering Quasar Structure at Micro-arcseconds Scales

    NASA Astrophysics Data System (ADS)

    Mosquera, Ana; Morgan, Christopher W.; Kochanek, Christopher S.; Dai, Xinyu; Chen, Bin; MacLeod, Chelsea Louise; Chartas, George

    2016-01-01

    Microlensing in multiply imaged gravitationally lensed quasars provides us with a unique tool to zoom in on the structure of AGN and explore their physics in more detail. Microlensing magnification, caused primarily by stars and white dwarfs close to the line of sight towards the lensed quasar images, is seen as uncorrelated flux variations due to the relative motions of the quasar, the lens, its stars, and the observer, and it depends on the structural and dynamical properties of the source and the lens. Since the magnification depends upon the size of the source, we can use microlensing to measure the size of quasar emission regions. In essence, the amplitude of the microlensing variability encodes the source size, with smaller sources showing larger variability amplitudes. Using state of the art microlensing techniques, our team has performed pioneering research in the field based on multi-wavelength space and ground-based observations. Among the most remarkable results, using Chandra observations we have set the first quantitative constraints on the sizes of the X-ray emission regions of quasars. In this work l briefly describe the methodology, the results from our previous multi-wavelength monitoring programs, and the next frontier of exploring the dependence of the structure of the X-ray emission regions on black hole mass and X-ray energy.

  7. Low redshift Lyman alpha absorption lines and the dark matter halos of disk galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1993-01-01

    Recent observations using the Hubble Space Telescope of the z = 0.156 QSO 3C 273 have discovered a surprisingly large number of Ly-alpha absorption lines. In particular, Morris et al. found 9 certain and 7 possible Ly-alpha lines with equivalent widths above 25 mA. This is much larger (by a factor of 5-10) than the number expected from extrapolation of the high-redshift behavior of the Ly-alpha forest. Within the context of pressure-confined models for the Ly-alpha clouds, this behavior can be understood if the ionizing background declines sharply between z is approximately 2 and z is approximately 0. However, this requires that the ionizing photon flux drop as rapidly as the QSO volume emissivity; moreover, the absorbers must have a space density n(sub O) is approximately 2.6(N/10)h/((D/100 kpc)(sup 2)) Mpc(sup -3) where D is the present-day diameter of the absorbers. It is somewhat surprising that such necessarily fragile objects could have survived in such numbers to the present day. It is shown that it is plausible that the atomic hydrogen extents of spiral and irregular galaxies are large enough to produce the observed number of Ly-alpha absorption lines toward 3C 273, and that the neutral column densities and doppler b-values expected under these conditions fall in the range found by Morris et al. (1991).

  8. When galaxies collide: understanding the broad absorption-line radio galaxy 4C +72.26

    NASA Astrophysics Data System (ADS)

    Smith, D. J. B.; Simpson, C.; Swinbank, A. M.; Rawlings, S.; Jarvis, M. J.

    2010-05-01

    We present a range of new observations of the `broad absorption-line radio galaxy' 4C +72.26 (z ~ 3.5), including sensitive rest-frame ultraviolet integral field spectroscopy using the Gemini/GMOS-N instrument and Subaru/CISCO K-band imaging and spectroscopy. We show that 4C +72.26 is a system of two vigorously star-forming galaxies superimposed along the line of sight separated by ~1300 +/- 200 km s-1 in velocity, with each demonstrating spectroscopically resolved absorption lines. The most active star-forming galaxy also hosts the accreting supermassive black hole which powers the extended radio source. We conclude that the star formation is unlikely to have been induced by a shock caused by the passage of the radio jet, and instead propose that a collision is a more probable trigger for the star formation. Despite the massive starburst, the ultraviolet-mid-infrared spectral energy distribution suggests that the pre-existing stellar population comprises ~1012Msolar of stellar mass, with the current burst only contributing a further ~2 per cent, suggesting that 4C +72.26 has already assembled most of its final stellar mass.

  9. Multiple Velocity Components in the CIV Absorption Line of NGC5548

    NASA Astrophysics Data System (ADS)

    Mathur, S.; Elvis, M.; Wilkes, B. J.

    1998-12-01

    The bright, variable, Seyfert 1 galaxy NGC 5548 has been extensively studied at many wavelengths. It has been a target of reverberation mapping experiments in the optical and UV (Peterson et al. 1992, Clavel et al. 1991, Korista et al. 1995). These have led to the accurate determination of the physical size of the BELR. The UV spectrum also shows absorption lines (Shull & Sachs 1993, Mathur, Elvis & Wilkes 1995 (MEW95)). Recently, based on ASCA and HST FOS data, MEW95 showed that the ionizaed X-ray and UV absorption in NGC5548 is likely to originate in the same material. We have now obtained high resolution GHRS spectrum around the CIV line. We find that the absorption line splits into multiple velocity components. The X-ray absorber would be associated with one of these components. We also have a tentative evidence for inflow based on the redshifted absorption component. This is in accord with the radial infall in NGC 5548 found by Done & Krolik (1996) based on the kinematic model of the BELR.

  10. Made-to-measure galaxy modelling utilising absorption line strength data

    NASA Astrophysics Data System (ADS)

    Long, R. J.

    2016-12-01

    We enhance the Syer & Tremaine made-to-measure (M2M) particle method of stellar dynamical modelling to model simultaneously both kinematic data and absorption line strength data, thus creating a ‘chemo-M2M’ modelling scheme. We apply the enhanced method to four galaxies (NGC 1248, NGC 3838, NGC 4452, NGC 4551) observed using the SAURON integral-field spectrograph as part of the ATLAS3D programme. We are able to reproduce successfully the 2D line strength data achieving mean χ2 per bin values of ≈ 1 with > 95% of particles having converged weights. Because M2M uses a 3D particle system, we are also able to examine the underlying 3D line strength distributions. The extent to which these distributions are plausible representations of real galaxies requires further consideration. Overall, we consider the modelling exercise to be a promising first step in developing a ‘chemo-M2M’ modelling system and in understanding some of the issues to be addressed. While the made-to-measure techniques developed have been applied to absorption line strength data, they are in fact general and may be of value in modelling other aspects of galaxies.

  11. Radiation Pressure-Driven Magnetic Disk Winds in Broad Absorption Line Quasi-Stellar Objects

    NASA Technical Reports Server (NTRS)

    DeKool, Martin; Begelman, Mitchell C.

    1995-01-01

    We explore a model in which QSO broad absorption lines (BALS) are formed in a radiation pressure-driven wind emerging from a magnetized accretion disk. The magnetic field threading the disk material is dragged by the flow and is compressed by the radiation pressure until it is dynamically important and strong enough to contribute to the confinement of the BAL clouds. We construct a simple self-similar model for such radiatively driven magnetized disk winds, in order to explore their properties. It is found that solutions exist for which the entire magnetized flow is confined to a thin wedge over the surface of the disk. For reasonable values of the mass-loss rate, a typical magnetic field strength such that the magnetic pressure is comparable to the inferred gas pressure in BAL clouds, and a moderate amount of internal soft X-ray absorption, we find that the opening angle of the flow is approximately 0.1 rad, in good agreement with the observed covering factor of the broad absorption line region.

  12. Radiation Pressure--driven Magnetic Disk Winds in Broad Absorption Line Quasi-stellar Objects

    NASA Astrophysics Data System (ADS)

    de Kool, Martijn; Begelman, Mitchell C.

    1995-12-01

    We explore a model in which QSO broad absorption lines (BALs) are formed in a radiation pressure- driven wind emerging from a magnetized accretion disk. The magnetic field threading the disk material is dragged by the flow and is compressed by the radiation pressure until it is dynamically important and strong enough to contribute to the confinement of the BAL clouds. We construct a simple self-similar model for such radiatively driven magnetized disk winds, in order to explore their properties. It is found that solutions exist for which the entire magnetized flow is confined to a thin wedge over the surface of the disk. For reasonable values of the mass-loss rate, a typical magnetic field strength such that the magnetic pressure is comparable to the inferred gas pressure in BAL clouds, and a moderate amount of internal soft X-ray absorption, we find that the opening angle of the flow is approximately 0.1 rad, in good agreement with the observed covering factor of the broad absorption line region.

  13. Effect of a partial coverage of quasar broad-line regions by intervening -bearing clouds

    NASA Astrophysics Data System (ADS)

    Ofengeim, D. D.; Balashev, S. A.; Ivanchik, A. V.; Kaminker, A. D.; Klimenko, V. V.

    2015-09-01

    We consider the effect of a partial coverage of quasar broad-line regions (QSO BLRs) by intervening -bearing clouds when a part of quasar (QSO) radiation passes by a cloud not taking part in absorption-line system formation of the QSO spectrum. That leads to modification of observable absorption line profiles and consequently to a bias in physical parameters derived from standard absorption line analysis. In application to the absorption systems the effect has been revealed in the analysis of absorption system in the spectrum of Q 1232+082 (see Ivanchik et al. in Mon. Not. R. Astron. Soc. 404:1583, 2010, Balashev et al. in Mon. Not. R. Astron. Soc. 418:357, 2011). We estimate a probability of the effect to be detected in QSO spectra. To do this we derive distribution of BLR sizes of high-z QSOs from Sloan Digital Sky Survey (SDSS) Data Release 9 (DR9) catalogue and assume different distributions of cloud sizes. We conclude that the low limit of the probability is about 11 %. The latest researches shows that about a fifth of observed absorption systems can be partially covered. Accounting of the effect may allow to revise significantly physical parameters of interstellar clouds obtained by the spectral analysis.

  14. Cosmology with AGN: can we use quasars as standard candles?

    NASA Astrophysics Data System (ADS)

    Risaliti, G.

    2016-06-01

    The non-linear relation between X-ray and UV luminosity in quasars can be used to estimate their distance. Recently, we have shown that despite the large dispersion of the relation, a Hubble Diagram made of large samples of quasars can provide unique constraints on cosmology at high redshift. Furthermore, the dispersion of the relation is heavily affected by measurement errors: until now we have used serendipitous X-ray observations, but dedicated observations would significantly increase the precision of the distance estimates. I discuss the future role of XMM in this new field, showing (1) the fundamental contribution of the Serendipitous Source Catalogue and of large surveys, and (2) the breakthrough advancements we may achieve with the observation of a large number of SDSS quasars at high redshift: every 12-15 quasars observed at z~3 would be equivalent to discovering a supernova at that redshift.

  15. Gravitationally Redshifted Absorption Lines in the Burst Spectra of the Neutron Star in the X-Ray Binary EXO 0748-676

    NASA Technical Reports Server (NTRS)

    Cottoam, J.; Paerels, F.; Mendez, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The most straightforward manner of determining masses and radii of neutron stars is by measuring the gravitational redshift of spectral lines produced in the neutron star photosphere; such a measurement would provide direct constraints on the mass-to-radius ratio of the neutron star, and therefore on the equation of state for neutron star matter. Using data taken with the Reflection Grating Spectrometer on board the XMM-Newton observatory we identify, for the first time, significant absorption lines in the spectra of 28 bursts of the low-mass X-ray binary EXO 0748-676. The most significant features are consistent with the Fe XXVI and XXV n=2-3 and O VIII n=1-2 transitions, with a redshift of z=0.35, identical within small uncertainties for the different transitions. This constitutes the first direct and unambiguous measurement of the gravitational redshift in a neutron star.

  16. SDSS J131339.98+515128.3: A new GravitationallyLensed Quasar Selected Based on Near-infrared Excess

    SciTech Connect

    Ofek, E.O.; Oguri, M.; Jackson, N.; Inada, N.; Kayo, I.

    2007-09-28

    We report the discovery of a new gravitationally lensed quasar, SDSS J131339.98+515128.3, at a redshift of 1:875 with an image separation of 1: 0024. The lensing galaxy is clearly detected in visible-light follow-up observations. We also identify three absorption-line doublets in the spectra of the lensed quasar images, from which we measure the lens redshift to be 0:194. Like several other known lenses, the lensed quasar images have different continuum slopes. This difference is probably the result of reddening and microlensing in the lensing galaxy. The lensed quasar was selected by correlating Sloan Digital Sky Survey (SDSS) spectroscopic quasars with Two Micron All Sky Survey (2MASS) sources and choosing quasars that show near-infrared (IR) excess. The near-IR excess can originate, for example, from the contribution of the lensing galaxy at near-IR wavelengths. We show that the near-IR excess technique is indeed an efficient method to identify lensed systems from a large sample of quasars.

  17. The Sloan Digital Sky Survey Reverberation Mapping Project: Velocity Shifts of Quasar Emission Lines

    NASA Astrophysics Data System (ADS)

    Shen, Yue; Brandt, W. N.; Richards, Gordon T.; Denney, Kelly D.; Greene, Jenny E.; Grier, C. J.; Ho, Luis C.; Peterson, Bradley M.; Petitjean, Patrick; Schneider, Donald P.; Tao, Charling; Trump, Jonathan R.

    2016-11-01

    Quasar emission lines are often shifted from the systemic velocity due to various dynamical and radiative processes in the line-emitting region. The level of these velocity shifts depends both on the line species and on quasar properties. We study velocity shifts for the line peaks (not the centroids) of various narrow and broad quasar emission lines relative to systemic using a sample of 849 quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. The coadded (from 32 epochs) spectra of individual quasars have sufficient signal-to-noise ratio (S/N) to measure stellar absorption lines to provide reliable systemic velocity estimates, as well as weak narrow emission lines. The large dynamic range in quasar luminosity (∼2 dex) of the sample allowed us to explore potential luminosity dependence of the velocity shifts. We derive average line peak velocity shifts as a function of quasar luminosity for different lines, and quantify their intrinsic scatter. We further quantify how well the peak velocity can be measured as a function of continuum S/N, and demonstrate that there is no systematic bias in the velocity measurements when S/N is degraded to as low as ∼3 per SDSS pixel (∼ 69 {km} {{{s}}}-1). Based on the observed line shifts, we provide empirical guidelines on redshift estimation from [O ii] λ 3727, [O iii] λ 5007, [Ne v] λ 3426, Mg ii, C iii], He ii λ 1640, broad Hβ, C iv, and Si iv, which are calibrated to provide unbiased systemic redshifts in the mean, but with increasing intrinsic uncertainties of 46, 56, 119, 205, 233, 242, 400, 415, and 477 {km} {{{s}}}-1, in addition to the measurement uncertainties. These results demonstrate the infeasibility of measuring quasar redshifts to better than ∼ 200 {km} {{{s}}}-1 with only broad lines.

  18. Quasar emission lines as probes of orientation: implications for disc wind geometries and unification

    NASA Astrophysics Data System (ADS)

    Matthews, J. H.; Knigge, C.; Long, K. S.

    2017-01-01

    The incidence of broad absorption lines (BALs) in quasar samples is often interpreted in the context of a geometric unification model consisting of an accretion disc and an associated outflow. We use the the Sloan Digital Sky Survey (SDSS) quasar sample to test this model by examining the equivalent widths (EWs) of C IV 1550 Å, Mg II 2800 Å, [O III] 5007 Å and C III] 1909 Å. We find that the emission line EW distributions in BAL and non-BAL quasars are remarkably similar - a property that is inconsistent with scenarios in which a BAL outflow rises equatorially from a geometrically thin, optically thick accretion disc. We construct simple models to predict the distributions from various geometries; these models confirm the above finding and disfavour equatorial geometries. We show that obscuration, line anisotropy and general relativistic effects on the disc continuum are unlikely to hide an EW inclination dependence. We carefully examine the radio and polarisation properties of BAL quasars. Both suggest that they are most likely viewed (on average) from intermediate inclinations, between type 1 and type 2 AGN. We also find that the low-ionization BAL quasars in our sample are not confined to one region of `Eigenvector I' parameter space. Overall, our work leads to one of the following conclusions, or some combination thereof: (i) the continuum does not emit like a geometrically thin, optically thick disc; (ii) BAL quasars are viewed from similar angles to non-BAL quasars, i.e. low inclinations; (iii) geometric unification does not explain the fraction of BALs in quasar samples.

  19. The Thermal Proximity Effect: A New Probe of the He ii Reionization History and Quasar Lifetime

    NASA Astrophysics Data System (ADS)

    Khrykin, I. S.; Hennawi, J. F.; McQuinn, M.

    2017-04-01

    Despite decades of effort, the timing and duration of He ii reionization and the properties of the quasars believed to drive it are still not well constrained. We present a new method to study both via the thermal proximity effect—the heating of the intergalactic medium (IGM) around quasars when their radiation doubly ionizes helium. We post-process hydrodynamical simulations with 1D radiative transfer and study how the thermal proximity effect depends on the He ii fraction, {x}{He{{II}},0}, which prevailed in the IGM before the quasar turned on, and the quasar lifetime {t}{{Q}}. We find that the amplitude of the temperature boost in the quasar environment depends on {x}{He{{II}},0}, with a characteristic value of {{Δ }}T≃ {10}4 {{K}} for {x}{He{{II}},0}=1.0, whereas the size of the thermal proximity zone is sensitive to {t}{{Q}}, with typical sizes of ≃ 100 {cMpc} for {t}{{Q}}={10}8 {yr}. This temperature boost increases the thermal broadening of H i absorption lines near the quasar. We introduce a new Bayesian statistical method based on measuring the Lyα forest power spectrum as a function of distance from the quasar, and demonstrate that the thermal proximity effect should be easily detectable. For a mock data set of 50 quasars at z≃ 4, we predict that one can measure {x}{He{{II}},0} to an (absolute) precision ≈ 0.04 and {t}{{Q}} to a precision of ≈ 0.1 dex. By applying our formalism to existing high-resolution Lyα forest spectra, one should be able to reconstruct the He ii reionization history, providing a global census of hard photons in the high-z universe.

  20. EMPCA and Cluster Analysis of Quasar Spectra: Application to SDSS Spectra

    NASA Astrophysics Data System (ADS)

    Leighly, Karen; Marrs, Adam; Wagner, Cassidy; Macinnis, Francis

    2017-01-01

    Accurate modeling of the quasar continuum is necessary to measure and analyze absorption lines. But quasar continua, in particular the emission lines, vary from object to object. Patterns in the variations allow a spectral principal component analysis (SPCA) approach using large samples of quasar spectra, e.g., from the SDSS. Then, a small number of the derived principal component spectra can be used to reconstruct an arbitrary quasar's continuum.A problem with this approach is that the number of principal components required to model an arbitrary quasar, usually 8 to 20 in the literature, is large. One reason why so many components are required is that SPCA implicitly assumes that spectra bins are independent. Quasar emission lines are spread over a range of spectral bins, and more importantly, can sometimes be blueshifted. So while the intrinsic variability may only be a function of a few physical parameters, the nonlinearity inherent in the variations from object to object requires a large number of prinicipal components to accurately model a quasar continuum.We present a modified approach. We perform a SPCA analysis, using an expectation-maximization algorithm by Bailey et al. 2012, which takes into account uncertainties and missing data. We project the sample spectra on the resulting eignevectors to obtain the projection coefficients. Reasoning that intriniscally similar spectra will have similar projection coefficients, we perform a cluster analysis on the projection coefficients. The results are used to divide the sample into groups of similar spectra. A second PCA analysis is then performed on each group. We find that many fewer eigenspectra are required to accurately model the spectra in each group. We apply this approach to several samples of quasars from the SDSS.

  1. The Connection between Galaxies and Intergalactic Absorption Lines at Redshift 2<~z<~3

    NASA Astrophysics Data System (ADS)

    Adelberger, Kurt L.; Shapley, Alice E.; Steidel, Charles C.; Pettini, Max; Erb, Dawn K.; Reddy, Naveen A.

    2005-08-01

    Absorption-line spectroscopy of 23 background QSOs and numerous background galaxies has let us measure the spatial distribution of metals and neutral hydrogen around 1044 UV-selected galaxies at redshifts 1.8<~z<~3.3. The typical galaxy is surrounded to radii r~40 proper kpc by gas that has a large velocity spread (Δv>260 km s-1) and produces very strong absorption lines (NCIV>>1014 cm-2) in the spectra of background objects. These absorption lines are almost as strong as those produced by a typical galaxy's own interstellar gas. Absorption with an average column density of NCIV~=1014 cm-2 extends out to ~80 kpc, a radius large enough to imply that most strong intergalactic C IV absorption is associated with star-forming galaxies like those in our sample. Our measurement of the galaxy-C IV spatial correlation function shows that even the weakest detectable C IV systems are found in the same regions as galaxies; we find that the cross-correlation length increases with C IV column density and is similar to the galaxy autocorrelation length (r0~4 h-1 Mpc) for NCIV>~1012.5 cm-2. Distortions in the redshift-space galaxy-C IV correlation function on small scales may imply that some of the C IV systems have large peculiar velocities. Four of the five detected O VI absorption systems in our sample lie within 400 proper kpc of a known galaxy. Strong Lyα absorption is produced by the intergalactic gas within 1 h-1 comoving Mpc of most galaxies, but for a significant minority (~1/3) the absorption is weak or absent. This is not observed in smooth-particle hydrodynamic simulations that omit the effects of ``feedback'' from galaxy formation. We were unable to identify any statistically significant differences in age, dust reddening, environment, or kinematics between galaxies with weak nearby H I absorption and the rest, although galaxies with weak absorption may have higher star formation rates. Galaxies near intergalactic C IV systems appear to reside in relatively dense

  2. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  3. WAVELENGTH MEASUREMENTS OF K TRANSITIONS OF OXYGEN, NEON, AND MAGNESIUM WITH X-RAY ABSORPTION LINES

    SciTech Connect

    Liao Jinyuan; Zhang Shuangnan; Yao Yangsen

    2013-09-10

    Accurate atomic transition data are important in many astronomical research areas, especially for studies of line spectroscopy. Whereas transition data of He-like and H-like ions (i.e., ions in high-charge states) have been accurately calculated, the corresponding data of K transitions of neutral or low-ionized metal elements are still very uncertain. Spectroscopy of absorption lines produced in the interstellar medium (ISM) has been proven to be an effective way to measure the central wavelengths of these atomic transitions. In this work, we analyze 36 Chandra High Energy Transmission Grating observations to search for and measure the ISM absorption lines along sight lines to 11 low-mass X-ray binaries. We correct the Galactic rotation velocity to the rest frame for every observation and then use two different methods to merge all the corrected spectra to a co-added spectrum. However, the co-added spectra obtained by this method exhibit biases, toward to either observations with high counts or lines with high signal-to-noise ratios. We do a Bayesian analysis of several significantly detected lines to obtain the systematic uncertainty and the bias correction for other lines. Compared to previous studies, our results improve the wavelength accuracy by a factor of two to five and significantly reduce the systematic uncertainties and biases. Several weak transitions (e.g., 1s-2p of Mg IV and Mg V; 1s-3p of Mg III and Mg V) are also detected for the first time, albeit with low significance; future observations with improved accuracy are required to confirm these detections.

  4. SDSS J133401.39+331534.3: A NEW SUBARCSECOND GRAVITATIONALLY LENSED QUASAR

    SciTech Connect

    Rusu, Cristian E.; Iye, Masanori; Oguri, Masamune; Inada, Naohisa; Kayo, Issha; Hayano, Yutaka; Oya, Shin; Hattori, Masayuki; Saito, Yoshihiko; Ito, Meguru; Minowa, Yosuke; Pyo, Tae-Soo; Terada, Hiroshi; Takami, Hideki; Watanabe, Makoto

    2011-09-01

    The quasar SDSS J133401.39+331534.3 at z = 2.426 is found to be a two-image gravitationally lensed quasar with an image separation of 0.''833. The object is first identified as a lensed quasar candidate in the Sloan Digital Sky Survey Quasar Lens Search, and then confirmed as a lensed system from follow-up observations at the Subaru and University of Hawaii 2.2 m telescopes. We estimate the redshift of the lensing galaxy to be 0.557 based on absorption lines in the quasar spectra as well as the color of the galaxy. In particular, we observe the system with the Subaru Telescope AO188 adaptive optics with a laser guide star, in order to derive accurate astrometry, which well demonstrates the usefulness of the laser guide star adaptive optics imaging for studying strong lens systems. Our mass modeling with improved astrometry implies that a nearby bright galaxy {approx}4'' apart from the lensing galaxy is likely to affect the lens potential.

  5. The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Quasar Target Selection

    NASA Astrophysics Data System (ADS)

    Myers, Adam D.; Palanque-Delabrouille, Nathalie; Prakash, Abhishek; Pâris, Isabelle; Yeche, Christophe; Dawson, Kyle S.; Bovy, Jo; Lang, Dustin; Schlegel, David J.; Newman, Jeffrey A.; Petitjean, Patrick; Kneib, Jean-Paul; Laurent, Pierre; Percival, Will J.; Ross, Ashley J.; Seo, Hee-Jong; Tinker, Jeremy L.; Armengaud, Eric; Brownstein, Joel; Burtin, Etienne; Cai, Zheng; Comparat, Johan; Kasliwal, Mansi; Kulkarni, Shrinivas R.; Laher, Russ; Levitan, David; McBride, Cameron K.; McGreer, Ian D.; Miller, Adam A.; Nugent, Peter; Ofek, Eran; Rossi, Graziano; Ruan, John; Schneider, Donald P.; Sesar, Branimir; Streblyanska, Alina; Surace, Jason

    2015-12-01

    As part of the Sloan Digital Sky Survey (SDSS) IV the extended Baryon Oscillation Spectroscopic Survey (eBOSS) will improve measurements of the cosmological distance scale by applying the Baryon Acoustic Oscillation (BAO) method to quasar samples. eBOSS will adopt two approaches to target quasars over 7500 deg2. First, a “CORE” quasar sample will combine the optical selection in ugriz using a likelihood-based routine called XDQSOz, with a mid-IR-optical color cut. eBOSS CORE selection (to g < 22 or r < 22) should return ˜70 deg-2 quasars at redshifts 0.9 < z < 2.2 and ˜7 deg-2z > 2.1 quasars. Second, a selection based on variability in multi-epoch imaging from the Palomar Transient Factory should recover an additional ˜3-4 deg-2z > 2.1 quasars to g < 22.5. A linear model of how imaging systematics affect target density recovers the angular distribution of eBOSS CORE quasars over 96.7% (76.7%) of the SDSS north (south) Galactic Cap area. The eBOSS CORE quasar sample should thus be sufficiently dense and homogeneous over 0.9 < z < 2.2 to yield the first few-percent-level BAO constraint near \\bar{z}˜ 1.5.eBOSS quasars at z > 2.1 will be used to improve BAO measurements in the Lyα Forest. Beyond its key cosmological goals, eBOSS should be the next-generation quasar survey, comprising >500,000 new quasars and >500,000 uniformly selected spectroscopically confirmed 0.9 < z < 2.2 quasars. At the conclusion of eBOSS, the SDSS will have provided unique spectra for more than 800,000 quasars.

  6. A novel control system for automatically locking a diode laser frequency to a selected gas absorption line

    NASA Astrophysics Data System (ADS)

    Dong, Lei; Yin, Wangbao; Ma, Weiguang; Jia, Suotang

    2007-05-01

    A novel control system has been developed for avoiding manual operation during traditional frequency locking. The control system uses a computer with a commercial data acquisition card. This accomplishes the whole operation of frequency locking, including generating ramp, searching locking point, engaging a proportional-integral-differential (PID) regulator at the proper time and outputting PID compensation signal. Moreover, a new method has also been employed to make the novel control system accurately identify the locking points of all absorption lines within the scanning range, so that the laser frequency can be automatically firmly brought onto any selected absorption line centre without any adjusting time. The operation of the system, the ability to identify absorption lines and the performance of the frequency locking were discussed in detail. Successful tests were made with two different lasers: external cavity diode lasers and distributed feedback diode lasers.

  7. Insights into quasar UV spectra using unsupervised clustering analysis

    NASA Astrophysics Data System (ADS)

    Tammour, A.; Gallagher, S. C.; Daley, M.; Richards, G. T.

    2016-06-01

    Machine learning techniques can provide powerful tools to detect patterns in multidimensional parameter space. We use K-means - a simple yet powerful unsupervised clustering algorithm which picks out structure in unlabelled data - to study a sample of quasar UV spectra from the Quasar Catalog of the 10th Data Release of the Sloan Digital Sky Survey (SDSS-DR10) of Paris et al. Detecting patterns in large data sets helps us gain insights into the physical conditions and processes giving rise to the observed properties of quasars. We use K-means to find clusters in the parameter space of the equivalent width (EW), the blue- and red-half-width at half-maximum (HWHM) of the Mg II 2800 Å line, the C IV 1549 Å line, and the C III] 1908 Å blend in samples of broad absorption line (BAL) and non-BAL quasars at redshift 1.6-2.1. Using this method, we successfully recover correlations well-known in the UV regime such as the anti-correlation between the EW and blueshift of the C IV emission line and the shape of the ionizing spectra energy distribution (SED) probed by the strength of He II and the Si III]/C III] ratio. We find this to be particularly evident when the properties of C III] are used to find the clusters, while those of Mg II proved to be less strongly correlated with the properties of the other lines in the spectra such as the width of C IV or the Si III]/C III] ratio. We conclude that unsupervised clustering methods (such as K-means) are powerful methods for finding `natural' binning boundaries in multidimensional data sets and discuss caveats and future work.

  8. THE COLOR VARIABILITY OF QUASARS

    SciTech Connect

    Schmidt, Kasper B.; Rix, Hans-Walter; Knecht, Matthias; Hogg, David W.; Shields, Joseph C.; Maoz, Dan; Bovy, Jo

    2012-01-10

    We quantify quasar color variability using an unprecedented variability database-ugriz photometry of 9093 quasars from Sloan Digital Sky Survey (SDSS) Stripe 82, observed over 8 years at {approx}60 epochs each. We confirm previous reports that quasars become bluer when brightening. We find a redshift dependence of this blueing in a given set of bands (e.g., g and r), but show that it is the result of the flux contribution from less-variable or delayed emission lines in the different SDSS bands at different redshifts. After correcting for this effect, quasar color variability is remarkably uniform, and independent not only of redshift, but also of quasar luminosity and black hole mass. The color variations of individual quasars, as they vary in brightness on year timescales, are much more pronounced than the ranges in color seen in samples of quasars across many orders of magnitude in luminosity. This indicates distinct physical mechanisms behind quasar variability and the observed range of quasar luminosities at a given black hole mass-quasar variations cannot be explained by changes in the mean accretion rate. We do find some dependence of the color variability on the characteristics of the flux variations themselves, with fast, low-amplitude, brightness variations producing more color variability. The observed behavior could arise if quasar variability results from flares or ephemeral hot spots in an accretion disk.

  9. Cavity ring-down spectroscopy of Doppler-broadened absorption line with sub-MHz absolute frequency accuracy.

    PubMed

    Cheng, C-F; Sun, Y R; Pan, H; Lu, Y; Li, X-F; Wang, J; Liu, A-W; Hu, S-M

    2012-04-23

    A continuous-wave cavity ring-down spectrometer has been built for precise determination of absolute frequencies of Doppler-broadened absorption lines. Using a thermo-stabilized Fabry-Pérot interferometer and Rb frequency references at the 780 nm and 795 nm, 0.1 - 0.6 MHz absolute frequency accuracy has been achieved in the 775-800 nm region. A water absorption line at 12579 cm(-1) is studied to test the performance of the spectrometer. The line position at zero-pressure limit is determined with an uncertainty of 0.3 MHz (relative accuracy of 0.8 × 10(-9)).

  10. A long-term space astrophysics research program: The evolution of the quasar continuum

    NASA Technical Reports Server (NTRS)

    Elvis, M.

    1993-01-01

    The research program supported by this grant now has great momentum. Numerous papers are in progress, and a strong multi-wavelength observing program is rapidly accumulating data on samples of high redshift quasars across the spectrum. ROSAT spectra of quasars continue to yield surprises. Of four z = 3 quasars with X-ray spectra, three show strong absorption. This contrasts strongly with the situation for luminous AGN at low redshifts where fewer than 1 in 20 show X-ray absorption. A new site for this absorption is probably needed, either around the quasar (e.g. in a cluster cooling flow) or along the line of sight (e.g. in a Damped Lyman-alpha system). The unabsorbed quasar allows limits on the physical conditions in a damped Lyman-alpha cloud to be calculated, and will allow a X-ray Gunn-Peterson test to be applied that will limit the fraction of the closure mass in an intergalactic medium. The X-ray spectral indices of these z = 3 quasars show no change from those of similar objects at low z, suggesting that 'short-lifetime' models apply. Eight other z = 3-4 quasars have been detected and their energy distributions from X-rays to Infrared (using new infrared spectrographs) have been compiled. These are now being compared with the low z continua from the 'Atlas of Quasar Energy Distributions' to search for evolutionary changes. The discovery of a likely warm absorber in 3C351 made recognition of another example simple. Also, modeling of the conditions in the absorber in 3C351 using the OVI absorption line from HST and the high ionization emission lines, suggests that the broad line region is indeed the origin of the warm absorber in this quasar, and by extension, others. Warm absorbers can now be used as a new diagnostic of this region. The X-ray spectrum of a 'Red Quasar', 3C212, has a cut-off spectrum, which could be fitted by an absorbed power-law, or more remarkably, by an unabsorbed black body. Using our quasi-simultaneous optical data and photoionization

  11. METALLICITY AND QUASAR OUTFLOWS

    SciTech Connect

    Wang, Huiyuan; Zhou, Hongyan; Wang, Tinggui; Yuan, Weimin

    2012-06-01

    Correlations of the outflow strength of quasars, as measured by the blueshift and asymmetry index (BAI) of the C IV line, with intensities and ratios of broad emission lines, based on composite quasar spectra built from the Sloan Digital Sky Survey, are investigated. We find that most of the line ratios of other ions to C IV increase prominently with BAI. These behaviors can be well understood in the context of increasing metallicity with BAI. The strength of the dominant coolant, C IV line, decreases, and weak collisionally excited lines increase with gas metallicity as a result of the competition between different line coolants. Using Si IV+O IV]/C IV as an indicator of gas metallicity, we present, for the first time, a strong correlation between the metallicity and the outflow strength of quasars over a wide range of 1.7-6.9 times solar abundance. Our result implies that metallicity plays an important role in the formation of quasar outflows, likely by affecting outflow acceleration. This effect may have a profound impact on galaxy evolution via momentum feedback and chemical enrichment.

  12. Inter-Stellar Medium Absorption Lines As Outflow Tracers - A Comparison Between AGNs And SFGs

    NASA Astrophysics Data System (ADS)

    Talia, Margherita; Cimatti, A.; Brusa, M.

    2016-10-01

    To reproduce the properties of galaxies in the local Universe, as well as the scaling relations between host galaxies and black holes properties, many galaxy formation models invoke the presence of fast and energetic winds extending over galaxy scales. These massive gas outflows can be powered either by star-formation (SF) or AGN activity, though the relative dominance and efficiency of the different mechanisms is not yet fully understoodIn the last decade much effort has been put in the search for observational evidence of such phenomena, especially at the peak of both SF and AGN activity through cosmic time (1absorption lines in the UV regime, as well as broad, blue-shifted profiles in optical emission lines have been observed in galaxies at all redshifts and are usually interpreted as evidence of fast material moving towards our line of sight. More recently, especially thanks to new facilities like ALMA, outflows are being observed also in neutral and molecular gasIn order to study the differences and possible synergy between the two main driving outflow mechanisms (AGN or SF activity) and to understand the role that outflows might play in SF quenching and galaxy evolution, we collected a large sample of AGNs and SFGs at z>1.7 from large optical spectroscopic surveys (zCOSMOS, VUDS, ESO public surveys), complemented with HST imaging, X-ray (Chandra) and IR data. The richness of available data for our sample allowed us to map a large portion of the physical parameters space. We concentrated our analysis on the ISM absorption lines in the rest-frame UV wavelength range. Through stacking tecniques we studied the relation between such lines and AGN and SFG properties. I will present our results (Talia et al

  13. Absorption-Line Probes of Gas and Dust in Galactic Superwinds

    NASA Astrophysics Data System (ADS)

    Heckman, Timothy M.; Lehnert, Matthew D.; Strickland, David K.; Armus, Lee

    2000-08-01

    We have obtained moderate resolution (R=few thousand) spectra of the Na I λλ5890, 5896 (Na D) absorption line in a sample of 32 far-IR-bright starburst galaxies. In 18 cases, the Na D line in the nucleus is produced primarily by interstellar gas, while cool stars contribute significantly in the others. In 12 of the 18 ``interstellar-dominated'' cases the Na D line is blueshifted by over 100 km s-1 relative to the galaxy systemic velocity (the ``outflow sources''), while no case shows a net redshift of more than 100 km s-1. The absorption-line profiles in these outflow sources span the range from near the galaxy systemic velocity to a maximum blueshift of ~400-600 km s-1. The outflow sources are galaxies systematically viewed more nearly face-on than the others. We therefore argue that the absorbing material consists of ambient interstellar material that has been entrained and accelerated along the minor axis of the galaxy by a hot starburst-driven superwind. The Na D lines are optically thick, but indirect arguments imply total hydrogen column densities of NH~few×1021 cm-2. This implies that the superwind is expelling matter at a rate comparable to the star formation rate. This outflowing material is evidently very dusty: we find a strong correlation between the depth of the Na D profile and the line-of-sight reddening. Typical implied values are E(B-V)=0.3-1 over regions several-to-10 kpc in size. We briefly consider some of the potential implications of these observations. The estimated terminal velocities of superwinds inferred from the present data and extant X-ray data are typically 400-800 km-1, are independent of the galaxy rotation speed, and are comparable to (substantially exceed) the escape velocities for L* (dwarf) galaxies. The resulting selective loss of metals from shallower potential wells can establish the mass-metallicity relation in spheroids, produce the observed metallicity in the intracluster medium, and enrich a general IGM to of order 10

  14. Extreme star formation events in quasar hosts over 0.5 < z < 4

    NASA Astrophysics Data System (ADS)

    Pitchford, L. K.; Hatziminaoglou, E.; Feltre, A.; Farrah, D.; Clarke, C.; Harris, K. A.; Hurley, P.; Oliver, S.; Page, M.; Wang, L.

    2016-11-01

    We explore the relationship between active galactic nuclei (AGN) and star formation in a sample of 513 optically luminous type 1 quasars up to redshifts of ˜4 hosting extremely high star formation rates (SFRs). The quasars are selected to be individually detected by the Herschel SPIRE instrument at >3σ at 250 μm, leading to typical SFRs of order of 1000 M⊙ yr-1. We find the average SFRs to increase by almost a factor 10 from z ˜ 0.5 to z ˜ 3, mirroring the rise in the comoving SFR density over the same epoch. However, we find that the SFRs remain approximately constant with increasing accretion luminosity for accretion luminosities above 1012 L⊙. We also find that the SFRs do not correlate with black hole mass. Both of these results are most plausibly explained by the existence of a self-regulation process by the starburst at high SFRs, which controls SFRs on time-scales comparable to or shorter than the AGN or starburst duty cycles. We additionally find that SFRs do not depend on Eddington ratio at any redshift, consistent with no relation between SFR and black hole growth rate per unit black hole mass. Finally, we find that high-ionization broad absorption line (HiBAL) quasars have indistinguishable far-infrared properties to those of classical quasars, consistent with HiBAL quasars being normal quasars observed along a particular line of sight, with the outflows in HiBAL quasars not having any measurable effect on the star formation in their hosts.

  15. A Quasar Turns On

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    The intermediate Palomar Transient Factory (iPTF) has discovered a quasar the brightly-shining, active nucleus of a galaxy abruptly turning on in what appears to be the fastest such transition ever seen in such an object.A Rapid TransitionQuasars are expected to show variations in brightness on timescales of hours to millions of years, but its not often that we get to study their major variability in real time! So far, weve discovered only a dozen changing-look quasars active galactic nuclei that exhibit major changes in their spectral class and brightness between observations. Roughly half of these were quasars that turned on and half were quasars that turned off, generally on timescales of maybe 5 or 10 years.The dramatic change in spectrum of iPTF 16bco between the archival SDSS data from 2004 (bottom) and the follow-up spectroscopy from Keck 2+DEIMOS in 2016 (top). [Adapted from Gezari et al. 2017]In June 2016, however, a team of scientists led by Suvi Gezari (University of Maryland) discovered iPTF 16bco, a nuclear transient that wasnt there the last time Palomar checked in 2012. A search through archival Sloan Digital Sky Survey and GALEX data in addition to some follow-up X-ray imaging and spectroscopic observations told the team what they needed to know: iPTF 16bco is a quasar that only just turned on within the 500 days preceding the iPTF observations.This source, in fact, is a 100-million-solar-mass black hole located at the center of a galaxy at a redshift of z= 0.237. In just over a year, the source changed classification from a galaxy with weak narrow-line emission to a quasar with characteristic strong, broad emission lines and a ten-fold increase in continuum brightness! What caused this sudden transition?Instabilities at Fault?iPTF 16bco and the other known changing-look quasars with disappearing (red circles) and appearing (blue circles) broad-line emission. [Adapted from Gezari et al. 2017]Gezari and collaborators used the large number of recent

  16. Discovery of a z=0.65 Post-Starburst BAL Quasar in the DES Supernova Fields

    SciTech Connect

    Mudd, Dale; et al.

    2016-06-08

    We present the discovery of a z=0.65 low-ionization broad absorption line (LoBAL) quasar in a post-starburst galaxy in data from the Dark Energy Survey (DES) and spectroscopy from the Australian Dark Energy Survey (OzDES). LoBAL quasars are a minority of all BALs, and rarer still is that this object also exhibits broad FeII (an FeLoBAL) and Balmer absorption. This is the first BAL quasar that has signatures of recently truncated star formation, which we estimate ended about 40 Myr ago. The characteristic signatures of an FeLoBAL require high column densities, which could be explained by the emergence of a young quasar from an early, dust-enshrouded phase, or by clouds compressed by a blast wave. The age of the starburst component is comparable to estimates of the lifetime of quasars, so if we assume the quasar activity is related to the truncation of the star formation, this object is better explained by the blast wave scenario.

  17. Monitoring of a Dramatically Variable C IV Mini-BAL in the Quasar HS1603+3820

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Eracleous, M.; Charlton, J. C.; Kashikawa, N.

    2006-12-01

    We present eight high-resolution spectra of an optically bright quasar, HS1603+3820 (z_em=2.542), taken over an interval of 4.2 years (1.2 years in the quasar rest frame) with Subaru Telescope and Hobby-Eberly Telescope, for the purpose of monitoring absorption lines that are physically associated to the quasar. Among eight C IV absorption systems in this quasar spectrum, only one mini-BAL system at z_abs 2.43, which was already identified as an intrinsic system based on partial coverage analysis (Misawa et al. 2003,2005), showed dramatic time variability. We fitted Voigt profiles to the mini-BAL, and found that there were no clear correlations between the fit parameters such as the column density, Doppler parameter, and coverage fraction. This result suggests that the mini-BAL absorber has an inhomogeneous internal structure. Another important observational clue is that all absorption components in the system varied in concert, which suggests the observed time variability was due to a change of the ionization conditions (not due to the gas motion) in the mini-BAL absorber. Because such rapid UV continuum variability is not expected in luminous quasars such as our target, we suggest that a variable screen of material between the quasar continuum source and the absorber is the cause of the changes in the ionization state of the mini-BAL system. We acknowledge support from NASA grant NAG5-10817.

  18. The luminosity function of quasars

    NASA Technical Reports Server (NTRS)

    Pei, Yichuan C.

    1995-01-01

    We propose a new evolutionary model for the optical luminosity function of quasars. Our analytical model is derived from fits to the empirical luminosity function estimated by Hartwick and Schade and Warren, Hewett, and Osmer on the basis of more than 1200 quasars over the range of redshifts 0 approximately less than z approximately less than 4.5. We find that the evolution of quasars over this entire redshift range can be well fitted by a Gaussian distribution, while the shape of the luminosity function can be well fitted by either a double power law or an exponential L(exp 1/4) law. The predicted number counts of quasars, as a function of either apparent magnitude or redshift, are fully consistent with the observed ones. Our model indicates that the evolution of quasars reaches its maximum at z approximately = 2.8 and declines at higher redshifts. An extrapolation of the evolution to z approximately greater than 4.5 implies that quasars may have started their cosmic fireworks at z(sub f) approximately = 5.2-5.5. Forthcoming surveys of quasars at these redshifts will be critical to constrain the epoch of quasar formation. All the results we derived are based on observed quasars and are therefore subject to the bias of obscuration by dust in damped Ly alpha systems. Future surveys of these absorption systems at z approximately greater than 3 will also be important if the formation epoch of quasars is to be known unambiguously.

  19. Locking distributed feedback laser diode frequency to gas absorption lines based on genetic programming

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Li, Guanghui; Fang, Zishan; Zhai, Yueyang; Li, Xinyi; Liu, Feng

    2017-01-01

    Distributed feedback laser is widely used as the pump beam and probe beam in atomic physical and quantum experiments. As the frequency stability is a vital characteristic to the laser diode in these experiments, a saturated absorption frequency stabilization method assisted with the function of current and frequency is proposed. The relationship between the current and frequency is acquired based on the genetic programming (GP) algorithm. To verify the feasibility of the method, the frequency stabilization system is comprised of two parts that are modeling the relation between the current and frequency by GP and processing the saturated absorption signal. The results of the frequency stabilization experiment proved that this method can not only narrow the frequency searching range near the atomic line center but also compensate for the phase delay between the saturated absorption peak and the zero crossing point of the differential error signal. The reduced phase delay increases the locking probability and makes the wavelength drift only 0.015 pm/h, which converted to frequency drift is 7 MHz/h after frequency locking on the Rb absorption line.

  20. High-resolution IUE observations of interstellar absorption lines in the Vela supernova remnant

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.; Wallerstein, G.; Silk, J.

    1984-01-01

    Ultraviolet spectra of 45 stars in the vicinity of the Vela supernova remnant were recorded by the short-wavelength echelle spectrograph aboard the International Ultraviolet Explorer (IUE). Over one-third of the stars show interstellar absorption lines at large radial velocities (greater than 60 km/s). The mapping of these high-velocity components in the sky suggests the motions are chaotic, rather than from a coherent expansion of the remnant material. In accord with earlier conclusions from Copernicus data, the gas at high velocity exhibits higher than normal ionization and shows substantially less depletion of nonvolatile elements than normal interstellar material at low velocities. Relatively strong lines from neutral carbon in the two excited fine-structure states indicate that the neutral clouds within the remnant have had their pressures enhanced by the passage of the blast wave from the supernova. Also, the remnant seems to show a significant enhancement in the abundances of low-velocity Si IV, C IV, and N V over those found in the general interstellar medium.

  1. Atlas of Absorption Lines from 0 to 17900 Cm (sup)-1

    NASA Technical Reports Server (NTRS)

    Park, J. H.; Rothman, L. S.; Rinsland, C. P.; Pickett, H. M.; Richardson, D. J.; Namkung, J. S.

    1987-01-01

    Plots of logarithm (base 10) of absorption line strength versus wavenumber from 0 to 17900/cm(sup)-1 are shown for the 28 atmospheric gases (H2O, CO2, O3, N2O, CO, CH4, O2, NO, SO2, NO2, NH3, HNO3, OH, HF, HCl, HBr, HI, ClO, OCS, H2CO, HOCl, N2, HCN, CH3Cl, H2O2, C2H2, C2H6, PH3), which appear in the 1986 Air Force Geophysics Laboratory high-resolution transmission molecular absorption data base (HITRAN) compilation, and for O(P-3), O-18 isotopic ozone, and HO2 from the 1984 JPL compilation in the 0- to 200/cm(sup)-1 region, and infrared solar CO lines at 4500 K. Also shown are plots of logarithm (base 10) of approximate infrared absorption cross sections of 11 heavy molecules versus wavenumber. The cross-section data cover 700 to 1800/cm(sup)-1 and are included as a separate data file in the 1986 HITRAN database.

  2. MOSFIRE ABSORPTION LINE SPECTROSCOPY OF z > 2 QUIESCENT GALAXIES: PROBING A PERIOD OF RAPID SIZE GROWTH

    SciTech Connect

    Belli, Sirio; Ellis, Richard S.; Konidaris, Nick P.; Newman, Andrew B.

    2014-06-20

    Using the MOSFIRE near-infrared multi-slit spectrograph on the Keck 1 Telescope, we have secured high signal-to-noise ratio absorption line spectra for six massive galaxies with redshift 2 < z < 2.5. Five of these galaxies lie on the red sequence and show signatures of passive stellar populations in their rest-frame optical spectra. By fitting broadened spectral templates we have determined stellar velocity dispersions and, with broad-band Hubble Space Telescope and Spitzer photometry and imaging, stellar masses and effective radii. Using this enlarged sample of galaxies, we confirm earlier suggestions that quiescent galaxies at z > 2 have small sizes and large velocity dispersions compared to local galaxies of similar stellar mass. The dynamical masses are in very good agreement with stellar masses (log M {sub *}/M {sub dyn} = –0.02 ± 0.03), although the average stellar-to-dynamical mass ratio is larger than that found at lower redshift (–0.23 ± 0.05). By assuming evolution at fixed velocity dispersion, not only do we confirm a surprisingly rapid rate of size growth but we also consider the necessary evolutionary track on the mass-size plane and find a slope α = dlog R{sub e} /dlog M {sub *} ≳ 2 inconsistent with most numerical simulations of minor mergers. Both results suggest an additional mechanism may be required to explain the size growth of early galaxies.

  3. The velocity distribution of interstellar gas observed in strong UV absorption lines

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; York, D. G.

    1978-01-01

    Observations of three strong interstellar UV absorption lines of N I (1199 A), N II (1083 A), and Si III (1206 A) in 47 stars of widely varying distance and a variety of spectral types are analyzed to obtain a velocity distribution function for the interstellar gas. A technique based on the maximum and minimum velocities observed along a line of sight is adopted because of heavy line blending, and results are discussed for both power-law and exponential distribution functions. The expected distribution of radiative-phase supernova remnants (SNRs) in the interstellar medium is calculated as a function of SNR birthrate and of the interstellar density in which they evolve. The results are combined with observed distance estimates, and it is shown that an interstellar density in excess of 0.1 per cu cm would be required to keep the SNRs sufficiently confined so that their cross sections are consistent with the observed number of components. The alternative possibility is considered that SNRs do not enter the radiative phase before escaping from the Galaxy or colliding with neighboring remnants.

  4. A summary of transition probabilities for atomic absorption lines formed in low-density clouds

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Smith, W. H.

    1973-01-01

    A table of wavelengths, statistical weights, and excitation energies is given for 944 atomic spectral lines in 221 multiplets whose lower energy levels lie below 0.275 eV. Oscillator strengths were adopted for 635 lines in 155 multiplets from the available experimental and theoretical determinations. Radiation damping constants also were derived for most of these lines. This table contains the lines most likely to be observed in absorption in interstellar clouds, circumstellar shells, and the clouds in the direction of quasars where neither the particle density nor the radiation density is high enough to populate the higher levels. All ions of all elements from hydrogen to zinc are included which have resonance lines longward of 912 A, although a number of weaker lines of neutrals and first ions have been omitted.

  5. Quasars and galaxy formation. I - The z greater than 4 objects

    NASA Technical Reports Server (NTRS)

    Turner, Edwin L.

    1991-01-01

    The physical properties of the known quasars with z greater than 4 are examined with particular reference to theories of cosmic structure formation. A 'standard' massive accreting black hole model for quasars is used to calculate the masses, radiative efficiencies, and accretion rates of the observed objects. The masses, densities, cosmological overdensities, and sizes of the accretion fuel reservoirs associated with the quasar black holes are considered, and several indirect arguments are used to connect these quantities to the masses and overdensities of the quasar host objects. Finally, constraints on the epoch of formation of the host objects are discussed. The general conclusion is that the observed quasars with z greater than 4 suggest that the cosmic structure formation was already well advanced at z = 5, when the universe was a small fraction of its present age.

  6. The Nature of Low-ionization Broad Absorption Line Quasi-stellar Objects

    NASA Astrophysics Data System (ADS)

    Lazarova, Mariana Spasova

    The tight correlations between properties of galaxy bulges and their central supermassive black holes have been reproduced successfully in simulations of galaxy collisions if feedback processes are invoked. Mergers of gas-rich galaxies of comparable size have been shown to trigger starbursts, fuel the central black holes, and transform disks into ellipticals. Feedback from the black hole accretion in the form of extreme outflows has need suggested as the mechanism by which the black hole stop its own growth and quenches the star formation in the galaxy by expelling the gas supply. Such winds have been detected in Broad Absorption Line (BAL) QSOs. However, observational evidence that BAL QSOs may be an evolutionary link between mergers and QSO is missing. In this thesis, we provide the first detailed study of the spectral energy distributions and host galaxy morphologies of a statistically significant volume-limited sample of 22 optically-selected low-ionization Broad Absorption Line QSOs (LoBALs) at 0.5 < z < 0.6. By comparing their mid-IR spectral properties and far-IR SEDs with those of a control sample of 35 non-LoBALs (non-LoBALs) matched in Mi, we investigate the differences between the two populations in terms of their infrared emission and star formation activity. We model the SEDs and decouple the AGN and starburst contributions to the far-infrared luminosity in LoBALs and in non-LoBALs. We estimate star formation rates (SFRs) corrected for the AGN contribution to the FIR flux and find that LoBALs have comparable levels of star formation activity to non-LoBALs when considering the entire samples. Overall, our results show that there is no strong evidence from the mid- and far-IR properties that LoBALs are drawn from a different parent population than non-LoBALs. We conducted the first high-resolution morphological analysis of LoBALs using observations obtained with the Hubble Space Telescope Wide Field Camera 3 in two channels. Signs of recent or ongoing

  7. A Variable Energy, Redshifted, Iron Absorption Line in a recoiling Black Hole

    NASA Astrophysics Data System (ADS)

    Civano, Francesca

    The aim of this proposal is to maximize the scientific return of a medium deep (123 ksec) XMM-Newton observation, awarded during the AO10 call for proposal, to obtain a high quality X-ray spectrum of CID-42, a very peculiar source discovered in the COSMOS survey. CID-42 is exceptional in many respects showing a redshifted, variable energy absorption line plus an emission line at ~ 6 keV forming an inverted P-Cygni profile. These features were never observed before in the X-rays. The peculiar nature of CID-42 extends well beyond the X-ray spectrum. First, two optical sources in a common envelope are clearly seen in the HST data. They are separated by about 2.45 kpc. Thanks to the unrivaled Chandra HRC resolution it was possible to unambiguously associate the X-ray emission to only one of the two optical sources. Second, a high velocity (1100 km/s) offset, between the broad and narrow component of the H-beta line is measured in the VLT/Magellan/Keck optical spectra. The velocity offset observed is unlikely to be due to a ongoing merger because too high. Third, the above mentioned inverted P-Cygni profile in the hard X-ray spectrum would be naturally explained by an high velocity (v~0.02-0.14c) gas infall in the innermost region of the accreting Black Hole. All together the observed properties support the interpretation of a Black Hole kicked from the center of the galaxy by asymmetric emission of gravitational waves produced during a major merger. The Black Hole is caught while still active, at ~10^6 yrs after the kick and at a substantial distance from the center of the galaxy. The theoretical expectations suggest that they are extremely rare and just 1 or 2 gravitational wave recoiling Black Holes are expected in a survey like COSMOS. CID- 42 thus represents a ``Rosetta stone'' for the study of SMBH mergers that are believed to occur during galaxy-galaxy mergers, and their fate after the merging. The detailed study of the hard X-ray XMM-Newton spectrum, in the

  8. The QUASAR facility

    NASA Astrophysics Data System (ADS)

    Gates, David

    2013-10-01

    The QUAsi-Axisymmetric Research (QUASAR) stellarator is a new facility which can solve two critical problems for fusion, disruptions and steady-state, and which provides new insights into the role of magnetic symmetry in plasma confinement. If constructed it will be the only quasi-axisymmetric stellarator in the world. The innovative principle of quasi-axisymmetry (QA) will be used in QUASAR to study how ``tokamak-like'' systems can be made: 1) Disruption-free, 2) Steady-state with low recirculating power, while preserving or improving upon features of axisymmetric tokamaks, such as 1) Stable at high pressure simultaneous with 2) High confinement (similar to tokamaks), and 3) Scalable to a compact reactor Stellarator research is critical to fusion research in order to establish the physics basis for a magnetic confinement device that can operate efficiently in steady-state, without disruptions at reactor-relevant parameters. The two large stellarator experiments - LHD in Japan and W7-X under construction in Germany are pioneering facilities capable of developing 3D physics understanding at large scale and for very long pulses. The QUASAR design is unique in being QA and optimized for confinement, stability, and moderate aspect ratio (4.5). It projects to a reactor with a major radius of ~8 m similar to advanced tokamak concepts. It is striking that (a) the EU DEMO is a pulsed (~2.5 hour) tokamak with major R ~ 9 m and (b) the ITER physics scenarios do not presume steady-state behavior. Accordingly, QUASAR fills a critical gap in the world stellarator program. This work supported by DoE Contract No. DEAC02-76CH03073.

  9. X-ray-selected broad absorption line quasi-stellar objects

    NASA Astrophysics Data System (ADS)

    Page, M. J.; Carrera, F. J.; Ceballos, M.; Corral, A.; Ebrero, J.; Esquej, P.; Krumpe, M.; Mateos, S.; Rosen, S.; Schwope, A.; Streblyanska, A.; Symeonidis, M.; Tedds, J. A.; Watson, M. G.

    2017-02-01

    We study a sample of six X-ray-selected broad absorption line (BAL) quasi-stellar objects (QSOs) from the XMM-Newton Wide Angle Survey. All six objects are classified as BALQSOs using the classic balnicity index, and together they form the largest sample of X-ray-selected BALQSOs. We find evidence for absorption in the X-ray spectra of all six objects. An ionized absorption model applied to an X-ray spectral shape that would be typical for non-BAL QSOs (a power law with energy index α = 0.98) provides acceptable fits to the X-ray spectra of all six objects. The optical to X-ray spectral indices, αOX, of the X-ray-selected BALQSOs, have a mean value of <αOX> = 1.69 ± 0.05, which is similar to that found for X-ray-selected and optically selected non-BAL QSOs of a similar ultraviolet luminosity. In contrast, optically selected BALQSOs typically have much larger αOX and so are characterized as being X-ray weak. The results imply that X-ray selection yields intrinsically X-ray bright BALQSOs, but their X-ray spectra are absorbed by a similar degree to that seen in optically selected BALQSO samples; X-ray absorption appears to be ubiquitous in BALQSOs, but X-ray weakness is not. We argue that BALQSOs sit at one end of a spectrum of X-ray absorption properties in QSOs related to the degree of ultraviolet absorption in C IV 1550 Å.

  10. A new perspective on the interstellar cloud surrounding the Sun from UV absorption line results

    NASA Astrophysics Data System (ADS)

    Gry, Cecile; Jenkins, Edward B.

    2015-01-01

    We offer a new, more inclusive, picture of the local interstellar medium, where it is composed of a single, monolithic cloud that surrounds the Sun in all directions. Our study of velocities based on Mg II and Fe II ultraviolet absorption lines indicates that the cloud has an average motion consistent with the velocity vector of gas impacting the heliosphere and does not behave like a rigid body: gas within the cloud is being differentially decelerated in the direction of motion, and the cloud is expanding in directions perpendicular to this flow, much like the squashing of a balloon. The outer boundary of the cloud is in average 10 pc away from us but is highly irregular, being only a few parsecs away in some directions, with possibly a few extensions up to 20 pc. Average H I volume densities vary between 0.03 and 0.1 cm3 over different sight lines. Metals appear to be significantly depleted onto grains, and there is a steady increase in this effect from the rear of the cloud to the apex of motion. There is no evidence that changes in the ionizing radiation influence the apparent abundances. Additional, secondary velocity components are detected in 60% of the sight lines. Almost all of them appear to be interior to the volume holding the gas that we identify with the main cloud. Half of the sight lines exhibit a secondary component moving at about - 7.2 km/s with respect to the main component, which may be the signature of an implosive shock propagating toward the cloud's interior.

  11. Formation of a Giant Galactic Gaseous Halo: Metal-Absorption Lines and High-Velocity Clouds

    NASA Astrophysics Data System (ADS)

    Li, Fan

    1992-04-01

    A Galactic gaseous halo formed through the interstellar disk-halo connection is simulated by means of a two-dimensional axisymmetric hydrodynamic code based upon the chimney model of the interstellar medium, a new version of the galactic fountain. Galactic rotation, heating processes by diffuse UV flux, and radiative cooling processes are taken into account. The resulting gaseous halo can be divided into three categories, i.e., wind-type halo, bound-type halo, and cooled-type halo. In this way, we try to reproduce the column densities of C IV, N V, O VI, and Si IV in the observed absorption lines of halo stars. Assuming that the radiatively cooled halo gas condenses into clouds due to thermal instabilities, we can calculate their distribution and ballistic motions in the Galactic gravitational field. These correspond to the high- and intermediate-velocity clouds observed at high Galactic latitudes. We find that a cooled-type halo with a gas temperature between 5 X 10^5 and 10^6 K and a density between 10^-3 and 10^-2 cm^-3 at the disk-halo interface can reproduce the observational facts about our Galaxy. Supposing that the metal-absorption-line systems of QSOs arise from the halos of intervening galaxies formed by similar processes, we calculate features of the Ca II, Mg II, C IV, and Si IV absorption lines in various stages of galactic evolution. We conclude that C IV systems which are greater than 50 kpc in size correspond to the wind-type halo. On the other hand, Mg II and Ca II systems can only be detected in a very restricted region ( Metaxa, SMALL FAINT CLUSTERS IN THE LMC This is a short review of the main results of my Ph.D. thesis concerning some important problems on the dynamical properties of the LMC star clusters. The topic of this thesis was to find and study the dynamical paramters (tidal radius r_t core radius r_c concentration parameters log (r_t/r_c), and total mass M) for a large sample of small LMC clusters and to define their location in the

  12. The intrinsic quasar luminosity function: Accounting for accretion disk anisotropy

    SciTech Connect

    DiPompeo, M. A.; Myers, A. D.; Brotherton, M. S.; Runnoe, J. C.; Green, R. F.

    2014-05-20

    Quasar luminosity functions are a fundamental probe of the growth and evolution of supermassive black holes. Measuring the intrinsic luminosity function is difficult in practice, due to a multitude of observational and systematic effects. As sample sizes increase and measurement errors drop, characterizing the systematic effects is becoming more important. It is well known that the continuum emission from the accretion disk of quasars is anisotropic—in part due to its disk-like structure—but current luminosity function calculations effectively assume isotropy over the range of unobscured lines of sight. Here, we provide the first steps in characterizing the effect of random quasar orientations and simple models of anisotropy on observed luminosity functions. We find that the effect of orientation is not insignificant and exceeds other potential corrections such as those from gravitational lensing of foreground structures. We argue that current observational constraints may overestimate the intrinsic luminosity function by as much as a factor of ∼2 on the bright end. This has implications for models of quasars and their role in the universe, such as quasars' contribution to cosmological backgrounds.

  13. THE CANADA-FRANCE HIGH-z QUASAR SURVEY: NINE NEW QUASARS AND THE LUMINOSITY FUNCTION AT REDSHIFT 6

    SciTech Connect

    Willott, Chris J.; Crampton, David; Hutchings, John B.; Schade, David; Delorme, Philippe; Reyle, Celine; Albert, Loic; Bergeron, Jacqueline; Omont, Alain; Delfosse, Xavier; Forveille, Thierry; McLure, Ross J.

    2010-03-15

    We present discovery imaging and spectroscopy for nine new z {approx} 6 quasars found in the Canada-France High-z Quasar Survey (CFHQS) bringing the total number of CFHQS quasars to 19. By combining the CFHQS with the more luminous Sloan Digital Sky Survey sample, we are able to derive the quasar luminosity function from a sample of 40 quasars at redshifts 5.74 < z < 6.42. Our binned luminosity function shows a slightly lower normalization and flatter slope than found in previous work. The binned data also suggest a break in the luminosity function at M {sub 1450} {approx} -25. A double power-law maximum likelihood fit to the data is consistent with the binned results. The luminosity function is strongly constrained (1{sigma} uncertainty <0.1 dex) over the range -27.5 < M {sub 1450} < -24.7. The best-fit parameters are {phi}(M*{sub 1450}) = 1.14 x 10{sup -8} Mpc{sup -3} mag{sup -1}, break magnitude M*{sub 1450} = -25.13, and bright end slope {beta} = -2.81. However, the covariance between {beta} and M*{sub 1450} prevents strong constraints being placed on either parameter. For a break magnitude in the range -26 < M*{sub 1450} < -24, we find -3.8 < {beta} < -2.3 at 95% confidence. We calculate the z = 6 quasar intergalactic ionizing flux and show it is between 20 and 100 times lower than that necessary for reionization. Finally, we use the luminosity function to predict how many higher redshift quasars may be discovered in future near-IR imaging surveys.

  14. THE FIFTH DATA RELEASE SLOAN DIGITAL SKY SURVEY/XMM-NEWTON QUASAR SURVEY

    SciTech Connect

    Young, M.; Elvis, M.; Risaliti, G.

    2009-07-15

    We present a catalog of 792 Fifth Data Release Sloan Digital Sky Survey quasars with optical spectra that have been observed serendipitously in the X-rays with the XMM-Newton. These quasars cover a redshift range of z = 0.11-5.41 and a magnitude range of i = 15.3-20.7. Substantial numbers of radio-loud (70) and broad absorption line (51) quasars exist within this sample. Significant X-ray detections at {>=}2{sigma} account for 87% of the sample (685 quasars), and 473 quasars are detected at {>=}6{sigma}, sufficient to allow X-ray spectral fits. For detected sources, {approx}60% have X-ray fluxes between F {sub 2-10keV} = (1-10) x10{sup -14} erg cm{sup -2} s{sup -1}. We fit a single power law, a fixed power law with intrinsic absorption left free to vary, and an absorbed power-law model to all quasars with X-ray signal-to-noise ratio {>=} 6, resulting in a weighted mean photon index {gamma} = 1.91 {+-} 0.08, with an intrinsic dispersion {sigma}{sub {gamma}} = 0.38. For the 55 sources (11.6%) that prefer intrinsic absorption, we find a weighted mean N{sub H} = 1.5 {+-} 0.3 x 10{sup 21} cm{sup -2}. We find that {gamma} correlates significantly with optical color, {delta}(g - i), the optical-to-X-ray spectral index ({alpha}{sub ox}), and the X-ray luminosity. While the first two correlations can be explained as artifacts of undetected intrinsic absorption, the correlation between {gamma} and X-ray luminosity appears to be a real physical correlation, indicating a pivot in the X-ray slope.

  15. Measuring the clustering of photometric quasars through blind mitigation of systematics

    NASA Astrophysics Data System (ADS)

    Leistedt, Boris; Peiris, Hiranya V.; Roth, Nina

    2014-05-01

    We present accurate measurements of the large-scale clustering of photometric quasars from the Sloan Digital Sky Survey. These results, detailed in Leistedt & Peiris (2014), rely on a novel technique to identify and treat systematics when measuring angular power spectra, using null-tests and analytical marginalisation. This approach can be used to maximise the extraction of information from current and future galaxy or quasar surveys. For example, it enables to robustly constrain primordial non-Gaussianity (PNG), which modifies the bias of galaxies and quasars on large scales - the most sensitive to observational systematics. The constraints on PNG obtained with the quasar power spectra are detailed in Leistedt, Peiris & Roth (2014); these are the most stringent constraints to date obtained with a single tracer of the large-scale structure.

  16. Evidence for large temperature fluctuations in quasar accretion disks from spectral variability

    SciTech Connect

    Ruan, John J.; Anderson, Scott F.; Agol, Eric; Dexter, Jason

    2014-03-10

    The well-known bluer-when-brighter trend observed in quasar variability is a signature of the complex processes in the accretion disk and can be a probe of the quasar variability mechanism. Using a sample of 604 variable quasars with repeat spectra in the Sloan Digital Sky Survey-I/II (SDSS), we construct difference spectra to investigate the physical causes of this bluer-when-brighter trend. The continuum of our composite difference spectrum is well fit by a power law, with a spectral index in excellent agreement with previous results. We measure the spectral variability relative to the underlying spectra of the quasars, which is independent of any extinction, and compare to model predictions. We show that our SDSS spectral variability results cannot be produced by global accretion rate fluctuations in a thin disk alone. However, we find that a simple model of an inhomogeneous disk with localized temperature fluctuations will produce power-law spectral variability over optical wavelengths. We show that the inhomogeneous disk will provide good fits to our observed spectral variability if the disk has large temperature fluctuations in many independently varying zones, in excellent agreement with independent constraints from quasar microlensing disk sizes, their strong UV spectral continuum, and single-band variability amplitudes. Our results provide an independent constraint on quasar variability models and add to the mounting evidence that quasar accretion disks have large localized temperature fluctuations.

  17. A unifying evolutionary framework for infrared-selected obscured and unobscured quasar host haloes

    NASA Astrophysics Data System (ADS)

    DiPompeo, M. A.; Hickox, R. C.; Myers, A. D.; Geach, J. E.

    2017-01-01

    Recent measurements of the dark matter halo masses of infrared-selected obscured quasars are in tension - some indicate that obscured quasars have a higher halo mass compared to their unobscured counterparts, while others find no difference. The former result is inconsistent with the simplest models of quasar unification which rely solely on the viewing angle, while the latter may support such models. Here, using empirical relationships between dark matter halo and supermassive black hole (BH) masses, we provide a simple evolutionary picture which naturally explains these findings and is motivated by more sophisticated merger-driven quasar-fuelling models. The model tracks the growth rate of haloes, with the BH growing in spurts of quasar activity in order to `catch up' with the Mbh-Mstellar-Mhalo relationship. The first part of the quasar phase is obscured and is followed by an unobscured phase. Depending on the luminosity limit of the sample, driven by observational selection effects, a difference in halo masses may or may not be significant. For high-luminosity samples, the difference can be large (a few to 10 times higher masses in obscured quasars), while for lower luminosity samples, the halo mass difference is very small, much smaller than current observational constraints. Such a simple model provides a qualitative explanation for the higher mass haloes of obscured quasars, as well as a rough quantitative agreement with seemingly disparate results.

  18. Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser

    NASA Technical Reports Server (NTRS)

    Chu, Zhiping; Wilkerson, Thomas D.; Singh, Upendra N.

    1993-01-01

    We report water-vapor absorption line measurements that are made by using the first Stokes radiation (930-982 nm) with HWHM 0.015/cm generated by a narrow-linewidth, tunable dye laser. Forty-five absorption line strengths are measured with an uncertainty of 6 percent and among them are fourteen strong lines that are compared with previous measurements for the assessment of spectral purity of the light source. Thirty air-broadened linewidths are measured with 8 percent uncertainty at ambient atmospheric pressure with an average of 0.101/cm. The lines are selected for the purpose of temperature-sensitive or temperature-insensitive lidar measurements. Results for these line strengths and linewidths are corrected for broadband radiation and finite laser linewidth broadening effects and compared with the high-resolution transmission molecular absorption.

  19. Probing the interstellar medium of external galaxies using quasar absortion lines: The 3C 232/NGC 3067 system

    NASA Technical Reports Server (NTRS)

    Stocke, John T.; Case, James; Donahue, Megan; Shull, J. Michael; Snow, Theodore P.

    1990-01-01

    Quasar absorption lines offer unique opportunities to probe the interstellar medium of external galaxies. Researchers present new optical and UV absorption line spectroscopy of the quasar 3C232 (z=0.55) revealing new detail in the foreground absorption system due to the bright, spiral galaxy NGC 3067 (cz=1420 km/s). Specifically, the spectra show evidence for two and possibly three separate absorption components in CaII and Na I spanning approx. 150 km/s. The original HI detection of Haschick and Burke (1975) corresponds to the strongest of these metal systems which exhibits doublet ratios consistent with saturation in both CaII and Na I. Due to the recent detection in HI emission of a tidal tail or finger of HI extending from the western edge of NGC 3067 through the position of 3C 232 (Carilli, van Gorkom and Stocke, 1989), the morphology of the HI absorber is now known and is not either a warped disk nor a spherical halo as had been proposed. New deep continuum and H alpha imaging provides a sensitive upper limit on the the ionizing continuum impinging upon this cloud (and thus a limit on the intensity of the extragalactic ionizing radiation field). Together with the observed UV spectrum of 3C 232, the optical emission line ratios and the deep H alpha imaging set a minimum distance between the quasar and the HI cloud disregarding redshift information. This limit strains the non-cosmological redshift interpretation for 3C 232 -- and this quasar is one of the original 5 3C quasars found to be too close to NGC galaxies as if by chance (Burbidge, Burbidge, Solomon and Strittmatter, 1972).

  20. The Extremes of Quasar Variability

    NASA Astrophysics Data System (ADS)

    Stern, Daniel

    2016-04-01

    Variability is one of the key observational properties of quasars, and it can be used as a probe of their fueling, physics, and evolution. A new generation of synoptic sky surveys, in combination with the novel data analytics tools, offers unprecedented data sets for the studies of quasars in the time domain. I will illustrate this with examples from the Catalina Real-Time Transient Survey (CRTS), which has an open and growing archive of 500 million light curves, including 350,000 spectroscopically confirmed quasars, with the time baselines ranging from 10 minutes to 10 years. I will discuss a new approach to discover quasars using a combination of variability and mid-IR colors from WISE, which results in a catalog of over a million quasar candidates. I will then discuss quasars with extreme, anomolous light curves, including quasars that have gone through extreme brightening events over the past decade with concordant large changes in their spectroscopic properties. I will also discuss a small subset of quasars with periodic light curves which we interpret as a signature of close (milliparsec scale) supermassive black hole (SMBH) binaries.

  1. Iron K Features in the Quasar E 1821+643: Evidence for Gravitationally Redshifted Absorption?

    NASA Technical Reports Server (NTRS)

    Yaqoob, Tahir; Serlemitsos, Peter

    2005-01-01

    We report a Chandra high-energy grating detection of a narrow, redshifted absorption line superimposed on the red wing of a broad Fe K line in the z = 0.297 quasar E 1821+643. The absorption line is detected at a confidence level, estimated by two different methods, in the range approx. 2 - 3 sigma. Although the detection significance is not high enough to exclude a non-astrophysical origin, accounting for the absorption feature when modeling the X-ray spectrum implies that the Fe-K emission line is broad, and consistent with an origin in a relativistic accretion disk. Ignoring the apparent absorption feature leads to the conclusion that the Fe-K emission line is narrower, and also affects the inferred peak energy of the line (and hence the inferred ionization state of Fe). If the absorption line (at approx. 6.2 keV in the quasar frame) is real, we argue that it could be due to gravitationally redshifted Fe XXV or Fe XXVI resonance absorption within approx. 10 - 20 gravitational radii of the putative central black hole. The absorption line is not detected in earlier ASCA and Chandra low-energy grating observations, but the absorption line is not unequivocally ruled out by these data. The Chandra high-energy grating Fe-K emission line is consistent with an origin predominantly in Fe I-XVII or so. In an ASCA observation eight years earlier, the Fe-K line peaked at approx. 6.6 keV, closer to the energies of He-like Fe triplet lines. Further, in a Chandra low-energy grating observation the Fe-K line profile was double-peaked, one peak corresponding to Fe I-XVII or so, the other peak to Fe XXVI Ly alpha. Such a wide range in ionization state of Fe is not ruled out by the HEG and ASCA data either, and is suggestive of a complex structure for the line-emitter.

  2. Recovery of acetylene absorption line profile basing on tunable diode laser spectroscopy with intensity modulation and photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Li; Thursby, Graham; Stewart, George; Arsad, Norhana; Uttamchandani, Deepak; Culshaw, Brian; Wang, Yiding

    2010-04-01

    A novel and direct absorption line recovery technique based on tunable diode laser spectroscopy with intensity modulation is presented. Photoacoustic spectroscopy is applied for high sensitivity, zero background and efficient acoustic enhancement at a low modulation frequency. A micro-electromechanical systems (MEMS) mirror driven by an electrothermal actuator is used for generating laser intensity modulation (without wavelength modulation) through the external reflection. The MEMS mirror with 10μm thick structure material layer and 100nm thick gold coating is formed as a circular mirror of 2mm diameter attached to an electrothermal actuator and is fabricated on a chip that is wire-bonded and placed on a PCB holder. Low modulation frequency is adopted (since the resonant frequencies of the photoacoustic gas cell and the electrothermal actuator are different) and intrinsic high signal amplitude characteristics in low frequency region achieved from measured frequency responses for the MEMS mirror and the gas cell. Based on the property of photoacoustic spectroscopy and Beer's law that detectable sensitivity is a function of input laser intensity in the case of constant gas concentration and laser path length, a Keopsys erbium doped fibre amplifier (EDFA) with opto-communication C band and high output power up to 1W is chosen to increase the laser power. High modulation depth is achieved through adjusting the MEMS mirror's reflection position and driving voltage. In order to scan through the target gas absorption line, the temperature swept method is adopted for the tunable distributed feed-back (DFB) diode laser working at 1535nm that accesses the near-infrared vibration-rotation spectrum of acetylene. The profile of acetylene P17 absorption line at 1535.39nm is recovered ideally for ~100 parts-per-million (ppm) acetylene balanced by nitrogen. The experimental signal to noise ratio (SNR) of absorption line recovery for 500mW laser power was ~80 and hence the

  3. The hydration dependence of CaCO3 absorption lines in the Far IR

    NASA Astrophysics Data System (ADS)

    Powell, Johnny; Emery, Logan P

    2014-06-01

    The far infrared (FIR) absorption lines of CaCO3 have been measured at a range of relative humidities (RH) between 33 and 92% RH using a Bruker 66v/S spectrometer. Hydration measurements on CaCO3 have been made in the mid-infrared (MIR) by [Al-Hosney, H.A. and Grassian, V.H., 2005, Phys. Chem. Chem. Phys., 7, 1266], and astrophysically-motivated temperature-dependent FIR measurements of CaCO3 in vacuum have also been reported [Posch, T., et al., 2007, Ap. J., 668, 993]. The custom sample cell constructed for these hydrated-FIR spectra is required because the 66v/S bench is under vacuum (3 mbar) during typical measurements. Briefly, the sample cell consists of two Thalium Bromoiodide (KRS-5) windows, four O-rings, a plastic ring for separating the windows and providing a volume for the saturated atmosphere. CaCO3 was deposited on KRS-5 windows using doubly-distilled water as an intermediary. The KRS-5 window with sample and assembled sample cell were placed in a desiccator with the appropriated saturated salt solution [Washburn, E.W. (Ed.), International Critical Tables of Numerical Data, Physics Chemistry and Technology, Vol. 1, (McGraw-Hill, New York, 1926), p. 67-68] and allowed to hydrate for 23 hours. For spectroscopy the desiccator was quickly opened and the second KRS-5 window placed in the cell to seal the chamber. A spectrum was then taken of the sample at the appropriate RH. The spectra taken characterize the adsorption of water vapor and CaCO3 that might occur in circumstellar environments [Melnick, G.J., et al. 2001, Nature, 412, 160].The MIR and FIR reflectance spectra of calcite (CaCO3) have been thoroughly studied by [Hellwege, K.H., et al., 1970, Z. Physik, 232, 61]. Five Lorentzian curves were fit to our data in the range from 378-222 cm-1/SUP> and each was able to be assigned to a known mode of CaCO3. The data does not support the conclusion of a hydration effect on these modes of CaCO3, but it does suggest a possible broadening of three modes

  4. Quasar Winds Near the Peak in Galaxy Merger Rate

    NASA Astrophysics Data System (ADS)

    Chartas, George; Brandt, Niel; Saez, Cristian; Giustini, Margherita; Garmire, Gordon

    We present results from recent XMM-Newton, Chandra and Suzaku monitoring observations of the BAL quasar APM 08279+5255. We present constraints on the kinematic and photoion-ization properties of the wind in this z=3.91 quasar and find that it is capable of playing an important role in controlling the evolution of the host galaxy and central black hole close to the peak in galaxy merger rate. We place constraints of the X-ray emission region of APM08279 and find it to be comparable to its ISCO radius. The X-ray emission size of APM08279 is consistent with sizes derived from our analysis of microlensing lightcurves of several gravitationally lensed quasars. A possible trend found between the X-ray photon index and the maximum outflow veloc-ity points towards a plausible mechanism that may explain the acceleration of the wind in APM08279. We also present prospects for future advances in our understanding of the role of quasar winds in galaxy feedback with the International X-ray Observatory.

  5. Astrophysical applications of quasar microlensing

    NASA Astrophysics Data System (ADS)

    Mediavilla, E.; Jiménez-Vicente, J.; Muñoz, J. A.

    2017-03-01

    We present a quick overview of several examples that illustrate the application of quasar microlensing to various problems of great interest in Astrophysics and Cosmology. We start introducing the main tool for simulating quasar microlensing, the magnification map. Then, the flux magnification statistics obtained from the magnification maps is used to study the quasar accretion disk size and temperature profile with results that challenge the thin disk model. The microlensing flux magnification statistics is also useful to determine the radial slope of the dark matter distribution in lens galaxies. The extremely high microlensing magnification at caustics allows to scan with horizon scale accuracy the quasar accretion disk, spiraling around the central super massive black hole, resolving the innermost stable circular orbit. Finally, transverse peculiar velocities of the lens galaxies, of great interest in cosmology, can be inferred either counting peaks in the microlensing light curves or directly from astrometric measurements of the highly magnified relative motions between lensed quasar images.

  6. The Cluster Environments of Quasar Groups

    NASA Astrophysics Data System (ADS)

    West, Michael; Gregg, Michael; Toller, Justin

    2017-01-01

    Quasars are rare astronomical objects, and quasar pairs, triplets and larger groupings are even rarer. The presence of several quasars in the same small volume of space might therefore indicate a region that is exceptionally rich in galaxies, and hence groups of quasars could serve as ueful beacons for identifying distant clusters or protoclusters of galaxies. With this motivation, we compare the cluster environments of single versus multiple quasar systems using data from the Sloan Digital Sky Survey.

  7. Interstellar Absorption Lines in the Spectrum of the Starburst Galaxy NGC 1705

    NASA Astrophysics Data System (ADS)

    Sahu, M. S.

    1998-09-01

    A Goddard High Resolution Spectrograph archival study of the interstellar absorption lines in the line of sight to the H i-rich, starburst dwarf galaxy NGC 1705 in the 1170 to 1740 Å range at ~120 km s^-1 resolution is presented. The absorption features arising because of photospheric lines are distinctly different from the interstellar lines: the photospheric lines are weak, broad (equivalent widths >1 Å), asymmetric, and centered around the systemic LSR velocity of NGC 1705 (~610 km s^-1). The interstellar lines consist of three relatively narrow components at LSR velocities of -20, 260, and 540 km s^-1, and include absorption by neutral atoms (N i lambda1200 triplet and O i lambda1302), singly ionized atoms (Si ii lambdalambda1190, 1193, 1260, 1304, and 1526, S ii lambda1253, C ii lambda1334, C ii^* lambda1336, Fe ii lambda1608, and Al ii lambda1670), and atoms in higher ionization states (Si iii lambda1206, Si iv lambdalambda1393, 1402, and C iv lambdalambda1548, 1550). The Si iv and C iv absorption features have both interstellar and photospheric contributions. In an earlier study, Sahu & Blades identified the absorption system at -20 km s^-1 with Milky Way disk/halo gas, and the 260 km s^-1 system with a small, isolated high-velocity cloud HVC 487, which is probably associated with Magellanic Stream gas. The 540 km s^-1 absorption system is associated with a kiloparsec-scale expanding, ionized supershell centered on the super-star cluster NGC 1705-1. The analysis presented in this paper consists of (1) a list of all interstellar absorption features with greater than 3 sigma significance and their measured equivalent widths, (2) plots of the lines in the various atomic species together with the results of nonlinear least-squares fit profiles to the observed data, and (3) unpublished 21 cm maps from the Wakker & van Woerden survey showing the large-scale H i distribution in the region near the NGC 1705 sight line and HVC 487. Furthermore, weak N i lambda1200

  8. The Sloan Digital Sky Survey Quasar Catalog. 3. Third data release

    SciTech Connect

    Schneider, Donald P.; Hall, Patrick B.; Richards, Gordon T.; Vanden Berk, Daniel E.; Anderson, Scott F.; Fan, Xiao-Hui; Jester, Sebastian; Stoughton, Chris; Strauss, Michael A.; SubbaRao, Mark; Brandt, W.N.; Gunn, James E.; Yanny, Brian; Bahcall, Neta A.; Barentine, J.C.; Blanton, Michael R.; Boroski, William N.; Brewington, Howard J.; Brinkmann, J.; Brunner, Robert; Csabai, Istvan; /Penn State U., Astron. Astrophys. /York U., Canada /Princeton U. Observ. /Washington U., Seattle, Astron. Dept. /Arizona U., Astron. Dept. - Steward Observ. /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Adler Planetarium, Chicago /Apache Point Observ. /New York U. /Illinois U., Urbana, Astron. Dept. /Eotvos U. /Tokyo U., Astron. Dept. /Tokyo U., RESCEU /Tokyo U., ICRR /Princeton, Inst. Advanced Study /Microsoft, BARC /Johns Hopkins U. /Mt. Suhora Observ., Cracow /Sussex U., Astron. Ctr. /Baltimore, Space Telescope Sci.

    2005-03-01

    We present the third edition of the Sloan Digital Sky Survey (SDSS) Quasar Catalog. The catalog consists of the 46,420 objects in the SDSS Third Data Release that have luminosities larger than M{sub i} = -22 (in a cosmology with H{sub 0} = 70 km s{sup -1} Mpc{sup -1}, {Omega}{sub M} = 0.3, and {Omega}{sub {Lambda}} = 0.7), have at least one emission line with FWHM larger than 1000 km s{sup -1} or are unambiguously broad absorption line quasars, are fainter than i = 15.0, and have highly reliable redshifts. The area covered by the catalog is {approx} 4188 deg{sup 2}. The quasar redshifts range from 0.08 to 5.41, with a median value of 1.47; the high-redshift sample includes 520 quasars at redshifts greater than four, of which 17 are at redshifts greater than five. For each object the catalog presents positions accurate to better than 0.2'' rms per coordinate, five-band (ugriz) CCD-based photometry with typical accuracy of 0.03 mag, and information on the morphology and selection method. The catalog also contains radio, near-infrared, and X-ray emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra cover the wavelength region 3800-9200 at a spectral resolution of {approx} 2000; the spectra can be retrieved from the public database using the information provided in the catalog. A total of 44,221 objects in the catalog were discovered by the SDSS; 28,400 of the SDSS discoveries are reported here for the first time.

  9. The structure of the absorption spectra of the quasars Q 0420-388 and Q 1101-264

    NASA Astrophysics Data System (ADS)

    Chernomordik, V. V.

    1988-08-01

    The spectra of the quasars Q 0420-388 and Q 1101-264 are studied in the framework of the shock-wave model of the Lyman-alpha forest in the spectra of distant quasars, in which the origin of Lyman-alpha absorption lines is related to absorption zones in the shells of metagalactic shock waves. It is shown that more that 50 percent of the narrow Lyman-alpha abosrption lines are components of doublets, or pairs of nearby lines with the same equivalent widths. This is in good agreement with the predictions of the shock-wave model. The expected H I column density distribution of the Lyman-alpha lines is calculated and is found to be in agreement with the findings of Atwood et al. (1985).

  10. Asteroids to Quasars

    NASA Astrophysics Data System (ADS)

    Lugger, Phyllis M.

    2004-12-01

    Asteroid dedication; William Liller: Biographical Sketch; William Liller: Autobiographical Meanderings; Preface; List of Participants; Conference Photo; Part I. 1. Solar System Astronomy: Asteroids Joseph Veverka; 2. Sixteen years of stellar occultations James Elliott; 3. Comets to Quasars: Surface photometry from standard stars and the morphology of the galaxy-quasar interface Peter Usher; 4. Observing Solar Eclipses Jay Pasachoff; Part II. 5. Planetary Nebulae: new insights and opportunities Lawrence Aller; 6. Studies of planetary nebulae at radio wavelengths Yervant Terzian; 7. Optical identifications of compact galactic X-ray sources: Liller Lore Jonathan Grindlay; 8. Ages of globular clusters derived from BVRI CCD photometry Gonzalo Alcaino; 9. Stellar spectrum synthesis Jun Jugaku; 10. Mass exchange and stellar abundance anomalies Benjamin Peery; Part III. Extragalactic Astronomy: 11. The M31 globular cluster system John Huchra; 12. Spiral structure and star formation in galaxies Debra Elmegreen; 13. The discovery of hot coronae around early type galaxies William Forman and Christine Jones; 14. The morphology of clusters of galaxies, the formation efficiency of galaxies and the origin of the intracluster medium Christine Jones and William Forman; 15. Testing models for the dynamical evolution of clusters of galaxies Phyllis Lugger; 16. What is in the X-ray sky? Rudolph Schild; 17. Einstein deep surveys Stephen Murray, Christine Jones and William Forman; Part IV. History, Lore and Archaeoastronomy: 18. Robert Wheeler Willson: His Life and Legacy Barbara Welther; 19. The great mnemonics contest Owen Gingerich; 20. Hetu'u Rapanui: The archaeoastronomy of Easter Island William Liller; Indexes; Names; Objects; Subjects.

  11. First constraint on cosmological variation of the proton-to-electron mass ratio from two independent telescopes.

    PubMed

    van Weerdenburg, F; Murphy, M T; Malec, A L; Kaper, L; Ubachs, W

    2011-05-06

    A high signal-to-noise spectrum covering the largest number of hydrogen lines (90 H(2) lines and 6 HD lines) in a high-redshift object was analyzed from an observation along the sight line to the bright quasar source J2123-005 with the Ultraviolet and Visual Echelle Spectrograph on the European Southern Observatory Very Large Telescope (Paranal, Chile). This delivers a constraint on a possible variation of the proton-to-electron mass ratio of Δμ/μ=(8.5 ± 3.6(stat) ± 2.2(syst))×10(-6) at redshift z(abs) = 2.059, which agrees well with a recently published result on the same system observed at the Keck telescope yielding Δμ/μ=(5.6 ± 5.5(stat) ± 2.9(syst))×10(-6). Both analyses used the same robust absorption line fitting procedures with detailed consideration of systematic errors.

  12. Tracing the outflow of a z = 0.334 FeLoBAL: New constraints from low-ionization absorbers in FBQS J1151+3822

    SciTech Connect

    Lucy, Adrian B.; Leighly, Karen M.; Terndrup, Donald M.; Dietrich, Matthias; Gallagher, Sarah C.

    2014-03-01

    We show for the first time that FBQS J1151+3822 is an iron low-ionization broad absorption line quasar (FeLoBAL QSO), the second-brightest and second-closest known example of this class. He I* and Fe II together act as an effective analytical tool, allowing us to obtain useful kinematic constraints from photoionization models of the outflow without needing to assume any particular acceleration model. The main outflow's log ionization parameter is –1.5, the log hydrogen density (cm{sup –3}) 5.5-8, the log hydrogen column density (cm{sup –2}) 21.7-21.9, the absorption radius 7.2-127 pc, and the kinetic luminosity is 0.16%-4.5% of the bolometric luminosity. We obtain line-of-sight covering fractions of ∼0.25 for strong Fe II, ∼0.5 for He I*, and ∼0.6 for Mg II. Narrower and shallower absorption lines from weaker Fe II and Mn II with an outflow velocity of ∼3400 km s{sup –1} have appeared between 2005 and 2011, suggesting that dense cores may have condensed inside the main outflow. Consideration of the literature might suggest that the FBQS J1151+3822 outflow is a member of a rare and distinct subclass of FeLoBALs with high densities and correspondingly small absorption radii. We find, however, that such outflows are not necessarily a distinct subclass, and that their apparent rarity could be a symptom of selection bias in studies using density-sensitive lines.

  13. Impact of instrumental systematic errors on fine-structure constant measurements with quasar spectra

    NASA Astrophysics Data System (ADS)

    Whitmore, Jonathan B.; Murphy, Michael T.

    2015-02-01

    We present a new `supercalibration' technique for measuring systematic distortions in the wavelength scales of high-resolution spectrographs. By comparing spectra of `solar twin' stars or asteroids with a reference laboratory solar spectrum, distortions in the standard thorium-argon calibration can be tracked with ˜10 m s-1 precision over the entire optical wavelength range on scales of both echelle orders (˜50-100 Å) and entire spectrographs arms (˜1000-3000 Å). Using archival spectra from the past 20 yr, we have probed the supercalibration history of the Very Large Telescope-Ultraviolet and Visible Echelle Spectrograph (VLT-UVES) and Keck-High Resolution Echelle Spectrograph (HIRES) spectrographs. We find that systematic errors in their wavelength scales are ubiquitous and substantial, with long-range distortions varying between typically ±200 m s-1 per 1000 Å. We apply a simple model of these distortions to simulated spectra that characterize the large UVES and HIRES quasar samples which previously indicated possible evidence for cosmological variations in the fine-structure constant, α. The spurious deviations in α produced by the model closely match important aspects of the VLT-UVES quasar results at all redshifts and partially explain the HIRES results, though not self-consistently at all redshifts. That is, the apparent ubiquity, size and general characteristics of the distortions are capable of significantly weakening the evidence for variations in α from quasar absorption lines.

  14. BAL PHOSPHORUS ABUNDANCE AND EVIDENCE FOR IMMENSE IONIC COLUMN DENSITIES IN QUASAR OUTFLOWS: VLT/X-SHOOTER OBSERVATIONS OF QUASAR SDSS J1512+1119

    SciTech Connect

    Borguet, Benoit C. J.; Edmonds, Doug; Arav, Nahum; Chamberlain, Carter; Benn, Chris

    2012-10-10

    We present spectroscopic analysis of the broad absorption line (BAL) outflow in quasar SDSS J1512+1119. In particular, we focus our attention on a kinematic component in which we identify P V and S IV/S IV* absorption troughs. The shape of the unblended phosphorus doublet troughs and the three S IV/S IV* troughs allow us to obtain reliable column density measurements for these two ions. Photoionization modeling using these column densities and those of He I* constrain the abundance of phosphorus to the range of 0.5-4 times the solar value. The total column density, ionization parameter, and metallicity inferred from the P V and S IV column densities lead to large optical depth values for the common transition observed in BAL outflows. We show that the true C IV optical depth is {approx}1000 times greater in the core of the absorption profile than the value deduced from its apparent optical depth.

  15. Quasar Unification Via Disk Winds: From Phenomenology to Physics

    NASA Astrophysics Data System (ADS)

    Knigge, C.

    2015-09-01

    I will give an overview of a collaborative project aimed at testing the viability of QSO unification via accretion disk winds. In this scenario, most of the characteristic spectral features of QSOs are formed in these outflows. More specifically, broad absorption lines (BALs) are produced for sight lines within the outflow, while broad emission lines (BELs) are observed for other viewing angles. In order to test these ideas, we use a state-of- the-art Monte Carlo radiative transfer and photoionization code to predict emergent spectra for a wide range of viewing angles and quasar properties (black hole mass, accretion rate, X-ray luminosity, etc). It turns out to be relatively straightforward to produce BALs, but harder to obtain sufficiently strong BELs. We also find that it is easy to overionize the wind with realistic X-ray luminosities. In addition, we are using our code to test and improve hydrodynamic disk wind models for quasars. So far, we have been able to demonstrate that the treatment of ionization in existing hydrodynamic models of line-driven disk winds is too simplistic to yield realistic results: the modelled outflows would be strongly overionized and hence would not feel the line-driving forces that are asssumed to produce them. We have therefore embarked on an effort to model line-driven disk winds self-consistently by linking a hydrodynamics code with our ionization and radiative transfer code. Finally, we can also predict the reverberation signatures produced by disk winds, which can be directly compared to the results of the latest reverberation mapping campaigns.

  16. A census of quasar-intrinsic absorption in the Hubble Space Telescope archive: systems from high-resolution echelle spectra

    NASA Astrophysics Data System (ADS)

    Ganguly, Rajib; Lynch, Ryan S.; Charlton, Jane C.; Eracleous, Michael; Tripp, Todd M.; Palma, Christopher; Sembach, Kenneth R.; Misawa, Toru; Masiero, Joseph R.; Milutinovic, Nikola; Lackey, Benjamin D.; Jones, Therese M.

    2013-10-01

    We present a census of zabs ≲ 2 intrinsic (those showing partial coverage) and associated (zabs ˜ zem) quasar absorption-line systems detected in the Hubble Space Telescope archive of Space Telescope Imaging Spectrograph echelle spectra. This work complements the Misawa et al. survey of 2 < zem < 4 quasars that selects systems using similar techniques. We confirm the existence of so-called strong N V intrinsic systems (where the equivalent width of H I Lyα is small compared to N V λ1238) presented in that work, but find no convincing cases of `strong C IV' intrinsic systems at low redshift/luminosity. Moreover, we also report on the existence of `strong O VI' systems. From a comparison of partial coverage results as a function of ion, we conclude that systems selected by the N V ion have the highest probability of being intrinsic. By contrast, the C IV and O VI ions are poor selectors. Of the 30 O VI systems tested, only two of the systems in the spectrum on 3C 351 show convincing evidence for partial coverage. However, there is an ˜3σ excess in the number of absorbers near the quasar redshift (|Δv| ≤ 5000 km s-1) over absorbers at large redshift differences. In at least two cases, the associated O VI systems are known not to arise close to the accretion disc of the quasar.

  17. The Sloan Digital Sky Survey Reverberation Mapping Project: Post-Starburst Signatures in Quasar Host Galaxies at z > 1

    NASA Astrophysics Data System (ADS)

    Matsuoka, Yoshiki; Strauss, Michael A.; Shen, Yue; Brandt, William N.; Greene, Jenny E.; Ho, Luis C.; Schneider, Donald P.; Sun, Mouyuan; Trump, Jonathan R.

    2015-10-01

    Quasar host galaxies are key for understanding the relation between galaxies and the supermassive black holes (SMBHs) at their centers. We present a study of 191 broad-line quasars and their host galaxies at z\\lt 1, using high signal-to-noise ratio (S/N) spectra produced by the Sloan Digital Sky Survey Reverberation Mapping project. Clear detection of stellar absorption lines allows a reliable decomposition of the observed spectra into nuclear and host components, using spectral models of quasar and stellar radiations as well as emission lines from the interstellar medium. We estimate age, mass {M}*, and velocity dispersion {σ }* of the host stars, the star formation rate (SFR), quasar luminosity, and SMBH mass {M}\\bullet , for each object. The quasars are preferentially hosted by massive galaxies with {M}*˜ {10}11 {M}⊙ characterized by stellar ages around 1 billion yr, which coincides with the transition phase of normal galaxies from the blue cloud to the red sequence. The host galaxies have relatively low SFRs and fall below the main sequence of star-forming galaxies at similar redshifts. These facts suggest that the hosts have experienced an episode of major star formation sometime in the past 1 billion yr, which was subsequently quenched or suppressed. The derived {M}\\bullet -{σ }* and {M}\\bullet -{M}* relations agree with our past measurements and are consistent with no evolution from the local universe. The present analysis demonstrates that reliable measurements of stellar properties of quasar host galaxies are possible with high-S/N fiber spectra, which will be acquired in large numbers with future powerful instruments such as the Subaru Prime Focus Spectrograph.

  18. The ultraviolet absorption spectrum of the quasar PKS 0405-12 and the local density of Lyman-alpha absorption systems

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Jannuzi, Buell T.; Schneider, Donald P.; Hartig, George F.

    1993-01-01

    A sample of 32 absorption lines has been identified in the ultraviolet spectrum of the z = 0.57 quasar PKS 0405-12. Data cover the wavelength range 1190-3260 A. There are 10 extragalactic Ly-alpha absorption lines in the complete sample, all with observed equivalent widths greater than or equal to 0.40 A; three of the Ly-alpha lines have Ly-beta counterparts. The number of Ly-alpha lines observed in the spectrum of PKS 0405-12 is within 1 sigma of the number predicted on the basis of previous HST observations of 3C 273 and of H1821 + 643. Combining the HST observations of 3C 273, H1821 + 643, and PKS 0405-12, we estimate the local number density of Ly-alpha systems with rest equivalent widths larger than 0.32 A to be about 15 +/- 4 Ly-alpha lines per unit redshift. Ground-based images reveal a rich field of galaxies in the direction of PKS 0405-12, including many galaxies with the brightnesses and sizes expected if they belong to a cluster associated with the quasar. The quasar spectrum does not show any evidence for absorption at the redshift of the emission lines, indicating a covering factor of less than unity for the halos of galaxies in the cluster around PKS 0405 - 12.

  19. Quasar Structure from Microlensing in Gravitationally Lensed Quasars

    NASA Astrophysics Data System (ADS)

    Morgan, Christopher W.

    2007-12-01

    I investigate microlensing in gravitationally lensed quasars and discuss the use of its signal to probe quasar structure on small angular scales. I describe our lensed quasar optical monitoring program and RETROCAM, the optical camera I built for the 2.4m Hiltner telescope to monitor lensed quasars. I use the microlensing variability observed in 11 gravitationally lensed quasars to show that the accretion disk size at 2500Å is related to the black hole mass by log(R2500/cm) = (15.70±0.16) + (0.64±0.18)log(MBH/109M⊙). This scaling is consistent with the expectation from thin disk theory (R ∝ MBH2/3), but it implies that black holes radiate with relatively low efficiency, log(η) = -1.54±0.36 + log(L/LE) where η=L/(Mdotc2). With one exception, these sizes are larger by a factor of 4 than the size needed to produce the observed 0.8µm quasar flux by thermal radiation from a thin disk with the same T ∝ R-3/4 temperature profile. More sophisticated disk models are clearly required, particularly as our continuing observations improve the precision of the measurements and yield estimates of the scaling with wavelength and accretion rate. This research made extensive use of a Beowulf computer cluster obtained through the Cluster Ohio program of the Ohio Supercomputer Center. Support for program HST-GO-9744 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS-5-26666.

  20. No Overdensity of Lyman-Alpha Emitting Galaxies around a Quasar at z ∼ 5.7

    NASA Astrophysics Data System (ADS)

    Mazzucchelli, C.; Bañados, E.; Decarli, R.; Farina, E. P.; Venemans, B. P.; Walter, F.; Overzier, R.

    2017-01-01

    Bright quasars, observed when the universe was less than one billion years old (z > 5.5), are known to host massive black holes (∼109 M⊙) and are thought to reside in the center of massive dark matter overdensities. In this picture, overdensities of galaxies are expected around high-redshift quasars. However, observations based on the detection of Lyman-break galaxies (LBGs) around these quasars do not offer a clear picture: this may be due to the uncertain redshift constraints of LBGs, which are solely selected through broadband filters. To circumvent such uncertainties, we here perform a search for Lyman-alpha emitting galaxies (LAEs) in the field of the quasar PSO J215.1512–16.0417 at z ∼ 5.73, through narrowband deep imaging with FORS2 at the Very Large Telescope. We study an area of 37 arcmin2, i.e., ∼206 comoving Mpc2 at the redshift of the quasar. We find no evidence of an overdensity of LAEs in the quasar field with respect to blank-field studies. Possible explanations for these findings may be that our survey volume is too small, or that the strong ionizing radiation from the quasar hinders galaxy formation in its immediate proximity. Another possibility is that these quasars are not situated in the dense environments predicted by some simulations.

  1. INVISIBLE ACTIVE GALACTIC NUCLEI. II. RADIO MORPHOLOGIES AND FIVE NEW H i 21 cm ABSORPTION LINE DETECTORS

    SciTech Connect

    Yan, Ting; Stocke, John T.; Darling, Jeremy; Momjian, Emmanuel; Sharma, Soniya; Kanekar, Nissim

    2016-03-15

    This is the second paper directed toward finding new highly redshifted atomic and molecular absorption lines at radio frequencies. To this end, we selected a sample of 80 candidates for obscured radio-loud active galactic nuclei (AGNs) and presented their basic optical/near-infrared (NIR) properties in Paper I. In this paper, we present both high-resolution radio continuum images for all of these sources and H i 21 cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz Very Large Array continuum observations find that 52 sources are compact or have substantial compact components with size <0.″5 and flux densities >0.1 Jy at 4.9 GHz. The 36 most compact sources were then observed with the Very Long Baseline Array at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, which is a detection rate of CSOs ∼three times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty-seven sources were observed for H i 21 cm absorption at their photometric or spectroscopic redshifts with only six detections (five definite and one tentative). However, five of these were from a small subset of six CSOs with pure galaxy optical/NIR spectra (i.e., any AGN emission is obscured) and for which accurate spectroscopic redshifts place the redshifted 21 cm line in a radio frequency intereference (RFI)-free spectral “window” (i.e., the percentage of H i 21 cm absorption-line detections could be as high as ∼90% in this sample). It is likely that the presence of ubiquitous RFI and the absence of accurate spectroscopic redshifts preclude H i detections in similar sources (only 1 detection out of the remaining 22 sources observed, 13 of which have only photometric redshifts); that is, H i absorption may well be present but is masked by

  2. FUSE and STIS Observations of Intervening O VI Absorption Line Systems in the Spectrum of PG 0953+415

    NASA Astrophysics Data System (ADS)

    Savage, B. D.; Sembach, K. R.; Tripp, T. M.; Richter, P.; Jenkins, E. B.

    2000-12-01

    We analyze Far Ultraviolet Spectroscopic Explorer (FUSE) and Space Telescope Imaging Spectrograph (STIS) observations of the intergalactic O VI absorption line systems in the direction of the bright QSO PG 0953+415 (z = 0.239). The FUSE observations cover the wavelength range from 905 to 1187 Å with a velocity resolution of 20 km/s. The STIS observations obtained with the E140M echelle spectrograph extend from 1150 to 1730 Å with a resolution of 8 km/s. These are supplemented with STIS G140M and G230M observations from 1145-1201 Å and from 1724-1814 A with a resolution of 30 km/s. We detect a strong O VI system at z = 0.06807 in the lines of H I Ly alpha, beta, and gamma, O VI 1031.93, 1037.62, N V 1238.80, 1242.80, C IV 1548.20, 1550.77, and C III 977.02 Å. We confirm the detection of the z = 0.14232 O VI system studied previously by Tripp and Savage (2000). The new FUSE observations of this system record Ly beta , O VI 1031.93, 1037.62, and C III 977.02 Å. We derive column densities for the absorption lines detected in both O VI systems using curve of growth and profile fitting techniques. We study the physical conditions in each system and attempt to determine the origin(s) of the ionization. Both detected O VI systems occur at redshifts where there are peaks in the number density of intervening galaxies along the line of sight based on a WIYN redshift survey of galaxies in the one degree field centered on PG 0953+415. We discuss the implications of these observations for the baryonic content of O VI absorption line systems. Financial support has been provided by NASA contract NAS-532985 and STSCI Grants GO 06499.02 and GO 08165.02.

  3. A NEOWISE Survey of Quasars in the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Fan, Xiaohui

    exposure catalogs are available as standard data product. We will use Tractor pipeline to carry out coadded forced photometry of NEOWISE images to generate joint photometric catalog of mid-IR (NEOWISE), near-IR (UHS and VHS) and optical (DECaLS,MzLS, DES, PS1) imaging. The new catalog will reach 0.6-0.8 mag deeper than the current ALLWISE catalog; This is the key to the success of our program. The catalog will be made publicly available to the community. Our program will establish the first large sample of quasars at the peak of reionization era. The sample will be used to measure the density of luminous quasars and their BH masses at z>=7, and place constraint on the existence of z>8 quasars. These measurements will test whether super-Eddington accretion or direct formation of intermediate-mass BHs are needed for early BH growth. Current quasar observations indicate that neutral fraction of the IGM increased from 10^-3 at z=7 quasar sample, definitively measure the IGM neutral fraction at z 7-8, and probe whether the reionization process resembles a phase transition of the IGM or follows a more gradual pattern in this crural cosmic epoch. This ADAP program is primarily based on new reduction and analysis of archival data from NASA's WISE mission. Studies of the formation of the earliest galaxies and BHs, the end of cosmic dark ages and the epoch of reionization is among the key science goals of NASA's Cosmic Origin Program and one of the highest priorities of the NASA Astrophysics Roadmap and ASTRO20/20 decadal survey. The new quasars discovered in our survey will be prime targets for detailed JWST follow-up observations to study reionization history, and provide valuable insight into the design of high-redsift quasar and galaxy surveys using WFIRST.

  4. The double quasar 0957+561: examination of the gravitational lens hypothesis using the very large array.

    PubMed

    Greenfield, P E; Roberts, D H; Burke, B F

    1980-05-02

    A full 12-hour synthesis at 6-centimeter wavelength with the Very Large Array confirms the major features previously reported for the double quasar 0957+561. In addition, the existence of radio jets apparently associated with both quasars is demonstrated. Gravitational lens models are now favored on the basis of recent optical observations, and the radio jets place severe constraints on such models. Further radio observations of the double quasar are needed to establish the expected relative time delay in variations between the images.

  5. Possible Signatures of a Cold-flow Disk from MUSE Using a z ˜ 1 Galaxy-Quasar Pair toward SDSS J1422-0001

    NASA Astrophysics Data System (ADS)

    Bouché, N.; Finley, H.; Schroetter, I.; Murphy, M. T.; Richter, P.; Bacon, R.; Contini, T.; Richard, J.; Wendt, M.; Kamann, S.; Epinat, B.; Cantalupo, S.; Straka, L. A.; Schaye, J.; Martin, C. L.; Péroux, C.; Wisotzki, L.; Soto, K.; Lilly, S.; Carollo, C. M.; Brinchmann, J.; Kollatschny, W.

    2016-04-01

    We use a background quasar to detect the presence of circumgalactic gas around a z=0.91 low-mass star-forming galaxy. Data from the new Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope show that the galaxy has a dust-corrected star formation rate (SFR) of 4.7 ± 2.0 M⊙ yr-1, with no companion down to 0.22 M⊙ yr-1 (5σ) within 240 {h}-1 kpc (“30”). Using a high-resolution spectrum of the background quasar, which is fortuitously aligned with the galaxy major axis (with an azimuth angle α of only 15°), we find, in the gas kinematics traced by low-ionization lines, distinct signatures consistent with those expected for a “cold-flow disk” extending at least 12 kpc (3× {R}1/2). We estimate the mass accretion rate {\\dot{M}}{{in}} to be at least two to three times larger than the SFR, using the geometric constraints from the IFU data and the H i column density of log {N}{{H}{{I}}}/{{cm}}-2 ≃ 20.4 obtained from a Hubble Space Telescope/COS near-UV spectrum. From a detailed analysis of the low-ionization lines (e.g., Zn ii, Cr ii, Ti ii, Mn ii, Si ii), the accreting material appears to be enriched to about 0.4 {Z}⊙ (albeit with large uncertainties: {log} Z/{Z}⊙ =-0.4\\quad +/- \\quad 0.4), which is comparable to the galaxy metallicity (12 + log O/H = 8.7 ± 0.2), implying a large recycling fraction from past outflows. Blueshifted Mg ii and Fe ii absorptions in the galaxy spectrum from the MUSE data reveal the presence of an outflow. The Mg ii and Fe ii absorption line ratios indicate emission infilling due to scattering processes, but the MUSE data do not show any signs of fluorescent Fe ii* emission. Based on observations made at the ESO telescopes under program 080.A-0364 (SINFONI), 079.A-0600 (UVES), and as part of MUSE commissioning (ESO program 060.A-9100). Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities

  6. A DISTANT QUASAR'S BRILLIANT LIGHT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The arrow in this image, taken by a ground-based telescope, points to a distant quasar, the brilliant core of an active galaxy residing billions of light-years from Earth. As light from this faraway object travels across space, it picks up information on galaxies and the vast clouds of material between galaxies as it moves through them. The Space Telescope Imaging Spectrograph aboard NASA's Hubble Space Telescope decoded the quasar's light to find the spectral 'fingerprints' of highly ionized (energized) oxygen, which had mixed with invisible clouds of hydrogen in intergalactic space. The quasar's brilliant beam pierced at least four separate filaments of the invisible hydrogen laced with the telltale oxygen. The presence of oxygen between the galaxies implies there are huge quantities of hydrogen in the universe. Credits: WIYN Telescope at Kitt Peak National Observatory in Arizona. The telescope is owned and operated by the University of Wisconsin, Indiana University, Yale University, and the National Optical Astronomy Observatories.

  7. Optical frequency standard by using a 1560 nm diode laser locked to saturated absorption lines of rubidium vapor

    SciTech Connect

    Masuda, Shin; Seki, Atsushi; Niki, Shoji

    2007-07-20

    A robust, compact, highly accurate rubidium optical frequency standard module was developed to overcome the delicate performance of conventional frequency stabilized lasers. A frequency doubled1560 nm distributed feedback diode laser locked to a rubidium D2 saturated absorption line without using an optical amplifier was demonstrated, and dithering-free optical output was obtained. In addition, the sensitivity of the developed optical frequency standard to magnetic fields was investigated. We confirmed that the influence of the magnetic fields on the optical frequency standard can be almost negligible when using appropriate magnetic-shield films. As a result, the magnetic-field-insensitive optical frequency standard, which can be embedded in optical systems,exhibiting uncertainty less than at least 100 kHz, was successfully realized for the first time to the best of our knowledge.

  8. Time-averaging approximation in the interaction picture: absorption line shapes for coupled chromophores with application to liquid water.

    PubMed

    Yang, Mino; Skinner, J L

    2011-10-21

    The time-averaging approximation (TAA), originally developed to calculate vibrational line shapes for coupled chromophores using mixed quantum/classical methods, is reformulated. In the original version of the theory, time averaging was performed for the full one-exciton Hamiltonian, while herein the time averaging is performed on the coupling (off-diagonal) Hamiltonian in the interaction picture. As a result, the influence of the dynamic fluctuations of the transition energies is more accurately described. We compare numerical results of the two versions of the TAA with numerically exact results for the vibrational absorption line shape of the OH stretching modes in neat water. It is shown that the TAA in the interaction picture yields theoretical line shapes that are in better agreement with exact results.

  9. HIGHLY IONIZED Fe-K ABSORPTION LINE FROM CYGNUS X-1 IN THE HIGH/SOFT STATE OBSERVED WITH SUZAKU

    SciTech Connect

    Yamada, S.; Yoshikawa, A.; Makishima, K.; Torii, S.; Noda, H.; Mineshige, S.; Ueda, Y.; Kubota, A.; Gandhi, P.; Done, C.

    2013-04-20

    We present observations of a transient He-like Fe K{alpha} absorption line in Suzaku observations of the black hole binary Cygnus X-1 on 2011 October 5 near superior conjunction during the high/soft state, which enable us to map the full evolution from the start to the end of the episodic accretion phenomena or dips for the first time. We model the X-ray spectra during the event and trace their evolution. The absorption line is rather weak in the first half of the observation, but instantly deepens for {approx}10 ks, and weakens thereafter. The overall change in equivalent width is a factor of {approx}3, peaking at an orbital phase of {approx}0.08. This is evidence that the companion stellar wind feeding the black hole is clumpy. By analyzing the line with a Voigt profile, it is found to be consistent with a slightly redshifted Fe XXV transition, or possibly a mixture of several species less ionized than Fe XXV. The data may be explained by a clump located at a distance of {approx}10{sup 10-12} cm with a density of {approx}10{sup (-13)-(-11)} g cm{sup -3}, which accretes onto and/or transits the line of sight to the black hole, causing an instant decrease in the observed degree of ionization and/or an increase in density of the accreting matter. Continued monitoring for individual events with future X-ray calorimeter missions such as ASTRO-H and AXSIO will allow us to map out the accretion environment in detail and how it changes between the various accretion states.

  10. Broad Balmer Absorption Line Variability: Evidence of Gas Transverse Motion in the QSO SDSS J125942.80+121312.6

    NASA Astrophysics Data System (ADS)

    Shi, Xiheng; Zhou, Hongyan; Shu, Xinwen; Zhang, Shaohua; Ji, Tuo; Pan, Xiang; Sun, Luming; Zhao, Wen; Hao, Lei

    2016-03-01

    We report on the discovery of broad Balmer absorption lines variability in the QSO SDSS J125942.80+121312.6, based on the optical and near-infrared spectra taken from the SDSS-I, SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), and TripleSpec observations over a timescale of 5.8 years in the QSO's rest-frame. The blueshifted absorption profile of Hβ shows a variation of more than 5σ at a high velocity portion (\\gt 3000 {km} {{{s}}}-1) of the trough. We perform a detailed analysis for the physical conditions of the absorber using Balmer lines as well as metastable He i and optical Fe ii absorptions (λ4233 from b4P5/2 level and λ5169 from a6S5/2) at the same velocity. These Fe ii lines are identified in the QSO spectra for the first time. According to the photoionization simulations, we estimate a gas density of n({{H}})≈ {10}9.1 {{cm}}-3 and a column density of {N}{col}({{H}})≈ {10}23 {{cm}}-2 for the BOSS data, but the model fails to predict the variations of ionic column densities between the SDSS and BOSS observations if changes in ionizing flux are assumed. We thus propose transverse motion of the absorbing gas being the cause of the observed broad Balmer absorption line variability. In fact, we find that the changes in covering factors of the absorber can well-reproduce all of the observed variations. The absorber is estimated ∼0.94 pc away from the central engine, which is where the outflow likely experiences deceleration due to the collision with the surrounding medium. This scheme is consistent with the argument that LoBAL QSOs may represent the transition from obscured star-forming galaxies to classic QSOs.

  11. Extremely red quasars in BOSS

    NASA Astrophysics Data System (ADS)

    Hamann, Fred; Zakamska, Nadia L.; Ross, Nicholas; Paris, Isabelle; Alexandroff, Rachael M.; Villforth, Carolin; Richards, Gordon T.; Herbst, Hanna; Brandt, W. Niel; Cook, Ben; Denney, Kelly D.; Greene, Jenny E.; Schneider, Donald P.; Strauss, Michael A.

    2017-01-01

    Red quasars are candidate young objects in an early transition stage of massive galaxy evolution. Our team recently discovered a population of extremely red quasars (ERQs) in the Baryon Oscillation Spectroscopic Survey (BOSS) that has a suite of peculiar emission-line properties including large rest equivalent widths (REWs), unusual `wingless' line profiles, large N V/Lyα, N V/C IV, Si IV/C IV and other flux ratios, and very broad and blueshifted [O III] λ5007. Here we present a new catalogue of C IV and N V emission-line data for 216 188 BOSS quasars to characterize the ERQ line properties further. We show that they depend sharply on UV-to-mid-IR colour, secondarily on REW(C IV), and not at all on luminosity or the Baldwin Effect. We identify a `core' sample of 97 ERQs with nearly uniform peculiar properties selected via i-W3 ≥ 4.6 (AB) and REW(C IV) ≥ 100 Å at redshifts 2.0-3.4. A broader search finds 235 more red quasars with similar unusual characteristics. The core ERQs have median luminosity ˜ 47.1, sky density 0.010 deg-2, surprisingly flat/blue UV spectra given their red UV-to-mid-IR colours, and common outflow signatures including BALs or BAL-like features and large C IV emission-line blueshifts. Their SEDs and line properties are inconsistent with normal quasars behind a dust reddening screen. We argue that the core ERQs are a unique obscured quasar population with extreme physical conditions related to powerful outflows across the line-forming regions. Patchy obscuration by small dusty clouds could produce the observed UV extinctions without substantial UV reddening.

  12. "Dead quasars" in nearby galaxies?

    PubMed

    Rees, M J

    1990-02-16

    The nuclei of some galaxies undergo violent activity, quasars being the most extreme instances of this phenomenon. Such activity is probably short-lived compared to galactic lifetimes, and was most prevalent when the universe was only about one-fifth of its present age. A massive black hole seems the inevitable end point of such activity, and dead quasars should greatly outnumber active ones. In recent years, studies of stellar motions in the cores of several nearby galaxies indicate the presence of central dark masses which could be black holes. This article discusses how such evidence might be corroborated, and the potential implications for our understanding of active galaxies and black holes.

  13. Molecules and metals in the distant universe: Sub-mm and optical spectroscopy of quasar absorbers

    NASA Astrophysics Data System (ADS)

    Morrison, Sean Stephen

    In order to gain a complete understanding of galaxy formation and evolution, knowledge of the atomic and molecular gas in the interstellar medium (ISM) is required. Absorption-line spectroscopy of quasars offer a powerful and luminosity independent probe of gas to high redshifts. The sub-Damped Lyman-alpha systems (sub-DLAs; 19.0 < log NHI < 20.3), and Damped Lyman-alpha systems (DLAs; 20.3 < log NHI), are the highest neutral hydrogen column density quasar absorbers contain most of the neutral gas available for star formation in the high-redshift Universe. This thesis presents photometric measurements of 10 quasars absorbers with redshifts 0.652 < zabs < 3.104 taken with the Spectral and Photometric Imaging Receiver (SPIRE) on Herschel. Of these 10 objects, 3 showed fluxes > 1 Jy. In addition spectra for 5 other quasars with DLAs (0.524 < zabs < 1.173) were taken with SPIRE and Heterodyne Instrument for the far-infrared (HIFI) on Herschel. These observations, in the far-IR and sub-mm bands, were optimized for detection of molecular lines of CO, 13CO, C 18O, H2O, HCO, and the forbidden transitions of [C II] and [N II]. Two targets, the DLA towards PKS0420-014 at z = 0.633 and the DLA towards AO0235+164 at z = 0.524, had a tentative detection of C18O, and another, the DLA towards TXS0827+243 at z = 0.52476, had a tentative detection of HCO. There were a number of other 3 sigma limits, with at least one limit for each of the 5 systems. In addition to the DLAs, 2 super-DLAs (with z = 2.5036 and z = 2.045) were observed using the echellette mode on Keck Echellette Spectrograph and Imager (ESI). These observations, in the optical and ultraviolet wavelengths, were optimized to detect metal lines. Both absorbers show remarkably similar metallicities of ~ -1.3 to ~ -1.4 dex and comparable, definitive depletion levels, as judged from [Fe/Zn] and [Ni/Zn]. One of the absorbers shows supersolar [S/Zn] and [Si/Zn]. Using potential detections of weak Ly-alpha emission at the

  14. Constraint on a varying proton-to-electron mass ratio from H2 and HD absorption at zabs ≃ 2.34

    NASA Astrophysics Data System (ADS)

    Daprà, M.; van der Laan, M.; Murphy, M. T.; Ubachs, W.

    2017-03-01

    Molecular hydrogen (H2) absorption in the damped Lyman α system at zabs = 2.34 towards quasar SDSS J123437.55+075843.3 is analysed in order to derive'a constraint on a possible temporal variation of the proton-to-electron mass ratio, μ, over cosmological time-scales. Some 106 H2 and deuterated molecular hydrogen (HD) transitions, covering the range 3290-3726 Å, are analysed with a comprehensive fitting technique, allowing for the inclusion of overlapping lines associated with hydrogen molecules, the atomic hydrogen lines in the Lyman α forest as well as metal lines. The absorption model, based on the most recent and accurate rest wavelength for H2 and HD transitions, delivers a value of Δμ/μ = (19 ± 9stat ± 5syst) × 10-6. An attempt to correct the spectrum for possible long-range wavelength distortions is made, and the uncertainty on the distortion correction is included in the total systematic uncertainty. The present result is an order of magnitude more stringent than a previous measurement from the analysis of this absorption system, based on a line-by-line comparison of only 12 prominent and isolated H2 absorption lines. This is consistent with other measurements of Δμ/μ from 11 other absorption systems in showing a null variation of the proton-to-electron mass ratio over a look-back time of 11 Gyr.

  15. Clustering of intermediate redshift quasars using the final SDSS III-BOSS sample

    NASA Astrophysics Data System (ADS)

    Eftekharzadeh, Sarah; Myers, Adam D.; White, Martin; Weinberg, David H.; Schneider, Donald P.; Shen, Yue; Font-Ribera, Andreu; Ross, Nicholas P.; Paris, Isabelle; Streblyanska, Alina

    2015-11-01

    We measure the two-point clustering of spectroscopically confirmed quasars from the final sample of the Baryon Oscillation Spectroscopic Survey (BOSS) on comoving scales of 4 ≲ s ≲ 22 h-1 Mpc. The sample covers 6950 deg2 [ ˜ 19 (h- 1Gpc)3] and, over the redshift range 2.2 ≤ z ≤ 2.8, contains 55 826 homogeneously selected quasars, which is twice as many as in any similar work. We deduce bQ = 3.54 ± 0.10; the most precise measurement of quasar bias to date at these redshifts. This corresponds to a host halo mass of ˜2 × 1012 h-1 M⊙ with an implied quasar duty cycle of ˜1 per cent. The real-space projected correlation function is well fitted by a power law of index 2 and correlation length r0 = (8.12 ± 0.22) h- 1 Mpc over scales of 4 ≲ rp ≲ 25 h-1 Mpc. To better study the evolution of quasar clustering at moderate redshift, we extend the redshift range of our study to z ˜ 3.4 and measure the bias and correlation length of three subsamples over 2.2 ≤ z ≤ 3.4. We find no significant evolution of r0 or bias over this range, implying that the host halo mass of quasars decreases somewhat with increasing redshift. We find quasar clustering remains similar over a decade in luminosity, contradicting a scenario in which quasar luminosity is monotonically related to halo mass at z ≈ 2.5. Our results are broadly consistent with previous BOSS measurements, but they yield more precise constraints based upon a larger and more uniform data set.

  16. Beyond the single-atom response in absorption line shapes: probing a dense, laser-dressed helium gas with attosecond pulse trains.

    PubMed

    Liao, Chen-Ting; Sandhu, Arvinder; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2015-04-10

    We investigate the absorption line shapes of laser-dressed atoms beyond the single-atom response, by using extreme ultraviolet (XUV) attosecond pulse trains to probe an optically thick helium target under the influence of a strong infrared (IR) field. We study the interplay between the IR-induced phase shift of the microscopic time-dependent dipole moment and the resonant-propagation-induced reshaping of the macroscopic XUV pulse. Our experimental and theoretical results show that as the optical depth increases, this interplay leads initially to a broadening of the IR-modified line shape, and subsequently, to the appearance of new, narrow features in the absorption line.

  17. Photometric Determination of Quasar Candidates

    NASA Astrophysics Data System (ADS)

    Abraham, S.; Philip, N. S.

    2010-12-01

    We describe an efficient and fast method for the detection and classification of quasars using a machine learning tool, making use of photometric information from SDSS DR7 data release. The photometric information used are the ten independent colours that can be derived from the 5 filters available with SDSS and the machine learning algorithm used is a difference boosting neural network (DBNN) that uses Bayesian classification rule. An adaptive learning algorithm was used to prepare the training sample for each region. Cross validations were done with SDSS spectroscopy and it was found that the method could detect quasars with above 96.96% confidence regarding their true classification. The completeness at this stage was 99.01%. Contaminants were mainly stars and the incorrectly classified quasars belonged to a few specific patches of redshifts. Color plots indicated that the colors of some stars and quasars in those redshits were indistinguishable from each other and was the major cause of their incorrect classification. A confidence value (computed posterior Bayesian belief of the network) was assigned to every object that was classified. Most of the incorrect classifications had a low confidence value. This information may be used to filter out contaminants and improve the classification accuracy at the cost of reduced completeness.

  18. A SURVEY OF METAL LINES AT HIGH REDSHIFT. II. SDSS ABSORPTION LINE STUDIES-O VI LINE DENSITY, SPACE DENSITY, AND GAS METALLICITY AT z{sub abs} {approx} 3.0

    SciTech Connect

    Frank, S.; Mathur, S.; Pieri, M.; York, D. G.

    2010-09-15

    studies. These results demonstrate that large spectroscopic data sets such as SDSS can play an important role in QSO absorption line studies, in spite of the relatively low resolution.

  19. Atlas of quasar energy distributions

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Wilkes, Belinda J.; Mcdowell, Jonathan C.; Green, Richard F.; Bechtold, Jill; Willner, S. P.; Oey, M. S.; Polomski, Elisha; Cutri, Roc

    1994-01-01

    We present an atlas of the spectral energy distributions (SEDs) of normal, nonblazar, quasars over the whole available range (radio to 10 keV X-rays) of the electromagnetic spectrum. The primary (UVSX) sample includes 47 quasars for which the spectral energy distributions include X-ray spectral indices and UV data. Of these, 29 are radio quiet, and 18 are radio loud. The SEDs are presented both in figures and in tabular form, with additional tabular material published on CD-ROM. Previously unpublished observational data for a second set of quasars excluded from the primary sample are also tabulated. The effects of host galaxy starlight contamination and foreground extinction on the UVSX sample are considered and the sample is used to investigate the range of SED properties. Of course, the properties we derive are influenced strongly by the selection effects induced by quasar discovery techniques. We derive the mean energy distribution (MED) for radio-loud and radio-quiet objects and present the bolometric corrections derived from it. We note, however, that the dispersion about this mean is large (approximately one decade for both the infrared and ultraviolet components when the MED is normalized at the near-infrared inflection). At least part of the dispersion in the ultraviolet may be due to time variability, but this is unlikely to be important in the infrared. The existence of such a large dispersion indicates that the MED reflects only some of the properties of quasars and so should be used only with caution.

  20. Atmospheric Profiling Combining the Features of GPS ro & Mls: Satellite to Satellite Occultations Near Water & Ozone Absorption Lines

    NASA Astrophysics Data System (ADS)

    Kursinski, E. R.; Ward, D.; Otarola, A. C.; McGhee, J.; Reed, H.; Erickson, D.

    2015-12-01

    Assessing climate models & their predictions requires observations that determine the state of the real climate system precisely and unambiguously, independently from models. For this purpose, we have been developing a new orbiting remote sensing system called the Active Temperature, Ozone & Moisture Microwave Spectrometer (ATOMMS) which is a cross between GPS RO and the Microwave Limb Sounder. ATOMMS actively probes water vapor, ozone & other absorption lines at cm & mm wavelengths in a satellite to satellite occultation geometry to simultaneously profile temperature, pressure, water vapor and ozone as well as other important constituents. Individual profiles of water vapor, temperature & pressure heights will extend from near the surface into the mesosphere with ~1%, 0.4K and 10 m precision respectively and still better accuracy, with 100 m vertical resolution. Ozone profiles will extend upward from the upper troposphere. Line of sight wind profiles will extend upwards from the mid-stratosphere. ATOMMS is a doubly differential absorption system which eliminates drift and both sees clouds and sees thru them, to deliver performance in clouds within a factor of 2 of the performance in clear skies. This all-weather sampling combined with insensitivity to surface emissivity avoids sampling biases that limit most existing satellite records. ATOMMS will profile slant liquid water in clouds & rain and as well as turbulence via scintillations ("twinkling of a star"). Using prototype ATOMMS instrumentation that we developed with funding from NSF, several ATOMMS ground field campaigns precisely measured water vapor, cloud amount, rainfall, turbulence and absorption line spectroscopy. ATOMMS's dynamic range was demonstrated as water vapor was derived to 1% precision in optical depths up to 17. We are developing high altitude aircraft to aircraft instrumentation to further demonstrate ATOMMS performance, refine spectroscopy & support future field campaigns. Our vision is a

  1. Quasar structure from microlensing in gravitationally lensed quasars

    NASA Astrophysics Data System (ADS)

    Morgan, Christopher Warren

    2008-02-01

    I analyze microlensing in gravitationally lensed quasars to yield measurements of the structure of their continuum emission regions. I first describe our lensed quasar monitoring program and RETROCAM, the auxiliary port camera I built for the 2.4m Hiltner telescope to monitor lensed quasars. I describe the application of our Monte Carlo microlensing analysis technique to SDSS 0924+0219, a system with a highly anomalous optical flux ratio. For an inclination angle i, I find an optical scale radius log[( r s /cm)[Special characters omitted.] ] = [Special characters omitted.] . I extrapolate the best-fitting light curves into the future to find a roughly 45% probability that the anomalous image (D) will brighten by at least an order of magnitude during the next decade. I expand our method to make simultaneous estimates of the time delays and structure of HE1104-1805 and QJ0158-4325, two doubly-imaged quasars with microlensing and intrinsic variability on comparable time scales. For HE1104- 1805 I find a time delay of D t AB = t A - t B = [Special characters omitted.] days and estimate a scale radius of log[( r s /cm)[Special characters omitted.] ] = [Special characters omitted.] at 0.2mm in the rest frame. I am unable to measure a time delay for QJ0158-4325, but the scale radius is log[( r s /cm) [Special characters omitted.] ] = 14.9 ±1 0.3 at 0.3mm in the rest frame. I then apply our Monte Carlo microlensing analysis technique to the optical light curves of 11 lensed quasar systems to show that quasar accretion disk sizes at 2500Å are related to black hole mass ( M BH ) by log( R 2500 /cm) = (15.7 ± 0.16) + (0.64± 0.18) log( M BH /10 9 [Special characters omitted.] ). This scaling is consistent with the expectation from thin disk theory (R 0( [Special characters omitted.] ), but it implies that black holes radiate with relatively low efficiency, log(e) = -1.54 ± 0.36 + log( L/L E ) where e=3D L / ( M c 2 ). These sizes are also larger, by a factor of ~ 3, than

  2. Effect of buffer gases on broadening of the Iodine-127 resonance absorption line at a 633-nm He-Ne laser wavelength

    SciTech Connect

    Kireev, S.V.; Shnyrev, S.L.; Zaspa, Yu.P.

    1995-04-01

    Collisional broadening coefficients are measured for iodine-127 resonance absorption lines in several rare cases of atmospheric air and CO{sub 2}. The results obtained are used to determine the optimum pressure of a gaseous mixture in a measuring cell for detecting iodine-127 by a helium-neon (633 nm) laser-induced fluorescence technique of monitoring iodine in atmospheric air.

  3. Selection of the optimal combination of water vapor absorption lines for detection of temperature in combustion zones of mixing supersonic gas flows by diode laser absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mironenko, V. R.; Kuritsyn, Yu. A.; Bolshov, M. A.; Liger, V. V.

    2016-12-01

    Determination of a gas medium temperature by diode laser absorption spectrometry (DLAS) is based on the measurement of integral intensities of the absorption lines of a test molecule (generally water vapor molecule). In case of local thermodynamic equilibrium temperature is inferred from the ratio of the integral intensities of two lines with different low energy levels. For the total gas pressure above 1 atm the absorption lines are broadened and one cannot find isolated well resolved water vapor absorption lines within relatively narrow spectral interval of fast diode laser (DL) tuning range (about 3 cm-1). For diagnostics of a gas object in the case of high temperature and pressure DLAS technique can be realized with two diode lasers working in different spectral regions with strong absorption lines. In such situation the criteria of the optimal line selection differs significantly from the case of narrow lines. These criteria are discussed in our work. The software for selection the optimal spectral regions using the HITRAN-2012 and HITEMP data bases is developed. The program selects spectral regions of DL tuning, minimizing the error of temperature determination δT/T, basing on the attainable experimental error of line intensity measurement δS. Two combinations of optimal spectral regions were selected - (1.392 & 1.343 μm) and (1.392 & 1.339 μm). Different algorithms of experimental data processing are discussed.

  4. Using ISM abundances in the SMC to Correct for Element Depletions by Dust in QSO Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Jenkins, Edward

    2014-10-01

    The availability of 10-m class telescopes with high resolution echelle spectrographs has enabled astronomers to measure accurately the gas-phase abundances of various elements in QSO absorption line systems at high redshifts. These systems offer insights on the chemical evolution of galaxies (and their nearby environments) in their early stages of development. However, in order to obtain total abundances the observations need to be corrected for the depletions caused by the formation of dust, and traditionally people have done so by using the depletion patterns seen in our own Galaxy. There is now evidence that indicates that such patterns in low-metallicity systems differ from those of our Galaxy and thus the corrections may be misleading. The aim of our proposed HST observations is to measure the gas-phase abundances toward stars in the Small Magellanic Cloud, which is a low-metallicity dwarf galaxy where there exist good measurements of stellar comparison abundances. We plan to record ISM absorption features from STIS medium-resolution echelle spectra for 14 stars in the SMC that are known to have varying levels of depletion, so that we can derive the gas-phase abundance patterns of the elements Ni, Fe, Cr, Mn, Si, Mg, Ge, Kr, Zn, and perhaps P.

  5. Atmospheric profiling via satellite to satellite occultations near water and ozone absorption lines for weather and climate

    NASA Astrophysics Data System (ADS)

    Kursinski, E. R.; Ward, D.; Otarola, A. C.; McGhee, J.; Stovern, M.; Sammler, K.; Reed, H.; Erickson, D.; McCormick, C.; Griggs, E.

    2016-05-01

    Significantly reducing weather and climate prediction uncertainty requires global observations with substantially higher information content than present observations provide. While GPS occultations have provided a major advance, GPS observations of the atmosphere are limited by wavelengths chosen specifically to minimize interaction with the atmosphere. Significantly more information can be obtained via satellite to satellite occultations made at wavelengths chosen specifically to characterize the atmosphere. Here we describe such a system that will probe cm- and mmwavelength water vapor absorption lines called the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS). Profiling both the speed and absorption of light enables ATOMMS to profile temperature, pressure and humidity simultaneously, which GPS occultations cannot do, as well as profile clouds and turbulence. We summarize the ATOMMS concept and its theoretical performance. We describe field measurements made with a prototype ATOMMS instrument and several important capabilities demonstrated with those ground based measurements including retrieving temporal variations in path-averaged water vapor to 1%, in clear, cloudy and rainy conditions, up to optical depths of 17, remotely sensing turbulence and determining rain rates. We conclude with a vision of a future ATOMMS low Earth orbiting satellite constellation designed to take advantage of synergies between observational needs for weather and climate, ATOMMS unprecedented orbital remote sensing capabilities and recent cubesat technological innovations that enable a constellation of dozens of very small spacecraft to achieve many critical, but as yet unfulfilled, monitoring and forecasting needs.

  6. Highly Ionized Iron Absorption Lines from Outflowing Gases in the X-ray Spectrum of NGC 1365

    NASA Technical Reports Server (NTRS)

    Risaliti, G.; Bianchi, S.; Matt, G.; Baldi, A.; Elvis, M.; Fabbiano, G.; Zezas, A.

    2006-01-01

    We present the discovery of four absorption lines in the X-ray spectrum of the Seyfert galaxy NGC 1365, at energies between 6.7 and 8.3 keV. The lines are detected with high statistical confidence (from >20 sigma for the strongest to -4 sigma for the weakest) in two XMM-Newton observations 60 ks long. We also detect the same lines, with a lower signal-to-noise ratio (but still >2 sigma for each line), in two previous shorter (-10 ks) XMM-Newton observations. The spectral analysis identifies these features as Fe XXV and Fe XXVI Kalpha and Kbeta lines, outflowing with velocities varying between -1000 and -5000 km/s among the observations. These are the highest quality detections of such lines so far. The high equivalent widths [EW (Kalpha) approximately 100 eV] and the Kalpha/Kbeta ratios imply that the lines are due to absorption of the AGN continuum by a highly ionized gas with column density NH-5?1023 cm(exp -2) at a distance of -(50-100)RS from the continuum source.

  7. X-ray absorption lines suggest matter infalling onto the central black-hole of Mrk 509

    NASA Astrophysics Data System (ADS)

    Dadina, M.; Cappi, M.; Malaguti, G.; Ponti, G.; de Rosa, A.

    2005-11-01

    Evidence for both red- and blue-shifted absorption lines due to ionized Fe in the X-ray spectrum of the Seyfert 1 galaxy Mrk 509 is reported. These features appear to be transient on time-scales as short as ~20 ks, and have been observed with two different satellites, BeppoSAX and XMM-Newton. The red- and blue-shifted lines are found at E˜5.5 keV and ~8.1-8.3 keV (rest-frame), respectively. The first is seen in one out of six BeppoSAX observations, the latter is seen by both satellites. Under the assumption that the absorption is due to either H- or He-like Iron, the implied velocities for the absorbing matter are v˜0.15-0.2 c, in both outward and inward directions. An alternative explanation in terms of gravitational red-shift for the ~5.5 keV line cannot be ruled out with the current data. We argue, however, that the temporal patterns and sporadic nature of the lines are more easily reconciled with models that predict important radial motions close to the central black hole, such as the "aborted jet" model, the "thundercloud" model, or magneto-hydrodynamical models of jets and accretion-disks.

  8. The KMOS GTO Cluster Program: Absorption Line Spectroscopy of Cluster Galaxies at z˜1.5

    NASA Astrophysics Data System (ADS)

    Houghton, R. C. W.; Davies, R. L.; Bender, R.; Beifiori, A.; Chan, J.; Cappellari, M.; Galametz, A.; Lewis, I.; Mendel, J. T.; Prichard, L.; Saglia, R. P.; Sharples, R.; Smith, R.; Stott, J.; Wilman, D.; Wegner, M.

    2016-10-01

    The GTO KMOS cluster program (P.I.s Davies & Bender) is investigating the absorption line spectra of individual cluster galaxies during the peak epoch of star formation at 1.3< z<2. The multiplexed nature of KMOS increases the observing efficiency by more than an order-of-magnitude compared to single integral field units, which is essential for obtaining deep spectra of many faint targets. Furthermore, the NIR capabilities of KMOS produce observations of the well understood rest-frame V-band indices at these redshifts, providing reliable measures of age and composition for the stellar populations. The kinematics coupled with archival HST photometry allow us to construct the fundamental plane and study the evolution in size and mass-to-light when the Universe was less than 5 Gyrs old. The program has already obtained spectra of ˜60 galaxies in three clusters with on-source exposure times of 15-20 hrs per galaxy. We present early results from these data and provide an overview of the project.

  9. Intersstellar absorption lines between 2000 and 3000 A in nearby stars observed with BUSS. [Balloon Borne Ultraviolet Spectrophotometer

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Lenhart, H.; Van Der Hucht, K. A.; Kamperman, T. M.; Kondo, Y.

    1986-01-01

    Spectra obtained between 2000 and 3000 A with the Balloon Borne Ultraviolet Spectrophotometer (BUSS) payload were examined for interstellar absorption lines. In bright stars, with spectral types between O9V and F5V, such lines were measured of Mg I, Mg II, Cr II, Mn II, Fe II and Zn II, with Cr II and Zn II data of especially high quality. Column densities were derived and interstellar abundances were determined for the above species. It was found that metal depletion increases with increasing E(B-V); Fe was most affected and Zn showed a small depletion for E(B-V) greater than 0.3 towards Sco-Oph. The metal column densities, derived for Alpha-And, Kappa-Dra, Alpha-Com, Alpha-Aql, and 29 Cyg were used to infer N(H I). It was shown that the ratio of Mg I to Na I is instrumental in determining the ionization structure along each line of sight. The spectra of Aql stars confirms the presence of large gas densities near Alpha-Oph. Moreover, data indicated that the Rho-Oph N(H I) value needs to be altered to 35 x 10 to the 20th/sq cm, based on observed ion ratios and analysis of the Copernicus L-alpha profile.

  10. Discovery of a narrow line quasar

    NASA Technical Reports Server (NTRS)

    Stocke, J.; Liebert, J.; Maccacaro, T.; Griffiths, R. E.; Steiner, J. E.

    1982-01-01

    A stellar object is reported which, while having X-ray and optical luminosities typical of quasars, has narrow permitted and forbidden emission lines over the observed spectral range. The narrow-line spectrum is high-excitation, the Balmer lines seem to be recombinational, and a redder optical spectrum than that of most quasars is exhibited, despite detection as a weak radio source. The object does not conform to the relationships between H-beta parameters and X-ray flux previously claimed for a large sample of the active galactic nuclei. Because reddish quasars with narrow lines, such as the object identified, may not be found by the standard techniques for the discovery of quasars, the object may be a prototype of a new class of quasars analogous to high-luminosity Seyfert type 2 galaxies. It is suggested that these objects cannot comprise more than 10% of all quasars.

  11. A Large, Economical Snapshot Survey of the Most-Luminous Quasars from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2011-09-01

    We propose to obtain Chandra ACIS-S snapshot exposures of 66 of the most optically luminous quasars found in the Sloan Digital Sky Survey Data Release 7 quasar catalog. Observations of these targets will substantially enlarge the sample of the most-luminous SDSS quasars having complete, sensitive X-ray coverage. Our targets represent the rapid growth phases of the most-massive black holes in the Universe, and these observations will provide the best statistical constraints to date upon the X-ray accretion emission from such growing black holes. They will break luminosity-redshift degeneracies in X-ray vs. optical/UV studies, identify remarkable new objects that provide insight into quasar physics, and reveal the best objects for follow-up X-ray spectroscopy.

  12. Do quasars have cosmologically long lifetimes

    NASA Technical Reports Server (NTRS)

    Chanan, G. A.

    1982-01-01

    An alternative explanation to gravitational lensing is examined, by which problems inherent in space density evolution are avoided without invoking gravitational effects. Apparent and unreal density evolution follows as an immediate consequence, if the quasar lifetimes that are the only free parameter in the model proposed are of the order of three billion years. If such lifetimes are the case, while quasars may occur less frequently than has been thought, the local density of quasars may have been grossly underestimated.

  13. THE DISAPPEARANCE OF A NARROW Mg II ABSORPTION SYSTEM IN QUASAR SDSS J165501.31+260517.4

    SciTech Connect

    Chen Zhifu; Qin Yiping; Gu Minfeng E-mail: ypqin@126.com

    2013-06-10

    In this paper, we present for the first time the discovery of the disappearance of a narrow Mg II {lambda}{lambda}2796, 2803 absorption system from the spectra of the quasar SDSS J165501.31+260517.4 (z{sub e} = 1.8671). This absorber is located at z{sub abs} = 1.7877 and has a velocity offset of 8423 km s{sup -1} with respect to the quasar. According to the velocity offset and the line variability, this narrow Mg II {lambda}{lambda}2796, 2803 absorption system is likely intrinsic to the quasar. Since the corresponding UV continuum emission and the absorption lines of another narrow Mg II {lambda}{lambda}2796, 2803 absorption system at z{sub abs} = 1.8656 are very stable, we believe that the disappearance of the absorption system is unlikely to be caused by the change in ionization of absorption gas. Instead, it likely arises from the motion of the absorption gas across the line of sight.

  14. Identifying a Damped Lyman Alpha Source in the Spectrum of Quasar SDSS J233544.18+150118.3

    NASA Astrophysics Data System (ADS)

    Browning, Benjamin; Takamiya, Marianne Y.; Chun, Mark Richard; Kulkarni, Varsha P.; Gharanfoli, Soheila

    2014-06-01

    We present the nebular properties of a DLA along the line-of-sight of the quasar SDSS J233544.18+150118.3. We obtained two IFU spectra with UH 2.2m/SNIFS approximately 4 arcseconds south of the quasar. A careful analysis of the sky spectra surrounding the DLA then allowed us to generate a high SNR sky spectrum. Through a close examination of our reduced images, we have successfully identified a faint but distinct source of [OII] emission at the same redshift reported elsewhere for the damped Lyman-Alpha absorption lines in the quasar's spectrum. Further investigation also revealed the presence of lower intensity H-beta emission lines at the same redshift. Based on the relative intensities of the [OII] and H-beta lines in the spectrum of this relatively dim intervening galaxy, we present some initial conclusions regarding nebular abundance and star formation rate in this newly identified galaxy, and how its properties compare with a representative sample of galaxies at similar redshifts and luminosities.

  15. Quasars and Active Galaxies: A Reading List.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1988-01-01

    Contains the annotated bibliographies of introductory books and sections of books, recent introductory articles, more advanced articles, and more advanced books dealing with quasars and active galaxies. (CW)

  16. DISCOVERY OF HYDROGEN FLUORIDE IN THE CLOVERLEAF QUASAR AT z = 2.56

    SciTech Connect

    Monje, R. R.; Phillips, T. G.; Lis, D. C.; Emprechtinger, M.; Peng, R.; Neufeld, D. A.

    2011-12-15

    We report the first detection of hydrogen fluoride (HF) toward a high-redshift quasar. Using the Caltech Submillimeter Observatory, we detect the HF J = 1-0 transition in absorption toward the Cloverleaf, a broad absorption line quasi-stellar object at z = 2.56. The detection is statistically significant at the {approx}6{sigma} level. We estimate a lower limit of 4 Multiplication-Sign 10{sup 14} cm{sup -2} for the HF column density and using a previous estimate of the hydrogen column density, we obtain a lower limit of 1.7 Multiplication-Sign 10{sup -9} for the HF abundance. This value suggests that, assuming a Galactic N(HF)/N{sub H} ratio, HF accounts for at least {approx}10% of the fluorine in the gas phase along the line of sight to the Cloverleaf quasar. This observation corroborates the prediction that HF should be a good probe of the molecular gas at high redshift. Measurements of the HF abundance as a function of redshift are urgently needed to better constrain the fluorine nucleosynthesis mechanism(s).

  17. The spectral energy distribution of the z=3 quasar: HS 1946+7658

    NASA Technical Reports Server (NTRS)

    Kuhn, O.; Bechtold, J.; Cutri, R.; Elvis, M.; Rieke, M.

    1995-01-01

    For the bright z = 3.02 radio-quiet quasar, HS 1946+7658, we have obtained radio to X-ray data within the past year: 5 GHz and 1415 MHz data from the Very Large Array (VLA); IR photometry at J, H, K, L prime (3.4 micrometers and N; IR spectroscopy; UBVRI photometry; optical spectrophotometry and high-resolution spectra; and an X-ray spectrum from the ROSAT Position Sensitive Proportional Counter (PSPC). The spectral energy distribution (SED) constructed from these data is compared to the mean SED for a set of low-redshift quasars, and while they appear generally similar, there are several differences. In relation to the low-redshift mean, the SED of HS 1946+7658 shows (1) only an upper limit at 10 micrometers (a rest wavelength of 2.5 micrometers, indicating that HS 1946+7658 does not have a strong near-IR excess such as hot dust would produce; (2) relatively weak Fe II and Balmer continuum emission at approximately 3000 A; and (3) a steeper turndown shortward of Ly alpha, even after correction for the Ly alpha forest absorption lines.

  18. Quasar redshifts: the intrinsic component

    NASA Astrophysics Data System (ADS)

    Hansen, Peter M.

    2016-09-01

    The large observed redshift of quasars has suggested large cosmological distances and a corresponding enormous energy output to explain the brightness or luminosity as seen at earth. Alternative or complementary sources of redshift have not been identified by the astronomical community. This study examines one possible source of additional redshift: an intrinsic component based on the plasma characteristics of high temperature and high electron density which are believed to be present.

  19. OPTOPUS observations of quasar candidates.

    NASA Astrophysics Data System (ADS)

    Cristiani, S.

    1987-06-01

    OPTOPUS is a fiber-optic instrument for multiple-object spectroscopy with the Boiler & Chivens spectrograph and a CCD detector at the 3.6-m telescope. The system has been described in detail by the Optical Instrumentation Group (1985, The Messenger 41,25). Its application for observing Halley's comet has been reported by Lund and Surdej (1986, The Messenger 43, 1). Here another "classical" use of multiple-object spectroscopy is presented: followup observations of quasar candidates.

  20. Molecular gas in the host galaxy of a quasar at redshift z = 6.42.

    PubMed

    Walter, Fabian; Bertoldi, Frank; Carilli, Chris; Cox, Pierre; Lo, K Y; Neri, Roberto; Fan, Xiaohui; Omont, Alain; Strauss, Michael A; Menten, Karl M

    2003-07-24

    Observations of molecular hydrogen in quasar host galaxies at high redshifts provide fundamental constraints on galaxy evolution, because it is out of this molecular gas that stars form. Molecular hydrogen is traced by emission from the carbon monoxide molecule, CO; cold H2 itself is generally not observable. Carbon monoxide has been detected in about ten quasar host galaxies with redshifts z > 2; the record-holder is at z = 4.69 (refs 1-3). Here we report CO emission from the quasar SDSS J114816.64 + 525150.3 (refs 5, 6) at z = 6.42. At that redshift, the Universe was only 1/16 of its present age, and the era of cosmic reionization was just ending. The presence of about 2 x 1010 M\\circ of H2 in an object at this time demonstrates that molecular gas enriched with heavy elements can be generated rapidly in the youngest galaxies.

  1. Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

    SciTech Connect

    Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M.; André, M.; Anton, G.; Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J.; Basa, S.; Biagi, S.; Capone, A.; Caramete, L.; and others

    2014-11-01

    This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 10{sup 46} erg s{sup -1}. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.

  2. Sloan Digital Sky Survey III photometric quasar clustering: Probing the initial conditions of the Universe

    SciTech Connect

    Ho, Shirley; Agarwal, Nishant; Myers, Adam D.; Lyons, Richard; Disbrow, Ashley; Seo, Hee -Jong; Ross, Ashley; Hirata, Christopher; Padmanabhan, Nikhil; O'Connell, Ross; Huff, Eric; Schlegel, David; Slosar, Anze; Weinberg, David; Strauss, Michael; Ross, Nicholas P.; Schneider, Donald P.; Bahcall, Neta; Brinkmann, J.; Palanque-Delabrouille, Nathalie; Yeche, Christophe

    2015-05-22

    Here, the Sloan Digital Sky Survey has surveyed 14,555 square degrees of the sky, and delivered over a trillion pixels of imaging data. We present the large-scale clustering of 1.6 million quasars between z=0.5 and z=2.5 that have been classified from this imaging, representing the highest density of quasars ever studied for clustering measurements. This data set spans 0~ 11,00 square degrees and probes a volume of 80 h–3 Gpc3. In principle, such a large volume and medium density of tracers should facilitate high-precision cosmological constraints. We measure the angular clustering of photometrically classified quasars using an optimal quadratic estimator in four redshift slices with an accuracy of ~ 25% over a bin width of δl ~ 10–15 on scales corresponding to matter-radiation equality and larger (0ℓ ~ 2–3).

  3. Sloan Digital Sky Survey III photometric quasar clustering: Probing the initial conditions of the Universe

    DOE PAGES

    Ho, Shirley; Agarwal, Nishant; Myers, Adam D.; ...

    2015-05-22

    Here, the Sloan Digital Sky Survey has surveyed 14,555 square degrees of the sky, and delivered over a trillion pixels of imaging data. We present the large-scale clustering of 1.6 million quasars between z=0.5 and z=2.5 that have been classified from this imaging, representing the highest density of quasars ever studied for clustering measurements. This data set spans 0~ 11,00 square degrees and probes a volume of 80 h–3 Gpc3. In principle, such a large volume and medium density of tracers should facilitate high-precision cosmological constraints. We measure the angular clustering of photometrically classified quasars using an optimal quadratic estimatormore » in four redshift slices with an accuracy of ~ 25% over a bin width of δl ~ 10–15 on scales corresponding to matter-radiation equality and larger (0ℓ ~ 2–3).« less

  4. Quasar target selection fiber efficiency

    SciTech Connect

    Newberg, H.; Yanny, B.

    1996-05-01

    We present estimates of the efficiency for finding QSOs as a function of limiting magnitude and galactic latitude. From these estimates, we have formulated a target selection strategy that should net 80,000 QSOs in the north galactic cap with an average of 70 fibers per plate, not including fibers reserved for high-redshift quasars. With this plan, we expect 54% of the targets to be QSOs. The North Galactic Cap is divided into two zones of high and low stellar density. We use about five times as many fibers for QSO candidates in the half of the survey with the lower stellar density as we use in the half with higher stellar density. The current plan assigns 15% of the fibers to FIRST radio sources; if these are not available, those fibers would be allocated to lower probability QSO sources, dropping the total number of QSOs by a small factor (5%). We will find about 17,000 additional quasars in the southern strips, and maybe a few more at very high redshift. Use was made of two data sets: the star and quasar simulated test data generated by Don Schneider, and the data from UJFN plate surveys by Koo (1986) and Kron (1980). This data was compared to results from the Palomar-Green Survey and a recent survey by Pat Osmer and collaborators.

  5. The intervening and associated O VI absorption-line systems in the ultraviolet spectrum of H1821+643

    NASA Astrophysics Data System (ADS)

    Savage, Blair D.; Tripp, Todd M.; Lu, Limin

    1998-02-01

    GHRS and FOS ultraviolet spectra of the bright QSO H1821+643 reveal the presence of strong O VI 1031.93, 1037.62 A absorption systems at z(abs) = 0.225 and 0.297, the latter being at the redshift of the QSO itself. Ground-based galaxy redshift measurements by us and others reveal two emission-line galaxies near the redshift of the intervening system at z(abs) = 0.225, suggesting the existence of a galaxy group at this redshift. The intervening O VI absorption system is also detected in H I but is not detected in the lines of Si II, Si IV, C IV, or N V. These ionization characteristics can be explained by a low-density, extended diffuse gas distribution that is photoionized by the metagalactic UV background if the gas has a metallicity of 0.1 times solar. Such a photoionized gas may be associated with the extended halo of the luminous intervening spiral galaxy at a projected distance of 100 h kpc, or with an intragroup medium. Alternatively, the absorption may be produced in hot collisionally ionized halo gas or in a hot intragroup medium. The associated system with z(abs) = 0.297 contains narrow and broad O VI absorption. The narrow absorption, which is also detected in H I, C III, C IV, and Si IV, can be modeled as gas photoionized by H1821+643 with roughly solar abundances. This gas is probably situated close to H1821+643. The broad O VI absorption that is centered at the emission redshift of H1821+643 may represent a weak and narrow example of the broad absorption line phenomena.

  6. NARROW Na AND K ABSORPTION LINES TOWARD T TAURI STARS: TRACING THE ATOMIC ENVELOPE OF MOLECULAR CLOUDS

    SciTech Connect

    Pascucci, I.; Simon, M. N.; Edwards, S.; Heyer, M.; Rigliaco, E.; Hillenbrand, L.; Gorti, U.; Hollenbach, D.

    2015-11-20

    We present a detailed analysis of narrow Na i and K i absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na i λ5889.95 line is detected toward all but one source, while the weaker K i λ7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within the circumstellar disk as the absorbing material. A comparison of Na i and CO detections and peak centroids demonstrates that the atomic gas and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na i radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na i and K i absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud–cloud interactions.

  7. The luminosity function of quasars and its evolution: A comparison of optically selected quasars and quasars found in radio catalogs

    NASA Technical Reports Server (NTRS)

    Petrosian, V.

    1973-01-01

    The luminosity function of quasars and its evolution are discussed, based on comparison of available data on optically selected quasars and quasars found in radio catalogs. It is assumed that the red shift of quasars is cosmological and the results are expressed in the framework of the Lambda = 0, Q sub Q = 1 cosmological model. The predictions of various density evolution laws are compared with observations of an optically selected sample of quasars and quasar samples from radio catalogs. The differences between the optical luminosity functions, the red shift distributions and the radio to optical luminosity ratios of optically selected quasars and radio quasars rule out luminosity functions where there is complete absence of correlation between radio and optical luminosities. These differences also imply that Schmidt's (1970) luminosity function, where there exists a statistical correlation between radio and optical luminosities, although may be correct for high red shift objects, disagrees with observation at low red shifts. These differences can be accounted for by postulating existence of two classes (1 and 2) of objects.

  8. Connecting the Silicate Dust and Gas Properties of Distant Galaxies Using Quasar Absorption Systems

    NASA Astrophysics Data System (ADS)

    Aller, Monique C.; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam; Lackey, Kyle; Dwek, Eli; Beiranvand, Nassim; Morrison, Sean

    2016-01-01

    We present recent results from our program investigating the silicate dust properties in distant galaxies using quasar absorption systems. The dust and gas properties of distant galaxies can be characterized by studying the absorption features produced by them along the sightlines to luminous background quasars. Based on our prior finding that silicate dust absorption in z<1.5 quasar absorption systems exhibits a range of optical depths and absorption feature substructures, suggestive of silicate grain property variations, we are investigating silicate dust absorption in quasar absorption systems toward quasars with archival Spitzer Space Telescope Infrared Spectrograph (IRS) spectra. We present our measurements of the 10 and/or 18 micron silicate dust absorption feature(s) in these systems, and discuss constraints on the grain properties, such as composition and crystallinity, based on the shape and substructure present in these features. We also investigate the correlations between the silicate dust properties and the reddening. Connections between the silicate dust and gas phase metal absorption properties can also be probed for some of our targets with archival ground-based spectra. These relationships will yield valuable insights into the star formation history and evolution of metals and dust. This work is supported by NASA through ADAP grant NNX14AG74G and by an award issued by JPL/Caltech, and from US-NSF grant AST-1108830 to the University of South Carolina.

  9. NEAR-INFRARED IMAGING OF SIX METAL-RICH QUASAR ABSORBER GALAXY FIELDS

    SciTech Connect

    Straka, Lorrie A.; Kulkarni, Varsha P.; York, Donald G.

    2011-06-15

    Absorption lines in quasar spectra allow us to locate and study intervening galaxies. In order to obtain a clearer picture of these absorber galaxies, we have used the Near-Infrared Camera Fabry-Perot System at Apache Point Observatory to obtain near-infrared broadband images in one or more filters (J and K{sub s} ) of six quasar fields containing metal-rich low-z damped or sub-damped Ly{alpha} systems. These data allow us to search for the galaxies and constrain their luminosities. Candidate absorber galaxies are detected at 2.''01-7.''38 separation from the quasar in three out of six fields in the J and K{sub s} bands at >3{sigma} level with luminosities ranging from log(L/L{sub sun}) = 10.44-10.36 in the J band (for E-Sc type galaxies) and log(L/L{sub sun}) = 11.59-10.03 in the K{sub s} band for our detections. We place limits on the remaining fields with no detections of log(L/L{sub sun}) <10.83-9.75 for the J band and log(L/L{sub sun}) <10.43-10.05 for the K{sub s} band. We are also able to utilize Sloan Digital Sky Survey spectra for each field to calculate optical fluxes and limits as well as limits on star formation rate via [O II]{lambda}3727 emission in spectra. Our data, combined with other recent imaging results for metal-rich absorbers, suggest a possible positive correlation between absorber metallicity and galaxy luminosity, although the samples are still small.

  10. Intervening Mg II absorption systems from the SDSS DR12 quasar spectra

    NASA Astrophysics Data System (ADS)

    Raghunathan, Srinivasan; Clowes, Roger G.; Campusano, Luis E.; Söchting, Ilona K.; Graham, Matthew J.; Williger, Gerard M.

    2016-12-01

    We present the catalogue of the Mg II absorption systems detected at a high significance level using an automated search algorithm in the spectra of quasars from the 12th data release of the Sloan Digital Sky Survey. A total of 266,433 background quasars were searched for the presence of absorption systems in their spectra. The continuum modelling for the quasar spectra was performed using a mean filter. A pseudo-continuum derived using a median filter was used to trace the emission lines. The absorption system catalogue contains 39,694 Mg II systems detected at a 6.0, 3.0σ level respectively for the two lines of the doublet. The catalogue was constrained to an absorption line redshift of 0.35 ≤ z2796 ≤ 2.3. The rest-frame equivalent width of the λ2796 line ranges between 0.2 ≤ Wr ≤ 6.2 Å. Using Gaussian noise-only simulations, we estimate a false positive rate of 7.7 per cent in the catalogue. We measured the number density ∂N2796/∂z of Mg II absorbers and find evidence for steeper evolution of the systems with Wr ≥ 1.2 Å at low redshifts (z2796 ≤ 1.0), consistent with other earlier studies. A suite of null tests over the redshift range 0.5 ≤ z2796 ≤ 1.5 was used to study the presence of systematics and selection effects like the dependence of the number density evolution of the absorption systems on the properties of the background quasar spectra. The null tests do not indicate the presence of any selection effects in the absorption catalogue if the quasars with spectral signal-to-noise level less than 5.0 are removed. The resultant catalogue contains 36,981 absorption systems. The Mg II absorption catalogue is publicly available and can be downloaded from the link http://srini.ph.unimelb.edu.au/mgii.php.

  11. Quasars: Active nuclei of young galaxies

    NASA Technical Reports Server (NTRS)

    Komberg, B. V.

    1980-01-01

    The hypothetical properties of 'young' galaxies and possible methods of observing them are discussed. It is proposed that star formation first takes place in the central regions of protogalaxies which may appear as quasar-like objects. An evolutionary scheme is outlined in which the radio quasars are transformed in time into the nuclei of radio galaxies.

  12. CONSTRAINING SUB-PARSEC BINARY SUPERMASSIVE BLACK HOLES IN QUASARS WITH MULTI-EPOCH SPECTROSCOPY. I. THE GENERAL QUASAR POPULATION

    SciTech Connect

    Shen, Yue; Liu, Xin; Loeb, Abraham; Tremaine, Scott

    2013-09-20

    We perform a systematic search for sub-parsec binary supermassive black holes (BHs) in normal broad-line quasars at z < 0.8, using multi-epoch Sloan Digital Sky Survey (SDSS) spectroscopy of the broad Hβ line. Our working model is that (1) one and only one of the two BHs in the binary is active; (2) the active BH dynamically dominates its own broad-line region (BLR) in the binary system, so that the mean velocity of the BLR reflects the mean velocity of its host BH; (3) the inactive companion BH is orbiting at a distance of a few R{sub BLR}, where R{sub BLR} ∼ 0.01-0.1 pc is the BLR size. We search for the expected line-of-sight acceleration of the broad-line velocity from binary orbital motion by cross-correlating SDSS spectra from two epochs separated by up to several years in the quasar rest frame. Out of ∼700 pairs of spectra for which we have good measurements of the velocity shift between two epochs (1σ error ∼40 km s{sup –1}), we detect 28 systems with significant velocity shifts in broad Hβ, among which 7 are the best candidates for the hypothesized binaries, 4 are most likely due to broad-line variability in single BHs, and the rest are ambiguous. Continued spectroscopic observations of these candidates will easily strengthen or disprove these claims. We use the distribution of the observed accelerations (mostly non-detections) to place constraints on the abundance of such binary systems among the general quasar population. Excess variance in the velocity shift is inferred for observations separated by longer than 0.4 yr (quasar rest frame). Attributing all the excess to binary motion would imply that most of the quasars in this sample must be in binaries, that the inactive BH must be on average more massive than the active one, and that the binary separation is at most a few times the size of the BLR. However, if this excess variance is partly or largely due to long-term broad-line variability, the requirement of a large population of close

  13. Abundances of O, Mg, S, Cr, Mn, Ti, Ni and Zn from absorption lines of neutral gas in the Large Magellanic Cloud in front of R136

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Fitzpatrick, E. L.; Savage, B. D.

    1985-01-01

    Weak absorption lines of C I, O I, Mg I, Mg II, Si I, Si II, P I, Cl I, Cr II, Mn II, Fe I, Ni II, Zn II, CO and C2 are detected in neutral gas in front of the 30 Doradus H II region by IUE spectra of R 136. The Large Magellanic Cloud abundances from the absorption lines are a factor of 2 or 3 below those of the Milky Way, in agreement with emission line study results. Neutral gas density and temperature are estimated from the observed excitation and ionization to be about 300/cu cm and 100 K, respectively; this implies a gas pressure of 30,000/cu cm K.

  14. VizieR Online Data Catalog: Narrow absorption lines of lensed QSO J1029+2623 (Misawa+, 2016)

    NASA Astrophysics Data System (ADS)

    Misawa, T.; Saez, C.; Charlton, J. C.; Eracleous, M.; Chartas, G.; Bauer, F. E.; Inada, N.; Uchiyama, H.

    2016-08-01

    We acquired high-resolution spectra of the brightest two of the three lensed images of the quasar SDSS J1029+2623, A and B with V=18.72 and 18.67mags, with the VLT using the Ultraviolet and Visual Echelle Spectrograph (UVES) in queue mode (ESO program 092.B-0512(A)). The observations were performed from 2014 January 28 to February 26, which is ~4yrs after the first observation on 2010 February 10 (Misawa+ 2013AJ....145...48M), and ~2 months before the third observation on 2014 April 4 (Misawa+ 2014ApJ...794L..20M) with Subaru using the High Dispersion Spectrograph (HDS). The wavelength coverage is 3300-6600Å with R~33000. Log of observations: -------------------------------------------------------------- Target Obs. date Instrument R Ref -------------------------------------------------------------- SDSS J1029+2623 A 2010 Feb 10 Subaru/HDS 30000 1 SDSS J1029+2623 A 2014 Jan 28-Feb 3 VLT/UVES 33000 2 SDSS J1029+2623 A 2014 Apr 4 Subaru/HDS 36000 3 SDSS J1029+2623 B 2010 Feb 10 Subaru/HDS 30000 1 SDSS J1029+2623 B 2014 Feb 4-26 VLT/UVES 33000 2 SDSS J1029+2623 B 2014 Apr 4 Subaru/HDS 36000 3 -------------------------------------------------------------- Ref: 1 = Misawa et al. 2013AJ....145...48M, 2 = This paper, 3 = Misawa et al. 2014ApJ...794L..20M -------------------------------------------------------------- (1 data file).

  15. Spectral anomalies of the light-induced drift effect caused by the velocity dependence of the collision broadening and shift of the absorption line

    NASA Astrophysics Data System (ADS)

    Parkhomenko, A. I.; Shalagin, Anatolii M.

    2013-02-01

    We have theoretically investigated the spectral features of the light-induced drift (LID) effect, arising due to the dependence of the collision broadening γ and shift Δ of the absorption line on the velocity of resonance particles, ν. It is shown that under certain conditions, account of this dependence can radically change the spectral shape of the LID signal, up to the appearance of additional zeros in the dependence of the drift velocity on the radiation frequency.

  16. Spectral anomalies of the light-induced drift effect caused by the velocity dependence of the collision broadening and shift of the absorption line

    SciTech Connect

    Parkhomenko, A I; Shalagin, Anatolii M

    2013-02-28

    We have theoretically investigated the spectral features of the light-induced drift (LID) effect, arising due to the dependence of the collision broadening {gamma} and shift {Delta} of the absorption line on the velocity of resonance particles, {nu}. It is shown that under certain conditions, account of this dependence can radically change the spectral shape of the LID signal, up to the appearance of additional zeros in the dependence of the drift velocity on the radiation frequency. (nonlinear optical phenomena)

  17. New Quasar Surveys with WIRO: Colors of ~1000 Quasars at 0 < z < 3

    NASA Astrophysics Data System (ADS)

    Witherspoon, Catherine; Bassett, Neil; Deam, Sophie; Dixon, Don; Griffith, Emily; Harvey, William; Lee, Daniel; Lyke, Bradley; Haze Nunez, Evan; Parziale, Ryan; Myers, Adam D.; Findlay, Joseph; Kobulnicky, Henry A.; Dale, Daniel A.

    2017-01-01

    We present the colors of quasars observed as part of an imaging campaign using the Wyoming Infrared Observatory (WIRO). A major goal of the campaign was to calibrate the magnitudes of point sources in the Sloan Digital Sky Survey (SDSS) photometric system using WIRO's new DoublePrime camera. The sample we study is comprised of approximately 1000 quasars with redshift 0 < z < 3 that were matched to spectroscopically confirmed quasars in SDSS Stripe 82. As expected from earlier imaging surveys of quasars, we find that quasars occupy a region of u-g vs. g-r color-color space that is distinct from that of stars. The quasar u-g colors are considerably bluer than those of the stars while quasar g-r colors are only slightly bluer than the g-r colors of the majority of the observed stars. There is a noticeable correlation between the quasar redshift and the corresponding u-g color. As the redshift of a quasar increases, its u-g color becomes redder. In the g-r vs. r-i and r-i vs. i-z color-color spaces, the quasars occupy regions that overlap with the regions occupied by the majority of the stars, again in excellent agreement with the expectation from earlier surveys.This work is supported by the National Science Foundation under REU grant AST 1560461.

  18. The FIRST-2MASS Red Quasar Survey

    SciTech Connect

    Glikman, E; Helfand, D J; White, R L; Becker, R H; Gregg, M D; Lacy, M

    2007-06-28

    Combining radio observations with optical and infrared color selection--demonstrated in our pilot study to be an efficient selection algorithm for finding red quasars--we have obtained optical and infrared spectroscopy for 120 objects in a complete sample of 156 candidates from a sky area of 2716 square degrees. Consistent with our initial results, we find our selection criteria--J-K > 1.7,R-K > 4.0--yield a {approx} 50% success rate for discovering quasars substantially redder than those found in optical surveys. Comparison with UVX- and optical color-selected samples shows that {approx}> 10% of the quasars are missed in a magnitude-limited survey. Simultaneous two-frequency radio observations for part of the sample indicate that a synchrotron continuum component is ruled out as a significant contributor to reddening the quasars spectra. We go on to estimate extinctions for our objects assuming their red colors are caused by dust. Continuum fits and Balmer decrements suggest E(B-V) values ranging from near zero to 2.5 magnitudes. Correcting the K-band magnitudes for these extinctions, we find that for K {le} 14.0, red quasars make up between 25% and 60% of the underlying quasar population; owing to the incompleteness of the 2MASS survey at fainter K-band magnitudes, we can only set a lower limit to the radio-detected red quasar population of > 20-30%.

  19. HUBBLE CAPTURES MERGER BETWEEN QUASAR AND GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image shows evidence fo r a merger between a quasar and a companion galaxy. This surprising result might require theorists to rethink their explanations for the nature of quasars, the most energetic objects in the universe. The bright central object is the quasar itself, located several billion light-years away. The two wisps on the (left) of the bright central object are remnants of a bright galaxy that have been disrupted by the mutual gravitational attraction between the quasar and the companion galaxy. This provides clear evidence for a merger between the two objects. Since their discovery in 1963, quasars (quasi-stellar objects) have been enigmatic because they emit prodigious amounts of energy from a very compact source. The most widely accepted model is that a quasar is powered by a supermassive black hole in the core of a galaxy. These new observations proved a challenge for theorists as no current models predict the complex quasar interactions unveiled by Hubble. The image was taken with the Wide Field Planetary Camera-2. Credit: John Bahcall, Institute for Advanced Study, NASA.

  20. In Search of Quasar Host Galaxies

    NASA Astrophysics Data System (ADS)

    Young, Jason; Eracleous, M.; Gronwall, C.; Shemmer, O.; Netzer, H.; Sturm, E.; Ciardullo, R.

    2011-01-01

    We present a study of the morphology and intensity of star formation in the host galaxies of eight Palomar-Green quasars using observations with the Hubble Space Telescope. Accretion-powered and star formation activity have been shown to coincide, motivating us to search for the star-forming regions in the host galaxies of quasars and to determine the star-formation rates. In this work we use calibrated narrow band emission line (H-beta and Pa-alpha) WFPC2 and NICMOS images as maps for total star formation rate. The main challenge in imaging quasar host galaxies is the separation of the quasar light from the galaxy light, especially in the case of z approximately 0.1 quasars in WFPC2 images where the PSF radius closely matches the expected host scale radius. To this this end we present a novel technique for image decomposition and subtraction of quasar light, which we have validated through extensive simulations using artificial quasar+galaxy images. The other significant challenge in mapping and measuring star forming regions is correcting for extinction, which we address using extinction maps created from the Pa-alpha/H-beta ratio. To determine the source of excitation, we utilize H-beta along with [OIII]5007 and [OII]3727 images in diagnostic line ratio (BPT) diagrams. We detect extended line emission in our targets on scales of order 1-2 kpc. A preliminary analysis suggests star formation rates of order 10 solar masses per year.

  1. Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Yaqoob, T.; Braito, V.; Dadina, M.

    2010-10-01

    Context. Blue-shifted Fe K absorption lines have been detected in recent years between 7 and 10 keV in the X-ray spectra of several radio-quiet AGNs. The derived blue-shifted velocities of the lines can often reach mildly relativistic values, up to 0.2-0.4c. These findings are important because they suggest the presence of a previously unknown massive and highly ionized absorbing material outflowing from their nuclei, possibly connected with accretion disk winds/outflows. Aims: The scope of the present work is to statistically quantify the parameters and incidence of the blue-shifted Fe K absorption lines through a uniform analysis on a large sample of radio-quiet AGNs. This allows us to assess their global detection significance and to overcome any possible publication bias. Methods: We performed a blind search for narrow absorption features at energies greater than 6.4 keV in a sample of 42 radio-quiet AGNs observed with XMM-Newton. A simple uniform model composed by an absorbed power-law plus Gaussian emission and absorption lines provided a good fit for all the data sets. We derived the absorption lines parameters and calculated their detailed detection significance making use of the classical F-test and extensive Monte Carlo simulations. Results: We detect 36 narrow absorption lines on a total of 101 XMM-Newton EPIC pn observations. The number of absorption lines at rest-frame energies higher than 7 keV is 22. Their global probability to be generated by random fluctuations is very low, less than 3 × 10-8, and their detection have been independently confirmed by a spectral analysis of the MOS data, with associated random probability <10-7. We identify the lines as Fe XXV and Fe XXVI K-shell resonant absorption. They are systematically blue-shifted, with a velocity distribution ranging from zero up to ~0.3c, with a peak and mean value at ~0.1c. We detect variability of the lines on both EWs and blue-shifted velocities among different XMM-Newton observations

  2. Merging Galaxies Create a Binary Quasar

    NASA Astrophysics Data System (ADS)

    2010-02-01

    Astronomers have found the first clear evidence of a binary quasar within a pair of actively merging galaxies. Quasars are the extremely bright centers of galaxies surrounding super-massive black holes, and binary quasars are pairs of quasars bound together by gravity. Binary quasars, like other quasars, are thought to be the product of galaxy mergers. Until now, however, binary quasars have not been seen in galaxies that are unambiguously in the act of merging. But images of a new binary quasar from the Carnegie Institution's Magellan telescope in Chile show two distinct galaxies with "tails" produced by tidal forces from their mutual gravitational attraction. "This is really the first case in which you see two separate galaxies, both with quasars, that are clearly interacting," says Carnegie astronomer John Mulchaey who made observations crucial to understanding the galaxy merger. Most, if not all, large galaxies, such as our galaxy the Milky Way, host super-massive black holes at their centers. Because galaxies regularly interact and merge, astronomers have assumed that binary super-massive black holes have been common in the Universe, especially during its early history. Black holes can only be detected as quasars when they are actively accreting matter, a process that releases vast amounts of energy. A leading theory is that galaxy mergers trigger accretion, creating quasars in both galaxies. Because most such mergers would have happened in the distant past, binary quasars and their associated galaxies are very far away and therefore difficult for most telescopes to resolve. The binary quasar, labeled SDSS J1254+0846, was initially detected by the Sloan Digital Sky Survey, a large scale astronomical survey of galaxies and over 120,000 quasars. Further observations by Paul Green of the Harvard-Smithsonian Center for Astrophysics and colleagues* using NASA's Chandra's X-ray Observatory and telescopes at Kitt Peak National Observatory in Arizona and Palomar

  3. New quasar surveys with WIRO: UV variability of known quasars behind M33

    NASA Astrophysics Data System (ADS)

    Deam, Sophie; Bassett, Neil; Dixon, Don; Griffith, Emily; Harvey, William Bradford; Lee, Daniel; Lyke, Bradley; Haze Nunez, Evan; Parziale, Ryan; Witherspoon, Catherine; Myers, Adam D.; Findlay, Joseph; Kobulnicky, Henry A.; Dale, Daniel A.

    2017-01-01

    Bright quasars are of particular interest when detected through the extended gaseous regions of local galaxies. Spectroscopy of UV-bright quasars, in particular, can be used to map the properties of the gas surrounding foreground galaxies in absorption. As our atmosphere absorbs UV flux, UV-bright quasars behind galaxies have been a regular target of spectroscopic campaigns with HST. The utility of such quasars is usually predicated on their UV emission at a single epoch. But, some quasars vary significantly in the UV, so objects which have shown a recent increase in UV flux may also be good candidates for spectroscopic follow-up with HST. We have analyzed the changes in u-band measurements of known quasars within a recent observational survey of quasars behind M33. Imaging in the u-band of a region around M33 containing ~35 known quasars was conducted at the Wyoming Infrared Observatory (WIRO) in the summer of 2016. We report on the known quasars which show the most u-band variability between our WIRO campaign and earlier SDSS observations. By correlating u-band observations with GALEX NUV, we determine the likelihood that an increase in u-band flux is a good indicator of an increase in flux further in the UV. This work is supported by the National Science Foundation under REU grant AST 1560461.

  4. THE MAGELLANIC QUASARS SURVEY. II. CONFIRMATION OF 144 NEW ACTIVE GALACTIC NUCLEI BEHIND THE SOUTHERN EDGE OF THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Kozlowski, Szymon; Jacyszyn, A. M.; Udalski, A.; Szymanski, M. K.; Poleski, R.; Kubiak, M.; Soszynski, I.; Pietrzynski, G.; Wyrzykowski, L.; Ulaczyk, K.; Pietrukowicz, P.; Kochanek, C. S. E-mail: ckochanek@astronomy.ohio-state.edu

    2012-02-10

    We quadruple the number of quasars known behind the Large Magellanic Cloud (LMC) from 56 (42 in the Optical Gravitational Lensing Experiment (OGLE)-III LMC fields) to 200 by spectroscopically confirming 169 (144 new) quasars from a sample of 845 observed candidates in four {approx}3 deg{sup 2} Anglo-Australian Telescope/AAOmega fields south of the LMC center. The candidates were selected based on their Spitzer mid-infrared colors, X-ray emission, and/or optical variability properties in the database of the OGLE microlensing survey. The contaminating sources can be divided into 115 young stellar objects (YSOs), 17 planetary nebulae (PNe), 39 Be and 24 blue stars, 68 red stars, and 12 objects classed as either YSO/PN or blue star/YSO. There are also 402 targets with either featureless spectra or too low signal-to-noise ratios for source classification. Our quasar sample is 50% (30%) complete at I = 18.6 mag (19.3 mag). The newly discovered active galactic nuclei (AGNs) provide many additional reference points for proper motion studies of the LMC, and the sample includes 10 bright AGNs (I < 18 mag) that are potentially suitable for absorption line studies. Their primary use, however, is for detailed studies of quasar variability, as they all have long-term, high cadence, continuously growing light curves from the microlensing surveys of the LMC. Completing the existing Magellanic Quasars Survey fields in the LMC and Small Magellanic Cloud should yield a sample of {approx}700 well-monitored AGNs, and expanding it to the larger regions covered by the OGLE-IV survey should yield a sample of {approx}3600 AGNs.

  5. The X-ray spectrum and spectral energy distribution of FIRST J155633.8+351758: a LoBAL quasar with a probable polar outflow

    NASA Astrophysics Data System (ADS)

    Berrington, Robert C.; Brotherton, Michael S.; Gallagher, Sarah C.; Ganguly, Rajib; Shang, Zhaohui; DiPompeo, Michael; Chatterjee, Ritaban; Lacy, Mark; Gregg, Michael D.; Hall, Patrick B.; Laurent-Muehleisen, S. A.

    2013-12-01

    We report the results of a new 60 ks Chandra X-ray Observatory Advanced CCD Imaging Spectrometer S-array (ACIS-S) observation of the reddened, radio-selected, highly polarized `FeLoBAL' quasar FIRST J1556+3517. We investigated a number of models of varied sophistication to fit the 531-photon spectrum. These models ranged from simple power laws to power laws absorbed by hydrogen gas in differing ionization states and degrees of partial covering. Preferred fits indicate that the intrinsic X-ray flux is consistent with that expected for quasars of similarly high luminosity, i.e. an intrinsic, dereddened and unabsorbed optical to X-ray spectral index of -1.7. We cannot tightly constrain the intrinsic X-ray power-law slope, but find indications that it is flat (photon index Γ = 1.7 or flatter at a >99 per cent confidence for a neutral hydrogen absorber model). Absorption is present, with a column density a few times 1023 cm-2, with both partially ionized models and partially covering neutral hydrogen models providing good fits. We present several lines of argument that suggest the fraction of X-ray emissions associated with the radio jet is not large. We combine our Chandra data with observations from the literature to construct the spectral energy distribution of FIRST J1556+3517 from radio to X-ray energies. We make corrections for Doppler beaming for the pole-on radio jet, optical dust reddening and X-ray absorption, in order to recover a probable intrinsic spectrum. The quasar FIRST J1556+3517 seems to be an intrinsically normal radio-quiet quasar with a reddened optical/UV spectrum, a Doppler-boosted but intrinsically weak radio jet and an X-ray absorber not dissimilar from that of other broad absorption line quasars.

  6. Incidence of strong Mg II absorbers towards different types of quasars

    NASA Astrophysics Data System (ADS)

    Joshi, Ravi; Chand, Hum; Gopal-Krishna

    2013-10-01

    We report the first comparative study of strong Mg II absorbers (Wr ≥ 1.0 Å) seen towards radio-loud quasars of core-dominated (CDQ) and lobe-dominated (LDQ) types and normal quasars (QSOs). The CDQ and LDQ samples were derived from the Sloan Digital Sky Survey Data Release 7 after excluding known `broad-absorption-line' quasars and blazars. The Mg II associated absorption systems having a velocity offset v < 5000 km s-1 from the systemic velocity of the background quasar were also excluded. Existing spectroscopic data for redshift-matched sightlines of 3975 CDQs and 1583 LDQs, covering an emission redshift range 0.39-4.87, were analysed and 864 strong Mg II absorbers were found, covering the redshift range 0.45-2.17. The conclusions reached using this well-defined large data set of strong Mg II absorbers are (i) the number density, dN/dz, towards CDQs shows a small, marginally significant excess (˜9 per cent at 1.5σ significance) over the estimate available for QSOs; (ii) in the redshift space, this difference is reflected in terms of a 1.6σ excess of dN/dz over the QSOs, within the narrow redshift interval 1.2-1.8; (iii) the dN/dβ distribution (with β = v/c) for CDQs shows a significant excess (at 3.75σ level) over the distribution found for a redshift- and luminosity-matched sample of QSOs, at β in the range 0.05-0.1. This leads us to infer that a significant fraction of strong Mg II absorption systems seen in this offset velocity range are probably associated with the CDQs and might be accelerated into the line of sight by their powerful jets and/or due to the accretion-disc outflows close to our direction. Support to this scenario comes from a consistency check in which we consider only the spectral range corresponding to β > 0.2. The computed redshift distribution for strong Mg II absorbers towards CDQs now shows excellent agreement with that known for QSOs, as indeed is expected for purely intervening absorption systems. Thus, it appears that for

  7. The B3-VLA quasar sample

    NASA Astrophysics Data System (ADS)

    Vigotti, M.; Vettolani, G.; Merighi, R.; Lahulla, J. F.; Pedani, M.

    1997-06-01

    A new low frequency radio selected Sample of 125 Quasars complete down to 100 mJy at 408 MHz is presented in this paper. The sample is a part of the B3-VLA sample: 1050 radiosources selected from the B3 catalogue at 408 MHz and observed at the VLA (1465 MHz, C and A configurations). Out of the 352 sources, identified on the POSS-I down to mr ~20.0, 172 are quasar candidates. In this paper we give the final assessment of the quasar sample from spectroscopic observations of the candidates. The final complete quasar sample consists of 125 objects. Furthermore 3 Bl Lac objects have been identified and two Bl Lac candidates. Tables 4, 5, 6 and Figs. 1, 2, 3, 4, 6 are also available in electronic form at the CDS via anonymous ftp to: cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html.

  8. Black-Hole Feedback in Quasars

    NASA Video Gallery

    This animation illustrates how black-hole feedback works in quasars. Dense gas and dust in the center simultaneously fuels the black hole and shrouds it from view. The black-hole wind propels large...

  9. Quasars, pulsars, black holes and HEAO's

    NASA Technical Reports Server (NTRS)

    Doolitte, R. F.; Moritz, K.; Whilden, R. D. C.

    1974-01-01

    Astronomical surveys are discussed by large X-ray, gamma ray, and cosmic ray instruments carried onboard high-energy astronomy observatories. Quasars, pulsars, black holes, and the ultimate benefits of the new astronomy are briefly discussed.

  10. Twin Quasars Tango And It's No Mirage

    NASA Astrophysics Data System (ADS)

    2002-03-01

    Scientists have unraveled a longstanding mystery about a rare double quasar system 11 billion light years from Earth using NASA's Chandra X-ray Observatory. These "twin" quasars, previously thought to be an optical illusion, were instead probably created by merging galaxies and may have been more common in the dense universe soon after the Big Bang. "When galaxies interact or merge, they become more active and luminous and can excite quasar activity in their centers," said Paul Green of the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass., who led the research team. "The quasars that make up these nearly identical twins appear to have been hatched in the same nest." The Chandra data show that the quasars - luminous galaxies powered by central supermassive black holes - are not mirror images caused by a cosmic phenomenon known as a "gravitational lens." Rather, these two quasars are distinct objects that were probably spawned when their host galaxies collided, energizing the flow of gas onto their central black holes. Quasar pairs that are seen close to one another on the sky and are at the same distance from Earth often turn out to be an illusion as part of a gravitationally lensed system. In these cases, the image of a single quasar has been split into two or more images as its light has been bent and focused on its way to Earth by the gravity of an intervening massive object like a galaxy, or a cluster of galaxies. Usually, the intervening mass shows up as a fainter galaxy or cluster of galaxies seen between or among the quasar images, confirming the cause of the illusion. The quasar pair Q2345+007 A, B was thought to be such an illusion because of the remarkably similar patterns of the light, or spectra, from the pair at both optical and ultraviolet wavelengths. Quasar Pair Q2345+007A,B X-ray/Optical Composite However, almost two decades after its discovery by optical astronomers, the identification of enough intervening material to "split" the

  11. Do quasars have cosmologically long lifetimes

    SciTech Connect

    Chanan, G.A.

    1982-01-01

    Turner and Tyson have independently suggested that the apparent evolution of quasars may be an artifact caused by (unseen) gravitational lenses; some of the problems inherent in the usual picture of space density evolution are thereby avoided. We discuss how these problems may be similarly avoided without invoking any such gravitational effects: apparent (and unreal) density evolution follows as an immediate consequence if quasar lifetimes (the only free parameter in our model) are of the order of 3 x 10/sup 9/ years. If the lifetimes are indeed this long, quasars may occur much less frequently than previously thought but, at the same time, the local density of quasars may have been grossly underestimated.

  12. Quasars as tracers of cosmic flows

    NASA Astrophysics Data System (ADS)

    Modzelewska, J.; Czerny, B.; Bilicki, M.; Hryniewicz, K.; Krupa, M.; Petrogalli, F.; Pych, W.; Kurcz, A.; Udalski, A.

    2016-10-01

    Quasars, as the most luminous persistent sources in the Universe, have broad applications for cosmological studies. In particular, they can be employed to directly measure the expansion history of the Universe, similarly to SNe Ia. The advantage of quasars is that they are numerous, cover a broad range of redshifts, up to z = 7, and do not show significant evolution of metallicity with redshift. The idea is based on the relation between the time delay of an emission line and the continuum, and the absolute monochromatic luminosity of a quasar. For intermediate redshift quasars, the suitable line is Mg II. Between December 2012 and March 2014, we performed five spectroscopic observations of the QSO CTS C30.10 (z = 0.900) using the South African Large Telesope (SALT), supplemented with photometric monitoring, with the aim of determining the variability of the line shape, changes in the total line intensity and in the continuum. We show that the method is very promising.

  13. Hidden quasars in ultraluminous infared galaxies

    SciTech Connect

    Brotherton, M S; Stanford, S A; Tran, H; van Breugel, W

    1998-08-27

    Abstract. Many ultraluminous infrared galaxies (ULIRGS) are pow- ered by quasars hidden in the center, but many are also powered by starbursts. A simply diagnostic diagram is proposed that can iden- tify obscured quasars in ULIRGs by their high-ionization emission lines ([O III]λ5007/Hβ ≳ 5), and "warm" IR color (ƒ2560 ≳ 0.25).

  14. Are there two types of quasars.

    NASA Technical Reports Server (NTRS)

    Chiu, B. C.; Morrison, P.; Sartori, L.

    1973-01-01

    Two types of quasars are postulated: type I, the vast majority of quasars, which are highly luminous and cosmologically distant, as shown by their redshifts; type II, a dwarf branch, that are products of a few remarkable explosions in nearby galaxies. It is shown that this hypothesis is consistent with redshift statistics and suggests a possible interpretation of such objects as BL Lac and OJ 287.

  15. Quasar x-ray spectra revisited

    NASA Technical Reports Server (NTRS)

    Shastri, P.; Wilkes, B. J.; Elvis, M.; Mcdowell, J.

    1992-01-01

    A sample of 45 quasars observed by the Imaging Proportional Counter (IPC) on the Einstein satellite is used to re-examine the relationship between the soft (0.2-3.5 keV) X-ray energy index and radio-loudness. We found the following: (1) the tendency for radio-loud quasars to have systematically flatter X-ray slopes than radio-quiet quasars (RQQ's) is confirmed with the soft X-ray excess having negligible effect; (2) there is a tendency for the flatness of the X-ray slope to correlate with radio core-dominance for radio-loud quasars, suggesting that a component of the X-ray emission is relativistically beamed; (3) for the RQQ's the soft X-ray slopes, with a mean of approximately 1.0, are consistent with the slopes found at higher energies (2-10 keV) although steeper than those observed for Seyfert 1 galaxies (also 2-10 keV) where the reflection model gives a good fit to the data; (4) the correlation of FeII emission line strength with X-ray energy index is confirmed for radio-quiet quasars using a subset of 18 quasars. The radio-loud quasars show no evidence for a correlation. This relation suggests a connection between the ionizing continuum and the line emission from the broad emission line region (BELR) of radio-quiet quasars, but in the opposite sense to that predicted by current photoionization models; and (5) the correlations of X-ray slope with radio core dominance and FeII equivalent width within the radio-loud and radio-quiet sub-classes respectively imply that the observed wide range of X-ray spectral slopes is real rather than due to the large measuring uncertainties for individual objects.

  16. Expanding Space, Quasars and St. Augustine's Fireworks

    NASA Astrophysics Data System (ADS)

    Chashchina, Olga; Silagadze, Zurab

    2015-10-01

    An attempt is made to explain time non-dilation allegedly observed in quasar light curves. The explanation is based on the assumption that quasar black holes are, in some sense, foreign for our Friedmann-Robertson-Walker universe and do not participate in the Hubble flow. Although at first sight such a weird explanation requires unreasonably fine-tuned Big Bang initial conditions, we find a natural justification for it using the Milne cosmological model as an inspiration.

  17. Dust in the Quasar Wind (Artist Concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Dusty grains -- including tiny specks of the minerals found in the gemstones peridot, sapphires and rubies -- can be seen blowing in the winds of a quasar, or active black hole, in this artist's concept. The quasar is at the center of a distant galaxy.

    Astronomers using NASA's Spitzer Space Telescope found evidence that such quasar winds might have forged these dusty particles in the very early universe. The findings are another clue in an ongoing cosmic mystery: where did all the dust in our young universe come from?

    Dust is crucial for efficient star formation as it allows the giant clouds where stars are born to cool quickly and collapse into new stars. Once a star has formed, dust is also needed to make planets and living creatures. Dust has been seen as far back as when the universe was less than a tenth of its current age, but how did it get there? Most dust in our current epoch forms in the winds of evolved stars that did not exist when the universe was young.

    Theorists had predicted that winds from quasars growing in the centers of distant galaxies might be a source of this dust. While the environment close to a quasar is too hot for large molecules like dust grains to survive, dust has been found in the cooler, outer regions. Astronomers now have evidence that dust is created in these outer winds.

    Using Spitzer's infrared spectrograph instrument, scientists found a wealth of dust grains in a quasar called PG2112+059 located at the center of a galaxy 8 billion light-years away. The grains - including corundum (sapphires and rubies); forsterite (peridot); and periclase (naturally occurring in marble) - are not typically found in galaxies without quasars, suggesting they might have been freshly formed in the quasar's winds.

  18. Varying alpha: New constraints from seasonal variations

    SciTech Connect

    Barrow, John D.; Shaw, Douglas J.

    2008-09-15

    We analyze the constraints obtained from new atomic clock data on the possible time variation of the fine structure 'constant' and the electron-proton mass ratio, and show how they are strengthened when the seasonal variation of the Sun's gravitational field at the Earth's surface is taken into account. We compare these bounds with those obtainable from tests of the weak equivalence principle and high redshift observations of quasar absorption spectra.

  19. Tracing dark energy with quasars

    NASA Astrophysics Data System (ADS)

    Šredzińska, Justyna; Czerny, Bożena; Bilicki, M.; Hryniewicz, K.; Krupa, M.; Kurcz, A.; Marziani, P.; Pollo, A.; Pych, W.; Udalski, A.

    2016-06-01

    The nature of dark energy, driving the accelerated expansion of the Universe, is one of the most important issues in modern astrophysics. In order to understand this phenomenon, we need precise astrophysical probes of the universal expansion spanning wide redshift ranges. Quasars have recently emerged as such a probe, thanks to their high intrinsic luminosities and, most importantly, our ability to measure their luminosity distances independently of redshifts. Here we report our ongoing work on observational reverberation mapping using the time delay of the Mg II line, performed with the South African Large Telescope (SALT). The concept of dark energy was introduced in the process of understanding the evolution of the Universe. This is one of the most interesting topic in modern astronomy followed by the discovery of the accelerated expansion of the Universe. Precise measurement of this effect is a key to understand the nature of this medium, and we need good probes to do that. Quasars appears as an ideal candidate for this purpose as these objects are highly luminous and detected in wide range of redshift. From Big Bang to present time a lot of things happened and we are able to see amazing structures of galaxies and stars. In the beginning of Universe everything was blurred in space and the concept of dark energy was introduced in the process of understanding its evolution. The discovery of the accelerated expansion of the Universe gives us possibility to define new interesting topics in modern astronomy. Although there are some theoretical explanation for the existence of dark energy, yet it has remained the biggest puzzle among the astronomers and physicist.

  20. Unveiling hidden black holes in the cosmic web: Dark matter halos of WISE quasars from Planck CMB lensing

    NASA Astrophysics Data System (ADS)

    Hickox, Ryan

    The WISE and Planck surveys have now produced groundbreaking data sets which, in concert, can be exploited to obtain revolutionary constraints on the evolution of structure in the Universe. One particularly powerful application of WISE has been to uncover millions of the previously "hidden" obscured quasars, rapidly growing supermassive black holes that are shrouded in gas and dust and so are not detectable using traditional ground-based optical and near-IR techniques. Recently, Planck has produced the most precise all-sky map to date of dark matter structures via the lensing of the cosmic microwave background (CMB). We propose to combine these data sets to obtain a uniquely powerful measurement of the link between rapidly growing black holes and their host dark matter structures, by cross-correlating the density field of WISE-selected quasars with the CMB lensing convergence maps obtained from Planck. This proposal will build on our current ADAP program (NNX12AE38G), which studies the host dark matter halos of WISE-selected quasars via spatial clustering. NNX12AE38G involves a detailed characterization of the redshifts, luminosities, and spectral energy distributions of WISE-selected quasars and uses new techniques to measure how quasars cluster around themselves. NNX12AE38G has contributed to more than 10 journal articles and 5 conference proceedings. Building on our current work, an even more complete understanding of the link between black holes and their host dark matter structures is possible if we employ an independent method for measuring the clustering bias (and thus characteristic halo mass) of the quasar population. This has recently become possible using CMB lensing maps. In the past two years, our team has conducted an initial analysis covering 2500 square degrees using WISE-selected quasars and lensing maps from the South Pole Telescope (Geach, Hickox, Myers et al., 2013), and have implemented this technique with Planck over part of the SDSS region

  1. Sloan Digital Sky Survey III photometric quasar clustering: probing the initial conditions of the Universe

    NASA Astrophysics Data System (ADS)

    Ho, Shirley; Agarwal, Nishant; Myers, Adam D.; Lyons, Richard; Disbrow, Ashley; Seo, Hee-Jong; Ross, Ashley; Hirata, Christopher; Padmanabhan, Nikhil; O'Connell, Ross; Huff, Eric; Schlegel, David; Slosar, Anže; Weinberg, David; Strauss, Michael; Ross, Nicholas P.; Schneider, Donald P.; Bahcall, Neta; Brinkmann, J.; Palanque-Delabrouille, Nathalie; Yèche, Christophe

    2015-05-01

    The Sloan Digital Sky Survey has surveyed 14,555 square degrees of the sky, and delivered over a trillion pixels of imaging data. We present the large-scale clustering of 1.6 million quasars between z=0.5 and z=2.5 that have been classified from this imaging, representing the highest density of quasars ever studied for clustering measurements. This data set spans 0~ 11,00 square degrees and probes a volume of 80 h-3 Gpc3. In principle, such a large volume and medium density of tracers should facilitate high-precision cosmological constraints. We measure the angular clustering of photometrically classified quasars using an optimal quadratic estimator in four redshift slices with an accuracy of ~ 25% over a bin width of δl ~ 10-15 on scales corresponding to matter-radiation equality and larger (0l ~ 2-3). Observational systematics can strongly bias clustering measurements on large scales, which can mimic cosmologically relevant signals such as deviations from Gaussianity in the spectrum of primordial perturbations. We account for systematics by employing a new method recently proposed by Agarwal et al. (2014) to the clustering of photometrically classified quasars. We carefully apply our methodology to mitigate known observational systematics and further remove angular bins that are contaminated by unknown systematics. Combining quasar data with the photometric luminous red galaxy (LRG) sample of Ross et al. (2011) and Ho et al. (2012), and marginalizing over all bias and shot noise-like parameters, we obtain a constraint on local primordial non-Gaussianity of fNL = -113+154-154 (1σ error). We next assume that the bias of quasar and galaxy distributions can be obtained independently from quasar/galaxy-CMB lensing cross-correlation measurements (such as those in Sherwin et al. (2013)). This can be facilitated by spectroscopic observations of the sources, enabling the redshift distribution to be completely determined, and allowing precise estimates of the bias

  2. Survey For Very High-Redshift Quasars

    NASA Astrophysics Data System (ADS)

    Lemley, S.; MacAlpine, G.

    1997-12-01

    I will present the results from the deep, three color survey for very high redshift quasars. The survey involved direct imaging through Gunn gri filters using a 2048 x 2048 STIS ccd chip and Cerro Tololo's Curtis Scmidt Telescope. Quasar candidates in the range 4.0 < z < 5.4 were selected based on the detection of the Lyman alpha line and the strong drop in the spectrum blueward of this. Because of this response, quasars are clearly located away from the stellar locus on g - r vs. r - i diagrams. Quasar candidates in this redshift range have large values of g - r and small values of r - i. To confirm the candidates as quasars, the multi-fiber spectroscope Hydra, located on the WIYN telescope, was used. To date, spectral confirmation has been completed for ten degrees out of the approximately fifteen square degress of survey area. Several quasars were discovered, and I will present their spectra and information on the viability of this technique.

  3. The quasars 1038 + 528 A and B

    NASA Technical Reports Server (NTRS)

    Marcaide, J. M.; Shapiro, I. I.; Gorenstein, M. V.; Corey, B. E.; Cotton, W. D.; Rogers, A. E. E.; Romney, J. D.; Schild, R. E.; Clark, T. A.; Preston, R. A.

    1985-01-01

    The results of VLBI observations of the quasars 1038 + 528 A and B at 2.8, 3.6, 13, and 18 cm at various times between November 1979 and March 1981 are reported. The observations and data calibration are described, as are the mapping and astrometric techniques applied in the study. Both quasars are found to have 'core-jet' morphologies. The core of the A quasar dominates its morphology at centrimetric wavelengths with the brightness temperature of its 400 pc long jet being about 1/100 that of the core. By contrast, the 'jet' in the B quasar is very short (about 70 pc); the tail of this jet has the steepest spectral index found to date in extragalactic compact sources, indicating that high electron losses are responsible for the shortness of the jet. No evidence for appreciable morphological change in the B quasar was found over the time span of the study, whereas a new feature may be emerging from the A quasar core at superluminal speed.

  4. Limits on MACHOs from microlensing in the double quasar Q0957+561

    NASA Astrophysics Data System (ADS)

    Schmidt, Robert; Wambsganss, Joachim

    1998-07-01

    The light curves of the two images of the double quasar Q0957+561 as obtained by Kundicet al. (1997) are almost identical, except for an overall time delay and scaling factor. This allows us to put limits on the amount of microlensing that took place during the time interval corresponding to the monitoring observations. We perform numerical simulations in which we model the microlensing behaviour of the (halo of the) lensing galaxy in the system. We test ``MACHO-masses'' ranging from 10(-8) to 10(-1) Msun and quasar sizes from 10(14) to 3x 10(15) cm. Statistically comparing the expected microlensing-induced changes from 100 000 simulated light curves over a period of 160 days with the (lack of) observed fluctuations, we can constrain regions in the parameter space of MACHO mass and quasar size with various degrees of confidence. In particular, a halo consisting of objects at the low end of our mass scale can be ruled out with high confidence for a small quasar size. A halo consisting of objects with 10(-2) or 10(-1) Msun cannot be ruled out yet, but it should produce MACHO induced fluctuations in future observations. We also test halos with only 50% or 25% of the mass in compact objects; constraints here are a bit less stringent.

  5. A possible close supermassive black-hole binary in a quasar with optical periodicity.

    PubMed

    Graham, Matthew J; Djorgovski, S G; Stern, Daniel; Glikman, Eilat; Drake, Andrew J; Mahabal, Ashish A; Donalek, Ciro; Larson, Steve; Christensen, Eric

    2015-02-05

    Quasars have long been known to be variable sources at all wavelengths. Their optical variability is stochastic and can be due to a variety of physical mechanisms; it is also well-described statistically in terms of a damped random walk model. The recent availability of large collections of astronomical time series of flux measurements (light curves) offers new data sets for a systematic exploration of quasar variability. Here we report the detection of a strong, smooth periodic signal in the optical variability of the quasar PG 1302-102 with a mean observed period of 1,884 ± 88 days. It was identified in a search for periodic variability in a data set of light curves for 247,000 known, spectroscopically confirmed quasars with a temporal baseline of about 9 years. Although the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. Such systems are an expected consequence of galaxy mergers and can provide important constraints on models of galaxy formation and evolution.

  6. THE HALO OCCUPATION DISTRIBUTION OF SDSS QUASARS

    SciTech Connect

    Richardson, Jonathan; Chatterjee, Suchetana; Nagai, Daisuke; Zheng Zheng; Shen Yue

    2012-08-10

    We present an estimate of the projected two-point correlation function (2PCF) of quasars in the Sloan Digital Sky Survey (SDSS) over the full range of one- and two-halo scales, 0.02 h{sup -1} Mpc < r{sub p} < 120 h{sup -1} Mpc. This was achieved by combining data from SDSS DR7 on large scales and Hennawi et al. (with appropriate statistical corrections) on small scales. Our combined clustering sample is the largest spectroscopic quasar clustering sample to date, containing {approx}48, 000 quasars in the redshift range 0.4 {approx}< z {approx}< 2.5 with median redshift 1.4. We interpret these precise 2PCF measurements within the halo occupation distribution (HOD) framework and constrain the occupation functions of central and satellite quasars in dark matter halos. In order to explain the small-scale clustering, the HOD modeling requires that a small fraction of z {approx} 1.4 quasars, f{sub sat} = (7.4 {+-} 1.4) Multiplication-Sign 10{sup -4}, be satellites in dark matter halos. At z {approx} 1.4, the median masses of the host halos of central and satellite quasars are constrained to be M{sub cen} = 4.1{sup +0.3}{sub -0.4} Multiplication-Sign 10{sup 12} h{sup -1} M{sub Sun} and M{sub sat} = 3.6{sup +0.8}{sub -1.0} Multiplication-Sign 10{sup 14} h{sup -1} M{sub Sun }, respectively. To investigate the redshift evolution of the quasar-halo relationship, we also perform HOD modeling of the projected 2PCF measured by Shen et al. for SDSS quasars with median redshift 3.2. We find tentative evidence for an increase in the mass scale of quasar host halos-the inferred median mass of halos hosting central quasars at z {approx} 3.2 is M{sub cen} = 14.1{sup +5.8}{sub -6.9} Multiplication-Sign 10{sup 12} h{sup -1} M{sub Sun }. The cutoff profiles of the mean occupation functions of central quasars reveal that quasar luminosity is more tightly correlated with halo mass at higher redshifts. The average quasar duty cycle around the median host halo mass is inferred to be f{sub q

  7. Infrared heterodyne spectroscopy of astronomical and laboratory sources at 8.5 micron. [absorption line profiles of nitrogen oxide and black body emission from Moon and Mars

    NASA Technical Reports Server (NTRS)

    Mumma, M.; Kostiuk, T.; Cohen, S.; Buhl, D.; Vonthuna, P. C.

    1974-01-01

    The first infrared heterodyne spectrometer using tuneable semiconductor (PbSe) diode lasers has been constructed and was used near 8.5 micron to measure absorption line profiles of N2O in the laboratory and black body emission from the Moon and from Mars. Spectral information was recorded over a 200 MHz bandwidth using an 8-channel filter bank. The resolution was 25 MHz and the minimum detectable (black body) power was 1 x 10 to the minus 16th power watts for 8 minutes of integration. The results demonstrate the usefulness of heterodyne spectroscopy for the study of remote and local sources in the infrared.

  8. Are Quasar Jets Matter Or Poynting Flux Dominated?

    SciTech Connect

    Sikora, Marek; Madejski, Greg M.; Lasota, Jean-Pierre; Begelman, Mitchell C.; /JILA, Boulder

    2005-10-03

    If quasar jets are accelerated by magnetic fields but terminate as matter dominated, where and how does the transition occur between the Poynting-dominated and matter-dominated regimes? To address this question, we study constraints which are imposed on the jet structure by observations at different spatial scales. We demonstrate that observational data are consistent with a scenario where the acceleration of a jet occurs within 10{sup 3-4}R{sub g}. In this picture, the non-thermal flares--important defining attributes of the blazar phenomenon--are produced by strong shocks formed in the region where the jet inertia becomes dominated by matter. Such shocks may be formed due to collisions between the portions of a jet accelerated to different velocities, and the acceleration differentiation is very likely to be related to global MHD instabilities.

  9. Quasars Are Not Light Bulbs: Testing Models of Quasar Lifetimes with the Observed Eddington Ratio Distribution

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Hernquist, Lars

    2009-06-01

    We use the observed distribution of Eddington ratios as a function of supermassive black hole (BH) mass to constrain models of quasar/active galactic nucleus (AGN) lifetimes and light curves. Given the observed (well constrained) AGN luminosity function, a particular model for AGN light curves L(t) or, equivalently, the distribution of AGN lifetimes (time above a given luminosity t(>L)) translates directly and uniquely (without further assumptions) to a predicted distribution of Eddington ratios at each BH mass. Models for self-regulated BH growth, in which feedback produces a self-regulating "decay" or "blowout" phase after the AGN reaches some peak luminosity/BH mass and begins to expel gas and shut down accretion, make specific predictions for the light curves/lifetimes, distinct from, e.g., the expected distribution if AGN simply shut down by gas starvation (without feedback) and very different from the prediction of simple phenomenological "light bulb" scenarios. We show that the present observations of the Eddington ratio distribution, spanning nearly 5 orders of magnitude in Eddington ratio, 3 orders of magnitude in BH mass, and redshifts z = 0-1, agree well with the predictions of self-regulated models, and rule out phenomenological "light bulb" or pure exponential models, as well as gas starvation models, at high significance (~5σ). We also compare with observations of the distribution of Eddington ratios at a given AGN luminosity, and find similar good agreement (but show that these observations are much less constraining). We fit the functional form of the quasar lifetime distribution and provide these fits for use, and show how the Eddington ratio distributions place precise, tight limits on the AGN lifetimes at various luminosities, in agreement with model predictions. We compare with independent estimates of episodic lifetimes and use this to constrain the shape of the typical AGN light curve, and provide simple analytic fits to these for use in

  10. Insights on the X-ray weak quasar phenomenon from XMM-Newton monitoring of PHL 1092

    NASA Astrophysics Data System (ADS)

    Miniutti, Giovanni; Fabian, Andy; Gallo, Luigi; Brandt, Niel; Schneider, Donald

    2012-09-01

    PHL 1092 is a z~0.4 high-luminosity counterpart of the class of Narrow Line Seyfert 1 galaxies. In 2008, PHL 1092 was found to be in a remarkably low X-ray flux state during an XMM-Newton observation. Its 2 keV flux density had dropped by a factor of ~260 with respect to a previous observation performed 4.5 yr earlier. The UV flux remained almost constant, resulting in a significant steepening of the optical-to-X-ray slope alpha_ox from -1.57 to -2.51, making PHL 1092 one of the most extreme X-ray weak quasars with no observed broad absorption lines (BALs) in the UV. We have monitored the source since 2008 with XMM-Newton, producing a simultaneous UV and X-ray database spanning almost 10 yr in total in the activity of the source. We apply a series of physically motivated models to the data with the goal of explaining as self-consistently as possible the UV-to-X-ray spectral energy distribution (SED) and the extreme X-ray and alpha_ox variability. We discuss our results in the context of the class of non-BAL X-ray weak quasars and so-called PHL 1811 analogs.

  11. Using observations of distant quasars to constrain quantum gravity

    NASA Astrophysics Data System (ADS)

    Perlman, E. S.; Ng, Y. J.; Floyd, D. J. E.; Christiansen, W. A.

    2011-11-01

    Aims: The small-scale nature of spacetime can be tested with observations of distant quasars. We comment on a recent paper by Tamburini et al. (2011, A&A, 533, A71) which claims that Hubble Space Telescope (HST) observations of the most distant quasars place severe constraints on models of foamy spacetime. Methods: If space is foamy on the Planck scale, photons emitted from distant objects will accumulate uncertainties in distance and propagation directions thus affecting the expected angular size of a compact object as a function of redshift. We discuss the geometry of foamy spacetime, and the appropriate distance measure for calculating the expected angular broadening. We also address the mechanics of carrying out such a test. We draw upon our previously published work on this subject, which carried out similar tests as Tamburini et al. and also went considerably beyond their work in several respects. Results: When calculating the path taken by photons as they travel from a distant source to Earth, one must use the comoving distance rather than the luminosity distance. This then also becomes the appropriate distance to use when calculating the angular broadening expected in a distant source. The use of the wrong distance measure causes Tamburini et al. to overstate the constraints that can be placed on models of spacetime foam. In addition, we consider the impact of different ways of parametrizing and measuring the effects of spacetime foam. Given the variation of the shape of the point-spread function on the chip, as well as observation-specific factors, it is important to select carefully - and document - the comparison stars used as well as the methods used to compute the Strehl ratio.

  12. NASA's Chandra Finds Evidence for Quasar Ignition

    NASA Astrophysics Data System (ADS)

    2006-03-01

    New data from NASA's Chandra X-ray Observatory may provide clues to how quasars "turn on." Since the discovery of quasars over 40 years ago, astronomers have been trying to understand the conditions surrounding the birth of these immensely powerful objects. Hot, X-ray producing regions around two distant quasars observed by Chandra are thought to have formed during their activation. These features are located tens of thousands of light years from the central supermassive black holes thought to power the quasars. "The X-ray features are likely shock waves that could be a direct result of the turning on of the quasar about 4 billion years ago," said Alan Stockton of the University of Hawaii in Honolulu, and lead author of a report on this work published recently in The Astrophysical Journal. The quasars, 4C37.43 and 3C249.1, showed no evidence for the existence of a much larger envelope of hot gas around the features, nor were the observed X-ray regions associated with radio waves from the quasars. These factors rule out possible explanations for the X-ray emitting clouds, such as the cooling of hot intergalactic gas, or heating by high-energy jets from the quasars. Chandra X-ray Image of 4C37.43 Chandra X-ray Image of 4C37.43 "The best explanation for our observations is that a burst of star formation, or the activation of the quasar itself, is driving an enormous amount of gas away from the quasar's host galaxy at extremely high speeds," said Hai Fu, a coauthor of the study who is also from the University of Hawaii. Computer simulations of the formation of stars and the growth of black holes during a collision between two galaxies are consistent with this picture. The simulations, performed by Tiziana Di Matteo of Carnegie-Mellon University in Pittsburgh, Pennsylvania, and colleagues, show that the merger of galaxies drives gas toward the central regions where it triggers a burst of star formation and provides fuel for the growth of a central black hole. The inflow

  13. A new limit on the variation of the fine-structure constant using absorption line multiplets in the early universe

    NASA Astrophysics Data System (ADS)

    Thong, Le Duc

    2015-08-01

    One of the key questions of modern physics concerns the possibility that physical constants vary over space and time during the history of the universe. The Standard Model of physics is built on these constants, but it does not provide any explanation for their values, nor requires their constancy over space and time. Here we set a new limit on possible spatial and temporal variations of the fine-structure constant , by comparing transitions line multiplets in an ensemble of Fe II 1608, 2344, 2374, 2383, 2587 and 2600 observed in the early universe with those measured in the laboratory. Based on the optical spectra observations of QSO HE 0515-4414, we deduced a constraint of at redshift z = 1.15. This is at present the tightest limit on at early cosmological epochs compared to the published results in the literature.

  14. Powerful Quasar Outflows at High Redshifts

    NASA Astrophysics Data System (ADS)

    Aljanahi, Sara; Robert Scott Barrows

    2017-01-01

    Powerful quasar outflows can be driven by radiation pressure or radio jets, and they are capable of effecting the evolution of their host galaxies, particularly at high-redshifts (z~2)) when the quasar density peaks. We present a multi-wavelength analysis of 131 quasar outflows at high-redshifts (0.8quasar energy is coupled with the energy being emitted by the radiation pressure from the accretion disk. Three of the quasars are found in the Hubble Space Telescope archives, with two of them showing clear signs of galaxy interactions/mergers, and a fraction of 0.4 show evidence of interactions from SDSS imaging. These combined results suggests that galaxy interactions may be the triggers of enhanced accretion onto the nuclear supermassive black holes of this sample, with the corresponding enhanced radiation pressure driving the outflows. Furthermore, the high-redshift nature of this sample has pushed the systematic study of quasar outflows closer to the epoch in which quasar feedback is likely to have been important in galaxy evolution.

  15. SDSS J163459.82+204936.0: A Ringed Infrared-luminous Quasar with Outflows in Both Absorption and Emission Lines

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Juan; Zhou, Hong-Yan; Jiang, Ning; Wu, Xufen; Lyu, Jianwei; Shi, Xiheng; Shu, Xinwen; Jiang, Peng; Ji, Tuo; Wang, Jian-Guo; Wang, Shu-Fen; Sun, Luming

    2016-05-01

    SDSS J163459.82+204936.0 is a local (z = 0.1293) infrared-luminous quasar with L IR = 1011.91 {L}⊙ . We present a detailed multiwavelength study of both the host galaxy and the nucleus. The host galaxy, appearing as an early-type galaxy in the optical images and spectra, demonstrates violent, obscured star formation activities with SFR ≈ 140 {M}⊙ yr-1, estimated from either the polycyclic aromatic hydrocarbon emission or IR luminosity. The optical to NIR spectra exhibit a blueshifted narrow cuspy component in Hβ, He i λλ5876, 10830, and other emission lines consistently with an offset velocity of ≈900 {km} {{{s}}}-1, as well as additional blueshifting phenomena in high-ionization lines (e.g., a blueshifted broad component of He i λ10830 and the bulk blueshifting of [O iii]λ5007), while there exist blueshifted broad absorption lines (BALs) in Na i D and He i λλ3889, 10830, indicative of the active galactic nucleus outflows producing BALs and emission lines. Constrained mutually by the several BALs in the photoionization simulations with Cloudy, the physical properties of the absorption line outflow are derived as follows: density 104 < n H ≲ 105 cm-3, ionization parameter 10-1.3 ≲ U ≲ 10-0.7 , and column density 1022.5 ≲ N H ≲ 1022.9 cm-2, which are similar to those derived for the emission line outflows. This similarity suggests a common origin. Taking advantages of both the absorption lines and outflowing emission lines, we find that the outflow gas is located at a distance of ˜48-65 pc from the nucleus and that the kinetic luminosity of the outflow is 1044-1046 {erg} {{{s}}}-1. J1634+2049 has a off-centered galactic ring on the scale of ˜30 kpc that is proved to be formed by a recent head-on collision by a nearby galaxy for which we spectroscopically measure the redshift. Thus, this quasar is a valuable object in the transitional phase emerging out of dust enshrouding as depicted by the co-evolution scenario invoking galaxy merger (or

  16. A HIGH RESOLUTION VIEW OF THE WARM ABSORBER IN THE QUASAR MR 2251-178

    SciTech Connect

    Reeves, J. N.; Gofford, J.; Nardini, E.; Porquet, D.; Braito, V.; Turner, T. J.; Crenshaw, D. M.; Kraemer, S. B.

    2013-10-20

    High resolution X-ray spectroscopy of the warm absorber in a nearby quasar, MR 2251-178 (z = 0.06398), is presented. The observations were carried out in 2011 using the Chandra High Energy Transmission Grating (HETG) and the XMM-Newton Reflection Grating Spectrometer, with net exposure times of approximately 400 ks each. A multitude of absorption lines from C to Fe are detected, revealing at least three warm absorbing components ranging in ionization parameter from log (ξ/erg cm s{sup –1}) = 1-3 with outflow velocities ∼< 500 km s{sup –1}. The lowest ionization absorber appears to vary between the Chandra and XMM-Newton observations, which implies a radial distance of between 9 and 17 pc from the black hole. Several broad soft X-ray emission lines are strongly detected, most notably from He-like oxygen, with FWHM velocity widths of up to 10,000 km s{sup –1}, consistent with an origin from broad-line region (BLR) clouds. In addition to the warm absorber, gas partially covering the line of sight to the quasar appears to be present, with a typical column density of N{sub H} = 10{sup 23} cm{sup –2}. We suggest that the partial covering absorber may arise from the same BLR clouds responsible for the broad soft X-ray emission lines. Finally, the presence of a highly ionized outflow in the iron K band from both the 2002 and 2011 Chandra HETG observations appears to be confirmed, which has an outflow velocity of –15600 ± 2400 km s{sup –1}. However, a partial covering origin for the iron K absorption cannot be excluded, resulting from low ionization material with little or no outflow velocity.

  17. Ritz wavelengths of Fe I, Si II and Ni II for quasar absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Nave, Gillian

    2016-01-01

    The study of absorption lines in the spectra of galaxies along the line of sight to distant quasars can give important information about the abundances, ionization and kinematics of atoms within these galaxies. They have also been used to study the variability of the fine structure constant at high redshifts. However, the laboratory wavelengths need to be known to better than 6 parts in 108 (20 ms-1). A paper by M. Murphy and J. C. Berengut (2014, MNRAS 438,388) includes a table of spectral lines for which the laboratory wavelength uncertainties are greater than this, including 13 resonance lines of Fe I, 11 lines of Ni II, and 4 lines of Si II.Improved wavelengths for these lines were derived by re-analyzing archival spectra of iron hollow cathode lamps and a silicon carbide Penning discharge lamp. These spectra have previously been used in a comprehensive analysis of the spectrum of Fe I (Nave et al. 1994, ApJS 94, 221) and in a study of Si II, Si IV, and C IV for quasar spectroscopy (Griesmann & Kling, 2000, ApJ 536, L113). By re-optimizing the energy levels of Fe I, the absolute uncertainty of the resonance lines has been reduced by over a factor of 2 and the relative uncertainty by an order of magnitude. A similar analysis for Si II gives a improved values for the resonance lines with wavelength uncertainties of around 4 parts in 108. Analysis of new spectra of Ni II is in progress.

  18. Discovery of a bright quasar without a massive host galaxy.

    PubMed

    Magain, Pierre; Letawe, Géraldine; Courbin, Frédéric; Jablonka, Pascale; Jahnke, Knud; Meylan, Georges; Wisotzki, Lutz

    2005-09-15

    A quasar is thought to be powered by the infall of matter onto a supermassive black hole at the centre of a massive galaxy. Because the optical luminosity of quasars exceeds that of their host galaxy, disentangling the two components can be difficult. This led in the 1990s to the controversial claim of the discovery of 'naked' quasars. Since then, the connection between quasars and galaxies has been well established. Here we report the discovery of a quasar lying at the edge of a gas cloud, whose size is comparable to that of a small galaxy, but whose spectrum shows no evidence for stars. The gas in the cloud is excited by the quasar itself. If a host galaxy is present, it is at least six times fainter than would normally be expected for such a bright quasar. The quasar is interacting dynamically with a neighbouring galaxy, whose gas might be feeding the black hole.

  19. Beacons in Time: Maarten Schmidt and the Discovery of Quasars.

    ERIC Educational Resources Information Center

    Preston, Richard

    1988-01-01

    Tells the story of Maarten Schmidt and the discovery of quasars. Discusses the decomposition of light, crucial observations and solving astronomical mysteries. Describes spectroscopic analysis used in astronomy and its application to quasars. (CW)

  20. THE SUBARU HIGH-z QUASAR SURVEY: DISCOVERY OF FAINT z ∼ 6 QUASARS

    SciTech Connect

    Kashikawa, Nobunari; Furusawa, Hisanori; Niino, Yuu; Ishizaki, Yoshifumi; Onoue, Masafusa; Toshikawa, Jun; Ishikawa, Shogo; Willott, Chris J.; Im, Myungshin; Shimasaku, Kazuhiro; Ouchi, Masami; Hibon, Pascale

    2015-01-01

    We present the discovery of one or two extremely faint z ∼ 6 quasars in 6.5 deg{sup 2} utilizing a unique capability of the wide-field imaging of the Subaru/Suprime-Cam. The quasar selection was made in (i'-z{sub B} ) and (z{sub B} -z{sub R} ) colors, where z{sub B} and z{sub R} are bandpasses with central wavelengths of 8842 Å and 9841 Å, respectively. The color selection can effectively isolate quasars at z ∼ 6 from M/L/T dwarfs without the J-band photometry down to z{sub R} < 24.0, which is 3.5 mag deeper than the Sloan Digital Sky Survey (SDSS). We have selected 17 promising quasar candidates. The follow-up spectroscopy for seven targets identified one apparent quasar at z = 6.156 with M {sub 1450} = –23.10. We also identified one possible quasar at z = 6.041 with a faint continuum of M {sub 1450} = –22.58 and a narrow Lyα emission with HWHM =427 km s{sup –1}, which cannot be distinguished from Lyman α emitters. We derive the quasar luminosity function at z ∼ 6 by combining our faint quasar sample with the bright quasar samples by SDSS and CFHQS. Including our data points invokes a higher number density in the faintest bin of the quasar luminosity function than the previous estimate employed. This suggests a steeper faint-end slope than lower z, though it is yet uncertain based on a small number of spectroscopically identified faint quasars, and several quasar candidates still remain to be diagnosed. The steepening of the quasar luminosity function at the faint end does increase the expected emission rate of the ionizing photon; however, it only changes by a factor of approximately two to six. This was found to still be insufficient for the required photon budget of reionization at z ∼ 6.

  1. A Survey of z>5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z~6

    NASA Astrophysics Data System (ADS)

    Fan, Xiaohui; Narayanan, Vijay K.; Lupton, Robert H.; Strauss, Michael A.; Knapp, Gillian R.; Becker, Robert H.; White, Richard L.; Pentericci, Laura; Leggett, S. K.; Haiman, Zoltán; Gunn, James E.; Ivezić, Željko; Schneider, Donald P.; Anderson, Scott F.; Brinkmann, J.; Bahcall, Neta A.; Connolly, Andrew J.; Csabai, István; Doi, Mamoru; Fukugita, Masataka; Geballe, Tom; Grebel, Eva K.; Harbeck, Daniel; Hennessy, Gregory; Lamb, Don Q.; Miknaitis, Gajus; Munn, Jeffrey A.; Nichol, Robert; Okamura, Sadanori; Pier, Jeffrey R.; Prada, Francisco; Richards, Gordon T.; Szalay, Alex; York, Donald G.

    2001-12-01

    We present the results from a survey of i-dropout objects selected from ~1550 deg2 of multicolor imaging data from the Sloan Digital Sky Survey to search for luminous quasars at z>~5.8. Objects with i*-z*>2.2 and z*<20.2 are selected, and follow-up J-band photometry is used to separate L- and T-type cool dwarfs from high-redshift quasars. We describe the discovery of three new quasars, SDSSp J083643.85+005453.3 (z=5.82), J130608.26+035626.3 (z=5.99), and J103027.10+052455.0 (z=6.28). The quasar SDSSp J083643.85+005453.3 is a radio source with flux of 1.1 mJy at 20 cm. The spectra of all three quasars show strong and broad Lyα+N V emission lines and very strong Lyα forest absorption, with a mean continuum decrement DA>0.90. The ARC 3.5 m spectrum of SDSSp J103027.10+052455.0 shows that over a range of ~300 Å immediately blueward of the Lyα emission, the average transmitted flux is only 0.003+/-0.020 times that of the continuum level, consistent with zero flux over a ~300 Å range of the Lyα forest region and suggesting a tentative detection of the complete Gunn-Peterson trough. The existence of strong metal lines in the quasar spectra suggests early metal enrichment in the quasar environment. The three new objects, together with the previously published z=5.8 quasar SDSSp J104433.04-012502.2, form a complete color-selected flux-limited sample at z>~5.8. We estimate the selection function of this sample, taking into account the estimated variations in the quasar spectral energy distribution, as well as observational photometric errors. We find that at z=6, the comoving density of luminous quasars at M1450<-26.8 (H0=50 km s-1 Mpc-1, Ω=1) is 1.1×10-9 Mpc-3. This is a factor of ~2 lower than that at z~5 and is consistent with an extrapolation of the observed quasar evolution at z<5. Using the current sample, we discuss the constraint on the shape of the quasar luminosity function and the implications for the contribution of quasars to the ionizing background at z

  2. FIRST CONNECTION BETWEEN COLD GAS IN EMISSION AND ABSORPTION: CO EMISSION FROM A GALAXY–QUASAR PAIR

    SciTech Connect

    Neeleman, Marcel; Prochaska, J. Xavier; Kanekar, Nissim; Christensen, Lise; Fynbo, Johan P. U.; Dessauges-Zavadsky, Miroslava; Zafar, Tayyaba

    2016-04-01

    We present the first detection of molecular emission from a galaxy selected to be near a projected background quasar using the Atacama Large Millimeter/submillimeter Array (ALMA). The ALMA detection of CO(1−0) emission from the z = 0.101 galaxy toward quasar PKS 0439–433 is coincident with its stellar disk and yields a molecular gas mass of M{sub mol} ≈ 4.2 × 10{sup 9} M{sub ⊙} (for a Galactic CO-to-H{sub 2} conversion factor), larger than the upper limit on its atomic gas mass. We resolve the CO velocity field, obtaining a rotational velocity of 134 ± 11 km s{sup −1} and a resultant dynamical mass of ≥4 × 10{sup 10} M{sub ⊙}. Despite its high metallicity and large molecular mass, the z = 0.101 galaxy has a low star formation rate, implying a large gas consumption timescale, larger than that typical of late-type galaxies. Most of the molecular gas is hence likely to be in a diffuse extended phase, rather than in dense molecular clouds. By combining the results of emission and absorption studies, we find that the strongest molecular absorption component toward the quasar cannot arise from the molecular disk, but is likely to arise from diffuse gas in the galaxy’s circumgalactic medium. Our results emphasize the potential of combining molecular and stellar emission line studies with optical absorption line studies to achieve a more complete picture of the gas within and surrounding high-redshift galaxies.

  3. Relativistic redshifts in quasar broad lines

    SciTech Connect

    Tremaine, Scott; Shen, Yue; Liu, Xin; Loeb, Abraham E-mail: yshen@obs.carnegiescience.edu E-mail: aloeb@cfa.harvard.edu

    2014-10-10

    The broad emission lines commonly seen in quasar spectra have velocity widths of a few percent of the speed of light, so special- and general-relativistic effects have a significant influence on the line profile. We have determined the redshift of the broad Hβ line in the quasar rest frame (determined from the core component of the [O III] line) for over 20,000 quasars from the Sloan Digital Sky Survey Data Release 7 quasar catalog. The mean redshift as a function of line width is approximately consistent with the relativistic redshift that is expected if the line originates in a randomly oriented Keplerian disk that is obscured when the inclination of the disk to the line of sight exceeds ∼30°-45°, consistent with simple active galactic nucleus unification schemes. This result also implies that the net line-of-sight inflow/outflow velocities in the broad-line region are much less than the Keplerian velocity when averaged over a large sample of quasars with a given line width.

  4. Galaxy Clustering Around Nearby Luminous Quasars

    NASA Technical Reports Server (NTRS)

    Fisher, Karl B.; Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.

    1996-01-01

    We examine the clustering of galaxies around a sample of 20 luminous low redshift (z approx. less than 0.30) quasars observed with the Wide Field Camera-2 on the Hubble Space Telescope (HST). The HST resolution makes possible galaxy identification brighter than V = 24.5 and as close as 1 min or 2 min to the quasar. We find a significant enhancement of galaxies within a projected separation of approx. less than 100 1/h kpc of the quasars. If we model the QSO/galaxy correlation function as a power law with a slope given by the galaxy/galaxy correlation function, we find that the ratio of the QSO/galaxy to galaxy/galaxy correlation functions is 3.8 +/- 0.8. The galaxy counts within r less than 15 1/h kpc of the quasars are too high for the density profile to have an appreciable core radius (approx. greater than 100 1/h kpc). Our results reinforce the idea that low redshift quasars are located preferentially in groups of 10-20 galaxies rather than in rich clusters. We see no significant difference in the clustering amplitudes derived from radio-loud and radio-quiet subsamples.

  5. The High-Redshift Quasar Luminosity Function from Multi-Epoch Imaging Surveys

    NASA Astrophysics Data System (ADS)

    AlSayyad, Yusra

    Upcoming time-domain imaging surveys such as the LSST will detect over a million high-redshift z > 4 quasars, making complete spectroscopic followup unfeasible. Statistical estimates such as luminosity functions and clustering measurements will require purely photometric methods for classifying quasars, estimating redshifts and estimating selection functions. We validate these methods and constrain the optical, type I quasar luminosity function (QLF) at 3.75 < z < 4.5 for -27.5 < M1450 3.75) and constraint on the characteristic luminosity (M*1450 = -26.7) from a single, uniformly-selected survey at z 4. We used the Sloan Digital Sky Survey (SDSS) repeated imaging of the 275 sq. deg. equatorial region of the sky (-50 < R.A. < +60; -1.26 < Dec. < +1.26), known as Stripe 82, to select a statistical sample of z 4 quasars. We extracted 40 million lightcurves from the imaging using forced photometry on all u, g, r, i, z epochs at the positions of sources detected on a deep i-band co-add. We developed a classification method based on photometric information alone (colors and variability metrics derived from these new multi-band lightcurves), which we validated with a spectroscopically complete 55 sq. deg. sub-region augmented with 102 new spectroscopic observations of quasars at z > 3.4 with i < 22.5. We demonstrate that selection functions for ensemble classifiers can be estimated by building generative models of empirical distributions of quasars previously selected with a diverse set of selection criteria. The z 4 QLF contributes to our understanding of supermassive black hole growth and cosmic reionization of both H I and He II which likely began at z 4 as a result of hard UV emissivity from quasars. The resulting QLF measurement is consistent with the previous lower number densities reported from deep, narrow-field surveys (COSMOS); it is not consistent with higher number densities reported from the NDWFS-DLS and CANDELS GOODS-S fields. In the context of recent 2

  6. A METAL-STRONG AND DUST-RICH DAMPED Ly{alpha} ABSORPTION SYSTEM TOWARD THE QUASAR SDSS J115705.52+615521.7

    SciTech Connect

    Wang Jianguo; Ge Jian; Hamann, Fred; Xavier Prochaska, J.

    2012-11-20

    We report the discovery of an unusual, extremely dust-rich and metal-strong damped Ly{alpha} absorption system (DLA) at a redshift z{sub a} = 2.4596 toward the quasar SDSS J115705.52+615521.7 with an emission-line redshift z{sub e} = 2.5125. The quasar spectrum, taken in the Sloan Digital Sky Survey, shows a very red color and a number of metal absorption lines, including C II, Al II, Si II, Fe II, and Zn II, which are confirmed and further characterized by follow-up spectroscopy made with the Multiple Mirror Telescope. Its neutral hydrogen column density N {sub HI} = 10{sup 21.8{+-}0.2} cm{sup -2} is among the highest values measured in quasar DLAs. The measured metal column density is N {sub ZnII} Almost-Equal-To 10{sup 13.8} cm{sup -2}, which is about 1.5 times larger than the largest value in any previously observed quasar DLAs. We derive the extinction curve of the dusty DLA using a new technique, which is an analog of the 'pair method' widely used to measure extinction curves in the Milky Way (MW). The best-fit curve is an MW-like law with a significant broad feature centered around 2175 A in the rest frame of the absorber. The measured extinction A{sub V} Almost-Equal-To 0.92 mag is unprecedentedly high in quasar DLAs. After applying an extinction correction, the i-band absolute magnitude of the quasar is as high as M{sub i} Almost-Equal-To -29.4 mag, placing it as one of the most luminous quasars ever known. The large gas-phase relative abundance of [Zn/Fe] Almost-Equal-To 1.0 indicates that metals are heavily depleted onto dust grains in the absorber. The dust depletion level is between that of the warm and cool clouds in the MW. This discovery is suggestive of the existence of a rare yet important population of dust-rich DLAs with both high metallicities and high column densities, which may have significant impact on the measurement of the cosmic evolution of neutral gas mass density and metallicity.

  7. The large bright quasar survey. 6: Quasar catalog and survey parameters

    NASA Astrophysics Data System (ADS)

    Hewett, Paul C.; Foltz, Craig B.; Chaffee, Frederic H.

    1995-04-01

    Positions, redshifts, and magnitudes for the 1055 quasars in the Large Bright Quasar Survey (LBQS) are presented in a single catalog. Celestial positions have been derived using the PPM catalog to provide an improved reference frame. J2000.0 coordinates are given together with improved b1950.0 positions. Redshifts calculated via cross correlation with a high signal-to-noise ratio composite quasar spectrum are included and the small number of typographic and redshift misidentifications in the discovery papers are corrected. Spectra of the 12 quasars added to the sample since the publication of the discovery papers are included. Discriptions of the plate material, magnitude calibration, quasar candidate selection procedures, and the identification spectroscopy are given. Calculation of the effective area of the survey for the 1055 quasars comprising the well-defined LBQS sample specified in detail. Number-redshift and number-magnitude relations for the quasars are derived and the strengths and limitastions of the LBSQ sample summarized. Comparison with existing surveys is made and a qualitative assessment of the effectiveness of the LBQS undertaken. Positions, magnitudes, and optical spectra of the eight objects (less than 1%) in the survey that remain unidentified are also presented.

  8. Flickering Quasar Helps Chandra Measure the Expansion Rate of the universe

    NASA Astrophysics Data System (ADS)

    2000-11-01

    intervening galaxy can act as a lens," said Bautz. "Now imagine that the distant lensed quasar suddenly became brighter. The mirage images of the quasar will brighten up at different times depending on the difference in the light travel delay." Unlike ordinary galaxies, quasars do vary greatly in their intensity, especially in the X-ray waveband, said Gordon Garmire, Evan Pugh Professor of Astronomy and Astrophysics at Penn State. This is caused by the violent and erratic flow of gas into the black hole that is powering the quasar. In quasar RX J0911.4+0551, the astronomers saw a sudden brightening of X-ray intensity that lasted for about 2,000 seconds. This was observed in one of the four mirage images. Measuring the time-delay of the 2,000-second flare--or any flare-- from mirage to mirage can provide the absolute distance to the deflector (intervening galaxy) and can thus be used to estimate the expansion rate of the universe. Sjur Refsdal first proposed this promising method in 1964. The method avoids many uncertainties associated with the classic distance-ladder technique used to measure objects and the Hubble constant. The main difficulty in measuring time-delays is that the brightness of each image has to be carefully monitored over several periods of the time-delay. Also, the quasar has to show sufficient variability over time scales smaller than the time-delay. Most attempts to measure time-delays until now have been made in the optical and radio bands. The modest variability of quasars in these wavebands, however, has made it extremely difficult to place accurate constraints on time-delays. X-ray observations of gravitationally lensed quasars, on the other hand, show strong variability over time scales of hours to days. For example, it has taken almost 20 years of optical and radio monitoring to obtain a universal accepted time-delay for the lensed quasar Q0957+561 to an accuracy of 3percent. Chandra has the potential, the team has found, to determine the time

  9. A Stringent Limit on Variation of the Fine-Structure Constant Using Absorption Line Multiplets in the Early Universe

    NASA Astrophysics Data System (ADS)

    Le, T. D.

    2016-06-01

    One of the key questions of modern physics concerns the possibility that physical constants have varied throughout the history of the Universe. The standard model of physics is built on these constants, but it does not provide any explanation for their values, nor does it require their constancy over space and time. Here, we set a new limit on possible spatial and temporal variations of the fine-structure constant α = e 2/4πɛ0 ħc by comparing transitions and line multiplets in an ensemble of Fe II λ 1608, λ 2344, λ 2374, λ 2383, λ 2587, and λ 2600 observed in the early Universe with those measured in the laboratory. Based on the optical spectrum observations of QSO HE 0515-4414, we deduce a constraint of Δα/α = (-0.157± 0.300)×10-6 at redshift z = 1.15. At present, this represents the tightest limit on Δα/α in early cosmological epochs compared to the published results in the literature.

  10. Quasar feedback and the origin of radio emission in radio-quiet quasars

    NASA Astrophysics Data System (ADS)

    Zakamska, Nadia L.; Greene, Jenny E.

    2014-07-01

    We analyse Sloan Digital Sky Survey spectra of 568 obscured luminous quasars. The [O III] λ5007 Å emission line shows blueshifts and blue excess, indicating that some of the narrow-line gas is undergoing an organized outflow. The velocity width containing 90 per cent of line power ranges from 370 to 4780 km s-1, suggesting outflow velocities up to ˜2000 km s-1, and is strongly correlated with the radio luminosity among the radio-quiet quasars. We propose that radio emission in radio-quiet quasars is due to relativistic particles accelerated in the shocks within the quasar-driven outflows; star formation in quasar hosts is insufficient to explain the observed radio emission. The median radio luminosity of the sample of νLν[1.4 GHz] = 1040 erg s-1 suggests a median kinetic luminosity of the quasar-driven wind of Lwind = 3 × 1044 erg s-1, or about 4 per cent of the estimated median bolometric luminosity Lbol = 8 × 1045 erg s-1. Furthermore, the velocity width of [O III] is positively correlated with mid-infrared luminosity, which suggests that outflows are ultimately driven by the radiative output of the quasar. Emission lines characteristic of shocks in quasi-neutral medium increase with the velocity of the outflow, which we take as evidence of quasar-driven winds propagating into the interstellar medium of the host galaxy. Quasar feedback appears to operate above the threshold luminosity of Lbol ˜ 3 × 1045 erg s-1.

  11. A large sample of binary quasars: Does quasar bias tracks from Mpc scale to kpc scales?

    NASA Astrophysics Data System (ADS)

    Eftekharzadeh, Sarah; Myers, Adam D.; Djorgovski, Stanislav G.; Graham, Matthew J.

    2017-01-01

    We present the most precise estimate to date of the bias of quasars on very small scales, based on a measurement of the clustering of 47 spectroscopically confirmed binary quasars with proper transverse separations of ~25 h^{-1} kpc. The quasars in our sample, which is an order-of-magnitude larger than previous samples, are targeted using a Kernel Density Estimation technique (KDE) applied to Sloan Digital Sky Survey (SDSS) imaging over most of the SDSS area. Our sample is "complete," in that all possible pairs of binary quasars across our area of interest have been spectroscopically confirmed from a combination of previous surveys and our own long-slit observational campaign. We determine the projected correlation function of quasars (\\bar W_p) in four bins of proper transverse scale over the range 17.0 \\lesssim R_{prop} \\lesssim 36.2 h^{-1} kpc. Due to our large sample size, our measured projected correlation function in each of these four bins of scale is more than twice as precise as any previous measurement made over our {\\em full} range of scales. We also measure the bias of our quasar sample in four slices of redshift across the range 0.43 \\le z \\le 2.26 and compare our results to similar measurements of how quasar bias evolves on Mpc-scales. This measurement addresses the question of whether it is reasonable to assume that quasar bias evolves with redshift in a similar fashion on both Mpc and kpc scales. Our results can meaningfully constrain the one-halo term of the Halo Occupation Distribution (HOD) of quasars and how it evolves with redshift. This work was partially supported by NSF grant 1515404.

  12. Doppler interpretation of quasar red shifts.

    PubMed

    Zapolsky, H S

    1966-08-05

    The hypothesis that the quasistellar sources (quasars) are local objects moving with velocities close to the speed of light is examined. Provided there is no observational cutoff on apparent bolometric magnitude for the quasars, the transverse Doppler effect leads to the expectation of fewer blue shifts than red shifts for an isotropic distribution of velocities. Such a distribution also yields a function N(z), the number of objects with red shift less than z which is not inconsistent with the present data. On the basis of two extreme assumptions concerning the origin of such rapidly moving sources, we computed curves of red shift plotted against magnitude. In particular, the curve obtained on the assumption that the quasars originated from an explosion in or nearby our own galaxy is in as good agreement with the observations as the curve of cosmological red shift plotted against magnitude.

  13. THE SUDDEN DEATH OF THE NEAREST QUASAR

    SciTech Connect

    Schawinski, Kevin; Virani, Shanil; Megan Urry, C.; Natarajan, Priyamvada; Coppi, Paolo; Evans, Daniel A.; Keel, William C.; Manning, Anna; Lintott, Chris J.; Kaviraj, Sugata; Bamford, Steven P.; Jozsa, Gyula I. G.; Garrett, Michael; Van Arkel, Hanny; Gay, Pamela; Fortson, Lucy

    2010-11-20

    Galaxy formation is significantly modulated by energy output from supermassive black holes at the centers of galaxies which grow in highly efficient luminous quasar phases. The timescale on which black holes transition into and out of such phases is, however, unknown. We present the first measurement of the shutdown timescale for an individual quasar using X-ray observations of the nearby galaxy IC 2497, which hosted a luminous quasar no more than 70,000 years ago that is still seen as a light echo in 'Hanny's Voorwerp', but whose present-day radiative output is lower by at least two, and more likely by over four, orders of magnitude. This extremely rapid shutdown provides new insight into the physics of accretion in supermassive black holes and may signal a transition of the accretion disk to a radiatively inefficient state.

  14. Predicting the Quasar Photometric Reshift with the Sloan Digital Sky Survey Filter System

    NASA Astrophysics Data System (ADS)

    Laubacher, Emily M.; York, Donald G.

    1999-10-01

    Photometric data were obtained for a set of known quasars (QSOs) in five bands with the Sloan Digital Sky Survey (SDSS) filter system for the purpose of testing the ability of the SDSS system to accurately predict the photometric redshift of QSOs. The initial plot of the SDSS photometric redshift versus the measured redshift shows a good relationship, but a lot of scatter. A literature search was conducted on a selected sampling of 49 QSOs, 26 with redshift z <= 0.5 and 23 with 0.5 < z < 2.6, to confirm their accurate identifications as QSOs with their advertised redshifts. This search revealed 10 rejected QSOs which were not QSOs but rather Seyfert galaxies or Narrow Line Objects. Additionally, 11 QSOs were either Broad Absorption Line Systems or had spectra that were in some way incomplete, and therefore, their QSO identification could not be confirmed. The revised plot, with the rejected and unconfirmed QSOs removed, gives an excellent straight line with very little scatter. Although these results are preliminary and for only a small sampling of QSOs, they show that further study of the relationship is warranted and that eventually the SDSS method may be used to accurately predict the photometric redshift of QSOs.

  15. THE QUASAR OUTFLOW CONTRIBUTION TO AGN FEEDBACK: VLT MEASUREMENTS OF SDSS J0318-0600

    SciTech Connect

    Dunn, Jay P.; Bautista, Manuel; Arav, Nahum; Edmonds, Doug; Moe, Max; Korista, Kirk; Costantini, Elisa; Benn, Chris; Ellison, Sara E-mail: arav@vt.ed E-mail: kirk.korista@wmich.ed E-mail: mmoe@cfa.harvard.ed

    2010-02-01

    We present high spectral resolution Very Large Telescope observations of the broad absorption line quasar SDSS J0318 - 0600. This high-quality data set allows us to extract accurate ionic column densities and determine an electron number density of n{sub e} = 10{sup 3.3+}-{sup 0.2} cm{sup -3} for the main outflow absorption component. The heavily reddened spectrum of SDSS J0318-0600 requires purely silicate dust with a reddening curve characteristic of predominately large grains, from which we estimate the bolometric luminosity. We carry out photoionization modeling to determine the total column density, ionization parameter, and distance of the gas and find that the photoionization models suggest abundances greater than solar. Due to the uncertainty in the location of the dust extinction, we arrive at two viable distances for the main ouflow component from the central source, 6 and 17 kpc, where we consider the 6 kpc location as somewhat more physically plausible. Assuming the canonical global covering of 20% for the outflow and a distance of 6 kpc, our analysis yields a mass flux of 120 M{sub sun} yr{sup -1} and a kinetic luminosity that is approx0.1% of the bolometric luminosity of the object. Should the dust be part of the outflow, then these values are approx4x larger. The large mass flux and kinetic luminosity make this outflow a significant contributor to active galactic nucleus feedback processes.

  16. A Hungry Quasar Caught in the Act

    NASA Astrophysics Data System (ADS)

    2001-05-01

    The VLT Secures Spectacular Image of Distant Gravitational Interaction Summary A new image of a distant quasar (the luminous core of an "active" galaxy) shows that it is engaged in a gravitational battle with its neighbouring galaxies . It also provides information on how supermassive black holes present in the center of quasars are fed. Using the FORS2 multi-mode instrument at the ESO 8.2-m VLT KUEYEN telescope on Paranal (Chile), a team of German astronomers [1] obtained a spectacular image of the close and complex environment of the distant quasar "HE 1013-2136", located some 10 billion light-years away [2]. The remarkable structures revealed in this photo lend support to the hypothesis that quasar activity is connected to gravitational interaction between galaxies, already at this early epoch of the Universe (about 5 billion years after the Big Bang). PR Photo 20a/01 : A VLT image of the Quasar HE 1013-2136 . PR Photo 20b/01 : A sharpened version of the same image. Feeding the Black Hole "Quasars" (Quasi-Stellar Objects) were first discovered by Dutch-American astronomer Maarten Schmidt in 1963 as distant, energetic objects of star-like appearance. Since then, more than 15,000 quasars have been found and we now know that they are the luminous cores at the heart of distant galaxies. Such "Active Galactic Nuclei (AGN)" are thought to host Supermassive Black Holes of up to one billion solar masses at their centres. Black Holes represent the densest possible state of matter; if the Earth were to become one, it would measure no more than a few millimetres across. The Black Hole in a galaxy gobbles up the gas and dust of its host, a process that efficiently powers the luminous core that we observe as a point-like "quasar". A Black Hole must be continuously fed to remain active. During an active phase of typically 100 million years, the Black Hole in a quasar swallows material with a total weight of up to 10 solar masses every year. This may be predominantly in the

  17. The Extreme Ultraviolet Variability of Quasars

    NASA Astrophysics Data System (ADS)

    Punsly, Brian; Marziani, Paola; Zhang, Shaohua; Muzahid, Sowgat; O'Dea, Christopher P.

    2016-10-01

    We study the extreme ultraviolet (EUV) variability (rest frame wavelengths 500-920 Å) of high-luminosity quasars using Hubble Space Telescope (HST) (low to intermediate redshift sample) and Sloan Digital sky Survey (SDSS) (high redshift sample) archives. The combined HST and SDSS data indicates a much more pronounced variability when the sampling time between observations in the quasar rest frame is \\gt 2× {10}7 {{s}} compared to \\lt 1.5× {10}7 s. Based on an excess variance analysis, for time intervals \\lt 2× {10}7 {{s}} in the quasar rest frame, 10% of the quasars (4/40) show evidence of EUV variability. Similarly, for time intervals \\gt 2× {10}7 {{s}} in the quasar rest frame, 55% of the quasars (21/38) show evidence of EUV variability. The propensity for variability does not show any statistically significant change between 2.5× {10}7 {{s}} and 3.16× {10}7 {{s}} (1 year). The temporal behavior is one of a threshold time interval for significant variability as opposed to a gradual increase on these timescales. A threshold timescale can indicate a characteristic spatial dimension of the EUV region. We explore this concept in the context of the slim disk models of accretion. We find that for rapidly spinning black holes, the radial infall time to the plunge region of the optically thin surface layer of the slim disk that is responsible for the preponderance of the EUV flux emission (primarily within 0-7 black hole radii from the inner edge of the disk) is consistent with the empirically determined variability timescale.

  18. SPITZER OBSERVATIONS OF YOUNG RED QUASARS

    SciTech Connect

    Urrutia, Tanya; Lacy, Mark; Spoon, Henrik; Glikman, Eilat; Petric, Andreea; Schulz, Bernhard E-mail: mlacy@nrao.edu E-mail: eilat.glikman@yale.edu E-mail: bschulz@ipac.caltech.edu

    2012-10-01

    We present mid-infrared spectra and photometry of 13 redshift 0.4 < z < 1 dust reddened quasars obtained with Spitzer IRS and MIPS. We compare properties derived from their infrared spectral energy distributions (intrinsic active galactic nucleus (AGN) luminosity and far-infrared luminosity from star formation) to the host luminosities and morphologies from Hubble Space Telescope imaging, and black hole masses estimated from optical and/or near-infrared spectroscopy. Our results are broadly consistent with models in which most dust reddened quasars are an intermediate phase between a merger-driven starburst triggering a completely obscured AGN, and a normal, unreddened quasar. We find that many of our objects have high accretion rates, close to the Eddington limit. These objects tend to fall below the black hole mass-bulge luminosity relation as defined by local galaxies, whereas most of our low accretion rate objects are slightly above the local relation, as typical for normal quasars at these redshifts. Our observations are therefore most readily interpreted in a scenario in which galaxy stellar mass growth occurs first by about a factor of three in each merger/starburst event, followed sometime later by black hole growth by a similar amount. We do not, however, see any direct evidence for quasar feedback affecting star formation in our objects, for example, in the form of a relationship between accretion rate and star formation. Five of our objects, however, do show evidence for outflows in the [O III]5007 A emission line profile, suggesting that the quasar activity is driving thermal winds in at least some members of our sample.

  19. Discovery of a cyclotron absorption line in the spectrum of the binary X-ray pulsar 4U 1538 - 52 observed by Ginga

    NASA Technical Reports Server (NTRS)

    Clark, George W.; Woo, Jonathan W.; Nagase, Fumiaki; Makishima, Kazuo; Sakao, Taro

    1990-01-01

    A cyclotron absorption line near 20 keV has been found in the spectrum of the massive eclipsing binary X-ray pulsar 4U 1538 - 52 in observations with the Ginga observatory. The line is detected throughout the 529 s pulse cycle with a variable equivalent width that has its maximum value during the smaller peak of the two-peak pulse profile. It is found that the profile of the pulse and the phase-dependence of the cyclotron line can be explained qualitatively by a pulsar model based on recent theoretical results on the properties of pencil beams emitted by accretion-heated slabs of magnetized plasma at the magnetic poles of a neutron star. The indicated field at the surface of the neutron star is 1.7 (1 + z) x 10 to the 12th G, where z is the gravitational redshift.

  20. First laboratory detection of an absorption line of the first overtone electric quadrupolar band of N2 by CRDS near 2.2 μm

    NASA Astrophysics Data System (ADS)

    Čermák, P.; Vasilchenko, S.; Mondelain, D.; Kassi, S.; Campargue, A.

    2017-01-01

    The extremely weak 2-0 O(14) electric quadrupole transition of N2 has been detected by very high sensitivity Cavity Ring Down spectroscopy near 4518 cm-1. It is the first N2 absorption line in the first overtone band reported so far from laboratory experiments. By combining a feedback narrowed Distributed Feedback laser diode with a passive cell tracking technique, a limit of detection of αmin ∼ 1.2 × 10-11 cm-1 was achieved after one day of spectra averaging. The N2 2-0 O(14) line position and line intensity (about 1.5 × 10-30 cm/molecule) agree with calculated values provided in the HITRAN2012 database.

  1. Evaluation of the absorption line blackbody distribution function of CO2 and H2O using the proper orthogonal decomposition and hyperbolic correlations

    NASA Astrophysics Data System (ADS)

    Liu, F.; Chu, H.; Zhou, H.; Smallwood, G. J.

    2013-10-01

    Databases of the absorption line blackbody distribution function (ALBDF) of CO2 and H2O were generated over a wide range of gas and blackbody temperatures and the full range of gas concentration from line-by-line (LBL) calculations using the latest version of HITEMP. Proper orthogonal decomposition (POD) and the hyperbolic correlations (HC) were then used for rapid calculation the ALBDF value at an arbitrary combination of gas and blackbody temperatures and gas concentration. A novel hyperbolic correlation for H2O was proposed to fully account for the self-broadening effect. The accuracy of POD and the HC was evaluated by comparing the ALBDF values and the total gas emissivities from these two approximate methods at several selected conditions against those from LBL calculations. POD is significantly more accurate than HC at essentially no extra computational costs.

  2. The host galaxies and black hole-to-galaxy mass ratios of luminous quasars at z≃ 4

    NASA Astrophysics Data System (ADS)

    Targett, Thomas A.; Dunlop, James S.; McLure, Ross J.

    2012-03-01

    Deep K-band imaging of the most luminous z≃ 4 quasars currently offers the earliest possible view of the mass-dominant stellar populations of the host galaxies which house the first supermassive black holes in the Universe. This is because, until the advent of the James Webb Space Telescope, it is not possible to obtain the necessary deep, sub-arcsec resolution imaging at rest-frame wavelengths λrest > 4000 Å at any higher redshift. We here present and analyse the deepest, high-quality KS-band images ever obtained of luminous quasars at z≃ 4, in an attempt to determine the basic properties of their host galaxies less than 1 Gyr after the first recorded appearance of black holes with Mbh > 109 M⊙. To maximize the robustness of our results, we have carefully selected two Sloan Digital Sky Survey quasars at z≃ 4. With absolute magnitudes Mi < -28, these quasars are representative of the most luminous quasars known at this epoch, but they also, crucially, lie within 40 arcsec of comparably bright foreground stars (required for accurate point spread function definition), and have redshifts which ensure line-free KS-band imaging. The data were obtained in excellent seeing conditions (<0.4 arcsec) at the European Southern Observatory on the Very Large Telescope with integration times of ≃5.5 h per source. Via carefully controlled separation of host galaxy and nuclear light, we estimate the luminosities and stellar masses of the host galaxies, and set constraints on their half-light radii. The apparent KS-band magnitudes of the quasar host galaxies are consistent with those of luminous radio galaxies at comparable redshifts, suggesting that these quasar hosts are also among the most massive galaxies in existence at this epoch. However, the quasar hosts are a factor ˜5 smaller (= 1.8 kpc) than the host galaxies of luminous low-redshift quasars. We estimate the stellar masses of the z≃ 4 host galaxies to lie in the range 2-10 × 1011 M⊙, and use the C

  3. High Resolution Spectroscopy of X-ray Quasars: Searching for the X-ray Absorption from the Warm-Hot Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Fang, Taotao; Canizares, Claude R.; Marshall, Herman L.

    2004-01-01

    We present a survey of six low to moderate redshift quasars with Chandra and XMM-Newton. The primary goal is to search for the narrow X-ray absorption lines produced by highly ionized metals in the Warm-Hot Intergalactic Medium. All the X-ray spectra can be well fitted by a power law with neutral hydrogen absorption. Only one feature is detected at above 3-sigma level in all the spectra, which is consistent with statistic fluctuation. We discuss the implications in our understanding of the baryon content of the universe. We also discuss the implication of the non-detection of the local (z approx. 0) X-ray absorption.

  4. Using quasar physics to improve the celestial reference frame

    NASA Astrophysics Data System (ADS)

    Shabala, Stanislav; Plank, Lucia; McCallum, Jamie; Boehm, Johannes

    2015-08-01

    Radio-loud quasars making up the International Celestial Reference Frame (ICRF) are dynamic objects with significant structure that changes on timescales of months and years. This is a problem for reference frame stability, as realised through the geodetic and astrometric Very Long Baseline Interferometry (VLBI) technique, which has so far largely treated quasars as point sources in analysis. I will describe the source structure simulator recently implemented in the Vienna VLBI Software (VieVS) package, and quantify the effects of various levels of source structure on the celestial and terrestrial reference frames, and Earth Orientation Parameters linking these two frames. We find that even relatively modest levels of quasar structure can produce systematic effects that affect derived quasar positions significantly in excess of the noise floor of the present ICRF realisation, ICRF2.I will also discuss the observed relationship between astrophysical properties of quasars, their structure and geodetic stability. By simulating quasar structure and evolution in VieVS, we have devised various quasar mitigation strategies. These include: (1) astrophysically-based quasar selection techniques; (2) scheduling sources by taking into account quasar structure; and (3) analyzing geodetic and astrometric VLBI observations using knowledge of quasar structure. I will describe our simulation results, and outline promising quasar structure mitigation strategies.

  5. New aspects of absorption line formation in intervening turbulent clouds - II. Monte Carlo simulation of interstellar H+D Lyalpha absorption profiles

    NASA Astrophysics Data System (ADS)

    Levshakov, Sergei A.; Kegel, Wilhelm H.; Mazets, Igor E.

    1997-07-01

    Stochastic velocity fields with finite correlation lengths affect the formation of interstellar (intergalactic) absorption lines in a way not accounted for in the standard analysis procedure in which Voigt profiles are fitted to the observed line profiles. We investigate these effects, accounting in particular for the fact that interstellar absorption spectra reflect only one realization of the velocity field, since (i) actually only one line of sight is observed and (ii) the velocity structure of the cloud has to be considered to be `frozen' over the exposure time. This paper presents results of Monte Carlo calculations. In this technique an ensemble of line profiles is computed, each one of which corresponds to one realization of the random velocity field. The most important results are the following. (1) The individual line profiles may deviate substantially from each other and from the ensemble average. (2) Correlated velocity fields may cause complex multicomponent absorption features which in a traditional analysis would be attributed to several clouds, i.e. to density and/or kinetic temperature inhomogeneities. (3) Each line of sight has its own curve-of-growth. (4) Applying the standard analysis to such line profiles may produce misleading results concerning the physical parameters of the cloud. (5) In particular, the apparent scatter of the D/H ratio revealed in the ISM on the basis of the Copernicus, IUE, and HST observations may be caused by an inadequate analysis. Finally, we discuss under which conditions cloud characteristics may be derived from absorption lines without relying on a particular physical model.

  6. Using quasars as standard clocks for measuring cosmological redshift.

    PubMed

    Dai, De-Chang; Starkman, Glenn D; Stojkovic, Branislav; Stojkovic, Dejan; Weltman, Amanda

    2012-06-08

    We report hitherto unnoticed patterns in quasar light curves. We characterize segments of the quasar's light curves with the slopes of the straight lines fit through them. These slopes appear to be directly related to the quasars' redshifts. Alternatively, using only global shifts in time and flux, we are able to find significant overlaps between the light curves of different pairs of quasars by fitting the ratio of their redshifts. We are then able to reliably determine the redshift of one quasar from another. This implies that one can use quasars as standard clocks, as we explicitly demonstrate by constructing two independent methods of finding the redshift of a quasar from its light curve.

  7. STRUCTURE FUNCTION ANALYSIS OF LONG-TERM QUASAR VARIABILITY

    SciTech Connect

    de Vries, W; Becker, R; White, R; Loomis, C

    2004-11-15

    In our second paper on long-term quasar variability, we employ a much larger database of quasars than in de Vries, Becker & White. This expanded sample, containing 35,165 quasars from the Sloan Digital Sky Survey Data Release 2, and 6,413 additional quasars in the same area of the sky taken from the 2dF QSO Redshift Survey, allows us to significantly improve on our earlier conclusions. As before, all the historic quasar photometry has been calibrated onto the SDSS scale by using large numbers of calibration stars around each quasar position. We find the following: (1) the outbursts have an asymmetric light-curve profile, with a fast-rise, slow-decline shape; this argues against a scenario in which micro-lensing events along the line-of-sight to the quasars are dominating the long-term variations in quasars; (2) there is no turnover in the Structure Function of the quasars up to time-scales of {approx}40 years, and the increase in variability with increasing time-lags is monotonic and constant; and consequently, (3) there is not a single preferred characteristic outburst time-scale for the quasars, but most likely a continuum of outburst time-scales, (4) the magnitude of the quasar variability is a function of wavelength: variability increases toward the blue part of the spectrum, (5) high-luminosity quasars vary less than low-luminosity quasars, consistent with a scenario in which variations have limited absolute magnitude. Based on this, we conclude that quasar variability is intrinsic to the Active Galactic Nucleus, is caused by chromatic outbursts/flares with a limited luminosity range and varying time-scales, and which have an overall asymmetric light-curve shape. Currently the model that has the most promise of fitting the observations is based on accretion disk instabilities.

  8. Close companions to two high-redshift quasars

    SciTech Connect

    McGreer, Ian D.; Fan, Xiaohui; Bian, Fuyan; Strauss, Michael A.; Haiman, Zoltàn; Richards, Gordon T.; Jiang, Linhua; Schneider, Donald P.

    2014-10-01

    We report the serendipitous discoveries of companion galaxies to two high-redshift quasars. SDSS J025617.7+001904 is a z = 4.79 quasar included in our recent survey of faint quasars in the SDSS Stripe 82 region. The initial MMT slit spectroscopy shows excess Lyα emission extending well beyond the quasar's light profile. Further imaging and spectroscopy with LBT/MODS1 confirms the presence of a bright galaxy (i {sub AB} = 23.6) located 2'' (12 kpc projected) from the quasar with strong Lyα emission (EW{sub 0} ≈ 100 Å) at the redshift of the quasar, as well as faint continuum. The second quasar, CFHQS J005006.6+344522 (z = 6.25), is included in our recent HST SNAP survey of z ∼ 6 quasars searching for evidence of gravitational lensing. Deep imaging with ACS and WFC3 confirms an optical dropout ∼4.5 mag fainter than the quasar (Y {sub AB} = 25) at a separation of 0.''9. The red i {sub 775} – Y {sub 105} color of the galaxy and its proximity to the quasar (5 kpc projected if at the quasar redshift) strongly favor an association with the quasar. Although it is much fainter than the quasar, it is remarkably bright when compared to field galaxies at this redshift, while showing no evidence for lensing. Both systems may represent late-stage mergers of two massive galaxies, with the observed light for one dominated by powerful ongoing star formation and for the other by rapid black hole growth. Observations of close companions are rare; if major mergers are primarily responsible for high-redshift quasar fueling then the phase when progenitor galaxies can be observed as bright companions is relatively short.

  9. New quasar surveys with WIRO: Searching for high redshift (z~6) quasar candidates

    NASA Astrophysics Data System (ADS)

    Haze Nunez, Evan; Bassett, Neil; Deam, Sophie; Dixon, Don; Griffith, Emily; Harvey, William Bradford; Lee, Daniel; Lyke, Bradley; Parziale, Ryan; Witherspoon, Catherine; Myers, Adam D.; Findlay, Joseph; Kobulnicky, Henry A.; Dale, Daniel A.

    2017-01-01

    High redshift quasars (z~6) are of great interest to fundamental astronomy due to the information they hold about the early universe. With their low number density in the sky, however, they are elusive objects. Reported here is our search for these high redshift quasars using the Wyoming Infrared Observatory (WIRO) 2.3m telescope. We search for potential candidates that have been detected by surveys such as WISE, which have been mostly redshifted out of the optical. The main emission feature of these quasars (the Lyman-Alpha line at ~1216 Angstroms rest-frame) would be redshifted to the z-band or beyond. This means that the quasars should have very low levels of i-band flux. These objects are known as i-dropouts. By imaging the quasars in the i-band and running photometric analysis on our fields, candidates can be identified or rejected by whether or not they appear in our fields. We also provide an analysis of the colors of our candidate high-redshift quasars.This work is supported by the National Science Foundation under REU grant AST1560461

  10. O I and Ca II Observations in Intermediate Redshift Quasars

    NASA Astrophysics Data System (ADS)

    Martínez-Aldama, Mary Loli; Dultzin, Deborah; Marziani, Paola; Sulentic, Jack W.; Bressan, Alessandro; Chen, Yang; Stirpe, Giovanna M.

    2015-03-01

    We present an unprecedented spectroscopic survey of the Ca II triplet + O i for a sample of 14 luminous (-26≳ {{M}V}≳ -29), intermediate redshift (0.85 ≲ z ≲ 1.65) quasars. The Infrared Spectrometer and Array Camera spectrometer on the ESO Very Large Telescope allowed us to cover the Ca II near-infrared spectral region redshifted into the H and K windows. We describe in detail our data analysis which enabled us to detect Ca II triplet emission in all 14 sources (with the possible exception of HE0048-2804) and to retrieve accurate line widths and fluxes of the triplet and O i λ8446. The new measurements show trends consistent with previous lower-z observations, indicating that Ca II and optical Fe II emission are probably closely related. The ratio between the Ca II triplet and the optical Fe II blend at λ4570 Å is apparently systematically larger in our intermediate redshift sample relative to a low-z control sample. Even if this result needs a larger sample for adequate interpretation, higher Ca II/optical Fe II should be associated with recent episodes of star formation in intermediate redshift quasars and, at least in part, explain the apparent correlation of Ca II triplet equivalent width with z and L. The Ca II triplet measures yield significant constraints on the emitting region density and ionization parameter, implying Ca II triplet emission from log {{n}H} ≳ 11 [cm-3] and ionization parameter log U≲ -1.5. The line width and intensity ratios suggest properties consistent with emission from the outer part of a high-density broad line region (a line emitting accretion disk?). Based on observations collected at the European Organization for Astronomical Research in the southern hemisphere, Chile, under programme ID 085.B-0158(A).

  11. Galaxy-wide outflows in z ~ 1.5 luminous obscured quasars revealed through near-IR slit-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Perna, M.; Brusa, M.; Cresci, G.; Comastri, A.; Lanzuisi, G.; Lusso, E.; Marconi, A.; Salvato, M.; Zamorani, G.; Bongiorno, A.; Mainieri, V.; Maiolino, R.; Mignoli, M.

    2015-02-01

    Aims: The co-evolution of galaxies and supermassive black holes (SMBHs) requires that some sort of feedback mechanism is operating during the active galactic nuclei (AGN) phases. AGN driven winds are the most likely candidates for such feedback mechanism, but direct observational evidence of their existence and of their effects on the host galaxies are still scarce and their physical origin is still hotly debated. Methods: X-Shooter observations of a sample of X-ray selected, obscured quasars at z ~ 1.5, selected on the basis of their observed red colors and X-ray-to-optical flux ratio, have shown the presence of outflowing ionized gas identified by broad [OIII] emission lines in 6 out of 8 objects, confirming the efficiency of the selection criteria. Here we present slit-resolved spectroscopy for the two brightest sources, XID2028 and XID5321, to study the complex emission and absorption line kinematics. Results: We detect outflow extended out to ~10 kpc from the central black hole, both as blueshifted and redshifted emission. Interestingly, we also detect kpc scale outflows in the [OII] emission lines and in the neutral gas component, traced by the sodium D and magnesium absorption lines, confirming that a substantial amount of the outflowing mass is in the form of neutral gas. Conclusions: The measured gas velocities and the outflow kinetic powers, inferred under reasonable assumptions on the geometry and physical properties of these two systems, favor an AGN origin for the observed winds.

  12. THE RADIO PROPERTIES OF TYPE 2 QUASARS

    SciTech Connect

    Lal, Dharam Vir; Ho, Luis C.

    2010-03-15

    This paper presents the first high-resolution and high-sensitivity study of the radio properties of optically selected type 2 quasars. We used the Very Large Array at 8.4 GHz to observe 59 sources drawn from the Sloan Digital Sky Survey sample of Zakamska et al.. The detection rate of our survey is 59% (35/59), comparable to the detection rate in FIRST at 1.4 GHz. Ongoing star formation, although present, contributes negligible radio emission at the current sensitivity limit. Comparing the radio powers with the [O III] {lambda}5007 luminosities, we find that roughly 15% {+-} 5% of the sample can be considered radio loud. Intriguingly, the vast majority of the detected sources in our sample fall in a region intermediate between those traditionally occupied by radio loud and radio quiet quasars. Moreover, most of these 'radio intermediate' sources tend to have flat or inverted radio spectra, which we speculate may be caused by free-free absorption by ionized gas in the narrow-line region. The incidence of flat-spectrum sources in type 2 quasars appears to be much higher than in type 1 quasars, in apparent violation of the simple orientation-based unified model for active galaxies.

  13. Measuring Distances to Remote Galaxies and Quasars.

    ERIC Educational Resources Information Center

    McCarthy, Patrick J.

    1988-01-01

    Describes the use of spectroscopy and the redshift to measure how far an object is by measuring how fast it is receding from earth. Lists the most distant quasars yet found. Tables include "Redshift vs. Distance" and "Distances to Celestial Objects for Various Cosmologies." (CW)

  14. A SPECTACULAR OUTFLOW IN AN OBSCURED QUASAR

    SciTech Connect

    Greene, Jenny E.; Zakamska, Nadia L.; Smith, Paul S.

    2012-02-10

    SDSS J1356+1026 is a pair of interacting galaxies at redshift z = 0.123 that hosts a luminous obscured quasar in its northern nucleus. Here we present two long-slit Magellan LDSS-3 spectra that reveal a pair of symmetric {approx}10 kpc size outflows emerging from this nucleus, with observed expansion velocities of {approx}250 km s{sup -1} in projection. We present a kinematic model of these outflows and argue that the deprojected physical velocities of expansion are likely {approx}1000 km s{sup -1} and that the kinetic energy of the expanding shells is likely 10{sup 44-45} erg s{sup -1}, with an absolute minimum of >10{sup 42} erg s{sup -1}. Although a radio counterpart is detected at 1.4 GHz, it is faint enough that the quasar is considered to be radio quiet by all standard criteria, and there is no evidence of extended emission due to radio lobes, whether aged or continuously powered by an ongoing jet. We argue that the likely level of star formation is insufficient to power the observed energetic outflow and that SDSS J1356+1026 is a good case for radio-quiet quasar feedback. In further support of this hypothesis, polarimetric observations show that the direction of quasar illumination is coincident with the direction of the outflow.

  15. Quasar Astrophysics with the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen; Wehrle, Ann; Meier, David; Jones, Dayton; Piner, Glenn

    2007-01-01

    Optical astrometry of quasars and active galaxies can provide key information on the spatial distribution and variability of emission in compact nuclei. The Space Interferometry Mission (SIM PlanetQuest) will have the sensitivity to measure a significant number of quasar positions at the microarcsecond level. SIM will be very sensitive to astrometric shifts for objects as faint as V = 19. A variety of AGN phenomena are expected to be visible to SIM on these scales, including time and spectral dependence in position offsets between accretion disk and jet emission. These represent unique data on the spatial distribution and time dependence of quasar emission. It will also probe the use of quasar nuclei as fundamental astrometric references. Comparisons between the time-dependent optical photocenter position and VLBI radio images will provide further insight into the jet emission mechanism. Observations will be tailored to each specific target and science question. SIM will be able to distinguish spatially between jet and accretion disk emission; and it can observe the cores of galaxies potentially harboring binary supermassive black holes resulting from mergers.

  16. Quasar H II Regions During Cosmic Reionization

    SciTech Connect

    Alvarez, Marcelo A.; Abel, Tom; /KIPAC, Menlo Park

    2007-03-30

    Cosmic reionization progresses as HII regions form around sources of ionizing radiation. Their average size grows continuously until they percolate and complete reionization. We demonstrate how this typical growth can be calculated around the largest, biased sources of UV emission such as quasars by further developing an analytical model based on the excursion set formalism. This approach allows us to calculate the sizes and growth of the HII regions created by the progenitors of any dark matter halo of given mass and redshift with a minimum of free parameters. Statistical variations in the size of these pre-existing HII regions are an additional source of uncertainty in the determination of very high redshift quasar properties from their observed HII region sizes. We use this model to demonstrate that the transmission gaps seen in very high redshift quasars can be understood from the radiation of only their progenitors and associated clustered small galaxies. The fit requires the epoch of overlap to be at z = 5.8 {+-} 0.1. This interpretation makes the transmission gaps independent of the age of the quasars observed. If this interpretation were correct it would raise the prospects of using radio interferometers currently under construction to detect the epoch of reionization.

  17. Blue Fermi flat spectrum radio quasars

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Tavecchio, F.; Foschini, L.; Sbarrato, T.; Ghirlanda, G.; Maraschi, L.

    2012-09-01

    Many blazars detected by the Fermi satellite, observed spectroscopically in the optical, are line-less, and have been classified as BL Lac objects. Optical-ultraviolet (UV) photometry of nearly 100 of them allowed us to determine the redshift for a handful of objects and redshift upper limits in the great majority. A few of these are candidates to be 'blue quasars', namely flat spectrum radio quasars whose broad emission lines are hidden by an overwhelming synchrotron emission peaking in the UV. This implies that the emitting electrons have high energies. In turn, this requires relatively weak radiative cooling, a condition that can be met if the main radiative dissipation of the jet power occurs outside the broad-line region. We confirm this hypothesis by studying and modelling the spectral energy distributions of the four 'blue quasars' recently discovered. Furthermore, we discuss the distribution of Fermi blazars in the γ-ray spectral index-γ-ray luminosity plane, and argue that 'blue quasars' objects are a minority within the blazar populations.

  18. Quasar feedback revealed by giant molecular outflows

    NASA Astrophysics Data System (ADS)

    Feruglio, C.; Maiolino, R.; Piconcelli, E.; Menci, N.; Aussel, H.; Lamastra, A.; Fiore, F.

    2010-07-01

    In the standard scenario for galaxy evolution young star-forming galaxies transform into red bulge-dominated spheroids, where star formation has been quenched. To explain this transformation, a strong negative feedback generated by accretion onto a central super-massive black hole is often invoked. The depletion of gas resulting from quasar-driven outflows should eventually stop star-formation across the host galaxy and lead the black hole to “suicide” by starvation. Direct observational evidence for a major quasar feedback onto the host galaxy is still missing, because outflows previously observed in quasars are generally associated with the ionized component of the gas, which only accounts for a minor fraction of the total gas content, and typically occurrs in the central regions. We used the IRAM PdB Interferometer to observe the CO(1-0) transition in Mrk 231, the closest quasar known. Thanks to the wide band we detected broad wings of the CO line, with velocities of up to 750 km s-1 and spatially resolved on the kpc scale. These broad CO wings trace a giant molecular outflow of about 700 M_⊙/year, far larger than the ongoing star-formation rate (~200 M_⊙/year) observed in the host galaxy. This wind will totally expel the cold gas reservoir in Mrk 231 in about 107 yrs, therefore halting the star-formation activity on the same timescale. The inferred kinetic energy in the molecular outflow is ~1.2 × 1044 erg/s, corresponding to a few percent of the AGN bolometric luminosity, which is very close to the fraction expected by models ascribing quasar feedback to highly supersonic shocks generated by radiatively accelerated nuclear winds. Instead, the contribution by the SNe associated with the starburst fall short by several orders of magnitude to account for the kinetic energy observed in the outflow. The direct observational evidence for quasar feedback reported here provides solid support to the scenarios ascribing the observed properties of local massive

  19. Formation of the first stars and quasars

    NASA Astrophysics Data System (ADS)

    Haiman, Z.

    We examine various observable signatures of the first generation of stars and low-luminosity quasars, including the metal enrichment, radiation background, and dust opacity/emission that they produce. We calculate the formation history of collapsed baryonic halos, based on an extension of the Press-Schechter formalism, incorporating the effects of pressure and H2-dissociation. We then use the observed CH ratio at z=3 in the Lyman-α forest clouds to obtain an average the star formation efficiency in these halos. Similarly, we fit the efficiency of black-hole formation, and the shape of quasar light curves, to match the observed quasar luminosity function (LF) between z=2-4, and use this fit to extrapolate the quasar LF to faint magnitudes and high redshifts. To be consistent with the lack of faint point-sources in the Hubble Deep Field, we impose a lower limit of ~ 75 km s-1 for the circular velocities of halos harboring central black holes. We find that in a λCDM model, stars reionize the IGM at zreion=9-13, and quasars at z=12. Observationally, zreion can be measured by the forthcoming MAP and Planck Surveyor satellites, via the damping of CMB anisotropies by ~10% on small angular scales due to electron scattering. We show that if reionization occurs later, at 5 <~ zreion <~ 10, then it can be measured from the spectra of individual sources. We also find that the Next Generation Space Telescope will be able to directly image about 1-40 star clusters, and a few faint quasars, from z > 10 per square arcminute. The amount of dust produced by the first supernovae has an optical depth of τ=0.1-1 towards high redshift sources, and the reprocessed UV flux of stars and quasars distorts the cosmic microwave background radiation (CMB) by a Compton y-parameter comparable to the COBE limit, y ~ 1.5 × 10-5.

  20. Constraining the Lifetime and Opening Angle of Quasars using Fluorescent Lyman α Emission: The Case of Q0420-388

    NASA Astrophysics Data System (ADS)

    Borisova, Elena; Lilly, Simon J.; Cantalupo, Sebastiano; Prochaska, J. Xavier; Rakic, Olivera; Worseck, Gabor

    2016-10-01

    A toy model is developed to understand how the spatial distribution of fluorescent emitters in the vicinity of bright quasars could be affected by the geometry of the quasar bi-conical radiation field and by its lifetime. The model is then applied to the distribution of high-equivalent-width Lyα emitters (with rest-frame equivalent widths above 100 Å, threshold used in, e.g., Trainor & Steidel) identified in a deep narrow-band 36 × 36 arcmin2 image centered on the luminous quasar Q0420-388. These emitters are found near the edge of the field and show some evidence of an azimuthal asymmetry on the sky of the type expected if the quasar is radiating in a bipolar cone. If these sources are being fluorescently illuminated by the quasar, the two most distant objects require a lifetime of at least 15 Myr for an opening angle of 60° or more, increasing to more than 40 Myr if the opening angle is reduced to a minimum of 30°. However, some other expected signatures of boosted fluorescence are not seen at the current survey limits, e.g., a fall off in Lyα brightness, or equivalent width, with distance. Furthermore, to have most of the Lyα emission of the two distant sources to be fluorescently boosted would require the quasar to have been significantly brighter in the past. This suggests that these particular sources may not be fluorescent, invalidating the above lifetime constraints. This would cast doubt on the use of this relatively low equivalent width threshold and thus also on the lifetime analysis in Trainor and Steidel.

  1. X-ray spectral evolution of high redshift quasars

    NASA Technical Reports Server (NTRS)

    Bechtold, Jill; Elvis, Martin; Fiore, Fabrizio; Kuhn, Olga; Cutri, Roc M.; Mcdowell, Jonathan C.; Rieke, Marcia; Siemiginowska, Aneta; Wilkes, Belinda J.

    1994-01-01

    At z approx. equals 3, the x-ray spectra of radio-loud and radio-quiet quasars are different. High-redshift radio-quiet quasars either have large absorbing columns, N(sub H), and steeper power law spectral indices, alpha(sub epsilon), than low redshift quasars, or no absorption and similar alpha(sub epsilon)'s. In contrast, the radio-loud quasars at high redshift have substantial absorption and similar alpha(sub epsilon)'s to low redshift quasars. Implications for the interpretation of the evolution of the luminosity function of quasars are discussed. If the absorption arises outside the central engine for both radio-loud and radio-quiet quasars, then radio-quiet quasars differ from the radio-loud quasars in that their emitted power law spectrum has evolved with redshift. We argue that this favors models where quasars are numerous and short-lived, rather than rare and long-lived.

  2. Tracing high redshift cosmic web with quasar systems

    NASA Astrophysics Data System (ADS)

    Einasto, Maret

    2016-10-01

    We study the cosmic web at redshifts 1.0 <= <= 1.8 using quasar systems based on quasar data from the SDSS DR7 QSO catalogue. Quasar systems were determined with a friend-of-friend (FoF) algorithm at a series of linking lengths. At the linking lengths l <= 30 h -1 Mpc the diameters of quasar systems are smaller than the diameters of random systems, and are comparable to the sizes of galaxy superclusters in the local Universe. The mean space density of quasar systems is close to the mean space density of local rich superclusters. At larger linking lengths the diameters of quasar systems are comparable with the sizes of supercluster complexes in our cosmic neighbourhood. The richest quasar systems have diameters exceeding 500h Mpc. Very rich systems can be found also in random distribution but the percolating system which penetrate the whole sample volume appears in quasar sample at smaller linking length than in random samples showing that the large-scale distribution of quasar systems differs from random distribution. Quasar system catalogues at our web pages (http://www.aai.ee/maret/QSOsystems.html) serve as a database to search for superclusters of galaxies and to trace the cosmic web at high redshifts.

  3. ACCRETION RATES OF RED QUASARS FROM THE HYDROGEN Pβ LINE

    SciTech Connect

    Kim, Dohyeong; Im, Myungshin; Glikman, Eilat; Woo, Jong-Hak; Urrutia, Tanya E-mail: mim@astro.snu.ac.kr

    2015-10-10

    Red quasars are thought to be an intermediate population between merger-driven star-forming galaxies in dust-enshrouded phase and normal quasars. If so, they are expected to have high accretion ratios, but their intrinsic dust extinction hampers reliable determination of Eddington ratios. Here, we compare the accretion rates of 16 red quasars at z ∼ 0.7 to those of normal type 1 quasars at the same redshift range. The red quasars are selected by their red colors in optical through near-infrared (NIR) and radio detection. The accretion rates of the red quasars are derived from the Pβ line in NIR spectra, which is obtained by the SpeX on the Infrared Telescope Facility in order to avoid the effects of dust extinction. We find that the measured Eddington ratios (L{sub bol}/L{sub Edd} ≃ 0.69) of red quasars are significantly higher than those of normal type 1 quasars, which is consistent with a scenario in which red quasars are the intermediate population and the black holes of red quasars grow very rapidly during such a stage.

  4. Outline of the concept of stable relativistic radiation sphere. A model of quasar?

    NASA Astrophysics Data System (ADS)

    Neslušan, L.

    2017-03-01

    The new possibilities to construct the stable relativistic compact objects were opened by Ni in 2011, after his discovery of new solution of the Einstein field equations for the spherically symmetric distribution of matter. The solution occurs to be the super-class of the well-known Tolman-Oppenheimer-Volkoff solution published in 1939. In the presented work, we consider the equation of state for a radiation fluid and use the Ni's solution to construct the massive objects consisting of radiation. We describe their fundamental properties. Since there is no upper constraint of energy/mass of the Ni's object, the formally calculated gravitational mass (from gravitational effects) of these objects can be as high as observed for the super-massive compact objects in the centers of galaxies and even in the most massive quasars. In the solution by Ni, the gravitational acceleration is not linearly proportional to the energy concentrated in the object. Actually, the models indicate that the objects should be extremely luminous, as quasars. The most massive of them can have enough energy to emit the radiation with a quasar luminosity during the age of the universe. And, it is predicted that they must possess an extremely extended "corona" with the gravitational effects resembling those, which are assigned to a dark matter.

  5. Implications of a primordial origin for the dispersion in D/H in quasar absorption systems.

    PubMed

    Copi, C J; Olive, K A; Schramm, D N

    1998-03-17

    We explore the difficulties with a primordial origin of variations of D/H in quasar absorption systems. In particular we examine options such as a very large-scale inhomogeneity in the baryon content of the universe. We show that very large-scale (much larger than 1 Mpc) isocurvature perturbations are excluded by current cosmic microwave background observations. Smaller-scale ad hoc perturbations (approximately 1 Mpc) still may lead to a large dispersion in primordial abundances but are subject to other constraints.

  6. Observational Signatures of High-Redshift Quasars and Local Relics of Black Hole Seeds

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Comastri, Andrea

    2016-10-01

    Observational constraints on the birth and early evolution of massive black holes come from two extreme regimes. At high redshift, quasars signal the rapid growth of billion-solar-mass black holes and indicate that these objects began remarkably heavy and/or accreted mass at rates above the Eddington limit. At low redshift, the smallest nuclear black holes known are found in dwarf galaxies and provide the most concrete limits on the mass of black hole seeds. Here, we review current observational work in these fields that together are critical for our understanding of the origin of massive black holes in the Universe.

  7. Observations of the Ca ii IR Triplet in High Luminosity Quasars: Exploring the Sample

    NASA Astrophysics Data System (ADS)

    Martínez-Aldama, Mary Loli; Marziani, Paola; Dultzin, Deborah; Sulentic, Jack W.; Bressan, Alessandro; Chen, Yang; Stirpe, Giovanna M.

    2015-12-01

    We present a new spectroscopic sample of 11 quasars at intermediate redshift observed with the Infrared Spectrometer and Array Camera (ISAAC) on the ESO Very Large Telescope (VLT), covering O i λ8446 and the Ca ii triplet 8498, 8542, 8662. The new observations - that supplement the sample presented by Martínez-Aldama et al. (2015) - allow us to confirm the constraints on physical conditions and location of the region emitting the low ionization lines, as well as the relation between Ca ii and Fe ii.

  8. The K-Band Quasar Luminosity Function from an SDSS and UKIDSS Matched Catalog

    NASA Astrophysics Data System (ADS)

    Peth, Michael; Ross, N. P.; Schneider, D. P.

    2010-01-01

    We match the 1,015,082 quasars from the Sloan Digital Sky Survey (SDSS) DR6 Photometric Quasar catalog to the UKIRT Infrared Digital Sky Survey (UKIDSS) Large Area Survey (LAS) DR3 to produce a catalog of 130,827 objects with optical (ugriz) and infrared (YJHK) measurements over an area of 1,200 sq. deg. A matching radius of 1'’ is used; the positional standard deviations of SDSS DR6 quasars and UKIDSS LAS is δRA = 0.137'’ and δDec = 0.131''. The catalog contains 74,351 K-band detections and 42,133 objects have coverage in all four NIR bands. In addition to the catalog, we present optical and NIR color-redshift and color-color plots. The photometric vs. spectroscopic redshift plots demonstrate how unreliable high reported photometric redshifts can be. This forces us to focus on z4.6 quasars are compared to our highest redshift objects. The giK color-color plot demonstrates that stellar contamination only affects a small sample of the objects. Distributions for Y,J,H,K and i-bands reveal insights into the flux limits in each magnitude. We investigate the distribution of redshifts from different data sets and investigate the legitimacy of certain measured photometric redshift regions. For in-depth analysis, we focus on the 300 sq. deg area equatorial SDSS region designated as Stripe 82. We measure the observed K-band quasar luminosity function (QLF) for a subset of 9,872, z<2.2 objects. We find the shape of the K-band QLF is very similar to that of the optical QLF, over the considered redshift ranges. Our calculated K-Band QLFs broadly match previous optical QLFs calculated from the SDSS and 2SLAQ QSO surveys and should provide important constraints linking unobscured optical quasars to Mid-Infrared detected, dusty and obscured AGNs at high-redshift.

  9. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs. 2; Detailed Photoionization Modeling of Fe K-Shell Absorption Lines

    NASA Technical Reports Server (NTRS)

    Tombesi, Francesco; Clapp, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.

    2011-01-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet AGNs. In the previous paper of this series we defined UFOs as those absorbers with an outflow velocity higher than 10,000km/s and assessed the statistical significance of the associated blue shifted FeK absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. In the present paper we report a detailed curve of growth analysis and directly model the FeK absorbers with the Xstar photo-ionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35%. The outflow velocity distribution spans from \\sim10,000km/s (\\sim0.03c) up to \\siml00,000kmis (\\sim0.3c), with a peak and mean value of\\sim42,000km/s (\\sim0.14c). The ionization parameter is very high and in the range log\\xi 3-6 erg s/cm, with a mean value of log\\xi 4.2 erg s/cm. The associated column densities are also large, in the range N_H\\siml0(exp 22)-10(exp 24)/sq cm, with a mean value of N_H\\siml0(exp23)/sq cm. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can provide important clues on the connection between accretion disks, winds and jets.

  10. CHANDRA VIEW OF THE WARM-HOT INTERGALACTIC MEDIUM TOWARD 1ES 1553+113: ABSORPTION-LINE DETECTIONS AND IDENTIFICATIONS. I

    SciTech Connect

    Nicastro, F.; Zappacosta, L.; Elvis, M.; Krongold, Y.; Mathur, S.; Gupta, A.; Danforth, C.; Shull, J. M.; Barcons, X.; Borgani, S.; Branchini, E.; Cen, R.; Dave, R.; Kaastra, J.; Paerels, F.; Piro, L.; Takei, Y.

    2013-06-01

    We present the first results from our pilot 500 ks Chandra Low Energy Transmission Grating Large Program observation of the soft X-ray brightest source in the z {approx}> 0.4 sky, the blazar 1ES 1553+113, aimed to secure the first uncontroversial detections of the missing baryons in the X-rays. We identify a total of 11 possible absorption lines, with single-line statistical significances between 2.2{sigma} and 4.1{sigma}. Six of these lines are detected at high single-line statistical significance (3.6 {<=} {sigma} {<=} 4.1), while the remaining five are regarded as marginal detections in association with either other X-ray lines detected at higher significance and/or far-ultraviolet (FUV) signposts. Three of these lines are consistent with metal absorption at z {approx_equal} 0, and we identify them with Galactic O I and C II. The remaining eight lines may be imprinted by intervening absorbers and are all consistent with being high-ionization counterparts of FUV H I and/or O VI intergalactic medium signposts. In particular, five of these eight possible intervening absorption lines (single-line statistical significances of 4.1{sigma}, 4.1{sigma}, 3.9{sigma}, 3.8{sigma}, and 2.7{sigma}), are identified as C V and C VI K{alpha} absorbers belonging to three WHIM systems at z{sub X} = 0.312, z{sub X} = 0.237, and (z{sub X} ) = 0.133, which also produce broad H I (and O VI for the z{sub X} = 0.312 system) absorption in the FUV. For two of these systems (z{sub X} = 0.312 and 0.237), the Chandra X-ray data led the a posteriori discovery of physically consistent broad H I associations in the FUV (for the third system the opposite applies), so confirming the power of the X-ray-FUV synergy for WHIM studies. The true statistical significances of these three X-ray absorption systems, after properly accounting for the number of redshift trials, are 5.8{sigma} (z{sub X} = 0.312; 6.3{sigma} if the low-significance O V and C V K{beta} associations are considered), 3.9{sigma} (z

  11. Evidence for Ultra-fast Outflows in Radio-quiet Active Galactic Nuclei. II. Detailed Photoionization Modeling of Fe K-shell Absorption Lines

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.

    2011-11-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet active galactic nuclei (AGNs). These have been detected essentially through blueshifted Fe XXV/XXVI K-shell transitions. In the previous paper of this series we defined UFOs as those highly ionized absorbers with an outflow velocity higher than 10,000 km s-1 and assessed the statistical significance of the associated blueshifted absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. The present paper is an extension of that work. First, we report a detailed curve of growth analysis of the main Fe XXV/XXVI transitions in photoionized plasmas. Then, we estimate an average spectral energy distribution for the sample sources and directly model the Fe K absorbers in the XMM-Newton spectra with the detailed Xstar photoionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35% and that the majority of the Fe K absorbers are indeed associated with UFOs. The outflow velocity distribution spans from ~10,000 km s-1 (~0.03c) up to ~100,000 km s-1 (~0.3c), with a peak and mean value of ~42,000 km s-1 (~0.14c). The ionization parameter is very high and in the range log ξ ~ 3-6 erg s-1 cm, with a mean value of log ξ ~ 4.2 erg s-1 cm. The associated column densities are also large, in the range N H ~ 1022-1024 cm-2, with a mean value of N H ~ 1023 cm-2. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7 keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton-thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can

  12. Quasar induced galaxy formation: a new paradigm?

    NASA Astrophysics Data System (ADS)

    Elbaz, D.; Jahnke, K.; Pantin, E.; Le Borgne, D.; Letawe, G.

    2009-12-01

    Aims: We discuss observational evidence that quasars play a key role in the formation of galaxies, starting from the detailed study of the quasar HE0450-2958 and extending the discussion to a series of converging evidence that radio jets may trigger galaxy formation. Methods: We use mid infrared imaging with VISIR at the ESO-VLT to model the mid to far infrared energy distribution of the system and the stellar population of the companion galaxy using optical VLT-FORS spectroscopy. The results are combined with optical, CO, radio continuum imaging from ancillary data. Results: The direct detection with VISIR of the 7 kpc distant companion galaxy of HE0450-2958 allows us to spatially separate the sites of quasar and star formation activity in this composite system made of two ultra-luminous infrared galaxies (ULIRGs), where the quasar generates the bulk of the mid infrared light and the companion galaxy powered by star formation dominates in the far infrared. No host galaxy has yet been detected for this quasar, but the companion galaxy stellar mass would bring HE0450-2958 in the local M{BH} - Mstar^bulge relation if it were to merge with the QSO. This is bound to happen because of their close distance (7 kpc) and low relative velocity ( 60-200 km s-1). We conclude that we may be witnessing the building of the M{BH} - Mstar^bulge relation, or at least of a major event in that process. The star formation rate ( 340 M⊙ yr-1), age (40-200 Myr) and stellar mass ( [5-6]×1010 M⊙) are consistent with jet-induced formation of the companion galaxy. We suggest that HE0450-2958 may be fueled by fresh material from cold gas accretion from intergalactic filaments. We map the projected galaxy density surrounding the QSO as a potential tracer of intergalactic filaments and discuss a putative detection. Comparison to other systems suggest that an inside-out formation of quasar host galaxies and jet-induced galaxy formation may be a common process. Two tests are proposed for

  13. Quasars, their host galaxies and their central black holes

    NASA Astrophysics Data System (ADS)

    Dunlop, J. S.; McLure, R. J.; Kukula, M. J.; Baum, S. A.; O'Dea, C. P.; Hughes, D. H.

    2003-04-01

    We present the final results from our deep Hubble Space Telescope (HST) imaging study of the host galaxies of radio-quiet quasars (RQQs), radio-loud quasars (RLQs) and radio galaxies (RGs). We describe and analyse new Wide Field & Planetary Camera 2 (WFPC2) R-band observations for 14 objects, which when combined with the first tranche of HST imaging reported in McLure et al., provide a complete and consistent set of deep, red, line-free images for statistically matched samples of 13 RQQs, 10 RLQs and 10 RGs in the redshift band 0.1 < z < 0.25. We also report the results of new deep VLA imaging that has yielded a 5-GHz detection of all but one of the 33 active galactic nuclei (AGN) in our sample. Careful modelling of our images, aided by a high dynamic-range point spread function, has allowed us to determine accurately the morphology, luminosity, scalelength and axial ratio of every host galaxy in our sample. Armed with this information we have undertaken a detailed comparison of the properties of the hosts of these three types of powerful AGN, both internally and with the galaxy population in general. We find that spheroidal hosts become more prevalent with increasing nuclear luminosity such that, for nuclear luminosities MV < -23.5, the hosts of both radio-loud and radio-quiet AGN are virtually all massive ellipticals. Moreover, we demonstrate that the basic properties of these hosts are indistinguishable from those of quiescent, evolved, low-redshift ellipticals of comparable mass. This result rules out the possibility that radio-loudness is determined by host-galaxy morphology, and also sets severe constraints on evolutionary schemes that attempt to link low-z ultraluminous infrared galaxies with RQQs. Instead, we show that our results are as expected given the relationship between black hole and spheroid mass established for nearby galaxies, and apply this relation to estimate the mass of the black hole in each object. The results agree remarkably well with

  14. New quasar survey with WIRO: The light curves of quasars over ~15 year timescales

    NASA Astrophysics Data System (ADS)

    Griffith, Emily; Bassett, Neil; Deam, Sophie; Dixon, Don; Harvey, William; Lee, Daniel; Lyke, Bradley; Haze Nunez, Evan; Parziale, Ryan; Witherspoon, Catherine; Myers, Adam D.; Findlay, Joseph; Kobulnicky, Henry A.; Dale, Daniel A.

    2017-01-01

    Quasars, a type of active galactic nuclei (AGN), are known to vary in brightness on 10 day to 7 year timescales. While it has been proposed that this variability is caused by instability in the accretion disk, Poisson processes, or microlensing, the exact cause remains mysterious. Understanding the physical mechanisms that drive quasar variability will require imaging of quasars over a wide range of timescales. In particular, the observations required to constrain longer timescales can be difficult to conduct. This summer ~1000 quasars in Stripe 82 were observed in ugriz wavelength bands using WIRO, the University of Wyoming’s 2.3-meter telescope. Using these images, earlier data from the Sloan Digital Sky Survey's observations of Stripe 82, as well as various data reduction methods, the quasars’ magnitude can be studied on our extended 3 day to 15 year timescale. Here, we present the light curves of ~1000 quasars in ugriz bands as observed over the last 15 years. Thiswork is supported by the National Science Foundation under REU grant AST 1560461.

  15. The z~4 Quasar Luminosity Function: Implications for supermassive black hole growth, reionization, and future time domain surveys

    NASA Astrophysics Data System (ADS)

    AlSayyad, Yusra; Connolly, Andrew J.; McGreer, Ian D.; Ivezic, Zeljko; Fan, Xiaohui; LSST Data Management

    2017-01-01

    Upcoming time-domain imaging surveys such as the LSST will detect over a million high-redshift (z > 4) quasars, making complete spectroscopic followup unfeasible. Statistical estimates such as luminosity functions and clustering measurements will require purely photometric methods for classifying objects, estimating redshifts and estimating selection functions. We develop these methods and constrain the optical, type I quasar luminosity function (QLF) at 3.75 < z < 4.5 for -27.5 < M1450 < -23.5. Using the Sloan Digital Sky Survey (SDSS) repeated imaging of the 275 sq. deg. equatorial region of the sky (50 < R.A. < +60; -1.26 < Dec. < +1.26) known as Stripe 82, we extracted 40 million new lightcurves using the LSST data management software and selected a statistical sample of z~4 quasars based on colors and variability metrics. We confirmed these using a spectroscopically complete 55 sq. deg. sub-region augmented with 102 new spectroscopic observations of quasars at z > 3.4 with i < 22.5. We present the first variability-selected QLF measurement at high redshift (z > 3.75) and constraint on the characteristic luminosity M*1450 = -26.7 from a single, uniformly-selected survey at z~4.

  16. QUality Assessment of System Architectures and their Requirements (QUASAR)

    DTIC Science & Technology

    2010-05-18

    2010 Carnegie Mellon University QUality Assessment of System Architectures and their Requirements ( QUASAR ) DoD and NDIA System-of-Systems...Architectures and their Requirements ( QUASAR ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...Prescribed by ANSI Std Z39-18 2 QUASAR Version 3.1, 1 Hour Overview Donald Firesmith, 18 May 2010 © 2010 Carnegie Mellon University Topics History

  17. The search for and investigation of large quasar groups

    NASA Astrophysics Data System (ADS)

    Komberg, B. V.; Kravtsov, A. V.; Lukash, V. N.

    1996-10-01

    Recently, it was suggested that large concentrations or groups of quasars may trace sites of enhanced matter density at medium and high redshifts, analogous to the way in which galaxy clusters trace them in nearby space. We checked existing quasar data for the presence of such groups. Large quasar groups (LQGs) were identified using a well-known cluster analysis technique and the following selection criteria: (i) an LQG must contain at least 10 quasars; (ii) the number density of quasars in a group must exceed that of the background by at least a factor of 2; (iii) the majority of quasars in a group must have reliable redshifts. Our final list contains 12 such groups, including one reported previously. It was found that most of the quasars in these groups come from deep homogeneous surveys. Further analysis of the spatial distribution of quasars in these surveys shows that: (i) the probability that the detected groups are random is rather small (generally a few per cent); (ii) their sizes range from ~70 to ~160 h^-1 Mpc, which is comparable to the sizes of nearby rich superclusters; (iii) the detected groups all have redshifts 0.5quasar groups and superclusters can be evolutionarily related. We argue that quasar groups could be a common feature of the spatial distribution of medium-redshift quasars, and that the quasars in groups may belong to concentrations of young galaxy clusters and groups (distant superclusters) and hence be biased tracers of the large-scale structure of matter distribution in the early Universe. Theoretical implications, as well as other observations needed to test this point, are discussed.

  18. Microlensing of quasar ultraviolet iron emission

    SciTech Connect

    Guerras, E.; Mediavilla, E.; Kochanek, C. S.; Muñoz, J. A.; Falco, E.; Motta, V.; Rojas, K.

    2013-12-01

    We measure the differential microlensing of the UV Fe II and Fe III emission line blends between 14 quasar image pairs in 13 gravitational lenses. We find that the UV iron emission is strongly microlensed in four cases with amplitudes comparable to that of the continuum. Statistically modeling the magnifications, we infer a typical size of r{sub s}∼4√(M/M{sub ⊙}) light-days for the Fe line-emitting regions, which is comparable to the size of the region generating the UV continuum (∼3-7 light-days). This may indicate that a significant part of the UV Fe II and Fe III emission originates in the quasar accretion disk.

  19. The evolution of the quasar continuum

    NASA Technical Reports Server (NTRS)

    Elvis, M.

    1992-01-01

    We now have in hand a large data base of Roentgen Satellite (ROSAT), optical, and IR complementary data. We are in the process of obtaining a large amount of the International Ultraviolet Explorer (IUE) data for the same quasar sample. For our complementary sample at high redshifts, where the UV was redshifted into the optical, we have just had approved large amounts of observing time to cover the quasar continuum in the near-IR using the new Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) array spectrographs. Ten micron, optical, and VLA radio, data also have approved time. An ISO US key program was approved to extend this work into the far-IR, and the launch of ASTRO-D (early in 1993) promises to extend it to higher energy X-rays.

  20. A catalogue of quasars and active nuclei (8th edition).

    NASA Astrophysics Data System (ADS)

    Véron-Cetty, M.-P.; Véron, P.

    1998-03-01

    Because of the fast increase in the number of known quasars, the authors have prepared an updated version of their catalogue of quasars and active nuclei (Véron-Cetty & Véron, 1984, 1985, 1987, 1989, 1991, 1993, 1996) which now contains 11358 quasars, 357 BL Lac objects and 3334 active galaxies (of which 1111 are Seyfert 1), compared with 8609 quasars, 220 BL Lac objects and 2833 Seyfert and related galaxies in the seventh edition. Like the seventh edition, it includes positions and redshift as well as photometry (U,B,V) and 6 and 11 cm flux densities when available.

  1. Magnified Views of Relativistic Outflows in Gravitationally Lensed Quasars

    NASA Astrophysics Data System (ADS)

    Chartas, G.; Cappi, M.; Hamann, F.; Eracleous, M.; Strickland, S.; Vignali, C.; Dadina, M.; Giustini, M.; Saez, C.; Misawa, T.

    2016-06-01

    We presents results from X-ray observations of relativistic outflows in lensed quasars. The lensing magnification of the observed objects provides high signal-to-noise X-ray spectra of quasars showing the absorption signatures of relativistic outflows at redshifts near a crucial phase of black hole growth and the peak of cosmic AGN activity. We summarise the properties of the wide-angle relativistic outflow of the z = 1.51 NAL quasar HS 0810 detected in recent deep XMM-Newton and Chandra observations of this object. We also present preliminary results from a mini-survey of gravitationally lensed mini-BAL quasars performed with XMM-Newton.

  2. An Fe XXIV Absorption Line in the Persistent Spectrum of the Dipping Low-Mass X-Ray Binary 1A 1744-361

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Strohmayer, Tod E.; Bhattacharyya, Sudip

    2012-01-01

    We report on Chandra X-ray Observatory (Chandra) High Energy Transmission Grating spectra of the dipping low-mass X-ray binary 1A 1744-361 during its 2008 July outburst. We find that its persistent emission is well modeled by a blackbody (kT approx. 1.0 keV) plus power law (Gamma approx. 1.7) with an absorption edge. In the residuals of the combined spectrum, we find a significant absorption line at 6.961 +/- 0.002 keV, consistent with the Fe xxvi (hydrogen-like Fe) 2-1 transition.We place an upper limit on the velocity of a redshifted flow of nu < 221 km/s. We find an equivalent width for the line of 27+2/-3 eV, from which we determine a column density of (7 +/- 1)×10(exp 17) /sq. cm via a curve-of-growth analysis. Using XSTAR simulations, we place a lower limit on the ionization parameter of >103.6 erg cm/s. We discuss what implications the feature has on the system and its geometry. We also present Rossi X-ray Timing Explorer data accumulated during this latest outburst and, via an updated color-color diagram, clearly show that 1A 1744-361 is an "atoll" source

  3. H2O and O2 Absorption-Line Abundances in the Coma of Comet 67P/Churyumov-Gerasimenko Measured by the R-Alice Ultraviolet Spectrograph

    NASA Astrophysics Data System (ADS)

    Keeney, Brian A.; Stern, S. Alan; Schindhelm, Eric; A'Hearn, Michael F.; Bertaux, Jean-Loup; Bieler, Andre; Feaga, Lori M.; Feldman, Paul D.; Parker, Joel Wm; Steffl, Andrew Joseph; Weaver, Harold A.

    2016-10-01

    The Alice far-UV spectrograph, aboard the ESA Rosetta spacecraft, has observed emissions in the wavelength range 800-2000 Å from the coma of Comet 67P/Churyumov-Gerasimenko since before orbital insertion in September 2014. We present novel observations of the cometary coma in absorption against the stellar continuum of UV-bright stars that were targeted or serendipitously observed near the comet's nucleus between April 2015 and February 2016 at heliocentric radii ranging from 1.2 to 2.4 AU. These spectra show clear signatures of absorption from gaseous H2O and O2. The observed H2O column densities agree well with values found by Rosetta's VIRTIS instrument (Bockelée-Morvan et al. 2015, A&A, 583, A6) and can be reasonably described by a simple Haser model. However, the absorption-derived O2/H2O ratio is somewhat larger than the 1-10% range reported by Rosetta's ROSINA mass spectrometer (Bieler et al. 2015, Nature, 526, 678) from September 2014 through March 2015 at heliocentric radii of 2.1-3.2 AU. We explore potential causes for this discrepancy, including systematic biases in the absorption-line measurements and seasonal variations in O2/H2O as the comet approaches perihelion.

  4. STAR CLUSTERS IN M31. IV. A COMPARATIVE ANALYSIS OF ABSORPTION LINE INDICES IN OLD M31 AND MILKY WAY CLUSTERS

    SciTech Connect

    Schiavon, Ricardo P.; Caldwell, Nelson; Morrison, Heather; Harding, Paul; Courteau, Stephane; MacArthur, Lauren A.

    2012-01-15

    We present absorption line indices measured in the integrated spectra of globular clusters both from the Galaxy and from M31. Our samples include 41 Galactic globular clusters, and more than 300 clusters in M31. The conversion of instrumental equivalent widths into the Lick system is described, and zero-point uncertainties are provided. Comparison of line indices of old M31 clusters and Galactic globular clusters suggests an absence of important differences in chemical composition between the two cluster systems. In particular, CN indices in the spectra of M31 and Galactic clusters are essentially consistent with each other, in disagreement with several previous works. We reanalyze some of the previous data, and conclude that reported CN differences between M31 and Galactic clusters were mostly due to data calibration uncertainties. Our data support the conclusion that the chemical compositions of Milky Way and M31 globular clusters are not substantially different, and that there is no need to resort to enhanced nitrogen abundances to account for the optical spectra of M31 globular clusters.

  5. NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. V. NONLINEAR ABSORPTION-LINE INDEX VERSUS METALLICITY RELATIONS AND BIMODAL INDEX DISTRIBUTIONS OF M31 GLOBULAR CLUSTERS

    SciTech Connect

    Kim, Sooyoung; Yoon, Suk-Jin; Chung, Chul; Lee, Young-Wook; Caldwell, Nelson; Schiavon, Ricardo P.; Kang, Yongbeom; Rey, Soo-Chang

    2013-05-10

    Recent spectroscopy on the globular cluster (GC) system of M31 with unprecedented precision witnessed a clear bimodality in absorption-line index distributions of old GCs. Such division of extragalactic GCs, so far asserted mainly by photometric color bimodality, has been viewed as the presence of merely two distinct metallicity subgroups within individual galaxies and forms a critical backbone of various galaxy formation theories. Given that spectroscopy is a more detailed probe into stellar population than photometry, the discovery of index bimodality may point to the very existence of dual GC populations. However, here we show that the observed spectroscopic dichotomy of M31 GCs emerges due to the nonlinear nature of metallicity-to-index conversion and thus one does not necessarily have to invoke two separate GC subsystems. We take this as a close analogy to the recent view that metallicity-color nonlinearity is primarily responsible for observed GC color bimodality. We also demonstrate that the metallicity-sensitive magnesium line displays non-negligible metallicity-index nonlinearity and Balmer lines show rather strong nonlinearity. This gives rise to bimodal index distributions, which are routinely interpreted as bimodal metallicity distributions, not considering metallicity-index nonlinearity. Our findings give a new insight into the constitution of M31's GC system, which could change much of the current thought on the formation of GC systems and their host galaxies.

  6. Quasars in the Life of Astronomers

    NASA Astrophysics Data System (ADS)

    D'Onofrio, Mauro; Marziani, Paola; Sulentic, Jack W.; Collin, Suzy; Setti, Giancarlo; Gaskell, Martin; Wampler, Joe; Elvis, Martin; Pronik, Iraida; Pronik, Vladimir; Sergeev, Sergey; Volvach, Aleksander; Krolik, Julian; Netzer, Hagai; Cavaliere, Alfonso; Padovani, Paolo; Arp, Halton; Narlikar, Jayant

    We are approaching the 50th anniversary of the discovery of quasars. Those old enough to have been cognizant of astronomy in 1962-1963 can remember the sense of excitement connected with this finding. There was talk of a major new constituent of the universe. The excitement of the discovery was palpable even to one of us (the most senior of the editors) who was then a high school teenager.

  7. The WISSH Quasars Project: Probing the AGN-Galaxy Coevolution In the Most Luminous Quasars

    NASA Astrophysics Data System (ADS)

    Bischetti, Manuela; Piconcelli, E.; Vietri, G.; Bongiorno, A.; Fiore, F.; Duras, F.; Martocchia, S.; Zappacosta, L.; Brusa, M.; Vignali, C.; Marconi, A.; Cresci, G.; WISSH Collaboration

    2016-10-01

    The WISE/SDSS selected hyper-luminous (WISSH) quasars survey is an extensive multiband observing program (from millimeter wavelengths to hard X rays) to investigate the role of nuclear activity in SMBH-galaxy self-regulated growth via extended outflows. Our ongoing project is designed to accurately constrain both AGN and host galaxy ISM properties in a large sample of 90 broad-line quasars at the brightest end of the AGN luminosity function (L_bol > 1e14 L_sun) and at the peak of their number density (z 2 - 4)I will review the most relevant results obtained to date with emphasis on the discovery of extremely powerful (up to 4% of L_bol) ionized outflows, the relation between AGN properties (obscuration, luminosity and Eddington ratio) and large-scale winds, and the SED of these hyper-luminous quasars.

  8. X-ray emission from red quasars

    NASA Technical Reports Server (NTRS)

    Bregman, J. N.; Glassgold, A. E.; Huggins, P. J.; Kinney, A. L.

    1985-01-01

    A dozen red quasars were observed with the Einstein Observatory in order to determine their X-ray properties. The observations show that for all these sources, the infrared-optical continuum is so steep that when extrapolated to higher frequencies, it passes orders of magnitude below the measured X-ray flux. The X-ray emission is better correlated with the radio than with the infrared flux, suggesting a connection between the two. By applying the synchrotron-self-Compton model to the data, it is found that the infrared-optical region has a size of 0.01 pc or more and a magnetic field more than 0.1 G, values considerably different than are found in the radio region. Unlike other quasars, the ionizing continuum is dominated by the X-ray emission. The peculiar line ratios seen in these objects can be understood with a photoionization model, provided that the photon to gas density ratio (ionization parameter) is an order of magnitude less than in typical quasars.

  9. The Quintuple Quasar: Radio and Optical Observations

    NASA Astrophysics Data System (ADS)

    Winn, Joshua N.; Kochanek, Christopher S.; Keeton, Charles R.; Lovell, James E. J.

    2003-06-01

    We present results from high-resolution radio and optical observations of PMN J0134-0931, a gravitational lens with a unique radio morphology and an extremely red optical counterpart. Our data support the theory of Keeton & Winn: five of the six observed radio components are multiple images of a single quasar, produced by a pair of lens galaxies. Multifrequency Very Long Baseline Array maps show that the sixth and faintest component has a different radio spectrum than the others, confirming that it represents a second component of the background source rather than a sixth image. The lens models predict that there should be additional faint images of this second source component, and we find evidence for one of the predicted images. The previously observed large angular sizes of two of the five bright components are not intrinsic (which would have excluded the possibility that they are lensed images) but are instead due to scatter broadening. Both the extended radio emission observed at low frequencies and the intrinsic image shapes observed at high frequencies can be explained by the lens models. The pair of lens galaxies is marginally detected in Hubble Space Telescope images. The differential extinction of the quasar images suggests that the extreme red color of the quasar is at least partly due to dust in the lens galaxies.

  10. Spectral Energy Distributions of Red Quasars

    NASA Astrophysics Data System (ADS)

    Glikman, Eilat

    We propose to study the spectral energy distributions (SEDs) of a sample of dust-reddened quasars, which are transitional objects, triggered by and residing in recently-merged host galaxies, and are therefore ideal laboratories for addressing fundamental questions on the co-evolution of black holes and their host galaxies. We will obtain flux measurements at 89 and 154 microns - the expected peak of dust emission - with the HAWK+ instrument for a sample of these red quasars. We will combine these measurements with already-existing photometric data from SDSS, 2MASS and WISE to construct SEDs from the near-UV to the far-infrared. We will fit these SEDs to models of AGN and host galaxy emission as well as dust obscuration and re-radiation in the infrared using self-consistent Bayesian SED fitting codes to disentangle their underlying physical processes. Our current SEDs extend only to the WISE 22 micron band, resulting in model fits that underestimate the AGN contribution and overestimate the host galaxy's stellar mass and star formation rate. The proposed data will better constrain these properties, and when applied to the full sample, will produce a clearer picture of the complex processes of quasar/galaxy co-evolution. Furthermore, the SEDs for the targeted AGN can be leveraged to provide much-improved bolometric corrections for larger samples of AGN where no infrared data exist. This program utilizes the unique capabilities of SOFIA, the only facility able to observe at these long wavelengths.

  11. NuSTAR Observations of Reddened Quasars

    NASA Astrophysics Data System (ADS)

    LaMassa, Stephanie M.; Ricarte, Angelo; Glikman, Eilat; Urry, C. Megan; Stern, Daniel; Yaqoob, Tahir; Lansbury, George; Civano, Francesca M.; Boggs, Steven E.; Brandt, W. Niel; Chen, Chien-Ting J.; Christensen, Finn; Craig, William W.; Hailey, Charles James; Harrison, Fiona; Hickox, Ryan C.; Koss, Michael; Ricci, Claudio; Treister, Ezequiel; Zhang, William

    2016-04-01

    Reddened quasars selected from the FIRST and 2MASS surveys appear to be in a transitional link in the merger-induced black hole growth/galaxy evolution model. We present the NuSTAR and XMM-Newton/Chandra observations of 2 FIRST-2MASS red quasars, F2M 0830+3759 and F2M 1227+3214. The combination of broad-band X-ray coverage and physically-motivated spectral models allow us to characterize the X-ray obscuration in these systems. We find that much heavier obscuration is present globally than along the line-of-sight for F2M 0830+3759, and that F2M 1227+3214 may also have much higher amounts of global versus line-of-sight obscuration. These results are consistent with the paradigm that red quasars are evacuating their heavy cocoon of dust and gas, unveiling the central nucleus while higher column densities of gas are present globally, playing a role in reprocessing the intrinsic emission.

  12. Thermal phases of interstellar and quasar gas

    NASA Technical Reports Server (NTRS)

    Lepp, S.; Mccray, R.; Shull, J. M.; Woods, D. T.; Kallman, T.

    1985-01-01

    Interstellar gas may be in a variety of thermal phases, depending on how it is heated and ionized; here a unified picture of the equation of state of interstellar and quasar gas is presented for a variety of such mechanisms over a broad range of temperatures, densities, and column densities of absorbing matter. It is found that for select ranges of gas pressure, photoionizing flux, and heating, three thermally stable phases are allowed: coronal gas (T above 100,000 K); warm gas (T about 10,000 K); and cold gas (T less than 100 K). With attenuation of ultraviolet and X-ray radiation, the cold phase may undergo a transition to molecules. In quasar broad-line clouds, this transition occurs at column density N(H) = about 10 to the 23rd/sq cm and could result in warm molecular cores and observable emission from H2 and OH. The underlying atomic physics behind each of these phase transitions and their relevance to interstellar matter and quasars are discussed.

  13. Extragalactic Extinction Laws and Quasar Structure from Color differences Between Images of Lensed Quasars

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio

    2011-11-01

    The action of the mean gravitational field of an intervening galaxy sufficiently aligned with a distant quasar can form several images of this object (multiple imaged quasar). Random fluctuations of the gravitational field induced by the highly inhomogeneous granulation of stars or in dark matter clumps of the lens galaxy mass distribution can subdivide the images in scales of microarcsecs (microlensing by stars) or miliarcsecs (mililensing by dark matter clumps). Anomalies induced by microlensing in the flux brightness of the images can be very strong for small sources or be averaged out by sufficiently large sources. Thus, microlensing magnification of the flux of a radially stratified source can be wavelength dependent (chromaticity). On the other hand, in their path through the lens galaxy the photons of the quasar images are also affected by the patchily distributed interstellar medium (dust extinction). Thus, the wavelength dependence of extinction can be obtained from the flux ratios between two images. In this work we review the use of quasar spectra to disentangle microlensing and dust extinction (based in the comparison between the continuum and emission line flux ratios for different images of the quasar) discussing the impact of the intrinsic source variability in this procedure. We will also review some results derived using this technique like the low fraction of mass in MACHOS in the dark halos of lens galaxies, the unexpected large sizes of the accretion disks present in the central region of lensed quasars or the derivation of extinction curves in the extragalactic domain that reveals a variability in dust properties similar to the one found in the Local Group of galaxies.

  14. A Spectropolarimetric Test of the Structure of the Intrinsic Absorbers in the Quasar HS 1603+3820

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Kawabata, Koji S.; Eracleous, Michael; Charlton, Jane C.; Kashikawa, Nobunari

    2010-08-01

    We report the results of a spectropolarimetric observation of the C VI "mini-broad" absorption line (mini-BAL) in the quasar HS 1603+3820 (z em = 2.542). The observations were carried out with the FOCAS instrument on the Subaru Telescope and yielded an extremely high polarization sensitivity of δp~ 0.1%, at a resolving power of R ~ 1500. HS 1603+3820 has been the target of a high-resolution spectroscopic monitoring campaign for more than four years, aimed at studying its highly variable C VI mini-BAL profile. Using the monitoring observations in an earlier paper, we were able to narrow down the causes of the variability to the following two scenarios: (1) scattering material of variable optical depth redirecting photons around the absorber and (2) a variable, highly ionized screen between the continuum source and the absorber which modulates the UV continuum incident on the absorber. The observations presented here provide a crucial test of the scattering scenario and lead us to disfavor it because (1) the polarization level is very small (p ~ 0.6%) throughout the spectrum and (2) the polarization level does not increase across the mini-BAL trough. Thus, the variable screen scenario emerges as our favored explanation of the C VI mini-BAL variability. Our conclusion is bolstered by recent X-ray observations of nearby mini-BAL quasars, which show a rapidly variable soft X-ray continuum that appears to be the result of transmission through an ionized absorber of variable ionization parameter and optical depth. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  15. A SPECTROPOLARIMETRIC TEST OF THE STRUCTURE OF THE INTRINSIC ABSORBERS IN THE QUASAR HS 1603+3820

    SciTech Connect

    Misawa, Toru; Kawabata, Koji S.; Eracleous, Michael; Charlton, Jane C.; Kashikawa, Nobunari E-mail: mce@astro.psu.ed E-mail: kawabtkj@hiroshima-u.ac.j

    2010-08-20

    We report the results of a spectropolarimetric observation of the C VI 'mini-broad' absorption line (mini-BAL) in the quasar HS 1603+3820 (z {sub em} = 2.542). The observations were carried out with the FOCAS instrument on the Subaru Telescope and yielded an extremely high polarization sensitivity of {delta}p{approx} 0.1%, at a resolving power of R {approx} 1500. HS 1603+3820 has been the target of a high-resolution spectroscopic monitoring campaign for more than four years, aimed at studying its highly variable C VI mini-BAL profile. Using the monitoring observations in an earlier paper, we were able to narrow down the causes of the variability to the following two scenarios: (1) scattering material of variable optical depth redirecting photons around the absorber and (2) a variable, highly ionized screen between the continuum source and the absorber which modulates the UV continuum incident on the absorber. The observations presented here provide a crucial test of the scattering scenario and lead us to disfavor it because (1) the polarization level is very small (p {approx} 0.6%) throughout the spectrum and (2) the polarization level does not increase across the mini-BAL trough. Thus, the variable screen scenario emerges as our favored explanation of the C VI mini-BAL variability. Our conclusion is bolstered by recent X-ray observations of nearby mini-BAL quasars, which show a rapidly variable soft X-ray continuum that appears to be the result of transmission through an ionized absorber of variable ionization parameter and optical depth.

  16. Confirmation of a Near-relativistic Wind in the z=3.91 Quasar APM 08279+5255.

    NASA Astrophysics Data System (ADS)

    Chartas, George; Brandt, W. N.; Saez, C.; Giustini, M.; Garmire, G. P.

    2010-01-01

    We present recent X-ray observations of the z = 3.91 quasar APM 08279+5255 that confirm the presence of near-relativistic outflows of ionized absorbing material with velocities of up to 0.76c in this object. The maximum outflow velocity constrains the angle between the wind velocity and our line of sight to be less than 22 degrees. The X-ray broad absorption lines (BALs) and 0.2-10 keV continuum of APM 08279+5255 show significant variability on timescales as short as 3.3 days (proper time) implying a source size-scale r_g, where r_g is the gravitational radius. Based on our spectral analysis we identify the following components of the outflow: (a) Highly ionized X-ray absorbing material with an ionization parameter in the range of 2.9 < log xi < 3.9 and a column density of log N_H 23 outflowing at velocities of up to 0.76 c. (b) Low-ionization X-ray absorbing gas with log N_H 22.8. We find a possible trend between the X-ray photon index and the maximum outflow velocity of the ionized absorber in the sense that flatter spectra appear to result in lower outflow velocities. Our studies indicate that these quasar winds may be important in regulating the growth of the supermassive black hole, controlling the formation of the host galaxy, and enriching the intergalactic medium. We acknowledge financial support from NASA via the Smithsonian Institution grant SAO SV4-74018 and from NNX08AB71G. WNB acknowledges financial support from NASA LTSA grant NAG5-13035.

  17. High-precision limit on variation in the fine-structure constant from a single quasar absorption system

    NASA Astrophysics Data System (ADS)

    Kotuš, S. M.; Murphy, M. T.; Carswell, R. F.

    2017-01-01

    The brightest southern quasar above redshift z = 1, HE 0515-4414, with its strong intervening metal absorption line system at zabs = 1.1508, provides a unique opportunity to precisely measure or limit relative variations in the fine-structure constant (Δα/α). A variation of just ˜3 parts per million (ppm) would produce detectable velocity shifts between its many strong metal transitions. Using new and archival observations from the Ultraviolet and Visual Echelle Spectrograph (UVES), we obtain an extremely high signal-to-noise ratio spectrum (peaking at S/N ≈ 250 pix-1). This provides the most precise measurement of Δα/α from a single absorption system to date, Δα/α = -1.42 ± 0.55stat ± 0.65sys ppm, comparable with the precision from previous, large samples of ˜150 absorbers. The largest systematic error in all (but one) previous similar measurements, including the large samples, was long-range distortions in the wavelength calibration. These would add an ˜2 ppm systematic error to our measurement and up to ˜10 ppm to other measurements using Mg and Fe transitions. However, we corrected the UVES spectra using well-calibrated spectra of the same quasar from the High Accuracy Radial velocity Planet Searcher, leaving a residual 0.59 ppm systematic uncertainty, the largest contribution to our total systematic error. A similar approach, using short observations on future well-calibrated spectrographs to correct existing high S/N spectra, would efficiently enable a large sample of reliable Δα/α measurements. The high-S/N UVES spectrum also provides insights into analysis difficulties, detector artefacts and systematic errors likely to arise from 25-40-m telescopes.

  18. The effect of macromodel uncertainties on microlensing modelling of lensed quasars

    NASA Astrophysics Data System (ADS)

    Vernardos, G.; Fluke, C. J.

    2014-12-01

    Cosmological gravitational microlensing has been proven to be a powerful tool to constrain the structure of multiply imaged quasars, especially the accretion disc and central supermassive black hole system. However, the derived constraints on models may be affected by large systematic errors introduced in the various stages of modelling, namely, the macromodels, the microlensing magnification maps, and the convolution with realistic disc profiles. In particular, it has been known that different macromodels of the galaxy lens that fit the observations equally well, can lead to different values of convergence, κ, and shear, γ, required to generate magnification maps. So far, ˜25 microlensed quasars have been studied using microlensing techniques, where each system has been modelled and analysed individually, or in small samples. This is about to change due to the upcoming synoptic all-sky surveys, which are expected to discover thousands of quasars suitable for microlensing studies. In this study, we investigate the connection between macromodels of the galaxy lens and microlensing magnification maps throughout the parameter space in preparation for future studies of large statistical samples of systems displaying microlensing. In particular, we use 55 900 maps produced by the GERLUMPH parameter survey (available online at http://gerlumph.swin.edu.au) and identify regions of parameter space where macromodel uncertainties (Δκ, Δγ) lead to statistically different magnification maps. Strategies for mitigating the effect of Δκ, Δγ uncertainties are discussed in order to understand and control this potential source of systematic errors in accretion disc constraints derived from microlensing.

  19. Helium Reionization Simulations. I. Modeling Quasars as Radiation Sources

    NASA Astrophysics Data System (ADS)

    La Plante, Paul; Trac, Hy

    2016-09-01

    We introduce a new project to understand helium reionization using fully coupled N-body, hydrodynamics, and radiative transfer simulations. This project aims to capture correctly the thermal history of the intergalactic medium as a result of reionization and make predictions about the Lyα forest and baryon temperature-density relation. The dominant sources of radiation for this transition are quasars, so modeling the source population accurately is very important for making reliable predictions. In this first paper, we present a new method for populating dark matter halos with quasars. Our set of quasar models includes t