Connection Between the ICRF and the Dynamical Reference Frame for the Outer Planets
NASA Astrophysics Data System (ADS)
da Silva Neto, D. N.; Assafin, M.; Andrei, A. H.; Vieira Martins, R.
2005-01-01
This work brings an approach intending to improve the connection between the Dynamical Reference Frame and the Extragalactic Reference Frame. For that, close encounters of outer Solar System objects and quasars are used. With this goal, Uranus, Neptune and two quasars were observed at Laborat´orio Nacional de Astrof´ısica (LNA), Brazil. The optical reference frame is the HCRF, as given by the UCAC2 catalogue. The first results show an accuracy of 45 mas - 50 mas in the optical positions. The optical minus radio offsets give the local orientation between the catalogue and radio frame. From this, it is possible to place the optical planet coordinates on the extragalactic frame. A comparison between the new corrected optical coordinates and the respective DE ephemeris to these planets can give the instant orientations of the Dynamical Reference Frame with regard to the ICRS, for this zone of outer Solar System.
Overall properties of the Gaia DR1 reference frame
NASA Astrophysics Data System (ADS)
Liu, N.; Zhu, Z.; Liu, J.-C.; Ding, C.-Y.
2017-03-01
Aims: The first Gaia data release (Gaia DR1) provides 2191 ICRF2 sources with their positions in the auxiliary quasar solution and five astrometric parameters - positions, parallaxes, and proper motions - for stars in common between the Tycho-2 catalogue and Gaia in the joint Tycho-Gaia astrometric solution (TGAS). We aim to analyze the overall properties of Gaia DR1 reference frame. Methods: We compare quasar positions of the auxiliary quasar solution with ICRF2 sources using different samples and evaluate the influence on the Gaia DR1 reference frame owing to the Galactic aberration effect over the J2000.0-J2015.0 period. Then we estimate the global rotation between TGAS with Tycho-2 proper motion systems to investigate the property of the Gaia DR1 reference frame. Finally, the Galactic kinematics analysis using the K-M giant proper motions is performed to understand the property of Gaia DR1 reference frame. Results: The positional comparison between the auxiliary quasar solution and ICRF2 shows negligible orientation and validates the declination bias of -0.1mas in Gaia quasar positions with respect to ICRF2. Galactic aberration effect is thought to cause an offset 0.01mas of the Z axis direction of Gaia DR1 reference frame. The global rotation between TGAS and Tycho-2 proper motion systems, obtained by different samples, shows a much smaller value than the claimed value 0.24mas yr-1. For the Galactic kinematics analysis of the TGAS K-M giants, we find possible non-zero Galactic rotation components beyond the classical Oort constants: the rigid part ωYG = -0.38±0.15mas yr-1 and the differential part ω^primeYG = -0.29±0.19mas yr-1 around the YG axis of Galactic coordinates, which indicates possible residual rotation in Gaia DR1 reference frame or problems in the current Galactic kinematical model. Conclusions: The Gaia DR1 reference frame is well aligned to ICRF2, and the possible influence of the Galactic aberration effect should be taken into consideration for the future Gaia-ICRF link. The cause of the rather small global rotation between TGAS and Tycho-2 proper motion systems is unclear and needs further investigation. The possible residual rotation in Gaia DR1 reference frame inferred from the Galactic kinematic analysis should be noted and examined in future data release.
NASA Astrophysics Data System (ADS)
Liu, J.-C.; Malkin, Z.; Zhu, Z.
2018-03-01
The International Celestial Reference Frame (ICRF) is currently realized by the very long baseline interferometry (VLBI) observations of extragalactic sources with the zero proper motion assumption, while Gaia will observe proper motions of these distant and faint objects to an accuracy of tens of microarcseconds per year. This paper investigates the difference between VLBI and Gaia quasar proper motions and it aims to understand the impact of quasar proper motions on the alignment of the ICRF and Gaia reference frame. We use the latest time series data of source coordinates from the International VLBI Service analysis centres operated at Goddard Space Flight Center (GSF2017) and Paris observatory (OPA2017), as well as the Gaia auxiliary quasar solution containing 2191 high-probability optical counterparts of the ICRF2 sources. The linear proper motions in right ascension and declination of VLBI sources are derived by least-squares fits while the proper motions for Gaia sources are simulated taking into account the acceleration of the Solar system barycentre and realistic uncertainties depending on the source brightness. The individual and global features of source proper motions in GSF2017 and OPA2017 VLBI data are found to be inconsistent, which may result from differences in VLBI observations, data reduction and analysis. A comparison of the VLBI and Gaia proper motions shows that the accuracies of the components of rotation and glide between the two systems are 2-4 μas yr- 1 based on about 600 common sources. For the future alignment of the ICRF and Gaia reference frames at different wavelengths, the proper motions of quasars must necessarily be considered.
Astrophysics of Reference Frame Tie Objects
NASA Technical Reports Server (NTRS)
Johnston, Kenneth J.; Boboltz, David; Fey, Alan Lee; Gaume, Ralph A.; Zacharias, Norbert
2004-01-01
The Astrophysics of Reference Frame Tie Objects Key Science program will investigate the underlying physics of SIM grid objects. Extragalactic objects in the SIM grid will be used to tie the SIM reference frame to the quasi-inertial reference frame defined by extragalactic objects and to remove any residual frame rotation with respect to the extragalactic frame. The current realization of the extragalactic frame is the International Celestial Reference Frame (ICRF). The ICRF is defined by the radio positions of 212 extragalactic objects and is the IAU sanctioned fundamental astronomical reference frame. This key project will advance our knowledge of the physics of the objects which will make up the SIM grid, such as quasars and chromospherically active stars, and relates directly to the stability of the SIM reference frame. The following questions concerning the physics of reference frame tie objects will be investigated.
NASA Astrophysics Data System (ADS)
Titov, O.; Pursimo, T.; Johnston, Helen M.; Stanford, Laura M.; Hunstead, Richard W.; Jauncey, David L.; Zenere, Katrina A.
2017-04-01
In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ˜160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titov, O.; Stanford, Laura M.; Pursimo, T.
In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radiomore » sources.« less
A Ka-Band Celestial Reference Frame with Applications to Deep Space Navigation
NASA Technical Reports Server (NTRS)
Jacobs, Christopher S.; Clark, J. Eric; Garcia-Miro, Cristina; Horiuchi, Shinji; Sotuela, Ioana
2011-01-01
The Ka-band radio spectrum is now being used for a wide variety of applications. This paper highlights the use of Ka-band as a frequency for precise deep space navigation based on a set of reference beacons provided by extragalactic quasars which emit broadband noise at Ka-band. This quasar-based celestial reference frame is constructed using X/Ka-band (8.4/32 GHz) from fifty-five 24-hour sessions with the Deep Space Network antennas in California, Australia, and Spain. We report on observations which have detected 464 sources covering the full 24 hours of Right Ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the international standard S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of approximately 200 micro-arcsec in alpha cos(delta) and approximately 300 micro-arcsec in delta. There is evidence for systematic errors at the 100 micro-arcsec level. Known errors include limited SNR, lack of instrumental phase calibration, tropospheric refraction mis-modeling, and limited southern geometry. The motivation for extending the celestial reference frame to frequencies above 8 GHz is to access more compact source morphology for improved frame stability and to support spacecraft navigation for Ka-band based NASA missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titov, O.; Stanford, Laura M.; Johnston, Helen M.
2013-07-01
Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame.more » We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.« less
Reduction of photographic observations of asteroids to the reference frame of a single catalog
NASA Astrophysics Data System (ADS)
Chernetenko, Yu. A.
2008-04-01
In 2000, the last international program of photographic observations of selected asteroids aimed at the determination of the mutual orientation of the dynamic and stellar coordinate systems came to an end. The Institute of Applied Astronomy of the Russian Academy of Sciences collected more than 25 000 observations for 15 asteroids spanning from 1949 through 1995. These observations were reduced to the reference frame of the Hipparcos catalog using dependencies published along with observations. The accuracy of observations of selected asteroids was 0.30 arcsec, which is comparable to that of modern CCD observations of minor planets. The observations are available at
The Gaia inertial reference frame and the tilting of the Milky Way disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perryman, Michael; Spergel, David N.; Lindegren, Lennart, E-mail: mac.perryman@gmail.com
2014-07-10
While the precise relationship between the Milky Way disk and the symmetry planes of the dark matter halo remains somewhat uncertain, a time-varying disk orientation with respect to an inertial reference frame seems probable. Hierarchical structure formation models predict that the dark matter halo is triaxial and tumbles with a characteristic rate of ∼2 rad H{sub 0}{sup −1} (∼30 μas yr{sup –1}). These models also predict a time-dependent accretion of gas, such that the angular momentum vector of the disk should be misaligned with that of the halo. These effects, as well as tidal effects of the LMC, will resultmore » in the rotation of the angular momentum vector of the disk population with respect to the quasar reference frame. We assess the accuracy with which the positions and proper motions from Gaia can be referred to a kinematically non-rotating system, and show that the spin vector of the transformation from any rigid self-consistent catalog frame to the quasi-inertial system defined by quasars should be defined to better than 1 μas yr{sup –1}. Determination of this inertial frame by Gaia will reveal any signature of the disk orientation varying with time, improve models of the potential and dynamics of the Milky Way, test theories of gravity, and provide new insights into the orbital evolution of the Sagittarius dwarf galaxy and the Magellanic Clouds.« less
Quasars in the Galactic Anti-Center Area from LAMOST DR3
NASA Astrophysics Data System (ADS)
Huo, Zhi-Ying; Liu, Xiao-Wei; Shi, Jian-Rong; Xiang, Mao-Sheng; Huang, Yang; Yuan, Hai-Bo; Zhang, Jian-Nan; Zhang, Wei; Wang, Jian-Ling; Wu, Yu-Zhong; Cao, Zi-Huang; Zhang, Yong; Hou, Yong-Hui; Wang, Yue-Fei
2017-03-01
We present a sample of quasars discovered in an area near the Galactic Anti-Center covering 150^\\circ ≤ l≤ 210^\\circ and | b| ≤ 30^\\circ , based on LAMOST Data Release 3 (DR3). This sample contains 151 spectroscopically confirmed quasars. Among them 80 are newly discovered with LAMOST. All these quasars are very bright, with i magnitudes peaking around 17.5 mag. All the new quasars were discovered serendipitously from objects that were originally targeted with LAMOST as stars having bluer colors, except for a few candidates targeted as variable, young stellar objects. This bright quasar sample at low Galactic latitudes will help fill the gap in the spatial distribution of known quasars near the Galactic disk that are used to construct an astrometric reference frame for the purpose of accurate proper motion measurements that can be applied to, for example, Gaia. They are also excellent tracers to probe the kinematics and chemistry of the interstellar medium in the Milky Way disk and halo via absorption line spectroscopy.
A Highly Doppler Blueshifted Fe-K Emission Line in the High-Redshift QSO PKS 2149-306.
Yaqoob; George; Nandra; Turner; Zobair; Serlemitsos
1999-11-01
We report the results from an ASCA observation of the high-luminosity, radio-loud quasar PKS 2149-306 (redshift 2.345), covering the approximately 1.7-30 keV band in the quasar frame. We find the source to have a luminosity approximately 6x1047 ergs s-1 in the 2-10 keV band (quasar frame). We detect an emission line centered at approximately 17 keV in the quasar frame. Line emission at this energy has not been observed in any other active galaxy or quasar to date. We present evidence rejecting the possibility that this line is the result of instrumental artifacts or a serendipitous source. The most likely explanation is blueshifted Fe-K emission (the equivalent width is EW approximately 300+/-200 eV, quasar frame). Bulk velocities of the order of 0.75c are implied by the data. We show that Fe-K line photons originating in an accretion disk and Compton scattering off a leptonic jet aligned along the disk axis can account for the emission line. Curiously, if the emission-line feature recently discovered in another quasar (PKS 0637-752, z=0.654) at 1.6 keV in the quasar frame is due to blueshifted O vii emission, the Doppler blueshifting factor in both quasars is similar ( approximately 2.7-2.8).
The large bright quasar survey. 6: Quasar catalog and survey parameters
NASA Astrophysics Data System (ADS)
Hewett, Paul C.; Foltz, Craig B.; Chaffee, Frederic H.
1995-04-01
Positions, redshifts, and magnitudes for the 1055 quasars in the Large Bright Quasar Survey (LBQS) are presented in a single catalog. Celestial positions have been derived using the PPM catalog to provide an improved reference frame. J2000.0 coordinates are given together with improved b1950.0 positions. Redshifts calculated via cross correlation with a high signal-to-noise ratio composite quasar spectrum are included and the small number of typographic and redshift misidentifications in the discovery papers are corrected. Spectra of the 12 quasars added to the sample since the publication of the discovery papers are included. Discriptions of the plate material, magnitude calibration, quasar candidate selection procedures, and the identification spectroscopy are given. Calculation of the effective area of the survey for the 1055 quasars comprising the well-defined LBQS sample specified in detail. Number-redshift and number-magnitude relations for the quasars are derived and the strengths and limitastions of the LBSQ sample summarized. Comparison with existing surveys is made and a qualitative assessment of the effectiveness of the LBQS undertaken. Positions, magnitudes, and optical spectra of the eight objects (less than 1%) in the survey that remain unidentified are also presented.
Evaluating and improving the redshifts of z > 2.2 quasars
NASA Astrophysics Data System (ADS)
Mason, Michelle; Brotherton, Michael S.; Myers, Adam
2017-08-01
Quasar redshifts require the best possible precision and accuracy for a number of applications, such as setting the velocity scale for outflows as well as measuring small-scale quasar-quasar clustering. The most reliable redshift standard in luminous quasars is arguably the narrow [O III] λλ4959, 5007 emission line doublet in the rest-frame optical. We use previously published [O III] redshifts obtained using near-infrared spectra in a sample of 45 high-redshift (z > 2.2) quasars to evaluate redshift measurement techniques based on rest-frame ultraviolet spectra. At redshifts above z = 2.2, the Mg II λ2798 emission line is not available in observed-frame optical spectra and the most prominent unblended and unabsorbed spectral feature available is usually C IV λ1549. Peak and centroid measurements of the C IV profile are often blueshifted relative to the rest-frame of the quasar, which can significantly bias redshift determinations. We show that redshift determinations for these high-redshift quasars are significantly correlated with the emission-line properties of C IV (I.e. the equivalent width, or EW, and the full width at half-maximum, or FWHM) as well as the luminosity, which we take from the Sloan Digital Sky Survey Data Release 7. We demonstrate that empirical corrections based on multiple regression analyses yield significant improvements in both the precision and accuracy of the redshifts of the most distant quasars and are required to establish consistency with redshifts determined in more local quasars.
Infrared/optical energy distributions of high redshifted quasars
NASA Technical Reports Server (NTRS)
Soifer, B. T.; Neugebauer, G.; Oke, J. B.; Matthews, K.; Lacy, J. H.
1982-01-01
Measurements at 1.2, 1.6 and 2.2 microns were combined with visual spectrophotometry of 21 quasars having redshifts z or = 2.66. The primary result is that the rest frame visual/ultraviolet continua of the high redshift quasars are well described by a sum of a power law continuum with slope of approximately -0.4 and a 3000 A bump. The rest frame visual/ultraviolet continua of these quasars are quite similar to that of 3C273, the archetype of low redshift quasars. There does not appear to be any visual/ultraviolet properties distinguishing high redshift quasars selected via visual or radio techniques.
A Time-domain Analysis of Nitrogen-rich Quasars.
NASA Astrophysics Data System (ADS)
Dittmann, Alexander; Liu, Xin; Shen, Yue; Jiang, Linhua
2018-01-01
A small population of quasars exhibit anomalously high nitrogen-to-carbon ratios (N/C) in their emission lines. These “nitrogen-rich” (N-rich) quasars have been difficult to explain. Few of the possible mechanism are natural, since stellar populations with abnormally high metallicities are required to produce an N-rich interstellar medium. N-rich quasars are also more likely to be “radio-loud” than average quasars, which is difficult to explain by invoking higher metallicity alone. Recently, tidal disruption events (TDEs) have been proposed as a mechanism for N-rich quasars. Such a TDE would occur between a supersolar mass star and a supermassive black hole. The CNO cycle creates a surplus of N-rich and carbon-deficient material that could naturally explain the N/C observed in N-rich quasars. The TDE hypothesis explains N-rich quasars without requiring extremely exotic stellar populations. A testable difference differentiating the TDE explanation and exotic stellar population scenarios is that TDEs do not produce enough N-rich material to pollute the quasar environment for extended periods of time, in which case N-rich phenomena in quasars would be transient. By analyzing changes in nitrogen and carbon line widths in time-separated spectra of N-rich quasars, we have studied nitrogen abundance in quasars which had previously been identified as nitrogen rich. We have found that over time-frames of greater than one year in the quasar rest frame, nitrogen abundance tends to systematically decrease. The observed decrease is larger than our estimate of the effects of noise based on spectra separated by smaller time frames. Additionally, x-ray observations of one N-rich quasar have demonstrated that its x-ray emission is an outlier among the quasar population, but similar to confirmed TDEs.
Fixing the reference frame for PPMXL proper motions using extragalactic sources
Grabowski, Kathleen; Carlin, Jeffrey L.; Newberg, Heidi Jo; ...
2015-05-27
In this study, we quantify and correct systematic errors in PPMXL proper motions using extragalactic sources from the first two LAMOST data releases and the Vèron-Cetty & Vèron Catalog of Quasars. Although the majority of the sources are from the Vèron catalog, LAMOST makes important contributions in regions that are not well-sampled by previous catalogs, particularly at low Galactic latitudes and in the south Galactic cap. We show that quasars in PPMXL have measurable and significant proper motions, which reflect the systematic zero-point offsets present in the catalog. We confirm the global proper motion shifts seen by Wu et al.,more » and additionally find smaller-scale fluctuations of the QSO-derived corrections to an absolute frame. Finally, we average the proper motions of 158 106 extragalactic objects in bins of 3° × 3° and present a table of proper motion corrections.« less
UV-luminous, star-forming hosts of z ˜ 2 reddened quasars in the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Wethers, C. F.; Banerji, M.; Hewett, P. C.; Lemon, C. A.; McMahon, R. G.; Reed, S. L.; Shen, Y.; Abdalla, F. B.; Benoit-Lévy, A.; Brooks, D.; Buckley-Geer, E.; Capozzi, D.; Carnero Rosell, A.; CarrascoKind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Doel, P.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jeltema, T.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; Menanteau, F.; Miquel, R.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Walker, A. R.
2018-04-01
We present the first rest-frame UV population study of 17 heavily reddened, high-luminosity [E(B - V)QSO ≳ 0.5; Lbol > 1046 erg s-1] broad-line quasars at 1.5 < z < 2.7. We combine the first year of deep, optical, ground-based observations from the Dark Energy Survey (DES) with the near-infrared VISTA Hemisphere Survey and UKIDSS Large Area Survey data, from which the reddened quasars were initially identified. We demonstrate that the significant dust reddening towards the quasar in our sample allows host galaxy emission to be detected at the rest-frame UV wavelengths probed by the DES photometry. By exploiting this reddening effect, we disentangle the quasar emission from that of the host galaxy via spectral energy distribution fitting. We find evidence for a relatively unobscured, star-forming host galaxy in at least 10 quasars, with a further three quasars exhibiting emission consistent with either star formation or scattered light. From the rest-frame UV emission, we derive instantaneous, dust-corrected star formation rates (SFRs) in the range 25 < SFRUV < 365 M⊙ yr-1, with an average SFRUV = 130 ± 95 M⊙ yr-1. We find a broad correlation between SFRUV and the bolometric quasar luminosity. Overall, our results show evidence for coeval star formation and black hole accretion occurring in luminous, reddened quasars at the peak epoch of galaxy formation.
Record-Breaking Radio Astronomy Project to Measure Sky with Extreme Precision
NASA Astrophysics Data System (ADS)
2009-11-01
Astronomers will tie together the largest collection of the world's radio telescopes ever assembled to work as a single observing tool in a project aimed at improving the precision of the reference frame scientists use to measure positions in the sky. The National Science Foundation's Very Long Baseline Array (VLBA) will be a key part of the project, which is coordinated by the International VLBI Service for Geodesy and Astrometry. For 24 hours, starting Wednesday, November 18, and ending Thursday, November 19, 35 radio telescopes located on seven continents will observe 243 distant quasars. The quasars, galaxies with supermassive black holes at their cores, are profuse emitters of radio waves, and also are so distant that, despite their actual motions in space, they appear stationary as seen from Earth. This lack of apparent motion makes them ideal celestial landmarks for anchoring a grid system, similar to earthly latitude and longitude, used to mark the positions of celestial objects. Data from all the radio telescopes will be combined to make them work together as a system capable of measuring celestial positions with extremely high precision. The technique used, called very long baseline interferometry (VLBI), has been used for decades for both astronomical and geodetic research. However, no previous position-measuring observation has used as many radio telescopes or observed as many objects in a single session. The previous record was a 23-telescope observation. At a meeting in Brazil last August, the International Astronomical Union adopted a new reference frame for celestial positions that will be used starting on January 1. This new reference frame uses a set of 295 quasars to define positions, much like surveyor's benchmarks in a surburban subdivision. Because even with 35 radio telescopes around the world, there are some gaps in sky coverage, the upcoming observation will observe 243 of the 295. By observing so many quasars in a single observing session, problems of linking positions from one observing session to another can be avoided, the astronomers say. The result will be a much stronger, more precise, reference grid. Telescopes in Asia, Australia, Europe, North America, South America, Antarctica, and in the Pacific will participate. Improving the celestial positional grid will allow astronomers better to pinpoint the locations and measure the motions of objects in the sky. As astronomers increasingly study objects using multiple telescopes observing at different wavelengths, such as visible light, radio, infrared, etc., the improved positional grid will allow more accurate overlaying of the different images. The improved celestial reference frame also strengthens a terrestrial reference frame used for radio-telescope measurements that contribute to geophysical research. The precise geodetic measurements help geophysicists understand phenomena such as plate tectonics, earth tides, and processes that affect our planet's orientation in space. The VLBA is a continent-wide radio telescope system with 10, 240-ton dish antennas ranging from Hawaii to the Virgin Islands. Operated from the National Radio Astronomy Observatory's Pete V. Domenici Science Operations Center in Socorro, New Mexico, the VLBA offers the greatest resolving power, or ability to see fine detail, of any telescope in astronomy. The multi-telescope observation will be accompanied by public-outreach activities in celebration of the International Year of Astronomy. A public web page devoted to the observation will be hosted at Bordeaux Observatory, and some of the participating telescopes will have webcams available.
UV-luminous, star-forming hosts of z ~ 2 reddened quasars in the Dark Energy Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wethers, C. F.; Banerji, M.; Hewett, P. C.
We present the first rest-frame UV population study of 17 heavily reddened, high-luminosity (E(B-V)more » $$_{\\rm{QSO}}\\gtrsim$$ 0.5; L$$_{\\rm{bol}}>$$ 10$$^{46}$$ergs$$^{-1}$$) broad-line quasars at $1.5 < z < 2.7$. We combine the first year of deep, optical, ground-based observations from the Dark Energy Survey (DES) with the near infrared VISTA Hemisphere Survey (VHS) and UKIDSS Large Area Survey (ULAS) data, from which the reddened quasars were initially identified. We demonstrate that the significant dust reddening towards the quasar in our sample allows host galaxy emission to be detected at the rest-frame UV wavelengths probed by the DES photometry. By exploiting this reddening effect, we disentangle the quasar emission from that of the host galaxy via spectral energy distribution (SED) fitting. We find evidence for a relatively unobscured, star-forming host galaxy in at least ten quasars, with a further three quasars exhibiting emission consistent with either star formation or scattered light. From the rest-frame UV emission, we derive instantaneous, dust-corrected star formation rates (SFRs) in the range 25 < SFR$$_{\\rm{UV}}$$ < 365 M$$_{\\odot}$$yr$$^{-1}$$, with an average SFR$$_{\\rm{UV}}$$ = 130 $$\\pm$$ 95 M$$_{\\odot}$$yr$$^{-1}$$. In conclusion, we find a broad correlation between SFR$$_{\\rm{UV}}$$ and the bolometric quasar luminosity. Overall, our results show evidence for coeval star formation and black hole accretion occurring in luminous, reddened quasars at the peak epoch of galaxy formation.« less
UV-luminous, star-forming hosts of z ~ 2 reddened quasars in the Dark Energy Survey
Wethers, C. F.; Banerji, M.; Hewett, P. C.; ...
2018-01-05
We present the first rest-frame UV population study of 17 heavily reddened, high-luminosity (E(B-V)more » $$_{\\rm{QSO}}\\gtrsim$$ 0.5; L$$_{\\rm{bol}}>$$ 10$$^{46}$$ergs$$^{-1}$$) broad-line quasars at $1.5 < z < 2.7$. We combine the first year of deep, optical, ground-based observations from the Dark Energy Survey (DES) with the near infrared VISTA Hemisphere Survey (VHS) and UKIDSS Large Area Survey (ULAS) data, from which the reddened quasars were initially identified. We demonstrate that the significant dust reddening towards the quasar in our sample allows host galaxy emission to be detected at the rest-frame UV wavelengths probed by the DES photometry. By exploiting this reddening effect, we disentangle the quasar emission from that of the host galaxy via spectral energy distribution (SED) fitting. We find evidence for a relatively unobscured, star-forming host galaxy in at least ten quasars, with a further three quasars exhibiting emission consistent with either star formation or scattered light. From the rest-frame UV emission, we derive instantaneous, dust-corrected star formation rates (SFRs) in the range 25 < SFR$$_{\\rm{UV}}$$ < 365 M$$_{\\odot}$$yr$$^{-1}$$, with an average SFR$$_{\\rm{UV}}$$ = 130 $$\\pm$$ 95 M$$_{\\odot}$$yr$$^{-1}$$. In conclusion, we find a broad correlation between SFR$$_{\\rm{UV}}$$ and the bolometric quasar luminosity. Overall, our results show evidence for coeval star formation and black hole accretion occurring in luminous, reddened quasars at the peak epoch of galaxy formation.« less
Narrow absorption lines with two observations from the Sloan Digital Sky Survey
NASA Astrophysics Data System (ADS)
Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei; Cao, Yue
2015-07-01
We assemble 3524 quasars from the Sloan Digital Sky Survey (SDSS) with repeated observations to search for variations of the narrow C IV λ λ 1548,1551 and Mg II λ λ 2796,2803 absorption doublets in spectral regions shortward of 7000 Å in the observed frame, which corresponds to time-scales of about 150-2643 d in the quasar rest frame. In these quasar spectra, we detect 3580 C IV absorption systems with zabs = 1.5188-3.5212 and 1809 Mg II absorption systems with zabs = 0.3948-1.7167. In term of the absorber velocity (β) distribution in the quasar rest frame, we find a substantial number of C IV absorbers with β < 0.06, which might be connected to absorption of quasar outflows. The outflow absorption peaks at υ ≈ 2000 km s^{-1} and drops rapidly below this peak value. Among 3580 C IV absorption systems, 52 systems (˜1.5 per cent) show obvious variations in equivalent widths in the absorber rest frame (Wr): 16 enhanced, 16 emerged, 12 weakened and 8 disappeared systems, respectively. We find that changes in Wrλ1548 are related neither to the time-scales of the two SDSS observations nor to absorber velocities in the quasar rest frame. Variable absorption in low-ionization species is important to constrain the physical conditions of the absorbing gas. There are two variable Mg II absorption systems measured from SDSS spectra detected by Hacker et al. However, in our Mg II absorption sample, we find that neither shows variable absorption with confident levels of >4σ for λ2796 lines and >3σ for λ2803 lines.
The Large Quasar Reference Frame (LQRF). An Optical Representation of the ICRS
2009-10-01
faint regimes, both the 2MASS and the preliminary northernmost UCAC2 positions are shown of astrometry consistent with the UCAC2 main catalog, and the...is used. 2.7. 2MASS The Two Micron All-Sky Survey point source catalog (Cutri et al. 2003), hereafter 2MASS , derives from an uniform scan of the...17.1, H = 16.4, and K = 15.3. The 2MASS contains the position of 470 992 970 sources, but no proper motions. The astrometry is referred to the
Dusty Quasars at High Redshifts
NASA Astrophysics Data System (ADS)
Weedman, Daniel; Sargsyan, Lusine
2016-09-01
A population of quasars at z ˜ 2 is determined based on dust luminosities νL ν (7.8 μm) that includes unobscured, partially obscured, and obscured quasars. Quasars are classified by the ratio νL ν (0.25 μm)/νL ν (7.8 μm) = UV/IR, assumed to measure obscuration of UV luminosity by the dust that produces IR luminosity. Quasar counts at rest-frame 7.8 μm are determined for quasars in the Boötes field of the NOAO Deep Wide Field Survey using 24 μm sources with optical redshifts from the AGN and Galaxy Evolution Survey (AGES) or infrared redshifts from the Spitzer Infrared Spectrograph. Spectral energy distributions are extended to far-infrared wavelengths using observations from the Herschel Space Observatory Spectral and Photometric Imaging Receiver (SPIRE), and new SPIRE photometry is presented for 77 high-redshift quasars from the Sloan Digital Sky Survey. It is found that unobscured and obscured quasars have similar space densities at rest-frame 7.8 μm, but the ratio L ν (100 μm)/L ν (7.8 μm) is about three times higher for obscured quasars than for unobscured, so that far-infrared or submillimeter quasar detections are dominated by obscured quasars. We find that only ˜5% of high-redshift submillimeter sources are quasars and that existing 850 μm surveys or 2 mm surveys should already have detected sources at z ˜ 10 if quasar and starburst luminosity functions remain the same from z = 2 until z = 10.
VLBI Observations of Geostationary Satellites
NASA Astrophysics Data System (ADS)
Artz, T.; Nothnagel, A.; La Porta, L.
2013-08-01
For a consistent realization of a Global Geodetic Observing System (GGOS), a proper tie between the individual global reference systems used in the analysis of space-geodetic observations is a prerequisite. For instance, the link between the terrestrial, the celestial and the dynamic reference system of artificial Earth orbiters may be realized by Very Long O Baseline Interferometry (VLBI) observations of one or several satellites. In the preparation phase for a dedicated satellite mission, one option to realize this is using a geostationary (GEO) satellite emitting a radio signal in X-Band and/or S-Band and, thus, imitating a quasar. In this way, the GEO satellite can be observed by VLBI together with nearby quasars and the GEO orbit can, thus, be determined in a celestial reference frame. If the GEO satellite is, e.g., also equipped with a GNSS-type transmitter, a further tie between GNSS and VLBI may be realized. In this paper, a concept for the generation of a radio signal is shown. Furthermore, simulation studies for estimating the GEO position are presented with a GEO satellite included in the VLBI schedule. VLBI group delay observations are then simulated for the quasars as well as for the GEO satellite. The analysis of the simulated observations shows that constant orbit changes are adequately absorbed by estimated orbit parameters. Furthermore, the post-fit residuals are comparable to those from real VLBI sessions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titov, O.; Jauncey, D. L.; Johnston, H. M.
2011-11-15
We present the results of spectroscopic observations of the optical counterparts of 47 southern radio sources from the candidate International Celestial Reference Catalogue as part of a very long baseline interferometry (VLBI) program to strengthen the celestial reference frame, especially in the south. We made the observations with the 3.58 m European Southern Observatory New Technology Telescope. We obtained redshifts for 30 quasars and one radio galaxy, with a further seven objects being probable BL Lac objects with featureless spectra. Of the remainder, four were clear misidentifications with Galactic stars and five had low signal-to-noise spectra and could not bemore » classified. These results, in combination with new VLBI data of the radio sources with redshifts more than 2, add significantly to the existing data needed to refine the distribution of source proper motions over the celestial sphere.« less
NASA Astrophysics Data System (ADS)
Kopeikin, Sergei; Xie, Yi
2010-11-01
We introduce the Jacobi coordinates adopted to the advanced theoretical analysis of the relativistic Celestial Mechanics of the Earth-Moon system. Theoretical derivation utilizes the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. The resolutions assume that the Solar System is isolated and space-time is asymptotically flat at infinity and the primary reference frame covers the entire space-time, has its origin at the Solar System barycenter (SSB) with spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are assumed to be at rest on the sky forming the International Celestial Reference Frame (ICRF). The second reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames—geocentric and selenocentric—have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description of the metric tensor and relative equations of motion of the Moon with respect to Earth. Each local frame can be converted to kinematically non-rotating one after alignment with the axes of ICRF by applying the matrix of the relativistic precession as recommended by the IAU resolutions. The set of one global and three local frames is introduced in order to decouple physical effects of gravity from the gauge-dependent effects in the equations of relative motion of the Moon with respect to Earth.
Rest-frame optical photometry of a z-7.54 quasar and its environment
NASA Astrophysics Data System (ADS)
Decarli, Roberto; Banados, Eduardo; Fan, Xiaohui; Walter, Fabian; Venemans, Bram; Paolo, Emanuele; Mazzucchelli, Chiara; Wang, Feige; Stern, Daniel
2017-10-01
Bright quasars are unique tools to study the dawn of galaxy and black hole formation, and to investigate the properties of the universe at the earliest cosmic epochs. We recently discovered the luminous quasar ULAS J1342+0928 at a record-breaking redshift of z=7.54 (whereas the previous quasar redshift record holder was at z=7.08). The presence of a damping wing in the quasar's spectrum, associated with a highly neutral intergalactic medium, and the high bolometric luminosity, powered by accretion on a supermassive, 8e8 Msun black hole, set unparalleled constraints on the history of reionization and on the formation and evolution of first massive black holes, only 690 Myr after the Big Bang. Here we propose to obtain sensitive Spitzer observations to sample the rest-frame optical emission of this quasar and of potential bright companion galaxies. By complementing our already secured observations with HST, IRAM/NOEMA, ALMA, and many other facilities, the proposed dataset will allow us (1) to constrain the Spectral Energy Distribution of the quasar, thus disentangling the contribution of its various components at optical wavelengths; (2) to investigate the quasar environment; and (3) to lay the foundation for high-resolution imaging and sensitive spectroscopy at MIR wavelengths with the James Webb Space Telescope.
GNIRS-DQS: A Gemini Near Infrared Spectrograph Distant Quasar Survey
NASA Astrophysics Data System (ADS)
Matthews, Brandon; Shemmer, Ohad; Brotherton, Michael S.; Andruchow, Ileana; Boroson, Todd A.; Brandt, W. Niel; Cellone, Sergio; Ferrero, Gabriel; Gallagher, Sarah; Green, Richard F.; Hennawi, Joseph F.; Lira, Paulina; Myers, Adam D.; Plotkin, Richard; Richards, Gordon T.; Runnoe, Jessie; Schneider, Donald P.; Shen, Yue; Strauss, Michael A.; Willott, Chris J.; Wills, Beverley J.
2018-06-01
We describe an ongoing three-year Gemini survey, launched in 2017, that will obtain near-infrared spectroscopy of 416 Sloan Digital Sky Survey (SDSS) quasars between redshifts of 1.5 and 3.5 in the ~1.0-2.5 μm band. These spectra will cover critical diagnostic emission lines, such as Mg II, Hβ, and [O III], in each source. This project will more than double the existing inventory of near-infrared spectra of luminous quasars at these redshifts, including the era of fast quasar growth. Additional rest frame ultraviolet coverage of at least the C IV emission line is provided by the SDSS spectrum of each source. We will utilize the spectroscopic inventory to determine the most accurate and precise quasar black hole masses, accretion rates, and redshifts, and use the results to derive improved prescriptions for UV-based proxies for these parameters. The improved redshifts will establish velocities of quasar outflows that interact with the host galaxies, and will help constrain how imprecise distance estimates bias quasar clustering measurements. Furthermore, our measurements will facilitate a more complete understanding of how the rest-frame UV-optical spectral properties depend on redshift and luminosity, and test whether the physical properties of the quasar central engine evolve over cosmic time. We will make our data immediately available to the public, provide reduced spectra via a dedicated website, and produce a catalog of measurements and fundamental quasar properties.
NASA Astrophysics Data System (ADS)
Xie, Yi; Kopeikin, Sergei
2010-01-01
We construct a set of reference frames for description of the orbital and rotational motion of the Moon. We use a scalar-tensor theory of gravity depending on two parameters of the parametrized post-Newtonian (PPN) formalism and utilize the concepts of the relativistic resolutions on reference frames adopted by the International Astronomical Union in 2000. We assume that the solar system is isolated and space-time is asymptotically flat. The primary reference frame has the origin at the solar-system barycenter (SSB) and spatial axes are going to infinity. The SSB frame is not rotating with respect to distant quasars. The secondary reference frame has the origin at the Earth-Moon barycenter (EMB). The EMB frame is local with its spatial axes spreading out to the orbits of Venus and Mars and not rotating dynamically in the sense that both the Coriolis and centripetal forces acting on a free-falling test particle, moving with respect to the EMB frame, are excluded. Two other local frames, the geocentric (GRF) and the selenocentric (SRF) frames, have the origin at the center of mass of the Earth and Moon respectively. They are both introduced in order to connect the coordinate description of the lunar motion, observer on the Earth, and a retro-reflector on the Moon to the observable quantities which are the proper time and the laser-ranging distance. We solve the gravity field equations and find the metric tensor and the scalar field in all frames. We also derive the post-Newtonian coordinate transformations between the frames and analyze the residual gauge freedom of the solutions of the field equations. We discuss the gravitomagnetic effects in the barycentric equations of the motion of the Moon and argue that they are beyond the current accuracy of lunar laser ranging (LLR) observations.
A Hubble Space Telescope imaging study of four FeLoBAL quasar host galaxies
NASA Astrophysics Data System (ADS)
Lawther, D.; Vestergaard, M.; Fan, X.
2018-04-01
We study the host galaxies of four Iron Low-Ionization Broad Absorption-line Quasars (FeLoBALs), using Hubble Space Telescope imaging data, investigating the possibility that they represent a transition between an obscured active galactic nucleus (AGN) and an ordinary optical quasar. In this scenario, the FeLoBALs represent the early stage of merger-triggered accretion, in which case their host galaxies are expected to show signs of an ongoing or recent merger. Using PSF subtraction techniques, we decompose the images into host galaxy and AGN components at rest-frame ultraviolet and optical wavelengths. The ultraviolet is sensitive to young stars, while the optical probes stellar mass. In the ultraviolet we image at the BAL absorption trough wavelengths so as to decrease the contrast between the quasar and host galaxy emission. We securely detect an extended source for two of the four FeLoBALs in the rest-frame optical; a third host galaxy is marginally detected. In the rest-frame UV we detect no host emission; this constrains the level of unobscured star formation. Thus, the host galaxies have observed properties that are consistent with those of non-BAL quasars with the same nuclear luminosity, i.e. quiescent or moderately star-forming elliptical galaxies. However, we cannot exclude starbursting hosts that have the stellar UV emission obscured by modest amounts of dust reddening. Thus, our findings also allow the merger-induced young quasar scenario. For three objects, we identify possible close companion galaxies that may be gravitationally interacting with the quasar hosts.
Radio-planetary from tie from Phobos-2 VLBI data
NASA Technical Reports Server (NTRS)
Hildebrand, C. E.; Iijima, B. A.; Kroger, P. M.; Folkner, W. M.; Edwards, C. D.
1994-01-01
In an ongoing effort to improve the knowledge of the relative orientation (the 'frame tie') of the planetary ephemeris reference frame used in deep navigation and a second reference frame that is defined by the coordinates of a set of extragalactic radio sources, VLBI observations of the Soviet Phobos-2 spacecraft and nearby (in angle) radio sources were obtained at two epochs in 1989, shortly after the spacecraft entered orbit about Mars. The frame tie is an important systematic error source affecting both interplanetary navigation and the process of improving the theory of the Earth's orientation. The data from a single Phobos-2 VLBI session measure one component of the direction vector from Earth to Mars in the frame of the extragalactic radio sources (the 'radio frame'). The radio frame has been shown to be stable and internally consistent with an accuracy of 5 nrad. The planetary ephemeris reference frame has an internal consistency of approximately 15 nrad. The planetary and radio source reference frames were aligned prior to 1989 and measurements of occulations of the radio source 3C273 by the Moon. The Phobos-2 VLBI measurements provide improvement in the accuracy of two of the three angles describing a general rotation between the planetary and radio reference frames. A complete set of measurements is not available because data acquisition was terminated prematurely by loss of spacecraft. The analysis of the two Phobos-2 VLBI data sets indicates that, in the directions of the two rotation components determined by these data, the JPL planetary ephemeris DE200 is aligned with the radio frame as adopted by the International Earth Rotation Service within an accuracy of 20-40 nrad, depending on direction. The limiting errors in the solutions for these offsets are spacecraft trajectory (20 nrad), instrumental biases (19 nrad), and dependence of quasar coordinates on observing frequency (24 nrad).
Weak Emission-line Quasars in the Context of a Modified Baldwin Effect
NASA Astrophysics Data System (ADS)
Shemmer, Ohad
2016-01-01
Based on spectroscopic data for a sample of high-redshift quasars, I will show that the anti-correlation between the rest-frame equivalent width (EW) of the C IV λ1549 broad-emission line and the Hβ-based Eddington ratio extends across the widest possible ranges of redshift (0 < z < 3.5) and bolometric luminosity(~1044 < L < ~1048 erg s-1). Given this anti-correlation, hereby referred to as a modified Baldwin effect (MBE), weak emission line quasars (WLQs), typically showing EW(C IV) < ~10 Å, are expected to have extremely high Eddington ratios (L/LEdd > ~4). I will present new near-infrared spectroscopy of the broad Hβ line, as well as complementary EW(C IV) information, for all WLQs for which such information is currently available, nine sources in total. I will show that while four of these WLQs can be accommodated by the MBE, the otherfive deviate significantly from this relation, at the > ~3σ level, by exhibiting C IV lines much weaker than predicted from their Hβ-based Eddington ratios. Assuming the supermassive black hole masses in all quasars can be determined reliably using the single-epoch Hβ-method, these results indicate that EW(C IV)cannot depend solely on the Eddington ratio. I will briefly discuss a strategy for further investigation into the roles that basic physical properties play in controlling the relative strengths of broad-emission lines in quasars.
NASA Astrophysics Data System (ADS)
Li, Zefeng; McGreer, Ian D.; Wu, Xue-Bing; Fan, Xiaohui; Yang, Qian
2018-07-01
We present the ensemble variability analysis results of quasars using the Dark Energy Camera Legacy Survey (DECaLS) and the Sloan Digital Sky Survey (SDSS) quasar catalogs. Our data set includes 119,305 quasars with redshifts up to 4.89. Combining the two data sets provides a 15 year baseline and permits the analysis of the long timescale variability. Adopting a power-law form for the variability structure function, V=A{(t/1{years})}γ , we use the multidimensional parametric fitting to explore the relationships between the quasar variability amplitude and a wide variety of quasar properties, including redshift (positive), bolometric luminosity (negative), rest-frame wavelength (negative), and black hole mass (uncertain). We also find that γ can be also expressed as a function of redshift (negative), bolometric luminosity (positive), rest-frame wavelength (positive), and black hole mass (positive). Tests of the fitting significance with the bootstrap method show that, even with such a large quasar sample, some correlations are marginally significant. The typical value of γ for the entire data set is ≳0.25, consistent with the results in previous studies on both the quasar ensemble variability and the structure function. A significantly negative correlation between the variability amplitude and the Eddington ratio is found, which may be explained as an effect of accretion disk instability.
A Candidate Tidal Disruption Event in a Quasar at z = 2.359 from Abundance Ratio Variability
NASA Astrophysics Data System (ADS)
Liu, Xin; Dittmann, Alexander; Shen, Yue; Jiang, Linhua
2018-05-01
A small fraction of quasars show an unusually high nitrogen-to-carbon ratio (N/C) in their spectra. These “nitrogen-rich” (N-rich) quasars are a long-standing puzzle because their interstellar medium implies stellar populations with abnormally high metallicities. It has recently been proposed that N-rich quasars may result from tidal disruption events (TDEs) of stars by supermassive black holes. The rapid enhancement of nitrogen and the depletion of carbon due to the carbon–nitrogen–oxygen cycle in supersolar mass stars could naturally produce high N/C. However, the TDE hypothesis predicts that the N/C should change with time, which has never hitherto been observed. Here we report the discovery of the first N-rich quasar with rapid N/C variability that could be caused by a TDE. Two spectra separated by 1.7 years (rest-frame) show that the N III] λ1750/C III] λ1909 intensity ratio decayed by ∼86% ± 14% (1σ). Optical (rest-frame UV) light-curve and X-ray observations are qualitatively consistent with the TDE hypothesis; though, the time baseline falls short of a definitive proof. Putting the single-object discovery into context, statistical analyses of the ∼80 known N-rich quasars with high-quality archival spectra show evidence (at a 5σ significance level) of a decrease in N/C on timescales of >1 year (rest-frame) and a constant level of ionization (indicated by the C III] λ1909/C IV λ1549 intensity ratio). If confirmed, our results demonstrate the method of identifying TDE candidates in quasars via abundance ratio variability, opening a new window of TDE observations at high redshift (z > 2) with upcoming large-scale time-domain spectroscopic surveys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huo, Zhi-Ying; Bai, Zhong-Rui; Chen, Jian-Jun
We present new quasars discovered in the vicinity of the Andromeda and Triangulum galaxies with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, also named the Guoshoujing Telescope, during the 2010 and 2011 observational seasons. Quasar candidates are selected based on the available Sloan Digital Sky Survey, Kitt Peak National Observatory 4 m telescope, Xuyi Schmidt Telescope Photometric Survey optical, and Wide-field Infrared Survey Explorer near-infrared photometric data. We present 509 new quasars discovered in a stripe of ∼135 deg{sup 2} from M31 to M33 along the Giant Stellar Stream in the 2011 pilot survey data sets, and also 17more » new quasars discovered in an area of ∼100 deg{sup 2} that covers the central region and the southeastern halo of M31 in the 2010 commissioning data sets. These 526 new quasars have i magnitudes ranging from 15.5 to 20.0, redshifts from 0.1 to 3.2. They represent a significant increase of the number of identified quasars in the vicinity of M31 and M33. There are now 26, 62, and 139 known quasars in this region of the sky with i magnitudes brighter than 17.0, 17.5, and 18.0, respectively, of which 5, 20, and 75 are newly discovered. These bright quasars provide an invaluable collection with which to probe the kinematics and chemistry of the interstellar/intergalactic medium in the Local Group of galaxies. A total of 93 quasars are now known with locations within 2.°5 of M31, of which 73 are newly discovered. Tens of quasars are now known to be located behind the Giant Stellar Stream, and hundreds are behind the extended halo and its associated substructures of M31. The much enlarged sample of known quasars in the vicinity of M31 and M33 can potentially be utilized to construct a perfect astrometric reference frame to measure the minute proper motions (PMs) of M31 and M33, along with the PMs of substructures associated with the Local Group of galaxies. Those PMs are some of the most fundamental properties of the Local Group.« less
Characterizing Quasar Outflows III: SEDs, and Bolometric Luminosity Estimates
NASA Astrophysics Data System (ADS)
Richmond, Joseph; Robbins, J. M.; Ganguly, R.; Stark, M. A.; Christenson, D. H.; Derseweh, J. A.; Townsend, S. L.
2012-05-01
Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 11000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) measurements of UV emission line and continuum parameters. In this poster, we add photometry from both the Two Micron All-Sky Survey (2MASS) and from the Wide-Field Infrared Survey Explorer (WISE). 2MASS photometry covers the rest-frame optical regime of these qusars, while the WISE W1, W2, and W3 bands cover the rest-frame wavelength ranges 0.9-1.27 micron, 1.35-1.75 micron, and 2.52-5.51 micron, respectively. The preliminary release of WISE data cover 3800 of our quasars. In an accompnying poster, we have subjectively divided these quasars into four categories: broad absorption-line quasars (2700 objects), associated absorption-line quasars (1700 objects), reddened quasars (160 objects), and unabsorbed/unreddened quasars (6300 objects). Here, we present average SEDs for these subsamples, estimates of bolometric luminosity, and explore changes in SED based on both outflow properties and quasar physical properties. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.
The triply-ionized carbon forest from eBOSS: cosmological correlations with quasars in SDSS-IV DR14
NASA Astrophysics Data System (ADS)
Blomqvist, Michael; Pieri, Matthew M.; du Mas des Bourboux, Hélion; Busca, Nicolás G.; Slosar, Anže; Bautista, Julian E.; Brinkmann, Jonathan; Brownstein, Joel R.; Dawson, Kyle; de Sainte Agathe, Victoria; Guy, Julien; Percival, Will J.; Pérez-Ràfols, Ignasi; Rich, James; Schneider, Donald P.
2018-05-01
We present measurements of the cross-correlation of the triply-ionized carbon (CIV) forest with quasars using Sloan Digital Sky Survey Data Release 14. The study exploits a large sample of new quasars from the first two years of observations by the Extended Baryon Oscillation Spectroscopic Survey (eBOSS). The CIV forest is a weaker tracer of large-scale structure than the Lyα forest, but benefits from being accessible at redshifts z<2 where the quasar number density from eBOSS is high. Our data sample consists of 287,651 CIV forest quasars in the redshift range 1.4
NASA Astrophysics Data System (ADS)
Xie, Yi; Kopeikin, Sergei Affiliaiton: AB(Department of Physics and Astronomy, University of Missouri, USA kopeikins@missouri.edu)
2010-08-01
We overview a set of post-Newtonian reference frames for a comprehensive study of the orbital dynamics and rotational motion of Moon and Earth by means of lunar laser ranging (LLR). We employ a scalar-tensor theory of gravity depending on two post-Newtonian parameters, and , and utilize the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. We assume that the solar system is isolated and space-time is asymptotically flat at infinity. The primary reference frame covers the entire space-time, has its origin at the solar-system barycenter (SSB) and spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are forming the International Celestial Reference Frame (ICRF). The secondary reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally-inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames geocentric (GRF) and selenocentric (SRF) have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description. Each local frame can be aligned with the axes of ICRF after applying the matrix of the relativistic precession. The set of one global and three local frames is introduced in order to fully decouple the relative motion of Moon with respect to Earth from the orbital motion of the Earth-Moon barycenter as well as to connect the coordinate description of the lunar motion, an observer on Earth, and a retro-reflector on Moon to directly measurable quantities such as the proper time and the round-trip laser-light distance. We solve the gravity field equations and find out the metric tensor and the scalar field in all frames which description includes the post-Newtonian multipole moments of the gravitational field of Earth and Moon. We also derive the post-Newtonian coordinate transformations between the frames and analyze the residual gauge freedom.
An ASCA GIS spectrum of S5 0014+813 AT z = 3.384
NASA Technical Reports Server (NTRS)
Elvis, Martin; Matsuoka, M.; Siemiginowska, A.; Fiore, F.; Mihara, T.; Brinkmann, W.
1994-01-01
ASCA has detected the z = 3.384 quasar S5 0014+813 up to energies of 34 keV in the quasar rest frame using the two gas imaging spectrometer (GIS) instruments. The combined X-ray spectrum has a signal-to-noise ratio of over 50 sigma and is consistent with a single power law of energy slope 0.63 +/- 0.03 over the 0.8-8 keV (observed) energy range. The spectrum is also well fitted with a simple thermal bremsstrahlung model of kT = 40 +/- 4 keV (in the quasar frame), which raises obvious possibilities for contributions to the diffuse X-ray background. A maximum solid angle of Omega(sub d)/2(pi) = 0.4(90% confidence) can be placed on the strength of a Compton reflection component above the energy of the Fe K-edge. The Fe K 6.4 keV fluorescence line has a rest frame equivalent width less than 120 eV (90% confidence) at its redshifted energy of 1.46 keV. The weakness of these features differentiates this high-luminosity, high-redshift quasar from the majority of Seyfert galaxies using its X-ray spectrum alone. The GIS slope is consistent with the slope derived by the ROSAT Position Sensitive Proportional Counter (PSPC). The normalization at 1 keV in the ASCA observation is, however, a factor 30%-40% higher than in the ROSAT observation, suggesting a significant increase in the 1 keV (observed) flux over the 31.5 months between the two observations (7.2 months, rest frame).
Chandra X-Rays from the Redshift 7.54 Quasar ULAS J1342+0928
NASA Astrophysics Data System (ADS)
Bañados, Eduardo; Connor, Thomas; Stern, Daniel; Mulchaey, John; Fan, Xiaohui; Decarli, Roberto; Farina, Emanuele P.; Mazzucchelli, Chiara; Venemans, Bram P.; Walter, Fabian; Wang, Feige; Yang, Jinyi
2018-04-01
We present a 45 ks Chandra observation of the quasar ULAS J1342+0928 at z = 7.54. We detect {14.0}-3.7+4.8 counts from the quasar in the observed-frame energy range 0.5–7.0 keV (6σ detection), representing the most distant non-transient astronomical source identified in X-rays to date. The present data are sufficient only to infer rough constraints on the spectral parameters. We find an X-ray hardness ratio of { \\mathcal H }{ \\mathcal R }=-{0.51}-0.28+0.26 between the 0.5–2.0 keV and 2.0–7.0 keV ranges and derive a power-law photon index of {{Γ }}={1.95}-0.53+0.55. Assuming a typical value for high-redshift quasars of Γ = 1.9, ULAS J1342+0928 has a 2–10 keV rest-frame X-ray luminosity of {L}2-10={11.6}-3.5+4.3× {10}44 {erg} {{{s}}}-1. Its X-ray-to-optical power-law slope is {α }OX}=-{1.67}-0.10+0.16, consistent with the general trend indicating that the X-ray emission in the most bolometrically powerful quasars is weaker relative to their optical emission.
Dramatically Variable C IV Mini-Broad Absorption Line System in the Quasar HS 1603+3820
NASA Astrophysics Data System (ADS)
Misawa, T.; Eracleous, M.; Charlton, J. C.; Chartas, G.; Kashikawa, N.
2008-10-01
We observed the quasar HS 1603+3820 (z_{em} = 2.542, first discovered by Dobrzycki et al. 1996) six times over an interval of 4.2 yrs (1.2 yrs in the quasar rest frame) using the High Dispersion Spectrograph on Subaru telescope. The purpose was to study the mini-broad absorption line (mini-BAL; FWHM ˜ 1,000 km s^{-1}) that is blue-shifted from the quasar by ˜ 9,500 km s^{-1}. We found significant time variability, which supported the physical association of the mini-BAL gas with an outflow from the quasar. We have narrowed down the cause of the variability to two possible scenarios. We also used archival Chandra x-ray data to study the x-ray properties of this quasar. The results constrain the location of the absorbing gas relative to the overall outflow.
NASA Astrophysics Data System (ADS)
McGraw, S. M.; Brandt, W. N.; Grier, C. J.; Filiz Ak, N.; Hall, P. B.; Schneider, D. P.; Anderson, S. F.; Green, P. J.; Hutchinson, T. A.; Macleod, C. L.; Vivek, M.
2017-08-01
We investigate broad absorption line (BAL) disappearance and emergence using a 470 BAL-quasar sample over ≤0.10-5.25 rest-frame years with at least three spectroscopic epochs for each quasar from the Sloan Digital Sky Survey. We identify 14 disappearing BALs over ≤1.73-4.62 rest-frame years and 18 emerging BALs over ≤1.46-3.66 rest-frame years associated with the C IV λλ1548,1550 and/or Si IV λλ1393,1402 doublets, and report on their variability behaviour. BAL quasars in our data set exhibit disappearing/emerging C IV BALs at a rate of 2.3^{+0.9}_{-0.7} and 3.0^{+1.0}_{-0.8} per cent, respectively, and the frequency for BAL to non-BAL quasar transitions is 1.7^{+0.8}_{-0.6} per cent. We detect four re-emerging BALs over ≤3.88 rest-frame years on average and three re-disappearing BALs over ≤4.15 rest-frame years on average, the first reported cases of these types. We infer BAL lifetimes along the line of sight to be nominally ≲ 100-1000 yr using disappearing C IV BALs in our sample. Interpretations of (re-)emerging and (re-)disappearing BALs reveal evidence that collectively supports both transverse-motion and ionization-change scenarios to explain BAL variations. We constrain a nominal C IV/Si IV BAL-outflow location of ≲ 100 pc from the central source and a radial size of ≳ 1× 10-7 pc (0.02 au) using the ionization-change scenario, and constrain a nominal outflow location of ≲ 0.5 pc and a transverse size of ˜0.01 pc using the transverse-motion scenario. Our findings are consistent with previous work, and provide evidence in support of BALs tracing compact flow geometries with small filling factors.
Relativistic redshifts in quasar broad lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremaine, Scott; Shen, Yue; Liu, Xin
2014-10-10
The broad emission lines commonly seen in quasar spectra have velocity widths of a few percent of the speed of light, so special- and general-relativistic effects have a significant influence on the line profile. We have determined the redshift of the broad Hβ line in the quasar rest frame (determined from the core component of the [O III] line) for over 20,000 quasars from the Sloan Digital Sky Survey Data Release 7 quasar catalog. The mean redshift as a function of line width is approximately consistent with the relativistic redshift that is expected if the line originates in a randomlymore » oriented Keplerian disk that is obscured when the inclination of the disk to the line of sight exceeds ∼30°-45°, consistent with simple active galactic nucleus unification schemes. This result also implies that the net line-of-sight inflow/outflow velocities in the broad-line region are much less than the Keplerian velocity when averaged over a large sample of quasars with a given line width.« less
Comparison of pulsar positions from timing and very long baseline astrometry
NASA Astrophysics Data System (ADS)
Wang, J. B.; Coles, W. A.; Hobbs, G.; Shannon, R. M.; Manchester, R. N.; Kerr, M.; Yuan, J. P.; Wang, N.; Bailes, M.; Bhat, N. D. R.; Dai, S.; Dempsey, J.; Keith, M. J.; Lasky, P. D.; Levin, Y.; Osłowski, S.; Ravi, V.; Reardon, D. J.; Rosado, P. A.; Russell, C. J.; Spiewak, R.; van Straten, W.; Toomey, L.; Wen, L.; You, X.-P.; Zhu, X.-J.
2017-07-01
Pulsar positions can be measured with high precision using both pulsar timing methods and very long baseline interferometry (VLBI). Pulsar timing positions are referenced to a solar-system ephemeris, whereas VLBI positions are referenced to distant quasars. Here, we compare pulsar positions from published VLBI measurements with those obtained from pulsar timing data from the Nanshan and Parkes radio telescopes in order to relate the two reference frames. We find that the timing positions differ significantly from the VLBI positions (and also differ between different ephemerides). A statistically significant change in the obliquity of the ecliptic of 2.16 ± 0.33 mas is found for the JPL ephemeris DE405, but no significant rotation is found in subsequent JPL ephemerides. The accuracy with which we can relate the two frames is limited by the current uncertainties in the VLBI reference source positions and in matching the pulsars to their reference source. Not only do the timing positions depend on the ephemeris used in computing them, but also different segments of the timing data lead to varying position estimates. These variations are mostly common to all ephemerides, but slight changes are seen at the 10 μas level between ephemerides.
Reionization through Trickery: How to Find the True FUV Spectra of z>6 Quasars
NASA Astrophysics Data System (ADS)
O'Dowd, Matthew; Schiminovich, D.; Webster, R. L.; Haiman, Z.
2011-01-01
Studies of absorption in the vicinity of z > 6 quasars will enable characterization of the final stages of the epoch of reionization, and measurement of the last remnants of the neutral fraction from the cosmic dark ages. Before this can happen, we will need to know the intrinsic shape of the rest-frame FUV spectrum of luminous quasars, and in particular of the Lyman-Alpha emission line. To date, such measurements have only been possible for local, low luminosity quasars and Seyferts whose FUV spectra are not strongly absorbed in the IGM. These AGN are poor models of their high-luminosity cousins, and the BELR physics driving the Ly-alpha line may be very different. I will outline two approaches to measuring the true, unabsorbed FUV spectra of luminous quasars. First, by observing differential microlensing of strongly lensed quasars at z > 3, I will show how we can algebraically reconstruct the true FUV spectrum, and recover the absorption spectrum and measure the proximity effect to boot. Second, by targeting a narrow redshift range at z 1, we can identify a subsample of luminous quasars that have avoided significant absorption, but are nonetheless genuine analogs of our z > 6 quasars. I will show some preliminary GALEX data of these quasars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plotkin, Richard M.; Gallo, Elena; Shemmer, Ohad
Over the past 15 yr, examples of exotic radio-quiet quasars with intrinsically weak or absent broad emission line regions (BELRs) have emerged from large-scale spectroscopic sky surveys. Here, we present spectroscopy of seven such weak emission line quasars (WLQs) at moderate redshifts (z = 1.4–1.7) using the X-shooter spectrograph, which provides simultaneous optical and near-infrared spectroscopy covering the rest-frame ultraviolet (UV) through optical. These new observations effectively double the number of WLQs with spectroscopy in the optical rest-frame, and they allow us to compare the strengths of (weak) high-ionization emission lines (e.g., C iv) to low-ionization lines (e.g., Mg ii,more » Hβ, Hα) in individual objects. We detect broad Hβ and Hα emission in all objects, and these lines are generally toward the weaker end of the distribution expected for typical quasars (e.g., Hβ has rest-frame equivalent widths ranging from 15–40 Å). However, these low-ionization lines are not exceptionally weak, as is the case for high-ionization lines in WLQs. The X-shooter spectra also display relatively strong optical Fe ii emission, Hβ FWHM ≲ 4000 km s{sup −1}, and significant C iv blueshifts (≈1000–5500 km s{sup −1}) relative to the systemic redshift; two spectra also show elevated UV Fe ii emission, and an outflowing component to their (weak) Mg ii emission lines. These properties suggest that WLQs are exotic versions of “wind-dominated” quasars. Their BELRs either have unusual high-ionization components, or their BELRs are in an atypical photoionization state because of an unusually soft continuum.« less
Physical Properties of 15 Quasars at z ≳ 6.5
NASA Astrophysics Data System (ADS)
Mazzucchelli, C.; Bañados, E.; Venemans, B. P.; Decarli, R.; Farina, E. P.; Walter, F.; Eilers, A.-C.; Rix, H.-W.; Simcoe, R.; Stern, D.; Fan, X.; Schlafly, E.; De Rosa, G.; Hennawi, J.; Chambers, K. C.; Greiner, J.; Burgett, W.; Draper, P. W.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E.; Metcalfe, N.; Waters, C.; Wainscoat, R. J.
2017-11-01
Quasars are galaxies hosting accreting supermassive black holes; due to their brightness, they are unique probes of the early universe. To date, only a few quasars have been reported at z> 6.5 (<800 Myr after the big bang). In this work, we present six additional z≳ 6.5 quasars discovered using the Pan-STARRS1 survey. We use a sample of 15 z≳ 6.5 quasars to perform a homogeneous and comprehensive analysis of this highest-redshift quasar population. We report four main results: (1) the majority of z≳ 6.5 quasars show large blueshifts of the broad C IV λ1549 emission line compared to the systemic redshift of the quasars, with a median value ˜3× higher than a quasar sample at z˜ 1; (2) we estimate the quasars’ black hole masses ({M}{BH} ˜ (0.3-5) × 109 M ⊙) via modeling of the Mg II λ2798 emission line and rest-frame UV continuum and find that quasars at high redshift accrete their material (with < ({L}{bol}/{L}{Edd})> =0.39) at a rate comparable to a luminosity-matched sample at lower redshift, albeit with significant scatter (0.4 dex); (3) we recover no evolution of the Fe II/Mg II abundance ratio with cosmic time; and (4) we derive near-zone sizes and, together with measurements for z˜ 6 quasars from recent work, confirm a shallow evolution of the decreasing quasar near-zone sizes with redshift. Finally, we present new millimeter observations of the [C II] 158 μm emission line and underlying dust continuum from NOEMA for four quasars and provide new accurate redshifts and [C II]/infrared luminosity estimates. The analysis presented here shows the large range of properties of the most distant quasars.
Peering Through the Dust. II. XMM-Newton Observations of Two Additional FIRST-2MASS Red Quasars
NASA Astrophysics Data System (ADS)
Glikman, Eilat; LaMassa, Stephanie; Piconcelli, Enrico; Urry, Meg; Lacy, Mark
2017-10-01
We obtained XMM-Newton observations of two highly luminous dust-reddened quasars, F2M1113+1244 and F2M1656+3821, that appear to be in the early, transitional phase predicted by merger-driven models of quasar/galaxy co-evolution. These sources have been well studied at optical through mid-infrared wavelengths and are growing relatively rapidly, with Eddington ratios > 30 % . Their black hole masses are relatively small compared to their host galaxies, placing them below the {M}{BH}{--}{L}{bulge} relation. We find that for both sources, an absorbed power-law model with 1%-3% of the intrinsic continuum scattered or leaked back into the line of sight best fits their X-ray spectra. We measure the absorbing column density (N H ) and constrain the dust-to-gas ratios in these systems, finding that they lie well below the Galactic value. This, combined with the presence of broad emission lines in their optical and near-infrared spectra, suggests that the dust absorption occurs far from the nucleus and in the host galaxy, while the X-rays are mostly absorbed in the nuclear, dust-free region within the sublimation radius. We also compare the quasars’ absorption-corrected, rest-frame X-ray luminosities (2-10 keV) to their rest-frame infrared luminosities (6 μm) and find that red quasars, similar to other populations of luminous obscured quasars, are either underluminous in X-rays or overluminous in the infrared.
Near-infrared spectroscopy of a nitrogen-loud quasar SDSS J1707+6443
NASA Astrophysics Data System (ADS)
Araki, N.; Nagao, T.; Matsuoka, K.; Marconi, A.; Maiolino, R.; Ikeda, H.; Hashimoto, T.; Taniguchi, Y.; Murayama, T.
2012-07-01
We present near-infrared spectroscopy of the z ≃ 3.2 quasar SDSS J1707+6443, obtained with MOIRCS on the Subaru Telescope. This quasar is classified as a "nitrogen-loud" quasar because of the fairly strong N iii] and N iv] semi-forbidden emission lines from the broad-line region (BLR) observed in its rest-frame UV spectrum. However, our rest-frame optical spectrum from MOIRCS shows strong [O iii] emission from the narrow-line region (NLR), suggesting that, at variance with the BLR, NLR gas is not metal-rich. To reconcile these contradictory results, there may be two alternative possibilities: (1) the strong nitrogen lines from the BLR are simply caused by a very high relative abundance of nitrogen and not by a very high BLR metallicity, or (2) the BLR metallicity is not representative of the metallicity of the host galaxy, which is better traced by the NLR. In either case, the strong broad nitrogen lines in the UV spectrum are ot indication of a chemically enriched host galaxy. We estimated the black hole mass and Eddington ratio of this quasar from the velocity width of both C iv and Hβ, which results in log (MBH/M⊙) = 9.50 and log (Lbol/LEdd) = -0.34. The relatively high Eddington ratio is consistent with our earlier result that strong nitrogen emission from BLRs is associated with high Eddington ratios. Finally, we detected significant [Ne iii] emission from the NLR, implying a quite high gas density of ne ~ 106 cm-3 and suggesting a strong coupling between quasar activity and dense interstellar clouds in the host galaxy.
Near-IR Spectroscopy of Luminous LoBAL Quasars at 1 < z < 2.5
NASA Astrophysics Data System (ADS)
Schulze, Andreas; Schramm, Malte; Zuo, Wenwen; Wu, Xue-Bing; Urrutia, Tanya; Kotilainen, Jari; Reynolds, Thomas; Terao, Koki; Nagao, Tohru; Izumiura, Hideyuki
2017-10-01
We present near-IR spectroscopy of 22 luminous low-ionization broad absorption line quasars (LoBAL QSOs) at redshift 1.3< z< 2.5, with 12 objects at z ˜ 1.5 and 10 at z ˜ 2.3. The spectra cover the rest-frame Hα and Hβ line regions, allowing us to obtain robust black hole mass estimates based on the broad Hα line. We use these data, augmented by a lower-redshift sample from the Sloan Digital Sky Survey, to test the proposed youth scenario for LoBALs, which suggests that LoBALs constitute an early short-lived evolutionary stage of quasar activity, by probing for any difference in their masses, Eddington ratios, or rest-frame optical spectroscopic properties compared to normal quasars. In addition, we construct the UV to mid-IR spectral energy distributions (SEDs) for the LoBAL sample and a matched non-BAL quasar sample. We do not find any statistically significant difference between LoBAL QSOs and non-BAL QSOs in their black hole mass or Eddington ratio distributions. The mean UV to mid-IR SED of the LoBAL QSOs is consistent with non-BAL QSOs, apart from their stronger reddening. At z> 1 there is no clear difference in their optical emission line properties. We do not see particularly weak [O III] or strong Fe II emission. The LoBAL QSOs do not show a stronger prevalence of ionized gas outflows as traced by the [O III] line, compared to normal QSOs of similar luminosity. We conclude that the optical-MIR properties of LoBAL QSOs are consistent with the general quasar population and do not support them to constitute a special phase of active galactic nucleus evolution.
Binary Black Holes, Accretion Disks and Relativistic Jets: Photocenters of Nearby AGN and Quasars
NASA Technical Reports Server (NTRS)
Wehrle, Ann E.; Jones, Dayton L.; Meier, David L.; Piner, B. Glenn; Unwin, Stephen C.
2004-01-01
One of the most challenging questions in astronomy today is to understand the origin, structure, and evolution of the central engines in the nuclei of quasars and active galaxies (AGNs). The favoured theory involves the activation of relativistic jets from the fueling of a supermassive black hole through an accretion disk. In some AGN an outer optically thick, dusty torus is seen orbiting the black hole system. This torus is probably related to an inner accretion disk - black hole system that forms the actual powerhouse of the AGN. In radio-loud AGN two oppositely-directed radio jets are ejected perpendicular to the torus/disk system. Although there is a wealth of observational data on AGN, some very basic questions have not been definitively answered. The Space Interferometry Mission (SIM) will address the following three key questions about AGN. 1) Does the most compact optical emission from an AGN come from an accretion disk or from a relativistic jet? 2) Does the separation of the radio core and optical photocenter of the quasars used for the reference frame tie, change on the timescales of their photometric variability, or is the separation stable at the level of a few microarcseconds? 3) Do the cores of galaxies harbor binary supermassive black holes remaining from galaxy mergers? It is not known whether such mergers are common, and whether binaries would persist for a significant time.
Discovery of a very Lyman-α-luminous quasar at z = 6.62.
Koptelova, Ekaterina; Hwang, Chorng-Yuan; Yu, Po-Chieh; Chen, Wen-Ping; Guo, Jhen-Kuei
2017-02-02
Distant luminous quasars provide important information on the growth of the first supermassive black holes, their host galaxies and the epoch of reionization. The identification of quasars is usually performed through detection of their Lyman-α line redshifted to 0.9 microns at z > 6.5. Here, we report the discovery of a very Lyman-α luminous quasar, PSO J006.1240 + 39.2219 at redshift z = 6.618, selected based on its red colour and multi-epoch detection of the Lyman-α emission in a single near-infrared band. The Lyman-α line luminosity of PSO J006.1240 + 39.2219 is unusually high and estimated to be 0.8 × 10 12 Solar luminosities (about 3% of the total quasar luminosity). The Lyman-α emission of PSO J006.1240 + 39.2219 shows fast variability on timescales of days in the quasar rest frame, which has never been detected in any of the known high-redshift quasars. The high luminosity of the Lyman-α line, its narrow width and fast variability resemble properties of local Narrow-Line Seyfert 1 galaxies which suggests that the quasar is likely at the active phase of the black hole growth accreting close or even beyond the Eddington limit.
Discovery of a very Lyman-α-luminous quasar at z = 6.62
Koptelova, Ekaterina; Hwang, Chorng-Yuan; Yu, Po-Chieh; Chen, Wen-Ping; Guo, Jhen-Kuei
2017-01-01
Distant luminous quasars provide important information on the growth of the first supermassive black holes, their host galaxies and the epoch of reionization. The identification of quasars is usually performed through detection of their Lyman-α line redshifted to 0.9 microns at z > 6.5. Here, we report the discovery of a very Lyman-α luminous quasar, PSO J006.1240 + 39.2219 at redshift z = 6.618, selected based on its red colour and multi-epoch detection of the Lyman-α emission in a single near-infrared band. The Lyman-α line luminosity of PSO J006.1240 + 39.2219 is unusually high and estimated to be 0.8 × 1012 Solar luminosities (about 3% of the total quasar luminosity). The Lyman-α emission of PSO J006.1240 + 39.2219 shows fast variability on timescales of days in the quasar rest frame, which has never been detected in any of the known high-redshift quasars. The high luminosity of the Lyman-α line, its narrow width and fast variability resemble properties of local Narrow-Line Seyfert 1 galaxies which suggests that the quasar is likely at the active phase of the black hole growth accreting close or even beyond the Eddington limit. PMID:28150701
DISCOVERY OF A FAINT QUASAR AT z ∼ 6 AND IMPLICATIONS FOR COSMIC REIONIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yongjung; Im, Myungshin; Jeon, Yiseul
2015-11-10
Recent studies suggest that faint active galactic nuclei may be responsible for the reionization of the universe. Confirmation of this scenario requires spectroscopic identification of faint quasars (M{sub 1450} > −24 mag) at z ≳ 6, but only a very small number of such quasars have been spectroscopically identified so far. Here, we report the discovery of a faint quasar IMS J220417.92+011144.8 at z ∼ 6 in a 12.5 deg{sup 2} region of the SA22 field of the Infrared Medium-deep Survey (IMS). The spectrum of the quasar shows a sharp break at ∼8443 Å, with emission lines redshifted to zmore » = 5.944 ± 0.002 and rest-frame ultraviolet continuum magnitude M{sub 1450} = −23.59 ± 0.10 AB mag. The discovery of IMS J220417.92+011144.8 is consistent with the expected number of quasars at z ∼ 6 estimated from quasar luminosity functions based on previous observations of spectroscopically identified low-luminosity quasars. This suggests that the number of M{sub 1450} ∼ −23 mag quasars at z ∼ 6 may not be high enough to fully account for the reionization of the universe. In addition, our study demonstrates that faint quasars in the early universe can be identified effectively with a moderately wide and deep near-infrared survey such as the IMS.« less
Catalog of Narrow Mg II Absorption Lines in the Baryon Oscillation Spectroscopic Survey
NASA Astrophysics Data System (ADS)
Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei
2015-12-01
Using the Data Release 9 Quasar spectra from the Baryonic Oscillation Spectroscopic Survey, which does not include quasar spectra from the Sloan Digital Sky Survey Data Release 7, we detect narrow Mg ii λλ2796, 2803 absorption doublets in the spectral data redward of 1250 Å (quasar rest frame) until the red wing of the Mg ii λ2800 emission line. Our survey is limited to quasar spectra with a median signal-to-noise ratio < {{S}}/{{N}}> ≥slant 4 pixel-1 in the surveyed spectral region, resulting in a sample that contains 43,260 quasars. We have detected a total of 18,598 Mg ii absorption doublets with 0.2933 ≤ zabs ≤ 2.6529. About 75% of absorbers have an equivalent width at rest frame of {W}rλ 2796≥slant 1 \\mathringA . About 75% of absorbers have doublet ratios ({DR}={W}rλ 2796/{W}rλ 2803) in the range of 1 ≤ DR ≤ 2, and about 3.2% lie outside the range of 1 - σDR ≤ DR ≤ 2 + σDR. We characterize the detection false positives/negatives by the frequency of detected Mg ii absorption doublets in the limits of the S/N of the spectral data. The S/N = 4.5 limit is assigned a completeness fraction of 53% and tends to be complete when the S/N is greater than 4.5. The redshift number densities of all of the detected Mg ii absorbers moderately increase from z ≈ 0.4 to z ≈ 1.5, which parallels the evolution of the cosmic star formation rate density. Limiting our investigation to those quasars whose emission redshift can be determined from narrow emission lines, the relative velocities (β) of Mg ii absorbers have a complex distribution which probably consists of three classes of Mg ii absorbers: (1) cosmologically intervening absorbers; (2) environmental absorbers that reside within the quasar host galaxies or galaxy clusters; (3) quasar outflow absorbers. After subtracting contributions from cosmologically intervening absorbers and environmental absorbers, the β distribution of the Mg iiabsorbers might mainly be contributed by the quasar outflow absorbers and peaks at υ ≈ 1500 km s-1. This peak velocity is lower than the value of 2000 km s-1 found in statistical analysis of C iv absorbers.
Exploratory X-ray Monitoring of z>4 Radio-Quiet Quasars
NASA Astrophysics Data System (ADS)
Shemmer, Ohad
2017-09-01
We propose to extend our exploratory X-ray monitoring project of some of the most distant radio-quiet quasars by obtaining one snapshot observation per Cycle for each of four sources at z>4. Combining these observations with six available X-ray epochs per source will provide basic temporal information over rest-frame timescales of 3-5 yr. We are supporting this project with Swift monitoring of luminous radio-quiet quasars at z=1.3-2.7 to break the L-z degeneracy and test evolutionary scenarios of the central engine in active galactic nuclei. Our ultimate goal is to provide a basic assessment of the X-ray variability properties of luminous quasars at the highest accessible redshifts that will serve as the benchmark for X-ray variability studies of such sources with future X-ray missions.
Discovery of an X-ray Violently Variable Broad Absorption Line Quasar
NASA Technical Reports Server (NTRS)
Ghosh, Kajal K.; Gutierrez, Carlos M.; Punsly, Brian; Chevallier, Loic; Goncalves, Anabela C.
2006-01-01
In this letter, we report on a quasar that is violently variable in the X-rays, XVV. It is also a broad absorption line quasar (BALQSO) that exhibits both high ionization and low ionization UV absorption lines (LoBALQSO). It is very luminous in the X-rays (approximately 10(exp 46) ergs s(sup -l) over the entire X-ray band). Surprisingly, this does not over ionize the LoBAL outflow. The X-rays vary by a factor of two within minutes in the quasar rest frame, which is shorter than 1/30 of the light travel time across a scale length equal to the black hole radius. We concluded that the X-rays are produced in a relativistic jet beamed toward earth in which variations in the Doppler enhancement produce the XVV behavior.
A Long-Term Space Astrophysics Research Program. The Evolution of the Quasar Continuum
NASA Technical Reports Server (NTRS)
Elvis, M.
1998-01-01
The grant "The Evolution of the Quasar Continuum" resulted in over 53 published referred papers and conference proceedings. The more significant of these papers are listed below, and abstracts are attached. The papers address a wide range of issues involving the evolution of quasars, their electromagnetic emissions, and their environment, from nearby low luminosity Seyfert galaxies to quasars at the highest redshifts. Primarily observational in content the work nonetheless included theoretical studies of quasar accretion disks that attempt to explain the observed time variability of quasars, and the overall 'demographics' of the quasar population. The work carried out under this grant has laid a strong foundation for ongoing and future research with AXAF, HST and other new facilities.
First Discoveries of z > 6 Quasars with the DECam Legacy Survey and UKIRT Hemisphere Survey
NASA Astrophysics Data System (ADS)
Wang, Feige; Fan, Xiaohui; Yang, Jinyi; Wu, Xue-Bing; Yang, Qian; Bian, Fuyan; McGreer, Ian D.; Li, Jiang-Tao; Li, Zefeng; Ding, Jiani; Dey, Arjun; Dye, Simon; Findlay, Joseph R.; Green, Richard; James, David; Jiang, Linhua; Lang, Dustin; Lawrence, Andy; Myers, Adam D.; Ross, Nicholas P.; Schlegel, David J.; Shanks, Tom
2017-04-01
We present the first discoveries from a survey of z ≳ 6 quasars using imaging data from the DECam Legacy Survey (DECaLS) in the optical, the UKIRT Deep Infrared Sky Survey (UKIDSS) and a preliminary version of the UKIRT Hemisphere Survey (UHS) in the near-IR, and ALLWISE in the mid-IR. DECaLS will image 9000 deg2 of sky down to z AB ˜ 23.0, and UKIDSS and UHS will map the northern sky at 0 < decl. < +60°, reaching J VEGA ˜ 19.6 (5-σ). The combination of these data sets allows us to discover quasars at redshift z ≳ 7 and to conduct a complete census of the faint quasar population at z ≳ 6. In this paper, we report on the selection method of our search, and on the initial discoveries of two new, faint z ≳ 6 quasars and one new z = 6.63 quasar in our pilot spectroscopic observations. The two new z ˜ 6 quasars are at z = 6.07 and z = 6.17 with absolute magnitudes at rest-frame wavelength 1450 Å being M 1450 = -25.83 and M 1450 = -25.76, respectively. These discoveries suggest that we can find quasars close to or fainter than the break magnitude of the Quasar Luminosity Function (QLF) at z ≳ 6. The new z = 6.63 quasar has an absolute magnitude of M 1450 = -25.95. This demonstrates the potential of using the combined DECaLS and UKIDSS/UHS data sets to find z ≳ 7 quasars. Extrapolating from previous QLF measurements, we predict that these combined data sets will yield ˜200 z ˜ 6 quasars to z AB < 21.5, ˜1000 z ˜ 6 quasars to z AB < 23, and ˜30 quasars at z > 6.5 to J VEGA < 19.5.
First Discoveries of z > 6 Quasars with the DECam Legacy Survey and UKIRT Hemisphere Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Feige; Fan, Xiaohui; Yang, Jinyi
In this paper, we present the first discoveries from a survey of z ≳ 6 quasars using imaging data from the DECam Legacy Survey (DECaLS) in the optical, the UKIRT Deep Infrared Sky Survey (UKIDSS) and a preliminary version of the UKIRT Hemisphere Survey (UHS) in the near-IR, and ALLWISE in the mid-IR. DECaLS will image 9000 deg 2 of sky down to z AB ~ 23.0, and UKIDSS and UHS will map the northern sky at 0 < decl. < +60°, reaching J VEGA ~ 19.6 (5-σ). The combination of these data sets allows us to discover quasars atmore » redshift z ≳ 7 and to conduct a complete census of the faint quasar population at z ≳ 6. In this paper, we report on the selection method of our search, and on the initial discoveries of two new, faint z ≳ 6 quasars and one new z = 6.63 quasar in our pilot spectroscopic observations. The two new z ~ 6 quasars are at z = 6.07 and z = 6.17 with absolute magnitudes at rest-frame wavelength 1450 Å being M 1450 = -25.83 and M 1450 = -25.76, respectively. These discoveries suggest that we can find quasars close to or fainter than the break magnitude of the Quasar Luminosity Function (QLF) at z ≳ 6. The new z = 6.63 quasar has an absolute magnitude of M 1450 = -25.95. This demonstrates the potential of using the combined DECaLS and UKIDSS/UHS data sets to find z ≳ 7 quasars. Finally, extrapolating from previous QLF measurements, we predict that these combined data sets will yield ~200 z ~ 6 quasars to z AB < 21.5, ~1000 z ~ 6 quasars to z AB < 23, and ~30 quasars at z > 6.5 to J VEGA < 19.5.« less
First Discoveries of z > 6 Quasars with the DECam Legacy Survey and UKIRT Hemisphere Survey
Wang, Feige; Fan, Xiaohui; Yang, Jinyi; ...
2017-04-11
In this paper, we present the first discoveries from a survey of z ≳ 6 quasars using imaging data from the DECam Legacy Survey (DECaLS) in the optical, the UKIRT Deep Infrared Sky Survey (UKIDSS) and a preliminary version of the UKIRT Hemisphere Survey (UHS) in the near-IR, and ALLWISE in the mid-IR. DECaLS will image 9000 deg 2 of sky down to z AB ~ 23.0, and UKIDSS and UHS will map the northern sky at 0 < decl. < +60°, reaching J VEGA ~ 19.6 (5-σ). The combination of these data sets allows us to discover quasars atmore » redshift z ≳ 7 and to conduct a complete census of the faint quasar population at z ≳ 6. In this paper, we report on the selection method of our search, and on the initial discoveries of two new, faint z ≳ 6 quasars and one new z = 6.63 quasar in our pilot spectroscopic observations. The two new z ~ 6 quasars are at z = 6.07 and z = 6.17 with absolute magnitudes at rest-frame wavelength 1450 Å being M 1450 = -25.83 and M 1450 = -25.76, respectively. These discoveries suggest that we can find quasars close to or fainter than the break magnitude of the Quasar Luminosity Function (QLF) at z ≳ 6. The new z = 6.63 quasar has an absolute magnitude of M 1450 = -25.95. This demonstrates the potential of using the combined DECaLS and UKIDSS/UHS data sets to find z ≳ 7 quasars. Finally, extrapolating from previous QLF measurements, we predict that these combined data sets will yield ~200 z ~ 6 quasars to z AB < 21.5, ~1000 z ~ 6 quasars to z AB < 23, and ~30 quasars at z > 6.5 to J VEGA < 19.5.« less
Do the Most Massive Black Holes at z = 2 Grow via Major Mergers?
NASA Astrophysics Data System (ADS)
Mechtley, M.; Jahnke, K.; Windhorst, R. A.; Andrae, R.; Cisternas, M.; Cohen, S. H.; Hewlett, T.; Koekemoer, A. M.; Schramm, M.; Schulze, A.; Silverman, J. D.; Villforth, C.; van der Wel, A.; Wisotzki, L.
2016-10-01
The most frequently proposed model for the origin of quasars holds that the high accretion rates seen in luminous active galactic nuclei (AGN) are primarily triggered during major mergers between gas-rich galaxies. While plausible for decades, this model has only begun to be tested with statistical rigor in the past few years. Here, we report on a Hubble Space Telescope study to test this hypothesis for z = 2 quasars with high supermassive black hole masses ({M}{BH}={10}9{--}{10}10 {M}⊙ ), which dominate cosmic black hole growth at this redshift. We compare Wide Field Camera 3 F160W (rest-frame V-band) imaging of 19 point source-subtracted quasar hosts to a matched sample of 84 inactive galaxies, testing whether the quasar hosts have greater evidence for strong gravitational interactions. Using an expert ranking procedure, we find that the quasar hosts are uniformly distributed within the merger sequence of inactive galaxies, with no preference for quasars in high-distortion hosts. Using a merger/non-merger cutoff approach, we recover distortion fractions of {f}{{m},{qso}}=0.39+/- 0.11 for quasar hosts and {f}{{m},{gal}}=0.30+/- 0.05 for inactive galaxies (distribution modes, 68% confidence intervals), with both measurements subjected to the same observational conditions and limitations. The slight enhancement in distorted fraction for quasar hosts over inactive galaxies is not significant, with a probability that the quasar fraction is higher P({f}{{m},{qso}}\\gt {f}{{m},{gal}})=0.78 (0.78σ ), in line with results for lower mass and lower z AGN. We find no evidence that major mergers are the primary triggering mechanism for the massive quasars that dominate accretion at the peak of cosmic quasar activity.
NASA Astrophysics Data System (ADS)
Glikman, Eliat
2016-10-01
We propose to conduct a controlled study of the relationship between radio emission and host galaxy morphology for a new sample of radio-quiet dust-reddened quasars selected by their infrared colors in WISE and 2MASS (W2M). These sources are the radio-quiet analogs to the FIRST-2MASS (F2M) red quasars, which we found to be predominantly driven by major mergers. F2M red quasars are accreting at very high rates and exhibit broad absorption lines associated with outflows and feedback. Their properties are consistent with buried quasars expelling their dusty shrouds in an an evolutionary phase predicted by merger-driven co-evolution models. The quasars in both samples are the most intrinsically luminous objects in the Universe - the regime where we expect mergers to dominate. However, recent lines of evidence suggest that radio emission may be linked to AGN reddening and merging hosts. We will use WFC3/IR and ACS to image the host galaxies of W2M quasars in the two redshift regimes that our previous studies probed, z 0.7 and z 2, testing the merger-driven quasar paradigm across the full radio range with a minimum of selection effects or other biases that plague many studies comparing different samples. The images proposed here will sample the host galaxies in rest-frame visible and UV light to look for merger signatures. Evidence for mergers in these quasar hosts would support a picture in which luminous quasars and galaxies co-evolve through major-mergers, independent of their radio properties. The absence of mergers in our data would link radio emission to mergers and require an alternate explanation for the extreme properties of these radio-quiet sources.
Vanishing absorption and blueshifted emission in FeLoBAL quasars
NASA Astrophysics Data System (ADS)
Rafiee, Alireza; Pirkola, Patrik; Hall, Patrick B.; Galati, Natalee; Rogerson, Jesse; Ameri, Abtin
2016-07-01
We study the dramatic decrease in iron absorption strength in the iron low-ionization broad absorption line quasar SDSS J084133.15+200525.8. We report on the continued weakening of absorption in the prototype of this class of variable broad absorption line quasar, FBQS J140806.2+305448. We also report a third example of this class, SDSS J123103.70+392903.6; unlike the other two examples, it has undergone an increase in observed continuum brightness (at 3000 Å rest frame) as well as a decrease in iron absorption strength. These changes could be caused by absorber transverse motion or by ionization variability. We note that the Mg II and UV Fe II lines in several FeLoBAL quasars are blueshifted by thousands of km s-1 relative to the H β emission line peak. We suggest that such emission arises in the outflowing winds normally seen only in absorption.
QUASAR PG1115+080 AND GRAVITATIONAL LENS
NASA Technical Reports Server (NTRS)
2002-01-01
Left: The light from the single quasar PG 1115+080 is split and distorted in this infrared image. PG 1115+080 is at a distance of about 8 billion light years in the constellation Leo, and it is viewed through an elliptical galaxy lens at a distance of 3 billion light years. The NICMOS frame is taken at a wavelength of 1.6 microns and it shows the four images of the quasar (the two on the left are nearly merging) surrounding the galaxy that causes the light to be lensed. The quasar is a variable light source and the light in each image travels a different path to reach the Earth. The time delay of the variations allows the distance scale to be measured directly. The linear streaks on the image are diffraction artifacts in the NICMOS instrument (NASA/Space Telescope Science Institute). Right: In this NICMOS image, the four quasar images and the lens galaxy have been subtracted, revealing a nearly complete ring of infrared light. This ring is the stretched and amplified starlight of the galaxy that contains the quasar, some 8 billion light years away. (NASA/Space Telescope Science Institute). Credit: Christopher D. Impey (University of Arizona)
First Discoveries of z > 6 Quasars with the DECam Legacy Survey and UKIRT Hemisphere Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Feige; Yang, Jinyi; Wu, Xue-Bing
We present the first discoveries from a survey of z ≳ 6 quasars using imaging data from the DECam Legacy Survey (DECaLS) in the optical, the UKIRT Deep Infrared Sky Survey (UKIDSS) and a preliminary version of the UKIRT Hemisphere Survey (UHS) in the near-IR, and ALLWISE in the mid-IR. DECaLS will image 9000 deg{sup 2} of sky down to z {sub AB} ∼ 23.0, and UKIDSS and UHS will map the northern sky at 0 < decl. < +60°, reaching J {sub VEGA} ∼ 19.6 (5- σ ). The combination of these data sets allows us to discover quasarsmore » at redshift z ≳ 7 and to conduct a complete census of the faint quasar population at z ≳ 6. In this paper, we report on the selection method of our search, and on the initial discoveries of two new, faint z ≳ 6 quasars and one new z = 6.63 quasar in our pilot spectroscopic observations. The two new z ∼ 6 quasars are at z = 6.07 and z = 6.17 with absolute magnitudes at rest-frame wavelength 1450 Å being M {sub 1450} = −25.83 and M {sub 1450} = −25.76, respectively. These discoveries suggest that we can find quasars close to or fainter than the break magnitude of the Quasar Luminosity Function (QLF) at z ≳ 6. The new z = 6.63 quasar has an absolute magnitude of M {sub 1450} = −25.95. This demonstrates the potential of using the combined DECaLS and UKIDSS/UHS data sets to find z ≳ 7 quasars. Extrapolating from previous QLF measurements, we predict that these combined data sets will yield ∼200 z ∼ 6 quasars to z {sub AB} < 21.5, ∼1000 z ∼ 6 quasars to z {sub AB} < 23, and ∼30 quasars at z > 6.5 to J {sub VEGA} < 19.5.« less
NASA Astrophysics Data System (ADS)
Saturni, F. G.; Trevese, D.; Vagnetti, F.; Perna, M.; Dadina, M.
2016-03-01
Context. The study of high-redshift bright quasars is crucial to gather information about the history of galaxy assembly and evolution. Variability analyses can provide useful data on the physics of quasar processes and their relation with the host galaxy. Aims: In this study, we aim to measure the black hole mass of the bright lensed BAL QSO APM 08279+5255 at z = 3.911 through reverberation mapping, and to update and extend the monitoring of its C IV absorption line variability. Methods: We perform the first reverberation mapping of the Si IV and C IV emission lines for a high-luminosity quasar at high redshift with the use of 138 R-band photometric data and 30 spectra available over 16 years of observations. We also cross-correlate the C IV absorption equivalent width variations with the continuum light curve to estimate the recombination time lags of the various absorbers and infer the physical conditions of the ionised gas. Results: We find a reverberation-mapping time lag of ~900 rest-frame days for both Si IV and C IV emission lines. This is consistent with an extension of the BLR size-to-luminosity relation for active galactic nuclei up to a luminosity of ~1048 erg s-1, and implies a black hole mass of 1010 M⊙. Additionally, we measure a recombination time lag of ~160 days in the rest frame for the C IV narrow absorption system, which implies an electron density of the absorbing gas of ~2.5 × 104 cm-3. Conclusions: The measured black hole mass of APM 08279+5255 indicates that the quasar resides in an under-massive host-galaxy bulge with Mbulge ~ 7.5MBH, and that the lens magnification is lower than ~8. Finally, the inferred electron density of the narrow-line absorber implies a distance of the order of 10 kpc of the absorbing gas from the quasar, placing it within the host galaxy.
MODELING THE TIME VARIABILITY OF SDSS STRIPE 82 QUASARS AS A DAMPED RANDOM WALK
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacLeod, C. L.; Ivezic, Z.; Bullock, E.
2010-10-01
We model the time variability of {approx}9000 spectroscopically confirmed quasars in SDSS Stripe 82 as a damped random walk (DRW). Using 2.7 million photometric measurements collected over 10 yr, we confirm the results of Kelly et al. and Kozlowski et al. that this model can explain quasar light curves at an impressive fidelity level (0.01-0.02 mag). The DRW model provides a simple, fast (O(N) for N data points), and powerful statistical description of quasar light curves by a characteristic timescale ({tau}) and an asymptotic rms variability on long timescales (SF{sub {infinity}}). We searched for correlations between these two variability parametersmore » and physical parameters such as luminosity and black hole mass, and rest-frame wavelength. Our analysis shows SF{sub {infinity}} to increase with decreasing luminosity and rest-frame wavelength as observed previously, and without a correlation with redshift. We find a correlation between SF{sub {infinity}} and black hole mass with a power-law index of 0.18 {+-} 0.03, independent of the anti-correlation with luminosity. We find that {tau} increases with increasing wavelength with a power-law index of 0.17, remains nearly constant with redshift and luminosity, and increases with increasing black hole mass with a power-law index of 0.21 {+-} 0.07. The amplitude of variability is anti-correlated with the Eddington ratio, which suggests a scenario where optical fluctuations are tied to variations in the accretion rate. However, we find an additional dependence on luminosity and/or black hole mass that cannot be explained by the trend with Eddington ratio. The radio-loudest quasars have systematically larger variability amplitudes by about 30%, when corrected for the other observed trends, while the distribution of their characteristic timescale is indistinguishable from that of the full sample. We do not detect any statistically robust differences in the characteristic timescale and variability amplitude between the full sample and the small subsample of quasars detected by ROSAT. Our results provide a simple quantitative framework for generating mock quasar light curves, such as currently used in LSST image simulations.« less
NASA Technical Reports Server (NTRS)
Marcaide, J. M.; Bartel, N.; Gorenstein, M. V.; Bonometti, R. J.; Corey, B. E.; Cotton, W. D.; Preston, R. A.
1988-01-01
It is found that the quasar 1038+528 B is a good reference for studying the internal motions in quasar 1038+528 A. The apparent superluminal motion of a feature in quasar A takes place with respect to a neary stationary core; its proper motion is bounded from above by about 40 micro-as/yr. The wavelength dependence of the location of the core brightness peak of A is confirmed.
Composite Spectral Energy Distributions and Infrared-Optical Colors of Type 1 and Type 2 Quasars
NASA Astrophysics Data System (ADS)
Hickox, Ryan C.; Myers, Adam D.; Greene, Jenny E.; Hainline, Kevin N.; Zakamska, Nadia L.; DiPompeo, Michael A.
2017-11-01
We present observed mid-infrared and optical colors and composite spectral energy distributions (SEDs) of type 1 (broad-line) and 2 (narrow-line) quasars selected from Sloan Digital Sky Survey (SDSS) spectroscopy. A significant fraction of powerful quasars are obscured by dust and are difficult to detect in optical photometric or spectroscopic surveys. However, these may be more easily identified on the basis of mid-infrared (MIR) colors and SEDs. Using samples of SDSS type 1 and 2 matched in redshift and [O III] luminosity, we produce composite rest-frame 0.2-15 μm SEDs based on SDSS, UKIDSS, and Wide-field Infrared Survey Explorer photometry and perform model fits using simple galaxy and quasar SED templates. The SEDs of type 1 and 2 quasars are remarkably similar, with the differences explained primarily by the extinction of the quasar component in the type 2 systems. For both types of quasar, the flux of the active galactic nucleus (AGN) relative to the host galaxy increases with AGN luminosity ({L}[{{O}{{III}}]}) and redder observed MIR color, but we find only weak dependencies of the composite SEDs on mechanical jet power as determined through radio luminosity. We conclude that luminous quasars can be effectively selected using simple MIR color criteria similar to those identified previously ({{W}}1{--}{{W}}2> 0.7; Vega), although these criteria miss many heavily obscured objects. Obscured quasars can be further identified based on optical-IR colors (for example, (u{--}{{W}}3 [{AB}])> 1.4({{W}}1{--}{{W}}2 [{Vega}])+3.2). These results illustrate the power of large statistical studies of obscured quasars selected on the basis of MIR and optical photometry.
Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, B.; Brandt, W. N.; Scott, A. E.
We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars,more » i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ{sub eff} ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.« less
Searching for Variability of NV Intrinsic Narrow Absorption Line Systems
NASA Astrophysics Data System (ADS)
Rodruck, Michael; Charlton, Jane; Ganguly, Rajib
2018-01-01
The majority of quasar absorption line systems with NV detected are found within the associated region (within 5000 km/s of the quasar redshift) and many/most are believed to be related to the quasar accretion disk wind or outflows. The most definite evidence that these NV absorbers are "intrinsic" is partial covering of the quasar continuum source and/or broad line region. Over 75 quasars containing NV narrow absorption lines have observations obtained at different times with the Keck/HIRES and the VLT/UVES spectrographs at high resolution. The interval between these observations range from months to a decade in the quasar rest frame. While variability is common for intrinsic broad and mini-broad absorption lines, intrinsic narrow absorption lines have been found to be less likely to vary, though systematic studies with large, high quality datasets have been limited. The variability timescales are useful for deriving gas densities and thus the distances from the central engines. This is important in mapping the quasar surroundings, understanding the accretion disk wind mechanism, and assessing the effect the wind has on the galaxy surroundings. We report on the results of a systematic study of variability of NV NALs, exploiting the overlap of targets for observations in the archives of Keck and VLT, and discuss the consequences for interpretation of the origin of intrinsic narrow absorption lines.
New Quasar Surveys with WIRO: Data and Calibration for Studies of Variability
NASA Astrophysics Data System (ADS)
Lyke, Bradley; Bassett, Neil; Deam, Sophie; Dixon, Don; Griffith, Emily; Harvey, William; Lee, Daniel; Haze Nunez, Evan; Parziale, Ryan; Witherspoon, Catherine; Myers, Adam D.; Findlay, Joseph; Kobulnicky, Henry A.; Dale, Daniel A.
2017-01-01
Measurements of quasar variability offer the potential for understanding the physics of accretion processes around supermassive black holes. However, generating structure functions in order to characterize quasar variability can be observationally taxing as it requires imaging of quasars over a large variety of date ranges. To begin to address this problem, we have conducted an imaging survey of sections of Sloan Digital Sky Survey (SDSS) Stripe 82 at the Wyoming Infrared Observatory (WIRO). We used standard stars to calculate zero-point offsets between WIRO and SDSS observations in the urgiz magnitude system. After finding the zero-point offset, we accounted for further offsets by comparing standard star magnitudes in each WIRO frame to coadded magnitudes from Stripe 82 and applying a linear correction. Known (i.e. spectroscopically confirmed) quasars at the epoch we conducted WIRO observations (Summer, 2016) and at every epoch in SDSS Stripe 82 (~80 total dates) were hence calibrated to a similar magnitude system. The algorithm for this calibration compared 1500 randomly selected standard stars with an MJD within 0.07 of the MJD of each quasar of interest, for each of the five ugriz filters. Ultimately ~1000 known quasars in Stripe 82 were identified by WIRO and their SDSS-WIRO magnitudes were calibrated to a similar scale in order to generate ensemble structure functions.This work is supported by the National Science Foundation under REU grant AST 1560461.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennawi, Joseph F.; Prochaska, J. Xavier, E-mail: xavier@ucolick.org
2013-03-20
We have constructed a sample of 29 close projected quasar pairs where the background quasar spectrum reveals absorption from optically thick H I gas associated with the foreground quasar. These unique sightlines allow us to study the quasar circumgalactic medium (CGM) in absorption and emission simultaneously, because the background quasar pinpoints large concentrations of gas where Ly{alpha} emission, resulting from quasar-powered fluorescence, resonant Ly{alpha} scattering, and/or cooling radiation, is expected. A sensitive search (1{sigma} surface-brightness limits of SB{sub Ly{alpha}}{approx_equal}3 Multiplication-Sign 10{sup -18} erg s{sup -1} cm{sup -2} arcsec{sup -2}) for diffuse Ly{alpha} emission in the environments of the foreground (predominantlymore » radio-quiet) quasars is conducted using Gemini/GMOS and Keck/LRIS slit spectroscopy. We fail to detect large-scale {approx}100 kpc Ly{alpha} emission, either at the location of the optically thick absorbers or in the foreground quasar halos, in all cases except a single system. We interpret these non-detections as evidence that the gas detected in absorption is shadowed from the quasar UV radiation due to obscuration effects, which are frequently invoked in unified models of active galactic nuclei. Small-scale R {approx}< 50 kpc extended Ly{alpha} nebulosities are detected in 34% of our sample, which are likely the high-redshift analogs of the extended emission-line regions (EELRs) commonly observed around low-redshift (z < 0.5) quasars. This may be fluorescent recombination radiation from a population of very dense clouds with a low covering fraction illuminated by the quasar. We also detect a compact high rest-frame equivalent width (W{sub Ly{alpha}} > 50 A) Ly{alpha}-emitter with luminosity L{sub Ly{alpha}} = 2.1 {+-} 0.32 Multiplication-Sign 10{sup 41} erg s{sup -1} at small impact parameter R = 134 kpc from one foreground quasar, and argue that it is more likely to result from quasar-powered fluorescence, than simply be a star-forming galaxy clustered around the quasar. Our observations imply that much deeper integrations with upcoming integral-field spectrometers such as MUSE and KCWI will be able to routinely detect a diffuse Ly{alpha} glow around bright quasars on scales R {approx} 100 kpc and thus directly image the CGM.« less
X-ray spectrum and variability of the quasar PG 1211+143
NASA Technical Reports Server (NTRS)
Yaqoob, Tahir; Serlemitsos, Peter; Mushotzky, Richard; Madejski, Greg; Turner, T. Jane; Kunieda, Hideyo
1994-01-01
We present preliminary results of an ASCA observation of the classic soft-excess quasar PG 1211+143. The overall ASCA spectrum can be characterized by a blackbody with a temperature of approximately 125 eV (quasar frame) and a power law with photon index of approximately 2. Simultaneous ROSAT data are suggestive of further steepening of the spectrum just below the ASCA band. Comparison with previous observations shows that the soft flux in the 0.1-2 keV band varies by at least a factor of approximately 16, scaling roughly as the square of the hard flux in the 2-10 keV band over a timescale of approximately 13.5 yr. We also find evidence of short-term amplitude variability of up to a factor of approximately 2 on a timescale of approximately 2 x 10(exp 4) sec, in both the soft and hard flux so that the soft and hard photons are likely to originate from the same, compact, region. The data rule out variable absorption (cold or ionized) as the origin of the soft excess, favoring an intrinsic emission component. However, we argue against optically thin emission for the 'blue bump' in PG 1211+143. The large amplitude soft X-ray variability may be indicative of variations in the effective temperature, or peak, of the soft component. There is only marginal evidence for Fe K line emission between 6-7 keV in the quasar frame.
The Timescale-dependent Color Variability of Quasars Viewed with /GALEX
NASA Astrophysics Data System (ADS)
Zhu, Fei-Fan; Wang, Jun-Xian; Cai, Zhen-Yi; Sun, Yu-Han
2016-11-01
In a recent work by Sun et al., the color variation of quasars, namely the bluer-when-brighter trend, was found to be timescale dependent using the SDSS g/r band light curves in Stripe 82. Such timescale dependence, I.e., bluer variation at shorter timescales, supports the thermal fluctuation origin of the UV/optical variation in quasars, and can be modeled well with the inhomogeneous accretion disk model. In this paper, we extend the study to much shorter wavelengths in the rest frame (down to extreme UV) using GALaxy Evolution eXplorer (GALEX) photometric data of quasars collected in two ultraviolet bands (near-UV and far-UV). We develop Monte Carlo simulations to correct for possible biases due to the considerably larger photometric uncertainties in the GALEX light curves (particularly in the far-UV, compared with the SDSS g/r bands), which otherwise could produce artificial results. We securely confirm the previously discovered timescale dependence of the color variability with independent data sets and at shorter wavelengths. We further find that the slope of the correlation between the amplitude of the color variation and timescale appears even steeper than predicted by the inhomogeneous disk model, which assumes that disk fluctuations follow a damped random walk (DRW) process. The much flatter structure function observed in the far-UV compared with that at longer wavelengths implies deviation from the DRW process in the inner disk, where rest-frame extreme UV radiation is produced.
The gravitational lens system Q0957+561 in the ultraviolet
NASA Technical Reports Server (NTRS)
Dolan, J. F.; Michalitsianos, A. G.; Thompson, R. W.; Boyd, P. T.; Wolinski, K. G.; Bless, R. C.; Nelson, M. J.; Percival, J. W.; Taylor, M. J.; Elliot, J. L.
1995-01-01
Photometric and polarimetric observations of both images of the gravitationally lensed quasar Q0957+561 (z(sub em) = 1.41) were obtained in the UV in 1993 with the High Speed Photometer on board the Hubble Space Photometer on board the Hubble Space Telescope. The images exhibited no significant polarization in a bandpass centered on 2770 A (observer's frame); p less than or = 3.2 % (2 sigma upper limit) in each image. The ratio of the flux density in image A to that in image B in late 1993 had a constant valuee, 1.021 +/- 0.008, in four different UV bandpass between 1400 A and 3040 A observer's frame). These results are consistent with the prediction of the gravitation lens interpretation that the photometric ratio of the images measured simultaneously should be independent of frequency. Reprocessed archival spectra of the two images obtained between 1981 and 1983 by the International Ultraviolet Explorer (IUE) show that the photometric ratio of A to B varies between 0.96 and 2.0 in the Ly alpha emission line, and between 0.77 and 1.8 in the O VI lambda 1037 emission line (quasar rest frame). The photometric ratio of A to B at any single epoch is often significantly different in the two emission lines. Accepting the system as a gravitational lens implies that in the quasar the flux in the Ly alpha emsisson line can vary independently of the flux in the 0 IV emission line.
NASA Astrophysics Data System (ADS)
MacLeod, Chelsea L.; Morgan, Christopher W.; Mosquera, A.; Kochanek, C. S.; Tewes, M.; Courbin, F.; Meylan, G.; Chen, B.; Dai, X.; Chartas, G.
2015-06-01
We analyze the optical, UV, and X-ray microlensing variability of the lensed quasar SDSS J0924+0219 using six epochs of Chandra data in two energy bands (spanning 0.4-8.0 keV, or 1-20 keV in the quasar rest frame), 10 epochs of F275W (rest-frame 1089 Å) Hubble Space Telescope data, and high-cadence R-band (rest-frame 2770 Å) monitoring spanning 11 years. Our joint analysis provides robust constraints on the extent of the X-ray continuum emission region and the projected area of the accretion disk. The best-fit half-light radius of the soft X-ray continuum emission region is between 5× {10}13 and 1015 cm, and we find an upper limit of 1015 cm for the hard X-rays. The best-fit soft-band size is about 13 times smaller than the optical size, and roughly 7{{GM}}{BH}/{c}2 for a 2.8× {10}8 {M}⊙ black hole, similar to the results for other systems. We find that the UV emitting region falls in between the optical and X-ray emitting regions at 1014 cm \\lt {r}1/2,{UV}\\lt 3× {10}15 cm. Finally, the optical size is significantly larger, by 1.5σ, than the theoretical thin-disk estimate based on the observed, magnification-corrected I-band flux, suggesting a shallower temperature profile than expected for a standard disk.
Quality assurance and stability reference (QUASAR) monitoring concept for calibration/validation
NASA Astrophysics Data System (ADS)
Teillet, Philippe M.; Horler, D. N.; O'Neill, Norman T.
1997-12-01
The paper introduces the concept that calibration/validation (cal/val) can play an essential role in bringing remote sensing to mainstream consumers in an information-based society, provided that cal/val is an integral part of a quality-assurance strategy. A market model for remote sensing is introduced and used to demonstrate that quality assurance is the key to bridging the gap between early adopters of technology and mainstream markets. The paper goes on to propose the semi-continuous monitoring of quality assurance and stability reference (QUASAR) sites as an important first step towards a cal/val infrastructure beneficial to mainstream users. Prospective QUASAR test sites are described.
Characterizing Quasar Outflows II: The Incidence of the Highest Velocity Outflows
NASA Astrophysics Data System (ADS)
Stark, Michele A.; Ganguly, R.; Christenson, D. H.; Richmond, J. M.; Derseweh, J. A.; Robbins, J. M.; Townsend, S. L.
2012-05-01
Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 11000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) measurements of UV emission line and continuum parameters. In an accompanying poster, we subjectively divide these quasars into four categories (broad absorption-line quasars, associated absorption-line quasars, reddened quasars, and unabsorbed/unreddened quasars). This subjective scheme is limited with regard to classifying narrow absorption-line systems (NALs). With single epoch, low dispersion SDSS spectra, we cannot distinguish between cosmologically intervening NALs, and intrinsic NALs that appear at large velocity offsets. In this poster, we tackle this uncertainty statistically by considering the incidence of both CIV and MgII NALs as a function of velocity, and how this distribution changes with quasar properties. We expect that absorption by intervening structures should not vary with quasar property. Other accompanying posters add photometry from rest-frame X-ray through the infrared (WISE) to complete the SED, which we utilize in these efforts. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.
NASA Astrophysics Data System (ADS)
Banerji, Manda; Alaghband-Zadeh, S.; Hewett, Paul C.; McMahon, Richard G.
2015-03-01
We present a new population of z > 2 dust-reddened, type 1 quasars with 0.5 ≲ E(B - V) ≲ 1.5, selected using near-infrared (NIR) imaging data from the UKIDSS-LAS (Large Area Survey), ESO-VHS (European Southern Obseratory-VISTA Hemisphere Survey) and WISE surveys. NIR spectra obtained using the Very Large Telescope for 24 new objects bring our total sample of spectroscopically confirmed hyperluminous (>1013 L⊙), high-redshift dusty quasars to 38. There is no evidence for reddened quasars having significantly different Hα equivalent widths relative to unobscured quasars. The average black hole masses (˜109-1010 M⊙) and bolometric luminosities (˜1047 erg s-1) are comparable to the most luminous unobscured quasars at the same redshift, but with a tail extending to very high luminosities of ˜1048 erg s-1. 66 per cent of the reddened quasars are detected at >3σ at 22 μm by WISE. The average 6-μm rest-frame luminosity is log10(L6 μm/ erg s-1) = 47.1 ± 0.4, making the objects among the mid-infrared brightest active galactic nuclei (AGN) currently known. The extinction-corrected space density estimate now extends over three magnitudes (-30 < Mi < -27) and demonstrates that the reddened quasar luminosity function is significantly flatter than that of the unobscured quasar population at z = 2-3. At the brightest magnitudes, Mi ≲ -29, the space density of our dust-reddened population exceeds that of unobscured quasars. A model where the probability that a quasar becomes dust reddened increases at high luminosity is consistent with the observations and such a dependence could be explained by an increase in luminosity and extinction during AGN-fuelling phases. The properties of our obscured type 1 quasars are distinct from the heavily obscured, Compton-thick AGN that have been identified at much fainter luminosities and we conclude that they likely correspond to a brief evolutionary phase in massive galaxy formation.
Discovery of a new blue quasar: SDSS J022218.03-062511.1
Fix, Mees B.; Smith, J. Allyn; Tucker, Douglas L.; ...
2015-07-29
We report the discovery of a bright blue quasar: SDSS J022218.03–062511.1. This object was discovered spectroscopically while searching for hot white dwarfs that may be used as calibration sources for large sky surveys such as the Dark Energy Survey or the Large Synoptic Survey Telescope project. In addition, we present the calibrated spectrum, spectral line shifts and report a redshift of z = 0.521 ± 0.0015 and a rest-frame g-band luminosity of 8.71 × 10 11 L ⊙.
[Can the degree of renal artery stenosis be automatically quantified?].
Cherrak, I; Jaulent, M C; Azizi, M; Plouin, P F; Degoulet, P; Chatellier, G
2000-08-01
The objective of the reported study is to validate a computer system, QUASAR, dedicated to the quantification of renal artery stenoses. This system estimates automatically the reference diameter and calculates the minimum diameter to compute a degree of stenosis. A hundred and eighty images of atheromatous stenoses between 10% and 80% were collected from two French independent protocols. For the 49 images of the EMMA protocol, the results from QUASAR were compared with the visual estimation of an initial investigator and with the results from a reference method based on a panel of fixe experienced experts. For the 131 images of the ASTARTE protocol, the results from QUASAR were compared with those from a semi-automatic quantification system and with those from a system based on densitometric analysis. The present work validates QUASAR in a population of narrow atheromatous stenoses (> 50%). In the context of the EMMA protocol, QUASAR is not significantly different from the mean of the fixe experts. It is unbiased and more precise than the estimation of a single investigator. In the context of the ASTARTE protocol, there is no significant difference between the three methods for the stenoses higher than 50%, however, globally, QUASAR surestimates significantly (up to 10%) the degree of stenosis.
Intrinsic, Narrow N V Absorption Reveals a Clumpy Outflow in z < 0.4 Radio-Loud Quasars
NASA Astrophysics Data System (ADS)
DeMarcy, Bryan; Serra, Viktoriah; Culliton, Chris; Ganguly, Rajib; Runnoe, Jessie; Charlton, Jane; Eracleous, Michael; Misawa, Toru; Narayanan, Anand
2018-01-01
Quasar outflows are often invoked in models for galaxy evolution to inject energy and momentum into the gas in the host galaxy and influence its star formation history. Thus, the study of quasar outflows is essential for understanding galaxy evolution. N V absorption systems within the associated region (|Δv| ≤ 5000 km s-1) of the quasar are thought to be intrinsic since many show evidence for partial covering of the quasar. A recent archival study of quasar spectra taken with COS/G130M or G160M found 39/181 radio-quiet quasars show intrinsic N V absorption, while none of the 31 radio-loud quasars have N V absorption detected (Culliton et al. 2017). Further investigation of these radio-loud quasars showed a clear bias towards compact morphologies as revealed by FIRST 1.4 GHz imaging and comparatively flat radio spectra. This suggests we are viewing more face-on orientations which prevent us from seeing absorption outflows. The cause for such bias within the HST archive is still unknown; however, it could explain the lack of radio-loud intrinsic N V absorption seen by Culliton et al. (2017). Alternatively, the quasar wind structure may be fundamentally different between radio-loud and radio-quiet objects. We used COS/G130M or G160M to obtain rest-frame UV spectra (1195 Å - 1250 Å) of 14 low-redshift SDSS radio-loud quasars which show lobe-dominated FIRST morphologies to distinguish between these possibilities. Intrinsic N V absorption was detected in 6 of our 14 quasars. This suggests the lack of detections in the archival study was a result of an orientation effect/sampling bias rather than to differences in wind structure between radio-loud and radio-quiet quasars. Interestingly, we find significant overlap in radio core fractions between quasars with and without N V detection. Quasars in our sample with N V detection span a range of core fractions from < 0.01 up to 0.89 while those without detected N V range from 0.04 up to 0.93. A laminar outflow with a small opening angle would be difficult to explain given this overlap in radio core fractions. Our observations suggest a clumpy, sporadic outflow is the more likely explanation.
The kinetically dominated quasar 3C 418
NASA Astrophysics Data System (ADS)
Punsly, Brian; Kharb, Preeti
2017-06-01
The existence of quasars that are kinetically dominated, where the jet kinetic luminosity, Q, is larger than the total (infrared to X-ray) thermal luminosity of the accretion flow, Lbol, provides a strong constraint on the fundamental physics of relativistic jet formation. Since quasars have high values of Lbol by definition, only ˜10 kinetically dominated quasars (with \\overline{Q}/L_{bol}>1) have been found, where \\overline{Q} is the long-term time-averaged jet power. We use low-frequency (151 MHz-1.66 GHz) observations of the quasar 3C 418 to determine \\overline{Q}≈ 5.5 ± 1.3 × 10^{46} {erg s^{-1}}. Analysis of the rest-frame ultraviolet spectrum indicates that this equates to 0.57 ± 0.28 times the Eddington luminosity of the central supermassive black hole and \\overline{Q}/L_{bol} ≈ 4.8 ± 3.1, making 3C 418 one of the most kinetically dominated quasars found to date. It is shown that this maximal \\overline{Q}/L_{bol} is consistent with models of magnetically arrested accretion of jet production in which the jet production reproduces the observed trend of a decrement in the extreme ultraviolet continuum as the jet power increases. This maximal condition corresponds to an almost complete saturation of the inner accretion flow with vertical large-scale magnetic flux (maximum saturation).
Deep WFPC2 and Ground-Based Imaging of a Complete Sample of 3C Quasars and Galaxies
NASA Technical Reports Server (NTRS)
Ridgway, Susan E.; Stockton, Alan
1997-01-01
We present the results of an HST and ground-based imaging study of a complete 3C sample of zeta approx. equal to 1 sources, comprising 5 quasars and 5 radio galaxies. We have observed all of the sample in essentially line-free bands at rest-frame 0.33 micrometers with WFPC2 and in rest-frame 1 micrometer images from the ground; we have also observed most of the sample in narrow-band filters centered on [O II]. We resolve continuum structure around all of our quasars in the high-resolution WFPC2 images, and in four of the five ground-based K' images. All of the quasars have some optical continuum structure that is aligned with the radio axis. In at least 3 of these cases, some of this optical structure is directly coincident with a portion of the radio structure, including optical counterparts to radio jets in 3C212 and 3C245 and an optical counterpart to a radio lobe in 3C2. These are most likely due to optical synchrotron radiation, and the radio and optical spectral indices in the northern lobe of 3C2 are consistent with this interpretation. The fact that we see a beamed optical synchotron component in the quasars but not in the radio galaxies complicates both the magnitude and the alignment comparisons. Nonetheless, the total optical and K' flux densities of the quasar hosts are consistent with those of the radio galaxies within the observed dispersion in our sample. The distributions of K' flux densities of both radio galaxies and quasar hosts exhibit similar mean and dispersion to that found for other radio galaxies at this redshift, and the average host galaxy luminosity is equivalent to, or a little fainter than, L*. The formal determination of the alignment in the optical and infrared in the two subsamples yields no significant difference between the radio galaxy and quasar subsamples, and the quasars 3C 196 and 3C 336 have aligned continuum and emission-line structure that is probably not due to beamed optical synchrotron emission. Very blue and/or edge-brightened structures are present in some objects within the probable quasar opening angle; these are possibly the result of illumination effects from the active nucleus, i.e., scattered quasar light or photoionization. In 3C 212, we see an optical object that lies 3 min. beyond the radio lobe, but which looks morphologically quite similar to the radio lobe itself. This object is bright in the infrared and has a steep spectral gradient along its length. A striking, semi-circular arc seen associated with 3C 280 may possibly be a tidal tail from a companion, enhanced in brightness by scattering or photoionization. In the near-infrared, most of the radio galaxies have elliptical morphologies with profiles that are well-fit by de Vaucouleurs r(exp 1/4)-laws and colors that are consistent with an old stellar population. All components around the quasars have optical-infrared colors that are redder than or similar to the colors of their respective nuclei; this is more consistent with a stellar origin for the emission than with a dominant scattering contribution. From the correspondence between the total magnitudes in the galaxies and quasars and the detection of aligned components in the quasars, we conclude that this study provides general support for the unification of FR II radio galaxies and quasars. Some of the objects in the sample (e.g, 3C 212) have properties that may be difficult to explain with our current understanding of the nature of FR II radio sources and the alignment effect.
VizieR Online Data Catalog: XQ-100 targets equivalent widths (Perrotta+, 2016)
NASA Astrophysics Data System (ADS)
Perrotta, S.; D'Odorico, V.; Prochaska, J. X.; Cristiani, S.; Cupani, G.; Ellison, S.; Lopez, S.; Becker, G. D.; Berg, T. A. M.; Christensen, L.; Denney, K. D.; Hamann, F.; Paris, I.; Vestergaard, M.; Worseck, G.
2018-03-01
The quasars in our sample have been originally selected and observed in a new Legacy Survey, hereafter 'XQ-100', of 100 quasars at emission redshift zem=3.5-4.5 (ESO Large Programme 189.A-0424). The observations have been carried out with X-shooter/VLT (Vernet et al., 2011A&A...536A.105V). The released spectra provide a complete coverage from the atmospheric cut-off to the NIR with a spectral resolution R~6000-9000 depending on wavelength, and a median S/N~30 at the continuum level. XQ-100 provides the first large intermediate-resolution sample of high-redshift quasars with simultaneous rest-frame UV/optical coverage. A full description of the target selection, observations, and data reduction process is presented by Lopez et al. (2016A&A...594A..91L). (2 data files).
NASA Astrophysics Data System (ADS)
Sun, Mouyuan; Trump, Jonathan R.; Shen, Yue; Brandt, W. N.; Dawson, Kyle; Denney, Kelly D.; Hall, Patrick B.; Ho, Luis C.; Horne, Keith; Jiang, Linhua; Richards, Gordon T.; Schneider, Donald P.; Bizyaev, Dmitry; Kinemuchi, Karen; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey
2015-09-01
We explore the variability of quasars in the Mg ii and {{H}}β broad emission lines and ultraviolet/optical continuum emission using the Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM). This is the largest spectroscopic study of quasar variability to date: our study includes 29 spectroscopic epochs from SDSS-RM over 6 months, containing 357 quasars with Mg ii and 41 quasars with {{H}}β . On longer timescales, the study is also supplemented with two-epoch data from SDSS-I/II. The SDSS-I/II data include an additional 2854 quasars with Mg ii and 572 quasars with {{H}}β . The Mg ii emission line is significantly variable ({{Δ }}f/f∼ 10% on ∼100-day timescales), a necessary prerequisite for its use for reverberation mapping studies. The data also confirm that continuum variability increases with timescale and decreases with luminosity, and the continuum light curves are consistent with a damped random-walk model on rest-frame timescales of ≳ 5 days. We compare the emission-line and continuum variability to investigate the structure of the broad-line region. Broad-line variability shows a shallower increase with timescale compared to the continuum emission, demonstrating that the broad-line transfer function is not a δ-function. {{H}}β is more variable than Mg ii (roughly by a factor of ∼1.5), suggesting different excitation mechanisms, optical depths and/or geometrical configuration for each emission line. The ensemble spectroscopic variability measurements enabled by the SDSS-RM project have important consequences for future studies of reverberation mapping and black hole mass estimation of 1\\lt z\\lt 2 quasars.
Simulations of VLBI observations of a geodetic satellite providing co-location in space
NASA Astrophysics Data System (ADS)
Anderson, James M.; Beyerle, Georg; Glaser, Susanne; Liu, Li; Männel, Benjamin; Nilsson, Tobias; Heinkelmann, Robert; Schuh, Harald
2018-02-01
We performed Monte Carlo simulations of very-long-baseline interferometry (VLBI) observations of Earth-orbiting satellites incorporating co-located space-geodetic instruments in order to study how well the VLBI frame and the spacecraft frame can be tied using such measurements. We simulated observations of spacecraft by VLBI observations, time-of-flight (TOF) measurements using a time-encoded signal in the spacecraft transmission, similar in concept to precise point positioning, and differential VLBI (D-VLBI) observations using angularly nearby quasar calibrators to compare their relative performance. We used the proposed European Geodetic Reference Antenna in Space (E-GRASP) mission as an initial test case for our software. We found that the standard VLBI technique is limited, in part, by the present lack of knowledge of the absolute offset of VLBI time to Coordinated Universal Time at the level of microseconds. TOF measurements are better able to overcome this problem and provide frame ties with uncertainties in translation and scale nearly a factor of three smaller than those yielded from VLBI measurements. If the absolute time offset issue can be resolved by external means, the VLBI results can be significantly improved and can come close to providing 1 mm accuracy in the frame tie parameters. D-VLBI observations with optimum performance assumptions provide roughly a factor of two higher uncertainties for the E-GRASP orbit. We additionally simulated how station and spacecraft position offsets affect the frame tie performance.
NASA Astrophysics Data System (ADS)
Taris, F.; Damljanovic, G.; Andrei, A.; Souchay, J.; Klotz, A.; Vachier, F.
2018-03-01
Context. The first release of the Gaia catalog is available since 14 September 2016. It is a first step in the realization of the future Gaia reference frame. This reference frame will be materialized by the optical positions of the sources and will be compared with and linked to the International Celestial Reference Frame, materialized by the radio position of extragalactic sources. Aim. As in the radio domain, it can be reasonably postulated that quasar optical flux variations can alert us to potential changes in the source structure. These changes could have important implications for the position of the target photocenters (together with the evolution in time of these centers) and in parallel have consequences for the link of the reference systems. Methods: A set of nine optical telescopes was used to monitor the magnitude variations, often at the same time as Gaia, thanks to the Gaia Observation Forecast Tool. The Allan variances, which are statistical tools widely used in the atomic time and frequency community, are introduced. Results: This work describes the magnitude variations of 47 targets that are suitable for the link between reference systems. We also report on some implications for the Gaia catalog. For 95% of the observed targets, new information about their variability is reported. In the case of some targets that are well observed by the TAROT telescopes, the Allan time variance shows that the longest averaging period of the magnitudes is in the range 20-70 d. The observation period by Gaia for a single target largely exceeds these values, which might be a problem when the magnitude variations exhibit flicker or random walk noises. Preliminary computations show that if the coordinates of the targets studied in this paper were affected by a white-phase noise with a formal uncertainty of about 1 mas (due to astrophysical processes that are put in evidence by the magnitude variations of the sources), it would affect the precision of the link at the level of 50 μas. Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A52
NASA Astrophysics Data System (ADS)
Bayliss, Matthew B.; Sharon, Keren; Acharyya, Ayan; Gladders, Michael D.; Rigby, Jane R.; Bian, Fuyan; Bordoloi, Rongmon; Runnoe, Jessie; Dahle, Hakon; Kewley, Lisa; Florian, Michael; Johnson, Traci; Paterno-Mahler, Rachel
2017-08-01
We report the detection of extended Lyα emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Lyα in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ˜200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Lyα emission to its physical origin on one side of the host galaxy at radii ˜0.5-2 kpc from the central AGN. There are clear morphological differences between the Lyα and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Lyα, host galaxy Lyα, and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.
The WISSH quasars project. II. Giant star nurseries in hyper-luminous quasars
NASA Astrophysics Data System (ADS)
Duras, F.; Bongiorno, A.; Piconcelli, E.; Bianchi, S.; Pappalardo, C.; Valiante, R.; Bischetti, M.; Feruglio, C.; Martocchia, S.; Schneider, R.; Vietri, G.; Vignali, C.; Zappacosta, L.; La Franca, F.; Fiore, F.
2017-08-01
Context. Studying the coupling between the energy output produced by the central quasar and the host galaxy is fundamental to fully understand galaxy evolution. Quasar feedback is indeed supposed to dramatically affect the galaxy properties by depositing large amounts of energy and momentum into the interstellar medium (ISM). Aims: In order to gain further insights on this process, we study the spectral energy distributions (SEDs) of sources at the brightest end of the quasar luminosity function, for which the feedback mechanism is assumed to be at its maximum, given their high efficiency in driving powerful outflows. Methods: We modelled the rest-frame UV-to-far-IR SEDs of 16 WISE-SDSS Selected Hyper-luminous (WISSH) quasars at 1.8 < z < 4.6 based on SDSS, 2MASS, WISE and Herschel/SPIRE data. Through an accurate SED-fitting procedure, we separate the different emission components by deriving physical parameters of both the nuclear component (I.e. bolometric and monochromatic luminosities) and the host galaxy (I.e. star formation rate, mass, and temperature of the cold dust). We also use a radiative transfer code to account for the contribution of the quasar-related emission to the far-IR fluxes. Results: Most SEDs are well described by a standard combination of accretion disc plus torus and cold dust emission. However, about 30% of SEDs require an additional emission component in the near-IR, with temperatures peaking at 750 K, which indicates that a hotter dust component is present in these powerful quasars. We measure extreme values of both AGN bolometric luminosity (LBOL > 1047 erg/s) and star formation rate (up to 2000 M⊙/yr) based on the quasar-corrected, IR luminosity of the host galaxy. A new relation between quasar and star formation luminosity is derived (LSF ∝ L0.73QSO) by combining several Herschel-detected quasar samples from z 0 to 4. WISSH quasars have masses ( 108M⊙) and temperatures ( 50 K) of cold dust in agreement with those found for other high-z IR luminous quasars. Conclusions: Thanks to their extreme nuclear and star formation luminosities, the WISSH quasars are ideal targets to shed light on the feedback mechanism and its effect on the evolution of their host galaxies, as well as on the merger-induced scenario that is commonly assumed to explain these exceptional luminosities. Future observations will be crucial to measure the molecular gas content in these systems, probe the effect between quasar-driven outflows and on-going star formation, and reveal merger signatures in their host galaxies.
Adolescent Black Holes May be Hard to Find
NASA Astrophysics Data System (ADS)
Elvis, Martin; Chakravorty, Susmita
2017-08-01
Finding adolescent black holes that are growing rapidly from their seed masses is a major goal of the next generation of large observatories. We have examined how these early quasars may appear in terms of their broad emission lines (BELs) in the optical and ultraviolet. We find that below 10**6 Msol, the equivalent widths of the BELs drop precipitously. Moreover, if the BELs originate in clouds that form as the cool phase of a multi-phase medium, then for metallicities Z/Zsol ~< 3, the thermal instabilities that create them will not exist. However, in observed quasars at high redshift Z/Zsol is >> 3, so quasars are preferentially found in special environments, perhaps with deep potential wells. The population that we see though could be biased by the Z/Zsol > 3 requirement. A stronger argument is that the thermal instability leading to cool clouds is predominantly due to line emission by iron. Iron comes primarily from type 1a supernovae, which take of order 1 billion years to ignite. Hence iron should be under-abundant relative to other elements until z ~ 6 - 7. That the highest redshift quasar is at z = 7.1 may be a consequence of this requirement. Quasars above z ~ 7 could still be found by their rest-frame ultraviolet or X-ray continuum.
Characterizing Quasar Outflows I: Sample, Spectral Measurements
NASA Astrophysics Data System (ADS)
Ganguly, Rajib; Christenson, D. H.; Richmond, J. M.; Derseweh, J. A.; Robbins, J. M.; Townsend, S. L.; Stark, M. A.
2012-05-01
Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 11000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) measurements of UV emission line and continuum parameters. In this poster, we subjectively divide these quasars into four categories: broad absorption-line quasars (2700 objects), associated absorption-line quasars (1700 objects), reddened quasars (160 objects), and unabsorbed/unreddened quasars (6300 objects). We present measurements of the absorption (velocities, velocity widths, equivalent widths), composite spectral profiles of outflows as a function of velocity, as well as measurements of the continuum and CIV, MgII, and FeII emission-line properties. In accompanying posters, we add photometry from the rest-frame X-ray (ROSAT and Chandra), EUV (GALEX), optical (2MASS), and infrared (WISE) bands to complete the SED. The continuum and emission-line measurements from the SDSS spectra and accompanying photometry provides estimates on the black hole masses, bolometric luminsosities, and SED. We consider empirically how these affect the outflow properties. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.
Mg II-Absorbing Galaxies in the UltraVISTA Survey
NASA Astrophysics Data System (ADS)
Stroupe, Darren; Lundgren, Britt
2018-01-01
Light that is emitted from distant quasars can become partially absorbed by intervening gaseous structures, including galaxies, in its path toward Earth, revealing information about the chemical content, degree of ionization, organization and evolution of these structures through time. In this project, quasar spectra are used to probe the halos of foreground galaxies at a mean redshift of z=1.1 in the COSMOS Field. Mg II absorption lines in Sloan Digital Sky Survey quasar spectra are paired with galaxies in the UltraVISTA catalog at an impact parameter less than 200 kpc. A sample of 77 strong Mg II absorbers with a rest-frame equivalent width ≥ 0.3 Å and redshift from 0.34 < z < 2.21 are investigated to find equivalent width ratios of Mg II, C IV and Fe II absorption lines, and their relation to the impact parameter and the star formation rates, stellar masses, environments and redshifts of their host galaxies.
Discovery of extreme [O III] λ5007 Å outflows in high-redshift red quasars
NASA Astrophysics Data System (ADS)
Zakamska, Nadia L.; Hamann, Fred; Pâris, Isabelle; Brandt, W. N.; Greene, Jenny E.; Strauss, Michael A.; Villforth, Carolin; Wylezalek, Dominika; Alexandroff, Rachael M.; Ross, Nicholas P.
2016-07-01
Black hole feedback is now a standard component of galaxy formation models. These models predict that the impact of black hole activity on its host galaxy likely peaked at z = 2-3, the epoch of strongest star formation activity and black hole accretion activity in the Universe. We used XSHOOTER on the Very Large Telescope to measure rest-frame optical spectra of four z ˜ 2.5 extremely red quasars with infrared luminosities ˜1047 erg s-1. We present the discovery of very broad (full width at half max = 2600-5000 km s-1), strongly blueshifted (by up to 1500 km s-1) [O III] λ5007 Å emission lines in these objects. In a large sample of type 2 and red quasars, [O III] kinematics are positively correlated with infrared luminosity, and the four objects in our sample are on the extreme end in both [O III] kinematics and infrared luminosity. We estimate that at least 3 per cent of the bolometric luminosity in these objects is being converted into the kinetic power of the observed wind. Photo-ionization estimates suggest that the [O III] emission might be extended on a few kpc scales, which would suggest that the extreme outflow is affecting the entire host galaxy of the quasar. These sources may be the signposts of the most extreme form of quasar feedback at the peak epoch of galaxy formation, and may represent an active `blow-out' phase of quasar evolution.
The Most Luminous Object in the Universe: Shrouded Quasar or Proto-Galaxy
NASA Technical Reports Server (NTRS)
Heckman, Timothy M.
1999-01-01
We have used ASCA to observe the IRAS source FSC 10214+4724, which is identified with a galaxy at a redshift of 2.286. When first discovered, it was believed to be the most luminous object in the universe. Subsequent HST images have established that it is gravitationally-lensed by a foreground cluster. It is still a very powerful object, but not extraordinarily so. Observations at other wavebands have not established whether it is a dust-shrouded quasar or a young, massive galaxy in the process of formation. Since quasars are strong emitters of hard X-rays, while proto-galaxies would not be, and since the opacity of gas and dust is relatively small in the energy regime probed by ASCA (3 to 30 keV in the galaxy rest frame), we undertook these observations to search for a heavily shrouded quasar that might be invisible at lower energies. However, the observations did not detect any emission from this object. This either means that the galaxy is in fact powered by a starburst or that the putative quasar is located behind a very high column density of absorbing gas (N_H > 10(exp 25)/sq cm), so that not even hard X-rays are transmitted. A hidden quasar should be visible in reflected light in X-ray data of higher sensitivity. Observations with NASA's Chandra X-ray Observatory or ESA's XMM are required to settle the matter. No publication resulted from our null result.
Extremely red quasars from SDSS, BOSS and WISE: classification of optical spectra
NASA Astrophysics Data System (ADS)
Ross, Nicholas P.; Hamann, Fred; Zakamska, Nadia L.; Richards, Gordon T.; Villforth, Carolin; Strauss, Michael A.; Greene, Jenny E.; Alexandroff, Rachael; Brandt, W. Niel; Liu, Guilin; Myers, Adam D.; Pâris, Isabelle; Schneider, Donald P.
2015-11-01
Quasars with extremely red infrared-to-optical colours are an interesting population that can test ideas about quasar evolution as well as orientation, obscuration and geometric effects in the so-called AGN unified model. To identify such a population, we match the quasar catalogues of the Sloan Digital Sky Survey (SDSS), the Baryon Oscillation Spectroscopic Survey (BOSS) to the Wide-Field Infrared Survey Explorer (WISE) to identify quasars with extremely high infrared-to-optical ratios. We identify 65 objects with rAB - W4Vega > 14 mag (i.e. Fν(22 μm)/Fν(r) ≳ 1000). This sample spans a redshift range of 0.28 < z < 4.36 and has a bimodal distribution, with peaks at z ˜ 0.8 and z ˜ 2.5. It includes three z > 2.6 objects that are detected in the W4 band but not W1 or W2 (i.e. `W1W2 dropouts'). The SDSS/BOSS spectra show that the majority of the objects are reddened type 1 quasars, type 2 quasars (both at low and high redshift) or objects with deep low-ionization broad absorption lines (BALs) that suppress the observed r-band flux. In addition, we identify a class of type 1 permitted broad emission-line objects at z ≃ 2-3 which are characterized by emission line rest-frame equivalent widths (REWs) of ≳150 Å, much larger than those of typical quasars. In particular, 55 per cent (45 per cent) of the non-BAL type 1s with measurable C IV in our sample have REW(C IV) > 100 (150) Å, compared to only 5.8 per cent (1.3 per cent) for non-BAL quasars in BOSS. These objects often also have unusual line ratios, such as very high N V/Ly α ratios. These large REWs might be caused by suppressed continuum emission analogous to type 2 quasars; however, there is no obvious mechanism in standard unified models to suppress the continuum without also obscuring the broad emission lines.
NASA Technical Reports Server (NTRS)
Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..;
2013-01-01
We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, B.; Brandt, W. N.; Alexander, D. M.
We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain Almost-Equal-To 400-600 hard X-ray ({approx}> 10 keV) photons with NuSTAR, provided that these photons are not significantlymore » absorbed (N{sub H} {approx}< 10{sup 24} cm{sup -2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N{sub H} Almost-Equal-To 7 Multiplication-Sign 10{sup 24} cm{sup -2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K{alpha} line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayliss, Matthew B.; Bordoloi, Rongmon; Sharon, Keren
We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission tomore » its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.« less
VizieR Online Data Catalog: GTC spectra of z~2.3 quasars (Sulentic+, 2014)
NASA Astrophysics Data System (ADS)
Sulentic, J. W.; Marziani, P.; Del Olmo, A.; Dultzin, D.; Perea, J.; Negrete, C. A.
2014-09-01
Spectroscopic data for 22 intermediate redshift quasars are identified in Table 1. Actual data files are in FITS format in the spectra sub-directory. Each individual spectrum cover the spectral range 360-770 nm. Units are in wavelength in Angstrom, and specific flux in erg/s/cm2/Angstrom (pW/m3) in the observed frame (i.e., before redshift correction). Full object name (OBJECT), total exposure time (EXPTIME), number of coadded individual spectra (NUM_IMAG), and observation date (DATE-OBS) are reported as records in the FITS header of each spectrum (as in Table 2 of the paper). (2 data files).
The Mars Observer differential one-way range demonstration
NASA Technical Reports Server (NTRS)
Kroger, P. M.; Border, J. S.; Nandi, S.
1994-01-01
Current methods of angular spacecraft positioning using station differenced range data require an additional observation of an extragalactic radio source (quasar) to estimate the timing offset between the reference clocks at the two Deep Space Stations. The quasar observation is also used to reduce the effects of instrumental and media delays on the radio metric observable by forming a difference with the spacecraft observation (delta differential one-way range, delta DOR). An experiment has been completed using data from the Global Positioning System satellites to estimate the station clock offset, eliminating the need for the quasar observation. The requirements for direct measurement of the instrumental delays that must be made in the absence of a quasar observation are assessed. Finally, the results of the 'quasar-free' differential one-way range, or DOR, measurements of the Mars Observer spacecraft are compared with those of simultaneous conventional delta DOR measurements.
The Spectral and Environment Properties of z ∼ 2.0–2.5 Quasar Pairs
NASA Astrophysics Data System (ADS)
Lusso, Elisabeta; Fumagalli, Michele; Rafelski, Marc; Neeleman, Marcel; Prochaska, Jason X.; Hennawi, Joseph F.; O’Meara, John M.; Theuns, Tom
2018-06-01
We present the first results from our survey of intervening and proximate Lyman limit systems (LLSs) at z ∼ 2.0–2.5 using the Wide Field Camera 3 on board the Hubble Space Telescope. The quasars in our sample are projected pairs with proper transverse separations R ⊥ ≤ 150 kpc and line-of-sight velocity separations ≲11,000 km s‑1. We construct a stacked ultraviolet (rest-frame wavelengths 700–2000 Å) spectrum of pairs corrected for the intervening Lyman forest and Lyman continuum absorption. The observed spectral composite presents a moderate flux excess for the most prominent broad emission lines, a ∼30% decrease in flux at λ = 800–900 Å compared to a stack of brighter quasars not in pairs at similar redshifts, and lower values of the mean free path of the H I ionizing radiation for pairs ({λ }mfp}912 = 140.7 ± 20.2 {h}70-1 Mpc) compared to single quasars ({λ }mfp}912 = 213.8 ± 28 {h}70-1 Mpc) at the average redshift z ≃ 2.44. From the modeling of LLS absorption in these pairs, we find a higher (∼20%) incidence of proximate LLSs with log {N}{{H}{{I}}} ≥ 17.2 at δv < 5000 km s‑1 compared to single quasars (∼6%). These two rates are different at the 5σ level. Moreover, we find that optically thick absorbers are equally shared between foreground and background quasars. Based on these pieces of evidence, we conclude that there is a moderate excess of gas-absorbing Lyman continuum photons in our closely projected quasar pairs compared to single quasars. We argue that this gas arises mostly within large-scale structures or partially neutral regions inside the dark matter halos where these close pairs reside.
On the Accretion Rates and Radiative Efficiencies of the Highest-redshift Quasars
NASA Astrophysics Data System (ADS)
Trakhtenbrot, Benny; Volonteri, Marta; Natarajan, Priyamvada
2017-02-01
We estimate the accretion rates onto the supermassive black holes that power 20 of the highest-redshift quasars, at z≳ 5.8, including the quasar with the highest redshift known to date—ULAS J1120 at z = 7.09. The analysis is based on the observed (rest-frame) optical luminosities and reliable “virial” estimates of the BH masses of the quasars, and utilizes scaling relations derived from thin accretion disk theory. The mass accretion rates through the postulated disks cover a wide range, {\\dot{M}}{disk}≃ 4{--}190 {M}⊙ {{yr}}-1, with most of the objects (80%) having {\\dot{M}}{disk}≃ 10{--}65 {M}⊙ {{yr}}-1, confirming the Eddington-limited nature of the accretion flows. By combining our estimates of {\\dot{M}}{disk} with conservative, lower limits on the bolometric luminosities of the quasars, we investigate which alternative values of η best account for all the available data. We find that the vast majority of quasars (˜85%) can be explained with radiative efficiencies in the range η ≃ 0.03{--}0.3, with a median value close to the commonly assumed η = 0.1. Within this range, we obtain conservative estimates of η ≳ 0.14 for ULAS J1120 and SDSS J0100 (at z = 6.3), and of ≳ 0.19 for SDSS J1148 (at z=6.41; assuming their BH masses are accurate). The implied accretion timescales are generally in the range {t}{acc}\\equiv {M}{BH}/{\\dot{M}}{BH}≃ 0.1{--}1 {Gyr}, suggesting that most quasars could have had ˜ 1{--}10 mass e-foldings since BH seed formation. Our analysis therefore demonstrates that the available luminosities and masses for the highest-redshift quasars can be explained self-consistently within the thin, radiatively efficient accretion disk paradigm. Episodes of radiatively inefficient, “super-critical” accretion may have occurred at significantly earlier epochs (I.e., z≳ 10).
Spectroscopic identification of type 2 quasars at z < 1 in SDSS-III/BOSS
NASA Astrophysics Data System (ADS)
Yuan, Sihan; Strauss, Michael A.; Zakamska, Nadia L.
2016-10-01
The physics and demographics of type 2 quasars remain poorly understood, and new samples of such objects selected in a variety of ways can give insight into their physical properties, evolution, and relationship to their host galaxies. We present a sample of 2758 type 2 quasars at z ≲ 1 from the Sloan Digital Sky Survey-III (SDSS-III)/Baryon Oscillation Spectroscopic Survey (BOSS) spectroscopic data base, selected on the basis of their emission-line properties. We probe the luminous end of the population by requiring the rest-frame equivalent width of [O III] to be >100 Å. We distinguish our objects from star-forming galaxies and type 1 quasars using line widths, standard emission line ratio diagnostic diagrams at z < 0.52 and detection of [Ne V]λ3426 Å at z > 0.52. The majority of our objects have [O III] luminosities in the range 1.2 × 1042-3.8 × 1043 erg s-1 and redshifts between 0.4 and 0.65. Our sample includes over 400 type 2 quasars with incorrectly measured redshifts in the BOSS data base; such objects often show kinematic substructure or outflows in the [O III] line. The majority of the sample has counterparts in the Wide-field Infrared Survey Explorer survey, with median infrared luminosity νLν[12 μm] = 4.2 × 1044 erg s- 1. Only 34 per cent of the newly identified type 2 quasars would be selected by infrared colour cuts designed to identify obscured active nuclei, highlighting the difficulty of identifying complete samples of type 2 quasars. We make public the multi-Gaussian decompositions of all [O III] profiles for the new sample and for 568 type 2 quasars from SDSS I/II, together with non-parametric measures of the [O III] line profile shapes. We also identify over 600 candidate double-peaked [O III] profiles.
A Massive X-ray Outflow From The Quasar PDS 456
NASA Technical Reports Server (NTRS)
Reeves, J. N.; O'Brien, P. T.; Ward, M. J.
2003-01-01
We report on XMM-Newton spectroscopic observations of the luminous, radio-quiet quasar PDS 456. The hard X-ray spectrum of PDS 456 shows a deep absorption trough (constituting 50% of the continuum) at energies above 7 keV in the quasar rest frame, which can be attributed to a series of blue-shifted K-shell absorption edges due to highly ionized iron. The higher resolution soft X-ray grating RGS spectrum exhibits a broad absorption line feature near 1 keV, which can be modeled by a blend of L-shell transitions from highly ionized iron (Fe XVII - XXIV). An extreme outflow velocity of approx. 50000 km/s is required to model the K and L shell iron absorption present in the XMM-Newton data. Overall, a large column density (N(sub H) = 5 x 10(exp 23)/sq cm) of highly ionized gas (log xi = 2.5) is required in PDS 456. A large mass outflow rate of approx. 10 solar mass/year (assuming a conservative outflow covering factor of 0.1 steradian) is derived, which is of the same order as the overall mass accretion rate in PDS 456. This represents a substantial fraction (approx. 10%) of the quasar energy budget, whilst the large column and outflow velocity place PDS 456 towards the extreme end of the broad absorption line quasar population.
C IV BROAD ABSORPTION LINE ACCELERATION IN SLOAN DIGITAL SKY SURVEY QUASARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grier, C. J.; Brandt, W. N.; Trump, J. R.
2016-06-20
We present results from the largest systematic investigation of broad absorption line (BAL) acceleration to date. We use spectra of 140 quasars from three Sloan Digital Sky Survey programs to search for global velocity offsets in BALs over timescales of ≈2.5–5.5 years in the quasar rest frame. We carefully select acceleration candidates by requiring monolithic velocity shifts over the entire BAL trough, avoiding BALs with velocity shifts that might be caused by profile variability. The C iv BALs of two quasars show velocity shifts consistent with the expected signatures of BAL acceleration, and the BAL of one quasar shows amore » velocity-shift signature of deceleration. In our two acceleration candidates, we see evidence that the magnitude of the acceleration is not constant over time; the magnitudes of the change in acceleration for both acceleration candidates are difficult to produce with a standard disk-wind model or via geometric projection effects. We measure upper limits to acceleration and deceleration for 76 additional BAL troughs and find that the majority of BALs are stable to within about 3% of their mean velocities. The lack of widespread acceleration/deceleration could indicate that the gas producing most BALs is located at large radii from the central black hole and/or is not currently strongly interacting with ambient material within the host galaxy along our line of sight.« less
Narrow C IV absorption doublets on quasar spectra of the Baryon Oscillation Spectroscopic Survey
NASA Astrophysics Data System (ADS)
Chen, Zhi-Fu; Gu, Qiu-Sheng; Zhou, Luwenjia; Chen, Yan-Mei
2016-11-01
In this paper, we extend our work of Papers I and II, which are assigned to systematically survey C IV λλ1548,1551 narrow absorption lines (NALs) with zabs ≪ zem on quasar spectra of the Baryon Oscillation Spectroscopic Survey (BOSS) to collect C IV NALs with zabs ≈ zem from blue to red wings of C IV λ1549 emission lines. Together with Papers I and II, we have collected a total number of 41 479 C IV NALs with 1.4544 ≤ zabs ≤ 4.9224 in surveyed spectral region redward of Lyα until red wing of C IV λ1549 emission line. We find that the stronger C IV NALs tend to be the more saturated absorptions, and associated systems (zabs ≈ zem) seem to have larger absorption strengths when compared to intervening ones (zabs ≪ zem). The redshift density evolution behaviour of absorbers (the number of absorbers per redshift path) is similar to the history of the cosmic star formation. When compared to the quasar-frame velocity (β) distribution of Mg II absorbers, the β distribution of C IV absorbers is broader at β ≈ 0, shows longer extended tail, and exhibits a larger dispersion for environmental absorptions. In addition, for associated C IV absorbers, we find that low-luminosity quasars seem to exhibit smaller β and stronger absorptions when compared to high-luminosity quasars.
The X-Ray and Mid-infrared Luminosities in Luminous Type 1 Quasars
NASA Astrophysics Data System (ADS)
Chen, Chien-Ting J.; Hickox, Ryan C.; Goulding, Andrew D.; Stern, Daniel; Assef, Roberto; Kochanek, Christopher S.; Brown, Michael J. I.; Harrison, Chris M.; Hainline, Kevin N.; Alberts, Stacey; Alexander, David M.; Brodwin, Mark; Del Moro, Agnese; Forman, William R.; Gorjian, Varoujan; Jones, Christine; Murray, Stephen S.; Pope, Alexandra; Rovilos, Emmanouel
2017-03-01
Several recent studies have reported different intrinsic correlations between the active galactic nucleus (AGN) mid-IR luminosity ({L}MIR}) and the rest-frame 2–10 keV luminosity (L X) for luminous quasars. To understand the origin of the difference in the observed {L}{{X}}{--}{L}MIR} relations, we study a sample of 3247 spectroscopically confirmed type 1 AGNs collected from Boötes, XMM-COSMOS, XMM-XXL-North, and the Sloan Digital Sky Survey quasars in the Swift/XRT footprint spanning over four orders of magnitude in luminosity. We carefully examine how different observational constraints impact the observed {L}{{X}}{--}{L}MIR} relations, including the inclusion of X-ray-nondetected objects, possible X-ray absorption in type 1 AGNs, X-ray flux limits, and star formation contamination. We find that the primary factor driving the different {L}{{X}}{--}{L}MIR} relations reported in the literature is the X-ray flux limits for different studies. When taking these effects into account, we find that the X-ray luminosity and mid-IR luminosity (measured at rest-frame 6 μ {{m}}, or {L}6μ {{m}}) of our sample of type 1 AGNs follow a bilinear relation in the log–log plane: {log}{L}{{X}}=(0.84+/- 0.03)× {log}{L}6μ {{m}}/{10}45 erg s‑1 + (44.60 ± 0.01) for {L}6μ {{m}}< {10}44.79 erg s‑1, and {log}{L}{{X}}=(0.40+/- 0.03)× {log}{L}6μ {{m}}/{10}45 erg s‑1 + (44.51 ± 0.01) for {L}6μ {{m}} ≥slant {10}44.79 erg s‑1. This suggests that the luminous type 1 quasars have a shallower {L}{{X}}{--}{L}6μ {{m}} correlation than the approximately linear relations found in local Seyfert galaxies. This result is consistent with previous studies reporting a luminosity-dependent {L}{{X}}{--}{L}MIR} relation and implies that assuming a linear {L}{{X}}{--}{L}6μ {{m}} relation to infer the neutral gas column density for X-ray absorption might overestimate the column densities in luminous quasars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagg, J.; Carilli, C. L.; Lentati, L.
2014-03-10
We present Karl G. Jansky Very Large Array (VLA) observations of 44 GHz continuum and CO J = 2-1 line emission in BRI 1202–0725 at z = 4.7 (a starburst galaxy and quasar pair) and BRI 1335–0417 at z = 4.4 (also hosting a quasar). With the full 8 GHz bandwidth capabilities of the upgraded VLA, we study the (rest-frame) 250 GHz thermal dust continuum emission for the first time along with the cold molecular gas traced by the low-J CO line emission. The measured CO J = 2-1 line luminosities of BRI 1202–0725 are L{sub CO}{sup ′}=(8.7±0.8)×10{sup 10} Kmore » km s{sup –1} pc{sup 2} and L{sub CO}{sup ′}=(6.0 ± 0.5)×10{sup 10} K km s{sup –1} pc{sup 2} for the submillimeter galaxy (SMG) and quasar, respectively, which are equal to previous measurements of the CO J = 5-4 line luminosities implying thermalized line emission, and we estimate a combined cold molecular gas mass of ∼9×10{sup 10} M {sub ☉}. In BRI 1335–0417 we measure L{sub CO}{sup ′}=(7.3±0.6)×10{sup 10} K km s{sup –1} pc{sup 2}. We detect continuum emission in the SMG BRI 1202–0725 North (S {sub 44} {sub GHz} = 51 ± 6 μJy), while the quasar is detected with S {sub 44} {sub GHz} = 24 ± 6 μJy and in BRI 1335–0417 we measure S {sub 44} {sub GHz} = 40 ± 7 μJy. Combining our continuum observations with previous data at (rest-frame) far-infrared and centimeter wavelengths, we fit three-component models in order to estimate the star formation rates. This spectral energy distribution fitting suggests that the dominant contribution to the observed 44 GHz continuum is thermal dust emission, while either thermal free-free or synchrotron emission contributes less than 30%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borisova, Elena; Lilly, Simon J.; Cantalupo, Sebastiano
A toy model is developed to understand how the spatial distribution of fluorescent emitters in the vicinity of bright quasars could be affected by the geometry of the quasar bi-conical radiation field and by its lifetime. The model is then applied to the distribution of high-equivalent-width Ly α emitters (with rest-frame equivalent widths above 100 Å, threshold used in, e.g., Trainor and Steidel) identified in a deep narrow-band 36 × 36 arcmin{sup 2} image centered on the luminous quasar Q0420–388. These emitters are found near the edge of the field and show some evidence of an azimuthal asymmetry on themore » sky of the type expected if the quasar is radiating in a bipolar cone. If these sources are being fluorescently illuminated by the quasar, the two most distant objects require a lifetime of at least 15 Myr for an opening angle of 60° or more, increasing to more than 40 Myr if the opening angle is reduced to a minimum of 30°. However, some other expected signatures of boosted fluorescence are not seen at the current survey limits, e.g., a fall off in Ly α brightness, or equivalent width, with distance. Furthermore, to have most of the Ly α emission of the two distant sources to be fluorescently boosted would require the quasar to have been significantly brighter in the past. This suggests that these particular sources may not be fluorescent, invalidating the above lifetime constraints. This would cast doubt on the use of this relatively low equivalent width threshold and thus also on the lifetime analysis in Trainor and Steidel.« less
Discovery of a new quasar: SDSS J022155.26-064916.6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, J. M.; Tucker, D. L.; Smith, J. A.
Here, we report the discovery of a new quasar: SDSS J022155.26-064916.6. This object was discovered while reducing the spectra of a sample of stars being considered as spectrophotometric standards for the Dark Energy Survey. The flux- and wavelength-calibrated spectrum is presented with four spectral lines identified. From these lines, the redshift is determined to be z≈0.806. In addition, the rest-frame u-, g-, and r-band luminosity, determined using a k-correction obtained with synthetic photometry of a proxy quasi stellar object (QSO), are reported as 7.496×10 13 L ⊙, 2.049×10 13 L ⊙, and 1.896×10 13 L ⊙, respectively.
Discovery of a new quasar: SDSS J022155.26-064916.6
Robertson, J. M.; Tucker, D. L.; Smith, J. A.; ...
2017-06-14
Here, we report the discovery of a new quasar: SDSS J022155.26-064916.6. This object was discovered while reducing the spectra of a sample of stars being considered as spectrophotometric standards for the Dark Energy Survey. The flux- and wavelength-calibrated spectrum is presented with four spectral lines identified. From these lines, the redshift is determined to be z≈0.806. In addition, the rest-frame u-, g-, and r-band luminosity, determined using a k-correction obtained with synthetic photometry of a proxy quasi stellar object (QSO), are reported as 7.496×10 13 L ⊙, 2.049×10 13 L ⊙, and 1.896×10 13 L ⊙, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yue; Liu, Xin; Loeb, Abraham
We perform a systematic search for sub-parsec binary supermassive black holes (BHs) in normal broad-line quasars at z < 0.8, using multi-epoch Sloan Digital Sky Survey (SDSS) spectroscopy of the broad Hβ line. Our working model is that (1) one and only one of the two BHs in the binary is active; (2) the active BH dynamically dominates its own broad-line region (BLR) in the binary system, so that the mean velocity of the BLR reflects the mean velocity of its host BH; (3) the inactive companion BH is orbiting at a distance of a few R{sub BLR}, where R{submore » BLR} ∼ 0.01-0.1 pc is the BLR size. We search for the expected line-of-sight acceleration of the broad-line velocity from binary orbital motion by cross-correlating SDSS spectra from two epochs separated by up to several years in the quasar rest frame. Out of ∼700 pairs of spectra for which we have good measurements of the velocity shift between two epochs (1σ error ∼40 km s{sup –1}), we detect 28 systems with significant velocity shifts in broad Hβ, among which 7 are the best candidates for the hypothesized binaries, 4 are most likely due to broad-line variability in single BHs, and the rest are ambiguous. Continued spectroscopic observations of these candidates will easily strengthen or disprove these claims. We use the distribution of the observed accelerations (mostly non-detections) to place constraints on the abundance of such binary systems among the general quasar population. Excess variance in the velocity shift is inferred for observations separated by longer than 0.4 yr (quasar rest frame). Attributing all the excess to binary motion would imply that most of the quasars in this sample must be in binaries, that the inactive BH must be on average more massive than the active one, and that the binary separation is at most a few times the size of the BLR. However, if this excess variance is partly or largely due to long-term broad-line variability, the requirement of a large population of close binaries is much weakened or even disfavored for massive companions. Future time-domain spectroscopic surveys of normal quasars can provide vital prior information on the structure function of stochastic velocity shifts induced by broad-line variability in single BHs. Such surveys with improved spectral quality, increased time baseline, and more epochs can greatly improve the statistical constraints of this method on the general binary population in broad-line quasars, further shrink the allowed binary parameter space, and detect true sub-parsec binaries.« less
Suzaku Observations Of Near-relativistic Outflows In The Bal Quasar APM 08279+5255.
NASA Astrophysics Data System (ADS)
Saez, Cristian; Chartas, G.; Brandt, N.
2009-12-01
We present results from three Suzaku observations of the z =3.91 gravitationally lensed broad absorption line quasar APM 08279+5255. We detect strong and broad absorption at rest-frame energies of <2 keV (low-energy) and 7-12 keV (high-energy). The detection of these features confirms the results of previous long-exposure (80-90 ks) Chandra and XMM-Newton observations. The low and high-energy absorption is detected in both the back-illuminated (BI) and front-illuminated (FI) Suzaku XIS spectra (with an F-test significance of <99%). We interpret the low-energy absorption as arising from a low ionization absorber with logNH 23 and the high-energy absorption as due to lines arising from highly ionized iron in a near-relativistic outflowing wind. Assuming this interpretation we find that the velocities in the outflow range between 0.1c and 0.6c. We constrain the angle between the outflow direction of the X-ray absorber and our line of sight to be <36 degrees. We also detect possible variability of the absorption lines (at the <99.9% and <98% significance levels in the FI and BI spectra, respectively) with a rest-frame time scale of 1 month. Assuming that the detected high-energy absorption features arise from FeXXV, we estimate that the fraction of the total bolometric energy injected over the quasar's lifetime into the intergalactic medium in the form of kinetic energy to be >10%.
A Compton-thick Wind in the High Luminosity Quasar, PDS 456
NASA Technical Reports Server (NTRS)
Reeves, J. N.; O'Brien, P. T.; Behar, E.; Miller, L.; Turner, T. J.; Braito, V.; Fabian, A. C.; Kaspi, S.; Mushotzky, R.; Ward, M.
2009-01-01
PDS 456 is a nearby (z=0.184), luminous (L(sub bol) approximately equal to 10(exp 47) ergs(exp -1) type I quasar. A deep 190 ks Suzaku observation in February 2007 revealed the complex, broad band X-ray spectrum of PDS 456. The Suzaku spectrum exhibits highly statistically significant absorption features near 9 keV in the quasar rest-frame. We show that the most plausible origin of the absorption is from blue-shifted resonance (1s-2p) transitions of hydrogen-like iron (at 6.97 keV in the rest frame). This indicates that a highly ionized outflow may be present moving at near relativistic velocities (0.26-0.31c). A possible hard X-ray excess is detected above 15 keV with HXD (at 99.8% confidence), which may arise from high column density gas (N(sub H) greater than 10(exp 24)cm(exp -2) partially covering the X-ray emission, or through strong Compton reflection. Here we propose that the iron K-shell absorption in PDS 456 is associated with a thick, possibly clumpy outflow, covering about 20% of 4(pi) steradian solid angle. The outflow is likely launched from the inner accretion disk, within 15-100 gravitational radii of the black hole. The kinetic power of the outflow may be similar to the bolometric luminosity of PDS 456. Such a powerful wind could have a significant effect on the co-evolution of the host galaxy and its supermassive black hole, through feedback.
NASA Astrophysics Data System (ADS)
Meusinger, H.; Balafkan, N.
2014-08-01
Aims: A tiny fraction of the quasar population shows remarkably weak emission lines. Several hypotheses have been developed, but the weak line quasar (WLQ) phenomenon still remains puzzling. The aim of this study was to create a sizeable sample of WLQs and WLQ-like objects and to evaluate various properties of this sample. Methods: We performed a search for WLQs in the spectroscopic data from the Sloan Digital Sky Survey Data Release 7 based on Kohonen self-organising maps for nearly 105 quasar spectra. The final sample consists of 365 quasars in the redshift range z = 0.6 - 4.2 (z¯ = 1.50 ± 0.45) and includes in particular a subsample of 46 WLQs with equivalent widths WMg ii< 11 Å and WC iv< 4.8 Å. We compared the luminosities, black hole masses, Eddington ratios, accretion rates, variability, spectral slopes, and radio properties of the WLQs with those of control samples of ordinary quasars. Particular attention was paid to selection effects. Results: The WLQs have, on average, significantly higher luminosities, Eddington ratios, and accretion rates. About half of the excess comes from a selection bias, but an intrinsic excess remains probably caused primarily by higher accretion rates. The spectral energy distribution shows a bluer continuum at rest-frame wavelengths ≳1500 Å. The variability in the optical and UV is relatively low, even taking the variability-luminosity anti-correlation into account. The percentage of radio detected quasars and of core-dominant radio sources is significantly higher than for the control sample, whereas the mean radio-loudness is lower. Conclusions: The properties of our WLQ sample can be consistently understood assuming that it consists of a mix of quasars at the beginning of a stage of increased accretion activity and of beamed radio-quiet quasars. The higher luminosities and Eddington ratios in combination with a bluer spectral energy distribution can be explained by hotter continua, i.e. higher accretion rates. If quasar activity consists of subphases with different accretion rates, a change towards a higher rate is probably accompanied by an only slow development of the broad line region. The composite WLQ spectrum can be reasonably matched by the ordinary quasar composite where the continuum has been replaced by that of a hotter disk. A similar effect can be achieved by an additional power-law component in relativistically boosted radio-quiet quasars, which may explain the high percentage of radio quasars. The full catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A114
NASA Astrophysics Data System (ADS)
Trakhtenbrot, Benny; Lira, Paulina; Netzer, Hagai; Cicone, Claudia; Maiolino, Roberto; Shemmer, Ohad
2017-11-01
We present a long-term, multi-wavelength project to understand the epoch of fastest growth of the most massive black holes by using a sample of 40 luminous quasars at z 4.8. These quasars have rather uniform properties, with typical accretion rates and black hole masses of L/L_Edd 0.7 and M_BH 10^9 M_sun. The sample consists of ``FIR-bright'' sources with a previous Herschel/SPIRE detection, suggesting SFR>1000 M_sun/yr, as well as of ``FIR-faint'' sources for which Herschel stacking analysis implies a typical SFR of 400 M_sun/yr. Six of the quasars have been observed by ALMA in [C II] 157.74 micron line emission and adjacent rest-frame 150 □micron continuum, to study the dusty cold ISM. ALMA detected companion, spectroscopically confirmed sub-mm galaxies (SMGs) for three sources – one FIR-bright and two FIR-faint. The companions are separated by 14-45 kpc from the quasar hosts, and we interpret them as major galaxy interactions. Our ALMA data therefore clearly support the idea that major mergers may be important drivers for rapid, early SMBH growth. However, the fact that not all high-SFR quasar hosts are accompanied by interacting SMGs, and their ordered gas kinematics observed by ALMA, suggest that other processes may be fueling these systems. Our analysis thus demonstrates the diversity of host galaxy properties and gas accretion mechanisms associated with early and rapid SMBH growth.
Ionized Absorbers in Active Galactic Nuclei and Very Steap Soft X-Ray Quasars
NASA Technical Reports Server (NTRS)
Fiore, Fabrizio; White, Nicholas (Technical Monitor)
2000-01-01
Steep soft X-ray (0.1-2 keV) quasars share several unusual properties: narrow Balmer lines, strong Fe II emission, large and fast X-ray variability, and a rather steep 2-10 keV spectrum. These intriguing objects have been suggested to be the analogues of Galactic black hole candidates in the high, soft state. We present here results from ASCA observations for two of these quasars: NAB 0205 + 024 and PG 1244 + 026. Both objects show similar variations (factor of approximately 2 in 10 ks), despite a factor of approximately 10 difference in the 0.5-10 keV luminosity (7.3 x 10(exp 43) erg/s for PG 1244 + 026 and 6.4 x 10(exp 44) erg/s for NAB 0205 + 024, assuming isotropic emission, H(sub 0) = 50.0 and q(sub 0) = 0.0). The X-ray continuum of the two quasars flattens by 0.5-1 going from the 0.1-2 keV band towards higher energies, strengthening recent results on another half-dozen steep soft X-ray active galactic nuclei. PG 1244 + 026 shows a significant feature in the '1-keV' region, which can be described either as a broad emission line centered at 0.95 keV (quasar frame) or as edge or line absorption at 1.17 (1.22) keV. The line emission could be a result of reflection from a highly ionized accretion disc, in line with the view that steep soft X-ray quasars are emitting close to the Eddington luminosity. Photoelectric edge absorption or resonant line absorption could be produced by gas outflowing at a large velocity (0.3-0.6 c).
Outflow and Accretion Physics in Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
McGraw, Sean Michael
2016-09-01
This dissertation focuses on placing observational constraints on outflows and accretion disks in active galactic nuclei (AGN) for the purpose of better understanding the physics of super-massive black holes (SMBHs) and their evolution with the host galaxy over cosmic time. Quasar outflows and their importance in SMBH-host galaxy co-evolution can be further understood by analyzing broad absorption lines (BALs) in rest-frame UV spectra that trace a range of wind conditions. We quantify the properties of the flows by conducting BAL variability studies using multiple-epoch spectra acquired primarily from MDM Observatory and from the Sloan Digital Sky Survey. Iron low-ionization BALs (FeLoBALs) are a rare type of outflow that may represent a transient phase in galaxy evolution, and we analyze the variations in 12 FeLoBAL quasars with redshifts between 0.7 ≤ z ≤ 1.9 and rest frame timescales between ˜10 d to 7.6 yr. We investigate BAL variability in 71 quasar outflows that exhibit P V absorption, a tracer of high column density gas (i.e. NH ≥ 1022 cm -2), in order to quantify the energies and momenta of the flows. We also characterize the variability patterns of 26 quasars with mini-BALs, an interesting class of absorbers that may represent a distinct phase in the evolution of outflows. Low-luminosity AGN (LLAGN) are important objects to study since their prominence in the local Universe suggest a possible evolution from the quasar era, and their low radiative outputs likely indicate a distinct mode of accretion onto the SMBH. We probe the accretion conditions in the LLAGN NGC 4203 by estimating the SMBH mass, which is obtained by modeling the 2-dimensional velocity field of the nebular gas using spectra from the Hubble Space Telescope. We detect significant BAL and mini-BAL variability in a subset of quasars from each of our samples, with measured rest-frame variability time-scales from days to years and over multiple years on average. Variable wavelength intervals are associated with high-ionization species such as C IV and N V, low-ionization lines including Mg II and Al III, and ground and excited states from Fe II multiplets. The detected BAL and mini-BAL variations in a subset of sources provide evidence supporting scenarios involving either transverse motions of gas or ionization changes within the absorbers. We conclude that some outflows in our samples likely exist on the order of 0.01-1 pc from the SMBH, and the possibility remains that we are tracing outflowing gas on larger scales within limits ranging from ≤10 pc to ≤1 kpc from the central source. We estimate outflow kinetic luminosities between ˜10 6 and 1 times the bolometric luminosity of the quasar, indicating that the BAL outflows we probe likely possess a range of energies and only some absorber energies are likely sufficient for AGN feedback processes. We estimate the SMBH mass in the LLAGN in NGC 4203 to be ˜1.1x10 7 solar masses within a factor of ˜2. This mass estimate in conjunction with theoretical predictions is consistent with the existence of a two-component accretion flow in the nucleus of NGC 4203, consisting of a hot, advection-dominated torus at small radii connected with a thin, radiatively efficient disk at larger scales. These results provide a significant increase in the information available for quasar outflow properties and the conditions in low-luminosity accretion disks, and will inform future observational and theoretical studies that attempt to construct a more complete picture of AGN and their effects on the surrounding environments.
Environments of strong/ultrastrong, ultraviolet Fe II emitting quasars
NASA Astrophysics Data System (ADS)
Clowes, Roger G.; Raghunathan, Srinivasan; Söchting, Ilona K.; Graham, Matthew J.; Campusano, Luis E.
2013-08-01
We have investigated the strength of ultraviolet (UV) Fe II emission from quasars within the environments of large quasar groups (LQGs) in comparison with quasars elsewhere, for 1.1 ≤
Toward a Prescription for Feedback from Quasar Outflows
NASA Astrophysics Data System (ADS)
Ganguly, Rajib; Bourjaily, M.; Munsell, J.; Brotherton, M. S.; Bhattacharjee, A.; Runnoe, J.; Charlton, J. C.; Eracleous, M.
2011-01-01
Models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, distance, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 14000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) estimates of the quasar black hole mass. To this, we are adding photometry from GALEX, 2MASS, and ROSAT in an effort to characterize more fully the quasar SEDs. ROSAT photometry provides estimates of the level of soft X-ray absorption, which helps regulate the velocity of outflows. GALEX photometry samples the extreme ultraviolet range where several high ionization species, that may be present in the outflows, absorb light. 2MASS photometry samples the rest-frame optical, where the effects of absorption and dust reddening are minimal, yield better estimates of the bolometric luminosity (hence, Eddington ratio). In this poster, we will present preliminary measurements of the amount of absorption in the soft X-ray and extreme ultraviolet bands as a function of both outflow properties and quasar physical properties. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.
Extended and broad Ly α emission around a BAL quasar at z ˜ 5
NASA Astrophysics Data System (ADS)
Ginolfi, M.; Maiolino, R.; Carniani, S.; Arrigoni Battaia, F.; Cantalupo, S.; Schneider, R.
2018-05-01
In this work we report deep MUSE observations of a broad absorption line (BAL) quasar at z ˜ 5, revealing a Ly α nebula with a maximum projected linear size of ˜60 kpc around the quasar (down to our 2σ SB limit per layer of ˜ 9× 10^{-19} erg s^{-1} cm^{-2} arcsec^{-2} for a 1 arcsec2 aperture). After correcting for the cosmological surface brightness dimming, we find that our nebula, at z ˜ 5, has an intrinsically less extended Ly α emission than nebulae at lower redshift. However, such a discrepancy is greatly reduced when referring to comoving distances, which take into account the cosmological growth of dark matter (DM) haloes, suggesting a positive correlation between the size of Ly α nebulae and the sizes of DM haloes/structures around quasars. Differently from the typical nebulae around radio-quiet non-BAL quasars, in the inner regions (˜10 kpc) of the circumgalactic medium of our source, the velocity dispersion of the Ly α emission is very high (FWHM > 1000 km s-1), suggesting that in our case we may be probing outflowing material associated with the quasar.
Absorption in X-ray spectra of high-redshift quasars
NASA Technical Reports Server (NTRS)
Elvis, Martin; Fiore, Fabrizio; Wilkes, Belinda; Mcdowell, Jonathan; Bechtold, Jill
1994-01-01
We present evidence that X-ray absorption is common in high-redshift quasars. We have studied six high-redshift (z approximately 3) quasars with the ROSAT Position Sensitive Proportional Counter (PSPC) of which four are in directions of low Galactic N(sub H). Three out of these four show excess absorption, while only three in approximately 50 z approximately less than 0.4 quasars do, indicating that such absorption must be common, but not ubiquitous, at high redshifts, and that the absorbers must lie at z greater than 0.4. The six quasars were: S5 0014+81, Q0420-388, PKS 0438-436, S4 0636+680. PKS 2000-330, PKS 2126-158, which have redshifts between 2.85 and 3.78. PKS 0438-436 and PKS 2126-158 show evidence for absorption above the local Galactic value at better than 99.999% confidence level. If the absorber is at the redshift of the quasar, then values of N(sub H) = (0.86(+0.49, -0.28)) x 10(exp 22) atoms/sq cm for PKS 0438-436, and N(sub H) = (1.45(+1.20, -0.64)) x 10(exp 22) atoms/ sq cm for PKS 2126-158, are implied, assuming solar abundances. The spectrum of S4 0636+680 also suggests the presence of a similarly large absorption column density at the 98% confidence level. This absorption reverses the trend for the most luminous active galactic nuclei (AGN) to have the least X-ray absorption, so a new mechanism is likely to be responsible. Intervening absorption due to damped Lyman(alpha) systems is a plausible cause. We also suggest, as an intrinsic model, that intracluster material, e.g., a cooling flow, around the quasar could account for both the X-ray spectrum and other properties of these quasars. All the quasars are radio-loud and three are gigahertz peaked (two of the three showing absorption). No excess absorption above the Galactic value is seen toward Q0420-388. This quasar has two damped Lyman(alpha) systems at z = 3.08. The limit on the X-ray column density implies a low ionization fraction, N(H I)/N(H) approximately greater than 4 x 10(exp -3) (3 (sigma)), for solar abundances, for these systems, and can set a weak limit on the size of the absorber. In the emitted frame these PSPC spectra cover the band approximately 0.5-10 keV, which has been well observed for low-redshift quasars and AGN. Comparison of high and low-redshift spectra in this emitted band shows no change of mean spectral index greater than Delta alpha(sub E) greater than 0.3 (99% confidence) with either redshift or luminosity, for radio-loud quasars.
VizieR Online Data Catalog: Spectra of 13 lensed quasars (Sluse+, 2012)
NASA Astrophysics Data System (ADS)
Sluse, D.; Hutsemekers, D.; Courbin, F.; Meylan, G.; Wambsganss, J.
2012-05-01
Extracted flux calibrated spectra of 13 lensed quasars following the methodology described in Sect. 2.1. of the oaoer. The data were obtained with the FORS spectrograph at VLT in multi-object spectroscopy mode. The typical wavelength coverage is from 4200 to 8200Å. The data concern the following objects: HE0047-1756 (HE0047), Q0142-100 (Q0142), SDSSJ0246-0825 (SDSS0246), HE0435-1223 (HE0435), SDSSJ0806+2006 (SDSS0806), FBQ0951+2635 (FBQ0951), BRI0952-0115 (BRI0952), SDSSJ1138+0314 (J1138), J1226-0006 (J1226), SDSSJ1335+0118 (J1335), Q1355-2257 (Q1355), WFI2033-4723 (WFI2033), and HE2149-2745 (HE2149). For each object, we provide the 1D flux calibrated spectrum of the 2 individual images in the slit. In addition, we also provide the 2D reduced spectrum and corresponding 1σ error frame (corresponding files are named "objectnamedata" and "objectnameerr"), and the 2D processed spectra associated to the deconvolution, as shown in Fig.1 of the paper. These processed 2D spectra are the deconvolved frame ("dec"), the extended component of the flux emission ("ext") and the residual frame in σ units ("_res") corresponding to panel (b), (c) and (d) of Fig.1. A pdf file file similar to Fig.1 is also provided for each object. (4 data files).
Evaluation of Visual Field Progression in Glaucoma: Quasar Regression Program and Event Analysis.
Díaz-Alemán, Valentín T; González-Hernández, Marta; Perera-Sanz, Daniel; Armas-Domínguez, Karintia
2016-01-01
To determine the sensitivity, specificity and agreement between the Quasar program, glaucoma progression analysis (GPA II) event analysis and expert opinion in the detection of glaucomatous progression. The Quasar program is based on linear regression analysis of both mean defect (MD) and pattern standard deviation (PSD). Each series of visual fields was evaluated by three methods; Quasar, GPA II and four experts. The sensitivity, specificity and agreement (kappa) for each method was calculated, using expert opinion as the reference standard. The study included 439 SITA Standard visual fields of 56 eyes of 42 patients, with a mean of 7.8 ± 0.8 visual fields per eye. When suspected cases of progression were considered stable, sensitivity and specificity of Quasar, GPA II and the experts were 86.6% and 70.7%, 26.6% and 95.1%, and 86.6% and 92.6% respectively. When suspected cases of progression were considered as progressing, sensitivity and specificity of Quasar, GPA II and the experts were 79.1% and 81.2%, 45.8% and 90.6%, and 85.4% and 90.6% respectively. The agreement between Quasar and GPA II when suspected cases were considered stable or progressing was 0.03 and 0.28 respectively. The degree of agreement between Quasar and the experts when suspected cases were considered stable or progressing was 0.472 and 0.507. The degree of agreement between GPA II and the experts when suspected cases were considered stable or progressing was 0.262 and 0.342. The combination of MD and PSD regression analysis in the Quasar program showed better agreement with the experts and higher sensitivity than GPA II.
Quasar Astrophysics with the Space Interferometry Mission
NASA Technical Reports Server (NTRS)
Unwin, Stephen; Wehrle, Ann; Meier, David; Jones, Dayton; Piner, Glenn
2007-01-01
Optical astrometry of quasars and active galaxies can provide key information on the spatial distribution and variability of emission in compact nuclei. The Space Interferometry Mission (SIM PlanetQuest) will have the sensitivity to measure a significant number of quasar positions at the microarcsecond level. SIM will be very sensitive to astrometric shifts for objects as faint as V = 19. A variety of AGN phenomena are expected to be visible to SIM on these scales, including time and spectral dependence in position offsets between accretion disk and jet emission. These represent unique data on the spatial distribution and time dependence of quasar emission. It will also probe the use of quasar nuclei as fundamental astrometric references. Comparisons between the time-dependent optical photocenter position and VLBI radio images will provide further insight into the jet emission mechanism. Observations will be tailored to each specific target and science question. SIM will be able to distinguish spatially between jet and accretion disk emission; and it can observe the cores of galaxies potentially harboring binary supermassive black holes resulting from mergers.
X-ray spectroscopy of the z = 6.4 quasar SDSS J1148+5251
NASA Astrophysics Data System (ADS)
Gallerani, S.; Zappacosta, L.; Orofino, M. C.; Piconcelli, E.; Vignali, C.; Ferrara, A.; Maiolino, R.; Fiore, F.; Gilli, R.; Pallottini, A.; Neri, R.; Feruglio, C.
2017-05-01
We present the 78 ks Chandra observations of the z = 6.4 quasar SDSS J1148+5251. The source is clearly detected in the energy range 0.3-7 keV with 42 counts (with a significance ≳9σ). The X-ray spectrum is best fitted by a power law with photon index Γ = 1.9 absorbed by a gas column density of N_H=2.0^{+2.0}_{-1.5}× {10}^{23} cm^{-2}. We measure an intrinsic luminosity at 2-10 and 10-40 keV equal to ˜ 1.5 × 1045 erg s- 1, comparable with luminous local and intermediate-redshift quasar properties. Moreover, the X-ray to optical power-law slope value (αOX = -1.76 ± 0.14) of J1148 is consistent with the one found in quasars with similar rest-frame 2500 Å luminosity (L2500 ˜ 1032 erg s- 1 Å- 1). Then we use Chandra data to test a physically motivated model that computes the intrinsic X-ray flux emitted by a quasar starting from the properties of the powering black hole and assuming that X-ray emission is attenuated by intervening, metal-rich (Z ≥ Z⊙) molecular clouds (MC) distributed on ˜kpc scales in the host galaxy. Our analysis favours a black hole mass MBH ˜ 3 × 109 M⊙ and a molecular hydrogen mass M_H_2˜ 2× {10}^{10} {M_{\\odot }}, in good agreement with estimates obtained from previous studies. We finally discuss strengths and limits of our analysis.
A gravitationally lensed quasar discovered in OGLE
NASA Astrophysics Data System (ADS)
Kostrzewa-Rutkowska, Zuzanna; Kozłowski, Szymon; Lemon, Cameron; Anguita, T.; Greiner, J.; Auger, M. W.; Wyrzykowski, Ł.; Apostolovski, Y.; Bolmer, J.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Skowron, J.; Mróz, P.; Ulaczyk, K.; Pawlak, M.
2018-05-01
We report the discovery of a new gravitationally lensed quasar (double) from the Optical Gravitational Lensing Experiment (OGLE) identified inside the ˜670deg2 area encompassing the Magellanic Clouds. The source was selected as one of ˜60 `red W1 - W2' mid-infrared objects from WISE and having a significant amount of variability in OGLE for both two (or more) nearby sources. This is the first detection of a gravitational lens, where the discovery is made `the other way around', meaning we first measured the time delay between the two lensed quasar images of -132 < tAB < -76 d (90 per cent CL), with the median tAB ≈ -102 d (in the observer frame), and where the fainter image B lags image A. The system consists of the two quasar images separated by 1.5 arcsec on the sky, with I ≈ 20.0 mag and I ≈ 19.6 mag, respectively, and a lensing galaxy that becomes detectable as I ≈ 21.5 mag source, 1.0 arcsec from image A, after subtracting the two lensed images. Both quasar images show clear AGN broad emission lines at z = 2.16 in the New Technology Telescope spectra. The spectral energy distribution (SED) fitting with the fixed source redshift provided the estimate of the lensing galaxy redshift of z ≈ 0.9 ± 0.2 (90 per cent CL), while its type is more likely to be elliptical (the SED-inferred and lens-model stellar mass is more likely present in ellipticals) than spiral (preferred redshift by the lens model).
The Correlated Variations of {\\rm{C}}\\,{\\rm{IV}} Narrow Absorption Lines and Quasar Continuum
NASA Astrophysics Data System (ADS)
Chen, Zhi-Fu; Pang, Ting-Ting; He, Bing; Huang, Yong
2018-06-01
We assemble 207 variable quasars from the Sloan Digital Sky Survey, all with at least 3 observations, to analyze C IV narrow absorption doublets, and obtain 328 C IV narrow absorption line systems. We find that 19 out of 328 C IV narrow absorption line systems were changed by | {{Δ }}{W}rλ 1548| ≥slant 3{σ }{{Δ }{W}rλ 1548} on timescales from 15.9 to 1477 days at rest-frame. Among the 19 obviously variable C IV systems, we find that (1) 14 systems have relative velocities {\\upsilon }r> 0.01c and 4 systems have {\\upsilon }r> 0.1c, where c is the speed of light; (2) 13 systems are accompanied by other variable C IV systems; (3) 9 systems were changed continuously during multiple observations; and (4) 1 system with {\\upsilon }r = 16,862 km s‑1 was enhanced by {{Δ }}{W}rλ 1548=2.7{σ }{{Δ }{W}rλ 1548} in 0.67 day at rest-frame. The variations of absorption lines are inversely correlated with the changes in the ionizing continuum. We also find that large variations of C IV narrow absorption lines are form differently over a short timescale.
A STUDY OF THE X-RAYED OUTFLOW OF APM 08279+5255 THROUGH PHOTOIONIZATION CODES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saez, Cristian; Chartas, George, E-mail: saez@astro.psu.edu, E-mail: chartasg@cofc.edu
2011-08-20
We present new results from our study of the X-rayed outflow of the z = 3.91 gravitationally lensed broad absorption line quasar APM 08279+5255. These results are based on spectral fits to all the long exposure observations of APM 08279+5255 using a new quasar-outflow model. This model is based on CLOUDY{sup 3} CLOUDY is a photoionization code designed to simulate conditions in interstellar matter under a broad range of conditions. We have used version 08.00 of the code last described by Ferland et al. (1998). The atomic database used by CLOUDY is described in Ferguson et al. (2001) and http://www.pa.uky.edu/{approx}verner/atom.html.more » simulations of a near-relativistic quasar outflow. The main conclusions from our multi-epoch spectral re-analysis of Chandra, XMM-Newton, and Suzaku observations of APM 08279+5255 are the following. (1) In every observation, we confirm the presence of two strong features, one at rest-frame energies between 1-4 keV and the other between 7-18 keV. (2) We confirm that the low-energy absorption (1-4 keV rest frame) arises from a low-ionization absorber with log(N{sub H}/cm{sup -2}) {approx} 23 and the high-energy absorption (7-18 keV rest frame) arises from highly ionized (3 {approx}< log {xi} {approx}< 4, where {xi} is the ionization parameter) iron in a near-relativistic outflowing wind. Assuming this interpretation, we find that the velocities on the outflow could get up to {approx}0.7c. (3) We confirm a correlation between the maximum outflow velocity and the photon index and find possible trends between the maximum outflow velocity and the X-ray luminosity, and between the total column density and the photon index. We performed calculations of the force multipliers of material illuminated by absorbed power laws and a Mathews-Ferland spectral energy distribution (SED). We found that variations of the X-ray and UV parts of the SEDs and the presence of a moderate absorbing shield will produce important changes in the strength of the radiative driving force. These results support the observed trend found between the outflow velocity and X-ray photon index in APM 08279+5255. If this result is confirmed it will imply that radiation pressure is an important mechanism in producing quasar outflows.« less
NASA Astrophysics Data System (ADS)
Berrington, Robert C.; Brotherton, M. S.; Gallagher, S. C.; Ganguly, R.; Shang, Z.; Lacy, M.; Gregg, M. D.; Hall, P. B.; Laurent-Muehleisen, S. A.
2007-12-01
We report the results of a 60 ks Chandra X-ray Observatory ACIS-S observation of the reddened, radio-selected, highly polarized "FeLoBAL" quasar FIRST J155633.8+351758. Our analyses of the 531 photon spectrum indicate that the intrinsic X-ray flux is consistent with that expected for quasars of similarly high luminosity. We cannot tightly constrain the intrinsic X-ray power-law slope, but find indications that it is flat (photon index Γ = 1.7 or flatter). No iron K-α line is detected, and the X-rays appear to be down by only an order of magnitude below their intrinsic unabsorbed levels. Absorption is present with both partially ionized models and neutral hydrogen models with partial covering providing good fits. The level of partial covering in the latter model is consistent with the rest-frame ultraviolet maximum polarization of 13%, in the sense that light scattered by electrons around the X-ray absorber could account for both results. We present the spectral energy distribution (SED) of FIRST J155633.8+351758 from radio through X-ray energies, and make corrections for Doppler beaming for the pole-on radio-quiet jet, optical dust reddening, and X-ray absorption. The corrected SED appears to be that of a luminous radio-quiet quasar deficient in the mid and far-infrared, suggesting that the dust covering fraction of the quasar is not large and that star formation is not excessive. FIRST J155633.8+351758 seems to be an intrinsically normal radio-quiet quasar with an X-ray absorber not dissimilar from that of other broad absorption line quasars studied in detail at X-ray wavelengths. We acknowledge support from Chandra Award No. GO6-7105X, from the US NSF (grant AST 05-07781), from NASA under the grant NNG05GD03G, and from the National Natural Science Foundation of China (grant 10643001). This work was performed under the auspices of the US DOE by the University of California, LLNL (Contract No. W-7405-Eng-48).
Dark Galaxy Candidates at Redshift ∼3.5 Detected with MUSE
NASA Astrophysics Data System (ADS)
Marino, Raffaella Anna; Cantalupo, Sebastiano; Lilly, Simon J.; Gallego, Sofia G.; Straka, Lorrie A.; Borisova, Elena; Pezzulli, Gabriele; Bacon, Roland; Brinchmann, Jarle; Carollo, C. Marcella; Caruana, Joseph; Conseil, Simon; Contini, Thierry; Diener, Catrina; Finley, Hayley; Inami, Hanae; Leclercq, Floriane; Muzahid, Sowgat; Richard, Johan; Schaye, Joop; Wendt, Martin; Wisotzki, Lutz
2018-05-01
Recent theoretical models suggest that the early phase of galaxy formation could involve an epoch when galaxies are gas rich but inefficient at forming stars: a “dark galaxy” phase. Here, we report the results of our Multi-Unit Spectroscopic Explorer (MUSE) survey for dark galaxies fluorescently illuminated by quasars at z > 3. Compared to previous studies which are based on deep narrowband (NB) imaging, our integral field survey provides a nearly uniform sensitivity coverage over a large volume in redshift space around the quasars as well as full spectral information at each location. Thanks to these unique features, we are able to build control samples at large redshift distances from the quasars using the same data taken under the same conditions. By comparing the rest-frame equivalent width (EW0) distributions of the Lyα sources detected in proximity to the quasars and in control samples, we detect a clear correlation between the locations of high-EW0 objects and the quasars. This correlation is not seen in other properties, such as Lyα luminosities or volume overdensities, suggesting the possible fluorescent nature of at least some of these objects. Among these, we find six sources without continuum counterparts and EW0 limits larger than 240 Å that are the best candidates for dark galaxies in our survey at z > 3.5. The volume densities and properties, including inferred gas masses and star formation efficiencies, of these dark galaxy candidates are similar to those of previously detected candidates at z ≈ 2.4 in NB surveys. Moreover, if the most distant of these are fluorescently illuminated by the quasar, our results also provide a lower limit of t = 60 Myr on the quasar lifetime. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory, Paranal, Chile (ESO Programme IDs 094.A-0396, 095.A-0708, 096.A-0345, 097.A-0251, 098.A-0678, 094.A-0131, 095.A-0200, 096.A-0222, 097.A-0089, 098.A-0216).
THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: TECHNICAL OVERVIEW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yue; Brandt, W. N.; Dawson, Kyle S.
2015-01-01
The Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project is a dedicated multi-object RM experiment that has spectroscopically monitored a sample of 849 broad-line quasars in a single 7 deg{sup 2} field with the SDSS-III Baryon Oscillation Spectroscopic Survey spectrograph. The RM quasar sample is flux-limited to i {sub psf} = 21.7 mag, and covers a redshift range of 0.1 < z < 4.5 without any other cuts on quasar properties. Optical spectroscopy was performed during 2014 January-July dark/gray time, with an average cadence of ∼4 days, totaling more than 30 epochs. Supporting photometric monitoring in the g and i bandsmore » was conducted at multiple facilities including the Canada-France-Hawaii Telescope (CFHT) and the Steward Observatory Bok telescope in 2014, with a cadence of ∼2 days and covering all lunar phases. The RM field (R.A., decl. = 14:14:49.00, +53:05:00.0) lies within the CFHT-LS W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07, with three prior years of multi-band PS1 light curves. The SDSS-RM six month baseline program aims to detect time lags between the quasar continuum and broad line region (BLR) variability on timescales of up to several months (in the observed frame) for ∼10% of the sample, and to anchor the time baseline for continued monitoring in the future to detect lags on longer timescales and at higher redshift. SDSS-RM is the first major program to systematically explore the potential of RM for broad-line quasars at z > 0.3, and will investigate the prospects of RM with all major broad lines covered in optical spectroscopy. SDSS-RM will provide guidance on future multi-object RM campaigns on larger scales, and is aiming to deliver more than tens of BLR lag detections for a homogeneous sample of quasars. We describe the motivation, design, and implementation of this program, and outline the science impact expected from the resulting data for RM and general quasar science.« less
Analysis of Multi-band Photometry of Violently Variable Gamma-Ray Sources
NASA Astrophysics Data System (ADS)
Kadowaki, Jennifer; Malkan, M. A.
2013-01-01
We studied the relationship between rapid variations in the jet intensities and changes in accretion disk activity of blazar subtype, Flat Spectrum Radio Quasar (FSRQ). Fifteen known FSRQs were specifically chosen for their prominent big blue bumps with redshifts near z=1, in order for the rest-frame UV to be redshifted into the blue-band pass. Flux changes for these 15 FSRQs were monitored for 15 observational nights in BVRI-bands and 20 nights in JHK-bands over a 12 month period using NASA's Fermi Gamma-ray Space Telescope, Lick Observatory's Nickel Telescope, and Kitt Peak National Observatory's 2.1 m Telescope. With 6.3’ x 6.3’ field of view for Nickel’s Direct Imaging Camera and 20’ x 20’ for Flamingos IR Imaging Spectrometer, approximately a half dozen, bright and non-variable stars were available to compare the concurrent changes in each of the quasar’s brightness. This process of differential photometry yielded photometric measurements of quasar brightness with 1-2% level precision. Light curves were then created for these 15 monitored quasars in optical, infrared, and gamma-ray energy bands. Dominating the redder emission spectrum due to non-thermal, synchrotron radiation and compton scattering of gamma-rays off high energy electrons, jet activity was compared to bluer spectral regions having strong accretion disk component with rest frame of approximately 2000 Angstroms. Most of the targeted FSRQs varied significantly over the 12 month monitoring period, with varying levels of fluctuations for each observed wavelength. Some correlations between gamma-ray and optical wavelengths were also present, which will be further discussed in the poster.
THE MOST LUMINOUS GALAXIES DISCOVERED BY WISE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Chao-Wei; Eisenhardt, Peter R. M.; Stern, Daniel
2015-06-01
We present 20 Wide-field Infrared Survey Explorer (WISE)-selected galaxies with bolometric luminosities L{sub bol} > 10{sup 14} L{sub ☉}, including five with infrared luminosities L{sub IR} ≡ L{sub (rest} {sub 8–1000} {sub μm)} > 10{sup 14} L{sub ☉}. These “extremely luminous infrared galaxies,” or ELIRGs, were discovered using the “W1W2-dropout” selection criteria which requires marginal or non-detections at 3.4 and 4.6 μm (W1 and W2, respectively) but strong detections at 12 and 22 μm in the WISE survey. Their spectral energy distributions are dominated by emission at rest-frame 4–10 μm, suggesting that hot dust with T{sub d} ∼ 450 Kmore » is responsible for the high luminosities. These galaxies are likely powered by highly obscured active galactic nuclei (AGNs), and there is no evidence suggesting these systems are beamed or lensed. We compare this WISE-selected sample with 116 optically selected quasars that reach the same L{sub bol} level, corresponding to the most luminous unobscured quasars in the literature. We find that the rest-frame 5.8 and 7.8 μm luminosities of the WISE-selected ELIRGs can be 30%–80% higher than that of the unobscured quasars. The existence of AGNs with L{sub bol} > 10{sup 14} L{sub ☉} at z > 3 suggests that these supermassive black holes are born with large mass, or have very rapid mass assembly. For black hole seed masses ∼10{sup 3} M{sub ☉}, either sustained super-Eddington accretion is needed, or the radiative efficiency must be <15%, implying a black hole with slow spin, possibly due to chaotic accretion.« less
Suzaku Observations of Near-Relativistic Outflows in the BAL Quasar APM 08279+5255
NASA Astrophysics Data System (ADS)
Saez, C.; Chartas, G.; Brandt, W. N.
2009-05-01
We present results from three Suzaku observations of the z = 3.91 gravitationally lensed broad absorption line quasar APM 08279+5255. We detect strong and broad absorption at rest-frame energies of lsim2 keV (low energy) and 7-12 keV (high energy). The detection of these features confirms the results of previous long-exposure (80-90 ks) Chandra and XMM-Newton observations. The low- and high-energy absorption is detected in both the back-illuminated (BI) and front-illuminated (FI) Suzaku X-ray Imaging Spectrometer spectra (with an F-test significance of gsim99%). We interpret the low-energy absorption as arising from a low-ionization absorber with log N H ~ 23 and the high-energy absorption as due to lines arising from highly ionized (2.75 lsim logξ lsim 4.0, where ξ is the ionization parameter) iron in a near-relativistic outflowing wind. Assuming this interpretation we find that the velocities in the outflow range between 0.1c and 0.6c. We constrain the angle between the outflow direction of the X-ray absorber and our line of sight to be lsim36°. We also detect likely variability of the absorption lines (at the gsim99.9% and gsim98% significance levels in the FI and BI spectra, respectively) with a rest-frame timescale of ~1 month. Assuming that the detected high-energy absorption features arise from Fe XXV, we estimate that the fraction of the total bolometric energy injected over the quasar's lifetime into the intergalactic medium in the form of kinetic energy to be gsim10%.
NASA Astrophysics Data System (ADS)
Mooley, K. P.; Wrobel, J. M.; Anderson, M. M.; Hallinan, G.
2018-01-01
Supermassive binary black holes (BBHs) on sub-parsec scales are prime targets for gravitational wave experiments. They also provide insights on close binary evolution and hierarchical structure formation. Sub-parsec BBHs cannot be spatially resolved but indirect methods can identify candidates. In 2015 Liu et al. reported an optical-continuum periodicity in the quasar PSO J334.2028+01.4075, with the estimated mass and rest-frame period suggesting an orbital separation of about 0.006 pc (0.7 μ arcsec). The persistence of the quasar's optical periodicity has recently been disfavoured over an extended baseline. However, if a radio jet is launched from a sub-parsec BBH, the binary's properties can influence the radio structure on larger scales. Here, we use the Very Long Baseline Array (VLBA) and Karl G. Jansky Very Large Array (VLA) to study the parsec- and kiloparsec-scale emission energized by the quasar's putative BBH. We find two VLBA components separated by 3.6 mas (30 pc), tentatively identifying one as the VLBA 'core' from which the other was ejected. The VLBA components contribute to a point-like, time-variable VLA source that is straddled by lobes spanning 8 arcsec (66 kpc). We classify PSO J334.2028+01.4075 as a lobe-dominated quasar, albeit with an atypically large twist of 39° between its elongation position angles on parsec- and kiloparsec-scales. By analogy with 3C 207, a well-studied lobe-dominated quasar with a similarly-rare twist, we speculate that PSO J334.2028+01.4075 could be ejecting jet components over an inner cone that traces a precessing jet in a BBH system.
Possible systematics in the VLBI catalogs as seen from Gaia
NASA Astrophysics Data System (ADS)
Liu, N.; Zhu, Z.; Liu, J.-C.
2018-01-01
Aims: In order to investigate the systematic errors in the very long baseline interferometry (VLBI) positions of extragalactic sources (quasars) and the global differences between Gaia and VLBI catalogs, we use the first data release of Gaia (Gaia DR1) quasar positions as the reference and study the positional offsets of the second realization of the International Celestial Reference Frame (ICRF2) and the Goddard VLBI solution 2016a (gsf2016a) catalogs. Methods: We select a sample of 1032 common sources among three catalogs and adopt two methods to represent the systematics: considering the differential orientation (offset) and declination bias; analyzing with the vector spherical harmonics (VSH) functions. Results: Between two VLBI catalogs and Gaia DR1, we find that: i) the estimated orientation is consistent with the alignment accuracy of Gaia DR1 to ICRF, of 0.1 mas, but the southern and northern hemispheres show opposite orientations; ii) the declination bias in the southern hemisphere between Gaia DR1 and ICRF2 is estimated to be +152 μas, much larger than that between Gaia DR1 and gsf2016a which is +34 μas. Between two VLBI catalogs, we find that: i) the rotation component shows that ICRF2 and gsf2016a are generally consistent within 30 μas; ii) the glide component and quadrupole component report two declination-dependent offsets: dipolar deformation of +50 μas along the Z-axis, and quadrupolar deformation of -50 μas that would induce a pattern of sin2δ. Conclusions: The significant declination bias between Gaia DR1 and ICRF2 catalogs reported in previous studies is possibly attributed to the systematic errors of ICRF2 in the southern hemisphere. The global differences between ICRF2 and gsf2016a catalogs imply that possible, mainly declination-dependent systematics exit in the VLBI positions and need further investigations in the future Gaia data release and the next generation of ICRF.
Reference Frames and the Physical Gravito-Electromagnetic Analogy
NASA Astrophysics Data System (ADS)
Costa, Luis Filipe P. O.; Herdeiro, C. A. R.
2009-05-01
The interest on the physical analogies between General Relativity and Electromagnetism has been revived by the recent Gravity Probe-B and the upcoming Lares missions, aiming to measure the so-called gravito-magnetic effects. These effects are presently believed to be at the origin of observed jets in quasars, galactic nuclei, neutron stars and black holes, as well as the precession of black holes' accretion disks. Gravitomagnetism has been studied mainly in a first order approximation ( e.g. [arXiv:gr-qc/0207065]) which, making use of certain similarities between linearized gravity and electromagnetism, applies intuition and well known results from electromagnetic phenomena to the description of the less familiar gravitational ones. However, there is no consensus at present on the limit of validity of such approach. Using a new exact approach based on tidal tensors [Phys. Rev. D 78, 024021 (2008)], we show that the existence of the aforementioned similarities depends crucially on the reference frame. Whereas a stationary observer will find remarkable similarities between the gravitational and electromagnetic interactions, if the fields are not stationary in the observer's rest frame, however, the two interactions differ significantly, so that the gravito-electromagnetic equations commonly found in literature are no longer valid. The tidal tensor formalism allows for a comparison between gravity and electromagnetism in terms of quantities common to both theories (tidal forces), making transparent both the similarities and key differences between the two interactions. It also unveils a new analogy based on exact, covariant, and fully general equations, which allows to extend the intuition from electromagnetism to the understanding of non-linear gravitational phenomena, such as the spin interaction between two celestial bodies, and Hawking's [Phys Rev. Lett. 26, 1344 (1971)] spin-dependent upper bound for the energy released by gravitational radiation when two black holes collide. Funded by Fundação para a Ciència e a Tecnologia, Grant SFRH/BD/41370/2007
THE POSITION/STRUCTURE STABILITY OF FOUR ICRF2 SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fomalont, Ed; Johnston, Kenneth; Fey, Alan
2011-03-15
Four close radio sources in the International Celestial Reference Frame (ICRF) catalog were observed using phase referencing with the VLBA at 43, 23, and 8.6 GHz, and with VERA at 23 GHz over a one-year period. The goal was to determine the stability of the radio cores and to assess structure effects associated with positions in the ICRF. Although the four sources were compact at 8.6 GHz, the VLBA images at 43 GHz with 0.3 mas resolution showed that all were composed of several components. A component in each source was identified as the radio core using some or allmore » of the following emission properties: compactness, spectral index, location at the end of the extended emission region, and stationary in the sky. Over the observing period, the relative positions between the four radio cores were constant to 0.02 mas, the phase-referencing positional accuracy obtained at 23 and 43 GHz among the sources, suggesting that once a radio core is identified, it remains stationary in the sky to this accuracy. Other radio components in two of the four sources had detectable motion in the radio jet direction. Comparison of the 23 and 43 GHz VLBA images with the VLBA 8.6 GHz images and the ICRF positions suggests that some ICRF positions are dominated by a moving jet component; hence, they can be displaced up to 0.5 mas from the radio core and may also reflect the motion of the jet component. Future astrometric efforts to determine a more accurate quasar reference frame at 23 and 43 GHz and from the VLBI2010 project are discussed, and supporting VLBA or European VLBI Network observations of ICRF sources at 43 GHz are recommended in order to determine the internal structure of the sources. A future collaboration between the radio (ICRF) and the optical frame of GAIA is discussed.« less
VizieR Online Data Catalog: Circumgalactic medium surrounding z~2 quasars (Prochaska+, 2014)
NASA Astrophysics Data System (ADS)
Prochaska, J. X.; Lau, M. W.; Hennawi, J. F.
2017-08-01
The sample of quasar pairs analyzed here is a subset of the sample studied in QPQ6 (Cantalupo et al. 2014Natur.506...63C) for H I Lyα absorption. Specifically, we have restricted the current study to those pairs where the signal-to-noise ratio (S/N) at H I Lyα exceeds 9.5 per rest-frame Å. This facilitates a more precise evaluation of H I Lyα and generally insures sufficient S/N redward of Lyα for the metal-line analysis. Quasar emission redshifts are taken directly from QPQ6 (Cantalupo et al. 2014Natur.506...63C), following the methodology described in that manuscript. Briefly, we adopt a custom line-centering algorithm to centroid one or more far-UV emission lines and adopt the analysis of Shen et al. (2007, J/AJ/133/2222) to combine these measurements and assess systematic uncertainty in the final value. The median emission redshift of the 427 pairs is zemmedian=2.35 and the median uncertainty in the redshift measurements is ~520 km/s. The impact parameters range from R{perp}=39 kpc to 1 Mpc, with 52 pairs having R{perp}<200 kpc. (3 data files).
Optical variability properties of the largest AGN sample observed with Kepler/K2
NASA Astrophysics Data System (ADS)
Aranzana, E.; Koerding, E.; Uttley, P.; Scaringi, S.; Steven, B.
2017-10-01
We present the first short time-scale ( hours to days) optical variability study of a large sample of Active Galactic Nuclei (AGN) observed with the Kepler/K2 mission. The sample contains 275 AGN observed over four campaigns with ˜30-minute cadence selected from the Million Quasar Catalogue with R magnitude < 19. We performed time series analysis to determine their variability properties by means of the power spectral densities (PSDs) and applied Monte Carlo techniques to find the best model parameters that fit the observed power spectra. A power-law model is sufficient to describe all the PSDs of the AGN in our sample. The average power-law slope is 2.5±0.5, steeper than the PSDs observed in X-rays, and the rest-frame amplitude variability in the frequency range of 6×10^{-6}-10^{-4} Hz varies from 1-10 % with an average of 2.6 %. We explore correlations between the variability amplitude and key parameters of the AGN, finding a significant correlation of rest-frame short-term variability amplitude with redshift, but no such correlation with luminosity. We attribute these effects to the known 'bluer when brighter variability of quasars combined with the fixed bandpass of Kepler. This study enables us to distinguish between Seyferts and Blazar and confirm AGN candidates.
Rest-frame Optical Spectra and Black Hole Masses of 3 < z < 6 Quasars
NASA Astrophysics Data System (ADS)
Jun, Hyunsung David; Im, Myungshin; Lee, Hyung Mok; Ohyama, Youichi; Woo, Jong-Hak; Fan, Xiaohui; Goto, Tomotsugu; Kim, Dohyeong; Kim, Ji Hoon; Kim, Minjin; Lee, Myung Gyoon; Nakagawa, Takao; Pearson, Chris; Serjeant, Stephen
2015-06-01
We present the rest-frame optical spectral properties of 155 luminous quasars at 3.3 < z < 6.4 taken with the AKARI space telescope, including the first detection of the Hα emission line as far out as z ∼ 6. We extend the scaling relation between the rest-frame optical continuum and the line luminosity of active galactic nuclei (AGNs) to the high-luminosity, high-redshift regime that has rarely been probed before. Remarkably, we find that a single log-linear relation can be applied to the 5100 Å and Hα AGN luminosities over a wide range of luminosity (1042 < L5100 < 1047 ergs s-1) or redshift (0 < z < 6), suggesting that the physical mechanism governing this relation is unchanged from z = 0 to 6, over five decades in luminosity. Similar scaling relations are found between the optical and the UV continuum luminosities or line widths. Applying the scaling relations to the Hβ black hole (BH) mass (MBH) estimator of local AGNs, we derive the MBH estimators based on the Hα, Mg ii, and C iv lines, finding that the UV-line-based masses are overall consistent with the Balmer-line-based, but with a large intrinsic scatter of 0.40 dex for the C iv estimates. Our 43 MBH estimates from Hα confirm the existence of BHs as massive as ∼ 1010 M⊙ out to z ∼ 5 and provide a secure footing for previous results from Mg ii-line-based studies that a rapid MBH growth has occurred in the early universe.
The Faint End of the Quasar Luminosity Function at z ~ 4
NASA Astrophysics Data System (ADS)
Glikman, Eilat; Bogosavljević, Milan; Djorgovski, S. G.; Stern, Daniel; Dey, Arjun; Jannuzi, Buell T.; Mahabal, Ashish
2010-02-01
The evolution of the quasar luminosity function (QLF) is one of the basic cosmological measures providing insight into structure formation and mass assembly in the universe. We have conducted a spectroscopic survey to find faint quasars (-26.0 < M 1450 < -22.0) at redshifts z = 3.8-5.2 in order to measure the faint end of the QLF at these early times. Using available optical imaging data from portions of the NOAO Deep Wide-Field Survey and the Deep Lens Survey, we have color-selected quasar candidates in a total area of 3.76 deg2. Thirty candidates have R <= 23 mag. We conducted spectroscopic follow-up for 28 of our candidates and found 23 QSOs, 21 of which are reported here for the first time, in the 3.74 < z < 5.06 redshift range. We estimate our survey completeness through detailed Monte Carlo simulations and derive the first measurement of the density of quasars in this magnitude and redshift interval. We find that the binned luminosity function (LF) is somewhat affected by the K-correction used to compute the rest-frame absolute magnitude at 1450 Å. Considering only our R <= 23 sample, the best-fit single power law (Φ vprop L β) gives a faint-end slope β = -1.6 ± 0.2. If we consider our larger, but highly incomplete sample going 1 mag fainter, we measure a steeper faint-end slope -2 < β < -2.5. In all cases, we consistently find faint-end slopes that are steeper than expected based on measurements at z ~ 3. We combine our sample with bright quasars from the Sloan Digital Sky Survey to derive parameters for a double-power-law LF. Our best fit finds a bright-end slope, α = -2.4 ± 0.2, and faint-end slope, β = -2.3 ± 0.2, without a well-constrained break luminosity. This is effectively a single power law, with β = -2.7 ± 0.1. We use these results to place limits on the amount of ultraviolet radiation produced by quasars and find that quasars are able to ionize the intergalactic medium at these redshifts. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
VARIATIONS OF ABSORPTION TROUGHS IN THE QUASAR SDSS J125216.58+052737.7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhi-Fu; Qin, Yi-Ping, E-mail: zhichenfu@126.com
2015-01-20
In this work, we analyze the spectra of quasar J125216.58+052737.7 (z {sub em} = 1.9035) which was observed by SDSS-I/II on 2003 January 30 and by BOSS on 2011 April 2. Both the continuum and the absorption spectra of this quasar show obvious variations between the two epochs. In the SDSS-I/II spectrum, we detect 8 C IV λλ1548,1551 absorption systems, which are detected at z {sub abs} = 1.9098, 1.8948, 1.8841, 1.8770, 1.8732, 1.8635, 1.8154, and 1.7359, respectively, and one Mg II λλ2796,2803 absorption system at z {sub abs} = 0.9912. Among these absorption systems, two C IV λλ1548,1551 absorptionmore » systems at z {sub abs} = 1.9098 and 1.7359 and the Mg II λλ2796,2803 absorption system are imprinted on the BOSS spectrum as well, and have similar absorption strengths when compared to those measured from the SDSS-I/II spectrum. Three C IV λλ1548,1551 absorption systems at z {sub abs} = 1.8948, 1.8841, and 1.8770 are also detected in the BOSS spectrum, while their absorption strengths are much weaker than those measured from the SDSS-I/II spectrum; three systems at z {sub abs} = 1.8732, 1.8635, and 1.8154 disappeared from the BOSS spectrum. Based on the variability analysis, the absorption systems that disappeared and weakened are likely to be intrinsic to the quasar. If these intrinsic absorption gases are blown away from the central region of the quasar, with respect to the quasar system, the absorption systems that disappeared would have separation velocities of 3147 kms{sup –1}, 4161 km s{sup –1}, and 9241 km s{sup –1}, while the absorption systems that weakened would have separation velocities of 900 km s{sup –1}, 2011 km s{sup –1}, and 2751 km s{sup –1}. Well-coordinated variations of the six C IV λλ1548,1551 absorption systems that disappeared and weakened, occurring on a timescale of 1026.7 days at the quasar rest frame, can be interpreted as a result of global changes in the ionization state of the absorbing gas.« less
Reference Frames and Relativity.
ERIC Educational Resources Information Center
Swartz, Clifford
1989-01-01
Stresses the importance of a reference frame in mechanics. Shows the Galilean transformation in terms of relativity theory. Discusses accelerated reference frames and noninertial reference frames. Provides examples of reference frames with diagrams. (YP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Yan-Fei; Green, Paul J.; Pancoast, Anna
We study the time lags between the continuum emission of quasars at different wavelengths, based on more than four years of multi-band ( g , r , i , z ) light curves in the Pan-STARRS Medium Deep Fields. As photons from different bands emerge from different radial ranges in the accretion disk, the lags constrain the sizes of the accretion disks. We select 240 quasars with redshifts of z ≈ 1 or z ≈ 0.3 that are relatively emission-line free. The light curves are sampled from day to month timescales, which makes it possible to detect lags on themore » scale of the light crossing time of the accretion disks. With the code JAVELIN , we detect typical lags of several days in the rest frame between the g band and the riz bands. The detected lags are ∼2–3 times larger than the light crossing time estimated from the standard thin disk model, consistent with the recently measured lag in NGC 5548 and microlensing measurements of quasars. The lags in our sample are found to increase with increasing luminosity. Furthermore, the increase in lags going from g − r to g − i and then to g − z is slower than predicted in the thin disk model, particularly for high-luminosity quasars. The radial temperature profile in the disk must be different from what is assumed. We also find evidence that the lags decrease with increasing line ratios between ultraviolet Fe ii lines and Mg ii, which may point to changes in the accretion disk structure at higher metallicity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grier, C. J.; Brandt, W. N.; Trump, J. R.
2015-06-10
We report the discovery of rapid variations of a high-velocity C iv broad absorption line trough in the quasar SDSS J141007.74+541203.3. This object was intensively observed in 2014 as a part of the Sloan Digital Sky Survey Reverberation Mapping Project, during which 32 epochs of spectroscopy were obtained with the Baryon Oscillation Spectroscopic Survey spectrograph. We observe significant (>4σ) variability in the equivalent width (EW) of the broad (∼4000 km s{sup −1} wide) C iv trough on rest-frame timescales as short as 1.20 days (∼29 hr), the shortest broad absorption line variability timescale yet reported. The EW varied by ∼10%more » on these short timescales, and by about a factor of two over the duration of the campaign. We evaluate several potential causes of the variability, concluding that the most likely cause is a rapid response to changes in the incident ionizing continuum. If the outflow is at a radius where the recombination rate is higher than the ionization rate, the timescale of variability places a lower limit on the density of the absorbing gas of n{sub e} ≳ 3.9 × 10{sup 5} cm{sup −3}. The broad absorption line variability characteristics of this quasar are consistent with those observed in previous studies of quasars, indicating that such short-term variability may in fact be common and thus can be used to learn about outflow characteristics and contributions to quasar/host-galaxy feedback scenarios.« less
Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052
NASA Astrophysics Data System (ADS)
Sun, Luming; Zhou, Hongyan; Ji, Tuo; Jiang, Peng; Liu, Bo; Liu, Wenjuan; Pan, Xiang; Shi, Xiheng; Wang, Jianguo; Wang, Tinggui; Yang, Chenwei; Zhang, Shaohua; Miller, Lauren P.
2017-04-01
In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ˜700 and ˜1400 km s-1 relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do not change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V-band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ˜700 km s-1 has a density in the range of 109 to 1010 cm-3 and a distance of ˜1 pc, and the gas with blueshift velocity of ˜1400 km s-1 has a density of 103 cm-3 and a distance of ˜1 kpc.
Probing the Active Galactic Nuclei using optical spectroscopy
NASA Astrophysics Data System (ADS)
Vivek, M.
Variability studies offer one of the best tools for understanding the physical conditions present in regions close to the central engine in an AGN. We probed the various properties of AGN through time variability studies of spectral lines in the optical wavelengths using the 2m telescope in IUCAA Girawali observatory. The absorption line variability studies are mainly concentrated in understanding the nature of outflows in quasars. Quasar outflows have a huge impact on the evolution of central supermassive blackholes, their host galaxies and the surrounding intergalactic medium. Studying the variability in these Broad Absorption Lines (BALs) can help us understand the structure, evolution, and basic physical properties of these outflows. We conducted a repeated Low ionization BAL monitoring program with 27 LoBALs (Low Ionization BALs) at z 0.3-2.1 covering timescales from 3.22 to 7.69 years in the quasar rest frame. We see a variety of phenomena, including some BALs that either appeared or disappeared completely and some BALs which do not vary over the observation period. In one case, the excited fine structure lines have changed dramatically. One source shows signatures of radiative acceleration. Here, we present the results from this program. Emission line studies are concentrated in understanding the peculiar characteristics of a dual-AGN source SDSS J092712.64+294344.0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hidalgo, Paola Rodriguez; Eracleous, Michael; Charlton, Jane
We present the detection of a rare case of dramatic strengthening in the UV absorption profiles in the spectrum of the quasar J115122.14+020426.3 between observations {approx}2.86 yr apart in the quasar rest frame. A spectrum obtained in 2001 by the Sloan Digital Sky Survey shows a C IV ''mini-broad'' absorption line (FWHM = 1220 km s{sup -1}) with a maximum blueshift velocity of {approx}9520 km s{sup -1}, while a later spectrum from the Very Large Telescope shows a significantly broader and stronger absorption line, with a maximum blueshift velocity of {approx}12, 240 km s{sup -1} that qualifies as a broadmore » absorption line. A similar variability pattern is observed in two additional systems at lower blueshifted velocities and in the Ly{alpha} and N V transitions as well. One of the absorption systems appears to be resolved and shows evidence for partial covering of the quasar continuum source (C{sub f} {approx} 0.65), indicating a transverse absorber size of, at least, {approx}6 Multiplication-Sign 10{sup 16} cm. In contrast, a cluster of narrower C IV lines appears to originate in gas that fully covers the continuum and broad emission line sources. There is no evidence for changes in the centroid velocity of the absorption troughs. This case suggests that at least some of the absorbers that produce ''mini-broad'' and broad absorption lines in quasar spectra do not belong to intrinsically separate classes. Here, the ''mini-broad'' absorption line is most likely interpreted as an intermediate phase before the appearance of a broad absorption line due to their similar velocities. While the current observations do not provide enough constraints to discern among the possible causes for this variability, future monitoring of multiple transitions at high resolution will help achieve this goal.« less
Superconductor rotor cooling system
Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.
2004-11-02
A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.
Superconductor rotor cooling system
Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.
2002-01-01
A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.
Troposphere Delay Raytracing Applied in VLBI Analysis
NASA Astrophysics Data System (ADS)
Eriksson, David; MacMillan, Daniel; Gipson, John
2014-12-01
Tropospheric delay modeling error is one of the largest sources of error in VLBI analysis. For standard operational solutions, we use the VMF1 elevation-dependent mapping functions derived from European Centre for Medium Range Forecasting (ECMWF) data. These mapping functions assume that tropospheric delay at a site is azimuthally symmetric. As this assumption does not reflect reality, we have instead determined the raytrace delay along the signal path through the three-dimensional troposphere refractivity field for each VLBI quasar observation. We calculated the troposphere refractivity fields from the pressure, temperature, specific humidity, and geopotential height fields of the NASA GSFC GEOS-5 numerical weather model. We discuss results using raytrace delay in the analysis of the CONT11 R&D sessions. When applied in VLBI analysis, baseline length repeatabilities were better for 70% of baselines with raytraced delays than with VMF1 mapping functions. Vertical repeatabilities were better for 2/3 of all stations. The reference frame scale bias error was 0.02 ppb for raytracing versus 0.08 ppb and 0.06 ppb for VMF1 and NMF, respectively.
ERIC Educational Resources Information Center
Kelly, Jonathan W.; Sjolund, Lori A.; Sturz, Bradley R.
2013-01-01
Spatial memories are often organized around reference frames, and environmental shape provides a salient cue to reference frame selection. To date, however, the environmental cues responsible for influencing reference frame selection remain relatively unknown. To connect research on reference frame selection with that on orientation via…
The optical, ultraviolet, and X-ray structure of the quasar HE 0435–1223
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackburne, Jeffrey A.; Kochanek, Christopher S.; Chen, Bin
2014-07-10
Microlensing has proved an effective probe of the structure of the innermost regions of quasars and an important test of accretion disk models. We present light curves of the lensed quasar HE 0435–1223 in the R band and in the ultraviolet (UV), and consider them together with X-ray light curves in two energy bands that are presented in a companion paper. Using a Bayesian Monte Carlo method, we constrain the size of the accretion disk in the rest-frame near- and far-UV, and constrain for the first time the size of the X-ray emission regions in two X-ray energy bands. Themore » R-band scale size of the accretion disk is about 10{sup 15.23} cm (∼23r{sub g}), slightly smaller than previous estimates, but larger than would be predicted from the quasar flux. In the UV, the source size is weakly constrained, with a strong prior dependence. The UV to R-band size ratio is consistent with the thin disk model prediction, with large error bars. In soft and hard X-rays, the source size is smaller than ∼10{sup 14.8} cm (∼10r{sub g} ) at 95% confidence. We do not find evidence of structure in the X-ray emission region, as the most likely value for the ratio of the hard X-ray size to the soft X-ray size is unity. Finally, we find that the most likely value for the mean mass of stars in the lens galaxy is ∼0.3 M{sub ☉}, consistent with other studies.« less
Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Luming; Zhou, Hongyan; Ji, Tuo
In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ∼700 and ∼1400 km s{sup −1} relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do notmore » change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V -band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ∼700 km s{sup −1} has a density in the range of 10{sup 9} to 10{sup 10} cm{sup −3} and a distance of ∼1 pc, and the gas with blueshift velocity of ∼1400 km s{sup −1} has a density of 10{sup 3} cm{sup −3} and a distance of ∼1 kpc.« less
Using diffusion k-means for simple stellar population modeling of low S/N quasar host galaxy spectra
NASA Astrophysics Data System (ADS)
Mosby, Gregory; Tremonti, Christina A.; Hooper, Eric; Wolf, Marsha J.; Sheinis, Andrew; Richards, Joseph
2016-01-01
Quasar host galaxies (QHGs) represent a unique stage in galaxy evolution that can provide a glimpse into the relationship between an active supermassive black hole (SMBH) and its host galaxy. However, observing the hosts of high luminosity, unobscured quasars in the optical is complicated by the large ratio of quasar to host galaxy light. One strategy in optical spectroscopy is to use offset longslit observations of the host galaxy. This method allows the centers of QHGs to be analyzed apart from other regions of their host galaxies. But light from the accreting black hole's point spread function still enters the host galaxy observations, and where the contrast between the host and intervening quasar light is favorable, the host galaxy is faint, producing low signal-to-noise (S/N) data. This stymies traditional stellar population methods that might rely on high S/N features in galaxy spectra to recover key galaxy properties like its star formation history (SFH). In response to this challenge, we have developed a method of stellar population modeling using diffusion k-means (DFK) that can recover SFHs from rest frame optical data with S/N ~ 5 Å^-1. Specifically, we use DFK to cultivate a reduced stellar population basis set. This DFK basis set of four broad age bins is able to recover a range of SFHs. With an analytic description of the seeing, we can use this DFK basis set to simultaneously model the SFHs and the intervening quasar light of QHGs as well. We compare the results of this method with previous techniques using synthetic data and find that our new method has a clear advantage in recovering SFHs from QHGs. On average, the DFK basis set is just as accurate and decisively more precise. This new technique could be used to analyze other low S/N galaxy spectra like those from higher redshift or integral field spectroscopy surveys.This material is based upon work supported by the National Science Foundation under grant no. DGE -0718123 and the Advanced Opportunity fellowship program at the University of Wisconsin-Madison. This research was performed using the computer resources and assistance of the UW-Madison Center For High Throughput Computing (CHTC) in the Department of Computer Sciences.
Meeting the Challenges of Diversity and Relevance.
ERIC Educational Resources Information Center
Schwan-Smith, Margaret; Silver, Edward A.
1995-01-01
Discusses the QUASAR Project, which has worked with middle school teachers in disadvantaged communities in order to help increase the relevance of mathematics by making connections between the mathematics taught in school and the lives of students. (16 references) (MKR)
Quasar outflows and AGN feedback in the extreme UV: HST/COS observations of HE 0238-1904
NASA Astrophysics Data System (ADS)
Arav, Nahum; Borguet, Benoit; Chamberlain, Carter; Edmonds, Doug; Danforth, Charles
2013-12-01
Spectroscopic observations of quasar outflows at rest-frame 500-1000 Å have immense diagnostic power. We present analyses of such data, where absorption troughs from O IV and O IV* allow us to obtain the distance of the outflows from the AGN and troughs from Ne VIII and Mg X reveal the warm absorber phase of the outflow. Their inferred column densities, combined with those of O VI, N IV and H I, yield two important results. (1) The outflow shows two ionization phases, where the high-ionization phase carries the bulk of the material. This is similar to the situation seen in X-ray warm absorber studies. Furthermore, the low-ionization phase is inferred to have a volume filling factor of 10-5-10-6. (2) We determine a distance of 3000 pc from the outflow to the central source using the O IV*/O IV column density ratio and the knowledge of the ionization parameter. Since this is a typical high-ionization outflow, we can determine robust values for the outflow's mass flux and kinetic luminosity of 40 M⊙ yr-1 and 1045 erg s-1, respectively, where the latter is roughly equal to 1 per cent of the bolometric luminosity. Such a large kinetic luminosity and mass flow rate measured in a typical high-ionization wind suggest that quasar outflows are a major contributor to AGN feedback mechanisms.
Nontechnical Astronomy Books of 1989.
ERIC Educational Resources Information Center
Mercury, 1990
1990-01-01
Presented are 126 reviews. Categories include amateur astronomy, children's books, computers and astronomy, cosmic rays, cosmology, education in astronomy, galaxies, general astronomy, history of astronomy, life in the universe, physics and astronomy, pseudoscience, quasars and active galaxies, reference, solar system, space exploration, stars and…
Contribution of X/Ka VLBI to Multi-Wavelength Celestial Frame Studies
NASA Technical Reports Server (NTRS)
Jacobs, C. S.; Clark, J. E.; Garcia-Miro, C.; Horiuchi, S.; Sotuela, I.
2011-01-01
This paper is an update of Sotuela et al. (2011) which improves their simulated Gaia frame tie precision by approximately 10% by adding three additional VLBI observing sessions. Astrometry at X/Ka-band (8.4/32 GHz) using NASAs Deep Space Network has detected 466 quasars with accuracies of 200-300 micro-arc seconds. A program is underway to reduce errors by a factor of 2-3. From our sample, 245 sources have optical magnitudes V less than 20 and should also be detectable by Gaia. A covariance study using existing X/Ka data and simulated Gaia uncertainties for the 345 objects yields a frame tie precision of 10-15 micro-arc seconds (1 - sigma). The characterization of wavelength dependent systematic from extended source morphology and core shift should benefit greatly from adding X/Ka-band measurements to S/X-band (2.3/8.4 GHz) measurements thus helping to constrain astrophysical models of the wavelength dependence of positions.
Yamaguchi, Satoshi; Kitamura, Masako; Ushikubo, Tomohiro; Murata, Atsushi; Akagi, Ryuichiro; Sasho, Takahisa
2015-01-01
Biomechanical effects of laterally wedged insoles are assessed by reduction in the knee adduction moment. However, the degree of reduction may vary depending on the reference frame with which it is calculated. The purpose of this study was to clarify the effect of reference frame on the reduction in the knee adduction moment by laterally wedged insoles. Twenty-nine healthy participants performed gait trials with a laterally wedged insole and with a flat insole as a control. The knee adduction moment, including the first and second peaks and the angular impulse, were calculated using four different reference frames: the femoral frame, tibial frame, laboratory frame and the Joint Coordinate System. There were significant effects of reference frame on the knee adduction moment first and second peaks (P < 0.001 for both variables), while the effect was not significant for the angular impulse (P = 0.84). No significant interaction between the gait condition and reference frame was found in either of the knee adduction moment variables (P = 0.99 for all variables), indicating that the effects of laterally wedged insole on the knee adduction moments were similar across the four reference frames. On the other hand, the average percent changes ranged from 9% to 16% for the first peak, from 16% to 18% for the second peak and from 17% to 21% for the angular impulse when using the different reference frames. The effects of laterally wedged insole on the reduction in the knee adduction moment were similar across the reference frames. On the other hand, Researchers need to recognize that when the percent change was used as the parameter of the efficacy of laterally wedged insole, the choice of reference frame may influence the interpretation of how laterally wedged insoles affect the knee adduction moment.
The reference frame for encoding and retention of motion depends on stimulus set size.
Huynh, Duong; Tripathy, Srimant P; Bedell, Harold E; Öğmen, Haluk
2017-04-01
The goal of this study was to investigate the reference frames used in perceptual encoding and storage of visual motion information. In our experiments, observers viewed multiple moving objects and reported the direction of motion of a randomly selected item. Using a vector-decomposition technique, we computed performance during smooth pursuit with respect to a spatiotopic (nonretinotopic) and to a retinotopic component and compared them with performance during fixation, which served as the baseline. For the stimulus encoding stage, which precedes memory, we found that the reference frame depends on the stimulus set size. For a single moving target, the spatiotopic reference frame had the most significant contribution with some additional contribution from the retinotopic reference frame. When the number of items increased (Set Sizes 3 to 7), the spatiotopic reference frame was able to account for the performance. Finally, when the number of items became larger than 7, the distinction between reference frames vanished. We interpret this finding as a switch to a more abstract nonmetric encoding of motion direction. We found that the retinotopic reference frame was not used in memory. Taken together with other studies, our results suggest that, whereas a retinotopic reference frame may be employed for controlling eye movements, perception and memory use primarily nonretinotopic reference frames. Furthermore, the use of nonretinotopic reference frames appears to be capacity limited. In the case of complex stimuli, the visual system may use perceptual grouping in order to simplify the complexity of stimuli or resort to a nonmetric abstract coding of motion information.
Heiz, J; Majerus, S; Barisnikov, K
2017-09-28
This study examined the spontaneous use of allocentric and egocentric frames of reference and their flexible use as a function of instructions. The computerized spatial reference task created by Heiz and Barisnikov (2015) was used. Participants had to choose a frame of reference according to three types of instructions: spontaneous, allocentric and egocentric. The performances of 16 Williams Syndrome participants between 10 and 41 years were compared to those of two control groups (chronological age and non-verbal intellectual ability). The majority of Williams Syndrome participants did not show a preference for a particular frame of reference. When explicitly inviting participants to use an allocentric frame of reference, all three groups showed an increased use of the allocentric frame of reference. At the same time, an important heterogeneity of type of frame of reference used by Williams Syndrome participants was observed. Results demonstrate that despite difficulties in the spontaneous use of allocentric and egocentric frames of reference, some Williams Syndrome participants show flexibility in the use of an allocentric frame of reference when an explicit instruction is provided. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Frames of Reference in the Classroom
ERIC Educational Resources Information Center
Grossman, Joshua
2012-01-01
The classic film "Frames of Reference" effectively illustrates concepts involved with inertial and non-inertial reference frames. In it, Donald G. Ivey and Patterson Hume use the cameras perspective to allow the viewer to see motion in reference frames translating with a constant velocity, translating while accelerating, and rotating--all with…
Investigating the emission mechanisms of the jet in the quasar PKS 1127-145
NASA Astrophysics Data System (ADS)
Duffy, Ryan T.; Siemiginowska, A.; Kashyap, V.; Stein, N.; Migliori, G.
2014-01-01
There is currently uncertainty surrounding the emission mechanism for X-ray photons in quasar jets, with both Inverse Compton Scattering from the Cosmic Microwave Background (IC/CMB) and synchrotron models considered possibilities. We use a 100 ks observation (Siemiginowska et al 2007) of the redshift z=1.18, radio-loud quasar PKS 1127-145 taken by the Chandra X-ray Observatory, with the hope of accurately measuring the offsets between radio and X-ray radiation peaks in order to establish the emission process for this jet. PKS 1127-145 is a bright quasar with a long jet which has several bright knots and complex morphology, making it a perfect source for this investigation. We use a Bayesian statistical method called Low-Count Image Restoration and Analysis (LIRA, Connors & van Dyk 2007, Esch et al 2004) to investigate the quasar jet. This fits the parameters of a multiscale model to the data by employing a Markov Chain Monte Carlo process. LIRA has shown the location of some jet X-ray components, although further simulations must be undertaken to determine whether these are statistically significant. We also study these jet X-ray components in both hard and soft X-ray bands in order to gain more information on the energy of the emitted photons. References: Connors, A., & van Dyk, D. A. 2007, Statistical Challenges in Modern Astronomy IV, 371, 101 Esch, D.N., Connors, A., Karovska, M., & van Dyk, D.A. 2004, ApJ, 610, 1213 Siemiginowska, A., Stawarz, L., Cheung, C.C., et al. 2007, ApJ, 657, 145
The reference frame of figure-ground assignment.
Vecera, Shaun P
2004-10-01
Figure-ground assignment involves determining which visual regions are foreground figures and which are backgrounds. Although figure-ground processes provide important inputs to high-level vision, little is known about the reference frame in which the figure's features and parts are defined. Computational approaches have suggested a retinally based, viewer-centered reference frame for figure-ground assignment, but figural assignment could also be computed on the basis of environmental regularities in an environmental reference frame. The present research used a newly discovered cue, lower region, to examine the reference frame of figure-ground assignment. Possible reference frames were misaligned by changing the orientation of viewers by having them tilt their heads (Experiments 1 and 2) or turn them upside down (Experiment 3). The results of these experiments indicated that figure-ground perception followed the orientation of the viewer, suggesting a viewer-centered reference frame for figure-ground assignment.
ERIC Educational Resources Information Center
Tull, Ashley; Freeman, Jerrid P.
2011-01-01
Examined in this study were the identified frames of reference and locus of control used by 478 student affairs administrators. Administrator responses were examined to identify frames of reference most commonly used and their preference order. Locus of control most commonly used and the relationship between frames of reference and locus of…
Realization of ETRF2000 as a New Terrestrial Reference Frame in Republic of Serbia
NASA Astrophysics Data System (ADS)
Blagojevic, D.; Vasilic, V.
2012-12-01
The International Earth Rotation and Reference Systems Service (IERS) is a joint service of the International Association of Geodesy (IAG) and the International Astronomical Union (IAU), which provides the scientific community with the means for computing the transformation from the International Celestial Reference System (ICRS) to the International Terrestrial Reference System (ITRS). It further maintains the realizations of these systems by appropriate coordinate sets called "frames". The densification of terrestrial frame usually serves as official frame for positioning and navigation tasks within the territory of particular country. One of these densifications was recently performed in order to establish new reference frame for Republic of Serbia. The paper describes related activities resulting in ETRF2000 as a new Serbian terrestrial reference frame.
APOD Mission Status and Observations by VLBI
NASA Astrophysics Data System (ADS)
Tang, Geshi; Sun, Jing; Li, Xie; Liu, Shushi; Chen, Guangming; Ren, Tianpeng; Wang, Guangli
2016-12-01
On September 20, 2015, 20 satellites were successfully launched from the TaiYuan Satellite Launch Center by a Chinese CZ-6 test rocket and are, since then, operated in a circular, near-polar orbit at an altitude of 520 km. Among these satellites, a set of four CubSats, named APOD (Atmospheric density detection and Precise Orbit Determination), are intended for atmospheric density in-situ detection and derivation via precise orbit. The APOD satellites, manufactured by DFH Co., carry a number of instruments including a density detector, a dual-frequency GNSS (GPS/BD) receiver, an SLR reflector, and a VLBI S/X beacon. The APOD mission aims at detecting the atmospheric density below 520 km. The ground segment is controlled by BACC (Beijing Aerospace Control Center) including payload operation as well as science data receiving, processing, archiving, and distribution. Currently, the in-orbit test of the nano-satellites and their payloads are completed, and preliminary results show that the precision of the orbit determination is about 10 cm derived from both an overlap comparison and an SLR observation validation. The in-situ detected density calibrated by orbit-derived density demonstrates that the accuracy of atmospheric mass density is approximately 4.191×10^{-14} kgm^{-3}, about 5.5% of the measurement value. Since three space-geodetic techniques (i.e., GNSS, SLR, and VLBI) are co-located on the APOD nano-satellites, the observations can be used for combination and validation in order to detect systematic differences. Furthermore, the observations of the APOD satellites by VLBI radio telescopes can be used in an ideal fashion to link the dynamical reference frames of the satellite with the terrestrial and, most importantly, with the celestial reference frame as defined by the positions of quasars. The possibility of observing the APOD satellites by IVS VLBI radio telescopes will be analyzed, considering continental-size VLBI observing networks and the small telescopes with sufficient speed.
NASA Astrophysics Data System (ADS)
Wang, J.; Xu, D. W.; Wei, J. Y.
2018-05-01
We report an identification of SDSS J141324+530527.0 (SBS 1411+533) at z = 0.456344 as a new “changing-look” quasar with a “turn-on” spectral type transition from Type-1.9/2 to Type-1 within a rest-frame timescale of 1–10 yr by a comparison of our new spectroscopic observation and the Sloan Digital Sky Survey (SDSS) archive database. The SDSS DR7 spectrum taken in 2003 is dominated by a starlight emission from host galaxy redward of the Balmer limit, and has a non-detectable broad Hβ line. The new spectrum taken by us on 2017 June 1 and the SDSS DR14 spectrum taken on 2017 May 29 indicate that the object has a typical quasar spectrum with a blue continuum and strong Balmer broad emission lines. In addition, an intermediate spectral type can be identified in the SDSS DR13 spectrum taken in 2015. The invariability of the line wing of Mg II λ2800 emission and timescale argument (the invariability of [O III]λ5007 line blue asymmetry) suggests that a variation of obscuration (an accelerating outflow) is not a favorable scenario. The timescale argument allows us to believe the type transition is possibly caused by either a viscous radial inflow or a disk instability around a ∼ (5{--}9)× {10}7 {M}ȯ black hole.
Quasar Outflows and AGN Feedback in the Extreme UV: HST/COS Observations of QSO HE0238-1904
NASA Astrophysics Data System (ADS)
Arav, Nahum; Borguet, B.; Chamberlain, C.; Edmonds, D.; Danforth, C.
2014-01-01
Spectroscopic observations of quasar outflows at rest-frame 500-1000 Angstrom have immense diagnostic power. We present analyses of such data, where absorption troughs from three important ions are measured: first, O IV and O IV* that allow us to obtain the distance of high ionization outflows from the AGN; second, Ne VIII and Mg X that are sensitive to the very high ionization phase of the outflow. Their inferred column densities, combined with those of troughs from O VI, N IV, and H I, yield two important results: 1) The outflow shows two ionization phases, where the high ionization phase carries the bulk of the material. This is similar to the situation seen in x-ray warm absorber studies. Furthermore, the low ionization phase is inferred to have a volume filling factor of 10^(-5)-10^(-6). 2) From the O IV to O IV* column density ratio, and the knowledge of the ionization parameter, we determine a distance of 3000 pc. from the outflow to the central source. Since this is a typical high ionization outflow, we can determine robust values for the mass flux and kinetic luminosity of the outflow: 40 solar masses per year and 10^45 ergs/s, respectively, where the latter is roughly equal to 1% of the bolometric luminosity. Such a large kinetic luminosity and mass flow rate measured in a typical high ionization wind suggests that quasar outflows are a major contributor to AGN feedback mechanisms.
NASA Astrophysics Data System (ADS)
Shi, Xi-Heng; Jiang, Peng; Wang, Hui-Yuan; Zhang, Shao-Hua; Ji, Tuo; Liu, Wen-Juan; Zhou, Hong-Yan
2016-10-01
The accretion of the interstellar medium onto central super-massive black holes is widely accepted as the source of the gigantic energy released by the active galactic nuclei. However, few pieces of observational evidence have been confirmed directly demonstrating the existence of the inflows. The absorption line system in the spectra of quasar SDSS J112526.12+002901.3 presents an interesting example in which the rarely detected hydrogen Balmer and metastable He I absorption lines are found redshifted to the quasar's rest frame along with the low-ionization metal absorption lines Mg II, Fe II, etc. The repeated SDSS spectroscopic observations suggest a transverse velocity smaller than the radial velocity. The motion of the absorbing medium is thus dominated by infall. The He I* lines present a powerful probe to the strength of ionizing flux, while the Balmer lines imply a dense environment. With the help of photoionization simulations, we find that the absorbing medium is exposed to the radiation with ionization parameter U ≈ 10-1.8, and the density is n({{H}})≈ {10}9 {{cm}}-3. Thus the absorbing medium is located ˜4 pc away from the central engine. According to the similarity in the distance and physical conditions between the absorbing medium and the torus, we strongly propose the absorption line system as a candidate for the accretion inflow, which originates in the inner surface of the torus.
Embodied Interaction Priority: Other's Body Part Affects Numeral-Space Mappings.
You, Xuqun; Zhang, Yu; Zhu, Rongjuan; Guo, Yu
2018-01-01
Traditionally, the spatial-numerical association of response codes (SNARC) effect was presented in two-choice condition, in which only one individual reacted to both even (small) and odd (large) numbers. Few studies explored SNARC effect in a social situation. Moreover, there are many reference frames involved in SNARC effect, and it has not yet been investigated which reference frame is dominated when two participants perform the go-nogo task together. In the present study, we investigated which reference frame plays a primary role in SNARC effect when allocentric and egocentric reference frames were consistent or inconsistent in social settings. Furthermore, we explored how two actors corepresent number-space mapping interactively. Results of the two experiments demonstrated that egocentric reference frame was at work primarily when two reference frames were consistent and inconsistent. This shows that body-centered coordinate frames influence number-space mapping in social settings, and one actor may represent another actor's action and tasks.
2011-03-01
Geocentric -Equatorial Reference Frame2 ....................................................................... 31 Figure 8: Perifocal and Geocentric ...67 Figure 25: Mission 3 Geocentric Equatorial Reference Frame ...................................................... 69 Figure 26: Mission 3...Coordinate system, the Geocentric -Equatorial Reference frame and the reference frame depicted on one another is shown below. The following figures are from
Broadband Photometric Reverberation Mapping Analysis on SDSS-RM and Stripe 82 Quasars
NASA Astrophysics Data System (ADS)
Zhang, Haowen; Yang, Qian; Wu, Xuebing; Shen, Yue
2018-01-01
We extended the broadband photometric reverberation mapping (PRM) code, JAVELIN and test the availability to get broad line region (BLR) time delays that are consistent with spectroscopic reverberation mapping (SRM) projects. Broadband light curves of SDSS-RM quasars produced by convolution with system transmission curve were used in the test. We find that under similar sampling conditions (evenly and frequently sampled), the key factor determining whether the broadband PRM code can yield lags consistent with spectroscopic projects is the flux ratio of line to the reference continuum, which is in line with the findings in Zu et al. (2016). We further find a crucial line-to-continuum flux ratio, above which the mean of the ratios between the lags from PRM and SRM becomes closer to unity, and the scatter is pronouncedly reduced. Based on this flux ratio criteria, we selected some of the quasars from Hernitschek et al. (2015) and carry out broadband PRM on this subset. The performance of damped random walking (DRW) model and power-law (PL) structure function model on broadband PRM are compared using mock light curves with high, even cadences and low, uneven ones, respectively. We find that DRW model performs better in carrying out broadband PRM than PL model both for high and low cadence light curves with other data qualities similar to SDSS-RM quasars.
Cosmologies with varying speed of light: kinematic tests
NASA Astrophysics Data System (ADS)
Câmara, C. S.; Carvalho, J. C.; de Garcia Maia, M. R.
2003-08-01
In the last few years, there have appeared in the literature several models with variation of the fundamental constants of Nature, such as the speed of light (c), the elementary electric charge (e) and the Planck constant (h). The two main motivations for such interest are: (i) observations related to quasars that seem to indicate the fine structure constant is changing with time and (ii) the possibility that these models may solve some long standing problems of the standard cosmological model, without the need for inflation. In the present work, we obtain the expressions for lookback time, age of the universe, luminosity distance, angular diameter, and galaxy number counts versus redshift for the cosmological models with a power law dependence of the speed of light on the scale factor and the Hubble parameter. The Lorentz invariance and the principle of the general covariance are violated and the gravitational field equations have the same form as Einstein field equations with cosmological constant in a preferred reference frame postulated by the theory. We analyse the closed, open and flat Friedmann-Robertson-Walker (FRW) geometries. We have also obtained the limits imposed by the kinematic tests for the exponents m and n of the power laws of these models.
NASA Astrophysics Data System (ADS)
Roman, D. R.; Smith, D. A.
2017-12-01
In 2022, the National Geodetic Survey will replace all three NAD 83 reference frames with four new terrestrial reference frames. Each frame will be named after a tectonic plate (North American, Pacific, Caribbean and Mariana) and each will be related to the IGS frame through three Euler Pole parameters (EPPs). This talk will focus on three main areas of error propagation when defining coordinates in these four frames. Those areas are (1) use of the small angle approximation to relate true rotation about an Euler Pole to small rotations about three Cartesian axes (2) The current state of the art in determining the Euler Poles of these four plates and (3) the combination of both IGS Cartesian coordinate uncertainties and EPP uncertainties into coordinate uncertainties in the four new frames. Discussion will also include recent efforts at improving the Euler Poles for these frames and expected dates when errors in the EPPs will cause an unacceptable level of uncertainty in the four new terrestrial reference frames.
Environmental Inversion Effects in Face Perception
ERIC Educational Resources Information Center
Davidenko, Nicolas; Flusberg, Stephen J.
2012-01-01
Visual processing is highly sensitive to stimulus orientation; for example, face perception is drastically worse when faces are oriented inverted vs. upright. However, stimulus orientation must be established in relation to a particular reference frame, and in most studies, several reference frames are conflated. Which reference frame(s) matter in…
TOWARD DETECTING THE 2175 A DUST FEATURE ASSOCIATED WITH STRONG HIGH-REDSHIFT Mg II ABSORPTION LINES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang Peng; Zhou Hongyan; Wang Junxian
2011-05-10
We report detections of 39 2175 A dust extinction bump candidates associated with strong Mg II absorption lines at z{approx} 1-1.8 on quasar spectra in Sloan Digital Sky Survey (SDSS) DR3. These strong Mg II absorption line systems are detected among 2951 strong Mg II absorbers with a rest equivalent width W{sub r} {lambda}2796> 1.0 A at 1.0 < z < 1.86, which is part of a full sample of 7421 strong Mg II absorbers compiled by Prochter et al. The redshift range of the absorbers is chosen to allow the 2175 A extinction features to be completely covered withinmore » the SDSS spectrograph operation wavelength range. An upper limit of the background quasar emission redshift at z = 2.1 is set to prevent the Ly{alpha} forest lines from contaminating the sensitive spectral region for the 2175 A bump measurements. The FM90 parameterization is applied to model the optical/UV extinction curve in the rest frame of Mg II absorbers of the 2175 A bump candidates. The simulation technique developed by Jiang et al. is used to derive the statistical significance of the candidate 2175 A bumps. A total of 12 absorbers are detected with 2175 A bumps at a 5{sigma} level of statistical significance, 10 are detected at a 4{sigma} level, and 17 are detected at a 3{sigma} level. Most of the candidate bumps in this work are similar to the relatively weak 2175 A bumps observed in the Large Magellanic Cloud LMC2 supershell rather than the strong ones observed in the Milky Way. This sample has greatly increased the total number of 2175 A extinction bumps measured on SDSS quasar spectra. Follow-up observations may rule out some of the possible false detections and reveal the physical and chemical natures of 2175 A quasar absorbers.« less
GALAXIES IN THE YOUNG UNIVERSE [left
NASA Technical Reports Server (NTRS)
2002-01-01
This image of a small region of the constellation Sculptor, taken with a ground-based photographic sky survey camera, illustrates the extremely small angular size of a distant galaxy cluster in the night sky. Though this picture encompasses a piece of the sky about the width of the bowl of the Big Dipper, the cluster is so far away it fills a sky area only 1/10th the diameter of the Full Moon. The cluster members are not visible because they are so much fainter than foreground stars. [center] A NASA Hubble Space Telescope (HST) image of the farthest cluster of galaxies in the universe, located at a distance of 12 billion light-years. Because the light from these remote galaxies has taken 12 billion years to reach us, this image is a remarkable glimpse of the primeval universe, at it looked about two billion years after the Big Bang. The cluster contains 14 galaxies, the other objects are largely foreground galaxies. The galaxy cluster lies in front of quasar Q0000-263 in the constellation Sculptor. Presumably the brilliant core of an active galaxy, the quasar provides a beacon for searching for primordial galaxy clusters. The image is the full field view of the Wide Field and Planetary Camera-2, taken on September 6, 1994. The 4.7-hour exposure reveals objects down to 28.5 magnitude. [right] This enlargement shows one of the farthest normal galaxies yet detected, (blob at center right) at a distance of 12 billion light-years (redshift of z=3.330). The galaxy lies 300 million light-years in front of the quasar Q0000-263 (z=4.11, large white blob and spike on left side of frame) and was detected because it absorbs some light from the quasar. The galaxy's spectrum reveals that vigorous star formation is taking place. Credit: Duccio Macchetto (ESA/STScI), Mauro Giavalisco (STScI), and NASA
REVERBERATION AND PHOTOIONIZATION ESTIMATES OF THE BROAD-LINE REGION RADIUS IN LOW-z QUASARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negrete, C. Alenka; Dultzin, Deborah; Marziani, Paola
2013-07-01
Black hole mass estimation in quasars, especially at high redshift, involves the use of single-epoch spectra with signal-to-noise ratio and resolution that permit accurate measurement of the width of a broad line assumed to be a reliable virial estimator. Coupled with an estimate of the radius of the broad-line region (BLR) this yields the black hole mass M{sub BH}. The radius of the BLR may be inferred from an extrapolation of the correlation between source luminosity and reverberation-derived r{sub BLR} measures (the so-called Kaspi relation involving about 60 low-z sources). We are exploring a different method for estimating r{sub BLR}more » directly from inferred physical conditions in the BLR of each source. We report here on a comparison of r{sub BLR} estimates that come from our method and from reverberation mapping. Our ''photoionization'' method employs diagnostic line intensity ratios in the rest-frame range 1400-2000 A (Al III {lambda}1860/Si III] {lambda}1892, C IV {lambda}1549/Al III {lambda}1860) that enable derivation of the product of density and ionization parameter with the BLR distance derived from the definition of the ionization parameter. We find good agreement between our estimates of the density, ionization parameter, and r{sub BLR} and those from reverberation mapping. We suggest empirical corrections to improve the agreement between individual photoionization-derived r{sub BLR} values and those obtained from reverberation mapping. The results in this paper can be exploited to estimate M{sub BH} for large samples of high-z quasars using an appropriate virial broadening estimator. We show that the width of the UV intermediate emission lines are consistent with the width of H{beta}, thereby providing a reliable virial broadening estimator that can be measured in large samples of high-z quasars.« less
NASA Technical Reports Server (NTRS)
Chartas, George
2003-01-01
We report on an observation of the broad absorption line (BAL) quasar PG 1115+080 performed with the XMM-Newton observatory. Spectral analysis reveals the second case of a relativistic X-ray-absorbing outflow in a BAL quasar. The first case was revealed in a recent observation of APM 08279+5255 with the Chandra X-Ray Observatory. As in the case of APM 08279+5255, the observed flux of PG 1115+080 is greatly magnified by gravitational lensing. The relatively high redshift (z=1.72) of the quasar places the redshifted energies of resonant absorption features in a sensitive portion of the XMM- Newton spectral response. The spectrum indicates the presence of complex low-energy absorption in the 0.2-0.6 keV observed energy band and high-energy absorption in the 2-5 keV observed energy band. The high-energy absorption is best modeled by two Gaussian absorption lines with rest-frame energies of 7.4 and 9.5 keV. Assuming that these two lines axe produced by resonant absorption due to Fe XXV, we infer that the X-ray absorbers are outflowing with velocities of approx. 0.10c and approx. 0.34c respectively. We have detected significant variability of the energies and widths of the X-ray BALs in PG 1115+080 and APM 08279+5255 over timescales of 19 and 1.8 weeks (proper time), respectively. The BAL variability observed from APM 08279+5255 supports our earlier conclusion that these absorbers are most likely launched at relatively small radii of less than 10(exp 16)(Mbh/M8)(sup 1/2) cm. A comparison of the ionization properties and column densities of the low-energy and high-energy absorbers indicates that these absorbers are likely distinct; however, higher spectral resolution is needed to confirm this result. Finally, we comment on prospects for constraining the kinematic and ionization properties of these X-ray BALs with the next generation of X-ray observatories.
Toward Detecting the 2175 Å Dust Feature Associated with Strong High-redshift Mg II Absorption Lines
NASA Astrophysics Data System (ADS)
Jiang, Peng; Ge, Jian; Zhou, Hongyan; Wang, Junxian; Wang, Tinggui
2011-05-01
We report detections of 39 2175 Å dust extinction bump candidates associated with strong Mg II absorption lines at z~ 1-1.8 on quasar spectra in Sloan Digital Sky Survey (SDSS) DR3. These strong Mg II absorption line systems are detected among 2951 strong Mg II absorbers with a rest equivalent width Wr λ2796> 1.0 Å at 1.0 < z < 1.86, which is part of a full sample of 7421 strong Mg II absorbers compiled by Prochter et al. The redshift range of the absorbers is chosen to allow the 2175 Å extinction features to be completely covered within the SDSS spectrograph operation wavelength range. An upper limit of the background quasar emission redshift at z = 2.1 is set to prevent the Lyα forest lines from contaminating the sensitive spectral region for the 2175 Å bump measurements. The FM90 parameterization is applied to model the optical/UV extinction curve in the rest frame of Mg II absorbers of the 2175 Å bump candidates. The simulation technique developed by Jiang et al. is used to derive the statistical significance of the candidate 2175 Å bumps. A total of 12 absorbers are detected with 2175 Å bumps at a 5σ level of statistical significance, 10 are detected at a 4σ level, and 17 are detected at a 3σ level. Most of the candidate bumps in this work are similar to the relatively weak 2175 Å bumps observed in the Large Magellanic Cloud LMC2 supershell rather than the strong ones observed in the Milky Way. This sample has greatly increased the total number of 2175 Å extinction bumps measured on SDSS quasar spectra. Follow-up observations may rule out some of the possible false detections and reveal the physical and chemical natures of 2175 Å quasar absorbers.
CHANDRA Detects Relativistic Broad Absorption Lines from APM 08279+5255
NASA Astrophysics Data System (ADS)
Chartas, G.; Brandt, W. N.; Gallagher, S. C.; Garmire, G. P.
2002-11-01
We report the discovery of X-ray broad absorption lines (BALs) from the BAL quasar APM 08279+5255 originating from material moving at relativistic velocities with respect to the central source. The large flux magnification by a factor of ~100 provided by the gravitational lens effect combined with the large redshift (z=3.91) of the quasar have facilitated the acquisition of the first high signal-to-noise X-ray spectrum of a quasar containing X-ray BALs. Our analysis of the X-ray spectrum of APM 08279+5255 places the rest-frame energies of the two observed absorption lines at 8.1 and 9.8 keV. The detection of each of these lines is significant at a greater than 99.9% confidence level based on the F-test. Assuming that the absorption lines are from Fe XXV Kα, the implied bulk velocities of the X-ray BALs are ~0.2c and ~0.4c, respectively. The observed high bulk velocities of the X-ray BALs combined with the relatively short recombination timescales of the X-ray-absorbing gas imply that the absorbers responsible for the X-ray BALs are located at radii of <~2×1017 cm, within the expected location of the UV absorber. With this implied geometry, the X-ray gas could provide the necessary shielding to prevent the UV absorber from being completely ionized by the central X-ray source, consistent with hydrodynamical simulations of line-driven disk winds. Estimated mass-outflow rates for the gas creating the X-ray BALs are typically less than a solar mass per year. Our spectral analysis also indicates that the continuum X-ray emission of APM 08279+5255 is consistent with that of a typical radio-quiet quasar with a spectral slope of Γ=1.72+0.06-0.05.
NASA Astrophysics Data System (ADS)
2007-01-01
Using ESO's Very Large Telescope and the W.M. Keck Observatory, astronomers at the Ecole Polytechnique Fédérale de Lausanne in Switzerland and the California Institute of Technology, USA, have discovered what appears to be the first known triplet of quasars. This close trio of supermassive black holes lies about 10.5 billion light-years away towards the Virgo (The Virgin) constellation. "Quasars are extremely rare objects," says George Djorgovski, from Caltech and leader of the team that made the discovery. "To find two of them so close together is very unlikely if they were randomly distributed in space. To find three is unprecedented." The findings are being reported at the winter 2007 meeting of the American Astronomical Society in Seattle, USA. ESO PR Photo 02/07 ESO PR Photo 02/07 The Trio of Quasars Quasars are extraordinary luminous objects in the distant universe, thought to be powered by supermassive black holes at the heart of galaxies. A single quasar could be a thousand times brighter than an entire galaxy of a hundred billion stars, and yet this remarkable amount of energy originates from a volume smaller than our solar system. About a hundred thousand quasars have been found to date, and among them several tens of close pairs, but this is the first known case of a close triple quasar system. Quasars (QUAsi StellAR Sources) were first discovered in 1963 by the Dutch-American astronomer Maarten Schmidt at the Palomar Observatory (California, USA) and the name refers to their 'star-like' appearance on the images obtained at that time. Distinguishing them from stars is thus no easy task and discovering a close trio of such objects is even less obvious. The feat could only be accomplished by combining images from two of the largest ground-based telescopes, ESO's 8.2-m Very Large Telescope at Cerro Paranal, in Chile, and the W. M. Keck Observatory's 10-m telescope atop Mauna Kea, Hawaii, as well as using a very sophisticated and efficient image sharpening method. The distant quasar LBQS 1429-008 was first discovered in 1989 by an international team of astronomers led by Paul Hewett of the Institute of Astronomy in Cambridge, England. Hewett and his collaborators found a fainter companion to their quasar, and proposed that it was a case of gravitational lensing. According to Einstein's general theory of relativity, if a large mass (such as a big galaxy or a cluster of galaxies) is placed along the line of sight to a distant quasar, the light rays are bent, and an observer on Earth will see two or more close images of the quasar - a cosmic mirage. The first such gravitational lens was discovered in 1979, and hundreds of cases are now known. However, several groups over the past several years cast doubts that this system is a gravitational lens, and proposed instead that it is a close physical pair of quasars. What the Caltech-Swiss team has found is that there is a third, even fainter quasar associated with the previously known two. The three quasars have the same redshift, hence, are at the same distance from us. The astronomers performed an extensive theoretical modeling, trying to explain the observed geometry of the three images as a consequence of gravitational lensing. "We just could not reproduce the data," says Frédéric Courbin of Lausanne. "It is essentially impossible to account for what we see using reasonable gravitational lensing models." Moreover, there is no trace of a possible lensing galaxy, which would be needed if the system were a gravitational lens. The team has also documented small, but significant differences in the properties of the three quasars. These are much easier to understand if the three quasars are physically distinct objects, rather than gravitational lensing mirages. Combining all these pieces of evidence effectively eliminated lensing as a possible explanation. "We were left with an even more exciting possibility that this is an actual triple quasar," says Georges Meylan, also from Lausanne. The three quasars are separated by only about 100,000 to 150,000 light-years, which is about the size of our own Milky Way. Gravitational lensing can be used to probe the distribution of dark and visible mass in the universe, but quasar pairs -and now a triplet- provide astronomers with a different kind of insight. "Quasars are believed to be powered by gas falling into supermassive black holes," says Djorgovski. "This process happens very effectively when galaxies collide or merge, and we are observing this system at the time in the cosmic history when such galaxy interactions were at a peak." If galaxy interactions were responsible for the quasar activity, having two quasars close together would be much more likely than if they were randomly distributed in space. This may explain the unusual abundance of binary quasars, which have been reported by several groups. "In this case, we are lucky to catch a rare situation where quasars are ignited in three interacting galaxies," says Ashish Mahabal, one of the Caltech scientists involved in the study. Discoveries of more such systems in the future may help astronomers understand better the fundamental relationship between the formation and evolution of galaxies, and the supermassive black holes in their cores, now believed to be common in most large galaxies, our own Milky Way included. This work is also described in a paper submitted to the Astrophysical Journal Letters. The team is composed of S. George Djorgovski, Ashish Mahabal, and Eilat Glikman of Caltech (USA), Frédéric Courbin, Georges Meylan and Dominique Sluse of the Ecole Polytechnique Fédérale de Lausanne (Switzerland), and David Thompson of the University of Arizona's Large Binocular Telescope Observatory (USA).
Short time-scale optical variability properties of the largest AGN sample observed with Kepler/K2
NASA Astrophysics Data System (ADS)
Aranzana, E.; Körding, E.; Uttley, P.; Scaringi, S.; Bloemen, S.
2018-05-01
We present the first short time-scale (˜hours to days) optical variability study of a large sample of active galactic nuclei (AGNs) observed with the Kepler/K2 mission. The sample contains 252 AGN observed over four campaigns with ˜30 min cadence selected from the Million Quasar Catalogue with R magnitude <19. We performed time series analysis to determine their variability properties by means of the power spectral densities (PSDs) and applied Monte Carlo techniques to find the best model parameters that fit the observed power spectra. A power-law model is sufficient to describe all the PSDs of our sample. A variety of power-law slopes were found indicating that there is not a universal slope for all AGNs. We find that the rest-frame amplitude variability in the frequency range of 6 × 10-6-10-4 Hz varies from 1to10 per cent with an average of 1.7 per cent. We explore correlations between the variability amplitude and key parameters of the AGN, finding a significant correlation of rest-frame short-term variability amplitude with redshift. We attribute this effect to the known `bluer when brighter' variability of quasars combined with the fixed bandpass of Kepler data. This study also enables us to distinguish between Seyferts and blazars and confirm AGN candidates. For our study, we have compared results obtained from light curves extracted using different aperture sizes and with and without detrending. We find that limited detrending of the optimal photometric precision light curve is the best approach, although some systematic effects still remain present.
Classical and quantum communication without a shared reference frame.
Bartlett, Stephen D; Rudolph, Terry; Spekkens, Robert W
2003-07-11
We show that communication without a shared reference frame is possible using entangled states. Both classical and quantum information can be communicated with perfect fidelity without a shared reference frame at a rate that asymptotically approaches one classical bit or one encoded qubit per transmitted qubit. We present an optical scheme to communicate classical bits without a shared reference frame using entangled photon pairs and linear optical Bell state measurements.
Swaffield
1998-07-01
/ The concept of frame of reference offers a potentially useful analytical metaphor in environmental management. This is illustrated by a case study in which attitudes of individuals involved in the management of trees in the New Zealand high country are classified into seven distinctive frames of reference. Some practical and theoretical implications of the use of the frame metaphor are explored, including its potential contribution to the emerg- ing field of communicative planning. KEY WORDS: Frames of reference; Environmental policy analysis; Metaphor; New Zealand high country
The Large Area KX Quasar Survey: Photometric Redshift Selection and the Complete Quasar Catalogue
NASA Astrophysics Data System (ADS)
Maddox, Natasha; Hewett, P. C.; Peroux, C.
2013-01-01
We have completed a large area, ˜600 square degree, spectroscopic survey for luminous quasars flux-limited in the K-band. The survey utilises the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) in regions of sky within the Sloan Digital Sky Survey (SDSS) footprint. We exploit the K-band excess (KX) of all quasars with respect to Galactic stars in combination with a custom-built photometric redshift/classification scheme to identify quasar candidates for spectroscopic follow-up observations. The survey is complete to K≤16.6, and includes >3200 known quasars from the SDSS, with more than 250 additional confirmed quasars from the KX-selection which eluded the SDSS quasar selection algorithm. The selection is >95% complete with respect to known SDSS quasars and >95% efficient, largely independent of redshift and magnitude. The KX-selected quasars will provide new constraints on the fraction of luminous quasars reddened by dust with E(B-V)≤0.5 mag. Several projects utilizing the KX quasars are ongoing, including a spectroscopic campaign searching for dusty quasar intervening absorption systems. The KX survey is a well-defined sample of quasars useful for investigating the properties of luminous quasars with intermediate levels of dust extinction either within their host galaxies or due to intervening absorption systems.
GNSS RTK-networks: The significance and issues to realize a recent reference coordinate system
NASA Astrophysics Data System (ADS)
Umnig, Elke; Möller, Gregor; Weber, Robert
2014-05-01
The upcoming release of the new global reference frame ITRF2013 will provide high accurate reference station positions and station velocities at the mm- and mm/year level, respectively. ITRF users benefit from this development in various ways. For example, this new frame allows for embedding high accurate GNSS baseline observations to an underlying reference of at least the same accuracy. Another advantage is that the IGS products are fully consistent with this frame and therefore all GNSS based zero-difference positioning results (Precise Point Positioning (PPP)) will be aligned to the ITRF2013. Unfortunately the transistion to a new frame (or just to a new epoch) implies also issues in particular for providers and users of real time positioning services. Thus providers have to perform arrangements, such as the readjustment of the reference station coordinates and the update of the transformation parameters from the homogenous GNSS coordinate frame into the national datum. Finally providers have to inform their clients appropriately about these changes and significant adjustments. Furthermore the aspect of the continental reference frame has to be considered: In Europe the use of the continental reference system/reference frame ETRS89/ETRF2000 is, due to cross-national guidelines, recommend by most national mapping authorities. Subsequently GNSS post-processing applications are degraded by the concurrent use of the reference systems and reference frames, to which terrestrial site coordinates and satellite coordinates are aligned. In this presentation we highlight all significant steps and hurdles which have to be jumped over when introducing a new reference frame from point of view of a typical regional RTK-reference station network provider. This network is located in Austria and parts of the neighbouring countries and consists of about 40 reference stations. Moreover, we discuss the significance of permanently monitoring the stability of the reference network sites and the determination of station velocities/rates for geodynamical investigations.
NASA Astrophysics Data System (ADS)
Ai, Y. L.; Wu, Xue-Bing; Yang, Jinyi; Yang, Qian; Wang, Feige; Guo, Rui; Zuo, Wenwen; Dong, Xiaoyi; Zhang, Y.-X.; Yuan, H.-L.; Song, Y.-H.; Wang, Jianguo; Dong, Xiaobo; Yang, M.; -Wu, H.; Shen, S.-Y.; Shi, J.-R.; He, B.-L.; Lei, Y.-J.; Li, Y.-B.; Luo, A.-L.; Zhao, Y.-H.; Zhang, H.-T.
2016-02-01
We present preliminary results of the quasar survey in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) first data release (DR1), which includes the pilot survey and the first year of the regular survey. There are 3921 quasars reliably identified, among which 1180 are new quasars discovered in the survey. These quasars are at low to median redshifts, with a highest z of 4.83. We compile emission line measurements around the Hα, Hβ, Mg II, and C IV regions for the new quasars. The continuum luminosities are inferred from SDSS photometric data with model fitting, as the spectra in DR1 are non-flux-calibrated. We also compile the virial black hole mass estimates, with flags indicating the selection methods, and broad absorption line quasars. The catalog and spectra for these quasars are also available. Of the 3921 quasars, 28% are independently selected with optical-infrared colors, indicating that the method is quite promising for the completeness of the quasar survey. LAMOST DR1 and the ongoing quasar survey will provide valuable data for studies of quasars.
Estimating pixel variances in the scenes of staring sensors
Simonson, Katherine M [Cedar Crest, NM; Ma, Tian J [Albuquerque, NM
2012-01-24
A technique for detecting changes in a scene perceived by a staring sensor is disclosed. The technique includes acquiring a reference image frame and a current image frame of a scene with the staring sensor. A raw difference frame is generated based upon differences between the reference image frame and the current image frame. Pixel error estimates are generated for each pixel in the raw difference frame based at least in part upon spatial error estimates related to spatial intensity gradients in the scene. The pixel error estimates are used to mitigate effects of camera jitter in the scene between the current image frame and the reference image frame.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilbert, B.; Chiaberge, M.; Kotyla, J. P.
2016-07-01
We present new rest-frame UV and visible observations of 22 high- z (1 < z < 2.5) 3C radio galaxies and QSOs obtained with the Hubble Space Telescope ’s Wide Field Camera 3 instrument. Using a custom data reduction strategy in order to assure the removal of cosmic rays, persistence signal, and other data artifacts, we have produced high-quality science-ready images of the targets and their local environments. We observe targets with regions of UV emission suggestive of active star formation. In addition, several targets exhibit highly distorted host galaxy morphologies in the rest frame visible images. Photometric analyses revealmore » that brighter QSOs generally tend to be redder than their dimmer counterparts. Using emission line fluxes from the literature, we estimate that emission line contamination is relatively small in the rest frame UV images for the QSOs. Using archival VLA data, we have also created radio map overlays for each of our targets, allowing for analysis of the optical and radio axes alignment.« less
Spatial vision within egocentric and exocentric frames of reference
NASA Technical Reports Server (NTRS)
Howard, Ian P.
1991-01-01
It is remarkable that we are able to perceive a stable visual world and judge the directions, orientations, and movements of visual objects given that images move on the retina, the eyes move in the head, the head moves on the body, and the body moves in space. An understanding of the mechanisms underlying perceptual stability and spatial judgements requires precise definitions of relevant coordinate systems. An egocentric frame of reference is defined with respect to some part of the observer. There are four principal egocentric frames of reference, a station-point frame associated with the nodal point of the eye, an retinocentric frame associated with the retina, a headcentric frame associated with the head, and a bodycentric frame (torsocentric) associated with the torso. Additional egocentric frames can be identified with respect to any segment of the body. An egocentric task is one in which the position, orientation, or motion of an object is judged with respect to an egocentric frame of reference. A proprioceptive is a special kind of egocentric task in which the object being judged is also part of the body. An example of a proprioceptive task is that of directing the gaze toward the seen or unseen toe. An exocentric frame of reference is external to the observer. Geographical coordinates and the direction of gravity are examples of exocentric frames of reference. These various frames are listed in tabular form, together with examples of judgements of each type.
E-GRASP/Eratosthenes: GRGS numerical simulations and millimetric TRF realization
NASA Astrophysics Data System (ADS)
Pollet, A.; Coulot, D.; Biancale, R.; Mandea, M.
2017-12-01
To accurately measuring and understanding changes in sea level, ice sheets and other elements of the dynamic Earth system, a stable Terrestrial Reference Frame (TRF) is needed. To reach the goals for the TRF realization of 1 mm accuracy and 0.1 mm/year stability (GGOS, Meeting the Requirements of a Global Society on a Changing Planet in 2020, Plag and Pearlman, 2009), The European - Geodetic Reference Antenna in Space (E-GRASP) has been recently proposed to the ESA EE9 call. This space mission is designed to build an enduring and stable TRF, by carrying very precise sensor systems for all the key geodetic techniques used to define and monitor the TRF (DORIS, GNSS, SLR and VLBI).In this study, we present the numerical simulations carried out by the French Groupe de Recherche en Géodésie Spatiale (GRGS). We simulated the measurements of the four geodetic techniques (DORIS and SLR measurements to E-GRASP, VLBI interferometric measurements on E-GRASP and GPS measurements from ground stations and from E-GRASP) over five years. Next, we have evaluated the expected exactitude and stability of the TRF provided by the processing of these measurements. In addition, we show the expected impact of the on-board instrument calibration on the TRF. Finally, we simulated the measurements of the two LAGEOS and four DORIS satellites, quasars for VLBI and we computed two multi-technique combinations, one with E-GRASP measurements and one without, to evaluate the contribution of this satellite to a combination.
Contextual cueing of tactile search is coded in an anatomical reference frame.
Assumpção, Leonardo; Shi, Zhuanghua; Zang, Xuelian; Müller, Hermann J; Geyer, Thomas
2018-04-01
This work investigates the reference frame(s) underlying tactile context memory, a form of statistical learning in a tactile (finger) search task. In this task, if a searched-for target object is repeatedly encountered within a stable spatial arrangement of task-irrelevant distractors, detecting the target becomes more efficient over time (relative to nonrepeated arrangements), as learned target-distractor spatial associations come to guide tactile search, thus cueing attention to the target location. Since tactile search displays can be represented in several reference frames, including multiple external and an anatomical frame, in Experiment 1 we asked whether repeated search displays are represented in tactile memory with reference to an environment-centered or anatomical reference frame. In Experiment 2, we went on examining a hand-centered versus anatomical reference frame of tactile context memory. Observers performed a tactile search task, divided into a learning and test session. At the transition between the two sessions, we introduced postural manipulations of the hands (crossed ↔ uncrossed in Expt. 1; palm-up ↔ palm-down in Expt. 2) to determine the reference frame of tactile contextual cueing. In both experiments, target-distractor associations acquired during learning transferred to the test session when the placement of the target and distractors was held constant in anatomical, but not external, coordinates. In the latter, RTs were even slower for repeated displays. We conclude that tactile contextual learning is coded in an anatomical reference frame. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
A study of ten quasars with redshifts greater than four
NASA Technical Reports Server (NTRS)
Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.
1989-01-01
Four quasars with redshifts greater than four were detected in a low-resolution CCD grism survey. CCD photometry and high S/N, moderate resolution spectra are presented for these quasars and the six other known quasars with redshifts above 4. The M sub B values of nine of the objects are between -27.5 and -25, with the tenth quasar having an M sub B value of -29. The emission lines and shapes of the continua of these ten quasars are similar to those of lower-redshift quasars. The results suggest that the C IV emission lines in high-redshift quasars may be weaker than those in lower-redshift quasars. The continua of all of the high-redshift quasars display strong depressions blueward of the Ly-alpha emission line.
SIX MORE QUASARS AT REDSHIFT 6 DISCOVERED BY THE CANADA-FRANCE HIGH-z QUASAR SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willott, Chris J.; Crampton, David; Hutchings, John B.
2009-03-15
We present imaging and spectroscopic observations for six quasars at z {>=} 5.9 discovered by the Canada-France High-z Quasar Survey (CFHQS). The CFHQS contains subsurveys with a range of flux and area combinations to sample a wide range of quasar luminosities at z {approx} 6. The new quasars have luminosities 10-75 times lower than the most luminous Sloan Digital Sky Survey quasars at this redshift. The least luminous quasar, CFHQS J0216-0455 at z = 6.01, has absolute magnitude M {sub 1450} = -22.21, well below the likely break in the luminosity function. This quasar is not detected in a deepmore » XMM-Newton survey showing that optical selection is still a very efficient tool for finding high-redshift quasars.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ai, Y. L.; Wu, Xue-Bing; Yang, Jinyi
2016-02-15
We present preliminary results of the quasar survey in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) first data release (DR1), which includes the pilot survey and the first year of the regular survey. There are 3921 quasars reliably identified, among which 1180 are new quasars discovered in the survey. These quasars are at low to median redshifts, with a highest z of 4.83. We compile emission line measurements around the Hα, Hβ, Mg ii, and C iv regions for the new quasars. The continuum luminosities are inferred from SDSS photometric data with model fitting, as the spectra inmore » DR1 are non-flux-calibrated. We also compile the virial black hole mass estimates, with flags indicating the selection methods, and broad absorption line quasars. The catalog and spectra for these quasars are also available. Of the 3921 quasars, 28% are independently selected with optical–infrared colors, indicating that the method is quite promising for the completeness of the quasar survey. LAMOST DR1 and the ongoing quasar survey will provide valuable data for studies of quasars.« less
NASA Astrophysics Data System (ADS)
Dong, X. Y.; Wu, Xue-Bing; Ai, Y. L.; Yang, J. Y.; Yang, Q.; Wang, F.; Zhang, Y. X.; Luo, A. L.; Xu, H.; Yuan, H. L.; Zhang, J. N.; Wang, M. X.; Wang, L. L.; Li, Y. B.; Zuo, F.; Hou, W.; Guo, Y. X.; Kong, X.; Chen, X. Y.; Wu, Y.; Yang, H. F.; Yang, M.
2018-05-01
This is the second installment for the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) Quasar Survey, which includes quasars observed from 2013 September to 2015 June. There are 9024 confirmed quasars in DR2 and 10911 in DR3. After cross-match with the Sloan Digital Sky Survey (SDSS) quasar catalogs and NED, 12126 quasars are discovered independently. Among them, 2225 quasars were released by SDSS DR12 QSO catalog in 2014 after we finalized the survey candidates. 1801 sources were identified by SDSS DR14 as QSOs. The remaining 8100 quasars are considered as newly founded, and among them, 6887 quasars can be given reliable emission line measurements and the estimated black hole masses. Quasars found in LAMOST are mostly located at low-to-moderate redshifts, with a mean value of 1.5. The highest redshift observed in DR2 and DR3 is 5. We applied emission line measurements to Hα, Hβ, Mg II, and C IV. We deduced the monochromatic continuum luminosities using photometry data, and estimated the virial black hole masses for the newly discovered quasars. Results are compiled into a quasar catalog, which will be available online.
NASA Astrophysics Data System (ADS)
Plummer, Julia D.; Bower, Corinne A.; Liben, Lynn S.
2016-02-01
This study investigates the role of perspective-taking skills in how children explain spatially complex astronomical phenomena. Explaining many astronomical phenomena, especially those studied in elementary and middle school, requires shifting between an Earth-based description of the phenomena and a space-based reference frame. We studied 7- to 9-year-old children (N = 15) to (a) develop a method for capturing how children make connections between reference frames and to (b) explore connections between perspective-taking skill and the nature of children's explanations. Children's explanations for the apparent motion of the Sun and stars and for seasonal changes in constellations were coded for accuracy of explanation, connection between frames of reference, and use of gesture. Children with higher spatial perspective-taking skills made more explicit connections between reference frames and used certain gesture-types more frequently, although this pattern was evident for only some phenomena. Findings suggest that children - particularly those with lower perspective-taking skills - may need additional support in learning to explicitly connect reference frames in astronomy. Understanding spatial thinking among children who successfully made explicit connections between reference frames in their explanations could be a starting point for future instruction in this domain.
Spatial Updating Strategy Affects the Reference Frame in Path Integration.
He, Qiliang; McNamara, Timothy P
2018-06-01
This study investigated how spatial updating strategies affected the selection of reference frames in path integration. Participants walked an outbound path consisting of three successive waypoints in a featureless environment and then pointed to the first waypoint. We manipulated the alignment of participants' final heading at the end of the outbound path with their initial heading to examine the adopted reference frame. We assumed that the initial heading defined the principal reference direction in an allocentric reference frame. In Experiment 1, participants were instructed to use a configural updating strategy and to monitor the shape of the outbound path while they walked it. Pointing performance was best when the final heading was aligned with the initial heading, indicating the use of an allocentric reference frame. In Experiment 2, participants were instructed to use a continuous updating strategy and to keep track of the location of the first waypoint while walking the outbound path. Pointing performance was equivalent regardless of the alignment between the final and the initial headings, indicating the use of an egocentric reference frame. These results confirmed that people could employ different spatial updating strategies in path integration (Wiener, Berthoz, & Wolbers Experimental Brain Research 208(1) 61-71, 2011), and suggested that these strategies could affect the selection of the reference frame for path integration.
The COS revolution of AGN outflow science
NASA Astrophysics Data System (ADS)
Arav, Nahum
2016-10-01
HST/COS has opened a new discovery space for quasar outflow science. Specifically, it provides high quality FUV spectra covering the diagnostic-rich 500A-1050A rest-frame of medium redshift objects. We have published three refereed papers based on the analysis of such data that were supported by our concluded COS archive program, in which we reported: a) a new population of very high ionization outflows, b) robust cases of two-ionization-phase outflows, which are the missing link between UV AGN outflows and x-ray warm absorbers, and most importantly c) spectral diagnostics that allowed us to determine the distance of the outflows from the central source. The latter is a cardinal issue in the field as many researchers believe that most outflows are situated close to the accretion disk ( 0.01 pc) while the few reliable measurements show distances of 10-10,000 pc. Therefore, every empirical distance measurement is of importance. Our archive based publication also demonstrates that quasar outflows have sufficient energy to match theoretical predictions for AGN feedback influencing galaxy evolution.We propose to continue this successful archive program. Thus far we've analyzed about 300 COS G130M and G160M orbits of AGN observations. There are roughly 900 additional orbits that satisfy our criteria and will be available within a year. Based on our published survey, we expect that these 900 orbits will yield about 20-30 additional very-high ionization outflows and 4-6 cases of distance and kinetic luminosity determinations, all in cosmologically important luminous-quasars.
ESO & NOT photometric monitoring of the Cloverleaf quasar
NASA Astrophysics Data System (ADS)
Ostensen, R.; Remy, M.; Lindblad, P. O.; Refsdal, S.; Stabell, R.; Surdej, J.; Barthel, P. D.; Emanuelsen, P. I.; Festin, L.; Gosset, E.; Hainaut, O.; Hakala, P.; Hjelm, M.; Hjorth, J.; Hutsemekers, D.; Jablonski, M.; Kaas, A. A.; Kristen, H.; Larsson, S.; Magain, P.; Pettersson, B.; Pospieszalska-Surdej, A.; Smette, A.; Teuber, J.; Thomsen, B.; van Drom, E.
1997-12-01
The Cloverleaf quasar, H1413+117, has been photometrically monitored at ESO (La Silla, Chile) and with the NOT (La Palma, Spain) during the period 1987--1994. All good quality CCD frames have been successfully analysed using two independent methods (i.e. an automatic image decomposition technique and an interactive CLEAN algorithm). The photometric results from the two methods are found to be very similar, and they show that the four lensed QSO images vary significantly in brightness (by up to 0.45 mag), nearly in parallel. The lightcurve of the $D$ component presents some slight departures from the general trend which are very likely caused by micro-lensing effects. Upper limits, at the 99% confidence level, of 150 days on the absolute value for the time delays between the photometric lightcurves of this quadruply imaged variable QSO, are derived. This is unfortunately too large to constrain the lens model but there is little doubt that a better sampling of the lightcurves should allow to accurately derive these time delays. Pending a direct detection of the lensing galaxy (position and redshift), this system thus constitutes another good candidate for a direct and independent determination of the Hubble parameter. Based on observations collected at the European Southern Observatory (La Silla, Chile) and with the Nordic Optical Telescope (La Palma, Spain). Table 1. Logbook for the ESO and NOT observations together with photometric results for the Cloverleaf quasar. This long table can be accessed on the WWW at the URL address: http://vela.astro.ulg.ac.be/grav_lens/glp_homepage.html}
Kainz, Hans; Lloyd, David G; Walsh, Henry P J; Carty, Christopher P
2016-05-01
In motion analysis, pelvis angles are conventionally calculated as the rotations between the pelvis and laboratory reference frame. This approach assumes that the participant's motion is along the anterior-posterior laboratory reference frame axis. When this assumption is violated interpretation of pelvis angels become problematic. In this paper a new approach for calculating pelvis angles based on the rotations between the pelvis and an instantaneous progression reference frame was introduced. At every time-point, the tangent to the trajectory of the midpoint of the pelvis projected into the horizontal plane of the laboratory reference frame was used to define the anterior-posterior axis of the instantaneous progression reference frame. This new approach combined with the rotation-obliquity-tilt rotation sequence was compared to the conventional approach using the rotation-obliquity-tilt and tilt-obliquity-rotation sequences. Four different movement tasks performed by eight healthy adults were analysed. The instantaneous progression reference frame approach was the only approach that showed reliable and anatomically meaningful results for all analysed movement tasks (mean root-mean-square-differences below 5°, differences in pelvis angles at pre-defined gait events below 10°). Both rotation sequences combined with the conventional approach led to unreliable results as soon as the participant's motion was not along the anterior-posterior laboratory axis (mean root-mean-square-differences up to 30°, differences in pelvis angles at pre-defined gait events up to 45°). The instantaneous progression reference frame approach enables the gait analysis community to analysis pelvis angles for movements that do not follow the anterior-posterior axis of the laboratory reference frame. Copyright © 2016 Elsevier B.V. All rights reserved.
Four-Year-Olds Use a Mixture of Spatial Reference Frames
Negen, James; Nardini, Marko
2015-01-01
Keeping track of unseen objects is an important spatial skill. In order to do this, people must situate the object in terms of different frames of reference, including body position (egocentric frame of reference), landmarks in the surrounding environment (extrinsic frame reference), or other attached features (intrinsic frame of reference). Nardini et al. hid a toy in one of 12 cups in front of children, turned the array when they were not looking, and then asked them to point to the cup with the toy. This forced children to use the intrinsic frame (information about the array of cups) to locate the hidden toy. Three-year-olds made systematic errors by using the wrong frame of reference, 4-year-olds were at chance, and only 5- and 6-year-olds were successful. Can we better understand the developmental change that takes place at four years? This paper uses a modelling approach to re-examine the data and distinguish three possible strategies that could lead to the previous results at four years: (1) Children were choosing cups randomly, (2) Children were pointing between the egocentric/extrinsic-cued location and the correct target, and (3) Children were pointing near the egocentric/extrinsic-cued location on some trials and near the target on the rest. Results heavily favor the last possibility: 4-year-olds were not just guessing or trying to combine the available frames of reference. They were using the intrinsic frame on some trials, but not doing so consistently. These insights suggest that accounts of improving spatial performance at 4 years need to explain why there is a mixture of responses. Further application of the selected model also suggests that children become both more reliant on the correct frame and more accurate with any chosen frame as they mature. PMID:26133990
Spatial cognition and navigation
NASA Technical Reports Server (NTRS)
Aretz, Anthony J.
1989-01-01
An experiment that provides data for the development of a cognitive model of pilot flight navigation is described. The experiment characterizes navigational awareness as the mental alignment of two frames of reference: (1) the ego centered reference frame that is established by the forward view out of the cockpit and (2) the world centered reference frame that is established by the aircraft's location on a map. The data support a model involving at least two components: (1) the perceptual encoding of the navigational landmarks and (2) the mental rotation of the map's world reference frame into alignment with the ego centered reference frame. The quantitative relationships of these two factors are provided as possible inputs for a computational model of spatial cognition during flight navigation.
Physics of Non-Inertial Reference Frames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamalov, Timur F.
2010-12-22
Physics of non-inertial reference frames is a generalizing of Newton's laws to any reference frames. It is the system of general axioms for classical and quantum mechanics. The first, Kinematics Principle reads: the kinematic state of a body free of forces conserves and equal in absolute value to an invariant of the observer's reference frame. The second, Dynamics Principle extended Newton's second law to non-inertial reference frames and also contains additional variables there are higher derivatives of coordinates. Dynamics Principle reads: a force induces a change in the kinematic state of the body and is proportional to the rate ofmore » its change. It is mean that if the kinematic invariant of the reference frame is n-th derivative with respect the time, then the dynamics of a body being affected by the force F is described by the 2n-th differential equation. The third, Statics Principle reads: the sum of all forces acting a body at rest is equal to zero.« less
NASA Astrophysics Data System (ADS)
Ampatzidis, Dimitrios; König, Rolf; Glaser, Susanne; Heinkelmann, Robert; Schuh, Harald; Flechtner, Frank; Nilsson, Tobias
2016-04-01
The aim of our study is to assess the classical Helmert similarity transformation using the Velocity Decomposition Analysis (VEDA). The VEDA is a new methodology, developed by GFZ for the assessment of the reference frames' temporal variation and it is based on the separation of the velocities into two specified parts: The first is related to the reference system choice (the so called datum effect) and the latter one which refers to the real deformation of the terrestrial points. The advantage of the VEDA is its ability to detect the relative biases and reference system effects between two different frames or two different realizations of the same frame, respectively. We apply the VEDA for the assessment between several modern tectonic plate models and the recent global terrestrial reference frames.
Quasar Feedback at the Peak of the Galaxy Formation Epoch
NASA Astrophysics Data System (ADS)
Liu, Guilin; Zakamska, Nadia L.; Strauss, Michael A.; Greene, Jenny E.; Alexandroff, Rachael
2014-08-01
The correlations between properties of supermassive black holes and stellar spheroids in galaxies imply a physical connection between these two components. Using Gemini GMOS IFU, we demonstrated that powerful ionized gas winds are ubiquitous in luminous radio-quiet z~ 0.5 quasars. We now extend this study to the era of peak galaxy formation and quasar activity when quasar feedback likely shaped the properties of massive galaxies. Our GMOS IFU observations of 5 quasars at z~ 3 are now underway, and we plan for fall observations. We propose a GMOS IFU survey to map the spatial distribution and kinematics of Ly(alpha) and N V 1240Aemission around 5 obscured quasars at z=3-3.3 that are extremely luminous (L_Ly(alpha)~10^45 erg s^- 1). Obscured quasars likely constitute the majority of the quasar population and represent the early enshrouded phase of black hole growth, luminous obscured quasars are thus the most likely sites of quasar feedback, as we found at low redshifts. We will look for quasar- driven outflows, and directly probe the effects of quasars on their galaxy-wide and intergalactic environments close to the peak of the galaxy formation epoch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xin; Shen, Yue; Bian, Fuyan
2014-07-10
A small fraction of quasars have long been known to show bulk velocity offsets (of a few hundred to thousands of km s{sup –1}) in the broad Balmer lines with respect to the systemic redshift of the host galaxy. Models to explain these offsets usually invoke broad-line region gas kinematics/asymmetry around single black holes (BHs), orbital motion of massive (∼sub-parsec (sub-pc)) binary black holes (BBHs), or recoil BHs, but single-epoch spectra are unable to distinguish between these scenarios. The line-of-sight (LOS) radial velocity (RV) shifts from long-term spectroscopic monitoring can be used to test the BBH hypothesis. We have selectedmore » a sample of 399 quasars with kinematically offset broad Hβ lines from the Sloan Digital Sky Survey (SDSS) Seventh Data Release quasar catalog, and have conducted second-epoch optical spectroscopy for 50 of them. Combined with the existing SDSS spectra, the new observations enable us to constrain the LOS RV shifts of broad Hβ lines with a rest-frame baseline of a few years to nearly a decade. While previous work focused on objects with extreme velocity offset (>10{sup 3} km s{sup –1}), we explore the parameter space with smaller (a few hundred km s{sup –1}) yet significant offsets (99.7% confidence). Using cross-correlation analysis, we detect significant (99% confidence) radial accelerations in the broad Hβ lines in 24 of the 50 objects, of ∼10-200 km s{sup –1} yr{sup –1} with a median measurement uncertainty of ∼10 km s{sup –1} yr{sup –1}, implying a high fraction of variability of the broad-line velocity on multi-year timescales. We suggest that 9 of the 24 detections are sub-pc BBH candidates, which show consistent velocity shifts independently measured from a second broad line (either Hα or Mg II) without significant changes in the broad-line profiles. Combining the results on the general quasar population studied in Paper I, we find a tentative anti-correlation between the velocity offset in the first-epoch spectrum and the average acceleration between two epochs, which could be explained by orbital phase modulation when the time separation between two epochs is a non-negligible fraction of the orbital period of the motion causing the line displacement. We discuss the implications of our results for the identification of sub-pc BBH candidates in offset-line quasars and for the constraints on their frequency and orbital parameters.« less
Why the Greenwich Meridian Moved
2015-08-01
that are related to the geocentric reference frame introduced by the Bureau International de l’Heure (BIH) in 1984. This BIHTerrestrial System provided...the basis for orientation of subsequent geocentric reference frames, including all realizations of theWorld Geodetic Sys- tem 1984 and the...astronomical time. The coordinates of satellite-navigation receivers are provided in reference frames that are related to the geocentric reference
ACCRETION RATES OF RED QUASARS FROM THE HYDROGEN Pβ LINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dohyeong; Im, Myungshin; Glikman, Eilat
Red quasars are thought to be an intermediate population between merger-driven star-forming galaxies in dust-enshrouded phase and normal quasars. If so, they are expected to have high accretion ratios, but their intrinsic dust extinction hampers reliable determination of Eddington ratios. Here, we compare the accretion rates of 16 red quasars at z ∼ 0.7 to those of normal type 1 quasars at the same redshift range. The red quasars are selected by their red colors in optical through near-infrared (NIR) and radio detection. The accretion rates of the red quasars are derived from the Pβ line in NIR spectra, whichmore » is obtained by the SpeX on the Infrared Telescope Facility in order to avoid the effects of dust extinction. We find that the measured Eddington ratios (L{sub bol}/L{sub Edd} ≃ 0.69) of red quasars are significantly higher than those of normal type 1 quasars, which is consistent with a scenario in which red quasars are the intermediate population and the black holes of red quasars grow very rapidly during such a stage.« less
Black Hole in Search of a Home
NASA Astrophysics Data System (ADS)
2005-09-01
Astronomers Discover Bright Quasar Without Massive Host Galaxy An international team of astronomers [1] used two of the most powerful astronomical facilities available, the ESO Very Large Telescope (VLT) at Cerro Paranal and the Hubble Space Telescope (HST), to conduct a detailed study of 20 low redshift quasars. For 19 of them, they found, as expected, that these super massive black holes are surrounded by a host galaxy. But when they studied the bright quasar HE0450-2958, located some 5 billion light-years away, they couldn't find evidence for an encircling galaxy. This, the astronomers suggest, may indicate a rare case of collision between a seemingly normal spiral galaxy and a much more exotic object harbouring a very massive black hole. With masses up to hundreds of millions that of the Sun, "super massive" black holes are the most tantalizing objects known. Hiding in the centre of most large galaxies, including our own Milky Way (see ESO PR 26/03), they sometimes manifest themselves by devouring matter they engulf from their surroundings. Shining up to the largest distances, they are then called "quasars" or "QSOs" (for "quasi-stellar objects"), as they had initially been confused with stars. Decades of observations of quasars have suggested that they are always associated with massive host galaxies. However, observing the host galaxy of a quasar is a challenging work, because the quasar is radiating so energetically that its host galaxy is hard to detect in the flare. ESO PR Photo 28a/05 ESO PR Photo 28a/05 Two Quasars with their Host Galaxy [Preview - JPEG: 400 x 760 pix - 82k] [Normal - JPEG: 800 x 1520 pix - 395k] [Full Res - JPEG: 1722 x 3271 pix - 4.0M] Caption: ESO PR Photo 28a/05 shows two examples of quasars from the sample studied by the astronomers, where the host galaxy is obvious. In each case, the quasar is the bright central spot. The host of HE1239-2426 (left), a z=0.082 quasar, displays large spiral arms, while the host of HE1503+0228 (right), having a redshift of 0.135, is more fuzzy and shows only hints of spiral arms. Although these particular objects are rather close to us and constitute therefore easy targets, their host would still be perfectly visible at much higher redshift, including at distances as large as the one of HE0450-2958 (z=0.285). The observations were done with the ACS camera on the HST. ESO PR Photo 28b/05 ESO PR Photo 28b/05 The Quasar without a Home: HE0450-2958 [Preview - JPEG: 400 x 760 pix - 53k] [Normal - JPEG: 800 x 1520 pix - 197k] [Full Res - JPEG: 1718 x 3265 pix - 1.5M] Caption of ESO PR Photo 28b/05: (Left) HST image of the z=0.285 quasar HE0450-2958. No obvious host galaxy centred on the quasar is seen. Only a strongly disturbed and star forming companion galaxy is seen near the top of the image. (Right) Same image shown after applying an efficient image sharpening method known as MCS-deconvolution. In contrast to the usual cases, as the ones shown in ESO PR Photo 28a/05, the quasar is not situated at the centre of an extended host galaxy, but on the edge of a compact structure, whose spectra (see ESO PR Photo 28c/05) show it to be composed of gas ionised by the quasar radiation. This gas may have been captured through a collision with the star-forming galaxy. The star indicated on the figure is a nearby galactic star seen by chance in the field of view. To overcome this problem, the astronomers devised a new and highly efficient strategy. Using ESO's VLT for spectroscopy and HST for imagery, they observed their quasars at the same time as a reference star. Simultaneous observation of a star allowed them to measure at best the shape of the quasar point source on spectra and images, and further to separate the quasar light from the other contribution, i.e. from the underlying galaxy itself. This very powerful image and spectra sharpening method ("MCS deconvolution") was applied to these data in order to detect the finest details of the host galaxy (see e.g. ESO PR 19/03). Using this efficient technique, the astronomers could detect a host galaxy for all but one of the quasars they studied. No stellar environment was found for HE0450-2958, suggesting that if any host galaxy exists, it must either have a luminosity at least six times fainter than expected a priori from the quasar observed luminosity, or a radius smaller than about 300 light-years. Typical radii for quasar host galaxies range between 6,000 and 50,000 light-years, i.e. they are at least 20 to 170 times larger. "With the data we managed to secure with the VLT and the HST, we would have been able to detect a normal host galaxy", says Pierre Magain (Université de Liège, Belgium), lead author of the paper reporting the study. "We must therefore conclude that, contrary to our expectations, this bright quasar is not surrounded by a massive galaxy." Instead, the astronomers detected just besides the quasar a bright cloud of about 2,500 light-years in size, which they baptized "the blob". The VLT observations show this cloud to be composed only of gas ionised by the intense radiation coming from the quasar. It is probably the gas of this cloud which is feeding the supermassive black hole, allowing it to become a quasar. ESO PR Photo 28c/05 ESO PR Photo 28c/05 Spectrum of Quasar HE0450-2958, the Blob and the Companion Galaxy (FORS/VLT) [Preview - JPEG: 400 x 561 pix - 112k] [Normal - JPEG: 800 x 1121 pix - 257k] [HiRes - JPEG: 2332 x 3268 pix - 1.1M] Caption: ESO PR Photo 28c/05 presents the spectra of the three objects indicated in ESO PR Photo 28b/05 as obtained with FORS1 on ESO's Very Large Telescope. The spectrum of the companion galaxy shown on the top panel reveals strong star formation. Thanks to the image sharpening process, it has been possible to separate very well the spectra of the quasar (centre) from that of the blob (bottom). The spectrum of the blob shows exclusively strong narrow emission lines having properties indicative of ionisation by the quasar light. There is no trace of stellar light, down to very faint levels, in the surrounding of the quasar. A strongly perturbed galaxy, showing all signs of a recent collision, is also seen on the HST images 2 arcseconds away (corresponding to about 50,000 light-years), with the VLT spectra showing it to be presently in a state where it forms stars at a frantic rate. "The absence of a massive host galaxy, combined with the existence of the blob and the star-forming galaxy, lead us to believe that we have uncovered a really exotic quasar, says team member Frédéric Courbin (Ecole Polytechnique Fédérale de Lausanne, Switzerland). "There is little doubt that a burst in the formation of stars in the companion galaxy and the quasar itself have been ignited by a collision that must haven taken place about 100 million years ago. What happened to the putative quasar host remains unknown." HE0450-2958 constitutes a challenging case of interpretation. The astronomers propose several possible explanations, that will need to be further investigated and confronted. Has the host galaxy been completely disrupted as a result of the collision? It is hard to imagine how that could happen. Has an isolated black hole captured gas while crossing the disc of a spiral galaxy? This would require very special conditions and would probably not have caused such a tremendous perturbation as is observed in the neighbouring galaxy. Another intriguing hypothesis is that the galaxy harbouring the black hole was almost exclusively made of dark matter. "Whatever the solution of this riddle, the strong observable fact is that the quasar host galaxy, if any, is much too faint", says team member Knud Jahnke (Astrophysikalisches Institut Potsdam, Germany). The report on HE0450-2958 is published in the September 15, 2005 issue of the journal Nature ("Discovery of a bright quasar without a massive host galaxy" by Pierre Magain et al.).
Newton-Cartan Gravity in Noninertial Reference Frames
NASA Astrophysics Data System (ADS)
Rodriguez, Leo; St. Germaine-Fuller, James; Wickramasekara, Sujeev
2015-03-01
We study Newton-Cartan gravity under transformations into all noninertial, nonrelativistic reference frames. These transformations form an infinite dimensional Lie group, called the Galilean line group, which contains as a subgroup the Galilei group. The fictitious forces of noninertial reference frames are encoded in the Cartan connection transformed under the Galilean line group. These fictitious forces, which are coordinate effects, do not contribute to the Ricci tensor. Only the 00-component of the Ricci tensor is non-zero and equals (4 π times) the matter density in all reference frames. While the Ricci field equation and Gauss' law are fulfilled by the physical matter density in inertial and linearly accelerating reference frames, in rotating reference frames Gauss' law holds for an effective mass density that differs from the physical matter density. This effective density has its origin in the simulated magnetic field of rotating frames, highlighting a striking difference between linearly and rotationally accelerating frames. The equations governing the simulated fields have the same form as Maxwell's equations, a surprising result given that these equations obey special relativity (and U (1) -gauge symmetry), rather than Galilean symmetry. This work was supported in part by the HHMI Undergraduate Science Education Award 52006298 and the Grinnell College Academic Affairs' CSFS and MAP programs.
NASA Technical Reports Server (NTRS)
Wilkes, B. J.; Mcdowell, J.
1994-01-01
Research into the optical, ultraviolet and infrared continuum emission from quasars and their host galaxies was carried out. The main results were the discovery of quasars with unusually weak infrared emission and the construction of a quantitative estimate of the dispersion in quasar continuum properties. One of the major uncertainties in the measurement of quasar continuum strength is the contribution to the continuum of the quasar host galaxy as a function of wavelength. Continuum templates were constructed for different types of host galaxy and individual estimates made of the decomposed quasar and host continua based on existing observations of the target quasars. The results are that host galaxy contamination is worse than previously suspected, and some apparent weak bump quasars are really normal quasars with strong host galaxies. However, the existence of true weak bump quasars such as PHL 909 was confirmed. The study of the link between the bump strength and other wavebands was continued by comparing with IRAS data. There is evidence that excess far infrared radiation is correlated with weaker ultraviolet bumps. This argues against an orientation effect and implies a probable link with the host galaxy environment, for instance the presence of a luminous starburst. However, the evidence still favors the idea that reddening is not important in those objects with ultraviolet weak bumps. The same work has led to the discovery of a class of infrared weak quasars. Pushing another part of the envelope of quasar continuum parameter space, the IR-weak quasars have implications for understanding the effects of reddening internal to the quasars, the reality of ultraviolet turnovers, and may allow further tests of the Phinney dust model for the IR continuum. They will also be important objects for studying the claimed IR to x-ray continuum correlation.
NASA Astrophysics Data System (ADS)
Lonsdale, Carol J.; Lacy, M.; Kimball, A. E.; Blain, A.; Whittle, M.; Wilkes, B.; Stern, D.; Condon, J.; Kim, M.; Assef, R. J.; Tsai, C.-W.; Efstathiou, A.; Jones, S.; Eisenhardt, P.; Bridge, C.; Wu, J.; Lonsdale, Colin J.; Jones, K.; Jarrett, T.; Smith, R.
2015-11-01
We present Atacama Large Millimeter/submillimeter Array (ALMA) 870 μm (345 GHz) data for 49 high-redshift (0.47 < z < 2.85), luminous (11.7\\lt {log}({L}{{bol}}/{L}⊙ )\\lt 14.2) radio-powerful active galactic nuclei (AGNs), obtained to constrain cool dust emission from starbursts concurrent with highly obscured radiative-mode black hole (BH) accretion in massive galaxies that possess a small radio jet. The sample was selected from the Wide-field Infrared Survey Explorer with extremely steep (red) mid-infrared colors and with compact radio emission from NVSS/FIRST. Twenty-six sources are detected at 870 μm, and we find that the sample has large mid- to far-infrared luminosity ratios, consistent with a dominant and highly obscured quasar. The rest-frame 3 GHz radio powers are 24.7\\lt {log}({P}\\text{3.0 GHz}/{{{W}} {Hz}}-1)\\lt 27.3, and all sources are radio-intermediate or radio-loud. BH mass estimates are 7.7 < log(MBH/M⊙) < 10.2. The rest-frame 1-5 μm spectral energy distributions are very similar to the “Hot DOGs” (hot dust-obscured galaxies), and steeper (redder) than almost any other known extragalactic sources. ISM masses estimated for the ALMA-detected sources are 9.9 < log (MISM/M⊙) < 11.75 assuming a dust temperature of 30 K. The cool dust emission is consistent with star formation rates reaching several thousand M⊙ yr-1, depending on the assumed dust temperature, but we cannot rule out the alternative that the AGN powers all the emission in some cases. Our best constrained source has radiative transfer solutions with approximately equal contributions from an obscured AGN and a young (10-15 Myr) compact starburst.
Using quasars as standard clocks for measuring cosmological redshift.
Dai, De-Chang; Starkman, Glenn D; Stojkovic, Branislav; Stojkovic, Dejan; Weltman, Amanda
2012-06-08
We report hitherto unnoticed patterns in quasar light curves. We characterize segments of the quasar's light curves with the slopes of the straight lines fit through them. These slopes appear to be directly related to the quasars' redshifts. Alternatively, using only global shifts in time and flux, we are able to find significant overlaps between the light curves of different pairs of quasars by fitting the ratio of their redshifts. We are then able to reliably determine the redshift of one quasar from another. This implies that one can use quasars as standard clocks, as we explicitly demonstrate by constructing two independent methods of finding the redshift of a quasar from its light curve.
Report of the panel on earth rotation and reference frames, section 7
NASA Technical Reports Server (NTRS)
Dickey, Jean O.; Dickman, Steven R.; Eubanks, Marshall T.; Feissel, Martine; Herring, Thomas A.; Mueller, Ivan I.; Rosen, Richard D.; Schutz, Robert E.; Wahr, John M.; Wilson, Charles R.
1991-01-01
Objectives and requirements for Earth rotation and reference frame studies in the 1990s are discussed. The objectives are to observe and understand interactions of air and water with the rotational dynamics of the Earth, the effects of the Earth's crust and mantle on the dynamics and excitation of Earth rotation variations over time scales of hours to centuries, and the effects of the Earth's core on the rotational dynamics and the excitation of Earth rotation variations over time scales of a year or longer. Another objective is to establish, refine and maintain terrestrial and celestrial reference frames. Requirements include improvements in observations and analysis, improvements in celestial and terrestrial reference frames and reference frame connections, and improved observations of crustal motion and mass redistribution on the Earth.
TIGO: a geodetic observatory for the improvement of the global reference frame
NASA Astrophysics Data System (ADS)
Schlueter, Wolfgang; Hase, Hayo; Boeer, Armin
1999-12-01
The Bundesamt fuer Kartographie und Geodaesie (BKG) will provide a major contribution to the improvement and maintenance of the global reference frames: ICRF (International Celestial Reference Frame), ITRF (International Terrestrial Reference Frame) with the operation of TIGO (Transportable Integrated Geodetic Observatory). TIGO is designed as a transportable geodetic observatory which consists of all relevant geodetic space techniques for a fundamental station (including VLBI, SLR, GPS). The transportability of the observatory enables to fill up gaps in the International Space Geodetic Network and to optimize the contribution to the global reference frames. TIGO should operate for a period of 2 to 3 years (at minimum) at one location. BKG is looking for a cooperation with countries willing to contribute to the ITRF and to support the operation of TIGO.
Reliability of frames of reference used for tibial component rotation in total knee arthroplasty.
Page, Stephen R; Deakin, Angela H; Payne, Anthony P; Picard, Frederic
2011-01-01
This study evaluated seven different frames of reference used for tibial component rotation in total knee arthroplasty (TKA) to determine which ones showed good reliability between bone specimens. An optoelectronic system based around a computer-assisted surgical navigation system was used to measure and locate 34 individual anatomical landmarks on 40 tibias. Each particular frame of reference was reconstructed from a group of data points taken from the surface of each bone. The transverse axis was used as the baseline to which the other axes were compared, and the differences in angular rotation between the other six reference frames and the transverse axis were calculated. There was high variability in the tibial rotational alignment associated with all frames of reference. Of the references widely used in current TKA procedures, the tibial tuberosity axis and the anterior condylar axis had lower standard deviations (6.1° and 7.3°, respectively) than the transmalleolar axis and the posterior condylar axis (9.3° for both). In conclusion, we found high variability in the frames of reference used for tibial rotation alignment. However, the anterior condylar axis and transverse axis may warrant further tests with the use of navigation. Combining different frames of reference such as the tibial tuberosity axis, anterior condylar axis and transverse axis may reduce the range of errors found in all of these measurements.
NChina16: A stable geodetic reference frame for geological hazard studies in North China
NASA Astrophysics Data System (ADS)
Wang, Guoquan; Bao, Yan; Gan, Weijun; Geng, Jianghui; Xiao, Gengru; Shen, Jack S.
2018-04-01
We have developed a stable North China Reference Frame 2016 (NChina16) using five years of continuous GPS observations (2011.8-2016.8) from 12 continuously operating reference stations (CORS) fixed to the North China Craton. Applications of NChina16 in landslide and subsidence studies are illustrated in this article. A method for realizing a regional geodetic reference frame is introduced. The primary result of this study is the seven parameters for transforming Cartesian ECEF (Earth-Centered, Earth-Fixed) coordinates X, Y, and Z from the International GNSS Service Reference Frame 2008 (IGS08) to NChina16. The seven parameters include the epoch that is used to align the regional reference frame to IGS08 and the time derivatives of three translations and three rotations. The GIPSY-OASIS (V6.4) software package was used to obtain the precise point positioning (PPP) daily solutions with respect to IGS08. The frame stability of NChina16 is approximately 0.5 mm/year in both horizontal and vertical directions. This study also developed a regional model for correcting seasonal motions superimposed into the vertical component of the GPS-derived displacement time series. Long-term GPS observations (1999-2016) from five CORS in North China were used to develop the seasonal model. According to this study, the PPP daily solutions with respect to NChina16 could achieve 2-3 mm horizontal accuracy and 4-5 mm vertical accuracy after being modified by the regional model. NChina16 will be critical to study geodynamic problems in North China, such as earthquakes, faulting, subsidence, and landslides. The regional reference frame will be periodically updated every few years to mitigate degradation of the frame with time and be synchronized with the update of IGS reference frame.
Dust-deficient Palomar-Green Quasars and the Diversity of AGN Intrinsic IR Emission
NASA Astrophysics Data System (ADS)
Lyu, Jianwei; Rieke, G. H.; Shi, Yong
2017-02-01
To elucidate the intrinsic broadband infrared (IR) emission properties of active galactic nuclei (AGNs), we analyze the spectral energy distributions (SEDs) of 87 z ≲ 0.5 Palomar-Green (PG) quasars. While the Elvis AGN template with a moderate far-IR correction can reasonably match the SEDs of the AGN components in ˜60% of the sample (and is superior to alternatives such as that by Assef), it fails on two quasar populations: (1) hot-dust-deficient (HDD) quasars that show very weak emission thoroughly from the near-IR to the far-IR, and (2) warm-dust-deficient (WDD) quasars that have similar hot dust emission as normal quasars but are relatively faint in the mid- and far-IR. After building composite AGN templates for these dust-deficient quasars, we successfully fit the 0.3-500 μm SEDs of the PG sample with the appropriate AGN template, an infrared template of a star-forming galaxy, and a host galaxy stellar template. 20 HDD and 12 WDD quasars are identified from the SED decomposition, including seven ambiguous cases. Compared with normal quasars, the HDD quasars have AGNs with relatively low Eddington ratios and the fraction of WDD quasars increases with AGN luminosity. Moreover, both the HDD and WDD quasar populations show relatively stronger mid-IR silicate emission. Virtually identical SED properties are also found in some quasars from z = 0.5 to 6. We propose a conceptual model to demonstrate that the observed dust deficiency of quasars can result from a change of structures of the circumnuclear tori that can occur at any cosmic epoch.
Transport equations of electrodiffusion processes in the laboratory reference frame.
Garrido, Javier
2006-02-23
The transport equations of electrodiffusion processes use three reference frames for defining the fluxes: Fick's reference in diffusion, solvent-fixed reference in transference numbers, and laboratory fluxes in electric conductivity. The convenience of using only one reference frame is analyzed here from the point of view of the thermodynamics of irreversible processes. A relation between the fluxes of ions and solvent and the electric current density is deduced first from a mass and volume balance. This is then used to show that (i) the laboratory and Fick's diffusion coefficients are identical and (ii) the transference numbers of both the solvent and the ion in the laboratory reference frame are related. Finally, four experimental methods for the measurement of ion transference numbers are analyzed critically. New expressions for evaluating transference numbers for the moving boundary method and the chronopotentiometry technique are deduced. It is concluded that the ion transport equation in the laboratory reference frame plays a key role in the description of electrodiffusion processes.
Definition and Proposed Realization of the International Height Reference System (IHRS)
NASA Astrophysics Data System (ADS)
Ihde, Johannes; Sánchez, Laura; Barzaghi, Riccardo; Drewes, Hermann; Foerste, Christoph; Gruber, Thomas; Liebsch, Gunter; Marti, Urs; Pail, Roland; Sideris, Michael
2017-05-01
Studying, understanding and modelling global change require geodetic reference frames with an order of accuracy higher than the magnitude of the effects to be actually studied and with high consistency and reliability worldwide. The International Association of Geodesy, taking care of providing a precise geodetic infrastructure for monitoring the Earth system, promotes the implementation of an integrated global geodetic reference frame that provides a reliable frame for consistent analysis and modelling of global phenomena and processes affecting the Earth's gravity field, the Earth's surface geometry and the Earth's rotation. The definition, realization, maintenance and wide utilization of the International Terrestrial Reference System guarantee a globally unified geometric reference frame with an accuracy at the millimetre level. An equivalent high-precision global physical reference frame that supports the reliable description of changes in the Earth's gravity field (such as sea level variations, mass displacements, processes associated with geophysical fluids) is missing. This paper addresses the theoretical foundations supporting the implementation of such a physical reference surface in terms of an International Height Reference System and provides guidance for the coming activities required for the practical and sustainable realization of this system. Based on conceptual approaches of physical geodesy, the requirements for a unified global height reference system are derived. In accordance with the practice, its realization as the International Height Reference Frame is designed. Further steps for the implementation are also proposed.
Quasar evolution - Not a deficit at 'low' redshifts
NASA Technical Reports Server (NTRS)
Avni, Y.; Schiller, N.
1983-01-01
Hawkins and Stewart (1981) have argued that the conventional interpretation of complete quasar samples in terms of a cosmological evolution of quasars is not unique. It has been suggested that these data can also be interpreted as due to a deficit in the density of quasars. Hawkins and Stewart have argued that such a deficit could be either apparent, due to an observational selection which biases against the inclusion of low-z quasars, or real, due to a lower density of quasars at low redshifts. The present investigation is concerned with this new interpretation. In order to test the interpretation of Hawkins and Stewart (1981) as directly as possible, the investigation is restricted to the same type of quasar samples considered by Hawkins and Stewart. It is found that the obtained results contradict clearly Hawkins and Stewart's assertion. Quasar evolution is not just a deficit of quasars at low redshifts, neither apparent nor real.
Discovery of a bright quasar without a massive host galaxy.
Magain, Pierre; Letawe, Géraldine; Courbin, Frédéric; Jablonka, Pascale; Jahnke, Knud; Meylan, Georges; Wisotzki, Lutz
2005-09-15
A quasar is thought to be powered by the infall of matter onto a supermassive black hole at the centre of a massive galaxy. Because the optical luminosity of quasars exceeds that of their host galaxy, disentangling the two components can be difficult. This led in the 1990s to the controversial claim of the discovery of 'naked' quasars. Since then, the connection between quasars and galaxies has been well established. Here we report the discovery of a quasar lying at the edge of a gas cloud, whose size is comparable to that of a small galaxy, but whose spectrum shows no evidence for stars. The gas in the cloud is excited by the quasar itself. If a host galaxy is present, it is at least six times fainter than would normally be expected for such a bright quasar. The quasar is interacting dynamically with a neighbouring galaxy, whose gas might be feeding the black hole.
Clustering of quasars in SDSS-IV eBOSS: study of potential systematics and bias determination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurent, Pierre; Goff, Jean-Marc Le; Burtin, Etienne
2017-07-01
We study the first year of the eBOSS quasar sample in the redshift range 0.9< z <2.2 which includes 68,772 homogeneously selected quasars. We show that the main source of systematics in the evaluation of the correlation function arises from inhomogeneities in the quasar target selection, particularly related to the extinction and depth of the imaging data used for targeting. We propose a weighting scheme that mitigates these systematics. We measure the quasar correlation function and provide the most accurate measurement to date of the quasar bias in this redshift range, b {sub Q} = 2.45 ± 0.05 at z-barmore » =1.55, together with its evolution with redshift. We use this information to determine the minimum mass of the halo hosting the quasars and the characteristic halo mass, which we find to be both independent of redshift within statistical error. Using a recently-measured quasar-luminosity-function we also determine the quasar duty cycle. The size of this first year sample is insufficient to detect any luminosity dependence to quasar clustering and this issue should be further studied with the final ∼500,000 eBOSS quasar sample.« less
Investigating the Fraction of Radio-Loud Quasars with High Velocity Broad Emission LInes
NASA Astrophysics Data System (ADS)
Bhattacharjee, Anirban; Gilbert, Miranda; Brotherton, Michael S.
2018-06-01
Quasars show a bimodal distribution in their radio emission, with some having powerful radio-emitting jets (radio-loud), and most having weak or no jets (radio-quiet). Surveys have shown around 10% of of quasars have detectable radio emissions. These quasars are called radio-loud. Several multiwavelength studies have shown that radio-loud quasars have different properties than radio-quiet quasars. This fraction of radio-loud quasars to radio-quiet quasars has been assumed to be constant across all parameter space. In this study, we breakdown the parameter space with respect to the increasing velocity dispersion of broad emission lines. Our sample has been drawn from 2011 Shen et al. catalog of more than 100,000 quasars. In this study, we demonstrate that this fraction varies with respect to the increasing velocity dispersion (FWHM) of broad emission lines. We compare three different emission lines: H-Beta, MgII, and CIV. We observe with increasing FWHM of these three emission lines, fraction of radio-loud quasars within the subset increases. This poster presents our initial results into investigating whether the fraction of RL quasars remains 10% in different parameter space.
Clustering of quasars in SDSS-IV eBOSS: study of potential systematics and bias determination
NASA Astrophysics Data System (ADS)
Laurent, Pierre; Eftekharzadeh, Sarah; Le Goff, Jean-Marc; Myers, Adam; Burtin, Etienne; White, Martin; Ross, Ashley J.; Tinker, Jeremy; Tojeiro, Rita; Bautista, Julian; Brinkmann, Jonathan; Comparat, Johan; Dawson, Kyle; du Mas des Bourboux, Hélion; Kneib, Jean-Paul; McGreer, Ian D.; Palanque-Delabrouille, Nathalie; Percival, Will J.; Prada, Francisco; Rossi, Graziano; Schneider, Donald P.; Weinberg, David; Yèche, Christophe; Zarrouk, Pauline; Zhao, Gong-Bo
2017-07-01
We study the first year of the eBOSS quasar sample in the redshift range 0.9
Dust-reddened Quasars In First And Ukidss
NASA Astrophysics Data System (ADS)
Glikman, Eilat; Lacy, M.; Urrutia, T.
2012-05-01
We recently identified a large population of dust-reddened quasars by matching radio sources detected in the FIRST survey to the 2MASS near-infrared catalog (F2M) and selecting sources with red topical-to-near-infrared colors. We find that dust-reddened quasars are intrinsically the most luminous quasars in the Universe. Further analysis suggests that red quasars represent an emergent phase in merger-driven quasar/galaxy co-evolution model where the obscured quasar is shedding its dusty shroud prior to becoming a "normal" quasar. Here we use the UKIDSS Large Area Survey (LAS) First Data Release (DR1; 190 deg2) to reach fainter K-band magnitudes and expand beyond the results of the F2M survey. The deeper K-band limit provided by UKIDSS enables the discovery of more heavily reddened quasars at higher redshifts. We selected 95 candidates in the UKIDSS DR1 that had matches in the FIRST catalog with K<17.0 and obeyed color criteria similar to the F2M survey (R-K>5, J-K > 1.5). We have obtained 54 near-infrared spectra as well as 12 optical spectra from SDSS. Preliminary analysis confirm 12 new obscured quasars, including at least two with z>2 reaching lower intrinsic luminosities than were found by the F2M survey. We find that despite being a luminous quasar phenomenon, the space density of red quasars continues to rise to fainter magnitudes, representing 20% of the overall quasar population.
Fetsch, Christopher R; Wang, Sentao; Gu, Yong; Deangelis, Gregory C; Angelaki, Dora E
2007-01-17
Heading perception is a complex task that generally requires the integration of visual and vestibular cues. This sensory integration is complicated by the fact that these two modalities encode motion in distinct spatial reference frames (visual, eye-centered; vestibular, head-centered). Visual and vestibular heading signals converge in the primate dorsal subdivision of the medial superior temporal area (MSTd), a region thought to contribute to heading perception, but the reference frames of these signals remain unknown. We measured the heading tuning of MSTd neurons by presenting optic flow (visual condition), inertial motion (vestibular condition), or a congruent combination of both cues (combined condition). Static eye position was varied from trial to trial to determine the reference frame of tuning (eye-centered, head-centered, or intermediate). We found that tuning for optic flow was predominantly eye-centered, whereas tuning for inertial motion was intermediate but closer to head-centered. Reference frames in the two unimodal conditions were rarely matched in single neurons and uncorrelated across the population. Notably, reference frames in the combined condition varied as a function of the relative strength and spatial congruency of visual and vestibular tuning. This represents the first investigation of spatial reference frames in a naturalistic, multimodal condition in which cues may be integrated to improve perceptual performance. Our results compare favorably with the predictions of a recent neural network model that uses a recurrent architecture to perform optimal cue integration, suggesting that the brain could use a similar computational strategy to integrate sensory signals expressed in distinct frames of reference.
Asynchronous reference frame agreement in a quantum network
NASA Astrophysics Data System (ADS)
Islam, Tanvirul; Wehner, Stephanie
2016-03-01
An efficient implementation of many multiparty protocols for quantum networks requires that all the nodes in the network share a common reference frame. Establishing such a reference frame from scratch is especially challenging in an asynchronous network where network links might have arbitrary delays and the nodes do not share synchronised clocks. In this work, we study the problem of establishing a common reference frame in an asynchronous network of n nodes of which at most t are affected by arbitrary unknown error, and the identities of the faulty nodes are not known. We present a protocol that allows all the correctly functioning nodes to agree on a common reference frame as long as the network graph is complete and not more than t\\lt n/4 nodes are faulty. As the protocol is asynchronous, it can be used with some assumptions to synchronise clocks over a network. Also, the protocol has the appealing property that it allows any existing two-node asynchronous protocol for reference frame agreement to be lifted to a robust protocol for an asynchronous quantum network.
Mercury's Reference Frames After the MESSENGER Mission
NASA Astrophysics Data System (ADS)
Stark, A.; Oberst, J.; Preusker, F.; Burmeister, S.; Steinbrügge, G.; Hussmann, H.
2018-05-01
We provide an overview of Mercury's reference frames based on MESSENGER observations. We discuss the dynamical, the principal-axes, the ellipsoid, as well as the cartographic frame, which was adopted for MESSENGER data products.
Deep CFHT Y-band Imaging of VVDS-F22 Field. II. Quasar Selection and Quasar Luminosity Function
NASA Astrophysics Data System (ADS)
Yang, Jinyi; Wu, Xue-Bing; Liu, Dezi; Fan, Xiaohui; Yang, Qian; Wang, Feige; McGreer, Ian D.; Fan, Zuhui; Yuan, Shuo; Shan, Huanyuan
2018-03-01
We report the results of a faint quasar survey in a one-square-degree field. The aim is to test the Y-K/g-z and J-K/i-Y color selection criteria for quasars at faint magnitudes to obtain a complete sample of quasars based on deep optical and near-infrared color–color selection and to measure the faint end of the quasar luminosity function (QLF) over a wide redshift range. We carried out a quasar survey based on the Y-K/g-z and J-K/i-Y quasar selection criteria, using the deep Y-band data obtained from our CFHT/WIRCam Y-band images in a two-degree field within the F22 field of the VIMOS VLT deep survey, optical co-added data from Sloan Digital Sky Survey Stripe 82 and deep near-infrared data from the UKIDSS Deep Extragalactic Survey in the same field. We discovered 25 new quasars at 0.5< z< 4.5 and i< 22.5 mag within one-square-degree field. The survey significantly increases the number of faint quasars in this field, especially at z∼ 2{--}3. It confirms that our color selections are highly complete in a wide redshift range (z< 4.5), especially over the quasar number density peak at z∼ 2{--}3, even for faint quasars. Combining all previous known quasars and new discoveries, we construct a sample with 109 quasars and measure the binned QLF and parametric QLF. Although the sample is small, our results agree with a pure luminosity evolution at lower redshift and luminosity evolution and density evolution model at redshift z> 2.5.
THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION
Myers, Adam D.; Palanque-Delabrouille, Nathalie; Prakash, Abhishek; ...
2015-12-01
As part of the Sloan Digital Sky Survey (SDSS) IV the extended Baryon Oscillation Spectroscopic Survey (eBOSS) will improve measurements of the cosmological distance scale by applying the Baryon Acoustic Oscillation (BAO) method to quasar samples. eBOSS will adopt two approaches to target quasars over 7500 deg 2 . First, a "CORE" quasar sample will combine the optical selection in ugriz using a likelihood-based routine called XDQSOz, with a mid-IR-optical color cut. eBOSS CORE selection (to g < 22 or r < 22) should return ~70 deg -2 quasars at redshifts 0.9 < z < 2.2 and ~7 deg -2more » z > 2.1 quasars. Second, a selection based on variability in multi-epoch imaging from the Palomar Transient Factory should recover an additional ~3-4 deg -2 z > 2.1 quasars to g < 22.5. A linear model of how imaging systematics affect target density recovers the angular distribution of eBOSS CORE quasars over 96.7% (76.7%) of the SDSS north (south) Galactic Cap area. The eBOSS CORE quasar sample should thus be sufficiently dense and homogeneous over 0.9 < z < 2.2 to yield the first few-percent-level BAO constraint near eBOSS quasars at z > 2.1 will be used to improve BAO measurements in the Lyα Forest. Beyond its key cosmological goals, eBOSS should be the next-generation quasar survey, comprising > 500,000 new quasars and > 500,000 uniformly selected spectroscopically confirmed 0.9 < z < 2.2 quasars. At the conclusion of eBOSS, the SDSS will have provided unique spectra for more than 800,000 quasars.« less
Unveiling Quasar Fueling through a Public Snapshot Survey of Quasar Host Environments
NASA Astrophysics Data System (ADS)
Johnson, Sean
2017-08-01
Feedback from quasars is thought to play a vital role in galaxy evolution, but the relationship between quasars and the halo gas that fuels star-formation on long timescales is not well constrained. Recent observations of the content of quasar host halos have found unusually high covering fractions of cool gas observed in absorption in background quasar spectra. The cool halo gas is strongly correlated with quasar luminosity and exceeds what is observed around non-AGN galaxies by factor of two. Together, these observations provide compelling evidence for a connection between AGN activity and halo gas on 20-200 kpc scales. The high covering fraction and correlation with quasar luminosity may be the result of debris from the galaxy mergers thought to trigger luminous quasars or the halo gas of satellites in gas-rich groups amenable to quasar feeding. If this is the case, then the cool gas observed in absorption will be correlated with signatures of recent galaxy interactions in the quasar host or satellites close to the background sightline. Here, we propose a snapshot imaging survey of z<1 quasars with available constraints on halo gas content to examine a possible correlation between cool halo gas and galaxy interaction signatures. Galaxy morphologies and faint tidal features at z 1 can only be observed with the high resolution imaging capabilities of HST due to the substantial flux in extended wings of AO point-spread functions. The images will be of significant archival value for studying the galaxy environments of quasars and for constraining gas flow models with multi-sightline halo gas studies of galaxies at lower redshift than the foreground & background quasars.
Taghizadeh, Somayeh; Yang, Claus Chunli; R. Kanakamedala, Madhava; Morris, Bart; Vijayakumar, Srinivasan
2017-01-01
Purpose Magnetic resonance (MR) images are necessary for accurate contouring of intracranial targets, determination of gross target volume and evaluation of organs at risk during stereotactic radiosurgery (SRS) treatment planning procedures. Many centers use magnetic resonance imaging (MRI) simulators or regular diagnostic MRI machines for SRS treatment planning; while both types of machine require two stages of quality control (QC), both machine- and patient-specific, before use for SRS, no accepted guidelines for such QC currently exist. This article describes appropriate machine-specific QC procedures for SRS applications. Methods and materials We describe the adaptation of American College of Radiology (ACR)-recommended QC tests using an ACR MRI phantom for SRS treatment planning. In addition, commercial Quasar MRID3D and Quasar GRID3D phantoms were used to evaluate the effects of static magnetic field (B0) inhomogeneity, gradient nonlinearity, and a Leksell G frame (SRS frame) and its accessories on geometrical distortion in MR images. Results QC procedures found in-plane distortions (Maximum = 3.5 mm, Mean = 0.91 mm, Standard deviation = 0.67 mm, >2.5 mm (%) = 2) in X-direction (Maximum = 2.51 mm, Mean = 0.52 mm, Standard deviation = 0.39 mm, > 2.5 mm (%) = 0) and in Y-direction (Maximum = 13. 1 mm , Mean = 2.38 mm, Standard deviation = 2.45 mm, > 2.5 mm (%) = 34) in Z-direction and < 1 mm distortion at a head-sized region of interest. MR images acquired using a Leksell G frame and localization devices showed a mean absolute deviation of 2.3 mm from isocenter. The results of modified ACR tests were all within recommended limits, and baseline measurements have been defined for regular weekly QC tests. Conclusions With appropriate QC procedures in place, it is possible to routinely obtain clinically useful MR images suitable for SRS treatment planning purposes. MRI examination for SRS planning can benefit from the improved localization and planning possible with the superior image quality and soft tissue contrast achieved under optimal conditions. PMID:29487771
Fatemi, Ali; Taghizadeh, Somayeh; Yang, Claus Chunli; R Kanakamedala, Madhava; Morris, Bart; Vijayakumar, Srinivasan
2017-12-18
Purpose Magnetic resonance (MR) images are necessary for accurate contouring of intracranial targets, determination of gross target volume and evaluation of organs at risk during stereotactic radiosurgery (SRS) treatment planning procedures. Many centers use magnetic resonance imaging (MRI) simulators or regular diagnostic MRI machines for SRS treatment planning; while both types of machine require two stages of quality control (QC), both machine- and patient-specific, before use for SRS, no accepted guidelines for such QC currently exist. This article describes appropriate machine-specific QC procedures for SRS applications. Methods and materials We describe the adaptation of American College of Radiology (ACR)-recommended QC tests using an ACR MRI phantom for SRS treatment planning. In addition, commercial Quasar MRID 3D and Quasar GRID 3D phantoms were used to evaluate the effects of static magnetic field (B 0 ) inhomogeneity, gradient nonlinearity, and a Leksell G frame (SRS frame) and its accessories on geometrical distortion in MR images. Results QC procedures found in-plane distortions (Maximum = 3.5 mm, Mean = 0.91 mm, Standard deviation = 0.67 mm, >2.5 mm (%) = 2) in X-direction (Maximum = 2.51 mm, Mean = 0.52 mm, Standard deviation = 0.39 mm, > 2.5 mm (%) = 0) and in Y-direction (Maximum = 13. 1 mm , Mean = 2.38 mm, Standard deviation = 2.45 mm, > 2.5 mm (%) = 34) in Z-direction and < 1 mm distortion at a head-sized region of interest. MR images acquired using a Leksell G frame and localization devices showed a mean absolute deviation of 2.3 mm from isocenter. The results of modified ACR tests were all within recommended limits, and baseline measurements have been defined for regular weekly QC tests. Conclusions With appropriate QC procedures in place, it is possible to routinely obtain clinically useful MR images suitable for SRS treatment planning purposes. MRI examination for SRS planning can benefit from the improved localization and planning possible with the superior image quality and soft tissue contrast achieved under optimal conditions.
THE COLOR VARIABILITY OF QUASARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Kasper B.; Rix, Hans-Walter; Knecht, Matthias
2012-01-10
We quantify quasar color variability using an unprecedented variability database-ugriz photometry of 9093 quasars from Sloan Digital Sky Survey (SDSS) Stripe 82, observed over 8 years at {approx}60 epochs each. We confirm previous reports that quasars become bluer when brightening. We find a redshift dependence of this blueing in a given set of bands (e.g., g and r), but show that it is the result of the flux contribution from less-variable or delayed emission lines in the different SDSS bands at different redshifts. After correcting for this effect, quasar color variability is remarkably uniform, and independent not only of redshift,more » but also of quasar luminosity and black hole mass. The color variations of individual quasars, as they vary in brightness on year timescales, are much more pronounced than the ranges in color seen in samples of quasars across many orders of magnitude in luminosity. This indicates distinct physical mechanisms behind quasar variability and the observed range of quasar luminosities at a given black hole mass-quasar variations cannot be explained by changes in the mean accretion rate. We do find some dependence of the color variability on the characteristics of the flux variations themselves, with fast, low-amplitude, brightness variations producing more color variability. The observed behavior could arise if quasar variability results from flares or ephemeral hot spots in an accretion disk.« less
NASA Astrophysics Data System (ADS)
MacMillan, D. S.
2014-12-01
Galactic aberration is due to the motion of the solar system barycenter around the galactic center. It results in a systematic pattern of apparent proper motion of radio sources observed by VLBI. This effect is not currently included in VLBI analysis. Estimates of the size of this effect indicate that it is important that this secular aberration drift be accounted for in order to maintain an accurate celestial reference frame and allow astrometry at the several microarcsecond level. Future geodetic observing systems are being designed to be capable of producing a future terrestrial reference frame with an accuracy of 1 mm and stability of 0.1 mm/year. We evaluate the effect galactic aberration on attaining these reference frame goals. This presentation will discuss 1) the estimation of galactic aberration from VLBI data and 2) the effect of aberration on the Terrestrial and Celestial Reference Frames and the Earth Orientation Parameters that connect these frames.
Xu, Xu; Faber, Gert S; Kingma, Idsart; Chang, Chien-Chi; Hsiang, Simon M
2013-07-26
In ergonomics studies, linked segment models are commonly used for estimating dynamic L5/S1 joint moments during lifting tasks. The kinematics data input to these models are with respect to an arbitrary stationary reference frame. However, a body-centered reference frame, which is defined using the position and the orientation of human body segments, is sometimes used to conveniently identify the location of the load relative to the body. When a body-centered reference frame is moving with the body, it is a non-inertial reference frame and fictitious force exists. Directly applying a linked segment model to the kinematics data with respect to a body-centered non-inertial reference frame will ignore the effect of this fictitious force and introduce errors during L5/S1 moment estimation. In the current study, various lifting tasks were performed in the laboratory environment. The L5/S1 joint moments during the lifting tasks were calculated by a linked segment model with respect to a stationary reference frame and to a body-centered non-inertial reference frame. The results indicate that applying a linked segment model with respect to a body-centered non-inertial reference frame will result in overestimating the peak L5/S1 joint moments of the coronal plane, sagittal plane, and transverse plane during lifting tasks by 78%, 2%, and 59% on average, respectively. The instant when the peak moment occurred was delayed by 0.13, 0.03, and 0.09s on average, correspondingly for the three planes. The root-mean-square errors of the L5/S1 joint moment for the three planes are 21Nm, 19Nm, and 9Nm, correspondingly. Copyright © 2013 Elsevier Ltd. All rights reserved.
An ALMA [C II] Survey of 27 Quasars at z > 5.94
NASA Astrophysics Data System (ADS)
Decarli, Roberto; Walter, Fabian; Venemans, Bram P.; Bañados, Eduardo; Bertoldi, Frank; Carilli, Chris; Fan, Xiaohui; Farina, Emanuele Paolo; Mazzucchelli, Chiara; Riechers, Dominik; Rix, Hans-Walter; Strauss, Michael A.; Wang, Ran; Yang, Yujin
2018-02-01
We present a survey of the [C II] 158 μm line and underlying far-infrared (FIR) dust continuum emission in a sample of 27 z≳ 6 quasars using the Atacama Large Millimeter Array (ALMA) at ∼ 1\\prime\\prime resolution. The [C II] line was significantly detected (at > 5-σ) in 23 sources (85%). We find typical line luminosities of {L}[{{C}{{II}}]}={10}9-10 {L}ȯ , and an average line width of ∼385 {km} {{{s}}}-1. The [C II]-to-far-infrared luminosity ratios ([C II]/FIR) in our sources span one order of magnitude, highlighting a variety of conditions in the star-forming medium. Four quasar host galaxies are clearly resolved in their [C II] emission on a few kpc scales. Basic estimates of the dynamical masses of the host galaxies give masses between 2 × 1010 and 2 × 1011 {M}ȯ , i.e., more than an order of magnitude below what is expected from local scaling relations, given the available limits on the masses of the central black holes (> 3× {10}8 {M}ȯ , assuming Eddington-limited accretion). In stacked ALMA [C II] spectra of individual sources in our sample, we find no evidence of a deviation from a single Gaussian profile. The quasar luminosity does not strongly correlate with either the [C II] luminosity or equivalent width. This survey (with typical on-source integration times of 8 minutes) showcases the unparalleled sensitivity of ALMA at millimeter wavelengths, and offers a unique reference sample for the study of the first massive galaxies in the universe.
Multiple reference frames in haptic spatial processing
NASA Astrophysics Data System (ADS)
Volčič, R.
2008-08-01
The present thesis focused on haptic spatial processing. In particular, our interest was directed to the perception of spatial relations with the main focus on the perception of orientation. To this end, we studied haptic perception in different tasks, either in isolation or in combination with vision. The parallelity task, where participants have to match the orientations of two spatially separated bars, was used in its two-dimensional and three-dimensional versions in Chapter 2 and Chapter 3, respectively. The influence of non-informative vision and visual interference on performance in the parallelity task was studied in Chapter 4. A different task, the mental rotation task, was introduced in a purely haptic study in Chapter 5 and in a visuo-haptic cross-modal study in Chapter 6. The interaction of multiple reference frames and their influence on haptic spatial processing were the common denominators of these studies. In this thesis we approached the problems of which reference frames play the major role in haptic spatial processing and how the relative roles of distinct reference frames change depending on the available information and the constraints imposed by different tasks. We found that the influence of a reference frame centered on the hand was the major cause of the deviations from veridicality observed in both the two-dimensional and three-dimensional studies. The results were described by a weighted average model, in which the hand-centered egocentric reference frame is supposed to have a biasing influence on the allocentric reference frame. Performance in haptic spatial processing has been shown to depend also on sources of information or processing that are not strictly connected to the task at hand. When non-informative vision was provided, a beneficial effect was observed in the haptic performance. This improvement was interpreted as a shift from the egocentric to the allocentric reference frame. Moreover, interfering visual information presented in the vicinity of the haptic stimuli parametrically modulated the magnitude of the deviations. The influence of the hand-centered reference frame was shown also in the haptic mental rotation task where participants were quicker in judging the parity of objects when these were aligned with respect to the hands than when they were physically aligned. Similarly, in the visuo-haptic cross-modal mental rotation task the parity judgments were influenced by the orientation of the exploring hand with respect to the viewing direction. This effect was shown to be modulated also by an intervening temporal delay that supposedly counteracts the influence of the hand-centered reference frame. We suggest that the hand-centered reference frame is embedded in a hierarchical structure of reference frames where some of these emerge depending on the demands and the circumstances of the surrounding environment and the needs of an active perceiver.
Quasars Probing Quasars: the Circumgalactic Medium Surrounding z ~ 2 Quasars
NASA Astrophysics Data System (ADS)
Lau, Marie; Quasars Probing Quasars survey
2018-01-01
Understanding the circumgalactic medium--the gaseous halo surrounding a galaxy, is an integral part to understanding galaxy evolution. The z ~ 2-3 universe is interesting as this is when the star formation rate and AGN activity peak. My thesis concludes the decade-long Quasars Probing Quasars survey designed for studying massive galaxy formation and quasar feedback. I use background quasar sightlines that pass close to foreground quasars to study the circumgalactic medium of quasar-host galaxies in absorption. My sample of 149 quasar pairs involve spectra taken with 17 different optical and near IR instruments. I present results on the statistical and physical properties of the circumgalactic medium. The circumgalactic medium is enriched even beyond the virial radius. The alpha/Fe abundance ratio is enhanced, suggesting enrichment from core-collapse supernovae. The cool gas mass within the virial radius is enough to fuel star formation for another Gyr, and may account for 1/3 of the baryonic budget of the galaxy halo. The ionization state increases with projected distance from the quasar, which implies the quasar does not dominate the ionizing radiation flux. However, detection of fluorescent Lyman-alpha emission and NV absorption imply these transverse absorbers are partially illuminated by the quasar. In one peculiar case, the absorbing clump has density >100 cm^-3 and sub-parsec size. The average absorption in the circumgalactic medium exhibits large velocity widths, and is asymmetric about the systemic redshift of the galaxies. The widths are consistent with gravitational motions and Hubble flow, and outflows are not required to explain them. The asymmetry can be explained if the ionizing radiation from the quasar is anisotropic or intermittent and the gas is not in inflow. My results pose challenges for cosmological hydrodynamic simulations to produce a substantial cool gas reservoir surrounding quasars, that is also enriched and shows extreme kinematics.
THE SUBARU HIGH-z QUASAR SURVEY: DISCOVERY OF FAINT z ∼ 6 QUASARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashikawa, Nobunari; Furusawa, Hisanori; Niino, Yuu
2015-01-01
We present the discovery of one or two extremely faint z ∼ 6 quasars in 6.5 deg{sup 2} utilizing a unique capability of the wide-field imaging of the Subaru/Suprime-Cam. The quasar selection was made in (i'-z{sub B} ) and (z{sub B} -z{sub R} ) colors, where z{sub B} and z{sub R} are bandpasses with central wavelengths of 8842 Å and 9841 Å, respectively. The color selection can effectively isolate quasars at z ∼ 6 from M/L/T dwarfs without the J-band photometry down to z{sub R} < 24.0, which is 3.5 mag deeper than the Sloan Digital Sky Survey (SDSS). Wemore » have selected 17 promising quasar candidates. The follow-up spectroscopy for seven targets identified one apparent quasar at z = 6.156 with M {sub 1450} = –23.10. We also identified one possible quasar at z = 6.041 with a faint continuum of M {sub 1450} = –22.58 and a narrow Lyα emission with HWHM =427 km s{sup –1}, which cannot be distinguished from Lyman α emitters. We derive the quasar luminosity function at z ∼ 6 by combining our faint quasar sample with the bright quasar samples by SDSS and CFHQS. Including our data points invokes a higher number density in the faintest bin of the quasar luminosity function than the previous estimate employed. This suggests a steeper faint-end slope than lower z, though it is yet uncertain based on a small number of spectroscopically identified faint quasars, and several quasar candidates still remain to be diagnosed. The steepening of the quasar luminosity function at the faint end does increase the expected emission rate of the ionizing photon; however, it only changes by a factor of approximately two to six. This was found to still be insufficient for the required photon budget of reionization at z ∼ 6.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Xuebing; Wang Ran; Bian Fuyan
2011-09-15
The identification of quasars in the redshift range 2.2 < z < 3 is known to be very inefficient because the optical colors of such quasars are indistinguishable from those of stars. Recent studies have proposed using optical variability or near-infrared (near-IR) colors to improve the identification of the missing quasars in this redshift range. Here we present a case study combining both methods. We select a sample of 70 quasar candidates from variables in Sloan Digital Sky Survey (SDSS) Stripe 82, which are non-ultraviolet excess sources and have UKIDSS near-IR public data. They are clearly separated into two partsmore » on the Y - K/g - z color-color diagram, and 59 of them meet or lie close to a newly proposed Y - K/g - z selection criterion for z < 4 quasars. Of these 59 sources, 44 were previously identified as quasars in SDSS DR7, and 35 of them are quasars at 2.2 < z < 3. We present spectroscopic observations of 14 of 15 remaining quasar candidates using the Bok 2.3 m telescope and the MMT 6.5 m telescope, and successfully identify all of them as new quasars at z = 2.36-2.88. We also apply this method to a sample of 643 variable quasar candidates with SDSS-UKIDSS nine-band photometric data selected from 1875 new quasar candidates in SDSS Stripe 82 given by Butler and Bloom based on the time-series selections, and find that 188 of them are probably new quasars with photometric redshifts at 2.2 < z < 3. Our results indicate that the combination of optical variability and optical/near-IR colors is probably the most efficient way to find 2.2 < z < 3 quasars and is very helpful for constructing a complete quasar sample. We discuss its implications for ongoing and upcoming large optical and near-IR sky surveys.« less
A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging.
Zhu, Xinhui; Wang, Ren; Sun, Fuping; Wang, Jinling
2016-02-08
Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people's daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement,as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging) is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station's geocentric coordinates and velocities relative to the centre of the Earth's mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF). The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System) and VLBI (very long baseline interferometry) velocity observations, and the unity of other velocity fields and SVRF was realized,as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement.
A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging
Zhu, Xinhui; Wang, Ren; Sun, Fuping; Wang, Jinling
2016-01-01
Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people’s daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement, as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging) is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station’s geocentric coordinates and velocities relative to the centre of the Earth’s mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF). The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System) and VLBI (very long baseline interferometry) velocity observations, and the unity of other velocity fields and SVRF was realized, as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement. PMID:26867197
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyu, Jianwei; Rieke, G. H.; Shi, Yong, E-mail: jianwei@email.arizona.edu
To elucidate the intrinsic broadband infrared (IR) emission properties of active galactic nuclei (AGNs), we analyze the spectral energy distributions (SEDs) of 87 z ≲ 0.5 Palomar-Green (PG) quasars. While the Elvis AGN template with a moderate far-IR correction can reasonably match the SEDs of the AGN components in ∼60% of the sample (and is superior to alternatives such as that by Assef), it fails on two quasar populations: (1) hot-dust-deficient (HDD) quasars that show very weak emission thoroughly from the near-IR to the far-IR, and (2) warm-dust-deficient (WDD) quasars that have similar hot dust emission as normal quasars butmore » are relatively faint in the mid- and far-IR. After building composite AGN templates for these dust-deficient quasars, we successfully fit the 0.3–500 μm SEDs of the PG sample with the appropriate AGN template, an infrared template of a star-forming galaxy, and a host galaxy stellar template. 20 HDD and 12 WDD quasars are identified from the SED decomposition, including seven ambiguous cases. Compared with normal quasars, the HDD quasars have AGNs with relatively low Eddington ratios and the fraction of WDD quasars increases with AGN luminosity. Moreover, both the HDD and WDD quasar populations show relatively stronger mid-IR silicate emission. Virtually identical SED properties are also found in some quasars from z = 0.5 to 6. We propose a conceptual model to demonstrate that the observed dust deficiency of quasars can result from a change of structures of the circumnuclear tori that can occur at any cosmic epoch.« less
Reference Frames in Relativistic Space-Time
NASA Astrophysics Data System (ADS)
Soffel, M.; Herold, H.; Ruder, H.; Schneider, M.
Three fundamental concepts of reference frames in relativistic space-time are confronted: 1. the gravitation compass, 2. the stellar compass and 3. the inertial compass. It is argued that under certain conditions asymptotically fixed (stellar) reference frames can be introduced with the same rigour as local Fermi frames, thereby eliminating one possible psychological reason why the importance of Fermi frames frequently has been overestimated in the past. As applications of these three concepts the authors discuss: 1. a relativistic definition of the geoid, 2. a relativistic astrometric problem and 3. the post-Newtonian theory of a laser gyroscope fixed to the Earth's surface.
NASA Astrophysics Data System (ADS)
Schindler, Jan-Torge; Fan, Xiaohui; McGreer, Ian
2018-01-01
Studies of the most luminous quasars at high redshift directly probe the evolution of the most massive black holes in the early Universe and their connection to massive galaxy formation. Unfortunately, extremely luminous quasars at high redshift are very rare objects. Only wide area surveys have a chance to constrain their population. The Sloan Digital Sky Survey (SDSS) nd the Baryon Oscillation Spectroscopic Survey (BOSS) have so far provided the most widely adopted measurements of the type I quasar luminosity function (QLF) at z>3. However, a careful re-examination of the SDSS quasar sample revealed that the SDSS quasar selection is in fact missing a significant fraction of $z~3$ quasars at the brightest end.We have identified the purely optical color selection of SDSS, where quasars at these redshifts are strongly contaminated by late-type dwarfs, and the spectroscopic incompleteness of the SDSS footprint as the main reasons. Therefore we have designed the Extremely Luminous Quasar Survey (ELQS), based on a novel near-infrared JKW2 color cut using WISE AllWISE and 2MASS all-sky photometry, to yield high completeness for very bright (i < 18.0) quasars in the redshift range of 2.8<= z<=5.0. It effectively uses Random Forest machine-learning algorithms on SDSS and WISE photometry for quasar-star classification and photometric redshift estimation.The ELQS is spectroscopically following up ~230 new quasar candidates in an area of ~12000 deg2 in the SDSS footprint, to obtain a well-defined and complete quasar sample for an accurate measurement of the bright-end quasar luminosity function (QLF) at 2.8<= z<=5.0. So far the ELQS has identified 75 bright new quasars in this redshift range and observations of the fall sky will continue until the end of the year. At the AAS winter meeting we will present the full spectroscopic results of the survey, including a re-estimation and extension of the high-z QLF toward higher luminosities.
What makes red quasars red?. Observational evidence for dust extinction from line ratio analysis
NASA Astrophysics Data System (ADS)
Kim, Dohyeong; Im, Myungshin
2018-02-01
Red quasars are very red in the optical through near-infrared (NIR) wavelengths, which is possibly due to dust extinction in their host galaxies as expected in a scenario in which red quasars are an intermediate population between merger-driven star-forming galaxies and unobscured type 1 quasars. However, alternative mechanisms also exist to explain their red colors: (i) an intrinsically red continuum; (ii) an unusual high covering factor of the hot dust component, that is, CFHD = LHD/Lbol, where the LHD is the luminosity from the hot dust component and the Lbol is the bolometric luminosity; and (iii) a moderate viewing angle. In order to investigate why red quasars are red, we studied optical and NIR spectra of 20 red quasars at z 0.3 and 0.7, where the usage of the NIR spectra allowed us to look into red quasar properties in ways that are little affected by dust extinction. The Paschen to Balmer line ratios were derived for 13 red quasars and the values were found to be 10 times higher than unobscured type 1 quasars, suggesting a heavy dust extinction with AV > 2.5 mag. Furthermore, the Paschen to Balmer line ratios of red quasars are difficult to explain with plausible physical conditions without adopting the concept of the dust extinction. The CFHD of red quasars are similar to, or marginally higher than, those of unobscured type 1 quasars. The Eddington ratios, computed for 19 out of 20 red quasars, are higher than those of unobscured type 1 quasars (by factors of 3-5), and hence the moderate viewing angle scenario is disfavored. Consequently, these results strongly suggest the dust extinction that is connected to an enhanced nuclear activity as the origin of the red color of red quasars, which is consistent with the merger-driven quasar evolution scenario. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A31
Edgell, S E; McCabe, S J; Breidenbach, W C; Neace, W P; LaJoie, A S; Abell, T D
2001-03-01
Different frames of reference can affect one's assessment of the value of hand transplantation. This can result in different yet rational decisions by different groups of individuals, especially patients and physicians. In addition, factors other than frames of reference can affect one's evaluation of hand transplantation, which can result in different decisions.
New Discoveries Fill the Quasar Gap
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-04-01
Quasars active and luminous galactic centers can be difficult to find at some high redshifts due to their camouflaging color. A team of scientists has now come up with a way to detect these distant monsters in spite of their disguise.Quasar CamouflageThe color track of quasars between 5 z 6 in the commonly used i z and r i bands. Each dot on the red line marks a 0.1 difference in redshift. The contours show the colors of M dwarfs, from early type to late type. Quasars at a redshift of 5.3 z 5.7 are clearly contaminated by M dwarfs, making them difficult to identify. [Adapted from Yang et al. 2017]One of the key ways we can study the early universe is by building a large sample of high-redshift quasars. In particular, we believe that reionization of the universe is just completing around z 6. Quasars near this redshift are crucial tools for probing the post-reionization epoch and exploring the evolution of the intergalactic medium, quasar evolution, and early supermassive black hole growth.But quasars at this redshift are difficult to detect! The problem is contamination: quasars at this distance are the same color in commonly used optical bands as cool M-dwarf stars. As a result, surveys searching for quasars have often just cut out that entire section of the color space in order to avoid this contamination.This means that theres a huge gap in our sample of quasars around z 5.5: of the more than 300,000 quasars known, only 30 have been found in the redshift range of 5.3 z 5.7.The addition of new colorcolor selection criteria using infrared bands (bottom two plots) allows the authors to differentiate quasars (blue) from M dwarfs (grey), which isnt possible when only the traditional optical colorcolor selection criteria are used (top plot). [Adapted from Yang et al. 2017]A New ApproachIn a recent publication led by Jinyi Yang (Peking University, China and Steward Observatory, University of Arizona), a team of scientists has demonstrated a new technique for finding these missing quasars. The team uses this technique to perform the first systematic survey of luminous quasars at a redshift near z = 5.5.Instead of relying only on the conventional color space in broad optical bands, Yang and collaborators selected candidates by also looking at their colors in near-infrared and mid-infrared bands. The team used observations from the Sloan Digital Sky Survey, the UKIRT Infrared Deep Sky Surveys Large Area Survey, the VISTA Hemisphere Survey, and the Wide Field Survey Explorer.Examining the quasar candidates in these color spaces allowed the authors to more clearly differentiate between the M dwarfs and the quasars, so that they could select only the candidates that clearly fell in the regions dominated by quasars in all three spaces. Yang and collaborators then performed spectroscopic follow-up on their candidates to confirm them.Gap Quasars UncoveredThe authors found 21 new high-redshift quasars (red), including 15 in the range of 5.3 z 5.7. [Adapted from Yang et al. 2017]The team found a total of 21 new quasars from their main sample, with 15 new quasars discovered specifically in the redshift range of 5.3 z 5.7. This nearly doubles the number of known quasars at z 5.5!This initial success has more applications in the future; upcoming surveys will provide an even larger sample to examine for z 5.5 quasars. The team demonstrated that their pipeline can be applied to such surveys by testing it on some preliminary data from the UKIRT Hemisphere Survey. In just this initial test they already discovered another z 5.5 quasar, demonstrating that theyll have little difficultly finding more once the complete data set is released.CitationJinyi Yang et al 2017 AJ 153 184. doi:10.3847/1538-3881/aa6577
Spectroscopic Observations of the Outflowing Wind in the Lensed Quasar SDSS J1001+5027
NASA Astrophysics Data System (ADS)
Misawa, Toru; Inada, Naohisa; Oguri, Masamune; Charlton, Jane C.; Eracleous, Michael; Koyamada, Suzuka; Itoh, Daisuke
2018-02-01
We performed spectroscopic observations of the small-separation lensed quasar SDSS J1001+5027, whose images have an angular separation θ =2\\buildrel{\\prime\\prime}\\over{.} 86, and placed constraints on the physical properties of gas clouds in the vicinity of the quasar (i.e., in the outflowing wind launched from the accretion disk). The two cylinders of sight to the two lensed images go through the same region of the outflowing wind and they become fully separated with no overlap at a very large distance from the source (∼330 pc). We discovered a clear difference in the profile of the C IV broad absorption line (BAL) detected in the two lensed images in two observing epochs. Because the kinematic components in the BAL profile do not vary in concert, the observed variations cannot be reproduced by a simple change of ionization state. If the variability is due to gas motion around the background source (i.e., the continuum source), the corresponding rotational velocity is {v}rot} ≥ 18,000 km s‑1, and their distance from the source is r≤slant 0.06 pc assuming Keplerian motion. Among three Mg II and three C IV NAL systems that we detected in the spectra, only the Mg II system at {z}abs} = 0.8716 shows a hint of variability in its Mg I profile on a rest-frame timescale of {{Δ }}{t}rest} ≤slant 191 days and an obvious velocity shear between the sightlines whose physical separation is ∼7 kpc. We interpret this as the result of motion of a cosmologically intervening absorber, perhaps located in a foreground galaxy. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
NASA Astrophysics Data System (ADS)
Maddox, Natasha; Hewett, Paul C.; Péroux, Céline; Nestor, Daniel B.; Wisotzki, Lutz
2012-08-01
The results of a large area, ˜600 deg2, K-band flux-limited spectroscopic survey for luminous quasars are presented. The survey utilizes the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) in regions of sky within the Sloan Digital Sky Survey (SDSS) footprint. The K-band excess (KX) of all quasars with respect to Galactic stars is exploited in combination with a photometric redshift/classification scheme to identify quasar candidates for spectroscopic follow-up observations. The data contained within this investigation will be able to provide new constraints on the fraction of luminous quasars reddened by dust with E(B - V) ≤ 0.5 mag. The spectroscopic sample is defined using the K-band, 14.0 ≤ K ≤ 16.6, and SDSS i-band limits of i = 19.5, 19.7 and 22.0 over sky areas of 287, 150 and 196 deg2, respectively. The survey includes >3200 known quasars from the SDSS and more than 250 additional confirmed quasars from the KX selection. A well-defined subsample of quasars in the redshift interval 1.0 ≤ z ≤ 3.5 includes 1152 objects from the SDSS and 172 additional KX-selected quasars. The quasar selection is >95 per cent complete with respect to known SDSS quasars and >95 per cent efficient, largely independent of redshift and i-band magnitude. The properties of the new KX-selected quasars confirm the known redshift-dependent effectiveness of the SDSS quasar selection and provide a sample of luminous quasars experiencing intermediate levels of extinction by dust. The catalogue represents an important step towards the assembly of a well-defined sample of luminous quasars that may be used to investigate the properties of quasars experiencing intermediate levels of dust extinction within their host galaxies or due intervening absorption line systems. †Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme IDs 083.A0360 and 085.A0359.‡Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).
Quasars Probing Quasars. X. The Quasar Pair Spectral Database
NASA Astrophysics Data System (ADS)
Findlay, Joseph R.; Prochaska, J. Xavier; Hennawi, Joseph F.; Fumagalli, Michele; Myers, Adam D.; Bartle, Stephanie; Chehade, Ben; DiPompeo, Michael A.; Shanks, Tom; Lau, Marie Wingyee; Rubin, Kate H. R.
2018-06-01
The rare close projection of two quasars on the sky provides the opportunity to study the host galaxy environment of a foreground quasar in absorption against the continuum emission of a background quasar. For over a decade the “Quasars probing quasars” series has utilized this technique to further the understanding of galaxy formation and evolution in the presence of a quasar at z > 2, resolving scales as small as a galactic disk and from bound gas in the circumgalactic medium to the diffuse environs of intergalactic space. Presented here is the public release of the quasar pair spectral database utilized in these studies. In addition to projected pairs at z > 2, the database also includes quasar pair members at z < 2, gravitational lens candidates, and quasars closely separated in redshift that are useful for small-scale clustering studies. In total, the database catalogs 5627 distinct objects, with 4083 lying within 5‧ of at least one other source. A spectral library contains 3582 optical and near-infrared spectra for 3028 of the cataloged sources. As well as reporting on 54 newly discovered quasar pairs, we outline the key contributions made by this series over the last 10 years, summarize the imaging and spectroscopic data used for target selection, discuss the target selection methodologies, describe the database content, and explore some avenues for future work. Full documentation for the spectral database, including download instructions, is supplied at http://specdb.readthedocs.io/en/latest/.
Luminous quasars do not live in the most overdense regions of galaxies at z ˜ 4
NASA Astrophysics Data System (ADS)
Uchiyama, Hisakazu; Toshikawa, Jun; Kashikawa, Nobunari; Overzier, Roderik; Chiang, Yi-Kuan; Marinello, Murilo; Tanaka, Masayuki; Niino, Yuu; Ishikawa, Shogo; Onoue, Masafusa; Ichikawa, Kohei; Akiyama, Masayuki; Coupon, Jean; Harikane, Yuichi; Imanishi, Masatoshi; Kodama, Tadayuki; Komiyama, Yutaka; Lee, Chien-Hsiu; Lin, Yen-Ting; Miyazaki, Satoshi; Nagao, Tohru; Nishizawa, Atsushi J.; Ono, Yoshiaki; Ouchi, Masami; Wang, Shiang-Yu
2018-01-01
We present the cross-correlation between 151 luminous quasars (MUV < -26) and 179 protocluster candidates at z ˜ 3.8, extracted from the Wide imaging survey (˜121 deg2) performed as part of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). We find that only two out of 151 quasars reside in regions that are more overdense compared to the average field at >4 σ. The distributions of the distances between quasars and the nearest protoclusters and the significance of the overdensity at the positions of quasars are statistically identical to those found for g-dropout galaxies, suggesting that quasars tend to reside in almost the same environment as star-forming galaxies at this redshift. Using stacking analysis, we find that the average density of g-dropout galaxies around quasars is slightly higher than that around g-dropout galaxies on 1.0-2.5 pMpc scales, while at <0.5 pMpc that around quasars tends to be lower. We also find that quasars with higher UV luminosity or with more massive black holes tend to avoid the most overdense regions, and that the quasar near-zone sizes are anti-correlated with overdensity. These findings are consistent with a scenario in which luminous quasars at z ˜ 4 reside in structures that are less massive than those expected for the progenitors of today's rich clusters of galaxies, and possibly that luminous quasars may be suppressing star formation in their close vicinity.
Quantum reference frames and their applications to thermodynamics.
Popescu, Sandu; Sainz, Ana Belén; Short, Anthony J; Winter, Andreas
2018-07-13
We construct a quantum reference frame, which can be used to approximately implement arbitrary unitary transformations on a system in the presence of any number of extensive conserved quantities, by absorbing any back action provided by the conservation laws. Thus, the reference frame at the same time acts as a battery for the conserved quantities. Our construction features a physically intuitive, clear and implementation-friendly realization. Indeed, the reference system is composed of the same types of subsystems as the original system and is finite for any desired accuracy. In addition, the interaction with the reference frame can be broken down into two-body terms coupling the system to one of the reference frame subsystems at a time. We apply this construction to quantum thermodynamic set-ups with multiple, possibly non-commuting conserved quantities, which allows for the definition of explicit batteries in such cases.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
An astrophysics data program investigation of a synoptic study of quasar continua
NASA Technical Reports Server (NTRS)
Elvis, Martin
1991-01-01
A summary of the program is presented. The major product of the program, an atlas of quasar energy distributions, is presented in the appendices along with papers written as a result of this research. The topics covered in the papers include: (1) accurate galactic N(sub h) values toward quasars and active galactic nuclei (AGN); (2) weak bump quasars; (3) millimeter measurements of hard x ray selected active galaxies- implications for the nature of the continuous spectrum; (3) persistence and change in the soft x ray spectrum of the quasar PG1211+143; (4) the soft x ray excess in einstein quasar spectra; and (5) EXOSAT x ray spectra of quasars.
The Frequency of Intrinsic X-Ray Weakness among Broad Absorption Line Quasars
NASA Astrophysics Data System (ADS)
Liu, Hezhen; Luo, B.; Brandt, W. N.; Gallagher, S. C.; Garmire, G. P.
2018-06-01
We present combined ≈14–37 ks Chandra observations of seven z = 1.6–2.7 broad absorption line (BAL) quasars selected from the Large Bright Quasar Survey (LBQS). These seven objects are high-ionization BAL (HiBAL) quasars, and they were undetected in the Chandra hard band (2–8 keV) in previous observations. The stacking analyses of previous Chandra observations suggested that these seven objects likely contain some candidates for intrinsically X-ray weak BAL quasars. With the new Chandra observations, six targets are detected. We calculate their effective power-law photon indices and hard-band flux weakness, and find that two objects, LBQS 1203+1530 and LBQS 1442–0011, show soft/steep spectral shapes ({{{Γ }}}eff}={2.2}-0.9+0.9 and {1.9}-0.8+0.9) and significant X-ray weakness in the hard band (by factors of ≈15 and 12). We conclude that the two HiBAL quasars are good candidates for intrinsically X-ray weak BAL quasars. The mid-infrared-to-ultraviolet spectral energy distributions of the two candidates are consistent with those of typical quasars. We constrain the fraction of intrinsically X-ray weak active galactic nuclei (AGNs) among HiBAL quasars to be ≈7%–10% (2/29–3/29), and we estimate it is ≈6%–23% (2/35–8/35) among the general BAL quasar population. Such a fraction is considerably larger than that among non-BAL quasars, and we suggest that intrinsically X-ray weak quasars are preferentially observed as BAL quasars. Intrinsically X-ray weak AGNs likely comprise a small minority of the luminous type 1 AGN population, and they should not affect significantly the completeness of these AGNs found in deep X-ray surveys.
NASA Astrophysics Data System (ADS)
Eftekharzadeh, S.; Myers, A. D.; Hennawi, J. F.; Djorgovski, S. G.; Richards, G. T.; Mahabal, A. A.; Graham, M. J.
2017-06-01
We present the most precise estimate to date of the clustering of quasars on very small scales, based on a sample of 47 binary quasars with magnitudes of g < 20.85 and proper transverse separations of ˜25 h-1 kpc. Our sample of binary quasars, which is about six times larger than any previous spectroscopically confirmed sample on these scales, is targeted using a kernel density estimation (KDE) technique applied to Sloan Digital Sky Survey (SDSS) imaging over most of the SDSS area. Our sample is 'complete' in that all of the KDE target pairs with 17.0 ≲ R ≲ 36.2 h-1 kpc in our area of interest have been spectroscopically confirmed from a combination of previous surveys and our own long-slit observational campaign. We catalogue 230 candidate quasar pairs with angular separations of <8 arcsec, from which our binary quasars were identified. We determine the projected correlation function of quasars (\\bar{W}_p) in four bins of proper transverse scale over the range 17.0 ≲ R ≲ 36.2 h-1 kpc. The implied small-scale quasar clustering amplitude from the projected correlation function, integrated across our entire redshift range, is A = 24.1 ± 3.6 at ˜26.6 h-1 kpc. Our sample is the first spectroscopically confirmed sample of quasar pairs that is sufficiently large to study how quasar clustering evolves with redshift at ˜25 h-1 kpc. We find that empirical descriptions of how quasar clustering evolves with redshift at ˜25 h-1 Mpc also adequately describe the evolution of quasar clustering at ˜25 h-1 kpc.
CONSTRAINTS ON THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT z {approx} 5 IN THE COSMOS FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeda, H.; Matsuoka, K.; Kajisawa, M.
2012-09-10
We present the result of our low-luminosity quasar survey in the redshift range of 4.5 {approx}< z {approx}< 5.5 in the COSMOS field. Using the COSMOS photometric catalog, we selected 15 quasar candidates with 22 < i' < 24 at z {approx} 5 that are {approx}3 mag fainter than the Sloan Digital Sky Survey quasars in the same redshift range. We obtained optical spectra for 14 of the 15 candidates using FOCAS on the Subaru Telescope and did not identify any low-luminosity type-1 quasars at z {approx} 5, while a low-luminosity type-2 quasar at z {approx} 5.07 was discovered. Inmore » order to constrain the faint end of the quasar luminosity function at z {approx} 5, we calculated the 1{sigma} confidence upper limits of the space density of type-1 quasars. As a result, the 1{sigma} confidence upper limits on the quasar space density are {Phi} < 1.33 Multiplication-Sign 10{sup -7} Mpc{sup -3} mag{sup -1} for -24.52 < M{sub 1450} < -23.52 and {Phi} < 2.88 Multiplication-Sign 10{sup -7} Mpc{sup -3} mag{sup -1} for -23.52 < M{sub 1450} < -22.52. The inferred 1{sigma} confidence upper limits of the space density are then used to provide constraints on the faint-end slope and the break absolute magnitude of the quasar luminosity function at z {approx} 5. We find that the quasar space density decreases gradually as a function of redshift at low luminosity (M{sub 1450} {approx} -23), being similar to the trend found for quasars with high luminosity (M{sub 1450} < -26). This result is consistent with the so-called downsizing evolution of quasars seen at lower redshifts.« less
The New BeppoSAX Observation of the Brightest X-Ray Quasar at Redshift
NASA Technical Reports Server (NTRS)
Nicastro, Fabrizio; Oliversen, Ronald J. (Technical Monitor)
2001-01-01
This grant was to support the reduction and analysis of our approved SAX observation of the high redshift (z=3.2) blazar PKS 2126-158. This is the brightest quasar at z greater than 3 and has been intensively studied in X-ray, since the first Einstein detection. In 1994 Elvis et al., discovered a strong low energy cutoff in this object, which could imply either quasar frame photoelectric absorption by a column of 0.8-2.7 x 1e22 cm-2 cold gas, or a lower column of cold gas at z=0. Subsequent ASCA observations of this object, could not definitely address this issue, nor could establish whether the curvature of the low energy portion of the spectrum was due to pure photoelectric absorption (considerably exceeding the Galactic value along the line of sight) or to an intrinsic continuum curvature. We proposed to observe PKS 2126-158 with BeppoSAX, to try to solve this puzzle (thanks to the broadband of BeppoSAX: 0.1-250 keV). PKS 2126 was observed by BeppoSAX on May 1999, with a MECS exposure of 100 ks. We have reduced and analyzed the BeppoSAX data, and compared them with a Chandra ACIS observation of the same object, taken only 6 months apart (Nov. 1999). We have recently finished to write a paper on the BeppoSAX data only, that concentrate on the properties of the X-ray absorber, which is highly requested by our SAX data, independently on the continuum model adopted. The paper (P.I.F. Fiore) will be submitted to APJ in the next few days. A second paper on the combined BeppoSAX and Chandra data, and based on the broad band spectral energy distribution of this quasar, is currently in preparation. Our main results, on the X-ray absorber, are: (a) the presence of an X-ray absorber is confirmed, indipendently on the continuum adopted (simple power law, or curved continuum); (b) if the absorber is not significantly ionized, then the BeppoSAX data do prefer a low redshift absorber; (c) if the gas is ionized, then it can be located in the quasar environment, but its metal abundances must be lower than 0.2 times solar (because of the absence of a strong FeK absorption edges that would follow at approx. 2 keV, where the MECS response is the highest).
ERIC Educational Resources Information Center
Moller, Jens; Retelsdorf, Jan; Koller, Olaf; Marsh, Herb W.
2011-01-01
The reciprocal internal/external frame of reference model (RI/EM) combines the internal/external frame of reference model and the reciprocal effects model. The RI/EM predicts positive effects of mathematics and verbal achievement and academic self-concepts (ASC) on subsequent mathematics and verbal achievements and ASCs within domains and negative…
Implementing system simulation of C3 systems using autonomous objects
NASA Technical Reports Server (NTRS)
Rogers, Ralph V.
1987-01-01
The basis of all conflict recognition in simulation is a common frame of reference. Synchronous discrete-event simulation relies on the fixed points in time as the basic frame of reference. Asynchronous discrete-event simulation relies on fixed-points in the model space as the basic frame of reference. Neither approach provides sufficient support for autonomous objects. The use of a spatial template as a frame of reference is proposed to address these insufficiencies. The concept of a spatial template is defined and an implementation approach offered. Discussed are the uses of this approach to analyze the integration of sensor data associated with Command, Control, and Communication systems.
Current control of PMSM based on maximum torque control reference frame
NASA Astrophysics Data System (ADS)
Ohnuma, Takumi
2017-07-01
This study presents a new method of current controls of PMSMs (Permanent Magnet Synchronous Motors) based on a maximum torque control reference frame, which is suitable for high-performance controls of the PMSMs. As the issues of environment and energy increase seriously, PMSMs, one of the AC motors, are becoming popular because of their high-efficiency and high-torque density in various applications, such as electric vehicles, trains, industrial machines, and home appliances. To use the PMSMs efficiently, a proper current control of the PMSMs is necessary. In general, a rotational coordinate system synchronizing with the rotor is used for the current control of PMSMs. In the rotating reference frame, the current control is easier because the currents on the rotating reference frame can be expressed as a direct current in the controller. On the other hand, the torque characteristics of PMSMs are non-linear and complex; the PMSMs are efficient and high-density though. Therefore, a complicated control system is required to involve the relation between the torque and the current, even though the rotating reference frame is adopted. The maximum torque control reference frame provides a simpler way to control efficiently the currents taking the torque characteristics of the PMSMs into consideration.
NASA Astrophysics Data System (ADS)
Kokubo, Mitsuru
2015-05-01
The physical mechanisms of the quasar ultraviolet (UV)-optical variability are not well understood despite the long history of observations. Recently, Dexter & Agol presented a model of quasar UV-optical variability, which assumes large local temperature fluctuations in the quasar accretion discs. This inhomogeneous accretion disc model is claimed to describe not only the single-band variability amplitude, but also microlensing size constraints and the quasar composite spectral shape. In this work, we examine the validity of the inhomogeneous accretion disc model in the light of quasar UV-optical spectral variability by using five-band multi-epoch light curves for nearly 9 000 quasars in the Sloan Digital Sky Survey (SDSS) Stripe 82 region. By comparing the values of the intrinsic scatter σint of the two-band magnitude-magnitude plots for the SDSS quasar light curves and for the simulated light curves, we show that Dexter & Agol's inhomogeneous accretion disc model cannot explain the tight inter-band correlation often observed in the SDSS quasar light curves. This result leads us to conclude that the local temperature fluctuations in the accretion discs are not the main driver of the several years' UV-optical variability of quasars, and consequently, that the assumption that the quasar accretion discs have large localized temperature fluctuations is not preferred from the viewpoint of the UV-optical spectral variability.
Mechanical Energy Change in Inertial Reference Frames
ERIC Educational Resources Information Center
Ghanbari, Saeed
2016-01-01
The mechanical energy change of a system in an inertial frame of reference equals work done by the total nonconservative force in the same frame. This relation is covariant under the Galilean transformations from inertial frame S to S', where S' moves with constant velocity relative to S. In the presence of nonconservative forces, such as normal…
Lin, Zhicheng; He, Sheng
2012-10-25
Object identities ("what") and their spatial locations ("where") are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects ("files") within the reference frame ("cabinet") are orderly coded relative to the frame.
Close Companions to Two High-redshift Quasars
NASA Astrophysics Data System (ADS)
McGreer, Ian D.; Fan, Xiaohui; Strauss, Michael A.; Haiman, Zoltàn; Richards, Gordon T.; Jiang, Linhua; Bian, Fuyan; Schneider, Donald P.
2014-10-01
We report the serendipitous discoveries of companion galaxies to two high-redshift quasars. SDSS J025617.7+001904 is a z = 4.79 quasar included in our recent survey of faint quasars in the SDSS Stripe 82 region. The initial MMT slit spectroscopy shows excess Lyα emission extending well beyond the quasar's light profile. Further imaging and spectroscopy with LBT/MODS1 confirms the presence of a bright galaxy (i AB = 23.6) located 2'' (12 kpc projected) from the quasar with strong Lyα emission (EW0 ≈ 100 Å) at the redshift of the quasar, as well as faint continuum. The second quasar, CFHQS J005006.6+344522 (z = 6.25), is included in our recent HST SNAP survey of z ~ 6 quasars searching for evidence of gravitational lensing. Deep imaging with ACS and WFC3 confirms an optical dropout ~4.5 mag fainter than the quasar (Y AB = 25) at a separation of 0.''9. The red i 775 - Y 105 color of the galaxy and its proximity to the quasar (5 kpc projected if at the quasar redshift) strongly favor an association with the quasar. Although it is much fainter than the quasar, it is remarkably bright when compared to field galaxies at this redshift, while showing no evidence for lensing. Both systems may represent late-stage mergers of two massive galaxies, with the observed light for one dominated by powerful ongoing star formation and for the other by rapid black hole growth. Observations of close companions are rare; if major mergers are primarily responsible for high-redshift quasar fueling then the phase when progenitor galaxies can be observed as bright companions is relatively short. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #12184 and #12493. Observations were also made with the LBT and MMT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jinyi; Wu, Xue-Bing; Wang, Feige
We present initial results from the first systematic survey of luminous z ∼ 5.5 quasars. Quasars at z ∼ 5.5, the post-reionization epoch, are crucial tools to explore the evolution of intergalactic medium, quasar evolution, and the early super-massive black hole growth. However, it has been very challenging to select quasars at redshifts 5.3 ≤ z ≤ 5.7 using conventional color selections, due to their similar optical colors to late-type stars, especially M dwarfs, resulting in a glaring redshift gap in quasar redshift distributions. We develop a new selection technique for z ∼ 5.5 quasars based on optical, near-IR, and mid-IRmore » photometric data from Sloan Digital Sky Survey (SDSS), UKIRT InfraRed Deep Sky Surveys—Large Area Survey (ULAS), VISTA Hemisphere Survey (VHS), and Wide Field Infrared Survey Explorer . From our pilot observations in the SDSS-ULAS/VHS area, we have discovered 15 new quasars at 5.3 ≤ z ≤ 5.7 and 6 new lower redshift quasars, with SDSS z band magnitude brighter than 20.5. Including other two z ∼ 5.5 quasars already published in our previous work, we now construct a uniform quasar sample at 5.3 ≤ z ≤ 5.7, with 17 quasars in a ∼4800 square degree survey area. For further application in a larger survey area, we apply our selection pipeline to do a test selection by using the new wide field J-band photometric data from a preliminary version of the UKIRT Hemisphere Survey (UHS). We successfully discover the first UHS selected z ∼ 5.5 quasar.« less
The Time-domain Spectroscopic Survey: Target Selection for Repeat Spectroscopy
NASA Astrophysics Data System (ADS)
MacLeod, Chelsea L.; Green, Paul J.; Anderson, Scott F.; Eracleous, Michael; Ruan, John J.; Runnoe, Jessie; Nielsen Brandt, William; Badenes, Carles; Greene, Jenny; Morganson, Eric; Schmidt, Sarah J.; Schwope, Axel; Shen, Yue; Amaro, Rachael; Lebleu, Amy; Filiz Ak, Nurten; Grier, Catherine J.; Hoover, Daniel; McGraw, Sean M.; Dawson, Kyle; Hall, Patrick B.; Hawley, Suzanne L.; Mariappan, Vivek; Myers, Adam D.; Pâris, Isabelle; Schneider, Donald P.; Stassun, Keivan G.; Bershady, Matthew A.; Blanton, Michael R.; Seo, Hee-Jong; Tinker, Jeremy; Fernández-Trincado, J. G.; Chambers, Kenneth; Kaiser, Nick; Kudritzki, R.-P.; Magnier, Eugene; Metcalfe, Nigel; Waters, Chris Z.
2018-01-01
As astronomers increasingly exploit the information available in the time domain, spectroscopic variability in particular opens broad new channels of investigation. Here we describe the selection algorithms for all targets intended for repeat spectroscopy in the Time Domain Spectroscopic Survey (TDSS), part of the extended Baryon Oscillation Spectroscopic Survey within the Sloan Digital Sky Survey (SDSS)-IV. Also discussed are the scientific rationale and technical constraints leading to these target selections. The TDSS includes a large “repeat quasar spectroscopy” (RQS) program delivering ∼13,000 repeat spectra of confirmed SDSS quasars, and several smaller “few-epoch spectroscopy” (FES) programs targeting specific classes of quasars as well as stars. The RQS program aims to provide a large and diverse quasar data set for studying variations in quasar spectra on timescales of years, a comparison sample for the FES quasar programs, and an opportunity for discovering rare, serendipitous events. The FES programs cover a wide variety of phenomena in both quasars and stars. Quasar FES programs target broad absorption line quasars, high signal-to-noise ratio normal broad line quasars, quasars with double-peaked or very asymmetric broad emission line profiles, binary supermassive black hole candidates, and the most photometrically variable quasars. Strongly variable stars are also targeted for repeat spectroscopy, encompassing many types of eclipsing binary systems, and classical pulsators like RR Lyrae. Other stellar FES programs allow spectroscopic variability studies of active ultracool dwarf stars, dwarf carbon stars, and white dwarf/M dwarf spectroscopic binaries. We present example TDSS spectra and describe anticipated sample sizes and results.
NASA Astrophysics Data System (ADS)
Mahmoudabadi, H.; Lercier, D.; Vielliard, S.; Mein, N.; Briggs, G.
2016-12-01
The support of time-dependent transformations for surveying and GIS is becoming a critical issue. We need to convert positions from the realizations of the International Terrestrial Reference Frame to any national reference frame. This problem is easy to solve when all of the required information is available. But it becomes really complicated in a worldwide context. We propose an overview of the current ITRF-aligned reference frames and we describe a global solution to support time-dependent transformations between them and the International Terrestrial Reference Frame. We focus on the uncertainties of station velocities used. In a first approximation, we use a global tectonic plate model to calculate point velocities. We show the impact of the velocity model on the coordinate accuracies. Several countries, particularly in active regions, are developing semi-dynamic reference frames. These frames include local displacement models updated regularly and/or after major events (such as earthquakes). Their integration into surveying or GIS applications is an upcoming challenge. We want to encourage the geodetic community to develop and use standard formats.
NASA Astrophysics Data System (ADS)
Jones, Kristen M.; Lacy, M.; Spitzer Extragalactic Representative Volume Survey Team
2014-01-01
Little is known about the environments of high redshift quasars, particularly those obscured by dust. Previous work suggests that dust-shrouded (type 2) quasars are at least as common as un-obscured optical (type 1) quasars; therefore, in order to fully understand the role quasars play in the evolutionary history of the universe, we must understand both types of objects. This project seeks to explore the environments in which obscured quasars form. In this poster, we present mid-infrared clustering measurements for a sample of 45 quasars with 1.3 < z < 2.5, a redshift range that is unexplored in the literature. The objects were selected using IRAC multi-color criteria to remove low-redshift starburst and quiescent galaxies, and subsequently had spectroscopy carried out to both obtain redshifts, and to distinguish between type 1 and type 2 quasars; the high-redshift sample presented in this paper is roughly evenly distributed between the two types. We use the SERVS galaxy catalogs to estimate the cross-correlation between each quasar and its surrounding galaxies. The amplitude of this function gives us the richness of the environments in which these quasars are found, and we compare our results with a matched sample with z < 1.3.
Kinematics of Laying an Automated Weapon System
2017-07-19
mathematical transformation is required to move the firing solution from its reference frame to a reference frame that is meaningful to the weapon system. This...Procedures 2 Conventions and Variable Definitions 2 Rotation Matrices 5 Transformation of a Vector 5 Conversion Between Cartestian and Spherical...Coordinate Systems 6 Transformation of Earth Referenced Lay to Platform Reference Frame 6 Results and Discussions 7 Conclusions 8 Bibliography 9
ERIC Educational Resources Information Center
Parker, Philip D.; Marsh, Herbert W.; Ludtke, Oliver; Trautwein, Ulrich
2013-01-01
The internal/external frame of reference and the big-fish-little-pond effect are two major models of academic self-concept formation which have considerable theoretical and empirical support. Integrating the domain specific and compensatory processes of the internal/external frame of reference model with the big-fish-little-pond effect suggests a…
The International Celestial Reference Frame (ICRF) and the Relationship Between Frames
NASA Technical Reports Server (NTRS)
Ma, Chopo
2000-01-01
The International Celestial Reference Frame (ICRF), a catalog of VLBI source positions, is now the basis for astrometry and geodesy. Its construction and extension/maintenance will be discussed as well as the relationship of the ICRF, ITRF, and EOP/nutation.
Networked Mediated Influence 2.0
2014-12-12
but they communicate the information through different frames of reference. . . . Frames work by accessing a particular perspective on an issue...nature yet attention grabbers.214 Framing. A form of communications where information is presented in a unique slant, focal point, or frame of reference...mental frameworks differ in their implications for decision making, the results can be dramatic.215 Information Communication Technologies (ICTs). A term
What a speaker's choice of frame reveals: reference points, frame selection, and framing effects.
McKenzie, Craig R M; Nelson, Jonathan D
2003-09-01
Framing effects are well established: Listeners' preferences depend on how outcomes are described to them, or framed. Less well understood is what determines how speakers choose frames. Two experiments revealed that reference points systematically influenced speakers' choices between logically equivalent frames. For example, speakers tended to describe a 4-ounce cup filled to the 2-ounce line as half full if it was previously empty but described it as half empty if it was previously full. Similar results were found when speakers could describe the outcome of a medical treatment in terms of either mortality or survival (e.g., 25% die vs. 75% survive). Two additional experiments showed that listeners made accurate inferences about speakers' reference points on the basis of the selected frame (e.g., if a speaker described a cup as half empty, listeners inferred that the cup used to be full). Taken together, the data suggest that frames reliably convey implicit information in addition to their explicit content, which helps explain why framing effects are so robust.
A Catalog of Broad Absorption Line Quasars from the Sloan Digital Sky Survey Third Data Release
NASA Astrophysics Data System (ADS)
Trump, Jonathan R.; Hall, Patrick B.; Reichard, Timothy A.; Richards, Gordon T.; Schneider, Donald P.; Vanden Berk, Daniel E.; Knapp, Gillian R.; Anderson, Scott F.; Fan, Xiaohui; Brinkman, J.; Kleinman, S. J.; Nitta, Atsuko
2006-07-01
We present a total of 4784 unique broad absorption line quasars from the Sloan Digital Sky Survey Third Data Release. An automated algorithm was used to match a continuum to each quasar and to identify regions of flux at least 10% below the continuum over a velocity range of at least 1000 km s-1 in the C IV and Mg II absorption regions. The model continuum was selected as the best-fit match from a set of template quasar spectra binned in luminosity, emission line width, and redshift, with the power-law spectral index and amount of dust reddening as additional free parameters. We characterize our sample through the traditional ``balnicity'' index and a revised absorption index, as well as through parameters such as the width, outflow velocity, fractional depth, and number of troughs. From a sample of 16,883 quasars at 1.7<=z<=4.38, we identify 4386 (26.0%) quasars with broad C IV absorption, of which 1756 (10.4%) satisfy traditional selection criteria. From a sample of 34,973 quasars at 0.5<=z<=2.15, we identify 457 (1.31%) quasars with broad Mg II absorption, 191 (0.55%) of which satisfy traditional selection criteria. We also provide a supplementary list of 39 visually identified z>4.38 quasars with broad C IV absorption. We find that broad absorption line quasars may have broader emission lines on average than other quasars.
NASA Astrophysics Data System (ADS)
He, Wanqiu; Akiyama, Masayuki; Bosch, James; Enoki, Motohiro; Harikane, Yuichi; Ikeda, Hiroyuki; Kashikawa, Nobunari; Kawaguchi, Toshihiro; Komiyama, Yutaka; Lee, Chien-Hsiu; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nagao, Tohru; Nagashima, Masahiro; Niida, Mana; Nishizawa, Atsushi J.; Oguri, Masamune; Onoue, Masafusa; Oogi, Taira; Ouchi, Masami; Schulze, Andreas; Shirasaki, Yuji; Silverman, John D.; Tanaka, Manobu M.; Tanaka, Masayuki; Toba, Yoshiki; Uchiyama, Hisakazu; Yamashita, Takuji
2018-01-01
We examine the clustering of quasars over a wide luminosity range, by utilizing 901 quasars at \\overline{z}_phot˜ 3.8 with -24.73 < M1450 < -22.23 photometrically selected from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) S16A Wide2 date release and 342 more luminous quasars at 3.4 < zspec < 4.6 with -28.0 < M1450 < -23.95 from the Sloan Digital Sky Survey that fall in the HSC survey fields. We measure the bias factors of two quasar samples by evaluating the cross-correlation functions (CCFs) between the quasar samples and 25790 bright z ˜ 4 Lyman break galaxies in M1450 < -21.25 photometrically selected from the HSC dataset. Over an angular scale of 10.0" to 1000.0", the bias factors are 5.93+1.34-1.43 and 2.73+2.44-2.55 for the low- and high-luminosity quasars, respectively, indicating no significant luminosity dependence of quasar clustering at z ˜ 4. It is noted that the bias factor of the luminous quasars estimated by the CCF is smaller than that estimated by the auto-correlation function over a similar redshift range, especially on scales below 40.0". Moreover, the bias factor of the less-luminous quasars implies the minimal mass of their host dark matter halos is 0.3-2 × 1012 h-1 M⊙, corresponding to a quasar duty cycle of 0.001-0.06.
The luminosity function of quasars
NASA Technical Reports Server (NTRS)
Pei, Yichuan C.
1995-01-01
We propose a new evolutionary model for the optical luminosity function of quasars. Our analytical model is derived from fits to the empirical luminosity function estimated by Hartwick and Schade and Warren, Hewett, and Osmer on the basis of more than 1200 quasars over the range of redshifts 0 approximately less than z approximately less than 4.5. We find that the evolution of quasars over this entire redshift range can be well fitted by a Gaussian distribution, while the shape of the luminosity function can be well fitted by either a double power law or an exponential L(exp 1/4) law. The predicted number counts of quasars, as a function of either apparent magnitude or redshift, are fully consistent with the observed ones. Our model indicates that the evolution of quasars reaches its maximum at z approximately = 2.8 and declines at higher redshifts. An extrapolation of the evolution to z approximately greater than 4.5 implies that quasars may have started their cosmic fireworks at z(sub f) approximately = 5.2-5.5. Forthcoming surveys of quasars at these redshifts will be critical to constrain the epoch of quasar formation. All the results we derived are based on observed quasars and are therefore subject to the bias of obscuration by dust in damped Ly alpha systems. Future surveys of these absorption systems at z approximately greater than 3 will also be important if the formation epoch of quasars is to be known unambiguously.
Updating of visual orientation in a gravity-based reference frame.
Niehof, Nynke; Tramper, Julian J; Doeller, Christian F; Medendorp, W Pieter
2017-10-01
The brain can use multiple reference frames to code line orientation, including head-, object-, and gravity-centered references. If these frames change orientation, their representations must be updated to keep register with actual line orientation. We tested this internal updating during head rotation in roll, exploiting the rod-and-frame effect: The illusory tilt of a vertical line surrounded by a tilted visual frame. If line orientation is stored relative to gravity, these distortions should also affect the updating process. Alternatively, if coding is head- or frame-centered, updating errors should be related to the changes in their orientation. Ten subjects were instructed to memorize the orientation of a briefly flashed line, surrounded by a tilted visual frame, then rotate their head, and subsequently judge the orientation of a second line relative to the memorized first while the frame was upright. Results showed that updating errors were mostly related to the amount of subjective distortion of gravity at both the initial and final head orientation, rather than to the amount of intervening head rotation. In some subjects, a smaller part of the updating error was also related to the change of visual frame orientation. We conclude that the brain relies primarily on a gravity-based reference to remember line orientation during head roll.
Overdensity of galaxies in the environment of quasar pairs
NASA Astrophysics Data System (ADS)
Sandrinelli, A.; Falomo, R.; Treves, A.; Scarpa, R.; Uslenghi, M.
2018-03-01
We report on a study of the galaxy environments of low redshift physical quasars pairs. We selected 20 pairs having projected separation < 0.5 Mpc and difference of systemic velocity < 800 km s-1. Using Sloan Digital Sky Survey images, we evaluated the galaxy overdensity around these quasars in pairs and then compare it with that of a sample of isolated quasars with same redshift and luminosity. It is found that on average there is a systematic larger overdensity of galaxies around quasars in pairs with respect to that of isolated quasars. This may represent a significant link between nuclear activity and galaxy environment. However, at odds with that, the closest quasar pairs seem to inhabit poorer environments. Implications of present results and perspectives for future work are briefly discussed.
Iron Low-ionization Broad Absorption Line quasars - the missing link in galaxy evolution?
NASA Astrophysics Data System (ADS)
Lawther, Daniel Peter; Vestergaard, Marianne; Fan, Xiaohui
2015-08-01
A peculiar and rare type of quasar with strong low-ionization iron absorption lines - known as FeLoBAL quasars - may be the missing link between star forming (or starbursting) galaxies and quasars. They are hypothesized to be quasars breaking out of their dense birth blanket of gas and dust. In that case they are expected to have high rates of star formation in their galaxies. With the aim of addressing and settling this issue we have studied deep Hubble Space Telescope restframe UV and optical imaging of a subset of such quasars in order to characterize the host galaxy properties of these quasars. We present the results of this study along with simulations to characterize the uncertainties and robustness of our results.
Imprints of quasar duty cycle on the 21cm signal from the Epoch of Reionization
NASA Astrophysics Data System (ADS)
Bolgar, Florian; Eames, Evan; Hottier, Clément; Semelin, Benoit
2018-05-01
Quasars contribute to the 21-cm signal from the Epoch of Reionization (EoR) primarily through their ionizing UV and X-ray emission. However, their radio continuum and Lyman-band emission also regulates the 21-cm signal in their direct environment, potentially leaving the imprint of their duty cycle. We develop a model for the radio and UV luminosity functions of quasars from the EoR, and constrain it using recent observations. Our model is consistent with the recent discovery of the quasar J1342+0928 at redshift ˜7.5, and also predicts only a few quasars suitable for 21-cm forest observations (˜10 mJy) in the sky. We exhibit a new effect on the 21-cm signal observed against the CMB: a radio-loud quasar can leave the imprint of its duty cycle on the 21-cm tomography. We apply this effect in a cosmological simulation and conclude that the effect of typical radio-loud quasars is most likely negligible in an SKA field of view. For a ˜10mJy quasar the effect is stronger though hardly observable at SKA resolution. Then we study the contribution of the lyman band (Ly-α to Ly-β) emission of quasars to the Wouthuisen-Field coupling. The collective effect of quasars on the 21-cm power spectrum is larger than the thermal noise at low k, though featureless. However, a distinctive pattern around the brightest quasars in an SKA field of view may be observable in the tomography, encoding the duration of their duty cycle. This pattern has a high signal-to-noise ratio for the brightest quasar in a typical SKA shallow survey.
Quasar probabilities and redshifts from WISE mid-IR through GALEX UV photometry
NASA Astrophysics Data System (ADS)
DiPompeo, M. A.; Bovy, J.; Myers, A. D.; Lang, D.
2015-09-01
Extreme deconvolution (XD) of broad-band photometric data can both separate stars from quasars and generate probability density functions for quasar redshifts, while incorporating flux uncertainties and missing data. Mid-infrared photometric colours are now widely used to identify hot dust intrinsic to quasars, and the release of all-sky WISE data has led to a dramatic increase in the number of IR-selected quasars. Using forced photometry on public WISE data at the locations of Sloan Digital Sky Survey (SDSS) point sources, we incorporate this all-sky data into the training of the XDQSOz models originally developed to select quasars from optical photometry. The combination of WISE and SDSS information is far more powerful than SDSS alone, particularly at z > 2. The use of SDSS+WISE photometry is comparable to the use of SDSS+ultraviolet+near-IR data. We release a new public catalogue of 5537 436 (total; 3874 639 weighted by probability) potential quasars with probability PQSO > 0.2. The catalogue includes redshift probabilities for all objects. We also release an updated version of the publicly available set of codes to calculate quasar and redshift probabilities for various combinations of data. Finally, we demonstrate that this method of selecting quasars using WISE data is both more complete and efficient than simple WISE colour-cuts, especially at high redshift. Our fits verify that above z ˜ 3 WISE colours become bluer than the standard cuts applied to select quasars. Currently, the analysis is limited to quasars with optical counterparts, and thus cannot be used to find highly obscured quasars that WISE colour-cuts identify in significant numbers.
A Study of PG Quasar-Driven Outflows with COS
NASA Astrophysics Data System (ADS)
Hamann, Frederick
2013-10-01
Quasar outflows are an important part of the quasar phenomenon, but many questions remain about their energetics, physical properties and the role they might play in providing feedback to host galaxy evolution. We searched our own COS far-UV observations from the QUEST survey and other large COS programs to find a sample of 6 bright PG quasars with broad {FWHM > 400 km/s} high velocity {v > 1000 km/s} absorption lines that clearly form in quasar-driven winds. These quasars can fill an important gap in our understanding between local Seyferts with low-speed winds and high-redshift quasars with extreme BAL outflows. They are also well-studied at other wavelengths, with some evidence for the quasars driving galaxy-scale blowouts and shutting down star formation. But almost nothing is known about the quasar outflows themselves. We propose a detailed study of these 6 outflow quasars using new COS FUV observations to 1} expand the existing wavelength coverage across critical lines that are diagnostic of the outflow physical conditions, kinetic energies, and metallicities, and 2} check for line variability as an indicator of the outflow structure and locations. This quasar sample includes unusual cases with many low-abundance {PV 1118,1128 and SIV 1063} and excited-state lines {SIV 1073*, CIII* 1175, CII* 1335} that will provide unprecedented constraints on the outflow properties, plus the first known OVI-only mini-BAL outflow {no lower ions detected} for which we will cover NeVIII 770,780 to probe the highest ionization gas. The high FUV sensitivity of COS is uniquely able to measure this wide range of outflow lines in low-redshift quasars with no Lya forest contamination.
Finding Hidden Quasars with UKIDSS and AAOmega
NASA Astrophysics Data System (ADS)
Maddox, Natasha; Hewett, P. C.; Warren, S. J.; Croom, S. M.
2007-05-01
The number of luminous quasars that have thus far eluded optical surveys is a subject of ongoing debate. Dust reddening and significant host galaxy light tend to exclude candidates from traditional UV-excess selection. UKIDSS, the near-infrared counterpart to SDSS, has started to provide the large area NIR data required to quantify the number of quasars missing from optical surveys. The quasar candidate list was chosen from the Early Data Release of the UKIDSS Large Area Survey (LAS), which aims to cover 2000 square degrees in two years. Requiring each object to have K<17, J<19.5 (the detection limit of the LAS) and a detection in SDSS were the only restrictions imposed on the candidates. A simple cut in gJK colour space, exploiting the K-band excess of quasars compared to stars, then separates the quasar candidates from the stellar locus. Optical-NIR colour selection with relaxed restrictions on morphology is less sensitive to dust reddening, so provides a more complete candidate list, suitable for follow-up observation with the new AAOmega spectrograph on the Anglo-Australian Telescope. With spectroscopic observations covering nearly 20 square degrees taken at the AAT, this is by far the largest K-band selected quasar sample to date. Many new quasars have been identified, in addition to known quasars being recovered. Several of the newly discovered quasars lie in regions of colour space typically excluded by UV selection. This study highlights the effectiveness of the K-excess technique in selecting quasars that do not necessarily exhibit the classic UV excess, either due to intrinsic SED shape or dust reddening. Combining upcoming UKIDSS data releases with scheduled AAT observations will increase the area surveyed by several times, thus moving closer to fully quantifying the number of luminous, reddened quasars.
NASA Astrophysics Data System (ADS)
Lacki, Brian C.; Kochanek, Christopher S.; Stanek, Krzysztof Z.; Inada, Naohisa; Oguri, Masamune
2009-06-01
Difference imaging provides a new way to discover gravitationally lensed quasars because few nonlensed sources will show spatially extended, time variable flux. We test the method on the fields of lens candidates in the Sloan Digital Sky Survey (SDSS) Supernova Survey region from the SDSS Quasar Lens Search (SQLS) and one serendipitously discovered lensed quasar. Starting from 20,536 sources, including 49 SDSS quasars, 32 candidate lenses/lensed images, and one known lensed quasar, we find that 174 sources including 35 SDSS quasars, 16 candidate lenses/lensed images, and the known lensed quasar are nonperiodic variable sources. We can measure the spatial structure of the variable flux for 119 of these variable sources and identify only eight as candidate extended variables, including the known lensed quasar. Only the known lensed quasar appears as a close pair of sources on the difference images. Inspection of the remaining seven suggests they are false positives, and only two were spectroscopically identified quasars. One of the lens candidates from the SQLS survives our cuts, but only as a single image instead of a pair. This indicates a false positive rate of order ~1/4000 for the method, or given our effective survey area of order 0.82 deg2, ~5 per deg2 in the SDSS Supernova Survey. The fraction of quasars not found to be variable and the false positive rate would both fall if we had analyzed the full, later data releases for the SDSS fields. While application of the method to the SDSS is limited by the resolution, depth, and sampling of the survey, several future surveys such as Pan-STARRS, LSST, and SNAP will significantly improve on these limitations.
NASA Astrophysics Data System (ADS)
Schmidt, Tobias M.; Worseck, Gabor; Hennawi, Joseph F.; Prochaska, J. Xavier; Crighton, Neil H. M.
2017-09-01
The He II transverse proximity effect—enhanced He II {Ly}α transmission in a background sightline caused by the ionizing radiation of a foreground quasar—offers a unique opportunity to probe the morphology of quasar-driven He II reionization. We conduct a comprehensive spectroscopic survey to find z˜ 3 quasars in the foreground of 22 background quasar sightlines with Hubble Space Telescope/COS He II {Ly}α transmission spectra. With our two-tiered survey strategy, consisting of a deep pencil-beam survey and a shallow wide-field survey, we discover 131 new quasars, which we complement with known SDSS/BOSS quasars in our fields. Using a restricted sample of 66 foreground quasars with inferred He II photoionization rates greater than the expected UV background at these redshifts ({{{Γ }}}{QSO}{He {{II}}}> 5× {10}-16 {{{s}}}-1) we perform the first statistical analysis of the He II transverse proximity effect. Our results show qualitative evidence for a large object-to-object variance: among the four foreground quasars with the highest {{{Γ }}}{QSO}{He {{II}}} only one (previously known) quasar is associated with a significant He II transmission spike. We perform a stacking analysis to average down these fluctuations, and detect an excess in the average He II transmission near the foreground quasars at 3σ significance. This statistical evidence for the transverse proximity effect is corroborated by a clear dependence of the signal strength on {{{Γ }}}{QSO}{He {{II}}}. Our detection places a purely geometrical lower limit on the quasar lifetime of {t}{{Q}}> 25 {Myr}. Improved modeling would additionally constrain quasar obscuration and the mean free path of He II-ionizing photons.
Infrared properties of serendipitous X-ray quasars
NASA Technical Reports Server (NTRS)
Neugebauer, G.; Soifer, B. T.; Matthews, K.; Margon, B.; Chanan, G. A.
1982-01-01
Near infrared measurements were obtained of 30 quasars originally found serendipitously as X-ray sources in fields of other objects. The observations show that the infrared characteristics of these quasars do not differ significantly from those of quasars selected by other criteria. Because this X-ray selected sample is subject to different selection biases than previous radio and optical surveys, this conclusion is useful in validating previous inferences regarding the infrared colors of 'typical' quasars.
Hudson, Kerry D; Farran, Emily K
2017-09-01
Successfully completing a drawing relies on the ability to accurately impose and manipulate spatial frames of reference for the object that is being drawn and for the drawing space. Typically developing (TD) children use cues such as the page boundary as a frame of reference to guide the orientation of drawn lines. Individuals with Williams syndrome (WS) typically produce incohesive drawings; this is proposed to reflect a local processing bias. Across two studies, we provide the first investigation of the effect of using a frame of reference when drawing simple lines and shapes in WS and TD groups (matched for non-verbal ability). Individuals with WS (N=17 Experiment 1; N=18 Experiment 2) and TD children matched by non-verbal ability drew single lines (Experiment One) and whole shapes (Experiment Two) within a neutral, incongruent or congruent frame. The angular deviation of the drawn line/shape, relative to the model line/shape, was measured. Both groups were sensitive to spatial frames of reference when drawing single lines and whole shapes, imposed by a frame around the drawing space. A local processing bias in WS cannot explain poor drawing performance in WS. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
[A method for obtaining redshifts of quasars based on wavelet multi-scaling feature matching].
Liu, Zhong-Tian; Li, Xiang-Ru; Wu, Fu-Chao; Zhao, Yong-Heng
2006-09-01
The LAMOST project, the world's largest sky survey project being implemented in China, is expected to obtain 10(5) quasar spectra. The main objective of the present article is to explore methods that can be used to estimate the redshifts of quasar spectra from LAMOST. Firstly, the features of the broad emission lines are extracted from the quasar spectra to overcome the disadvantage of low signal-to-noise ratio. Then the redshifts of quasar spectra can be estimated by using the multi-scaling feature matching. The experiment with the 15, 715 quasars from the SDSS DR2 shows that the correct rate of redshift estimated by the method is 95.13% within an error range of 0. 02. This method was designed to obtain the redshifts of quasar spectra with relative flux and a low signal-to-noise ratio, which is applicable to the LAMOST data and helps to study quasars and the large-scale structure of the universe etc.
The influence of visual and vestibular orientation cues in a clock reading task.
Davidenko, Nicolas; Cheong, Yeram; Waterman, Amanda; Smith, Jacob; Anderson, Barrett; Harmon, Sarah
2018-05-23
We investigated how performance in the real-life perceptual task of analog clock reading is influenced by the clock's orientation with respect to egocentric, gravitational, and visual-environmental reference frames. In Experiment 1, we designed a simple clock-reading task and found that observers' reaction time to correctly tell the time depends systematically on the clock's orientation. In Experiment 2, we dissociated egocentric from environmental reference frames by having participants sit upright or lie sideways while performing the task. We found that both reference frames substantially contribute to response times in this task. In Experiment 3, we placed upright or rotated participants in an upright or rotated immersive virtual environment, which allowed us to further dissociate vestibular from visual cues to the environmental reference frame. We found evidence of environmental reference frame effects only when visual and vestibular cues were aligned. We discuss the implications for the design of remote and head-mounted displays. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fey, A. L.; Gordon, D.; Jacobs, C. S.; Ma, C.; Gaume, R. A.; Arias, E. F.; Bianco, G.; Boboltz, D. A.; Böckmann, S.; Bolotin, S.; Charlot, P.; Collioud, A.; Engelhardt, G.; Gipson, J.; Gontier, A.-M.; Heinkelmann, R.; Kurdubov, S.; Lambert, S.; Lytvyn, S.; MacMillan, D. S.; Malkin, Z.; Nothnagel, A.; Ojha, R.; Skurikhina, E.; Sokolova, J.; Souchay, J.; Sovers, O. J.; Tesmer, V.; Titov, O.; Wang, G.; Zharov, V.
2015-08-01
We present the second realization of the International Celestial Reference Frame (ICRF2) at radio wavelengths using nearly 30 years of Very Long Baseline Interferometry observations. ICRF2 contains precise positions of 3414 compact radio astronomical objects and has a positional noise floor of ∼40 μas and a directional stability of the frame axes of ∼10 μas. A set of 295 new “defining” sources was selected on the basis of positional stability and the lack of extensive intrinsic source structure. The positional stability of these 295 defining sources and their more uniform sky distribution eliminates the two greatest weaknesses of the first realization of the International Celestial Reference Frame (ICRF1). Alignment of ICRF2 with the International Celestial Reference System was made using 138 positionally stable sources common to both ICRF2 and ICRF1. The resulting ICRF2 was adopted by the International Astronomical Union as the new fundamental celestial reference frame, replacing ICRF1 as of 2010 January 1.
Recovery of a geocentric reference frame using the present-day GPS system
NASA Technical Reports Server (NTRS)
Malla, Rajendra P.; Wu, Sien-Chong
1990-01-01
A geocentric reference frame adopts the center of mass of the earth as the origin of the coordinate axes. The center of mass of the earth is the natural and unambiguous origin of a geocentric satellite dynamical system. But in practice a kinematically obtained terrestrial reference frame may assume an origin other than the geocenter. The establishment of a geocentric reference frame, to which all relevant observations and results can be referred and in which geodynamic theories or models for the dynamic behavior of earth can be formulated, requires the ability to accurately recover a given coordinate frame origin offset from the geocenter. GPS measurements, because of their abundance and broad distribution, provide a powerful tool to obtain this origin offset in a short period of time. Two effective strategies have been devised. Data from the First Central And South America (Casa Uno) geodynamics experiment has been studied, in order to demonstrate the ability of recovering the geocenter location with present day GPS satellites and receivers.
Lin, Zhicheng; He, Sheng
2012-01-01
Object identities (“what”) and their spatial locations (“where”) are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects (“files”) within the reference frame (“cabinet”) are orderly coded relative to the frame. PMID:23104817
The Gaseous Environments of Quasars: Outflows, Feedback & Cold Mode Accretion
NASA Astrophysics Data System (ADS)
Chen, Chen; Hamann, Fred
2018-06-01
The early stages of massive galaxy evolution can involve galaxy-scale outflows driven by a starburst or a central quasar and cold-mode accretion (infall) that adds to the mass buildup in the galaxies. I will describe three related studies that use quasar absorption lines to measure outflows, infall, and the general gaseous environments of quasars across a range of spatial scales. The three studies are: 1) High-resolution spectroscopy with Keck-HIRES and VLT-UVES to study associated absorption lines (AALs) that have redshifts greater than the emission redshifts indicating infall and/or rich multi-component AAL complexes that might be interstellar clouds in the host galaxies that have been shredded and dispersed by a fast unseen quasar-driven wind. The data provide strong constraints on the gas kinematics, spatial structure, column densities, metallicities, and energetics. 2) A complete inventory of high-velocity CIV 1548,1550 mini-BAL outflows in quasars using high-resolution high signal-to-noise spectra in the public VLT-UVES and Keck-HIRES archives. This sensitive mini-BAL survey fills an important niche between previous work on narrow absorption lines (NALs) and the much-studied broad absorption lines (BALs) to build a more complete picture of quasar outflows. I will report of the mini-BAL statistics, the diversity of lines detected, and some tests for correlations with the quasar properties. We find, for example, that mini-BALs at v > 4000 km/s in at least 10% of 511 quasars studied, including 1% at v > 0.1 c. Finally, 3) Use the much larger database of NALs measured in 262,449 BOSS quasars by York et al. (in prep.) to study their potential relationships to the quasars and, specifically, their origins in quasar outflows. This involves primarily comparisons of the incidence and properties of NALs at different velocity shifts to other measured properties of the quasars such as BAL outflows, emission line characteristics, radio-loudness, and red colors. We find, for example, that the extreme high-velocity NALs (0.1 ‑ 0.2c) correlate strongly with AALs, indicating that a significant fraction of these NALs is ejected from the quasars.
NASA Astrophysics Data System (ADS)
Heintz, K. E.; Fynbo, J. P. U.; Møller, P.; Milvang-Jensen, B.; Zabl, J.; Maddox, N.; Krogager, J.-K.; Geier, S.; Vestergaard, M.; Noterdaeme, P.; Ledoux, C.
2016-10-01
The sub-population of quasars reddened by intrinsic or intervening clouds of dust are known to be underrepresented in optical quasar surveys. By defining a complete parent sample of the brightest and spatially unresolved quasars in the COSMOS field, we quantify to which extent this sub-population is fundamental to our understanding of the true population of quasars. By using the available multiwavelength data of various surveys in the COSMOS field, we built a parent sample of 33 quasars brighter than J = 20 mag, identified by reliable X-ray to radio wavelength selection techniques. Spectroscopic follow-up with the NOT/ALFOSC was carried out for four candidate quasars that had not been targeted previously to obtain a 100% redshift completeness of the sample. The population of high AV quasars (HAQs), a specific sub-population of quasars selected from optical/near-infrared photometry, some of which were shown to be missed in large optical surveys such as SDSS, is found to contribute 21%+9-5 of the parent sample. The full population of bright spatially unresolved quasars represented by our parent sample consists of 39%+9-8 reddened quasars defined by having AV > 0.1, and 21%+9-5 of the sample having E(B-V) > 0.1 assuming the extinction curve of the Small Magellanic Cloud. We show that the HAQ selection works well for selecting reddened quasars, but some are missed because their optical spectra are too blue to pass the g-r color cut in the HAQ selection. This is either due to a low degree of dust reddening or anomalous spectra. We find that the fraction of quasars with contributing light from the host galaxy, causing observed extended spatial morphology, is most dominant at z ≲ 1. At higher redshifts the population of spatially unresolved quasars selected by our parent sample is found to be representative of the full population of bright active galactic nuclei at J< 20 mag. This work quantifies the bias against reddened quasars in studies that are based solely on optical surveys. Partly based on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias.
Design and Principles Enabling the Space Reference FOM
NASA Technical Reports Server (NTRS)
Moeller, Bjoern; Dexter, Dan; Madden, Michael; Crues, Edwin Z.; Garro, Alfredo; Skuratovskiy, Anton
2017-01-01
A first complete draft of the Simulation Interoperability Standards Organization (SISO) Space Reference Federation Object Model (FOM) has now been produced. This paper provides some insights into its capabilities and discusses the opportunity for reuse in other domains. The focus of this first version of the standard is execution control, time management and coordinate systems, well-known reference frames, as well as some basic support for physical entities. The biggest part of the execution control is the coordinated start-up process. This process contains a number of steps, including checking of required federates, handling of early versus late joiners, sharing of federation wide configuration data and multi-phase initialization. An additional part of Execution Control is the coordinated and synchronized transition between Run mode, Freeze mode and Shutdown. For time management, several time lines are defined, including real-time, scenario time, High Level Architecture (HLA) logical time and physical time. A strategy for mixing simulations that use different time steps is introduced, as well as an approach for finding common boundaries for fully synchronized freeze. For describing spatial information, a mechanism with a set of reference frames is specified. Each reference frame has a position and orientation related to a parent reference frame. This makes it possible for federates to perform calculations in reference frames that are convenient to them. An operation on the Moon can be performed using lunar coordinates whereas an operation on Earth can be performed using Earth coordinates. At the same time, coordinates in one reference frame have an unambiguous relationship to a coordinate in another reference frame. While the Space Reference FOM is originally being developed for Space operations, the authors believe that many parts of it can be reused for any simulation that has a focus on physical processes with one or more coordinate systems, and require high fidelity and repeatability.
THE HALO OCCUPATION DISTRIBUTION OF SDSS QUASARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, Jonathan; Chatterjee, Suchetana; Nagai, Daisuke
2012-08-10
We present an estimate of the projected two-point correlation function (2PCF) of quasars in the Sloan Digital Sky Survey (SDSS) over the full range of one- and two-halo scales, 0.02 h{sup -1} Mpc < r{sub p} < 120 h{sup -1} Mpc. This was achieved by combining data from SDSS DR7 on large scales and Hennawi et al. (with appropriate statistical corrections) on small scales. Our combined clustering sample is the largest spectroscopic quasar clustering sample to date, containing {approx}48, 000 quasars in the redshift range 0.4 {approx}< z {approx}< 2.5 with median redshift 1.4. We interpret these precise 2PCF measurementsmore » within the halo occupation distribution (HOD) framework and constrain the occupation functions of central and satellite quasars in dark matter halos. In order to explain the small-scale clustering, the HOD modeling requires that a small fraction of z {approx} 1.4 quasars, f{sub sat} = (7.4 {+-} 1.4) Multiplication-Sign 10{sup -4}, be satellites in dark matter halos. At z {approx} 1.4, the median masses of the host halos of central and satellite quasars are constrained to be M{sub cen} = 4.1{sup +0.3}{sub -0.4} Multiplication-Sign 10{sup 12} h{sup -1} M{sub Sun} and M{sub sat} = 3.6{sup +0.8}{sub -1.0} Multiplication-Sign 10{sup 14} h{sup -1} M{sub Sun }, respectively. To investigate the redshift evolution of the quasar-halo relationship, we also perform HOD modeling of the projected 2PCF measured by Shen et al. for SDSS quasars with median redshift 3.2. We find tentative evidence for an increase in the mass scale of quasar host halos-the inferred median mass of halos hosting central quasars at z {approx} 3.2 is M{sub cen} = 14.1{sup +5.8}{sub -6.9} Multiplication-Sign 10{sup 12} h{sup -1} M{sub Sun }. The cutoff profiles of the mean occupation functions of central quasars reveal that quasar luminosity is more tightly correlated with halo mass at higher redshifts. The average quasar duty cycle around the median host halo mass is inferred to be f{sub q} = 7.3{sup +0.6}{sub -1.5} Multiplication-Sign 10{sup -4} at z {approx} 1.4 and f{sub q} = 8.6{sup +20.4}{sub -7.2} Multiplication-Sign 10{sup -2} at z {approx} 3.2. We discuss the implications of our results for quasar evolution and quasar-galaxy co-evolution.« less
Reduction and analysis of VLA maps for 281 radio-loud quasars using the UNLV Cray Y-MP supercomputer
NASA Technical Reports Server (NTRS)
Ding, Ailian; Hintzen, Paul; Weistrop, Donna; Owen, Frazer
1993-01-01
The identification of distorted radio-loud quasars provides a potentially very powerful tool for basic cosmological studies. If large morphological distortions are correlated with membership of the quasars in rich clusters of galaxies, optical observations can be used to identify rich clusters of galaxies at large redshifts. Hintzen, Ulvestad, and Owen (1983, HUO) undertook a VLA A array snapshot survey at 20 cm of 123 radio-loud quasars, and they found that among triple sources in their sample, 17 percent had radio axes which were bent more than 20 deg and 5 percent were bent more than 40 deg. Their subsequent optical observations showed that excess galaxy densities within 30 arcsec of 6 low-redshift distorted quasars were on average 3 times as great as those around undistorted quasars (Hintzen 1984). At least one of the distorted quasars observed, 3C275.1, apparently lies in the first-ranked galaxy at the center of a rich cluster of galaxies (Hintzen and Romanishin, 1986). Although their sample was small, these results indicated that observations of distorted quasars could be used to identify clusters of galaxies at large redshifts. The purpose of this project is to increase the available sample of distorted quasars to allow optical detection of a significant sample of quasar-associated clusters of galaxies at large redshifts.
The diversity of soft X-ray spectra in quasars
NASA Technical Reports Server (NTRS)
Elvis, M.; Wilkes, B. J.; Tananbaum, H.
1985-01-01
Soft X-ray spectra for three quasars obtained with the Einstein Imaging Proportional Counter covering the 0.1-4.0 keV band are reported. Power-law fits to these spectra have best-fit energy indices of 1.2 +0.6 or -0.2, for the quasar NAB 0205 + 024, 0.6 +0.3 or -0.2 for the quasar B2 1028 + 313, and 2.2 + or -0.4 for the quasar PG 1211 + 143. None of the quasars shows any evidence for a column density of cold matter in excess of the galactic values. The derived spectra demonstrate that there is no single universal power law slope for quasar X-ray spectra. The implications of these results for the X-ray background, X-ray continuum emission mechanisms, and the production of the optical/UV emission lines are briefly discussed.
Quasar microlensing models with constraints on the Quasar light curves
NASA Astrophysics Data System (ADS)
Tie, S. S.; Kochanek, C. S.
2018-01-01
Quasar microlensing analyses implicitly generate a model of the variability of the source quasar. The implied source variability may be unrealistic yet its likelihood is generally not evaluated. We used the damped random walk (DRW) model for quasar variability to evaluate the likelihood of the source variability and applied the revized algorithm to a microlensing analysis of the lensed quasar RX J1131-1231. We compared estimates of the size of the quasar disc and the average stellar mass of the lens galaxy with and without applying the DRW likelihoods for the source variability model and found no significant effect on the estimated physical parameters. The most likely explanation is that unreliastic source light-curve models are generally associated with poor microlensing fits that already make a negligible contribution to the probability distributions of the derived parameters.
Mean Occupation Function of High-redshift Quasars from the Planck Cluster Catalog
NASA Astrophysics Data System (ADS)
Chakraborty, Priyanka; Chatterjee, Suchetana; Dutta, Alankar; Myers, Adam D.
2018-06-01
We characterize the distribution of quasars within dark matter halos using a direct measurement technique for the first time at redshifts as high as z ∼ 1. Using the Planck Sunyaev-Zeldovich (SZ) catalog for galaxy groups and the Sloan Digital Sky Survey (SDSS) DR12 quasar data set, we assign host clusters/groups to the quasars and make a measurement of the mean number of quasars within dark matter halos as a function of halo mass. We find that a simple power-law fit of {log}< N> =(2.11+/- 0.01) {log}(M)-(32.77+/- 0.11) can be used to model the quasar fraction in dark matter halos. This suggests that the quasar fraction increases monotonically as a function of halo mass even to redshifts as high as z ∼ 1.
GPS-Only Terrestrial Reference Frame Based on a Global Reprocessing
NASA Astrophysics Data System (ADS)
Dietrich, R.; Rothacher, M.; Ruelke, A.; Fritsche, M.; Steigenberger, P.
2007-12-01
The realization of the International Terrestrial Reference System (ITRS) with highest accuracy and stability is fundamental and crucial for applications in geodesy, geodynamics, geophysics and global change. In a joint effort TU Dresden and TU Munich/GFZ Potsdam reprocessed a global GPS network of more than 200 stations. As a contribution to an ITRS realization daily normal equations from 1994 to 2005 were rigorously combined in order to determine a global GPS-only reference frame (PDR05/Potsdam-Dresden-Reprocessing Reference Frame). We present a realization of the global terrestrial reference system which follows the center of mass approach in consideration of the load-induced deformation of the Earth's crust due to the redistribution of surface masses. The stability of our reference frame will be evaluated based on the obtained long-term trends of station coordinates, the load-induced deformation estimates and the homogeneous time series of station positions. We will compare our solution with other recent terrestrial reference system realizations and give some conclusions for future realizations of the ITRS.
NASA Astrophysics Data System (ADS)
Banerji, Manda; Jones, Gareth C.; Wagg, Jeff; Carilli, Chris L.; Bisbas, Thomas G.; Hewett, Paul C.
2018-06-01
We study the interstellar medium (ISM) properties of three heavily reddened quasars at z ˜ 2.5 as well as three millimetre-bright companion galaxies near these quasars. New JVLA and ALMA observations constrain the CO(1-0), CO(7-6) and [CI]3P2 - 3P1 line emission as well as the far infrared to radio continuum. The gas excitation and physical properties of the ISM are constrained by comparing our observations to photo-dissociation region (PDR) models. The ISM in our high-redshift quasars is composed of very high-density, high-temperature gas which is already highly enriched in elements like carbon. One of our quasar hosts is shown to be a close-separation (<2″) major merger with different line emission properties in the millimeter-bright galaxy and quasar components. Low angular resolution observations of high-redshift quasars used to assess quasar excitation properties should therefore be interpreted with caution as they could potentially be averaging over multiple components with different ISM conditions. Our quasars and their companion galaxies show a range of CO excitation properties spanning the full extent from starburst-like to quasar-like spectral line energy distributions. We compare gas masses based on CO, CI and dust emission, and find that these can disagree when standard assumptions are made regarding the values of αCO, the gas-to-dust ratio and the atomic carbon abundances. We conclude that the ISM properties of our quasars and their companion galaxies are diverse and likely vary spatially across the full extent of these complex, merging systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunert-Bajraszewska, Magdalena; Katarzynski, Krzysztof; Siemiginowska, Aneta
2009-11-10
We present new results on X-ray properties of radio-loud broad absorption line (BAL) quasars and focus on broadband spectral properties of a high-ionization BAL (HiBAL) compact steep spectrum (CSS) radio-loud quasar 1045+352. This HiBAL quasar has a very complex radio morphology indicating either strong interactions between a radio jet and the surrounding interstellar medium or a possible re-start of the jet activity. We detected 1045+352 quasar in a short 5 ksec Chandra ACIS-S observation. We applied theoretical models to explain spectral energy distribution of 1045+352 and argue that non-thermal, inverse-Compton (IC) emission from the innermost parts of the radio jetmore » can account for a large fraction of the observed X-ray emission. In our analysis, we also consider a scenario in which the observed X-ray emission from radio-loud BAL quasars can be a sum of IC jet X-ray emission and optically thin corona X-ray emission. We compiled a sample of radio-loud BAL quasars that were observed in X-rays to date and report no correlation between their X-ray and radio luminosity. However, the radio-loud BAL quasars show a large range of X-ray luminosities and absorption columns. This is consistent with the results obtained earlier for radio-quiet BAL quasars and may indicate an orientation effect in BAL quasars or more complex dependence between X-ray emission, radio emission, and an orientation based on the radio morphology.« less
Quasar Feedback at the Peak of Galaxy Formation Epoch
NASA Astrophysics Data System (ADS)
Liu, Guilin; Zakamska, Nadia L.; Strauss, Michael A.; Greene, Jenny E.; Alexandroff, Rachael
2013-02-01
The correlations between properties of supermassive black holes and stellar spheroids in galaxies imply a physical connection between these two components in spite of their vastly different masses and physical scales. Using Gemini GMOS IFU, we demonstrated that powerful ionized gas winds are a ubiquitous feature in luminous radio-quiet obscured z 0.5 quasars. We now plan to extend this discovery to the era of peak galaxy formation and quasar activity - to the epoch when feedback was most prominent and the galaxy vs. black hole correlations were established. We propose a GMOS IFU survey to map the spatial distribution and the kinematics of Ly(alpha) and N sc v 1240Å emission around 5 obscured quasars at z=3-3.4. We will use Ly(alpha) observations to directly probe the effects of ionizing radiation of obscured quasars on their large-scale environments and N sc v observations to look for signatures of unbound quasar-driven outflows. We will observe in the g-band on sub-galactic and galaxy- wide scales (spatial resolution 3-6 kpc, field of view 40times50 kpc^2 at z=3). Obscured quasars likely constitute the majority of the quasar population and may represent the relatively early enshrouded phase of black hole growth; thus, luminous obscured quasars are the most likely sites of quasar ionization- and wind-feedback, as we found at low redshifts. Our proposed GMOS observations will provide a definitive probe of the effects of quasars on their galaxy-wide and large-scale environments close to the peak of galaxy formation epoch.
Quasars Probing Quasars: The Circumgalactic Medium Surrounding Z 2 Quasars
NASA Astrophysics Data System (ADS)
Lau, Marie Wingyee
Models of galaxy formation make the most direct predictions on gas related processes. Specifically, a picture on how gas flows through dark matter halos and onto galaxies to fuel star formation. A major prediction is that massive halos, including those hosting the progenitors of massive elliptical galaxies, exhibit a higher fraction of hot gas with T 107 K. Another prediction is that some mechanism must be invoked to quench the supply of cool gas in massive systems. Under the current galaxy formation paradigm, every massive galaxy has undergone a quasar phase, making high-redshift quasars the progenitors of inactive supermassive black holes found in the center of nearly all galaxies. Moreover, quasars clustering implies Mhalo = 1012.5 Msun , making quasar-host galaxies the progenitors of present day, massive, red and dead galaxies. The Quasars Probing Quasars survey is well-suited to examine gas related processes in the context of massive galaxy formation, as well as quasar feedback. To date the survey has selected 700 closely projected quasar pairs. To study the circumgalactic medium, a sub-sample of pairs with projected separation within 300 kpc at the foreground quasar's redshift are selected. From the first to seventh paper in the Quasars Probing Quasars series, the statistical results had been limited to covering fractions, equivalent widths, and without precise redshift measurements of the foreground quasars. Signatures of quasar feedback in the cool circumgalactic medium had not been identified. Hence, a sub-sample of 14 pairs with echellette spectra are selected for more detailed analysis. It is found that the low and high ions roughly trace each other in velocity structure. The HI and low ion surface densities decline with projected distance. HI absorption is strong even beyond the virial radius. Unresolved Lyalpha emission in one case and NV detection in another case together imply that a fraction of transverse sightlines are illuminated. The ionization parameter U positively correlates with impact parameter, which implies the foreground quasar does not dominate the radiation field. The circumgalactic medium is significantly enriched even beyond the virial radius, and has median [M/H] = -0.6. O/Fe is supersolar. No evolution in the total H column is found up to projected distance of 200 kpc, within which the median N H = 1020.5 cm-2. Within the virial radius, the mass of the cool CGM is estimated at MCGM ≈ 1.5*10 11 Msun. In two cases, detection of CII* implies electron density ne > 10 cm-3. Motivated by the preliminary kinematic results from this high-resolution sample, kinematic analysis of 148 pairs with precise foreground quasar redshifts is performed. The background spectra of this sample are of low and high resolution. The mean absorptions in metals exhibit velocity widths sigmav ≈ 300 km s-1, however the large widths do not require outflows. The mean absorptions have centroids redshifted from the systemic redshift by +200 km s-1. The asymmetry may be explained if the quasars are anisotropic or intermittent, and the gas is not flowing onto the galaxy. Finally, several observational and theoretical lines of future inquiry using multiwavelength data are presented.
Fan; Strauss; Gunn; Lupton; Carilli; Rupen; Schmidt; Moustakas; Davis; Annis; Bahcall; Brinkmann; Brunner; Csabai; Doi; Fukugita; Heckman; Hennessy; Hindsley; Ivezic; Knapp; Lamb; Munn; Pauls; Pier; Rockosi; Schneider; Szalay; Tucker; York
1999-12-01
We report observations of a luminous unresolved object at redshift z=4.62, with a featureless optical spectrum redward of the Lyalpha forest region, discovered from Sloan Digital Sky Survey commissioning data. The redshift is determined by the onset of the Lyalpha forest at lambda approximately 6800 Å and a Lyman limit system at lambda=5120 Å. A strong Lyalpha absorption system with weak metal absorption lines at z=4.58 is also identified in the spectrum. The object has a continuum absolute magnitude of -26.6 at 1450 Å in the rest frame (h0=0.5, q0=0.5) and therefore cannot be an ordinary galaxy. It shows no radio emission (the 3 sigma upper limit of its flux at 6 cm is 60 µJy), indicating a radio-to-optical flux ratio at least as small as that of the radio-weakest BL Lacertae objects known. It is also not linearly polarized to a 3 sigma upper limit of 4% in the observed I band. Therefore, it is either the most distant BL Lac object known to date, with very weak radio emission, or a new type of unbeamed quasar, whose broad emission line region is very weak or absent.
NASA Technical Reports Server (NTRS)
Folkner, W. M.; Charlot, P.; Finger, M. H.; Williams, J. G.; Sovers, O. J.; Newhall, XX; Standish, E. M., Jr.
1994-01-01
Very Long Baseline Interferometry (VLBI) observations of extragalactic radio sources provide the basis for defining an accurate non-rotating reference frame in terms of angular positions of the sources. Measurements of the distance from the Earth to the Moon and to the inner planets provide the basis for defining an inertial planetary ephemeris reference frame. The relative orientation, or frame tie, between these two reference frames is of interest for combining Earth orientation measurements, for comparing Earth orientation results with theories referred to the mean equator and equinox, and for determining the positions of the planets with respect to the extragalactic reference frame. This work presents an indirect determination of the extragalactic-planetary frame tie from a combined reduction of VLBI and Lunar Laser Ranging (LLR) observations. For this determination, data acquired by LLR tracking stations since 1969 have been analyzed and combined with 14 years of VLBI data acquired by NASA's Deep Space Network since 1978. The frame tie derived from this joint analysis, with an accuracy of 0.003 sec, is the most accurate determination obtained so far. This result, combined with a determination of the mean ecliptic (defined in the rotating sense), shows that the mean equinox of epoch J2000 is offset from the x-axis of the extragalactic frame adopted by the International Earth Rotation Service for astrometric and geodetic applications by 0.078 sec +/- 0.010 sec along the y-direction and y 0.019 sec +/- 0.001 sec. along the z-direction.
Ebe, Kazuyu; Sugimoto, Satoru; Utsunomiya, Satoru; Kagamu, Hiroshi; Aoyama, Hidefumi; Court, Laurence; Tokuyama, Katsuichi; Baba, Ryuta; Ogihara, Yoshisada; Ichikawa, Kosuke; Toyama, Joji
2015-08-01
To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio-caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on the target phantom during a reproduction of the patient's tumor motion. A substitute target with the patient's tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors' QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients' tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors and gimbal motion errors in the ExacTrac log analyses (n = 13). The newly developed video image-based QA system, including in-house software, can analyze more than a thousand images (33 frames/s). Positional errors are approximately equivalent to those in ExacTrac log analyses. This system is useful for the visual illustration of the progress of the tracking state and for the quantification of positional accuracy during dynamic tumor tracking irradiation in the Vero4DRT system.
2016-03-01
squared RMS root mean squared GCRF Geocentric Celestial Reference Frame xi List of Figures Figure Page 1 Geometry of single observation...RA and DEC in the celestial sphere. The Geocentric Celestial Reference Frame (GCRF) is the standard geocentric frame that measures the RA east in the...Figure 2. Right ascension (α) and declination (δ) in the celestial sphere[6] 7 made between geocentric and topocentric angles. Geocentric is referred to
Establishing a celestial VLBI reference frame. 1: Searching for VLBI sources
NASA Technical Reports Server (NTRS)
Preston, R. A.; Morabito, D. D.; Williams, J. G.; Slade, M. A.; Harris, A. W.; Finley, S. G.; Skjerve, L. J.; Tanida, L.; Spitzmesser, D. J.; Johnson, B.
1978-01-01
The Deep Space Network is currently engaged in establishing a new high-accuracy VLBI celestial reference frame. The present status of the task of finding suitable celestial radio sources for constructing this reference frame is discussed. To date, 564 VLBI sources were detected, with 166 of these lying within 10 deg of the ecliptic plane. The variation of the sky distribution of these sources with source strength is examined.
X-ray studies of quasars with the Einstein Observatory. II
NASA Technical Reports Server (NTRS)
Zamorani, G.; Maccacaro, T.; Henry, J. P.; Tananbaum, H.; Soltan, A.; Liebert, J.; Stocke, J.; Strittmatter, P. A.; Weymann, R. J.; Smith, M. G.
1981-01-01
X-ray observations of 107 quasars have been carried out with the Einstein Observatory, and 79 have been detected. A correlation between optical emission and X-ray emission is found; and for radio-loud quasars, the data show a correlation between radio emission and X-ray emission. For a given optical luminosity, the average X-ray emission of radio-loud quasars is about three times higher than that of radio-quiet quasars. The data also suggest that the ratio of X-ray to optical luminosity is decreasing with increasing redshift and/or optical luminosity. The data support the picture in which luminosity evolution, rather than pure density evolution, describes the quasar behavior as a function of redshift.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGreer, Ian D.; Fan Xiaohui; Bian Fuyan
We report the discovery of a gravitationally lensed quasar identified serendipitously in the Sloan Digital Sky Survey (SDSS). The object, SDSS J094604.90+183541.8, was initially targeted for spectroscopy as a luminous red galaxy, but the SDSS spectrum has the features of both a z = 0.388 galaxy and a z = 4.8 quasar. We have obtained additional imaging that resolves the system into two quasar images separated by 3.''06 and a bright galaxy that is strongly blended with one of the quasar images. We confirm spectroscopically that the two quasar images represent a single-lensed source at z = 4.8 with amore » total magnification of 3.2, and we derive a model for the lensing galaxy. This is the highest redshift lensed quasar currently known. We examine the issues surrounding the selection of such an unusual object from existing data and briefly discuss implications for lensed quasar surveys.« less
NASA Technical Reports Server (NTRS)
Ku, W. H.-M.; Helfand, D. J.; Lucy, L. B.
1980-01-01
The X-ray properties of 111 catalogued quasars have been examined with the imaging proportional counter on board the Einstein Observatory. Thirty-five of the objects, of redshift between 0.064 and 3.53, were detected as X-ray sources. The 0.5-4.5-keV X-ray properties of these quasars are correlated with their optical and radio continuum properties and with their redshifts and variability characteristics. The X-ray luminosity of quasars tends to be highest for those objects which are bright in the optical and radio regimes and which exhibit optically violent variability. These observations suggest that quasars should be divided into two classes on the basis of radio luminosities, spectra, evolution and underlying morphology and that quasars can make up a significant portion of the diffuse soft X-ray background only if the slope of the optical quasar log N-log S relation is steeper than 2 to m sub b of about 21.5.
Discovery of a narrow line quasar
NASA Technical Reports Server (NTRS)
Stocke, J.; Liebert, J.; Maccacaro, T.; Griffiths, R. E.; Steiner, J. E.
1982-01-01
A stellar object is reported which, while having X-ray and optical luminosities typical of quasars, has narrow permitted and forbidden emission lines over the observed spectral range. The narrow-line spectrum is high-excitation, the Balmer lines seem to be recombinational, and a redder optical spectrum than that of most quasars is exhibited, despite detection as a weak radio source. The object does not conform to the relationships between H-beta parameters and X-ray flux previously claimed for a large sample of the active galactic nuclei. Because reddish quasars with narrow lines, such as the object identified, may not be found by the standard techniques for the discovery of quasars, the object may be a prototype of a new class of quasars analogous to high-luminosity Seyfert type 2 galaxies. It is suggested that these objects cannot comprise more than 10% of all quasars.
Grand Illusions: How the Universe Plays Tricks on Us.
ERIC Educational Resources Information Center
Chernin, A. D.
1992-01-01
Presents basic facts about quasars as most powerful sources of radiation in the universe. Describes in detail the mirages and illusions that quasars generate and methods for their interpretation. Includes the notion of the gravitational lens and its relationship to twin quasars and the apparent measure of a quasar's bright jet tail moving faster…
A gravitationally lensed quasar with quadruple images separated by 14.62 arcseconds.
Inada, Naohisa; Oguri, Masamune; Pindor, Bartosz; Hennawi, Joseph F; Chiu, Kuenley; Zheng, Wei; Ichikawa, Shin-Ichi; Gregg, Michael D; Becker, Robert H; Suto, Yasushi; Strauss, Michael A; Turner, Edwin L; Keeton, Charles R; Annis, James; Castander, Francisco J; Eisenstein, Daniel J; Frieman, Joshua A; Fukugita, Masataka; Gunn, James E; Johnston, David E; Kent, Stephen M; Nichol, Robert C; Richards, Gordon T; Rix, Hans-Walter; Sheldon, Erin Scott; Bahcall, Neta A; Brinkmann, J; Ivezić, Zeljko; Lamb, Don Q; McKay, Timothy A; Schneider, Donald P; York, Donald G
2003-12-18
Gravitational lensing is a powerful tool for the study of the distribution of dark matter in the Universe. The cold-dark-matter model of the formation of large-scale structures (that is, clusters of galaxies and even larger assemblies) predicts the existence of quasars gravitationally lensed by concentrations of dark matter so massive that the quasar images would be split by over 7 arcsec. Numerous searches for large-separation lensed quasars have, however, been unsuccessful. All of the roughly 70 lensed quasars known, including the first lensed quasar discovered, have smaller separations that can be explained in terms of galaxy-scale concentrations of baryonic matter. Although gravitationally lensed galaxies with large separations are known, quasars are more useful cosmological probes because of the simplicity of the resulting lens systems. Here we report the discovery of a lensed quasar, SDSS J1004 + 4112, which has a maximum separation between the components of 14.62 arcsec. Such a large separation means that the lensing object must be dominated by dark matter. Our results are fully consistent with theoretical expectations based on the cold-dark-matter model.
Transverse and Longitudinal proximity effect
NASA Astrophysics Data System (ADS)
Jalan, Pryianka; Chand, Hum; Srianand, Raghunathan
2018-04-01
With close pairs (˜1.5arcmin) of quasars (QSOs), absorption in the spectra of a background quasar in the vicinity of a foreground quasar can be used to study the environment of the latter quasar at kpc-Mpc scales. For this we used a sample of 205 quasar pairs from the Sloan Digital Sky-Survey Data Release 12 (SDSS DR12) in the redshift range of 2.5 to 3.5 by studying their H I Ly-α absorption. We study the environment of QSOs both in the longitudinal as well as in the transverse direction by carrying out a statistical comparison of the Ly-α absorption lines in the quasar vicinity to that of the absorption lines caused by the inter-galactic medium (IGM). This comparison was done with IGM, matched in absorption redshift and signal-to-noise ratio (SNR) to that of the proximity region. In contrast to the measurements along the line-of-sight, the regions transverse to the quasars exhibit enhanced H I Ly-α absorption. This discrepancy can either be interpreted as due to an anisotropic emission from the quasars or as a consequence of their finite lifetime.
Sunyaev–Zel’Dovich Signal from Quasar Hosts: Implications for Detection of Quasar Feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Dhruba Dutta; Chatterjee, Suchetana, E-mail: dhruba.duttachowdhury@yale.edu
2017-04-10
Several analytic and numerical studies have indicated that the interstellar medium of a quasar host galaxy heated by feedback can contribute to a substantial secondary signal in the cosmic microwave background (CMB) through the thermal Sunyaev–Zel’dovich (SZ) effect. Recently, many groups have tried to detect this signal by cross-correlating CMB maps with quasar catalogs. Using a self-similar model for the gas in the intra-cluster medium and a realistic halo occupation distribution (HOD) prescription for quasars, we estimate the level of SZ signal from gravitational heating of quasar hosts. The bias in the host halo signal estimation due to an unconstrainedmore » high mass HOD tail and yet unknown redshift dependence of the quasar HOD restricts us from drawing any robust conclusions at low redshift ( z < 1.5) from our analysis. However, at higher redshifts ( z > 2.5), we find an excess signal in recent observations than what is predicted from our model. The excess signal could be potentially generated from additional heating due to quasar feedback.« less
HUBBLE CAPTURES MERGER BETWEEN QUASAR AND GALAXY
NASA Technical Reports Server (NTRS)
2002-01-01
This NASA Hubble Space Telescope image shows evidence fo r a merger between a quasar and a companion galaxy. This surprising result might require theorists to rethink their explanations for the nature of quasars, the most energetic objects in the universe. The bright central object is the quasar itself, located several billion light-years away. The two wisps on the (left) of the bright central object are remnants of a bright galaxy that have been disrupted by the mutual gravitational attraction between the quasar and the companion galaxy. This provides clear evidence for a merger between the two objects. Since their discovery in 1963, quasars (quasi-stellar objects) have been enigmatic because they emit prodigious amounts of energy from a very compact source. The most widely accepted model is that a quasar is powered by a supermassive black hole in the core of a galaxy. These new observations proved a challenge for theorists as no current models predict the complex quasar interactions unveiled by Hubble. The image was taken with the Wide Field Planetary Camera-2. Credit: John Bahcall, Institute for Advanced Study, NASA.
Quasars Probing Quasars. IX. The Kinematics of the Circumgalactic Medium Surrounding z ∼ 2 Quasars
NASA Astrophysics Data System (ADS)
Lau, Marie Wingyee; Prochaska, J. Xavier; Hennawi, Joseph F.
2018-04-01
We examine the kinematics of the gas in the environments of galaxies hosting quasars at z ∼ 2. We employ 148 projected quasar pairs to study the circumgalactic gas of the foreground quasars in absorption. The sample selects foreground quasars with precise redshift measurements, using emission lines with precision ≲300 km s‑1 and average offsets from the systemic redshift ≲ | 100 {km} {{{s}}}-1| . We stack the background quasar spectra at the foreground quasar’s systemic redshift to study the mean absorption in C II, C IV, and Mg II. We find that the mean absorptions exhibit large velocity widths σv ≈ 300 km s‑1. Further, the mean absorptions appear to be asymmetric about the systemic redshifts. The mean absorption centroids exhibit small redshift relative to the systemic δv ≈ +200 km s‑1, with large intrinsic scatter in the centroid velocities of the individual absorption systems. We find the observed widths are consistent with gas in gravitational motion and Hubble flow. However, while the observation of large widths alone does not require galactic-scale outflows, the observed offsets suggest that the gas is on average outflowing from the galaxy. The observed offsets also suggest that the ionizing radiation from the foreground quasars is anisotropic and/or intermittent.
Compton scattering of the microwave background by quasar-blown bubbles
NASA Technical Reports Server (NTRS)
Voit, G. Mark
1994-01-01
At least 10% of quasars drive rapid outflows from the central regions of their host galaxies. The mass and energy flow rates in these winds are difficult to measure, but their kinetic luminosities probably exceed 10(exp 45) ergs/s. This kind of outflow easily sunders the interstellar medium of the host and blows a bubble in the intergalactic medium. After the quasar shuts off, the hot bubble continues to shock intergalactic gas until its leading edge merges with the Hubble flow. The interior hot gas Compton scatters microwave background photons, potentially providing a way to detect these bubbles. Assuming that quasar kinetic luminosities scale with their blue luminosities, we integrate over the quasar luminosity function to find the total distortion (y) of the microwave background produced by the entire population of quasar wind bubbles. This calculation of y distortion is remarkably insensitive to the properties of the intergalactic medium (IGM), quasar lifetimes, and cosmological parameters. Current Cosmic Background Explorer (COBE) limits on y constrain the kinetic luminosities of quasars to be less than several times their bolometric radiative luminosities. Within this constraint, quasars can still expel enough kinetic luminosity to shock the entire IGM by z = 0, but cannot heat and ionize the IGM by z = 4 unless omega(sub IGM) much less than 10(exp -2).
Measuring the ISM Content of Optically Luminous Type 2 Quasars
NASA Astrophysics Data System (ADS)
Marshall, Jameeka; Petric, Andreea; Flagey, Nicolas; Lacy, Mark; Omont, Alain
2018-01-01
There is a connection between black holes (BH) and the surrounding bulge stars. Measuring the cold interstellar medium (ISM) content of host galaxies is essential to understand the coevolution of galaxies and BHs. The ISM measurement is important because gas constitutes the raw material from which BHs grow and stars form. Quasars are extremely luminous active galaxies fueled by accreting supermassive black holes. Type 2 quasars have narrow spectral lines whereas type 1 quasars have broad spectral lines. Not only can the ISM measurements provide empirical data to help further clarify quasar models but it is also crucial in distinguishing the physical differences between type 1 and type 2 quasars. Observations of twenty type 2 quasars were made using IRAM, a single dish 30 meter radio telescope, to measure 12CO (1-0) and 12CO (2-1) emission. We used line widths to constrain the dynamical mass and gravitational potential of the host galaxy. Star formation rate (SFR) measured in the infrared (IR) and SFR derived from optical spectra were used to estimate star formation efficiency and gas depletion time scale (M H2/star formation rate). Preliminary analysis suggests that star formation efficiency in type 2 quasars is slightly higher than in type 1 quasars.
Using the Properties of Broad Absorption Line Quasars to Illuminate Quasar Structure
NASA Astrophysics Data System (ADS)
Yong, Suk Yee; King, Anthea L.; Webster, Rachel L.; Bate, Nicholas F.; O'Dowd, Matthew J.; Labrie, Kathleen
2018-06-01
A key to understanding quasar unification paradigms is the emission properties of broad absorption line quasars (BALQs). The fact that only a small fraction of quasar spectra exhibit deep absorption troughs blueward of the broad permitted emission lines provides a crucial clue to the structure of quasar emitting regions. To learn whether it is possible to discriminate between the BALQ and non-BALQ populations given the observed spectral properties of a quasar, we employ two approaches: one based on statistical methods and the other supervised machine learning classification, applied to quasar samples from the Sloan Digital Sky Survey. The features explored include continuum and emission line properties, in particular the absolute magnitude, redshift, spectral index, line width, asymmetry, strength, and relative velocity offsets of high-ionisation C IV λ1549 and low-ionisation Mg II λ2798 lines. We consider a complete population of quasars, and assume that the statistical distributions of properties represent all angles where the quasar is viewed without obscuration. The distributions of the BALQ and non-BALQ sample properties show few significant differences. None of the observed continuum and emission line features are capable of differentiating between the two samples. Most published narrow disk-wind models are inconsistent with these observations, and an alternative disk-wind model is proposed. The key feature of the proposed model is a disk-wind filling a wide opening angle with multiple radial streams of dense clumps.
NASA Astrophysics Data System (ADS)
Davies, Frederick
2017-08-01
The epoch of helium reionization was a major milestone in the history of the Universe, a direct consequence of supermassive black hole growth and the cumulative output of hard ionizing photons by quasars. Our observations of the He II Ly-alpha forest with HST/COS in 26 quasar sightlines show strong fluctuations at z 3, consistent with our state-of-the-art simulations of the He II reionization epoch. However, our detection of transmission at z > 3.5 is inconsistent with all He II reionization models. Resolving this puzzle requires an extensive parameter study of He II reionization, which we propose to carry out using our fast, efficient simulations. The He II Ly-alpha forest is also sensitive to the effect of quasar radiation illuminating the intergalactic medium, known as the proximity effect. We have performed an ambitious ground-based imaging and spectroscopic survey for z 3 quasars in the foreground of HeII sightlines observed with HST/COS, and statistically detected the transverse proximity effect for the first time. The strength of this effect depends on both the quasar lifetime and the opening angle of quasar emission (or the fraction of obscured quasars), and we propose to use our He II reionization simulations to interpret this new measurement. Finally, the line-of-sight proximity effect due to the background quasar provides an independent constraint on the quasar lifetime. Our preliminary comparison of He II spectra to our radiative transfer simulations suggests a quasar lifetime > 10 Myr. We propose to use our He II reionization simulations to model this diverse set of observations and fully capitalize on the far-UV legacy of HST.
Extreme Variability Quasars from the Sloan Digital Sky Survey and the Dark Energy Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rumbaugh, N.; Shen, Yue; Morganson, Eric
2018-02-20
We perform a systematic search for long-term extreme variability quasars (EVQs) in the overlapping Sloan Digital Sky Survey (SDSS) and 3-Year Dark Energy Survey (DES) imaging, which provide light curves spanning more than 15 years. We identified ~1000 EVQs with a maximum g band magnitude change of more than 1 mag over this period, about 10% of all quasars searched. The EVQs have L_bol~10^45-10^47 erg/s and L/L_Edd~0.01-1. Accounting for selection effects, we estimate an intrinsic EVQ fraction of ~30-50% among all g<~22 quasars over a baseline of ~15 years. These EVQs are good candidates for so-called "changing-look quasars", where amore » spectral transition between the two types of quasars (broad-line and narrow-line) is observed between the dim and bright states. We performed detailed multi-wavelength, spectral and variability analyses for the EVQs and compared to their parent quasar sample. We found that EVQs are distinct from a control sample of quasars matched in redshift and optical luminosity: (1) their UV broad emission lines have larger equivalent widths; (2) their Eddington ratios are systematically lower; and (3) they are more variable on all timescales. The intrinsic difference in quasar properties for EVQs suggest that internal processes associated with accretion are the main driver for the observed extreme long-term variability. However, despite their different properties, EVQs seem to be in the tail of a continuous distribution of quasar properties, rather than standing out as a distinct population. We speculate that EVQs are normal quasars accreting at relatively low accretion rates, where the accretion flow is more likely to experience instabilities that drive the factor of few changes in flux on multi-year timescales.« less
The quasar luminosity function at redshift 4 with the Hyper Suprime-Cam Wide Survey
NASA Astrophysics Data System (ADS)
Akiyama, Masayuki; He, Wanqiu; Ikeda, Hiroyuki; Niida, Mana; Nagao, Tohru; Bosch, James; Coupon, Jean; Enoki, Motohiro; Imanishi, Masatoshi; Kashikawa, Nobunari; Kawaguchi, Toshihiro; Komiyama, Yutaka; Lee, Chien-Hsiu; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Oguri, Masamune; Ono, Yoshiaki; Onoue, Masafusa; Ouchi, Masami; Schulze, Andreas; Silverman, John D.; Tanaka, Manobu M.; Tanaka, Masayuki; Terashima, Yuichi; Toba, Yoshiki; Ueda, Yoshihiro
2018-01-01
We present the luminosity function of z ˜ 4 quasars based on the Hyper Suprime-Cam Subaru Strategic Program Wide layer imaging data in the g, r, i, z, and y bands covering 339.8 deg2. From stellar objects, 1666 z ˜ 4 quasar candidates are selected via the g-dropout selection down to i = 24.0 mag. Their photometric redshifts cover the redshift range between 3.6 and 4.3, with an average of 3.9. In combination with the quasar sample from the Sloan Digital Sky Survey in the same redshift range, a quasar luminosity function covering the wide luminosity range of M1450 = -22 to -29 mag is constructed. The quasar luminosity function is well described by a double power-law model with a knee at M1450 = -25.36 ± 0.13 mag and a flat faint-end slope with a power-law index of -1.30 ± 0.05. The knee and faint-end slope show no clear evidence of redshift evolution from those seen at z ˜ 2. The flat slope implies that the UV luminosity density of the quasar population is dominated by the quasars around the knee, and does not support the steeper faint-end slope at higher redshifts reported at z > 5. If we convert the M1450 luminosity function to the hard X-ray 2-10 keV luminosity function using the relation between the UV and X-ray luminosity of quasars and its scatter, the number density of UV-selected quasars matches well with that of the X-ray-selected active galactic nuclei (AGNs) above the knee of the luminosity function. Below the knee, the UV-selected quasars show a deficiency compared to the hard X-ray luminosity function. The deficiency can be explained by the lack of obscured AGNs among the UV-selected quasars.
NASA Astrophysics Data System (ADS)
Onoue, Masafusa; Kashikawa, Nobunari; Willott, Chris J.; Hibon, Pascale; Im, Myungshin; Furusawa, Hisanori; Harikane, Yuichi; Imanishi, Masatoshi; Ishikawa, Shogo; Kikuta, Satoshi; Matsuoka, Yoshiki; Nagao, Tohru; Niino, Yuu; Ono, Yoshiaki; Ouchi, Masami; Tanaka, Masayuki; Tang, Ji-Jia; Toshikawa, Jun; Uchiyama, Hisakazu
2017-10-01
We constrain the quasar contribution to the cosmic reionization based on our deep optical survey of z ˜ 6 quasars down to z R = 24.15 using Subaru/Suprime-Cam in three UKIDSS-DXS fields covering 6.5 deg2. In Kashikawa et al. (2015), we select 17 quasar candidates and report our initial discovery of two low-luminosity quasars ({M}1450˜ -23) from seven targets, one of which might be a Lyα-emitting galaxy. From an additional optical spectroscopy, none of the four candidates out of the remaining 10 turn out to be genuine quasars. Moreover, the deeper optical photometry provided by the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) shows that, unlike the two already-known quasars, the I - z and z - y colors of the last six candidates are consistent with M- or L-type brown dwarfs. Therefore, the quasar luminosity function (QLF) measurement in the previous paper is confirmed. Compiling the QLF measurements from the literature over a wide magnitude range, including an extremely faint AGN candidate from Parsa et al. (2017), to fit them with a double power law, we find that the best-fit faint-end slope is α =-{2.04}-0.18+0.33 (-{1.98}-0.21+0.48) and characteristic magnitude is {M}1450* =-{25.8}-1.9+1.1 (-{25.7}-1.8+1.0) in the case of two (one) quasar detection. Our result suggests that, if the QLF is integrated down to {M}1450=-18, quasars produce ˜1%-12% of the ionizing photons required to fully ionize the universe at z ˜ 6 with a 2σ confidence level, assuming that the escape fraction is {f}{esc}=1 and the intergalactic medium clumpy factor is C = 3. Even when the systematic uncertainties are taken into account, our result supports the scenario that quasars are the minor contributors of the reionization.
NASA Astrophysics Data System (ADS)
Pu, Xingting
2014-02-01
We present the results of a study which uses a sample of 1822 Sloan Digital Sky Survey (SDSS) quasars with reliable Wide-field Infrared Survey Explorer (WISE) detections in the redshift range 1.7≤ z≤4.38 to investigate the mid-infrared fraction of broad absorption line (BAL) quasars. The BAL quasars in the sample include both high-ionization BAL (HiBAL) quasars that show broad absorption from C iv and low-ionization BAL (LoBAL) quasars that show additional broad absorption from Mg ii. The fraction of C iv BAL quasars with nonzero absorption index (AI) is found to be 38.7±1.2 %, in good agreement with that derived for the Two Micron All Sky Survey (2MASS) sample. The C iv BAL quasar fractions remain constant with magnitude in the WISE 3.4 μm (W1) and 4.6 μm (W2) bands, and increase rapidly with decreasing magnitude in the WISE 12 μm (W3) and 22 μm (W4) bands. The nonzero AI fraction of 44.5±2.1 % determined in the WISE W4 band is more likely to represent the intrinsic BAL quasar fraction. No evidence that the fraction is a strong function of redshift is found. At 1.7≤ z≤2.15, the overall mid-infrared LoBAL fraction is and the fractions increase significantly with decreasing magnitude in all four of WISE bands. Moreover, it is found that the mean optical-to-WISE colors of BAL quasars are ≃0.2 mag redder than that of non-BAL quasars, while the traditional (nonzero balnicity) BAL quasars are redder than the nontraditional BAL quasars by ≃0.15 mag, which suggest a continuum of more reddening from non-BAL to nontraditional BAL to traditional BAL. No evidence that nontraditional BALs are a distinct class from traditional BALs is found. Finally, it is shown that the mean optical-to-WISE colors of LoBALs are ≃0.4 mag redder than that of HiBALs at 1.7≤ z≤2.15.
NASA Astrophysics Data System (ADS)
Del Moro, A.; Alexander, D. M.; Bauer, F. E.; Daddi, E.; Kocevski, D. D.; McIntosh, D. H.; Stanley, F.; Brandt, W. N.; Elbaz, D.; Harrison, C. M.; Luo, B.; Mullaney, J. R.; Xue, Y. Q.
2016-02-01
We present the infrared (IR) and X-ray properties of a sample of 33 mid-IR luminous quasars (νL6 μm ≥ 6 × 1044 erg s-1) at redshift z ≈ 1-3, identified through detailed spectral energy distribution analyses of distant star-forming galaxies, using the deepest IR data from Spitzer and Herschel in the GOODS-Herschel fields. The aim is to constrain the fraction of obscured, and Compton-thick (CT, NH > 1.5 × 1024 cm-2) quasars at the peak era of nuclear and star formation activities. Despite being very bright in the mid-IR band, ≈30 per cent of these quasars are not detected in the extremely deep 2 and 4 Ms Chandra X-ray data available in these fields. X-ray spectral analysis of the detected sources reveals that the majority (≈67 per cent) are obscured by column densities NH > 1022 cm-2; this fraction reaches ≈80 per cent when including the X-ray-undetected sources (9 out of 33), which are likely to be the most heavily obscured, CT quasars. We constrain the fraction of CT quasars in our sample to be ≈24-48 per cent, and their space density to be Φ = (6.7 ± 2.2) × 10-6 Mpc-3. From the investigation of the quasar host galaxies in terms of star formation rates (SFRs) and morphological distortions, as a sign of galaxy mergers/interactions, we do not find any direct relation between SFRs and quasar luminosity or X-ray obscuration. On the other hand, there is tentative evidence that the most heavily obscured quasars have, on average, more disturbed morphologies than the unobscured/moderately obscured quasar hosts, which preferentially live in undisturbed systems. However, the fraction of quasars with disturbed morphology amongst the whole sample is ≈40 per cent, suggesting that galaxy mergers are not the main fuelling mechanism of quasars at z ≈ 2.
The Identification of Z-dropouts in Pan-STARRS1: Three Quasars at 6.5< z< 6.7
NASA Astrophysics Data System (ADS)
Venemans, B. P.; Bañados, E.; Decarli, R.; Farina, E. P.; Walter, F.; Chambers, K. C.; Fan, X.; Rix, H.-W.; Schlafly, E.; McMahon, R. G.; Simcoe, R.; Stern, D.; Burgett, W. S.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Magnier, E. A.; Metcalfe, N.; Morgan, J. S.; Price, P. A.; Tonry, J. L.; Waters, C.; AlSayyad, Y.; Banerji, M.; Chen, S. S.; González-Solares, E. A.; Greiner, J.; Mazzucchelli, C.; McGreer, I.; Miller, D. R.; Reed, S.; Sullivan, P. W.
2015-03-01
Luminous distant quasars are unique probes of the high-redshift intergalactic medium (IGM) and of the growth of massive galaxies and black holes in the early universe. Absorption due to neutral hydrogen in the IGM makes quasars beyond a redshift of z≃ 6.5 very faint in the optical z band, thus locating quasars at higher redshifts requires large surveys that are sensitive above 1 micron. We report the discovery of three new z\\gt 6.5 quasars, corresponding to an age of the universe of \\lt 850 Myr, selected as z-band dropouts in the Pan-STARRS1 survey. This increases the number of known z\\gt 6.5 quasars from four to seven. The quasars have redshifts of z = 6.50, 6.52, and 6.66, and include the brightest z-dropout quasar reported to date, PSO J036.5078 + 03.0498 with {{M}1450}=-27.4. We obtained near-infrared spectroscopy for the quasars, and from the Mg ii line, we estimate that the central black holes have masses between 5 × 108 and 4 × 109 {{M}⊙ } and are accreting close to the Eddington limit ({{L}Bol}/{{L}Edd}=0.13-1.2). We investigate the ionized regions around the quasars and find near-zone radii of {{R}NZ}=1.5-5.2 proper Mpc, confirming the trend of decreasing near-zone sizes with increasing redshift found for quasars at 5.7\\lt z\\lt 6.4. By combining RNZ of the PS1 quasars with those of 5.7\\lt z\\lt 7.1 quasars in the literature, we derive a luminosity-corrected redshift evolution of {{R}NZ,corrected}=(7.2+/- 0.2)-(6.1+/- 0.7)× (z-6) Mpc. However, the large spread in RNZ in the new quasars implies a wide range in quasar ages and/or a large variation in the neutral hydrogen fraction along different lines of sight. Based in part on observations collected at the European Southern Observatory, Chile, programs 179.A-2010, 092.A-0150, 093.A-0863, and 093.A-0574, and at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). This paper also includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution, and with the LBT.
DISCOVERING BRIGHT QUASARS AT INTERMEDIATE REDSHIFTS BASED ON OPTICAL/NEAR-INFRARED COLORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xue-Bing; Zuo, Wenwen; Yang, Jinyi
2013-10-01
The identification of quasars at intermediate redshifts (2.2 < z < 3.5) has been inefficient in most previous quasar surveys since the optical colors of quasars are similar to those of stars. The near-IR K-band excess technique has been suggested to overcome this difficulty. Our recent study also proposed to use optical/near-IR colors for selecting z < 4 quasars. To verify the effectiveness of this method, we selected a list of 105 unidentified bright targets with i ≤ 18.5 from the quasar candidates of SDSS DR6 with both SDSS ugriz optical and UKIDSS YJHK near-IR photometric data, which satisfy ourmore » proposed Y – K/g – z criterion and have photometric redshifts between 2.2 and 3.5 estimated from the nine-band SDSS-UKIDSS data. We observed 43 targets with the BFOSC instrument on the 2.16 m optical telescope at Xinglong station of the National Astronomical Observatory of China in the spring of 2012. We spectroscopically identified 36 targets as quasars with redshifts between 2.1 and 3.4. The high success rate of discovering these quasars in the SDSS spectroscopic surveyed area further demonstrates the robustness of both the Y – K/g – z selection criterion and the photometric redshift estimation technique. We also used the above criterion to investigate the possible stellar contamination rate among the quasar candidates of SDSS DR6, and found that the rate is much higher when selecting 3 < z < 3.5 quasar candidates than when selecting lower redshift candidates (z < 2.2). The significant improvement in the photometric redshift estimation when using the nine-band SDSS-UKIDSS data over the five-band SDSS data is demonstrated and a catalog of 7727 unidentified quasar candidates in SDSS DR6 selected with optical/near-IR colors and having photometric redshifts between 2.2 and 3.5 is provided. We also tested the Y – K/g – z selection criterion with the recently released SDSS-III/DR9 quasar catalog and found that 96.2% of 17,999 DR9 quasars with UKIDSS Y- and K-band data satisfy our criterion. With some available samples of red quasars and type II quasars, we find that 88% and 96.5% of these objects can be selected by the Y – K/g – z criterion, respectively, which supports our claim that using the Y – K/g – z criterion efficiently selects both unobscured and obscured quasars. We discuss the implications of our results on the ongoing and upcoming large optical and near-IR sky surveys.« less
Probabilistic Selection of High-redshift Quasars with Subaru/Hyper Suprime-Cam Survey
NASA Astrophysics Data System (ADS)
Onoue, Masafusa
High-redshift quasars are an important probe of the distant Universe. They enable observational studies of the early growth of supermassive blackholes, cosmic reionization, chemical enrichment of host galaxies, and so on. Through pioneering optical and near-infrared wide-area surveys such as the SDSS and the VIKING Survey, about one hundred quasars have been found at z > 6 (e.g., Fan et al. (2006b), Venemans et al. (2013)). However, its current small sample size and the fact that most of them are the most luminous (M 1450 <~ -24) population in this epoch prevents one from constraining statistics on high-redshift quasars, namely quasar luminosity function (QLF), and redshift evolution of IGM neutral fraction. Thus, discovery of large number of z > 6 quasars, especially low-luminous or z > 7 quasars, is highly desired for further understanding of the early universe. We are now starting a new ground-breaking survey of high-redshift (z > 6) quasars using the exquisite imaging data provided by the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) Survey. Thanks to its extremely wide coverage and its high sensitivity thorough five optical bands (1,400 deg2 to the depth of r ~ 26 in HSC-Wide layer), it is one of the most powerful contemporary surveys that makes it possible for us to increase the number of z > 6 quasars by almost an order of magnitude, i.e., 300 at z ~ 6 and 50 at z ~ 7, based on the current estimate of the QLF at z > 6 by Willott et al. (2010b). One of the biggest challenges in z > 6 quasar candidate selection is contamination of Galactic brown dwarfs, which have the same point-like appearance as and similarly red colors to the quasars. To overcome this issue and maximize the selection efficiency, we apply a double-layered approach to the HSC survey products, namely combination of two probabilistic selections: SED-fitting and Bayesian selection. In particular, we have developed a template SED fitting method optimized to high-redshift quasars selection. Its application with 27 photometric bands to the COSMOS quasars at 3 < z < 5 have shown that almost all of the known quasars are correctly classified with small dispersion σ|Δz|/(1+z)=0.01 and as low as η=2.5% outlier rate. At present, the HSC survey have successfully covered ~100 deg2 of HSC-Wide area in full colors. From the first-year data products, we have already started z > 6 quasar selection, and it is expected that the first HSC quasar discovery will be in the near future.
Clustering of High-Redshift Quasars
NASA Astrophysics Data System (ADS)
Timlin, John D., III
In this work, we investigate the clustering of faint quasars in the early Universe and use the clustering strength to gain a better understanding of quasar feedback mechanisms and the growth of central supermassive black holes at early times in the history of the Universe. It has long been understood (e.g., Hopkins et al. 2007a) that the clustering of distant quasars can be used as a probe of different feedback models; however, until now, there was no sample of faint, high-redshift quasars with sufficient density to accurately measure the clustering strength. Therefore we conducted a new survey to increase the number density of these objects. Here, we describe the Spitzer -IRAC Equatorial Survey (SpIES) which is a moderately deep, large-area Spitzer survey which was designed to discover faint, high-redshift (2.9 ≤ z ≤ 5.1) quasars. SpIES spans 115 deg 2 in the equatorial "Stripe 82" region of the Sloan Digital Sky Survey (SDSS) and probes to 5sigma depths of 6.13 microJy (21.93 AB magnitude) and 5.75 microJy (22.0 AB magnitude) at 3.6 and 4.5 microns. At these depths, SpIES is able to observe faint quasars, and we show that SpIES recovers 94% of the high-redshift (z ≥ 3.5), spectroscopically-confirmed quasars that lie within its footprint. SpIES is also ideally located on Stripe 82 for two reasons: It surrounds existing infrared data from the Spitzer-HETDEX Exploratory Large-area (SHELA) survey which increases the area of infrared coverage, and there is a wide range of multi-wavelength, multi-epoch ancillary data on Stripe 82 which we can use together to select high-redshift quasar candidates. To photometrically identify quasar candidates, we combined the optical data from the Sloan Digital Sky Survey and the infrared data from SpIES and SHELA and employed three machine learning algorithms. These algorithms were trained on the optical/infrared colors of known, high-redshift quasars. Using this method, we generate a sample of 1378 objects that are both faint (i ≥ 20.2) and high-redshift (2.9 ≤ z ≤ 5.1) which we use to compute the angular two-point correlation function. We fit a single power-law model with an index of delta = 1.39 +/- 0.618 and amplitude of theta0 = 0.71 +/- 0.546 arcmin to the correlation function, as well as a dark matter model with a bias of b = 6.78 +/- 1.79. The bias in our investigation suggests a model of quasar feedback that considers quasar activity as an intermittent phase in galaxy evolution. If this model is correct, quasar feedback is strong enough to periodically halt the accretion of gas onto the central supermassive black hole of the quasar, which shuts down quasar activity and causes the black hole to stop growing, however it is not strong enough to completely shut down the quasar in the early Universe.
Spatial vision within egocentric and exocentric frames of reference
NASA Technical Reports Server (NTRS)
Howard, Ian P.
1989-01-01
The extent to which perceptual judgements within egocentric and exocentric frames of reference are subject to illusory disturbances and long term modifications is discussed. It is argued that well known spatial illusions, such as the oculogyral illusion and induced visual motion have usually been discussed without proper attention being paid to the frame of reference within which they occur, and that this has led to the construction of inadequate theories and inappropriate procedures for testing them.
Reference frames in virtual spatial navigation are viewpoint dependent
Török, Ágoston; Nguyen, T. Peter; Kolozsvári, Orsolya; Buchanan, Robert J.; Nadasdy, Zoltan
2014-01-01
Spatial navigation in the mammalian brain relies on a cognitive map of the environment. Such cognitive maps enable us, for example, to take the optimal route from a given location to a known target. The formation of these maps is naturally influenced by our perception of the environment, meaning it is dependent on factors such as our viewpoint and choice of reference frame. Yet, it is unknown how these factors influence the construction of cognitive maps. Here, we evaluated how various combinations of viewpoints and reference frames affect subjects' performance when they navigated in a bounded virtual environment without landmarks. We measured both their path length and time efficiency and found that (1) ground perspective was associated with egocentric frame of reference, (2) aerial perspective was associated with allocentric frame of reference, (3) there was no appreciable performance difference between first and third person egocentric viewing positions and (4) while none of these effects were dependent on gender, males tended to perform better in general. Our study provides evidence that there are inherent associations between visual perspectives and cognitive reference frames. This result has implications about the mechanisms of path integration in the human brain and may also inspire designs of virtual reality applications. Lastly, we demonstrated the effective use of a tablet PC and spatial navigation tasks for studying spatial and cognitive aspects of human memory. PMID:25249956
Reference frames in virtual spatial navigation are viewpoint dependent.
Török, Agoston; Nguyen, T Peter; Kolozsvári, Orsolya; Buchanan, Robert J; Nadasdy, Zoltan
2014-01-01
Spatial navigation in the mammalian brain relies on a cognitive map of the environment. Such cognitive maps enable us, for example, to take the optimal route from a given location to a known target. The formation of these maps is naturally influenced by our perception of the environment, meaning it is dependent on factors such as our viewpoint and choice of reference frame. Yet, it is unknown how these factors influence the construction of cognitive maps. Here, we evaluated how various combinations of viewpoints and reference frames affect subjects' performance when they navigated in a bounded virtual environment without landmarks. We measured both their path length and time efficiency and found that (1) ground perspective was associated with egocentric frame of reference, (2) aerial perspective was associated with allocentric frame of reference, (3) there was no appreciable performance difference between first and third person egocentric viewing positions and (4) while none of these effects were dependent on gender, males tended to perform better in general. Our study provides evidence that there are inherent associations between visual perspectives and cognitive reference frames. This result has implications about the mechanisms of path integration in the human brain and may also inspire designs of virtual reality applications. Lastly, we demonstrated the effective use of a tablet PC and spatial navigation tasks for studying spatial and cognitive aspects of human memory.
NASA Astrophysics Data System (ADS)
Stuchlík, Zdeněk; Charbulák, Daniel; Schee, Jan
2018-03-01
We construct the light escape cones of isotropic spot sources of radiation residing in special classes of reference frames in the Kerr-de Sitter (KdS) black hole spacetimes, namely in the fundamental class of `non-geodesic' locally non-rotating reference frames (LNRFs), and two classes of `geodesic' frames, the radial geodesic frames (RGFs), both falling and escaping, and the frames related to the circular geodesic orbits (CGFs). We compare the cones constructed in a given position for the LNRFs, RGFs, and CGFs. We have shown that the photons locally counter-rotating relative to LNRFs with positive impact parameter and negative covariant energy are confined to the ergosphere region. Finally, we demonstrate that the light escaping cones govern the shadows of black holes located in front of a radiating screen, as seen by the observers in the considered frames. For shadows related to distant static observers the LNRFs are relevant.
Celestial Reference Frames at Multiple Radio Wavelengths
NASA Technical Reports Server (NTRS)
Jacobs, Christopher S.
2012-01-01
In 1997 the IAU adopted the International Celestial Reference Frame (ICRF) built from S/X VLBI data. In response to IAU resolutions encouraging the extension of the ICRF to additional frequency bands, VLBI frames have been made at 24, 32, and 43 gigahertz. Meanwhile, the 8.4 gigahertz work has been greatly improved with the 2009 release of the ICRF-2. This paper discusses the motivations for extending the ICRF to these higher radio bands. Results to date will be summarized including evidence that the high frequency frames are rapidly approaching the accuracy of the 8.4 gigahertz ICRF-2. We discuss current limiting errors and prospects for the future accuracy of radio reference frames. We note that comparison of multiple radio frames is characterizing the frequency dependent systematic noise floor from extended source morphology and core shift. Finally, given Gaia's potential for high accuracy optical astrometry, we have simulated the precision of a radio-optical frame tie to be approximately10-15 microarcseconds ((1-sigma) (1-standard deviation), per component).
IRAS observations of radio-quiet and radio-loud quasars
NASA Technical Reports Server (NTRS)
Neugebauer, G.; Soifer, B. T.; Miley, G.; Habing, H. J.; Young, E.; Low, F. J.; Beichman, C. A.; Clegg, P. E.; Harris, S.; Rowan-Robinson, M.
1984-01-01
Observations from 12 to 100 microns are presented of two radio-quiet and three radio-loud quasars. Over this wavelength range, all five have grossly similar continuum energy distributions. The continua of the radio-loud quasars are consistent with synchrotron radiation. There is an indication, however, of excess 100 micron emission in the two radio-quiet quasars.
ERIC Educational Resources Information Center
Silver, Edward A.; Lane, Suzanne
1995-01-01
Compared mathematical performance of middle school students in low-income communities involved in the QUASAR project to those of a demographically similar school and of a nationally representative sample. QUASAR mathematics instruction emphasizes reasoning, problem-solving, and understanding. Quasar students outperformed NAEP's disadvantaged urban…
Location memory biases reveal the challenges of coordinating visual and kinesthetic reference frames
Simmering, Vanessa R.; Peterson, Clayton; Darling, Warren; Spencer, John P.
2008-01-01
Five experiments explored the influence of visual and kinesthetic/proprioceptive reference frames on location memory. Experiments 1 and 2 compared visual and kinesthetic reference frames in a memory task using visually-specified locations and a visually-guided response. When the environment was visible, results replicated previous findings of biases away from the midline symmetry axis of the task space, with stability for targets aligned with this axis. When the environment was not visible, results showed some evidence of bias away from a kinesthetically-specified midline (trunk anterior–posterior [a–p] axis), but there was little evidence of stability when targets were aligned with body midline. This lack of stability may reflect the challenges of coordinating visual and kinesthetic information in the absence of an environmental reference frame. Thus, Experiments 3–5 examined kinesthetic guidance of hand movement to kinesthetically-defined targets. Performance in these experiments was generally accurate with no evidence of consistent biases away from the trunk a–p axis. We discuss these results in the context of the challenges of coordinating reference frames within versus between multiple sensori-motor systems. PMID:17703284
NASA Astrophysics Data System (ADS)
Hemenway, Paul
1991-07-01
Determination of a non-rotating Reference Frame is crucial to progress in many areas, including: Galactic motions, local (Oort's A and B) and global (R0) parameters derived from them, solar system motion discrepancies (Planet X); and in conjunction with the VLBI radio reference frame, the registration of radio and optical images at an accuracy well below the resolution limit of HST images (0.06 arcsec). The goal of the Program is to tie the HIPPARCOS and Extra- galactic Reference Frames together at the 0.0005 arcsec and 0.0005 arcsec/year level. The HST data will allow a deter- mination of the brightness distribution in the stellar and extragalactic objects observed and time dependent changes therein at the 0.001 arcsec/year level. The Program requires targets distributed over the whole sky to define a rigid Reference Frame. GTO observations will provide initial first epoch data and preliminary proper motions. The observations will consist of relative positions of Extra- galactic objects (EGOs) and HIPPARCOS stars, measured with the FGSs.
Broadband Photometric Reverberation Mapping Analysis on SDSS-RM and Stripe 82 Quasars
NASA Astrophysics Data System (ADS)
Zhang, Haowen; Yang, Qian; Wu, Xue-Bing
2018-02-01
We modified the broadband photometric reverberation mapping (PRM) code, JAVELIN, and tested the availability to get broad-line region time delays that are consistent with the spectroscopic reverberation mapping (SRM) project SDSS-RM. The broadband light curves of SDSS-RM quasars produced by convolution with the system transmission curves were used in the test. We found that under similar sampling conditions (evenly and frequently sampled), the key factor determining whether the broadband PRM code can yield lags consistent with the SRM project is the flux ratio of the broad emission line to the reference continuum, which is in line with the previous findings. We further found a critical line-to-continuum flux ratio, about 6%, above which the mean of the ratios between the lags from PRM and SRM becomes closer to unity, and the scatter is pronouncedly reduced. We also tested our code on a subset of SDSS Stripe 82 quasars, and found that our program tends to give biased lag estimations due to the observation gaps when the R-L relation prior in Markov Chain Monte Carlo is discarded. The performance of the damped random walk (DRW) model and the power-law (PL) structure function model on broadband PRM were compared. We found that given both SDSS-RM-like or Stripe 82-like light curves, the DRW model performs better in carrying out broadband PRM than the PL model.
NASA Astrophysics Data System (ADS)
Matsuoka, Yoshiki; SHELLQs Collaboration
2017-01-01
Quasars at high redshift are an important and unique probe of the distant Universe, for understanding the origin and progress of cosmic reionization, the early growth of supermassive black holes, and the evolution of quasar host galaxies and their dark matter halos, among other topics. We are currently carrying out a new spectroscopic survey, called SHELLQs (Subaru High-z Exploration of Low-Luminosity Quasars), to search for low-luminosity quasars at z > 6. By exploiting the exquisite imaging data produced by the Subaru Hyper Suprime-Cam (HSC) survey, we aim to probe quasar luminosities down to M1450 ~ -22 mag, i.e., below the classical threshold between quasars and Seyfert galaxies. Candidate selection is performed by combining several photometric approaches including a Bayesian probabilistic algorithm. A large spectroscopic observing program is underway, using Subaru/FOCAS, GTC/OSIRIS, and Gemini/GMOS; in particular, SHELLQs has been approved as a Subaru intensive program to use 20 nights in the coming four semesters. As of August 2016, we have discovered ~40 quasars and bright galaxies at z ~ 6 and beyond, from the first 100 deg2 of the HSC survey (Matsuoka et al. 2016, ApJ, 828, 26). Surprisingly, we are starting to see the steep rise of the luminosity function of high-z galaxies, compared with that of quasars, at magnitudes fainter than M1450 ~ -22 mag or zAB ~ 24 mag. Multi-wavelength follow-up studies of the discovered objects as well as further survey observations are ongoing.
OPTIMAL TIME-SERIES SELECTION OF QUASARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Nathaniel R.; Bloom, Joshua S.
2011-03-15
We present a novel method for the optimal selection of quasars using time-series observations in a single photometric bandpass. Utilizing the damped random walk model of Kelly et al., we parameterize the ensemble quasar structure function in Sloan Stripe 82 as a function of observed brightness. The ensemble model fit can then be evaluated rigorously for and calibrated with individual light curves with no parameter fitting. This yields a classification in two statistics-one describing the fit confidence and the other describing the probability of a false alarm-which can be tuned, a priori, to achieve high quasar detection fractions (99% completenessmore » with default cuts), given an acceptable rate of false alarms. We establish the typical rate of false alarms due to known variable stars as {approx}<3% (high purity). Applying the classification, we increase the sample of potential quasars relative to those known in Stripe 82 by as much as 29%, and by nearly a factor of two in the redshift range 2.5 < z < 3, where selection by color is extremely inefficient. This represents 1875 new quasars in a 290 deg{sup 2} field. The observed rates of both quasars and stars agree well with the model predictions, with >99% of quasars exhibiting the expected variability profile. We discuss the utility of the method at high redshift and in the regime of noisy and sparse data. Our time-series selection complements well-independent selection based on quasar colors and has strong potential for identifying high-redshift quasars for Baryon Acoustic Oscillations and other cosmology studies in the LSST era.« less
The SDSS-XDQSO quasar targeting catalog
NASA Astrophysics Data System (ADS)
Bovy, Jo; Hennawi, J. F.; Hogg, D. W.; Myers, A. D.; Ross, N. P.
2011-01-01
We present the SDSS-XDQSO quasar targeting catalog for efficient flux-based quasar target selection down to the faint limit of the SDSS catalog, even at medium redshifts (2.5 < z < 3). We build models of the distributions of stars and quasars in flux space down to the flux limit by applying the extreme-deconvolution method (XD) to estimate the underlying density. We properly convolve this density with the flux uncertainties when evaluating the probability that an object is a quasar. This results in a targeting algorithm that is more principled, more efficient, and faster than other similar methods. We apply the algorithm to derive low- (z < 2.2), medium- (2.2 <= z 3.5) quasar probabilities for all 160,904,060 point-sources with dereddened i-and magnitude between 17.75 and 22.45 mag in SDSS Data Release 8. The catalog can be used to define a uniformly selected and efficient low- or medium-redshift quasar survey, such as that needed for the SDSS-III Baryon Oscillation Spectroscopic Survey project. We show that the XDQSO technique performs as well as the current best photometric quasar selection technique at low redshift, and out-performs all other flux-based methods for selecting the medium-redshift quasars of our primary interest. Research supported by NASA (grant NNX08AJ48G) and the NSF (grant AST-0908357).
The Growth of Central Black Hole and the Ionization Instability of Quasar Disk
NASA Technical Reports Server (NTRS)
Lu, Ye; Cheng, K. S.; Zhang, S. N.
2003-01-01
A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate supplied by the quasar host galaxy, ionization instability can modify accretion rate in the disk and separates the accretion flows of the disk into three different phases, like a S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of S-shaped instability, and the faint or 'dormant' quasars are simply the system in the lower branch. The middle branch is the transition state which is unstable. We assume the quasar disk evolves according to the advection-dominated inflow-outflow solutions (ADIOS) configuration in the stable lower branch of S-shaped instability, and Eddington accretion rate is used to constrain the accretion rate in each phase. The mass ratio between black hole and its host galactic bulge is a nature consequence of ADIOS. Our model also demonstrates that a seed black hole (BH) similar to those found in spiral galaxies today is needed to produce a BH with a final mass 2 x 10(exp 8) solar mases.
A CONSTRAINT ON QUASAR CLUSTERING AT z = 5 FROM A BINARY QUASAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGreer, Ian D.; Fan, Xiaohui; Eftekharzadeh, Sarah
2016-03-15
We report the discovery of a quasar pair at z = 5 separated by 21″. Both objects were identified as quasar candidates using simple color selection techniques applied to photometric catalogs from the Canada–France–Hawaii Telescope (CFHT) Legacy Survey (CFHTLS). Spectra obtained with the MMT present no discernible offset in redshift between the two objects; on the other hand, there are clear differences in the emission line profiles and in the multiwavelength spectral energy distributions that strongly disfavor the hypothesis that they are gravitationally lensed images of a single quasar. Both quasars are surprisingly bright given their proximity (a projected separation of ∼135more » kpc), with i = 19.4 and i = 21.4. Previous measurements of the luminosity function demonstrate that luminous quasars are extremely rare at z = 5; the existence of this pair suggests that quasars have strong small-scale clustering at high redshift. Assuming a real-space correlation function of the form ξ(r) ∝ (r/r{sub 0}){sup −2}, this discovery implies a correlation length of r{sub 0} ≳ 20h{sup −1} Mpc, consistent with a rapid strengthening of quasar clustering at high redshift as seen in previous observations and predicted by theoretical models where feedback effects are inefficient at shutting down black hole growth at high redshift.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neyman, G
Purpose: To compare typical volumetric spatial distortions for 1.5 Tesla versus 3 Tesla MRI Gamma Knife radiosurgery scans in the frame marker fusion and co-registration frame-less modes. Methods: Quasar phantom by Modus Medical Devices Inc. with GRID image distortion software was used for measurements of volumetric distortions. 3D volumetric T1 weighted scans of the phantom were produced on 1.5 T Avanto and 3 T Skyra MRI Siemens scanners. The analysis was done two ways: for scans with localizer markers from the Leksell frame and relatively to the phantom only (simulated co-registration technique). The phantom grid contained a total of 2002more » vertices or control points that were used in the assessment of volumetric geometric distortion for all scans. Results: Volumetric mean absolute spatial deviations relatively to the frame localizer markers for 1.5 and 3 Tesla machine were: 1.39 ± 0.15 and 1.63 ± 0.28 mm with max errors of 1.86 and 2.65 mm correspondingly. Mean 2D errors from the Gamma Plan were 0.3 and 1.0 mm. For simulated co-registration technique the volumetric mean absolute spatial deviations relatively to the phantom for 1.5 and 3 Tesla machine were: 0.36 ± 0.08 and 0.62 ± 0.13 mm with max errors of 0.57 and 1.22 mm correspondingly. Conclusion: Volumetric spatial distortions are lower for 1.5 Tesla versus 3 Tesla MRI machines localized with markers on frames and significantly lower for co-registration techniques with no frame localization. The results show the advantage of using co-registration technique for minimizing MRI volumetric spatial distortions which can be especially important for steep dose gradient fields typically used in Gamma Knife radiosurgery. Consultant for Elekta AB.« less
Quasar populations in a cosmological constant-dominated flat universe
NASA Technical Reports Server (NTRS)
Malhotra, Sangeeta; Turner, Edwin L.
1995-01-01
Most physical properties derived for quasars, as single entities or as a population, depend upon the cosmology assumed. In this paper, we calculate the quasar luminosity function and some related quantities for a flat universe dominated by a cosmological constant Lambda (Lambda = 0.9, Omega = 0.1) and compare them with those deduced for a flat universe with zero cosmological constant (Lambda = 0, Omega = 1). We use the ATT quasar survey data (Boyle et al. 1990) as input in both cases. The data are fitted well by a pure luminosity evolution model for both the cosmologies but with different evolutionary parameters. From the luminosity function, we predict (extrapolate) a greater number of quasars at faint apparent magnitudes (twice the number at B = 24, z is less than 2.2) for the Lambda-dominated universe. This population of faint quasars at high redshift would result in a higher incidence of gravitational lensing. The total luminosity of the quasar population and the total mass tied up in black hole remnants of quasars is not sensitive to the cosmology. However, for a Lambda cosmology, this mass is tied up in fewer but more massive black holes.
NASA Astrophysics Data System (ADS)
Crowe, Cassie; Lundgren, Britt; Grier, Catherine
2018-01-01
The Sloan Digital Sky Survey (SDSS) regularly publishes vast catalogs of quasars and other astronomical objects. Previously, the SDSS collaboration has used visual inspection to check quasar redshift validity and flag instances of broad absorption lines (BALs). This information helps researchers to easily single out the quasars with BAL properties and study their outflows and other intervening gas clouds. Due to the ever-growing number of new SDSS quasar observations, visual inspections are no longer possible using previous methods. Currently, BAL information is being determined entirely computationally, and the accuracy of that information is not precisely known. This project uses the Zooniverse citizen science platform to visually inspect quasar spectra for BAL properties, to check the accuracy of the current autonomous methods, and to flag multi-phase outflows and find candidates for in-falling gas into the quasar central engine. The layout and format of a Zooniverse project provides an easier way to inspect and record data on each spectrum and share the workload via crowdsourcing. Work done by the SDSS collaboration members is serving as a beta test for a public project upon the official release of the DR14 quasar catalog by SDSS.
NASA Astrophysics Data System (ADS)
Man'ko, V. I.; Markovich, L. A.
2018-02-01
Quantum correlations in the state of four-level atom are investigated by using generic unitary transforms of the classical (diagonal) density matrix. Partial cases of pure state, X-state, Werner state are studied in details. The geometrical meaning of unitary Hilbert reference-frame rotations generating entanglement in the initially separable state is discussed. Characteristics of the entanglement in terms of concurrence, entropy and negativity are obtained as functions of the unitary matrix rotating the reference frame.
Superenergy flux of Einstein-Rosen waves
NASA Astrophysics Data System (ADS)
Domínguez, P. J.; Gallegos, A.; Macías-Díaz, J. E.; Vargas-Rodríguez, H.
In this work, we consider the propagation speed of the superenergy flux associated to the Einstein-Rosen cylindrical waves propagating in vacuum and over the background of the gravitational field of an infinitely long mass line distribution. The velocity of the flux is determined considering the reference frame in which the super-Poynting vector vanishes. This reference frame is then considered as comoving with the flux. The explicit expressions for the velocities are given with respect to a reference frame at rest with the symmetry axis.
Galactic-scale Feedback Observed in the 3C 298 Quasar Host Galaxy
NASA Astrophysics Data System (ADS)
Vayner, Andrey; Wright, Shelley A.; Murray, Norman; Armus, Lee; Larkin, James E.; Mieda, Etsuko
2017-12-01
We present high angular resolution multiwavelength data of the 3C 298 radio-loud quasar host galaxy (z = 1.439) taken using the W.M. Keck Observatory OSIRIS integral field spectrograph (IFS) with adaptive optics, the Atacama Large Millimeter/submillimeter Array (ALMA), the Hubble Space Telescope (HST) WFC3, and the Very Large Array (VLA). Extended emission is detected in the rest-frame optical nebular emission lines Hβ, [O III], Hα, [N II], and [S II], as well as in the molecular lines CO (J = 3‑2) and (J = 5‑4). Along the path of the relativistic jets of 3C 298, we detect conical outflows in ionized gas emission with velocities of up to 1700 {km} {{{s}}}-1 and an outflow rate of 450–1500 {M}ȯ {{yr}}-1 extended over 12 kpc. Near the spatial center of the conical outflow, CO (J = 3‑2) emission shows a molecular gas disk with a rotational velocity of ±150 {km} {{{s}}}-1 and total molecular mass ({M}{{{H}}2}) of 6.6+/- 0.36× {10}9 {M}ȯ . On the blueshifted side of the molecular disk, we observe broad extended emission that is due to a molecular outflow with a rate of 2300 {M}ȯ {{yr}}-1 and depletion timescale of 3 Myr. We detect no narrow Hα emission in the outflow regions, suggesting a limit on star formation of 0.3 {M}ȯ {{yr}}-1 {{kpc}}-2. Quasar-driven winds are evacuating the molecular gas reservoir, thereby directly impacting star formation in the host galaxy. The observed mass of the supermassive black hole is {10}9.37{--9.56} {M}ȯ , and we determine a dynamical bulge mass of {M}{bulge}=1{--}1.7× {10}10\\tfrac{R}{1.6 {kpc}} {M}ȯ . The bulge mass of 3C 298 lies 2–2.5 orders of magnitude below the expected value from the local galactic bulge—supermassive black hole mass ({M}{bulge}{--}{M}{BH}) relationship. A second galactic disk observed in nebular emission is offset from the quasar by 9 kpc, suggesting that the system is an intermediate-stage merger. These results show that galactic-scale negative feedback is occurring early in the merger phase of 3C 298, well before the coalescence of the galactic nuclei and assembly on the local {M}{bulge}{--}{M}{BH} relationship.
SALT long-slit spectroscopy of CTS C30.10: two-component Mg II line
NASA Astrophysics Data System (ADS)
Modzelewska, J.; Czerny, B.; Hryniewicz, K.; Bilicki, M.; Krupa, M.; Świȩtoń, A.; Pych, W.; Udalski, A.; Adhikari, T. P.; Petrogalli, F.
2014-10-01
Context. Quasars can be used as a complementary tool to SN Ia to probe the distribution of dark energy in the Universe by measuring the time delay of the emission line with respect to the continuum. The understanding of the Mg II emission line structure is important for cosmological application and for the black hole mass measurements of intermediate redshift quasars. Aims: Knowing the shape of Mg II line and its variability allows for identifying which part of the line should be used to measure the time delay and the black hole mass. We thus aim at determining the structure and the variability of the Mg II line, as well as the underlying Fe II pseudo-continuum. Methods: We performed five spectroscopic observations of a quasar CTS C30.10 (z = 0.9000) with the SALT telescope between December 2012 and March 2014, and we studied the variations in the spectral shape in the 2700 Å-2900 Å rest frame. Results: We show that the Mg II line in this source consists of two kinematic components, which makes the source representative of type B quasars. Both components were modeled well with a Lorentzian shape, and they vary in a similar way. The Fe II contribution seems to be related only to the first (blue) Mg II component. Broad band spectral fitting instead favor the use of the whole line profile. The contribution of the narrow line region to Mg II is very low, below 2%. The Mg II variability is lower than the variability of the continuum, which is consistent with the simple reprocessing scenario. The variability level of CTS C30.10 and the measurement accuracy of the line and continuum is high enough to expect that further monitoring will allow the time delay between the Mg II line and continuum to be measured. Based on observations made with the Southern African Large Telescope (SALT) under program 2012-2-POL-003 and 2013-1-POL-RSA-002 (PI: B. Czerny).Spectra shown in Figs. 3 and 4 are only available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/570/A53Table 1 is available in electronic form at http://www.aanda.org
SALT long-slit spectroscopy of quasar HE 0435-4312: fast displacement of the Mg II emission line
NASA Astrophysics Data System (ADS)
Średzińska, J.; Czerny, B.; Hryniewicz, K.; Krupa, M.; Kurcz, A.; Marziani, P.; Adhikari, T. P.; Basak, R.; You, B.; Wang, J.-M.; Hu, C.; Pych, W.; Bilicki, M.
2017-05-01
Context. The Mg II emission line is visible in the optical band for intermediate redshift quasars (0.4 < z < 1.6) and it is thus an extremely important tool to measure the black hole mass and to understand the structure of the Broad line region (BLR). Aims: We aim to determine the substructure and the variability of the Mg II line with the aim to identify which part of the line comes from a medium in Keplerian motion. Methods: Using the Southern African Large Telescope (SALT) with the Robert Stobie Spectrograph (RSS) we performed ten spectroscopic observations of quasar HE 0435-4312 (z = 1.2231) over a period of three years (Dec. 23/24, 2012 to Dec. 7/8, 2015). Results: Both the Mg II line and the Fe II pseudo-continuum increase with time. We clearly detect the systematic shift of the Mg II line with respect to the Fe II over the years, corresponding to the acceleration of 104 ± 14 km s-1 yr-1 in the quasar rest frame. The Mg II line shape is clearly non-Gaussian but single-component, and the increase in line equivalent width and line shift is not accompanied with significant evolution of the line shape. We analyse the conditions in the Mg II and Fe II formation region and we note that the very large difference in the covering factor and the turbulent velocity also support the conclusion that the two regions are spatially separated. Conclusions: The measured acceleration of the line systematic shift is too large to connect it with the orbital motion at a distance of the BLR in this source. It may imply a precessing inner disk illuminating the BLR. Further monitoring is still needed to better constrain the variability mechanism. Based on observations made with the Southern African Large Telescope (SALT) under program 2012-2-POL-003 and 2013-1-POL-RSA-002 (PI: B. Czerny).Spectra shown in Figs. 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A32
A quasar discovered at redshift 6.6 from Pan-STARRS1
NASA Astrophysics Data System (ADS)
Tang, Ji-Jia; Goto, Tomotsugu; Ohyama, Youichi; Chen, Wen-Ping; Walter, Fabian; Venemans, Bram; Chambers, Kenneth C.; Bañados, Eduardo; Decarli, Roberto; Fan, Xiaohui; Farina, Emanuele; Mazzucchelli, Chiara; Kaiser, Nick; Magnier, Eugene A.
2017-04-01
Luminous high-redshift quasars can be used to probe of the intergalactic medium in the early universe because their UV light is absorbed by the neutral hydrogen along the line of sight. They help us to measure the neutral hydrogen fraction of the high-z universe, shedding light on the end of reionization epoch. In this paper, we present a discovery of a new quasar (PSO J006.1240+39.2219) at redshift z = 6.61 ± 0.02 from Panoramic Survey Telescope & Rapid Response System 1. Including this quasar, there are nine quasars above z > 6.5 up to date. The estimated continuum brightness is M1450 = -25.96 ± 0.08. PSO J006.1240+39.2219 has a strong Ly α emission compared with typical low-redshift quasars, but the measured near-zone region size is RNZ = 3.2 ± 1.1 proper megaparsecs, which is consistent with other quasars at z ˜ 6.
Magnification of light from many distant quasars by gravitational lenses.
Wyithe, J Stuart B; Loeb, Abraham
2002-06-27
Exceptionally bright quasars with redshifts up to z = 6.28 have recently been discovered. Quasars are thought to be powered by the accretion of gas onto supermassive black holes at the centres of galaxies. Their maximum (Eddington) luminosity depends on the mass of the black hole, and the brighter quasars are inferred to have black holes with masses of more than a few billion solar masses. The existence of such massive black holes poses a challenge to models for the formation of structures in the early Universe, as it requires their formation within one billion years of the Big Bang. Here we show that up to one-third of known quasars with z approximately equal to 6 will have had their observed flux magnified by a factor of ten or more, as a consequence of gravitational lensing by galaxies along the line of sight. The inferred abundance of quasar host galaxies, as well as the luminosity density provided by the quasars, has therefore been substantially overestimated.
GENERAL RELATIVITY DERIVATION OF BEAM REST-FRAME HAMILTONIAN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
WEI,J.
2001-06-18
Analysis of particle interaction in the laboratory frame of storage rings is often complicated by the fact that particle motion is relativistic, and that reference particle trajectory is curved. Rest frame of the reference particle is a convenient coordinate system to work with, within which particle motion is non-relativistic. We have derived the equations of motion in the beam rest frame from the general relativity formalism, and have successfully applied them to the analysis of crystalline beams [1].
NASA Astrophysics Data System (ADS)
Marziani, Paola; Dultzin, Deborah; Sulentic, Jack W.; Del Olmo, Ascensión; Negrete, C. A.; Martínez-Aldama, Mary L.; D'Onofrio, Mauro; Bon, Edi; Bon, Natasa; Stirpe, Giovanna M.
2018-03-01
The last 25 years saw a major step forward in the analysis of optical and UV spectroscopic data of large quasar samples. Multivariate statistical approaches have led to the definition of systematic trends in observational properties that are the basis of physical and dynamical modeling of quasar structure. We discuss the empirical correlates of the so-called “main sequence” associated with the quasar Eigenvector 1, its governing physical parameters and several implications on our view of the quasar structure, as well as some luminosity effects associated with the virialized component of the line emitting regions. We also briefly discuss quasars in a segment of the main sequence that includes the strongest FeII emitters. These sources show a small dispersion around a well-defined Eddington ratio value, a property which makes them potential Eddington standard candles.
X-ray studies of quasars with the Einstein Observatory. IV - X-ray dependence on radio emission
NASA Technical Reports Server (NTRS)
Worrall, D. M.; Tananbaum, H.; Giommi, P.; Zamorani, G.
1987-01-01
The X-ray properties of a sample of 114 radio-loud quasars observed with the Einstein Observatory are examined, and the results are compared with those obtained from a large sample of radio-quiet quasars. The results of statistical analysis of the dependence of X-ray luminosity on combined functions of optical and radio luminosity show that the dependence on both luminosities is important. However, statistically significant differences are found between subsamples of flat radio spectra quasars and steep radio spectra quasars with regard to dependence of X-ray luminosity on only radio luminosity. The data are consistent with radio-loud quasars having a physical component, not directly related to the optical luminosity, which produces the core radio luminosity plus 'extra' X-ray emission.
NASA Astrophysics Data System (ADS)
Deng, Liansheng; Jiang, Weiping; Li, Zhao; Chen, Hua; Wang, Kaihua; Ma, Yifang
2017-02-01
Higher-order ionospheric (HOI) delays are one of the principal technique-specific error sources in precise global positioning system analysis and have been proposed to become a standard part of precise GPS data processing. In this research, we apply HOI delay corrections to the Crustal Movement Observation Network of China's (CMONOC) data processing (from January 2000 to December 2013) and furnish quantitative results for the effects of HOI on CMONOC coordinate time series. The results for both a regional reference frame and global reference frame are analyzed and compared to clarify the HOI effects on the CMONOC network. We find that HOI corrections can effectively reduce the semi-annual signals in the northern and vertical components. For sites with lower semi-annual amplitudes, the average decrease in magnitude can reach 30 and 10 % for the northern and vertical components, respectively. The noise amplitudes with HOI corrections and those without HOI corrections are not significantly different. Generally, the HOI effects on CMONOC networks in a global reference frame are less obvious than the results in the regional reference frame, probably because the HOI-induced errors are smaller in comparison to the higher noise levels seen when using a global reference frame. Furthermore, we investigate the combined contributions of environmental loading and HOI effects on the CMONOC stations. The largest loading effects on the vertical displacement are found in the mid- to high-latitude areas. The weighted root mean square differences between the corrected and original weekly GPS height time series of the loading model indicate that the mass loading adequately reduced the scatter on the CMONOC height time series, whereas the results in the global reference frame showed better agreements between the GPS coordinate time series and the environmental loading. When combining the effects of environmental loading and HOI corrections, the results with the HOI corrections reduced the scatter on the observed GPS height coordinates better than the height when estimated without HOI corrections, and the combined solutions in the regional reference frame indicate more preferred improvements. Therefore, regional reference frames are recommended to investigate the HOI effects on regional networks.
A Long-Term Space Astrophysics Research Program: The Evolution of the Quasar Continuum
NASA Technical Reports Server (NTRS)
Elvis, M.; Oliversen, Ronald K. (Technical Monitor)
2002-01-01
Four papers have been written. One reports on the major study funded by this grant: a pan-chromatic study of the quasar continuum at redshift 3. Two others make use of the quasar continuum shapes to find the minimum total accretion luminosity of the Universe, and hence the efficiency and spin of supermassive black holes; the second shows that the reemission of absorbed quasar radiation alleviates a major problem with galaxy formation and the FIR background. The last paper recognizes the role quasars may play in the initial formation of dust in the early Universe.
NASA Astrophysics Data System (ADS)
Dorn-Wallenstein, Trevor Z.; Levesque, Emily
2017-11-01
Thanks to incredible advances in instrumentation, surveys like the Sloan Digital Sky Survey have been able to find and catalog billions of objects, ranging from local M dwarfs to distant quasars. Machine learning algorithms have greatly aided in the effort to classify these objects; however, there are regimes where these algorithms fail, where interesting oddities may be found. We present here an X-ray bright quasar misidentified as a red supergiant/X-ray binary, and a subsequent search of the SDSS quasar catalog for X-ray bright stars misidentified as quasars.
The Sloan Digital Sky Survey Quasar Catalog: Twelfth data release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pâris, Isabelle; Petitjean, Patrick; Ross, Nicholas P.
In this paper, we present the Data Release 12 Quasar catalog (DR12Q) from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III. This catalog includes all SDSS-III/BOSS objects that were spectroscopically targeted as quasar candidates during the full survey and that are confirmed as quasars via visual inspection of the spectra, have luminosities M i [z = 2] < -20.5 (in a ΛCDM cosmology with H 0 = 70 km s -1 Mpc -1, Ω M = 0.3, and Ω Λ = 0.7), and either display at least one emission line with a full width atmore » half maximum (FWHM) larger than 500 km s -1 or, if not, have interesting/complex absorption features. The catalog also includes previously known quasars (mostly from SDSS-I and II) that were reobserved by BOSS. The catalog contains 297 301 quasars (272 026 are new discoveries since the beginning of SDSS-III) detected over 9376 deg 2 with robust identification and redshift measured by a combination of principal component eigenspectra. The number of quasars with z > 2.15 (184 101, of which 167 742 are new discoveries) is about an order of magnitude greater than the number of z > 2.15 quasars known prior to BOSS. Redshifts and FWHMs are provided for the strongest emission lines (C iv, C iii], Mg ii). The catalog identifies 29 580 broad absorption line quasars and lists their characteristics. For each object, the catalog presents five-band (u, g, r, i, z) CCD-based photometry with typical accuracy of 0.03 mag together with some information on the optical morphology and the selection criteria. When available, the catalog also provides information on the optical variability of quasars using SDSS and Palomar Transient Factory multi-epoch photometry. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra, covering the wavelength region 3600–10 500 Å at a spectral resolution in the range 1300 < R < 2500, can be retrieved from the SDSS Catalog Archive Server. Finally, we also provide a supplemental list of an additional 4841 quasars that have been identified serendipitously outside of the superset defined to derive the main quasar catalog.« less
The Sloan Digital Sky Survey Quasar Catalog: Twelfth data release
Pâris, Isabelle; Petitjean, Patrick; Ross, Nicholas P.; ...
2017-01-05
In this paper, we present the Data Release 12 Quasar catalog (DR12Q) from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III. This catalog includes all SDSS-III/BOSS objects that were spectroscopically targeted as quasar candidates during the full survey and that are confirmed as quasars via visual inspection of the spectra, have luminosities M i [z = 2] < -20.5 (in a ΛCDM cosmology with H 0 = 70 km s -1 Mpc -1, Ω M = 0.3, and Ω Λ = 0.7), and either display at least one emission line with a full width atmore » half maximum (FWHM) larger than 500 km s -1 or, if not, have interesting/complex absorption features. The catalog also includes previously known quasars (mostly from SDSS-I and II) that were reobserved by BOSS. The catalog contains 297 301 quasars (272 026 are new discoveries since the beginning of SDSS-III) detected over 9376 deg 2 with robust identification and redshift measured by a combination of principal component eigenspectra. The number of quasars with z > 2.15 (184 101, of which 167 742 are new discoveries) is about an order of magnitude greater than the number of z > 2.15 quasars known prior to BOSS. Redshifts and FWHMs are provided for the strongest emission lines (C iv, C iii], Mg ii). The catalog identifies 29 580 broad absorption line quasars and lists their characteristics. For each object, the catalog presents five-band (u, g, r, i, z) CCD-based photometry with typical accuracy of 0.03 mag together with some information on the optical morphology and the selection criteria. When available, the catalog also provides information on the optical variability of quasars using SDSS and Palomar Transient Factory multi-epoch photometry. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra, covering the wavelength region 3600–10 500 Å at a spectral resolution in the range 1300 < R < 2500, can be retrieved from the SDSS Catalog Archive Server. Finally, we also provide a supplemental list of an additional 4841 quasars that have been identified serendipitously outside of the superset defined to derive the main quasar catalog.« less
HUBBLE'S 100,000TH EXPOSURE CAPTURES IMAGE OF DISTANT QUASAR
NASA Technical Reports Server (NTRS)
2002-01-01
The Hubble Space Telescope achieved its 100,000th exposure June 22 with a snapshot of a quasar that is about 9 billion light-years from Earth. The Wide Field and Planetary Camera 2 clicked this image of the quasar, the bright object in the center of the photo. The fainter object just above it is an elliptical galaxy. Although the two objects appear to be close to each other, they are actually separated by about 2 billion light-years. Located about 7 billion light-years away, the galaxy is almost directly in front of the quasar. Astronomer Charles Steidel of the California Institute of Technology in Pasadena, Calif., indirectly discovered the galaxy when he examined the quasar's light, which contained information about the galaxy's chemical composition. The reason, Steidel found, was that the galaxy was absorbing the light at certain frequencies. The astronomer is examining other background quasars to determine which kinds of galaxies absorb light at the same frequencies. Steidel also was somewhat surprised to discover that the galaxy is an elliptical, rather than a spiral. Elliptical galaxies are generally believed to contain very little gas. However, this elliptical has a gaseous 'halo' and contains no visible stars. Part of the halo is directly in front of the quasar. The bright object to the right of the quasar is a foreground star. The quasar and star are separated by billions of light-years. The quasar looks as bright as the star because it produces a tremendous amount of light from a compact source. The 'disturbed-looking' double spiral galaxy above the quasar also is in the foreground. Credit: Charles Steidel (California Institute of Technology, Pasadena, CA) and NASA. Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from ftp.stsci.edu in /pubinfo.
Hierarchical motion organization in random dot configurations
NASA Technical Reports Server (NTRS)
Bertamini, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)
2000-01-01
Motion organization has 2 aspects: the extraction of a (moving) frame of reference and the hierarchical organization of moving elements within the reference frame. Using a discrimination of relative motions task, the authors found large differences between different types of motion (translation, divergence, and rotation) in the degree to which each can serve as a moving frame of reference. Translation and divergence are superior to rotation. There are, however, situations in which rotation can serve as a reference frame. This is due to the presence of a second factor, structural invariants (SIs). SIs are spatial relationships persisting among the elements within a configuration such as a collinearity among points or one point coinciding with the center of rotation for another (invariant radius). The combined effect of these 2 factors--motion type and SIs-influences perceptual motion organization.
A spatial reference frame model of Beijing based on spatial cognitive experiment
NASA Astrophysics Data System (ADS)
Zhang, Jie; Zhang, Jing; Liu, Yu
2006-10-01
Orientation relation in the spatial relation is very important in GIS. People can obtain orientation information by making use of map reading and the cognition of the surrounding environment, and then create the spatial reference frame. City is a kind of special spatial environment, a person with life experiences has some spatial knowledge about the city where he or she lives in. Based on the spatial knowledge of the city environment, people can position, navigate and understand the meaning embodied in the environment correctly. Beijing as a real geographic space, its layout is very special and can form a kind of new spatial reference frame. Based on the characteristics of the layout of Beijing city, this paper will introduce a new spatial reference frame of Beijing and use two psychological experiments to validate its cognitive plausibility.
NASA Astrophysics Data System (ADS)
Fischer, Travis; Rigby, Jane; Gladders, Michael; Sharon, Keren q.; Barrientos, L. Felipe; Bayliss, Matt; Dahle, Håkon; Florian, Michael; Johnson, Traci Lin; Wuyts, Eva
2018-01-01
We present rest-frame optical SINFONI integral field spectroscopy and rest-frame UV HST imaging of a lensed galaxy hosting an active galactic nucleus (AGN) at z = 2.39. Galactic wind feedback is widely acknowledged to play a critical role in the evolution of galaxies, however, the physical mechanisms involved and the relative importance of AGN and star formation as the main feedback drivers remain poorly understood. AGN-driven feedback has been evident in very luminous but rare quasars and radio galaxies, but observational evidence remains lacking for less extreme, “normal” star-forming galaxies. We report, for the first time at high redshift, spatially resolved velocity profiles and geometries of an AGN-driven outflow in a normal star-forming galaxy and spatial extents and morphologies of Lyα emission and stellar UV continuum. Analyzing these measurements in tandem, we determine the physical conditions, geometry, and excitation sources of the interstellar medium in a star-forming, AGN-hosting galaxy at cosmic noon.
Description and User Instructions for the Quaternion_to_Orbit_v3 Software
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry V.; Kruizinga, Gerhard L.; Paik, Meegyeong; Yuan, Dah-Ning; Asmar, Sami W.
2012-01-01
For a given inertial frame of reference, the software combines the spacecraft orbits with the spacecraft attitude quaternions, and rotates the body-fixed reference frame of a particular spacecraft to the inertial reference frame. The conversion assumes that the two spacecraft are aligned with respect to the mutual line of sight, with a parameterized time tag. The software is implemented in Python and is completely open source. It is very versatile, and may be applied under various circumstances and for other related purposes. Based on the solid linear algebra analysis, it has an extra option for compensating the linear pitch. This software has been designed for simulation of the calibration maneuvers performed by the two spacecraft comprising the GRAIL mission to the Moon, but has potential use for other applications. In simulations of formation flights, one needs to coordinate the spacecraft orbits represented in an appropriate inertial reference frame and the spacecraft attitudes. The latter are usually given as the time series of quaternions rotating the body-fixed reference frame of a particular spacecraft to the inertial reference frame. It is often desirable to simulate the same maneuver for different segments of the orbit. It is also useful to study various maneuvers that could be performed at the same orbit segment. These two lines of study are more timeand labor-efficient if the attitude and orbit data are generated independently, so that the part of the data that has not been changed can be recycled in the course of multiple simulations.
``Frames of Reference'' revisited
NASA Astrophysics Data System (ADS)
Steyn-Ross, Alistair; Ivey, Donald G.
1992-12-01
The PSSC teaching film, ``Frames of Reference,'' was made in 1960, and was one of the first audio-visual attempts at showing how your physical ``point of view,'' or frame of reference, necessarily alters both your perceptions and your observations of motion. The gentle humor and original demonstrations made a lasting impact on many audiences, and with its recent re-release as part of the AAPT Cinema Classics videodisc it is timely that we should review both the message and the methods of the film. An annotated script and photographs from the film are presented, followed by extension material on rotating frames which teachers may find appropriate for use in their classrooms: constructions, demonstrations, an example, and theory.
Formación estelar y AGNs en los entornos de quasars
NASA Astrophysics Data System (ADS)
Coldwell, G.; García Lambas, D.
En este trabajo utilizamos las galaxias del catálogo 2dF (2dF public 100K data release) y muestras de quasars tomados del catálogo Verón-Cetty & Verón (2001) para estudiar la naturaleza de estas galaxias en los entornos de quasars con redshift en el rango 0.1< z < 0.2. Estudiamos la distribución de índices espectrales, η, de galaxias a distintas distancias proyectadas de quasars y con diferencias de velocidad radial Δ V <= 500 km s-1. Por comparación, realizamos el mismo análisis en una muestra de galaxias random del catálogo 2dF y en una muestra de cúmulos Abell con similar distribución de redshift que los quasars. Los resultados indican que existe una gran fracción de galaxias con fuertes líneas de emisión, eta > 3.5, en los entornos de quasars comparado con la fracción presente en las vecindades de galaxias típicas del 2dF. Analizamos las distribuciones de luminosidad para estas galaxias (eta > 3.5) encontrando un exceso de galaxias mas luminosas que M ˜ -19.5 en las vecindades de quasars, indicativo de la posible presencia de AGNs. Por otro lado, estimamos la tasa de formación estelar promedio para objetos a distintas distancias de quasars, galaxias y cúmulos de galaxias detectando una actividad de formacion estelar significativamente alta dentro de 1.5 Mpc h-1 de quasars con respecto a las galaxias del 2dF. Estos resultados proveen evidencia de un particular entorno de galaxias alrededor de Quasars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venemans, B. P.; Findlay, J. R.; Sutherland, W. J.
Studying quasars at the highest redshifts can constrain models of galaxy and black hole formation, and it also probes the intergalactic medium in the early universe. Optical surveys have to date discovered more than 60 quasars up to z ≅ 6.4, a limit set by the use of the z-band and CCD detectors. Only one z ≳ 6.4 quasar has been discovered, namely the z = 7.08 quasar ULAS J1120+0641, using near-infrared imaging. Here we report the discovery of three new z ≳ 6.4 quasars in 332 deg{sup 2} of the Visible and Infrared Survey Telescope for Astronomy Kilo-degree Infraredmore » Galaxy (VIKING) survey, thus extending the number from 1 to 4. The newly discovered quasars have redshifts of z = 6.60, 6.75, and 6.89. The absolute magnitudes are between –26.0 and –25.5, 0.6-1.1 mag fainter than ULAS J1120+0641. Near-infrared spectroscopy revealed the Mg II emission line in all three objects. The quasars are powered by black holes with masses of ∼(1-2) × 10{sup 9} M {sub ☉}. In our probed redshift range of 6.44 < z < 7.44 we can set a lower limit on the space density of supermassive black holes of ρ(M {sub BH} > 10{sup 9} M {sub ☉}) > 1.1 × 10{sup –9} Mpc{sup –3}. The discovery of three quasars in our survey area is consistent with the z = 6 quasar luminosity function when extrapolated to z ∼ 7. We do not find evidence for a steeper decline in the space density of quasars with increasing redshift from z = 6 to z = 7.« less
NASA Astrophysics Data System (ADS)
Coatman, Liam; Hewett, Paul C.; Banerji, Manda; Richards, Gordon T.; Hennawi, Joseph F.; Prochaska, Jason X.
2017-01-01
Accurate black-hole (BH) mass estimates for high-redshift (z>2) quasars are essential for better understanding the relationship between super-massive BH accretion and star formation. Progress is currently limited by the large systematic errors in virial BH-masses derived from the CIV broad emission line, which is often significantly blueshifted relative to systemic, most likely due to outflowing gas in the quasar broad-line region. We have assembled Balmer-line based BH masses for a large sample of 230 high-luminosity (1045.5-1048 ergs-1), redshift 1.5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jester, Sebastian; Schneider, Donald P.; Richards, Gordon T.
The author investigates the extent to which the Palomar-Green (PG) Bright Quasar Survey (BQS) is complete and representative of the general quasar population by comparing with imaging and spectroscopy from the Sloan Digital Sky Survey. A comparison of SDSS and PG photometry of both stars and quasars reveals the need to apply a color and magnitude recalibration to the PG data. Using the SDSS photometric catalog, they define the PG's parent sample of objects that are not main-sequence stars and simulate the selection of objects from this parent sample using the PG photometric criteria and errors. This simulation shows thatmore » the effective U-B cut in the PG survey is U-B < -0.71, implying a color-related incompleteness. As the color distribution of bright quasars peaks near U-B = -0.7 and the 2-{sigma} error in U-B is comparable to the full width of the color distribution of quasars, the color incompleteness of the BQS is approximately 50% and essentially random with respect to U-B color for z < 0.5. There is however, a bias against bright quasars at 0.5 < z < 1, which is induced by the color-redshift relation of quasars (although quasars at z > 0.5 are inherently rare in bright surveys in any case). They find no evidence for any other systematic incompleteness when comparing the distributions in color, redshift, and FIRST radio properties of the BQS and a BQS-like subsample of the SDSS quasar sample. However, the application of a bright magnitude limit biases the BQS toward the inclusion of objects which are blue in g-i, in particular compared to the full range of g-i colors found among the i-band limited SDSS quasars, and even at i-band magnitudes comparable to those of the BQS objects.« less
Dust Reddened Quasars in FIRST and UKIDSS: Beyond the Tip of the Iceberg
NASA Astrophysics Data System (ADS)
Glikman, Eilat; Urrutia, Tanya; Lacy, Mark; Djorgovski, S. G.; Urry, Meg; Croom, Scott; Schneider, Donald P.; Mahabal, Ashish; Graham, Matthew; Ge, Jian
2013-12-01
We present the results of a pilot survey to find dust-reddened quasars by matching the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) radio catalog to the UKIDSS near-infrared survey and using optical data from Sloan Digital Sky Survey to select objects with very red colors. The deep K-band limit provided by UKIDSS allows for finding more heavily reddened quasars at higher redshifts as compared with previous work using FIRST and Two Micron All Sky Survey (2MASS). We selected 87 candidates with K <= 17.0 from the UKIDSS Large Area Survey (LAS) First Data Release (DR1), which covers 190 deg2. These candidates reach up to ~1.5 mag below the 2MASS limit and obey the color criteria developed to identify dust-reddened quasars. We have obtained 61 spectroscopic observations in the optical and/or near-infrared, as well as classifications in the literature, and have identified 14 reddened quasars with E(B - V) > 0.1, including 3 at z > 2. We study the infrared properties of the sample using photometry from the Wide-Field Infrared Survey Explorer and find that infrared colors improve the efficiency of red quasar selection, removing many contaminants in an infrared-to-optical color-selected sample alone. The highest-redshift quasars (z >~ 2) are only moderately reddened, with E(B - V) ~ 0.2-0.3. We find that the surface density of red quasars rises sharply with faintness, comprising up to 17% of blue quasars at the same apparent K-band flux limit. We estimate that to reach more heavily reddened quasars (i.e., E(B - V) >~ 0.5) at z > 2 and a depth of K = 17, we would need to survey at least ~2.5 times more area.
NASA Astrophysics Data System (ADS)
Matsuoka, Yoshiki; Onoue, Masafusa; Kashikawa, Nobunari; Iwasawa, Kazushi; Strauss, Michael A.; Nagao, Tohru; Imanishi, Masatoshi; Lee, Chien-Hsiu; Akiyama, Masayuki; Asami, Naoko; Bosch, James; Foucaud, Sébastien; Furusawa, Hisanori; Goto, Tomotsugu; Gunn, James E.; Harikane, Yuichi; Ikeda, Hiroyuki; Izumi, Takuma; Kawaguchi, Toshihiro; Kikuta, Satoshi; Kohno, Kotaro; Komiyama, Yutaka; Lupton, Robert H.; Minezaki, Takeo; Miyazaki, Satoshi; Morokuma, Tomoki; Murayama, Hitoshi; Niida, Mana; Nishizawa, Atsushi J.; Oguri, Masamune; Ono, Yoshiaki; Ouchi, Masami; Price, Paul A.; Sameshima, Hiroaki; Schulze, Andreas; Shirakata, Hikari; Silverman, John D.; Sugiyama, Naoshi; Tait, Philip J.; Takada, Masahiro; Takata, Tadafumi; Tanaka, Masayuki; Tang, Ji-Jia; Toba, Yoshiki; Utsumi, Yousuke; Wang, Shiang-Yu
2018-01-01
We present spectroscopic identification of 32 new quasars and luminous galaxies discovered at 5.7 < z ≤ 6.8. This is the second in a series of papers presenting the results of the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the deep multi-band imaging data produced by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. The photometric candidates were selected by a Bayesian probabilistic algorithm, and then observed with spectrographs on the Gran Telescopio Canarias and the Subaru Telescope. Combined with the sample presented in the previous paper of this series, we have now identified 64 HSC sources over about 430 deg2, which include 33 high-z quasars, 14 high-z luminous galaxies, two [O III] emitters at z ˜ 0.8, and 15 Galactic brown dwarfs. The new quasars have considerably lower luminosity (M1450 ˜ -25 to -22 mag) than most of the previously known high-z quasars. Several of these quasars have luminous (>1043 erg s-1) and narrow (< 500 km s-1) Lyα lines, and also a possible mini broad-absorption-line system of N V λ1240 in the composite spectrum, which clearly separate them from typical quasars. On the other hand, the high-z galaxies have extremely high luminosities (M1450 ˜ -24 to -22 mag) compared to other galaxies found at similar redshifts. With the discovery of these new classes of objects, we are opening up new parameter spaces in the high-z Universe. Further survey observations and follow-up studies of the identified objects, including the construction of the quasar luminosity function at z ˜ 6, are ongoing.
The Clustering of High-redshift (2.9 ≤ z ≤ 5.1) Quasars in SDSS Stripe 82
NASA Astrophysics Data System (ADS)
Timlin, John D.; Ross, Nicholas P.; Richards, Gordon T.; Myers, Adam D.; Pellegrino, Andrew; Bauer, Franz E.; Lacy, Mark; Schneider, Donald P.; Wollack, Edward J.; Zakamska, Nadia L.
2018-05-01
We present a measurement of the two-point autocorrelation function of photometrically selected high-z quasars over ∼100 deg2 on the Sloan Digital Sky Survey Stripe 82 field. Selection is performed using three machine-learning algorithms in a six-dimensional optical/mid-infrared color space. Optical data from the Sloan Digital Sky Survey are combined with overlapping deep mid-infrared data from the Spitzer IRAC Equatorial Survey and the Spitzer-HETDEX Exploratory Large-Area survey. Our selection algorithms are trained on the colors of known high-z quasars. The selected quasar sample consists of 1378 objects and contains both spectroscopically confirmed quasars and photometrically selected quasar candidates. These objects span a redshift range of 2.9 ≤ z ≤ 5.1 and are generally fainter than i = 20.2, a regime that has lacked sufficient number density to perform autocorrelation function measurements of photometrically classified quasars. We compute the angular correlation function of these data, marginally detecting quasar clustering. We fit a single power law with an index of δ = 1.39 ± 0.618 and amplitude of θ 0 = 0.‧71 ± 0.‧546 . A dark matter model is fit to the angular correlation function to estimate the linear bias. At the average redshift of our survey (< z> =3.38), the bias is b = 6.78 ± 1.79. Using this bias, we calculate a characteristic dark matter halo mass of 1.70–9.83× {10}12{h}-1 {M}ȯ . Our bias estimate suggests that quasar feedback intermittently shuts down the accretion of gas onto the central supermassive black hole at early times. If confirmed, these results hint at a level of luminosity dependence in the clustering of quasars at high-z.
A Glimpse at Quasar Host Galaxy Far-UV Emission, Using Damped Lyα's as Natural Coronagraphs
Cai, Zheng; Fan, Xiaohui; Noterdaeme, Pasquier; ...
2014-09-16
In merger-driven models of massive galaxy evolution, the luminous quasar phase is expected to be accompanied by vigorous star formation in quasar host galaxies. In this paper, we use high column density damped Lyα (DLA) systems along quasar sight lines as natural coronagraphs to directly study the far-UV (FUV) radiation from the host galaxies of luminous background quasars. Here, we have stacked the spectra of ~2000 DLA systems (N HI > 10 20.6cm –2) with a median absorption redshiftmore » $$\\langle$$z$$\\rangle$$ = 2.6 selected from quasars observed in the SDSS-III Baryon Oscillation Spectroscopic Survey. We detect residual flux in the dark troughs of the composite DLA spectra. The level of this residual flux significantly exceeds systematic errors in the Sloan Digital Sky Survey fiber sky subtraction; furthermore, the residual flux is strongly correlated with the continuum luminosity of the background quasar, while uncorrelated with DLA column density or metallicity. We conclude that the flux could be associated with the average FUV radiation from the background quasar host galaxies (with medium redshift $$\\langle$$z$$\\rangle$$ = 3.1) that is not blocked by the intervening DLA. Finally, assuming that all of the detected flux originates from quasar hosts, for the highest quasar luminosity bin ($$\\langle$$L$$\\rangle$$ = 2.5 × 10 13 L ⊙), the host galaxy has an FUV intensity of 1.5 ± 0.2 × 10 40 erg s –1 Å –1; this corresponds to an unobscured UV star formation rate of 9 M ⊙ yr –1.« less
Quasars with P v broad absorption in BOSS data release 9
NASA Astrophysics Data System (ADS)
Capellupo, D. M.; Hamann, F.; Herbst, H.; Brandt, W. N.; Ge, J.; Pâris, I.; Petitjean, P.; Schneider, D. P.; Streblyanska, A.; York, D.
2017-07-01
Broad absorption lines (BALs) found in a significant fraction of quasar spectra identify high-velocity outflows that might be present in all quasars and could be a major factor in feedback to galaxy evolution. Understanding the nature of these flows requires further constraints on their physical properties, including their column densities, for which well-studied BALs, such as C IV λλ1548,1551, typically provide only a lower limit because of saturation effects. Low-abundance lines, such as P v λλ1118,1128, indicate large column densities, implying that outflows more powerful than measurements of C IV alone would indicate. We search through a sample of 2694 BAL quasars from the Sloan Digital Sky Survey III/Baryon Oscillation Spectroscopic Survey data release 9 quasar catalogue for such absorption, and we identify 81 'definite' and 86 'probable' detections of P v broad absorption, yielding a firm lower limit of 3.0-6.2 per cent for the incidence of such absorption among BAL quasars. The P v-detected quasars tend to have stronger C IV and Si IV absorption, as well as a higher incidence of LoBAL absorption, than the overall BAL quasar population. Many of the P v-detected quasars have C IV troughs that do not reach zero intensity (at velocities where P v is detected), confirming that the outflow gas only partially covers the UV continuum source. P v appears significantly in a composite spectrum of non-P v-detected BAL quasars, indicating that P v absorption (and large column densities) is much more common than indicated by our search results. Our sample of P v detections significantly increases the number of known P v detections, providing opportunities for follow-up studies to better understand BAL outflow energetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahle, H.; Groeneboom, N.; Gladders, M. D.
2013-08-20
We report the discovery of a unique gravitational lens system, SDSS J2222+2745, producing five spectroscopically confirmed images of a z{sub s} = 2.82 quasar lensed by a foreground galaxy cluster at z{sub l} = 0.49. We also present photometric and spectroscopic evidence for a sixth lensed image of the same quasar. The maximum separation between the quasar images is 15.''1. Both the large image separations and the high image multiplicity are in themselves rare among known lensed quasars, and observing the combination of these two factors is an exceptionally unlikely occurrence in present data sets. This is only the thirdmore » known case of a quasar lensed by a cluster, and the only one with six images. The lens system was discovered in the course of the Sloan Giant Arcs Survey, in which we identify candidate lenses in the Sloan Digital Sky Survey and target these for follow-up and verification with the 2.56 m Nordic Optical Telescope. Multi-band photometry obtained over multiple epochs from 2011 September to 2012 September reveals significant variability at the {approx}10%-30% level in some of the quasar images, indicating that measurements of the relative time delay between quasar images will be feasible. In this lens system, we also identify a bright (g = 21.5) giant arc corresponding to a strongly lensed background galaxy at z{sub s} = 2.30. We fit parametric models of the lens system, constrained by the redshift and positions of the quasar images and the redshift and position of the giant arc. The predicted time delays between different pairs of quasar images range from {approx}100 days to {approx}6 yr.« less
A glimpse at quasar host galaxy far-UV emission using damped Lyα's as natural coronagraphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Zheng; Fan, Xiaohui; Wang, Ran
2014-10-01
In merger-driven models of massive galaxy evolution, the luminous quasar phase is expected to be accompanied by vigorous star formation in quasar host galaxies. In this paper, we use high column density damped Lyα (DLA) systems along quasar sight lines as natural coronagraphs to directly study the far-UV (FUV) radiation from the host galaxies of luminous background quasars. We have stacked the spectra of ∼2000 DLA systems (N {sub H} {sub I} > 10{sup 20.6} cm{sup –2}) with a median absorption redshift (z) = 2.6 selected from quasars observed in the SDSS-III Baryon Oscillation Spectroscopic Survey. We detect residual fluxmore » in the dark troughs of the composite DLA spectra. The level of this residual flux significantly exceeds systematic errors in the Sloan Digital Sky Survey fiber sky subtraction; furthermore, the residual flux is strongly correlated with the continuum luminosity of the background quasar, while uncorrelated with DLA column density or metallicity. We conclude that the flux could be associated with the average FUV radiation from the background quasar host galaxies (with medium redshift (z) = 3.1) that is not blocked by the intervening DLA. Assuming that all of the detected flux originates from quasar hosts, for the highest quasar luminosity bin ((L) = 2.5 × 10{sup 13} L {sub ☉}), the host galaxy has an FUV intensity of 1.5 ± 0.2 × 10{sup 40} erg s{sup –1} Å{sup –1}; this corresponds to an unobscured UV star formation rate of 9 M {sub ☉} yr{sup –1}.« less
Use of Reference Frames for Interplanetary Navigation at JPL
NASA Technical Reports Server (NTRS)
Heflin, Michael; Jacobs, Chris; Sovers, Ojars; Moore, Angelyn; Owen, Sue
2010-01-01
Navigation of interplanetary spacecraft is typically based on range, Doppler, and differential interferometric measurements made by ground-based telescopes. Acquisition and interpretation of these observations requires accurate knowledge of the terrestrial reference frame and its orientation with respect to the celestial frame. Work is underway at JPL to reprocess historical VLBI and GPS data to improve realizations of the terrestrial and celestial frames. Improvements include minimal constraint alignment, improved tropospheric modeling, better orbit determination, and corrections for antenna phase center patterns.
HI Absorption in Merger Remnants
NASA Technical Reports Server (NTRS)
Teng, Stacy H.; Veileux, Sylvain; Baker, Andrew J.
2012-01-01
It has been proposed that ultraluminous infrared galaxies (ULIRGs) pass through a luminous starburst phase, followed by a dust-enshrouded AGN phase, and finally evolve into optically bright "naked" quasars once they shed their gas/dust reservoirs through powerful wind events. We present the results of our recent 21- cm HI survey of 21 merger remnants with the Green Bank Telescope. These remnants were selected from the QUEST (Quasar/ULIRG Evolution Study) sample of ULIRGs and PG quasars; our targets are all bolometrically dominated by AGN and sample all phases of the proposed ULIRG -> IR-excess quasar -> optical quasar sequence. We explore whether there is an evolutionary connection between ULIRGs and quasars by looking for the occurrence of HI absorption tracing neutral gas outflows; our results will allow us to identify where along the sequence the majority of a merger's gas reservoir is expelled.
NO OVERDENSITY OF LYMAN-ALPHA EMITTING GALAXIES AROUND A QUASAR AT z ∼ 5.7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzucchelli, C.; Bañados, E.; Decarli, R.
2017-01-01
Bright quasars, observed when the universe was less than one billion years old ( z > 5.5), are known to host massive black holes (∼10{sup 9} M {sub ⊙}) and are thought to reside in the center of massive dark matter overdensities. In this picture, overdensities of galaxies are expected around high-redshift quasars. However, observations based on the detection of Lyman-break galaxies (LBGs) around these quasars do not offer a clear picture: this may be due to the uncertain redshift constraints of LBGs, which are solely selected through broadband filters. To circumvent such uncertainties, we here perform a search for Lyman-alphamore » emitting galaxies (LAEs) in the field of the quasar PSO J215.1512–16.0417 at z ∼ 5.73, through narrowband deep imaging with FORS2 at the Very Large Telescope. We study an area of 37 arcmin{sup 2}, i.e., ∼206 comoving Mpc{sup 2} at the redshift of the quasar. We find no evidence of an overdensity of LAEs in the quasar field with respect to blank-field studies. Possible explanations for these findings may be that our survey volume is too small, or that the strong ionizing radiation from the quasar hinders galaxy formation in its immediate proximity. Another possibility is that these quasars are not situated in the dense environments predicted by some simulations.« less
Space Density of Optically Selected Type 2 Quasars
NASA Astrophysics Data System (ADS)
Reyes, Reinabelle; Zakamska, Nadia L.; Strauss, Michael A.; Green, Joshua; Krolik, Julian H.; Shen, Yue; Richards, Gordon T.; Anderson, Scott F.; Schneider, Donald P.
2008-12-01
Type 2 quasars are luminous active galactic nuclei whose central regions are obscured by large amounts of gas and dust. In this paper, we present a catalog of type 2 quasars from the Sloan Digital Sky Survey, selected based on their optical emission lines. The catalog contains 887 objects with redshifts z < 0.83; this is 6 times larger than the previous version and is by far the largest sample of type 2 quasars in the literature. We derive the [O III]5007 luminosity function (LF) for 108.3 L sun < L [O III] < 1010 L sun (corresponding to intrinsic luminosities up to M[2500 Å] ~= -28 mag or bolometric luminosities up to 4 × 1047 erg s-1). This LF provides robust lower limits to the actual space density of obscured quasars due to our selection criteria, the details of the spectroscopic target selection, and other effects. We derive the equivalent LF for the complete sample of type 1 (unobscured) quasars and determine the ratio of type 2 to type 1 quasar number densities. Our data constrain this ratio to be at least ~1.5:1 for 108.3 L sun < L [O III] < 109.5 L sun at z < 0.3, and at least ~1.2:1 for L [O III] ~ 1010 L sun at 0.3 < z < 0.83. Type 2 quasars are at least as abundant as type 1 quasars in the relatively nearby universe (z <~ 0.8) for the highest luminosities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krogager, J.-K.; Noterdaeme, P.; Fynbo, J. P. U.
2016-11-20
We present the results of a new spectroscopic survey for dusty intervening absorption systems, particularly damped Ly α absorbers (DLAs), toward reddened quasars. The candidate quasars are selected from mid-infrared photometry from the Wide-field Infrared Survey Explorer combined with optical and near-infrared photometry. Out of 1073 candidates, we secure low-resolution spectra for 108 using the Nordic Optical Telescope on La Palma, Spain. Based on the spectra, we are able to classify 100 of the 108 targets as quasars. A large fraction (50%) is observed to have broad absorption lines (BALs). Moreover, we find six quasars with strange breaks in theirmore » spectra, which are not consistent with regular dust reddening. Using template fitting, we infer the amount of reddening along each line of sight ranging from A ( V ) ≈ 0.1 to 1.2 mag (assuming a Small Magellanic Cloud extinction curve). In four cases, the reddening is consistent with dust exhibiting the 2175 Å feature caused by an intervening absorber, and for two of these, an Mg ii absorption system is observed at the best-fit absorption redshift. In the rest of the cases, the reddening is most likely intrinsic to the quasar. We observe no evidence for dusty DLAs in this survey. However, the large fraction of BAL quasars hampers the detection of absorption systems. Out of the 50 non-BAL quasars, only 28 have sufficiently high redshift to detect Ly α in absorption.« less
The Black Hole Masses and Eddington Ratios of Type 2 Quasars
NASA Astrophysics Data System (ADS)
Kong, Minzhi; Ho, Luis C.
2018-06-01
Type 2 quasars are an important constituent of active galaxies, possibly representing the evolutionary precursors of traditionally studied type 1 quasars. We characterize the black hole (BH) mass (M BH) and Eddington ratio (L bol/L Edd) for 669 type 2 quasars selected from the Sloan Digital Sky Survey, using BH masses estimated from the M BH–σ * relation and bolometric corrections scaled from the extinction-corrected [O III] λ5007 luminosity. When stellar velocity dispersions cannot be measured directly from the spectra, we estimate them from the core velocity dispersions of the narrow emission lines [O II] λλ3726, 3729, [S II] λλ6716, 6731, and [O III] λ5007, which are shown to trace the gravitational potential of the stars. Energy input from the active nucleus still imparts significant perturbations to the gas kinematics, especially to high-velocity, blueshifted wings. Nonvirial motions in the gas become most noticeable in systems with high Eddington ratios. The BH masses of our sample of type 2 quasars range from M BH ≈ 106.5 to 1010.4 M ⊙ (median 108.2 M ⊙). Type 2 quasars have characteristically large Eddington ratios (L bol/L Edd ≈ 10‑2.9–101.8 median 10‑0.7), slightly higher than in type 1 quasars of similar redshift; the luminosities of ∼20% of the sample formally exceed the Eddington limit. The high Eddington ratios may be consistent with the notion that obscured quasars evolve into unobscured quasars.
Dirikx, Astrid; Gelders, Dave
2010-11-01
This study examines the way Dutch and French newspapers frame climate change during the annual United Nations Conferences of the Parties. The methods used in previous studies on the framing of climate change do not allow for general cross-national comparisons. We conduct a quantitative deductive framing analysis on 257 quality Dutch and French newspaper articles between 2001 and 2007. Both countries' newspapers seem to frame climate change through mainly the same lens. The majority of the articles make reference to the consequences of the (non-)pursuit of a certain course of action and of possible losses and gains (consequences frame). Additionally, many articles mention the need for urgent actions, refer to possible solutions and suggest that governments are responsible for and/or capable of alleviating climate change problems (responsibility frame). Finally, the conflict frame was found to be used less often than the aforementioned frames, but more regularly than the human interest frame.
VizieR Online Data Catalog: SDSS DLA and absorber quasar samples (Murphy+, 2016)
NASA Astrophysics Data System (ADS)
Murphy, M. T.; Bernet, M. L.
2016-07-01
Using spectral slope fits of the SDSS DR7 quasar spectra, and the DLA/sub-DLA identifications of Noterdaeme et al. (2009, Cat. J/A+A/505/1087), we found that the 774 selected quasars with a single foreground DLA are significantly (3.2σ) redder, on average, than carefully selected control groups drawn from a sample of ~7000 quasars without foreground DLAs. (4 data files).
A "WISE BOSS": Finding The Cosmic Monsters in the Mid-Infrared Lochs
NASA Astrophysics Data System (ADS)
Ross, Nicholas; Hamann, F. W.; Alexandroff, R.; Brandt, W. N.; Strauss, M. A.; Dey, A.; Richards, G. T.; Worseck, G.; Zakamska, N. L.; Eisenstein, D.; Ge, J.; Glikman, E.; Greene, J. E.; Haggard, D.; Krolik, J. H.; Myers, A. D.; Petitjean, P.; Streblyanska, A.; Schawinski, K.; Shen, Y.; Villforth, C.; McMahon, R.
2013-01-01
Mid-infrared photometry of QSOs provide an important constraint on the presence of hot dust in the vicinity of the active nucleus. However, assembling large statistical MIR samples of quasars at the height of the ``quasar epoch'' ( 2.5) has, up until now, been challenging due to either wide but relatively shallow optical quasar surveys, or deep but narrow mid-IR data. The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) is the state-of-the-art in optical wide-field spectroscopy, and has over 150,000 quasars confirmed, with the majority of the quasar data at z=2.2-3.5. We combine these data with the all-sky mid-infrared coverage from the Wide-Field Infrared Survey Explorer (WISE), and initially concentrate on BOSS quasars with ``extreme'' colors, e.g. r-[22]>14, and those detected only in the redder WISE bands, a.k.a. "the W1W2drops". We find that these selections identify a heterogeneous sample within the BOSS quasar data, but also provide a key tool for finding interesting populations including the 2.5 Type II QSO population. We relate these very red BOSS quasars to the recent discoveries of the ``hyper-LIRG" and ``Hot Dust Obscured Galaxy'' (or Hot DOG) population.
AGN radiative feedback in dusty quasar populations
NASA Astrophysics Data System (ADS)
Ishibashi, W.; Banerji, M.; Fabian, A. C.
2017-08-01
New populations of hyper-luminous, dust-obscured quasars have been recently discovered around the peak epoch of galaxy formation (z ˜ 2-3), in addition to similar sources found at lower redshifts. Such dusty quasars are often interpreted as sources 'in transition', from dust-enshrouded starbursts to unobscured luminous quasars, along the evolutionary sequence. Here we consider the role of the active galactic nucleus (AGN) radiative feedback, driven by radiation pressure on dust, in high-luminosity, dust-obscured sources. We analyse how the radiation pressure-driven dusty shell models, with different shell mass configurations, may be applied to the different populations of dusty quasars reported in recent observations. We find that expanding shells, sweeping up matter from the surrounding environment, may account for prolonged obscuration in dusty quasars, e.g. for a central luminosity of L ˜ 1047 erg s-1, a typical obscured phase (with extinction in the range AV ˜ 1-10 mag) may last a few ˜106 yr. On the other hand, fixed-mass shells, coupled with high dust-to-gas ratios, may explain the extreme outflows recently discovered in red quasars at high redshifts. We discuss how the interaction between AGN radiative feedback and the ambient medium at different temporal stages in the evolutionary sequence may contribute to shape the observational appearance of dusty quasar populations.
High Redshift QSOs in the UKIDSS Large Area Survey
NASA Astrophysics Data System (ADS)
Venemans, B. P.
2007-12-01
In this proceeding, I will present the first results on our ongoing search for z⪆6 quasars in the UKIDSS Large Area Survey (LAS). The unique infrared sky coverage of the LAS combined with SDSS i and z observations allows us to efficiently search for high redshift quasars with minimal contamination from foreground objects, e.g. galactic cool stars. Analysis of 106 deg^2 of sky from UKIDSS Data Release 1 (DR1) has resulted in the discovery of ULAS J020332.38+001229.2, a luminous (J_{AB}=20.0, M_{1450}=-26.2) quasar at z=5.86. The quasar is not present in the SDSS DR5 catalogue and the continuum spectral index of α=-1.4 (F_{ν}∝ν^{α}) is redder than a composite of SDSS quasars at similar redshifts (α=-0.5). Although it is difficult to draw any strong conclusions regarding the space density of quasars from one object, the discovery of this quasar in ˜100 deg^2 in a complete sample within our selection criteria down to a median depth of Y_{AB}=20.4 (7σ) is consistent with existing SDSS results. Finally, I will present the expected number density of high redshift z>6.5 quasars using future infrared surveys with VISTA.
Optical+NIR Quasar Selection with the SDSS and UKIDSS
NASA Astrophysics Data System (ADS)
Mehta, Sajjan S.; Mahon, R. G.; Richards, G. T.; Hewett, P. C.
2010-01-01
We present the details of an optical+near-IR quasar selection technique, which utilizes near-IR data from the UKIDSS Large Area Survey and the optical data from the Sloan Digital Sky Survey in the SDSS's deep "Stripe 82" region, which covers over 200 deg2. Our selection methods primarily consist of isolating potential candidates in giK and gJK color space, in which there exists a significant separation of the stellar locus from the quasar locus. Additionally, we discuss secondary techniques such as comparison of catalog magnitudes with aperture photometry, analysis of SDSS and UKIDSS morphological type classifications, and flag cuts. Our primary color-cut selections include most quasars with redshifts below 3.4, significantly increasing the completeness both to dust reddened quasars and quasars with redshifts z 2.7 in the SDSS footprint. A simple color cut in the UKIDSS LAS Stripe 82 regions reveals 4200 quasar candidates down to K=18. These NIR selections have been used to contribute to the Baryon Oscillation Spectroscopic Survey (BOSS), which is one of the four surveys of the SDSS-III collaboration. We additionally intend to use our NIR techniques to perform an 8-dimensional optical+NIR Bayesian selection of quasars for the AAOmege UKIDSS SDSS (AUS) survey.
The Faint End of the z = 5 Quasar Luminosity Function from the CFHTLS
NASA Astrophysics Data System (ADS)
McGreer, Ian D.; Fan, Xiaohui; Jiang, Linhua; Cai, Zheng
2018-03-01
We present results from a spectroscopic survey of z ∼ 5 quasars in the CFHT Legacy Survey. Using both optical color selection and a likelihood method, we select 97 candidates over an area of 105 deg2 to a limit of i AB < 23.2, and 7 candidates in the range 23.2 < i AB < 23.7 over an area of 18.5 deg2. Spectroscopic observations for 43 candidates were obtained with Gemini, MMT, and Large Binocular Telescope, of which 37 are z > 4 quasars. This sample extends measurements of the quasar luminosity function ∼1.5 mag fainter than our previous work in Sloan Digital Sky Survey Stripe 82. The resulting luminosity function is in good agreement with our previous results, and suggests that the faint end slope is not steep. We perform a detailed examination of our survey completeness, particularly the impact of the Lyα emission assumed in our quasar spectral models, and find hints that the observed Lyα emission from faint z ∼ 5 quasars is weaker than for z ∼ 3 quasars at a similar luminosity. Our results strongly disfavor a significant contribution of faint quasars to the hydrogen-ionizing background at z = 5.
X-ray microlensing in the quadruply lensed quasar Q2237+0305
NASA Astrophysics Data System (ADS)
Zimmer, F.; Schmidt, R. W.; Wambsganss, J.
2011-05-01
We use archival data of NASA's Chandra X-ray telescope to compile an X-ray light curve of all four images of the quadruply lensed quasar Q2237+0305 (zQ= 1.695) from 2006 January to 2007 January. We fit simulated point spread functions to the four individual quasar images using Cash's C-statistic to account for the Poissonian nature of the X-ray signal. The quasar images display strong flux variations up to a factor of ˜4 within one month. We can disentangle the intrinsic quasar variability from flux variations due to gravitational microlensing by looking at the flux ratios of the individual quasar images. Doing this, we find evidence for microlensing in image A. In particular, the time sequence of the flux ratio A/B in the X-ray regime correlates with the corresponding sequence in the optical monitoring by OGLE in the V band. The amplitudes in the X-ray light curve are larger. For the most prominent peak, the increase of the X-ray ratio A/B is larger by a factor of ˜1.6 compared to the signal in the optical. In agreement with theory and other observations of multiply-imaged quasars, this suggests that the X-ray emission region of this quasar is significantly smaller than the optical emission region.
Cultural background shapes spatial reference frame proclivity
Goeke, Caspar; Kornpetpanee, Suchada; Köster, Moritz; Fernández-Revelles, Andrés B.; Gramann, Klaus; König, Peter
2015-01-01
Spatial navigation is an essential human skill that is influenced by several factors. The present study investigates how gender, age, and cultural background account for differences in reference frame proclivity and performance in a virtual navigation task. Using an online navigation study, we recorded reaction times, error rates (confusion of turning axis), and reference frame proclivity (egocentric vs. allocentric reference frame) of 1823 participants. Reaction times significantly varied with gender and age, but were only marginally influenced by the cultural background of participants. Error rates were in line with these results and exhibited a significant influence of gender and culture, but not age. Participants’ cultural background significantly influenced reference frame selection; the majority of North-Americans preferred an allocentric strategy, while Latin-Americans preferred an egocentric navigation strategy. European and Asian groups were in between these two extremes. Neither the factor of age nor the factor of gender had a direct impact on participants’ navigation strategies. The strong effects of cultural background on navigation strategies without the influence of gender or age underlines the importance of socialized spatial cognitive processes and argues for socio-economic analysis in studies investigating human navigation. PMID:26073656
Language and spatial frames of reference in mind and brain.
Gallistel, C R.
2002-08-01
Some language communities routinely use allocentric reference directions (e.g. 'uphill-downhill') where speakers of European languages would use egocentric references ('left-right'). Previous experiments have suggested that the different language groups use different reference frames in non-linguistic tasks involving the recreation of oriented arrays. However, a recent paper argues that manipulating test conditions produces similar effects in monolingual English speakers, and in animals.
NASA Astrophysics Data System (ADS)
Marziani, Paola; Sulentic, J. W.; Dultzin, D.; Negrete, A.; del Olmo, A.; Martínez-Carballo, M. A.; Stirpe, G. M.; D'Onofrio, M.; Perea, J.
2016-10-01
The 4D eigenvector 1 parameter space defined by Sulentic et al. may be seen as a surrogate H-R diagram for quasars. As in the stellar H-R diagram, a source sequence can be easily identified. In the case of quasars, the main sequence appears to be mainly driven by Eddington ratio. A transition Eddington ratio may in part explain the striking observational differences between quasars at opposite ends of the main sequence. The eigenvector-1 approach opens the door towards properly contextualized models of quasar physics, geometry and kinematics. We review some of the progress that has been made over the past 15 years, and point out still unsolved issues.
Joint Transform Correlation for face tracking: elderly fall detection application
NASA Astrophysics Data System (ADS)
Katz, Philippe; Aron, Michael; Alfalou, Ayman
2013-03-01
In this paper, an iterative tracking algorithm based on a non-linear JTC (Joint Transform Correlator) architecture and enhanced by a digital image processing method is proposed and validated. This algorithm is based on the computation of a correlation plane where the reference image is updated at each frame. For that purpose, we use the JTC technique in real time to track a patient (target image) in a room fitted with a video camera. The correlation plane is used to localize the target image in the current video frame (frame i). Then, the reference image to be exploited in the next frame (frame i+1) is updated according to the previous one (frame i). In an effort to validate our algorithm, our work is divided into two parts: (i) a large study based on different sequences with several situations and different JTC parameters is achieved in order to quantify their effects on the tracking performances (decimation, non-linearity coefficient, size of the correlation plane, size of the region of interest...). (ii) the tracking algorithm is integrated into an application of elderly fall detection. The first reference image is a face detected by means of Haar descriptors, and then localized into the new video image thanks to our tracking method. In order to avoid a bad update of the reference frame, a method based on a comparison of image intensity histograms is proposed and integrated in our algorithm. This step ensures a robust tracking of the reference frame. This article focuses on face tracking step optimisation and evalutation. A supplementary step of fall detection, based on vertical acceleration and position, will be added and studied in further work.
Iron K Features in the Quasar E 1821+643: Evidence for Gravitationally Redshifted Absorption?
NASA Technical Reports Server (NTRS)
Yaqoob, Tahir; Serlemitsos, Peter
2005-01-01
We report a Chandra high-energy grating detection of a narrow, redshifted absorption line superimposed on the red wing of a broad Fe K line in the z = 0.297 quasar E 1821+643. The absorption line is detected at a confidence level, estimated by two different methods, in the range approx. 2 - 3 sigma. Although the detection significance is not high enough to exclude a non-astrophysical origin, accounting for the absorption feature when modeling the X-ray spectrum implies that the Fe-K emission line is broad, and consistent with an origin in a relativistic accretion disk. Ignoring the apparent absorption feature leads to the conclusion that the Fe-K emission line is narrower, and also affects the inferred peak energy of the line (and hence the inferred ionization state of Fe). If the absorption line (at approx. 6.2 keV in the quasar frame) is real, we argue that it could be due to gravitationally redshifted Fe XXV or Fe XXVI resonance absorption within approx. 10 - 20 gravitational radii of the putative central black hole. The absorption line is not detected in earlier ASCA and Chandra low-energy grating observations, but the absorption line is not unequivocally ruled out by these data. The Chandra high-energy grating Fe-K emission line is consistent with an origin predominantly in Fe I-XVII or so. In an ASCA observation eight years earlier, the Fe-K line peaked at approx. 6.6 keV, closer to the energies of He-like Fe triplet lines. Further, in a Chandra low-energy grating observation the Fe-K line profile was double-peaked, one peak corresponding to Fe I-XVII or so, the other peak to Fe XXVI Ly alpha. Such a wide range in ionization state of Fe is not ruled out by the HEG and ASCA data either, and is suggestive of a complex structure for the line-emitter.
NASA Astrophysics Data System (ADS)
Nesvadba, N. P. H.; Drouart, G.; De Breuck, C.; Best, P.; Seymour, N.; Vernet, J.
2017-04-01
We compare the kinetic energy and momentum injection rates from intense star formation, bolometric AGN radiation, and radio jets with the kinetic energy and momentum observed in the warm ionized gas in 24 powerful radio galaxies at z 2. These galaxies are among our best candidates for being massive galaxies near the end of their active formation period, when intense star formation, quasar activity, and powerful radio jets all co-exist. All galaxies have VLT/SINFONI imaging spectroscopy of the rest-frame optical line emission, showing extended emission-line regions with large velocity offsets (up to 1500 km s-1) and line widths (typically 800-1000 km s-1) consistent with very turbulent, often outflowing gas. As part of the HeRGÉ sample, they also have FIR estimates of the star formation and quasar activity obtained with Herschel/PACS and SPIRE, which enables us to measure the relative energy and momentum release from each of the three main sources of feedback in massive, star-forming AGN host galaxies during their most rapid formation phase. We find that star formation falls short by factors 10-1000 of providing the energy and momentum necessary to power the observed gas kinematics. The obscured quasars in the nuclei of these galaxies provide enough energy and momentum in about half of the sample, however, only if both are transferred to the gas relatively efficiently. We compare with theoretical and observational constraints on the efficiency of the energy and momentum transfer from jet and AGN radiation, which favors the radio jets as main drivers of the gas kinematics. Based on observations carried out with the Very Large Telescope of ESO under Program IDs 079.A-0617, 084.A-0324, 085.A-0897, and 090.A-0614.Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
NASA Astrophysics Data System (ADS)
Glikman, Eilat; Djorgovski, S. G.; Stern, Daniel; Dey, Arjun; Jannuzi, Buell T.; Lee, Kyoung-Soo
2011-02-01
We present an updated determination of the z ~ 4 QSO luminosity function (QLF), improving the quality of the determination of the faint end of the QLF presented by Glikman et al. (2010). We have observed an additional 43 candidates from our survey sample, yielding one additional QSO at z = 4.23 and increasing the completeness of our spectroscopic follow-up to 48% for candidates brighter than R = 24 over our survey area of 3.76 deg2. We study the effect of using K-corrections to compute the rest-frame absolute magnitude at 1450 Å compared with measuring M 1450 directly from the object spectra. We find a luminosity-dependent bias: template-based K-corrections overestimate the luminosity of low-luminosity QSOs, likely due to their reliance on templates derived from higher luminosity QSOs. Combining our sample with bright quasars from the Sloan Digital Sky Survey and using spectrum-based M 1450 for all the quasars, we fit a double power law to the binned QLF. Our best fit has a bright-end slope, α = 3.3 ± 0.2, and faint-end slope, β = 1.6+0.8 -0.6. Our new data revise the faint-end slope of the QLF down to flatter values similar to those measured at z ~ 3. The break luminosity, though poorly constrained, is at M* = -24.1+0.7 -1.9, approximately 1-1.5 mag fainter than at z ~ 3. This QLF implies that QSOs account for about half the radiation needed to ionize the intergalactic medium at these redshifts. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
An Archival Chandra and XMM-Newton Survey of Type 2 Quasars
NASA Technical Reports Server (NTRS)
Jia, Jianjun; Ptak, Andrew Francis; Heckman, Timothy; Zakamska, Nadia L.
2013-01-01
In order to investigate obscuration in high-luminosity type 2 active galactic nuclei (AGNs), we analyzed Chandra and XMM-Newton archival observations for 71 type 2 quasars detected at 0.05 < z < 0.73, which were selected based on their [O III] lambda5007 emission lines. For 54 objects with good spectral fits, the observed hard X-ray luminosity ranges from 2 × 10(exp 41) to 5.3 × 10(exp 44) erg s(exp -1), with a median of 1.1 × 10(exp 43) erg s(exp -1). We find that the means of the column density and photon index of our sample are log N(sub H) = 22.9 cm(exp -2) and gamma = 1.87, respectively. From simulations using a more physically realistic model, we find that the absorbing column density estimates based on simple power-law models significantly underestimate the actual absorption in approximately half of the sources. Eleven sources show a prominent Fe K alpha emission line (EW>100 eV in the rest frame) and we detect this line in the other sources through a joint fit (spectral stacking). The correlation between the Fe K alpha and [O III] fluxes and the inverse correlation of the equivalent width of the Fe Ka line with the ratio of hard X-ray and [O III] fluxes is consistent with previous results for lower luminosity Seyfert 2 galaxies. We conclude that obscuration is the cause of the weak hard X-ray emission rather than intrinsically low X-ray luminosities. We find that about half of the population of optically selected type 2 quasars are likely to be Compton thick. We also find no evidence that the amount of X-ray obscuration depends on the AGN luminosity (over a range of more than three orders of magnitude in luminosity).
Examining reference frame interaction in spatial memory using a distribution analysis.
Street, Whitney N; Wang, Ranxiao Frances
2016-02-01
Previous research showed competition among reference frames in spatial attention and language. The present studies developed a new distribution analysis to examine reference frame interactions in spatial memory. Participants viewed virtual arrays of colored pegs and were instructed to remember them either from their own perspective or from the perspective aligned with the rectangular floor. Then they made judgments of relative directions from their respective encoding orientation. Those taking the floor-axis perspective showed systematic bias in the signed errors toward their egocentric perspective, while those taking their own perspective showed no systematic bias, both for random and symmetrical object arrays. The bias toward the egocentric perspective was observed when learning a real symmetric regular object array with strong environmental cues for the aligned axis. These results indicate automatic processing of the self reference while taking the floor-axis perspective but not vice versa, and suggest that research on spatial memory needs to consider the implications of competition effects in reference frame use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konstantinidis, Anastasios C.; Olivo, Alessandro; Speller, Robert D.
2011-12-15
Purpose: The x-ray performance evaluation of digital x-ray detectors is based on the calculation of the modulation transfer function (MTF), the noise power spectrum (NPS), and the resultant detective quantum efficiency (DQE). The flat images used for the extraction of the NPS should not contain any fixed pattern noise (FPN) to avoid contamination from nonstochastic processes. The ''gold standard'' method used for the reduction of the FPN (i.e., the different gain between pixels) in linear x-ray detectors is based on normalization with an average reference flat-field. However, the noise in the corrected image depends on the number of flat framesmore » used for the average flat image. The aim of this study is to modify the standard gain correction algorithm to make it independent on the used reference flat frames. Methods: Many publications suggest the use of 10-16 reference flat frames, while other studies use higher numbers (e.g., 48 frames) to reduce the propagated noise from the average flat image. This study quantifies experimentally the effect of the number of used reference flat frames on the NPS and DQE values and appropriately modifies the gain correction algorithm to compensate for this effect. Results: It is shown that using the suggested gain correction algorithm a minimum number of reference flat frames (i.e., down to one frame) can be used to eliminate the FPN from the raw flat image. This saves computer memory and time during the x-ray performance evaluation. Conclusions: The authors show that the method presented in the study (a) leads to the maximum DQE value that one would have by using the conventional method and very large number of frames and (b) has been compared to an independent gain correction method based on the subtraction of flat-field images, leading to identical DQE values. They believe this provides robust validation of the proposed method.« less
New quasar survey with WIRO: The light curves of quasars over ~15 year timescales
NASA Astrophysics Data System (ADS)
Griffith, Emily; Bassett, Neil; Deam, Sophie; Dixon, Don; Harvey, William; Lee, Daniel; Lyke, Bradley; Haze Nunez, Evan; Parziale, Ryan; Witherspoon, Catherine; Myers, Adam D.; Findlay, Joseph; Kobulnicky, Henry A.; Dale, Daniel A.
2017-01-01
Quasars, a type of active galactic nuclei (AGN), are known to vary in brightness on 10 day to 7 year timescales. While it has been proposed that this variability is caused by instability in the accretion disk, Poisson processes, or microlensing, the exact cause remains mysterious. Understanding the physical mechanisms that drive quasar variability will require imaging of quasars over a wide range of timescales. In particular, the observations required to constrain longer timescales can be difficult to conduct. This summer ~1000 quasars in Stripe 82 were observed in ugriz wavelength bands using WIRO, the University of Wyoming’s 2.3-meter telescope. Using these images, earlier data from the Sloan Digital Sky Survey's observations of Stripe 82, as well as various data reduction methods, the quasars’ magnitude can be studied on our extended 3 day to 15 year timescale. Here, we present the light curves of ~1000 quasars in ugriz bands as observed over the last 15 years. Thiswork is supported by the National Science Foundation under REU grant AST 1560461.
Discovery of a z = 0.65 post-starburst BAL quasar in the DES supernova fields
Mudd, Dale; Martini, Paul; Tie, Suk Sien; ...
2017-03-23
In this paper, we present the discovery of a z = 0.65 low-ionization broad absorption line (LoBAL) quasar in a post-starburst galaxy in data from the Dark Energy Survey (DES) and spectroscopy from the Australian Dark Energy Survey (OzDES). LoBAL quasars are a minority of all BALs, and rarer still is that this object also exhibits broad Fe ii (an FeLoBAL) and Balmer absorption. This is the first BAL quasar that has signatures of recently truncated star formation, which we estimate ended about 40 Myr ago. The characteristic signatures of an FeLoBAL require high column densities, which could be explainedmore » by the emergence of a young quasar from an early, dust-enshrouded phase, or by clouds compressed by a blast wave. Finally, the age of the starburst component is comparable to estimates of the lifetime of quasars, so if we assume the quasar activity is related to the truncation of the star formation, this object is better explained by the blast wave scenario.« less
DISSECTING THE QUASAR MAIN SEQUENCE: INSIGHT FROM HOST GALAXY PROPERTIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jiayi; Shen, Yue
2015-05-01
The diverse properties of broad-line quasars appear to follow a well-defined main sequence along which the optical Fe ii strength increases. It has been suggested that this sequence is mainly driven by the Eddington ratio (L/L{sub Edd}) of the black hole (BH) accretion. Shen and Ho demonstrated with quasar clustering analysis that the average BH mass decreases with increasing Fe ii strength when quasar luminosity is fixed, consistent with this suggestion. Here we perform an independent test by measuring the stellar velocity dispersion σ{sub *} (hence, the BH mass via the M–σ{sub *} relation) from decomposed host spectra in low-redshiftmore » Sloan Digital Sky Survey quasars. We found that at fixed quasar luminosity, σ{sub *} systematically decreases with increasing Fe ii strength, confirming that the Eddington ratio increases with Fe ii strength. We also found that at fixed luminosity and Fe ii strength, there is little dependence of σ{sub *} on the broad Hβ FWHM. These new results reinforce the framework that the Eddington ratio and orientation govern most of the diversity seen in broad-line quasar properties.« less
Discovery of a z = 0.65 post-starburst BAL quasar in the DES supernova fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudd, Dale; Martini, Paul; Tie, Suk Sien
We present the discovery of a z=0.65 low-ionization broad absorption line (LoBAL) quasar in a post-starburst galaxy in data from the Dark Energy Survey (DES) and spectroscopy from the Australian Dark Energy Survey (OzDES). LoBAL quasars are a minority of all BALs, and rarer still is that this object also exhibits broad FeII (an FeLoBAL) and Balmer absorption. This is the first BAL quasar that has signatures of recently truncated star formation, which we estimate ended about 40 Myr ago. The characteristic signatures of an FeLoBAL require high column densities, which could be explained by the emergence of a youngmore » quasar from an early, dust-enshrouded phase, or by clouds compressed by a blast wave. The age of the starburst component is comparable to estimates of the lifetime of quasars, so if we assume the quasar activity is related to the truncation of the star formation, this object is better explained by the blast wave scenario.« less
Discovery of a z = 0.65 post-starburst BAL quasar in the DES supernova fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudd, Dale; Martini, Paul; Tie, Suk Sien
In this paper, we present the discovery of a z = 0.65 low-ionization broad absorption line (LoBAL) quasar in a post-starburst galaxy in data from the Dark Energy Survey (DES) and spectroscopy from the Australian Dark Energy Survey (OzDES). LoBAL quasars are a minority of all BALs, and rarer still is that this object also exhibits broad Fe ii (an FeLoBAL) and Balmer absorption. This is the first BAL quasar that has signatures of recently truncated star formation, which we estimate ended about 40 Myr ago. The characteristic signatures of an FeLoBAL require high column densities, which could be explainedmore » by the emergence of a young quasar from an early, dust-enshrouded phase, or by clouds compressed by a blast wave. Finally, the age of the starburst component is comparable to estimates of the lifetime of quasars, so if we assume the quasar activity is related to the truncation of the star formation, this object is better explained by the blast wave scenario.« less
SDSS J102111.02+491330.4: A Newly Discovered Gravitationally Lensed Quasar
NASA Astrophysics Data System (ADS)
Pindor, Bart; Eisenstein, Daniel J.; Gregg, Michael D.; Becker, Robert H.; Inada, Naohisa; Oguri, Masamune; Hall, Patrick B.; Johnston, David E.; Richards, Gordon T.; Schneider, Donald P.; Turner, Edwin L.; Brasi, Guido; Hinz, Philip M.; Kenworthy, Matthew A.; Miller, Doug; Barentine, J. C.; Brewington, Howard J.; Brinkmann, J.; Harvanek, Michael; Kleinman, S. J.; Krzesinski, Jurek; Long, Dan; Neilsen, Eric H., Jr.; Newman, Peter R.; Nitta, Atsuko; Snedden, Stephanie A.; York, Donald G.
2006-01-01
We report follow-up observations of two gravitational lens candidates identified in the Sloan Digital Sky Survey (SDSS) data set. We have confirmed that SDSS J102111.02+491330.4 is a previously unknown gravitationally lensed quasar. This lens system exhibits two images of a z=1.72 quasar, with an image separation of 1.14"+/-0.04". Optical and near-IR imaging of the system reveals the presence of the lensing galaxy between the two quasar images. Observations of SDSS J112012.12+671116.0 indicate that it is more likely a binary quasar than a gravitational lens. This system has two quasars at a redshift of z=1.49, with an angular separation of 1.49"+/-0.02". However, the two quasars have markedly different spectral energy distributions, and no lens galaxy is apparent in optical and near-IR images of this system. We also present a list of 31 SDSS lens candidates that follow-up observations have confirmed are not gravitational lenses. Observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution.
PROBING THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT z{approx} 4 IN THE COSMOS FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeda, H.; Nagao, T.; Matsuoka, K.
2011-02-20
We searched for quasars that are {approx}3 mag fainter than the SDSS quasars in the redshift range 3.7 {approx}< z {approx}< 4.7 in the COSMOS field to constrain the faint end of the quasar luminosity function (QLF). Using optical photometric data, we selected 31 quasar candidates with 22 < i' < 24 at z {approx} 4. We obtained optical spectra for most of these candidates using FOCAS on the Subaru telescope and identified eight low-luminosity quasars at z {approx} 4. In order to derive the QLF based on our spectroscopic follow-up campaign, we estimated the photometric completeness of our quasarmore » survey through detailed Monte Carlo simulations. Our QLF at z {approx} 4 has a much shallower faint-end slope ({beta} = -1.67{sup +0.11}{sub -0.17}) than that obtained by other recent surveys in the same redshift. Our result is consistent with the scenario of downsizing evolution of active galactic nuclei inferred by recent optical and X-ray quasar surveys at lower redshifts.« less
Ray Effect Mitigation Through Reference Frame Rotation
Tencer, John
2016-05-01
The discrete ordinates method is a popular and versatile technique for solving the radiative transport equation, a major drawback of which is the presence of ray effects. Mitigation of ray effects can yield significantly more accurate results and enhanced numerical stability for combined mode codes. Moreover, when ray effects are present, the solution is seen to be highly dependent upon the relative orientation of the geometry and the global reference frame. It is an undesirable property. A novel ray effect mitigation technique of averaging the computed solution for various reference frame orientations is proposed.
Spatial and physical frames of reference in positioning a limb.
Garrett, S R; Pagano, C; Austin, G; Turvey, M T
1998-10-01
Splints attached to the right forearm were used to rotate the forearm's physical reference frame, as defined by the eigenvectors of its inertia tensor, relative to its spatial reference frame. In two experiments, when subjects were required to orient the forearm parallel to, or at 45 degrees to, the environmental horizontal, they produced limb orientations that were systematically deflected from the forearm's longitudinal spatial axis in the direction of the forearm's physical axes. The position sense seems to be based on inertial eigenvectors rather than on joint angles or gravitational torques.
NASA Technical Reports Server (NTRS)
Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.
1995-01-01
Observations with the Wide-Field Camera of the Hubble Space Telescope (HST) are presented for eight intrinsically luminous quasars with redshifts between 0.16 and 0.29. These observations, when combined with a similar HST study of the quasar PKS 2349-014, show that luminous nearby quasars exist in a variety of environments. Seven companion galaxies brighter than M(V) = 16.5 (H(sub 0) = 100 km s(sup -1) Mpc(sup -1), Omega(sub 0) = 1.0) lie within a projected distance of 25 kpc of the quasars; three of the companions are located closer than 3'' (6 kpc projected distance) from the quasars, well within the volume that would be enclosed by a typical L* host galaxy. The observed association of quasars and companion galaxies is statistically significant and may he an important element in the luminous-quasar phenomenon. Apparent host galaxies are detected for three of the quasars: PG 1116+215, 3C 273, and PG 1444+407; the hosts have an average absolute magnitude of about 0.6 mag brighter than L*. The agreement between the previously published major-axis directions in ground-based images and in the present HST images of 3C 273 and PG 1444+407 constitutes important evidence supporting the reality of these candidate host galaxies. Upper limits are placed on the visual-band brightnesses of representative galactic hosts for all the quasars. These limits are established by placing galaxy images obtained with HST underneath the quasars and measuring at what faintness level the known galaxies are detected. On average, the HST spirals would have been detected if they were as faint as 1 mag below L*, and the early-type galaxies could have been detected down to a brightness level of about L*, where L* is the Schechter characteristic luminosity of field galaxies. Smooth, featureless galaxy models (exponential disks or de Vaucouleurs profiles) are fitted to the residual light after a best-fitting point source is subtracted from the quasar images. The results show that smooth spiral galaxies brighter than, on average, about L*, would have been detected. These upper limits, or possible detections, are consistent with, for example, the eight luminous quasars studied in this paper, occurring in host galaxies that have a Shechter luminosity function with a lower cutoff in the range 0.01-0.1 L*. Tests are performed to determine if our failure to detect, in some cases, luminous host galaxies could be an artifact caused by our analysis procedures. These tests include comparing the measured point-spread function (PSF) for our HST observations with the PSFs used in previous ground-based studies of host galaxies, measuring the fluctuations in the sky signals that were subtracted from the quasar images, evaluating empirically the effects of using different stellar PSFs in the analysis, carrying out the subtraction of the stellar (nuclear) source in different ways, creating and analyzing artificial active galactic nuclei (AGNs) with known surface brightnesses, and fitting the observed quasar light to an analytic model that includes a host galaxy.
Coordinate references for the indoor/outdoor seamless positioning
NASA Astrophysics Data System (ADS)
Ruan, Ling; Zhang, Ling; Long, Yi; Cheng, Fei
2018-05-01
Indoor positioning technologies are being developed rapidly, and seamless positioning which connected indoor and outdoor space is a new trend. The indoor and outdoor positioning are not applying the same coordinate system and different indoor positioning scenes uses different indoor local coordinate reference systems. A specific and unified coordinate reference frame is needed as the space basis and premise in seamless positioning application. Trajectory analysis of indoor and outdoor integration also requires a uniform coordinate reference. However, the coordinate reference frame in seamless positioning which can applied to various complex scenarios is lacking of research for a long time. In this paper, we proposed a universal coordinate reference frame in indoor/outdoor seamless positioning. The research focus on analysis and classify the indoor positioning scenes and put forward the coordinate reference system establishment and coordinate transformation methods in each scene. And, through some experiments, the calibration method feasibility was verified.
A Paleolatitude Calculator for Paleoclimate Studies
van Hinsbergen, Douwe J. J.; de Groot, Lennart V.; van Schaik, Sebastiaan J.; Spakman, Wim; Bijl, Peter K.; Sluijs, Appy; Langereis, Cor G.; Brinkhuis, Henk
2015-01-01
Realistic appraisal of paleoclimatic information obtained from a particular location requires accurate knowledge of its paleolatitude defined relative to the Earth’s spin-axis. This is crucial to, among others, correctly assess the amount of solar energy received at a location at the moment of sediment deposition. The paleolatitude of an arbitrary location can in principle be reconstructed from tectonic plate reconstructions that (1) restore the relative motions between plates based on (marine) magnetic anomalies, and (2) reconstruct all plates relative to the spin axis using a paleomagnetic reference frame based on a global apparent polar wander path. Whereas many studies do employ high-quality relative plate reconstructions, the necessity of using a paleomagnetic reference frame for climate studies rather than a mantle reference frame appears under-appreciated. In this paper, we briefly summarize the theory of plate tectonic reconstructions and their reference frames tailored towards applications of paleoclimate reconstruction, and show that using a mantle reference frame, which defines plate positions relative to the mantle, instead of a paleomagnetic reference frame may introduce errors in paleolatitude of more than 15° (>1500 km). This is because mantle reference frames cannot constrain, or are specifically corrected for the effects of true polar wander. We used the latest, state-of-the-art plate reconstructions to build a global plate circuit, and developed an online, user-friendly paleolatitude calculator for the last 200 million years by placing this plate circuit in three widely used global apparent polar wander paths. As a novelty, this calculator adds error bars to paleolatitude estimates that can be incorporated in climate modeling. The calculator is available at www.paleolatitude.org. We illustrate the use of the paleolatitude calculator by showing how an apparent wide spread in Eocene sea surface temperatures of southern high latitudes may be in part explained by a much wider paleolatitudinal distribution of sites than previously assumed. PMID:26061262
A Paleolatitude Calculator for Paleoclimate Studies.
van Hinsbergen, Douwe J J; de Groot, Lennart V; van Schaik, Sebastiaan J; Spakman, Wim; Bijl, Peter K; Sluijs, Appy; Langereis, Cor G; Brinkhuis, Henk
2015-01-01
Realistic appraisal of paleoclimatic information obtained from a particular location requires accurate knowledge of its paleolatitude defined relative to the Earth's spin-axis. This is crucial to, among others, correctly assess the amount of solar energy received at a location at the moment of sediment deposition. The paleolatitude of an arbitrary location can in principle be reconstructed from tectonic plate reconstructions that (1) restore the relative motions between plates based on (marine) magnetic anomalies, and (2) reconstruct all plates relative to the spin axis using a paleomagnetic reference frame based on a global apparent polar wander path. Whereas many studies do employ high-quality relative plate reconstructions, the necessity of using a paleomagnetic reference frame for climate studies rather than a mantle reference frame appears under-appreciated. In this paper, we briefly summarize the theory of plate tectonic reconstructions and their reference frames tailored towards applications of paleoclimate reconstruction, and show that using a mantle reference frame, which defines plate positions relative to the mantle, instead of a paleomagnetic reference frame may introduce errors in paleolatitude of more than 15° (>1500 km). This is because mantle reference frames cannot constrain, or are specifically corrected for the effects of true polar wander. We used the latest, state-of-the-art plate reconstructions to build a global plate circuit, and developed an online, user-friendly paleolatitude calculator for the last 200 million years by placing this plate circuit in three widely used global apparent polar wander paths. As a novelty, this calculator adds error bars to paleolatitude estimates that can be incorporated in climate modeling. The calculator is available at www.paleolatitude.org. We illustrate the use of the paleolatitude calculator by showing how an apparent wide spread in Eocene sea surface temperatures of southern high latitudes may be in part explained by a much wider paleolatitudinal distribution of sites than previously assumed.
Beacons in Time: Maarten Schmidt and the Discovery of Quasars.
ERIC Educational Resources Information Center
Preston, Richard
1988-01-01
Tells the story of Maarten Schmidt and the discovery of quasars. Discusses the decomposition of light, crucial observations and solving astronomical mysteries. Describes spectroscopic analysis used in astronomy and its application to quasars. (CW)
X-ray studies of quasars with the Einstein Observatory
NASA Technical Reports Server (NTRS)
Tananbaum, H.; Branduardi, G.; Fabbiano, G.; Feigelson, E.; Giacconi, R.; Henry, J. P.; Avni, Y.; Elvis, M.; Pye, J. P.; Soltan, A.
1979-01-01
Results of an investigation of the X-ray properties of quasars conducted using the Einstein Observatory (HEAO 2) are reported. The positions, fluxes and luminosities of 35 known quasars were observed by the Einstein high-resolution imaging detector and the imaging proportional counter. Assuming optical redshifts as valid distance indicators, 0.5-4.5 keV X-ray luminosities ranging from 10 to the 43rd to 10 to the 47 ergs/sec are obtained, with evidence of very little cold gas absorption. Flux variability on a time scale of less than 10,000 sec is observed for the quasar OX 169, which implies a mass between 8 x 10 to the 5th and 2 x 10 to the 8th solar masses for the black hole assumed to be responsible for the emission. Preliminary results of the quasar survey also indicate that quasars contribute significantly to the diffuse X-ray background.
First neutral atomic hydrogen images of quasar host galaxies.
NASA Astrophysics Data System (ADS)
Lim, J.; Ho, P. T. P.
1999-12-01
Violent galactic encounters or mergers are the leading contenders for triggering luminous quasar activity at low redshifts: such interactions can lead to the concentration of gas in the host galactic nucleus, thus fueling the suspected central supermassive black hole. Here the authors image quasar host galaxies in the redshifted 21-cm line emission of neutral atomic hydrogen (H I) gas, which in nearby galaxies has proven to be a particularly sensitive as well as enduring tracer of tidal interactions. The three quasars studied have different optical environments normally seen around low-redshift quasars, ranging from a perhaps mildly interacting system to a relatively undisturbed host with a projected neighbouring galaxy to an isolated and apparently serene host galaxy. By contrast with their optical appearences, all three quasar host galaxies exhibit ongoing or remnant tidal H I disruptions tracing galactic encounters or mergers. These observations provide a better understanding of the likely stage of their interaction.
The WISSH quasars project. III. X-ray properties of hyper-luminous quasars
NASA Astrophysics Data System (ADS)
Martocchia, S.; Piconcelli, E.; Zappacosta, L.; Duras, F.; Vietri, G.; Vignali, C.; Bianchi, S.; Bischetti, M.; Bongiorno, A.; Brusa, M.; Lanzuisi, G.; Marconi, A.; Mathur, S.; Miniutti, G.; Nicastro, F.; Bruni, G.; Fiore, F.
2017-12-01
We performed a survey of the X-ray properties of 41 objects from the WISE/SDSS selected hyper-luminous (WISSH) quasars sample, which includes 86 broad-line quasars with bolometric luminosity LBol ≳ 2 × 1047 erg s-1 shining at z 2-4. We used both proprietary and archival Chandra and XMM-Newton observations. Twenty-one quasars have sufficient quality data to perform a spectroscopic analysis, while for the remaining sources, X-ray properties are derived through hardness-ratio analysis (apart for six sources that result to be undetected). The bulk ( 70%) of the detected WISSH quasars exhibit NH <5 × 1022 cm-2, in agreement with their optical Type 1 AGN classification. All but three quasars show unabsorbed 2-10 keV luminosities L2-10≥ 1045 erg s-1. Thanks to their extreme radiative output across the mid-IR-to-X-ray range, WISSH quasars therefore offer the opportunity to significantly extend and validate the existing relations involving L2-10. Specifically, we studied the X-ray luminosity as a function of (i) X-ray-to-optical (X/O) flux ratio; (ii) mid-IR luminosity (LMIR); (iii) LBol, and (iv) αOX versus 2500 Å luminosity. We find that the WISSH quasars show (i) unreported very low X/O ( <0.1) compared to typical AGN values; (ii) L2-10/LMIR ratios that are significantly smaller than those derived for AGN with lower luminosity; (iii) a large X-ray bolometric correction, kBol,X ≈ 100-1000; and (iv) steep -2≳αOX≳-1.7. These results lead to a scenario in which the X-ray emission of hyper-luminous quasars is relatively weaker compared to lower luminosity AGN. Models predict that such an X-ray weakness can be relevant for the acceleration of powerful high-ionization, emission-line-driven winds, which are commonly detected in the UV spectra of WISSH quasars and can, in turn, perturb the X-ray corona and weaken its emission. Accordingly, hyper-luminous quasars represent the ideal laboratory to study the link between the AGN energy output and wind acceleration. Additionally, WISSH quasars exhibit very large SMBH masses (log [MBH/M⊙]≳ 9.5). This enables a more robust modeling of the Γ-MBH relation by increasing the statistics at high masses. We derive a flatter Γ dependence than previously found over the broad range 5 ≲log (MBH/M⊙)≲ 11. Finally, we estimate that only 300 ks observations of X-IFU on board Athena will offer a detailed view of the properties of absorption features associated with powerful X-ray SMBH winds for a representative sample of WISSH quasars.
NChina16: A stable geodetic reference frame for geological hazard studies in north China
NASA Astrophysics Data System (ADS)
Wang, G.; Yan, B.; Gan, W.; Geng, J.
2017-12-01
This study established a stable North China Reference Frame 2016 (NChina16) using five years of continuous GPS observations (2011.8 to 2016.8) from 12 continuously operating reference stations (CORS) fixed to the stable interior of the North China Craton. Applications of NChina16 in landslide, subsidence, and post-seismic displacement studies are illustrated. The primary result of this study is the seven parameters for transforming Cartesian ECEF (Earth-Centered, Earth-Fixed) coordinates X, Y, and Z from the International GNSS Service Reference Frame 2008 (IGS08) to NChina16. The seven parameters include the epoch that is used to tie the regional reference frame to IGS08 and the time derivatives of three translations and three rotations. A method for developing a regional geodetic reference frame is introduced in detail. The GIPSY-OASIS (V6.4) software package was used to obtain the precise point positioning (PPP) time series with respect to IGS08. The stability (accuracy) of NChina16 is about 0.5 mm/year in both vertical and horizontal directions. This study also developed a regional seasonal model for correcting vertical displacement time series data derived from the PPP solutions. Long-term GPS observations (1999-2016) from five CORS in north China were used to develop the seasonal model. According to this study, the PPP daily solutions with respect to NChina16 could achieve 2-3 mm horizontal accuracy and 4-5 mm vertical accuracy after being modified by the regional model. NChina16 will be critical to the long-term landslide, subsidence, fault, and structural monitoring in north China and for ongoing post-seismic crustal deformation studies in Japan. NChina16 will be incrementally improved and synchronized with the IGS reference frame update.
The Extended HANDS Characterization and Analysis of Metric Biases
NASA Astrophysics Data System (ADS)
Kelecy, T.; Knox, R.; Cognion, R.
The Extended High Accuracy Network Determination System (Extended HANDS) consists of a network of low cost, high accuracy optical telescopes designed to support space surveillance and development of space object characterization technologies. Comprising off-the-shelf components, the telescopes are designed to provide sub arc-second astrometric accuracy. The design and analysis team are in the process of characterizing the system through development of an error allocation tree whose assessment is supported by simulation, data analysis, and calibration tests. The metric calibration process has revealed 1-2 arc-second biases in the right ascension and declination measurements of reference satellite position, and these have been observed to have fairly distinct characteristics that appear to have some dependence on orbit geometry and tracking rates. The work presented here outlines error models developed to aid in development of the system error budget, and examines characteristic errors (biases, time dependence, etc.) that might be present in each of the relevant system elements used in the data collection and processing, including the metric calibration processing. The relevant reference frames are identified, and include the sensor (CCD camera) reference frame, Earth-fixed topocentric frame, topocentric inertial reference frame, and the geocentric inertial reference frame. The errors modeled in each of these reference frames, when mapped into the topocentric inertial measurement frame, reveal how errors might manifest themselves through the calibration process. The error analysis results that are presented use satellite-sensor geometries taken from periods where actual measurements were collected, and reveal how modeled errors manifest themselves over those specific time periods. These results are compared to the real calibration metric data (right ascension and declination residuals), and sources of the bias are hypothesized. In turn, the actual right ascension and declination calibration residuals are also mapped to other relevant reference frames in an attempt to validate the source of the bias errors. These results will serve as the basis for more focused investigation into specific components embedded in the system and system processes that might contain the source of the observed biases.
Influences of indigenous language on spatial frames of reference in Aboriginal English
NASA Astrophysics Data System (ADS)
Edmonds-Wathen, Cris
2014-06-01
The Aboriginal English spoken by Indigenous children in remote communities in the Northern Territory of Australia is influenced by the home languages spoken by themselves and their families. This affects uses of spatial terms used in mathematics such as `in front' and `behind.' Speakers of the endangered Indigenous Australian language Iwaidja use the intrinsic frame of reference in contexts where speakers of Standard Australian English use the relative frame of reference. Children speaking Aboriginal English show patterns of use that parallel the Iwaidja contexts. This paper presents detailed examples of spatial descriptions in Iwaidja and Aboriginal English that demonstrate the parallel patterns of use. The data comes from a study that investigated how an understanding of spatial frame of reference in Iwaidja could assist teaching mathematics to Indigenous language-speaking students. Implications for teaching mathematics are explored for teachers without previous experience in a remote Indigenous community.
Change of reference frame for tactile localization during child development.
Pagel, Birthe; Heed, Tobias; Röder, Brigitte
2009-11-01
Temporal order judgements (TOJ) for two tactile stimuli, one presented to the left and one to the right hand, are less precise when the hands are crossed over the midline than when the hands are uncrossed. This 'crossed hand' effect has been considered as evidence for a remapping of tactile input into an external reference frame. Since late, but not early, blind individuals show such remapping, it has been hypothesized that the use of an external reference frame develops during childhood. Five- to 10-year-old children were therefore tested with the tactile TOJ task, both with uncrossed and crossed hands. Overall performance in the TOJ task improved with age. While children older than 5 1/2 years displayed a crossed hand effect, younger children did not. Therefore the use of an external reference frame for tactile, and possibly multisensory, localization seems to be acquired at age 5.
Spatial Reorientation of Sensorimotor Balance Control in Altered Gravity
NASA Technical Reports Server (NTRS)
Paloski, W. H.; Black, F. L.; Kaufman, G. D.; Reschke, M. F.; Wood, S. J.
2007-01-01
Sensorimotor coordination of body segments following space flight are more pronounced after landing when the head is actively tilted with respect to the trunk. This suggests that central vestibular processing shifts from a gravitational frame of reference to a head frame of reference in microgravity. A major effect of such changes is a significant postural instability documented by standard head-erect Sensory Organization Tests. Decrements in functional performance may still be underestimated when head and gravity reference frames remained aligned. The purpose of this study was to examine adaptive changes in spatial processing for balance control following space flight by incorporating static and dynamic tilts that dissociate head and gravity reference frames. A second aim of this study was to examine the feasibility of altering the re-adaptation process following space flight by providing discordant visual-vestibular-somatosensory stimuli using short-radius pitch centrifugation.
Blowin' in the wind: both `negative' and `positive' feedback in an outflowing quasar at z~1.6
NASA Astrophysics Data System (ADS)
Cresci, Giovanni
2015-02-01
Quasar feedback in the form of powerful outflows is invoked as a key mechanism to quench star formation, preventing massive galaxies to over-grow and producing the red colors of ellipticals. On the other hand, some models are also requiring `positive' AGN feedback, inducing star formation in the host galaxy through enhanced gas pressure in the interstellar medium. However, finding observational evidence of the effects of both types of feedback is still one of the main challenges of extragalactic astronomy, as few observations of energetic and extended radiatively-driven winds are available. We present SINFONI near infrared integral field spectroscopy of XID2028, an obscured, radio-quiet z=1.59 QSO, in which we clearly resolve a fast (1500 km/s) and extended (up to 13 kpc from the black hole) outflow in the [OIII] lines emitting gas, whose large velocity and outflow rate are not sustainable by star formation only. The narrow component of Hα emission and the rest frame U band flux show that the outflow position lies in the center of an empty cavity surrounded by star forming regions on its edge. The outflow is therefore removing the gas from the host galaxy (`negative feedback'), but also triggering star formation by outflow induced pressure at the edges (`positive feedback'). XID2028 represents the first example of a host galaxy showing both types of feedback simultaneously at work.
Discovery of an Ultraviolet Counterpart to an Ultrafast X-Ray Outflow in the Quasar PG 1211+143
NASA Astrophysics Data System (ADS)
Kriss, Gerard A.; Lee, Julia C.; Danehkar, Ashkbiz; Nowak, Michael A.; Fang, Taotao; Hardcastle, Martin J.; Neilsen, Joseph; Young, Andrew
2018-02-01
We observed the quasar PG 1211+143 using the Cosmic Origins Spectrograph on the Hubble Space Telescope in 2015 April as part of a joint campaign with the Chandra X-ray Observatory and the Jansky Very Large Array. Our ultraviolet spectra cover the wavelength range 912–2100 Å. We find a broad absorption feature (∼ 1080 {km} {{{s}}}-1) at an observed wavelength of 1240 Å. Interpreting this as H I Lyα, in the rest frame of PG 1211+143 (z = 0.0809), this corresponds to an outflow velocity of ‑16,980 {km} {{{s}}}-1 (outflow redshift {z}{out}∼ -0.0551), matching the moderate ionization X-ray absorption system detected in our Chandra observation and reported previously by Pounds et al. With a minimum H I column density of {log} {N}{{H}{{I}}}> 14.5, and no absorption in other UV resonance lines, this Lyα absorber is consistent with arising in the same ultrafast outflow as the X-ray absorbing gas. The Lyα feature is weak or absent in archival ultraviolet spectra of PG 1211+143, strongly suggesting that this absorption is transient, and intrinsic to PG 1211+143. Such a simultaneous detection in two independent wavebands for the first time gives strong confirmation of the reality of an ultrafast outflow in an active galactic nucleus.
NASA Technical Reports Server (NTRS)
Lu, Y.; Cheng, K. S.; Zhang, S. N.
2003-01-01
A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole (BH) harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate supplied by the quasar host galaxy, ionization instability can modify the accretion rate in the disk and separate the accretion flows of the disk into three different phases, like an S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of the S-shaped instability, and the faint or 'dormant' quasars are simply these systems in the lower branch. The middle branch is the transition state, which is unstable. We assume the quasar disk evolves according to the advection-dominated inflow-outflow solution (ADIOS) configuration in the stable lower branch of the S-shaped instability, and the Eddington accretion rate is used to constrain the accretion rate in the highly active phase. The mass ratio between a BH and its host galactic bulge is a natural consequence of an ADIOS. Our model also demonstrates that a seed BH approx. 2 x 10(exp 6) solar masses similar to those found in spiral galaxies today is needed to produce a BH with a final mass of approx. 2 x 10(exp 8) solar masses.
Quasars at Cosmic Dawn: Discoveries and Probes of the Early Universe
NASA Astrophysics Data System (ADS)
Wang, Feige; Wu, Xue-Bing; Fan, Xiaohui; Yang, Jinyi; Bian, Fuyan; McGreer, Ian D.; Green, Richard F.; Yang, Qian; Jiang, Linhua; Wang, Ran; DECaLS Team; UHS Team
2017-01-01
High redshift quasars, as the most luminous non-transient objects in the early universe, are the most promising tracers to address the history of cosmic reionization and how the origins of super-massive black hole (SMBH) are linked to galaxy formation and evolution. Over the last fifteen years, more than 100 quasars within the first billion years after the Big Bang have been discovered with the highest redshift at 7.1. We have developed a new method to select z>~6 quasars with both high efficiency and high completeness by combing optical and mid-IR Wide-field Infrared Survey Explorer (WISE) photometric data. We have applied this method to SDSS footprint and resulted in the discovery of the most luminous z>6 quasar ever discovered, which hosts a twelve billion solar mass black hole. I will present detailed follow-up observations of the host galaxies and environment of the most luminous quasars using HST, LBT and ALMA, in order to constrain early black hole growth and black hole/galaxy co-evolution at the highest redshift. I will also present initial results from a new quasar survey, which utilizes optical data from DECaLS, which is imaging 6700 deg^2 of sky down to z_AB˜23.0, and neaar-IR data from UHS and UKIDSS, which maps the whole northern sky at Decl.<+60deg. The combination of these datasets allows us to discover quasars at redshift z>~7 and to conduct a complete census of the faint quasar population at z~6.
VizieR Online Data Catalog: Radio-loud and radio-quiet quasars sample (Gupta+, 2016)
NASA Astrophysics Data System (ADS)
Gupta, M.; Sikora, M.; Nalewajko, K.
2017-11-01
We performed matching of the FR II quasar sample of van Velzen et al. (2015, Cat. J/MNRAS/446/2985) (1108 sources) with the SDSS DR7 quasar catalogue (Schneider et al., 2010AJ....139.2360S, Cat. VII/260) (105 783 sources). We used a matching radius of 5 arcsec and obtained 899 objects. This resulting sample of FR II quasars was then matched with the sample of SDSS DR7 quasars detected by the Wide-field Infrared Survey Explorer (WISE) (Wu et al., 2012, Cat. J/AJ/144/49). This gave us 895 FR II quasars detected in the MIR band. The RQ sample with MIR data is constructed by matching the DR7 quasar catalogue (Schneider et al., 2010AJ....139.2360S, Cat. VII/260) and Wise all-sky catalogue (Wu et al., 2012, Cat. J/AJ/144/49), using a matching radius of 1 arcsec, resulting in 101 853 objects. From these we remove the 899 RL quasars matched with the catalogue by van Velzen et al. (2015, Cat. J/MNRAS/446/2985), this leaves us with 100 958 quasars. We then remove objects that were detected by the FIRST survey (Becker et al. 1995ApJ...450..559B, Cat. VIII/92), this gives us 92 648. We repeat the same process with the NVSS (Condon, Cotton & Broderick, 1998AJ....115.1693C, Cat. VIII/65) and end up with 92 445 objects. We also removed those objects that were outside the FIRST observation region. (2 data files).
DOE Office of Scientific and Technical Information (OSTI.GOV)
BOVY, J.; Sheldon, E.; Hennawi, J.F.
2011-03-10
We present the SDSS-XDQSO quasar targeting catalog for efficient flux-based quasar target selection down to the faint limit of the Sloan Digital Sky Survey (SDSS) catalog, even at medium redshifts (2.5 {approx}< z {approx}< 3) where the stellar contamination is significant. We build models of the distributions of stars and quasars in flux space down to the flux limit by applying the extreme-deconvolution method to estimate the underlying density. We convolve this density with the flux uncertainties when evaluating the probability that an object is a quasar. This approach results in a targeting algorithm that is more principled, more efficient,more » and faster than other similar methods. We apply the algorithm to derive low-redshift (z < 2.2), medium-redshift (2.2 {le} z {le} 3.5), and high-redshift (z > 3.5) quasar probabilities for all 160,904,060 point sources with dereddened i-band magnitude between 17.75 and 22.45 mag in the 14,555 deg{sup 2} of imaging from SDSS Data Release 8. The catalog can be used to define a uniformly selected and efficient low- or medium-redshift quasar survey, such as that needed for the SDSS-III's Baryon Oscillation Spectroscopic Survey project. We show that the XDQSO technique performs as well as the current best photometric quasar-selection technique at low redshift, and outperforms all other flux-based methods for selecting the medium-redshift quasars of our primary interest. We make code to reproduce the XDQSO quasar target selection publicly available.« less
GBT Detection of Polarization-Dependent HI Absorption and HI Outflows in Local ULIRGs and Quasars
NASA Technical Reports Server (NTRS)
Teng, Stacy H.; Veilleux, Sylvain; Baker, Andrew J.
2013-01-01
We present the results of a 21-cm HI survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Green Bank Telescope (GBT). These remnants were selected from the Quasar/ULIRG Evolution Study (QUEST) sample of ultraluminous infrared galaxies (ULIRGs; L(sub 8 - 1000 micron) > 10(exp 12) solar L) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGN) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of HI absorption (emission) to be 100% (29%) in ULIRGs with HI detections, 100% (88%) in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km/s in some cases. Unexpectedly, we find polarization-dependent HI absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground HI clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the approx 10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into "mature" radio galaxies.
Extreme Variability Quasars from the Sloan Digital Sky Survey and the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Rumbaugh, N.; Shen, Yue; Morganson, Eric; Liu, Xin; Banerji, M.; McMahon, R. G.; Abdalla, F. B.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Doel, P.; Frieman, J.; García-Bellido, J.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; Menanteau, F.; Plazas, A. A.; Reil, K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sheldon, E.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Walker, A. R.; Wester, W.; (DES Collaboration
2018-02-01
We perform a systematic search for long-term extreme variability quasars (EVQs) in the overlapping Sloan Digital Sky Survey and 3 Year Dark Energy Survey imaging, which provide light curves spanning more than 15 years. We identified ∼1000 EVQs with a maximum change in g-band magnitude of more than 1 mag over this period, about 10% of all quasars searched. The EVQs have L bol ∼ 1045–1047 erg s‑1 and L/L Edd ∼ 0.01–1. Accounting for selection effects, we estimate an intrinsic EVQ fraction of ∼30%–50% among all g≲ 22 quasars over a baseline of ∼15 yr. We performed detailed multi-wavelength, spectral, and variability analyses for the EVQs and compared them to their parent quasar sample. We found that EVQs are distinct from a control sample of quasars matched in redshift and optical luminosity: (1) their UV broad emission lines have larger equivalent widths; (2) their Eddington ratios are systematically lower; and (3) they are more variable on all timescales. The intrinsic difference in quasar properties for EVQs suggests that internal processes associated with accretion are the main driver for the observed extreme long-term variability. However, despite their different properties, EVQs seem to be in the tail of a continuous distribution of quasar properties, rather than standing out as a distinct population. We speculate that EVQs are normal quasars accreting at relatively low rates, where the accretion flow is more likely to experience instabilities that drive the changes in flux by a factor of a few on multi-year timescales.
Gravitationally Lensed Quasars in Gaia: II. Discovery of 24 Lensed Quasars
NASA Astrophysics Data System (ADS)
Lemon, Cameron A.; Auger, Matthew W.; McMahon, Richard G.; Ostrovski, Fernanda
2018-04-01
We report the discovery, spectroscopic confirmation and preliminary characterisation of 24 gravitationally lensed quasars identified using Gaia observations. Candidates were selected in the Pan-STARRS footprint with quasar-like WISE colours or as photometric quasars from SDSS, requiring either multiple detections in Gaia or a single Gaia detection near a morphological galaxy. The Pan-STARRS grizY images were modelled for the most promising candidates and 60 candidate systems were followed up with the William Herschel Telescope. 13 of the lenses were discovered as Gaia multiples and 10 as single Gaia detections near galaxies. We also discover 1 lens identified through a quasar emission line in an SDSS galaxy spectrum. The lenses have median image separation 2.13″ and the source redshifts range from 1.06 to 3.36. 4 systems are quadruply-imaged and 20 are doubly-imaged. Deep CFHT data reveal an Einstein ring in one double system. We also report 12 quasar pairs, 10 of which have components at the same redshift and require further follow-up to rule out the lensing hypothesis. We compare the properties of these lenses and other known lenses recovered by our search method to a complete sample of simulated lenses to show the lenses we are missing are mainly those with small separations and higher source redshifts. The initial Gaia data release only catalogues all images of ˜ 30% of known bright lensed quasars, however the improved completeness of Gaia data release 2 will help find all bright lensed quasars on the sky.
Frames of Reference in the Classroom
NASA Astrophysics Data System (ADS)
Grossman, Joshua
2012-12-01
The classic film "Frames of Reference"1,2 effectively illustrates concepts involved with inertial and non-inertial reference frames. In it, Donald G. Ivey and Patterson Hume use the cameras perspective to allow the viewer to see motion in reference frames translating with a constant velocity, translating while accelerating, and rotating—all with respect to the Earth frame. The film is a classic for good reason, but today it does have a couple of drawbacks: 1) The film by nature only accommodates passive learning. It does not give students the opportunity to try any of the experiments themselves. 2) The dated style of the 50-year-old film can distract students from the physics content. I present here a simple setup that can recreate many of the movies demonstrations in the classroom. The demonstrations can be used to supplement the movie or in its place, if desired. All of the materials except perhaps the inexpensive web camera should likely be available already in most teaching laboratories. Unlike previously described activities, these experiments do not require travel to another location3 or an involved setup.4,5
Effect of gravito-inertial cues on the coding of orientation in pre-attentive vision.
Stivalet, P; Marendaz, C; Barraclough, L; Mourareau, C
1995-01-01
To see if the spatial reference frame used by pre-attentive vision is specified in a retino-centered frame or in a reference frame integrating visual and nonvisual information (vestibular and somatosensory), subjects were centrifuged in a non-pendular cabin and were asked to search for a target distinguishable from distractors by difference in orientation (Treisman's "pop-out" paradigm [1]). In a control condition, in which subjects were sitting immobilized but not centrifuged, this task gave an asymmetric search pattern: Search was rapid and pre-attentional except when the target was aligned with the horizontal retinal/head axis, in which case search was slow and attentional (2). Results using a centrifuge showed that slow/serial search patterns were obtained when the target was aligned with the subjective horizontal axis (and not with the horizontal retinal/head axis). These data suggest that a multisensory reference frame is used in pre-attentive vision. The results are interpreted in terms of Riccio and Stoffregen's "ecological theory" of orientation in which the vertical and horizontal axes constitute independent reference frames (3).
A long-term space astrophysics research program: The evolution of the quasar continuum
NASA Technical Reports Server (NTRS)
Elvis, M.
1993-01-01
The research program supported by this grant now has great momentum. Numerous papers are in progress, and a strong multi-wavelength observing program is rapidly accumulating data on samples of high redshift quasars across the spectrum. ROSAT spectra of quasars continue to yield surprises. Of four z = 3 quasars with X-ray spectra, three show strong absorption. This contrasts strongly with the situation for luminous AGN at low redshifts where fewer than 1 in 20 show X-ray absorption. A new site for this absorption is probably needed, either around the quasar (e.g. in a cluster cooling flow) or along the line of sight (e.g. in a Damped Lyman-alpha system). The unabsorbed quasar allows limits on the physical conditions in a damped Lyman-alpha cloud to be calculated, and will allow a X-ray Gunn-Peterson test to be applied that will limit the fraction of the closure mass in an intergalactic medium. The X-ray spectral indices of these z = 3 quasars show no change from those of similar objects at low z, suggesting that 'short-lifetime' models apply. Eight other z = 3-4 quasars have been detected and their energy distributions from X-rays to Infrared (using new infrared spectrographs) have been compiled. These are now being compared with the low z continua from the 'Atlas of Quasar Energy Distributions' to search for evolutionary changes. The discovery of a likely warm absorber in 3C351 made recognition of another example simple. Also, modeling of the conditions in the absorber in 3C351 using the OVI absorption line from HST and the high ionization emission lines, suggests that the broad line region is indeed the origin of the warm absorber in this quasar, and by extension, others. Warm absorbers can now be used as a new diagnostic of this region. The X-ray spectrum of a 'Red Quasar', 3C212, has a cut-off spectrum, which could be fitted by an absorbed power-law, or more remarkably, by an unabsorbed black body. Using our quasi-simultaneous optical data and photoionization modeling we are able to rule out this latter possibility. The long-sought key to understanding red quasars has now been found. (Reddening was earlier ruled out because no 2175A absorption feature was seen. This is now seen to have been misleading.)
A faint field-galaxy redshift survey in quasar fields
NASA Technical Reports Server (NTRS)
Yee, Howard K. C.; Ellingson, Erica
1993-01-01
Quasars serve as excellent markers for the identification of high-redshift galaxies and galaxy clusters. In past surveys, nearly 20 clusters of Abell richness class 1 or richer associated with quasars in the redshift range 0.2 less than z less than 0.8 were identified. In order to study these galaxy clusters in detail, a major redshift survey of faint galaxies in these fields using the CFHT LAMA/MARLIN multi-object spectroscopy system was carried out. An equally important product in such a survey is the redshifts of the field galaxies not associated with the quasars. Some preliminary results on field galaxies from an interim set of data from our redshift survey in quasar fields are presented.
NASA Astrophysics Data System (ADS)
Li, Qian; Zhu, Changhua; Ma, Shuquan; Wei, Kejin; Pei, Changxing
2018-04-01
Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all detector side-channel attacks. However, practical implementations of MDI-QKD, which require two-photon interferences from separated independent single-photon sources and a nontrivial reference alignment procedure, are still challenging with current technologies. Here, we propose a scheme that significantly reduces the experimental complexity of two-photon interferences and eliminates reference frame alignment by the combination of plug-and-play and reference frame independent MDI-QKD. Simulation results show that the secure communication distance can be up to 219 km in the finite-data case and the scheme has good potential for practical MDI-QKD systems.
Merging Galaxies Create a Binary Quasar
NASA Astrophysics Data System (ADS)
2010-02-01
Astronomers have found the first clear evidence of a binary quasar within a pair of actively merging galaxies. Quasars are the extremely bright centers of galaxies surrounding super-massive black holes, and binary quasars are pairs of quasars bound together by gravity. Binary quasars, like other quasars, are thought to be the product of galaxy mergers. Until now, however, binary quasars have not been seen in galaxies that are unambiguously in the act of merging. But images of a new binary quasar from the Carnegie Institution's Magellan telescope in Chile show two distinct galaxies with "tails" produced by tidal forces from their mutual gravitational attraction. "This is really the first case in which you see two separate galaxies, both with quasars, that are clearly interacting," says Carnegie astronomer John Mulchaey who made observations crucial to understanding the galaxy merger. Most, if not all, large galaxies, such as our galaxy the Milky Way, host super-massive black holes at their centers. Because galaxies regularly interact and merge, astronomers have assumed that binary super-massive black holes have been common in the Universe, especially during its early history. Black holes can only be detected as quasars when they are actively accreting matter, a process that releases vast amounts of energy. A leading theory is that galaxy mergers trigger accretion, creating quasars in both galaxies. Because most such mergers would have happened in the distant past, binary quasars and their associated galaxies are very far away and therefore difficult for most telescopes to resolve. The binary quasar, labeled SDSS J1254+0846, was initially detected by the Sloan Digital Sky Survey, a large scale astronomical survey of galaxies and over 120,000 quasars. Further observations by Paul Green of the Harvard-Smithsonian Center for Astrophysics and colleagues* using NASA's Chandra's X-ray Observatory and telescopes at Kitt Peak National Observatory in Arizona and Palomar Observatory in California indicated that the object was likely a binary quasar in the midst of a galaxy merger. Carnegie's Mulchaey then used the 6.5 meter Baade-Magellan telescope at the Las Campanas observatory in Chile to obtain deeper images and more detailed spectroscopy of the merging galaxies. "Just because you see two galaxies that are close to each other in the sky doesn't mean they are merging," says Mulchaey. "But from the Magellan images we can actually see tidal tails, one from each galaxy, which suggests that the galaxies are in fact interacting and are in the process of merging." Thomas Cox, now a fellow at the Carnegie Observatories, corroborated this conclusion using computer simulations of the merging galaxies. When Cox's model galaxies merged, they showed features remarkably similar to what Mulchaey observed in the Magellan images. "The model verifies the merger origin for this binary quasar system," he says. "It also hints that this kind of galaxy interaction is a key component of the growth of black holes and production of quasars throughout our universe." * The authors of the paper published in the Astrophysical Journal are Paul J. Green of the Harvard-Smithsonian Center for Astrophysics, Adam D. Myers of the University of Illinois at Urbana-Champaign, Wayne A. Barkhouse of the University of North Dakota, John S. Mulchaey of the Observatories of the Carnegie Institution for Science, Vardha N. Bennert of the Department of Physics, University of California, Santa Barbara, Thomas J. Cox of the Observatories of the Carnegie Institution for Science, Thomas L. Aldcroft of the Harvard-Smithsonian Center for Astrophysics, and Joan M. Wrobel of National Radio Astronomy Observatory, Socorro, NM. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov
Various Approaches for Targeting Quasar Candidates
NASA Astrophysics Data System (ADS)
Zhang, Y.; Zhao, Y.
2015-09-01
With the establishment and development of space-based and ground-based observational facilities, the improvement of scientific output of high-cost facilities is still a hot issue for astronomers. The discovery of new and rare quasars attracts much attention. Different methods to select quasar candidates are in bloom. Among them, some are based on color cuts, some are from multiwavelength data, some rely on variability of quasars, some are based on data mining, and some depend on ensemble methods.
Host Galaxies of Dust-Reddened QSOs
NASA Astrophysics Data System (ADS)
Urrutia, T.; Lacy, M.; Becker, R.; Gregg, M.; Helfand, D.; White, R.
2005-12-01
We present Hubble/ACS observations of 13 dust-reddened Type 1 quasars to study the properties of their host galaxies. The quasars have a mean reddening of E(B-V) = 0.8 and lie at moderate redshifts (0.4 < z < 1.0). Images were taken in I and g' band during one or two Hubble orbits. After correcting for absorption the absolute magnitudes of the quasars lie around MV = -27. We are just probing the tip of the luminosity iceberg and there must be many more obscured quasars at these redshifts. The images show extensive merger activity such as tidal tails and various compact halos even before subtracting the quasar contribution. The red quasar phenomenon is likely to be an evolutionary effect. The young quasar is obscured while the dust of the merging galaxies is still settling in. None of the quasars fit a perfect elliptical profile after subtracting the PSF as all of them show many irregularities. The host galaxies also seem to be having bluer colors that typical galaxies, although there is a large scatter in the data. This would argue for recent star-formation most likely triggered my the merger, in concordance with models arguing the emergence of AGN from dusty Starburst galaxies. This work was partly performed under the auspices of the US Department of Energy, National Nuclear Security Administration by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Phylogenetic Analyses of Quasars and Galaxies
NASA Astrophysics Data System (ADS)
Fraix-Burnet, Didier; D'Onofrio, Mauro; Marziani, Paola
2017-10-01
Phylogenetic approaches have proven to be useful in astrophysics. We have recently published a Maximum Parsimony (or cladistics) analysis on two samples of 215 and 85 low-z quasars (z < 0.7) which offer a satisfactory coverage of the Eigenvector 1-derived main sequence. Cladistics is not only able to group sources radiating at higher Eddington ratios, to separate radio-quiet (RQ) and radio-loud (RL) quasars and properly distinguishes core-dominated and lobe-dominated quasars, but it suggests a black hole mass threshold for powerful radio emission as already proposed elsewhere. An interesting interpretation from this work is that the phylogeny of quasars may be represented by the ontogeny of their central black hole, i.e. the increase of the black hole mass. However these exciting results are based on a small sample of low-z quasars, so that the work must be extended. We are here faced with two difficulties. The first one is the current lack of a larger sample with similar observables. The second one is the prohibitive computation time to perform a cladistic analysis on more that about one thousand objects. We show in this paper an experimental strategy on about 1500 galaxies to get around this difficulty. Even if it not related to the quasar study, it is interesting by itself and opens new pathways to generalize the quasar findings.
Probabilistic Selection of High-redshfit Quasars with Subaru / Hyper Suprime-Cam Survey
NASA Astrophysics Data System (ADS)
Onoue, Masafusa
2015-08-01
High-redshift quasrs are an important probe of the distant Universe. They enable observational studies of the early growth of supermassive blackholes, cosmic reionization, chemical enrichment of host galaxies, and so on. We are now starting a new ground-breaking survey of high-redsfhit quasars (z>6) using the exquisite imaging data provided by the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) Survey. With the extremely wide-area coverage and high sensitivity thorugh five optical bands (1,400 deg2 to the depth of r~26 in Wide layer), it is one of the most powerful contemporary surveys that makes it possible for the HSC-AGN collaboration to increase the number of z>6 quasars by almost an order of magnitude, i.e., 300 at z~6 and 50 at z~7 based on the current estimate of the QLF at z>6 (Willott et al. 2010).One of the biggest challenges in the candidate selection is the significant contamination of Galactic brown dwarfs, which have the same point-like appearance as and similarly red colors to z>6 quasars. To overcome this issue, we have developed template SED fitting method optimized to high-redshift quasars selection for constructing the largest z>6 quasar sample with the HSC survey. Since 500 deg2 of the footprints of the HSC survey overlaps with the VISTA/VIKING survey, it is expected that z>6 quasars, with characteristic large Lyman break and flat red-continuum in its SED, can be separated out from contaminating sources by applying SED fitting with multi-wavelength photometric data. In practice, its application with 27 photometric bands to the COSMOS quasars at 3
The Environments of Obscured Quasars
NASA Astrophysics Data System (ADS)
Jones, Kristen M.; Lacy, Mark; Nielsen, Danielle
2016-01-01
Supermassive Black Hole (SMBH) feedback is prescribed for driving the high-end shape of the galaxy luminosity function, clearing the circumnuclear environment during the end stages of mergers, and eventually turning off its own accretion. Yet the dominant processes and characteristics of active galactic nuclei are indistinct. Chief among this confusion is how significant the role of dust is in each galaxy. Orientation of the dusty torus is attributed to causing the differences between Sy1 and Sy2, but whether obscured quasars are found in particularly dusty host galaxies, if they exist at a different stage in the merger process (early on, before the dust is blown out), or if they are merely oriented differently than optical quasars is not yet so well distinguished. With obscured quasars now observed to make up 50% or greater of the population of quasars, the question of what causes obscuration becomes vital to address. With this in mind, I study matched samples of obscured and unobscured quasars to characterize their environments, with the intent of addressing what contribution environment has to obscuration levels. I investigate the megaparsec-scale environments of SIRTF Wide-field Infra-Red Extragalactic Survey (SWIRE) quasars at z ˜ 1-3 by cross-correlating the sample with 3.8 million galaxies from the Spitzer Extragalactic Representative Volume Survey (SERVS). Optically obscured quasars are compared to a control sample of optically-bright quasars via selection in the mid-infrared. Environments were observed at 3.6 and 4.5 μm to a depth of ≈ 2 μJy (AB = 23.1). Recent work has found diverse results in such studies, with dependence of environmental richness on both redshift and level of obscuration. I find that, within reasonable error, on average there is no distinct difference between the level of clustering for obscured and normal quasars, and that there is no dependence on redshift of this result within the range of 1.3 < z < 2.5. I compare our results with recent studies and investigate the role of selection criteria in the assessment of clustering. I also explore the large scale SED structure of obscured and unobscured quasar host galaxies.
NASA Astrophysics Data System (ADS)
Syphers, David; Anderson, Scott F.; Zheng, Wei; Haggard, Daryl; Meiksin, Avery; Schneider, Donald P.; York, Donald G.
2009-11-01
Absorption along quasar sightlines remains among the most sensitive direct measures of He II reionization in much of the intergalactic medium (IGM). Until recently, fewer than a half-dozen unobscured quasar sightlines suitable for the He II Gunn-Peterson test were known; although these handful demonstrated great promise, the small sample size limited confidence in cosmological inferences. We have recently added nine more such clean He II quasars, exploiting Sloan Digital Sky Survey (SDSS) quasar samples, broadband ultraviolet (UV) imaging from Galaxy Evolution Explorer (GALEX), and high-yield UV spectroscopic confirmations from Hubble Space Telescope (HST). Here we markedly expand this approach by cross-correlating SDSS DR7 and GALEX GR4+5 to catalog 428 SDSS and 165 other quasars with z > 2.78 having likely (~70%) GALEX detections, suggesting they are bright into the far-UV. Reconnaissance HST Cycle 16 Supplemental prism data for 29 of these new quasar-GALEX matches spectroscopically confirm 17 as indeed far-UV bright. At least 10 of these confirmations have clean sightlines all the way down to He II Lyα, substantially expanding the number of known clean He II quasars, and reaffirming the order of magnitude enhanced efficiency of our selection technique. Combined confirmations from this and our past programs yield more than 20 He II quasars, quintupling the sample. These provide substantial progress toward a sample of He II quasar sightlines large enough, and spanning a sufficient redshift range, to enable statistical IGM studies that may avoid individual object peculiarity and sightline variance. Our expanded catalog of hundreds of high-likelihood far-UV-bright QSOs additionally will be useful for understanding the extreme-UV properties of the quasars themselves. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.
Emotional valence and contextual affordances flexibly shape approach-avoidance movements
Saraiva, Ana Carolina; Schüür, Friederike; Bestmann, Sven
2013-01-01
Behavior is influenced by the emotional content—or valence—of stimuli in our environment. Positive stimuli facilitate approach, whereas negative stimuli facilitate defensive actions such as avoidance (flight) and attack (fight). Facilitation of approach or avoidance movements may also be influenced by whether it is the self that moves relative to a stimulus (self-reference) or the stimulus that moves relative to the self (object-reference), adding flexibility and context-dependence to behavior. Alternatively, facilitation of approach avoidance movements may happen in a pre-defined and muscle-specific way, whereby arm flexion is faster to approach positive (e.g., flexing the arm brings a stimulus closer) and arm extension faster to avoid negative stimuli (e.g., extending the arm moves the stimulus away). While this allows for relatively fast responses, it may compromise the flexibility offered by contextual influences. Here we asked under which conditions approach-avoidance actions are influenced by contextual factors (i.e., reference-frame). We manipulated the reference-frame in which actions occurred by asking participants to move a symbolic manikin (representing the self) toward or away from a positive or negative stimulus, and move a stimulus toward or away from the manikin. We also controlled for the type of movements used to approach or avoid in each reference. We show that the reference-frame influences approach-avoidance actions to emotional stimuli, but additionally we find muscle-specificity for negative stimuli in self-reference contexts. We speculate this muscle-specificity may be a fast and adaptive response to threatening stimuli. Our results confirm that approach-avoidance behavior is flexible and reference-frame dependent, but can be muscle-specific depending on the context and valence of the stimulus. Reference-frame and stimulus-evaluation are key factors in guiding approach-avoidance behavior toward emotional stimuli in our environment. PMID:24379794
Extreme Variability Quasars from the Sloan Digital Sky Survey and the Dark Energy Survey
Rumbaugh, N.
2018-02-21
Here, we perform a systematic search for long-term extreme variability quasars (EVQs) in the overlapping Sloan Digital Sky Survey (SDSS) and 3-Year Dark Energy Survey (DES) imaging, which provide light curves spanning more than 15 years. We also identified 1000 EVQs with a maximum g band magnitude change of more than 1 mag over this period, about 10% of all quasars searched. The EVQs have L bol 10 45 - 10 47 erg s -1 and L=L Edd 0:01-1. Accounting for selection effects, we estimate an intrinsic EVQ fraction of 30-50% among all g.22 quasars over a baseline of 15more » years. These EVQs are good candidates for so-called “changing-look quasars”, where a spectral transition between the two types of quasars (broad-line and narrow-line) is observed between the dim and bright states. We performed detailed multi-wavelength, spectral and variability analyses for the EVQs and compared to their parent quasar sample. We found that EVQs are distinct from a control sample of quasars matched in redshift and optical luminosity: (1) their UV broad emission lines have larger equivalent widths; (2) their Eddington ratios are systematically lower; and (3) they are more variable on all timescales. The intrinsic difference in quasar properties for EVQs suggest that internal processes associated with accretion are the main driver for the observed extreme long-term variability. In spit of their different properties, EVQs seem to be in the tail of a continuous distribution of quasar properties, rather than standing out as a distinct population. We speculate that EVQs are normal quasars accreting at relatively low accretion rates, where the accretion flow is more likely to experience instabilities that drive the factor of few changes in flux on multi-year timescales.« less
Extreme Variability Quasars from the Sloan Digital Sky Survey and the Dark Energy Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rumbaugh, N.
Here, we perform a systematic search for long-term extreme variability quasars (EVQs) in the overlapping Sloan Digital Sky Survey (SDSS) and 3-Year Dark Energy Survey (DES) imaging, which provide light curves spanning more than 15 years. We also identified 1000 EVQs with a maximum g band magnitude change of more than 1 mag over this period, about 10% of all quasars searched. The EVQs have L bol 10 45 - 10 47 erg s -1 and L=L Edd 0:01-1. Accounting for selection effects, we estimate an intrinsic EVQ fraction of 30-50% among all g.22 quasars over a baseline of 15more » years. These EVQs are good candidates for so-called “changing-look quasars”, where a spectral transition between the two types of quasars (broad-line and narrow-line) is observed between the dim and bright states. We performed detailed multi-wavelength, spectral and variability analyses for the EVQs and compared to their parent quasar sample. We found that EVQs are distinct from a control sample of quasars matched in redshift and optical luminosity: (1) their UV broad emission lines have larger equivalent widths; (2) their Eddington ratios are systematically lower; and (3) they are more variable on all timescales. The intrinsic difference in quasar properties for EVQs suggest that internal processes associated with accretion are the main driver for the observed extreme long-term variability. In spit of their different properties, EVQs seem to be in the tail of a continuous distribution of quasar properties, rather than standing out as a distinct population. We speculate that EVQs are normal quasars accreting at relatively low accretion rates, where the accretion flow is more likely to experience instabilities that drive the factor of few changes in flux on multi-year timescales.« less
Accurate spectroscopic redshift of the multiply lensed quasar PSOJ0147 from the Pan-STARRS survey
NASA Astrophysics Data System (ADS)
Lee, C.-H.
2017-09-01
Context. The gravitational lensing time delay method provides a one-step determination of the Hubble constant (H0) with an uncertainty level on par with the cosmic distance ladder method. However, to further investigate the nature of the dark energy, a H0 estimate down to 1% level is greatly needed. This requires dozens of strongly lensed quasars that are yet to be delivered by ongoing and forthcoming all-sky surveys. Aims: In this work we aim to determine the spectroscopic redshift of PSOJ0147, the first strongly lensed quasar candidate found in the Pan-STARRS survey. The main goal of our work is to derive an accurate redshift estimate of the background quasar for cosmography. Methods: To obtain timely spectroscopically follow-up, we took advantage of the fast-track service programme that is carried out by the Nordic Optical Telescope. Using a grism covering 3200-9600 Å, we identified prominent emission line features, such as Lyα, N V, O I, C II, Si IV, C IV, and [C III] in the spectra of the background quasar of the PSOJ0147 lens system. This enables us to determine accurately the redshift of the background quasar. Results: The spectrum of the background quasar exhibits prominent absorption features bluewards of the strong emission lines, such as Lyα, N V, and C IV. These blue absorption lines indicate that the background source is a broad absorption line (BAL) quasar. Unfortunately, the BAL features hamper an accurate determination of redshift using the above-mentioned strong emission lines. Nevertheless, we are able to determine a redshift of 2.341 ± 0.001 from three of the four lensed quasar images with the clean forbidden line [C III]. In addition, we also derive a maximum outflow velocity of 9800 km s-1 with the broad absorption features bluewards of the C IV emission line. This value of maximum outflow velocity is in good agreement with other BAL quasars.
An Accretion Model for the Growth of Black Hole in Quasars
NASA Technical Reports Server (NTRS)
Lu, Ye; Cheng, K. S.; Zhang, S. N.
2003-01-01
A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate ionization instability can modify accretion rate in the disk and separates the accretion flows of the disk into three different phases like a S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of S-shaped instability and the dormant quasars are the system in the lower branch. The disk is assumed to evolve as ADIOS configuration in the lower branch. The mass ratio between black hole and its host galactic bulge is a nature consequence of ADIOS. Our model also demonstrates that a seed black hole 2 x 10(exp 6) solar masses similar to those found in spiral galaxies today is needed to produce a black hole with a final mass 2 x 10(exp 8) solar masses.
A search for quasars in the Virgo cluster region
NASA Technical Reports Server (NTRS)
He, X.-T.; Cannon, R. D.; Peacock, J. A.; Smith, M. G.; Oke, J. B.
1984-01-01
Using objective-prism plates taken with the 44-arcmin objective prism mounted on the UK Schmidt telescope, 53 emission-line quasar candidates and 29 ultraviolet-excess objects (possible low-redshift quasars) have been found in a 5 x 5-degree field centered on 12 h 27 m, + 13 deg 30 min (1950) in the Virgo cluster of galaxies. Eighteen of these 82 candidates were observed using the double spectrograph on the Palomar 5-meter telescope; 13 of the observed objects proved to be quasars. The broad-absorption-line QSO Q1232 + 134 is the first example of the class to show broad low-ionization absorption lines (such as Mg II 2798 A) in addition to the usual high-excitation lines such as Nv 1240 A. Although no conclusive evidence for quasar-galaxy associations is found in this field, there do exist nonuniformities in the distribution of the quasar candidates which may merit further investigation. These objects will provide a useful network of probes for absorbing material in the Virgo cluster. The lines-of-sight to two of the confirmed quasars pass very close to NGC galaxies; the respective projected QSO-galaxy separations are only 4 and 11 kpc at the assumed distance of the Virgo cluster.
Application of Independent Component Analysis to Legacy UV Quasar Spectra
NASA Astrophysics Data System (ADS)
Richards, Gordon
2017-08-01
We propose to apply a novel analysis technique to UV spectroscopy ofquasars in the HST archive. We endeavor to analyze all of thearchival quasar spectra, but will first focus on those quasars thatalso have optical spectroscopy from SDSS. An archival investigationby Sulentic et al. (2007) revealed 130 known quasars with UV coverageof CIV complementing optical emission line coverage. Today, thesample has grown considerably and now includes COS spectroscopy. Ourproposal includes a proof-of-concept demonstration of the power of atechnique called Independent Component Analysis (ICA). ICA allows usto reduce complexity of of quasar spectra to just a handful ofnumbers. In addition to providing a uniform set of traditional linemeasurements (and carefully calibrated redshifts), we will provide ICAweights to the community with examples of how they can be used to doscience that previously would have been quite difficult. The time isripe for such an investigation because 1) it has been a decade sincethe last significant archival investigation of UV emission lines fromHST quasars, 2) the future is uncertain for obtaining new UV quasarspectroscopy, and 3) the rise of machine learning has provided us withpowerful new tools. Thus our proposed work will provide a true UVlegacy database for quasar-based investigations.
Clustering on very small scales from a large, complete sample of confirmed quasar pairs
NASA Astrophysics Data System (ADS)
Eftekharzadeh, Sarah; Myers, Adam D.; Djorgovski, Stanislav G.; Graham, Matthew J.; Hennawi, Joseph F.; Mahabal, Ashish A.; Richards, Gordon T.
2016-06-01
We present by far the largest sample of spectroscopically confirmed binaryquasars with proper transverse separations of 17.0 ≤ Rprop ≤ 36.6 h-1 kpc. Our sample, whichis an order-of-magnitude larger than previous samples, is selected from Sloan Digital Sky Survey (SDSS) imaging over an area corresponding to the SDSS 6th data release (DR6). Our quasars are targeted using a Kernel Density Estimation technique (KDE), and confirmed using long-slit spectroscopy on a range of facilities.Our most complete sub-sample of 44 binary quasars with g<20.85, extends across angular scales of 2.9" < Δθ < 6.3", and is targeted from a parent sample that would be equivalent to a full spectroscopic survey of nearly 300,000 quasars.We determine the projected correlation function of quasars (\\bar Wp) over proper transverse scales of 17.0 ≤ Rprop ≤ 36.6 h-1 kpc, and also in 4 bins of scale within this complete range.To investigate the redshift evolution of quasar clustering on small scales, we make the first self-consistent measurement of the projected quasar correlation function in 4 bins of redshift over 0.4 ≤ z ≤ 2.3.
Connecting kinematic and dynamic reference frames by D-VLBI
NASA Astrophysics Data System (ADS)
Schuh, Harald; Plank, Lucia; Madzak, Matthias; Böhm, Johannes
2012-08-01
In geodetic and astrometric practice, terrestrial station coordinates are usually provided in the kinematic International Terrestrial Reference Frame (ITRF) and radio source coordinates in the International Celestial Reference Frame (ICRF), whereas measurements of space probes such as satellites and spacecrafts, or planetary ephemerides rest upon dynamical theories. To avoid inconsistencies and errors during measurement and calculation procedures, exact frame ties between quasi - inertial, kinematic and dynamic reference frames have to be secured. While the Earth Orientation Parameters (EOP), e.g. measured by VLBI, link the ITRF to the ICRF, the ties with the dynamic frames can be established with the differential Very Long Baseline Interferometry (D - VLBI) method. By observing space probes alternately t o radio sources, the relative position of the targets to each other on the sky can be determined with high accuracy. While D - VLBI is a common technique in astrophysics (source imaging) and deep space navigation, just recently there have been several effort s to use it for geodetic purposes. We present investigations concerning possible VLBI observations to satellites. This includes the potential usage of available GNNS satellites as well as specifically designed missions, as e.g. the GRASP mission proposed b y JPL/NASA and an international consortium, where the aspect of co - location in space of various techniques (VLBI, SLR, GNSS, DORIS) is the main focus.
Medendorp, W. P.
2015-01-01
It is known that the brain uses multiple reference frames to code spatial information, including eye-centered and body-centered frames. When we move our body in space, these internal representations are no longer in register with external space, unless they are actively updated. Whether the brain updates multiple spatial representations in parallel, or whether it restricts its updating mechanisms to a single reference frame from which other representations are constructed, remains an open question. We developed an optimal integration model to simulate the updating of visual space across body motion in multiple or single reference frames. To test this model, we designed an experiment in which participants had to remember the location of a briefly presented target while being translated sideways. The behavioral responses were in agreement with a model that uses a combination of eye- and body-centered representations, weighted according to the reliability in which the target location is stored and updated in each reference frame. Our findings suggest that the brain simultaneously updates multiple spatial representations across body motion. Because both representations are kept in sync, they can be optimally combined to provide a more precise estimate of visual locations in space than based on single-frame updating mechanisms. PMID:26490289
Frame by Frame II: A Filmography of the African American Image, 1978-1994.
ERIC Educational Resources Information Center
Klotman, Phyllis R.; Gibson, Gloria J.
A reference guide on African American film professionals, this book is a companion volume to the earlier "Frame by Frame I." It focuses on giving credit to African Americans who have contributed their talents to a film industry that has scarcely recognized their contributions, building on the aforementioned "Frame by Frame I,"…
NASA Technical Reports Server (NTRS)
Lestrade, J.-F.; Preston, R. A.; Slade, M. A.
1983-01-01
The concept of typing the Hipparcos optical and the JPL VLBI frames of reference by means of VLBI measurements of the positions and proper motions of the radio components of some bright stars is considered. The properties of the thermal and non-thermal radio-stars are discussed and 22 candidate stars are selected to achieve this tie. A description is given of the first VLBI attempt to detect these stars on the intercontinental baselines of the Deep Space Network with the Mark II recording system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakke, Knut
2010-05-15
We will show that when a neutral particle with permanent electric dipole moment interacts with a specific field configuration when the local reference frames of the observers are Fermi-Walker transported, the Landau quantization analog to the He-McKellar-Wilkens setup arises in the nonrelativistic quantum dynamics of the neutral particle due the noninertial effects of the Fermi-Walker reference frame. We show that the noninertial effects do not break the infinity degeneracy of the energy levels, but in this case, the cyclotron frequency depends on the angular velocity.
A Celestial Reference Frame at X/ka-Band (8.4/32 Ghz) for Deep Space Navigation
NASA Technical Reports Server (NTRS)
Jacobs, C. S.; Clark, J. E.; Garcia-Miro, C.; Horiuchi, S.; Romero-Wolf, A.; Snedeker, L.; Sotuela, I.
2012-01-01
Deep space tracking and navigation are done in a quasi-inertial reference frame based upon the angular positions of distant active galactic nuclei (AGN). These objects, which are found at extreme distances characterized by median redshifts of z = 1, are ideal for reference frame definition because they exhibit no measurable parallax or proper motion. They are thought to be powered by super massive black holes whose gravitational energy drives galactic sized relativistic jets. These jets produce synchrotron emissions which are detectable by modern radio techniques such as Very Long baseline Interferometry (VLBI).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klink, W.H.; Wickramasekara, S., E-mail: wickrama@grinnell.edu; Department of Physics, Grinnell College, Grinnell, IA 50112
2014-01-15
In previous work we have developed a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group that includes transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as is the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. A special feature of these previously constructed representations is that they all respect the non-relativistic equivalence principle, wherein the fictitious forces associated with linear acceleration canmore » equivalently be described by gravitational forces. In this paper we exhibit a large class of cocycle representations of the Galilean line group that violate the equivalence principle. Nevertheless the classical mechanics analogue of these cocycle representations all respect the equivalence principle. -- Highlights: •A formulation of Galilean quantum mechanics in non-inertial reference frames is given. •The key concept is the Galilean line group, an infinite dimensional group. •A large class of general cocycle representations of the Galilean line group is constructed. •These representations show violations of the equivalence principle at the quantum level. •At the classical limit, no violations of the equivalence principle are detected.« less
Language supports young children’s use of spatial relations to remember locations
Miller, Hilary E.; Patterson, Rebecca; Simmering, Vanessa R.
2016-01-01
Two experiments investigated the role of language in children’s spatial recall performance. In particular, we assessed whether selecting an intrinsic reference frame could be improved through verbal encoding. Selecting an intrinsic reference frame requires remembering locations relative to nearby objects independent of one’s body (egocentric) or distal environmental (allocentric) cues, and does not reliably occur in children under 5 years of age (Nardini, Burgess, Breckenridge, & Atkinson, 2006). The current studies tested the relation between spatial language and 4-year-olds’ selection of an intrinsic reference frame in spatial recall. Experiment 1 showed that providing 4-year-olds with location-descriptive cues during (Exp. 1a) or before (Exp. 1b) the recall task improved performance both overall and specifically on trials relying most on an intrinsic reference frame. Additionally, children’s recall performance was predicted by their verbal descriptions of the task space (Exp. 1a control condition). Non-verbally highlighting relations among objects during the recall task (Exp. 2) supported children’s performance relative to the control condition, but significantly less than the location-descriptive cues. These results suggest that the ability to verbally represent relations is a potential mechanism that could account for developmental changes in the selection of an intrinsic reference frame during spatial recall. PMID:26896902
Language supports young children's use of spatial relations to remember locations.
Miller, Hilary E; Patterson, Rebecca; Simmering, Vanessa R
2016-05-01
Two experiments investigated the role of language in children's spatial recall performance. In particular, we assessed whether selecting an intrinsic reference frame could be improved through verbal encoding. Selecting an intrinsic reference frame requires remembering locations relative to nearby objects independent of one's body (egocentric) or distal environmental (allocentric) cues, and does not reliably occur in children under 5 years of age (Nardini, Burgess, Breckenridge, & Atkinson, 2006). The current studies tested the relation between spatial language and 4-year-olds' selection of an intrinsic reference frame in spatial recall. Experiment 1 showed that providing 4-year-olds with location-descriptive cues during (Exp. 1a) or before (Exp. 1b) the recall task improved performance both overall and specifically on trials relying most on an intrinsic reference frame. Additionally, children's recall performance was predicted by their verbal descriptions of the task space (Exp. 1a control condition). Non-verbally highlighting relations among objects during the recall task (Exp. 2) supported children's performance relative to the control condition, but significantly less than the location-descriptive cues. These results suggest that the ability to verbally represent relations is a potential mechanism that could account for developmental changes in the selection of an intrinsic reference frame during spatial recall. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Dolan, Joseph; Fisher, Richard R. (Technical Monitor)
2001-01-01
Far-ultraviolet spectra of the gravitational lens components Q0957+561 A and 9 were obtained with the Hubble Space Telescope Faint Object Spectrograph (FOS) at five equally spaced epochs, one every two weeks. We confirm the flux variability of the quasar's Lyman-alpha and 0 VI emission lines reported by Dolan et al. (1995) in IUE spectra. The fluxes in these lines vary on a time scale of weeks in the observer's rest frame, independently of each other and of the surrounding continuum. The individual spectra of each image were co-added to investigate the properties of the Lyman-alpha forest along the two lines of sight to the quasar. Absorption lines having equivalent width W > 0.3 A in the observer's frame not previously identified by Michalitsianos et al. (1997) as interstellar lines, metal lines, or higher order Lyman lines were taken to be Ly-alpha forest lines. The existence of each line in this consistently selected set was then verified by its presence in two archival FOS spectra with -1.5 times higher signal to noise than our co-added spectra. Ly-alpha forest lines with W > 0.3 A appear at 41 distinct wavelengths in the spectra of the two images. one absorption line in the spectrum of image A has no counterpart in the spectrum of image B and one line in image B has no counterpart in image A. Based on the separation of the lines of sight over the redshift range searched for Ly-forest lines, the density of the absorbing clouds in the direction of Q0957+561 must change significantly over a distance R = 160 (+120, -70)/ h(sub 50) kpc in the simplified model where the absorbers are treated as spherical clouds and the characteristic dimension, R, is the radius. (We adopt H(sub 0) = 50 h(sub 50) km/s/ kpc, q(sub 0) = 1/2, and lambda = 0 throughout the paper.) The 95% confidence interval on R extends from (50 - 950)/h(sub 50) kpc We show in the Appendix that the fraction of Ly-alpha forest lines that appear in only one spectrum can be expressed as a rapidly converging power series in 1/r, where r the ratio of the radius of the cloud to the separation of the two lines of sight at the redshift of the cloud. This power series can be rewritten to give r in terms of the fraction of Ly-forest wavelengths that appear in the spectrum of only one image. A simple linear approximation to the solution that everywhere agrees with the power series solution to better than 0.8% for r > 2 is derived in the Appendix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebe, Kazuyu, E-mail: nrr24490@nifty.com; Tokuyama, Katsuichi; Baba, Ryuta
Purpose: To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Methods: Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio–caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on themore » target phantom during a reproduction of the patient’s tumor motion. A substitute target with the patient’s tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors’ QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients’ tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Results: Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors and gimbal motion errors in the ExacTrac log analyses (n = 13). Conclusions: The newly developed video image-based QA system, including in-house software, can analyze more than a thousand images (33 frames/s). Positional errors are approximately equivalent to those in ExacTrac log analyses. This system is useful for the visual illustration of the progress of the tracking state and for the quantification of positional accuracy during dynamic tumor tracking irradiation in the Vero4DRT system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, James H. H.; Suyu, Sherry H.; Chiueh, Tzihong
Strong gravitationally lensed quasars provide powerful means to study galaxy evolution and cosmology. Current and upcoming imaging surveys will contain thousands of new lensed quasars, augmenting the existing sample by at least two orders of magnitude. To find such lens systems, we built a robot, Chitah, that hunts for lensed quasars by modeling the configuration of the multiple quasar images. Specifically, given an image of an object that might be a lensed quasar, Chitah first disentangles the light from the supposed lens galaxy and the light from the multiple quasar images based on color information. A simple rule is designed to categorize the given object as a potential four-image (quad) or two-image (double) lensed quasar system. The configuration of the identified quasar images is subsequently modeled to classify whether the object is a lensed quasar system. We test the performance of Chitah using simulated lens systems based on the Canada–France–Hawaii Telescope Legacy Survey. For bright quads with large image separations (with Einstein radiusmore » $${r}_{\\mathrm{ein}}\\gt 1\\buildrel{\\prime\\prime}\\over{.} 1$$) simulated using Gaussian point-spread functions, a high true-positive rate (TPR) of $$\\sim 90\\%$$ and a low false-positive rate of $$\\sim 3\\%$$ show that this is a promising approach to search for new lens systems. We obtain high TPR for lens systems with $${r}_{\\mathrm{ein}}\\gtrsim 0\\buildrel{\\prime\\prime}\\over{.} 5$$, so the performance of Chitah is set by the seeing. We further feed a known gravitational lens system, COSMOS 5921+0638, to Chitah, and demonstrate that Chitah is able to classify this real gravitational lens system successfully. Our newly built Chitah is omnivorous and can hunt in any ground-based imaging surveys.« less
The Quasar Fraction in Low-Frequency Selected Complete Samples and Implications for Unified Schemes
NASA Technical Reports Server (NTRS)
Willott, Chris J.; Rawlings, Steve; Blundell, Katherine M.; Lacy, Mark
2000-01-01
Low-frequency radio surveys are ideal for selecting orientation-independent samples of extragalactic sources because the sample members are selected by virtue of their isotropic steep-spectrum extended emission. We use the new 7C Redshift Survey along with the brighter 3CRR and 6C samples to investigate the fraction of objects with observed broad emission lines - the 'quasar fraction' - as a function of redshift and of radio and narrow emission line luminosity. We find that the quasar fraction is more strongly dependent upon luminosity (both narrow line and radio) than it is on redshift. Above a narrow [OII] emission line luminosity of log(base 10) (L(sub [OII])/W) approximately > 35 [or radio luminosity log(base 10) (L(sub 151)/ W/Hz.sr) approximately > 26.5], the quasar fraction is virtually independent of redshift and luminosity; this is consistent with a simple unified scheme with an obscuring torus with a half-opening angle theta(sub trans) approximately equal 53 deg. For objects with less luminous narrow lines, the quasar fraction is lower. We show that this is not due to the difficulty of detecting lower-luminosity broad emission lines in a less luminous, but otherwise similar, quasar population. We discuss evidence which supports at least two probable physical causes for the drop in quasar fraction at low luminosity: (i) a gradual decrease in theta(sub trans) and/or a gradual increase in the fraction of lightly-reddened (0 approximately < A(sub V) approximately < 5) lines-of-sight with decreasing quasar luminosity; and (ii) the emergence of a distinct second population of low luminosity radio sources which, like M8T, lack a well-fed quasar nucleus and may well lack a thick obscuring torus.
Two more, bright, z > 6 quasars from VST ATLAS and WISE
NASA Astrophysics Data System (ADS)
Chehade, B.; Carnall, A. C.; Shanks, T.; Diener, C.; Fumagalli, M.; Findlay, J. R.; Metcalfe, N.; Hennawi, J.; Leibler, C.; Murphy, D. N. A.; Prochaska, J. X.; Irwin, M. J.; Gonzalez-Solares, E.
2018-03-01
Recently, Carnall et al. discovered two bright high redshift quasars using the combination of the VST ATLAS and WISE surveys. The technique involved using the 3-D colour plane i - z: z - W1: W1 - W2 with the WISE W1(3.4 micron) and W2 (4.5 micron) bands taking the place of the usual NIR J band to help decrease stellar dwarf contamination. Here we report on our continued search for 5.7 < z < 6.4 quasars over an ≈2 × larger area of ≈3577 deg2 of the Southern Hemisphere. We have found two further z > 6 quasars, VST-ATLAS J158.6938-14.4211 at z = 6.07 and J332.8017-32.1036 at z = 6.32 with magnitudes of zAB = 19.4 and 19.7 mag respectively. J158.6938-14.4211 was confirmed by Keck LRIS observations and J332.8017-32.1036 was confirmed by ESO NTT EFOSC-2 observations. Here we present VLT X-shooter Visible and NIR spectra for the four ATLAS quasars. We have further independently rediscovered two z > 5.7 quasars previously found by the VIKING/KiDS and PanSTARRS surveys. This means that in ATLAS we have now discovered a total of six quasars in our target 5.7 < z < 6.4 redshift range. Making approximate corrections for incompleteness, we find that our quasar space density agrees with the SDSS results of Jiang et al. at M1450Å ≈ -27. Preliminary virial mass estimates based on the CIV and MgII emission lines give black hole masses in the range MBH ≈ 1 - 6 × 109M⊙ for the four ATLAS quasars.
NASA Astrophysics Data System (ADS)
Kim, Yongjung; Im, Myungshin; Jeon, Yiseul; Kim, Minjin; Hyun, Minhee; Kim, Dohyeong; Kim, Jae-Woo; Taak, Yoon Chan; Yoon, Yongmin; Choi, Changsu; Hong, Jueun; Jun, Hyunsung David; Karouzos, Marios; Kim, Duho; Kim, Ji Hoon; Lee, Seong-Kook; Pak, Soojong; Park, Won-Kee
2018-03-01
To date, most of the luminous quasars known at z ∼ 6 have been found to be in maximal accretion with the Eddington ratios, {λ }Edd}∼ 1, suggesting enhanced nuclear activities in the early universe. However, this may not be the whole picture of supermassive black hole (SMBH) growth, since previous studies have not reached faint quasars that are more likely to harbor SMBHs with low {λ }Edd}. To gain a better understanding of the accretion activities in quasars in the early universe, we obtained a deep near-infrared (NIR) spectrum of a quasar, IMS J220417.92+011144.8 (hereafter IMS J2204+0112), one of the faintest quasars that has been identified at z ∼ 6. From the redshifted C IV λ1549 emission line in the NIR spectrum, we find that IMS J2204+0112 harbors a SMBH with a solar mass of about a billion and {λ }Edd}∼ 0.1, but with a large uncertainty in both quantities (0.41 dex). IMS J2204+0112 has one of the lowest Eddington ratios among quasars at z ∼ 6, but a common value among quasars at z ∼ 2. Its low {λ }Edd} can be explained with two scenarios; the SMBH growth from a stellar-mass black hole through short-duration super-Eddington accretion events or from a massive black hole seed (∼ {10}5 {M}ȯ ) with Eddington-limited accretion. NIR spectra of more faint quasars are needed to better understand the accretion activities of SMBHs at z ∼ 6.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, Stacy H.; Veilleux, Sylvain; Baker, Andrew J., E-mail: stacy.h.teng@nasa.gov
2013-03-10
We present the results of a 21 cm H I survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Robert C. Byrd Green Bank Telescope. These remnants were selected from the Quasar/ULIRG Evolution Study sample of ultraluminous infrared galaxies (ULIRGs; L{sub 8{sub -{sub 1000{sub {mu}m}}}} > 10{sup 12} L{sub Sun }) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGNs) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of H I absorption (emission) to be 100% (29%) in ULIRGs with H I detections, 100% (88%)more » in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km s{sup -1} in some cases. Unexpectedly, we find polarization-dependent H I absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground H I clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the {approx}10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into ''mature'' radio galaxies.« less
A search for changing look quasars in second epoch imaging
NASA Astrophysics Data System (ADS)
Findlay, Joseph; Myers, Adam; McGreer, Ian
2018-01-01
Over nearly two decades, the Sloan Digital Sky Survey has compiled a catalog of over half a million confirmed quasars. During that period approximately ten percent of these objects have been spectroscopically observed in two or more epochs over baselines of ten or more years. This led recently to the discovery of the largest change in luminosity ever before observed in a quasar. The dimming emission was a reflection of very significant changes in continuum and broad line properties, the source had effectively transitioned from a Type I quasar to a Type II AGN. Since then several more "changing look" quasars have been discovered in multi-epoch SDSS spectroscopy. Among them are objects with rising and falling luminosities, appearing and disappearing broad lines. The origin of this behavior is still very uncertain, currently favored is the scenario in which an accreting black hole is simply starved of fuel. Other plausible scenarios include flaring due to stellar tidal disruption close to the black hole or large changes in accretion flow, which can occur during transitions between radiatively efficient and inefficient accretion regimes. Monitoring of larger numbers of changing look quasars will help to elucidate these ideas.In this poster, we report on the progress of a pilot study in which we hope to learn how to select changing look quasars in multi-epoch imaging. This will allow us to take advantage of the entire SDSS quasar catalog rather than just the ten percent of objects with multi-epoch spectroscopy. Comparing archival SDSS and more recent Legacy Survey imaging over ten-year baselines we select objects whose photometry is consistent with the large changes in luminosity expected in changing look quasars. We aim to build up a catalog of both transitioned and transitioning objects for future monitoring.
NASA Astrophysics Data System (ADS)
Yang, Qian; Wu, Xue-Bing; Fan, Xiaohui; Jiang, Linhua; McGreer, Ian; Green, Richard; Yang, Jinyi; Schindler, Jan-Torge; Wang, Feige; Zuo, Wenwen; Fu, Yuming
2017-12-01
We present a new algorithm to estimate quasar photometric redshifts (photo-zs), by considering the asymmetries in the relative flux distributions of quasars. The relative flux models are built with multivariate Skew-t distributions in the multidimensional space of relative fluxes as a function of redshift and magnitude. For 151,392 quasars in the SDSS, we achieve a photo-z accuracy, defined as the fraction of quasars with the difference between the photo-z z p and the spectroscopic redshift z s , | {{Δ }}z| =| {z}s-{z}p| /(1+{z}s) within 0.1, of 74%. Combining the WISE W1 and W2 infrared data with the SDSS data, the photo-z accuracy is enhanced to 87%. Using the Pan-STARRS1 or DECaLS photometry with WISE W1 and W2 data, the photo-z accuracies are 79% and 72%, respectively. The prior probabilities as a function of magnitude for quasars, stars, and galaxies are calculated, respectively, based on (1) the quasar luminosity function, (2) the Milky Way synthetic simulation with the Besançon model, and (3) the Bayesian Galaxy Photometric Redshift estimation. The relative fluxes of stars are obtained with the Padova isochrones, and the relative fluxes of galaxies are modeled through galaxy templates. We test our classification method to select quasars using the DECaLS g, r, z, and WISE W1 and W2 photometry. The quasar selection completeness is higher than 70% for a wide redshift range 0.5< z< 4.5, and a wide magnitude range 18< r< 21.5 mag. Our photo-z regression and classification method has the potential to extend to future surveys. The photo-z code will be publicly available.
THE CANADA-FRANCE HIGH-z QUASAR SURVEY: NINE NEW QUASARS AND THE LUMINOSITY FUNCTION AT REDSHIFT 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willott, Chris J.; Crampton, David; Hutchings, John B.
2010-03-15
We present discovery imaging and spectroscopy for nine new z {approx} 6 quasars found in the Canada-France High-z Quasar Survey (CFHQS) bringing the total number of CFHQS quasars to 19. By combining the CFHQS with the more luminous Sloan Digital Sky Survey sample, we are able to derive the quasar luminosity function from a sample of 40 quasars at redshifts 5.74 < z < 6.42. Our binned luminosity function shows a slightly lower normalization and flatter slope than found in previous work. The binned data also suggest a break in the luminosity function at M {sub 1450} {approx} -25. Amore » double power-law maximum likelihood fit to the data is consistent with the binned results. The luminosity function is strongly constrained (1{sigma} uncertainty <0.1 dex) over the range -27.5 < M {sub 1450} < -24.7. The best-fit parameters are {phi}(M*{sub 1450}) = 1.14 x 10{sup -8} Mpc{sup -3} mag{sup -1}, break magnitude M*{sub 1450} = -25.13, and bright end slope {beta} = -2.81. However, the covariance between {beta} and M*{sub 1450} prevents strong constraints being placed on either parameter. For a break magnitude in the range -26 < M*{sub 1450} < -24, we find -3.8 < {beta} < -2.3 at 95% confidence. We calculate the z = 6 quasar intergalactic ionizing flux and show it is between 20 and 100 times lower than that necessary for reionization. Finally, we use the luminosity function to predict how many higher redshift quasars may be discovered in future near-IR imaging surveys.« less
NASA Astrophysics Data System (ADS)
Roman, D. R.
2017-12-01
In 2022, the National Geodetic Survey will replace all three NAD 83 reference frames the four new terrestrial reference frames. Each frame will be named after a tectonic plate (North American, Pacific, Caribbean and Mariana) and each will be related to the IGS frame through three Euler Pole parameters (EPPs). This talk will focus on practical application in the Caribbean region. A working group is being re-established for development of the North American region and will likely also result in analysis of the Pacific region as well. Both of these regions are adequately covered with existing CORS sites to model the EPPs. The Mariana region currently lacks sufficient coverage, but a separate project is underway to collect additional information to help in defining EPPs for that region at a later date. The Caribbean region has existing robust coverage through UNAVCO's COCONet and other data sets, but these require further analysis. This discussion will focus on practical examination of Caribbean sites to establish candidates for determining the Caribbean frame EPPs as well as an examination of any remaining velocities that might inform a model of the remaining velocities within that frame (Intra-Frame Velocity Model). NGS has a vested interest in defining such a model to meet obligations to U.S. citizens in Puerto Rico and the U.S. Virgin Islands. Beyond this, NGS aims to collaborate with other countries in the region through efforts with SIRGAS and UN-GGIM-Americas for a more acceptable regional model to serve everyone's needs.
IMPROVED SPECTROPHOTOMETRIC CALIBRATION OF THE SDSS-III BOSS QUASAR SAMPLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margala, Daniel; Kirkby, David; Dawson, Kyle
2016-11-10
We present a model for spectrophotometric calibration errors in observations of quasars from the third generation of the Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey (BOSS) and describe the correction procedure we have developed and applied to this sample. Calibration errors are primarily due to atmospheric differential refraction and guiding offsets during each exposure. The corrections potentially reduce the systematics for any studies of BOSS quasars, including the measurement of baryon acoustic oscillations using the Ly α forest. Our model suggests that, on average, the observed quasar flux in BOSS is overestimated by ∼19% at 3600 Å and underestimatedmore » by ∼24% at 10,000 Å. Our corrections for the entire BOSS quasar sample are publicly available.« less
Nearly simultaneous optical, ultraviolet, and x ray observations of three PG quasars
NASA Technical Reports Server (NTRS)
Kriss, Gerard A.
1990-01-01
Nearly simultaneous optical, ultraviolet, and x ray observations of three low redshift quasars are presented. The EXOSAT x ray spectra span the range of observed spectral indices for quasars from the canonical 0.7 energy index typical of Seyfert galaxies for PG0923+129 (Mrk 705) to the steep spectral indices frequently seen in higher luminosity quasars with an index of 1.58 for PG0844+349 (Ton 951). None of the quasars exhibits any evidence for a soft x ray excess. This is consistent with accretion disk spectra fit to the IR through UV continua of the quasars -- the best fitting disk spectra peak at approximately 6 eV with black hole masses in the range 5 x 10(exp 7) to 1 x 10(exp 9) solar mass and mass accretion rates of approximately 0.1 times the Eddington-limited rate. These rather soft disk spectra are also compatible with the observed optical and ultraviolet line ratios.
Space Density Of Optically-Selected Type II Quasars From The SDSS
NASA Astrophysics Data System (ADS)
Reyes, Reinabelle; Zakamska, N. L.; Strauss, M. A.; Green, J.; Krolik, J. H.; Shen, Y.; Richards, G. T.
2007-12-01
Type II quasars are luminous Active Galactic Nuclei (AGN) whose central regions are obscured by large amounts of gas and dust. In this poster, we present a catalog of 887 type II quasars with redshifts z<0.83 from the Sloan Digital Sky Survey (SDSS), selected based on their emission lines, and derive the 1/Vmax [OIII] 5007 luminosity function from this sample. Since some objects may not be included in the sample because they lack strong emission lines, the derived luminosity function is only a lower limit. We also derive the [OIII] 5007 luminosity function for a sample of type I (broad-line) quasars in the same redshift range. Taking [OIII] 5007 luminosity as a tracer of intrinsic luminosity in both type I and type II quasars, we obtain lower limits to the type II quasar fraction as a function of [OIII] 5007 luminosity, from L[OIII] = 108.3 to 1010 Lsun, which roughly correspond to bolometric luminosities of 1044 to 1046 erg/s.
Highly Accreting Quasars at High Redshift
NASA Astrophysics Data System (ADS)
Martínez-Aldama, Mary L.; Del Olmo, Ascensión; Marziani, Paola; Sulentic, Jack W.; Negrete, C. Alenka; Dultzin, Deborah; Perea, Jaime; D'Onofrio, Mauro
2017-12-01
We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (LLedd>0.2) at high redshift, z 2-3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as AlIII, SiIII and CIII. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Elvis, Martin
2004-01-01
The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.
NASA Astrophysics Data System (ADS)
Schechter, Paul L.; Morgan, Nicholas D.; Chehade, B.; Metcalfe, N.; Shanks, T.; McDonald, Michael
2017-05-01
We have analyzed images from the VST-ATLAS survey to identify candidate gravitationally lensed quasar systems in a sample of WISE sources with W1-W2> 0.7. Results from follow-up spectroscopy with the Baade 6.5 m telescope are presented for eight systems. One of them is a quadruply lensed quasar, and two are doubly lensed systems. Two are projected superpositions of two quasars at different redshifts. In one system, two quasars, although at the same redshift, have very different emission line profiles and constitute a physical binary. In two systems, the component spectra are consistent with the lensing hypothesis, after allowing for microlensing. However, as no lensing galaxy is detected in these two systems, we classify them as lensless twins. More extensive observations are needed to establish whether they are in fact lensed quasars or physical binaries. This paper includes data gathered with the 6.5 m Magellan telescopes located at Las Campanas Observatory, Chile.
Second-order Compton-Getting effect on arbitrary intensity distribution
NASA Technical Reports Server (NTRS)
Ng, C. K.
1985-01-01
Theoretical studies of energetic particles in space are often referred to a special frame of reference. To compare theory with experiment, one has to transform the particle distribution from the special frame to the observer's frame, or vice versa. Various methods have been derived to obtain the directional distribution in the comoving frame from the directional fluxes measured on a spacecraft. These methods have become progressively complicated as increasingly detailed directional particle data become available. A set of 2nd order correct formulae for the transformation of an arbitrary differential intensity distribution, expressed as a series of spherical harmonics, between any two frames in constant relative motion is presented. These formulae greatly simplify the complicated procedures currently in use for the determination of the differential intensity distribution in a comoving frame.
DES J0454-4448: discovery of the first luminous z ≥ 6 quasar from the Dark Energy Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, S. L.; McMahon, R. G.; Banerji, M.
We present the first results of a survey for high-redshift, z ≥ 6, quasars using izY multicolour photometric observations from the Dark Energy Survey (DES). Here we report the discovery and spectroscopic confirmation of the z AB, Y AB = 20.2, 20.2 (M 1450 = -26.5) quasar DES J0454-4448 with a redshift of z = 6.09±0.02 based on the onset of the Ly α forest and an H I near zone size of 4.1 +1.1 -1.2 proper Mpc. The quasar was selected as an i-band drop out with i-z = 2.46 and z AB < 21.5 from an area ofmore » ~300 deg 2. It is the brightest of our 43 candidates and was identified for spectroscopic follow-up solely based on the DES i-z and z-Y colours. The quasar is detected by WISE and has W1 AB = 19.68. The discovery of one spectroscopically confirmed quasar with 5.7 < z < 6.5 and zAB ≤ 20.2 is consistent with recent determinations of the luminosity function at z ~ 6. DES when completed will have imaged ~5000 deg 2 to Y AB = 23.0 (5σ point source) and we expect to discover 50–100 new quasars with z > 6 including 3–10 with z > 7 dramatically increasing the numbers of quasars currently known that are suitable for detailed studies.« less
Different strategies for spatial updating in yaw and pitch path integration
Goeke, Caspar M.; König, Peter; Gramann, Klaus
2013-01-01
Research in spatial navigation revealed the existence of discrete strategies defined by the use of distinct reference frames during virtual path integration. The present study investigated the distribution of these navigation strategies as a function of gender, video gaming experience, and self-estimates of spatial navigation abilities in a population of 300 subjects. Participants watched videos of virtual passages through a star-field with one turn in either the horizontal (yaw) or the vertical (pitch) axis. At the end of a passage they selected one out of four homing arrows to indicate the initial starting location. To solve the task, participants could employ two discrete strategies, navigating within either an egocentric or an allocentric reference frame. The majority of valid subjects (232/260) consistently used the same strategy in more than 75% of all trials. With that approach 33.1% of all participants were classified as Turners (using an egocentric reference frame on both axes) and 46.5% as Non-turners (using an allocentric reference frame on both axes). 9.2% of all participants consistently used an egocentric reference frame in the yaw plane but an allocentric reference frame in the pitch plane (Switcher). Investigating the influence of gender on navigation strategies revealed that females predominantly used the Non-turner strategy while males used both the Turner and the Non-turner strategy with comparable probabilities. Other than expected, video gaming experience did not influence strategy use. Based on a strong quantitative basis with the sample size about an order of magnitude larger than in typical psychophysical studies these results demonstrate that most people reliably use one out of three possible navigation strategies (Turners, Non-turners, Switchers) for spatial updating and provides a sound estimate of how those strategies are distributed within the general population. PMID:23412683