Quasi-static puncture resistance behaviors of high-strength polyester fabric for soft body armor
NASA Astrophysics Data System (ADS)
Wang, Qiu-Shi; Sun, Run-Jun; Tian, Xiao; Yao, Mu; Feng, Yan
A series of economical and flexible fabrics were prepared using high-strength polyester yarns with different fabric structures, weft density and number of layers. The effect of these factors on quasi-static puncture resistance was comparatively studied. The failure mode of the fabrics was analyzed with SEM photographs. Findings indicate that the structure and the weft density affected the quasi-static puncture resistance property of the fabrics, the plain fabrics had better puncture resistance property than twill and satin fabrics. The max puncture force and puncture energy of the plain fabrics with 160 yarn/10 cm reached the max values which were 107.43 N and 0.44 J, respectively. The number of layers had a linear relationship to quasi-static puncture resistance. The contact pressure and friction of the probe against the fibers were the main hindrance during the quasi-static puncture process and the breakage of the fibers during the penetration was caused by the bend and tensile deformation.
Quasi-static and dynamic responses of advanced high strength steels: Experiments and modeling
Khan, Akhtar; Baig, Muneer; Choi, Shi Hoon; Yang, Hoe Seok; Sun, Xin
2012-03-01
Measured responses of advanced high strength steels (AHSS) and their tailor welded blanks (TWBs), over a wide range of strain-rates (10*4 to 103 s*1) are presented. The steels investigated include transformation induced plasticity (TRIP), dual phase (DP), and drawing quality (DQ) steels. The TWBs include DQ-DQ and DP-DP laser welds. A tensile split Hopkinson pressure bar (SHPB) was used for the dynamic experiments. AHSS and their TWB's were found to exhibit positive strain-rate sensitivity. The Khan-Huang-Liang (KHL) constitutive model is shown to correlate and predict the observed responses reasonably well. Micro-texture characterization of DQ steels, DQ-DQ and DP-DP laser welds were performed to investigate the effect of strain-rate on texture evolution of these materials. Electron backscatter diffraction (EBSD) technique was used to analyze the micro-texture evolution and kernel average misorientation (KAM) map. Measurement of micro-hardness profile across the cross section of tensile samples was conducted to understand the effect of initial microstructure on ductility of laser weld samples.
NASA Astrophysics Data System (ADS)
Ogorodnikov, V. A.; Yukhimchuk, A. A.; Mochalov, M. A.; Andramanov, A. V.; Baurin, A. Yu.; Blikov, A. O.; Boitsov, I. E.; Erunov, S. V.; Maksimkin, I. P.; Malkov, I. L.; Pupkov, A. S.; Shevnin, E. V.
2016-09-01
The influence of hydrogen on the strength and ductility of 30KhGSA and EI659 steels in quasi-static and shock-loading tests was studied experimentally. The sensitivity of the steels to hydrogenation in air under normal pressure or in hydrogen at a pressure of 25 MPa was determined from the results of tests of as-received and pre-hydrogenated samples at a temperature of 773 K and a hydrogen pressure of 50 MPa for 24 h. It is found that EI659 steel doped with tungsten and vanadium is less sensitive to hydrogenation than 30KhGSA steel doped with manganese and chromium.
Varga, Peter; Schwiedrzik, Jakob; Zysset, Philippe K; Fliri-Hofmann, Ladina; Widmer, Daniel; Gueorguiev, Boyko; Blauth, Michael; Windolf, Markus
2016-04-01
Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone׳s material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of 13 femora predicted the strength (R(2)=0.84, SEE=540N, 16.2%), stiffness (R(2)=0.82, SEE=233N/mm, 18.0%) and fracture energy (R(2)=0.72, SEE=3.85J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation.
2016-08-01
Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) En gi ne er R es ea rc h an d D ev el op m en t Ce nt er Brett A...Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) Brett A. Williams, Robert D. Moser, William F. Heard, Carol F...equipment and protocols for tests of both very-high-strength concrete (VHSC) and high- strength high-ductility concrete (HSHDC) to predict blast
Quasi-Static Electric Field Generator
NASA Technical Reports Server (NTRS)
Generazio, Edward R. (Inventor)
2017-01-01
A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.
A Planar Quasi-Static Constraint Mode Tire Model
2015-07-10
UNCLASSIFIED: Distribution Statement A. Cleared for public release A PLANAR QUASI- STATIC CONSTRAINT MODE TIRE MODEL Rui Maa John B. Ferris...demands efficiency in the simulation of suspension loads. Toward that end, a computationally efficient, linear, planar, quasi- static tire model is...bridging properties via component mode synthesis originated by Hurty and Gladwell and the Guyan static reduction method decouples active constraints
2011-01-01
rapid-set, high-strength geopolymer cement under quasi-static and dynamic loads. Four unique tensile experiments were conducted to characterize and...review under responsibility of ICM11 Keywords: Material characterization, fiber reinforced concrete, geopolymer cement 1. Introduction A mission... geopolymer cement under quasi-static and dynamic loads. Four unique tensile experiments were conducted to characterize and optimize material response of the
Quasi-static winds from neutron stars
NASA Technical Reports Server (NTRS)
Joss, Paul C.; Melia, Fulvio
1987-01-01
A series of numerical models is constructed for radiatively driven, quasi-static winds from the surfaces of hot neutron stars. A mathematical technique is devised that in many cases facilitates the integration of the fluid equations in the vicinity of the sonic point, and an improved treatment of radiative transfer is developed that is appropriate to the exotic physical conditions encountered in the models. Boundary conditions which are more realistic than previous ones are used in these models. In agreement with earlier studies, it is found that radiatively driven winds are likely to be directly relevant to the existence of precursors in fast X-ray transients and to apparent radius variations during the course of some type I bursts, and that the presence of such a wind should prevent the bolometric luminosity of a neutron star from exceeding the Eddington limit by more than a small fractional amount. Formulas describing the wind models are presented which are usable as boundary conditions for calculations of the evolution of the deeper, hydrostatic layers of a neutron-star envelope.
Quasi-static and dynamic analysis of viscoelastic plates
NASA Astrophysics Data System (ADS)
Aköz, Ahmet Yalçın; Kadıoğlu, Fethi; Tekin, Gülçin
2015-11-01
In this study, the quasi-static and dynamic behavior of viscoelastic Kirchhoff plates is studied numerically by using the mixed finite element method in transformed Laplace-Carson space. In the transformed Laplace-Carson space, a new functional has been constructed for viscoelastic Kirchhoff plates through a systematic procedure based on the Gâteaux differential. For numerical inversion, the Maximum Degree of Precision (MDOP), Dubner and Abate's, and Durbin's transform techniques are employed. The developed solution technique is applied to several quasi-static and dynamic example problems.
Anisotropic energy transfers in quasi-static magnetohydrodynamic turbulence
Reddy, K. Sandeep; Kumar, Raghwendra; Verma, Mahendra K.
2014-10-15
We perform direct numerical simulations of quasi-static magnetohydrodynamic turbulence and compute various energy transfers including the ring-to-ring and conical energy transfers, and the energy fluxes of the perpendicular and parallel components of the velocity field. We show that the rings with higher polar angles transfer energy to ones with lower polar angles. For large interaction parameters, the dominant energy transfer takes place near the equator (polar angle θ≈(π)/2 ). The energy transfers are local both in wavenumbers and angles. The energy flux of the perpendicular component is predominantly from higher to lower wavenumbers (inverse cascade of energy), while that of the parallel component is from lower to higher wavenumbers (forward cascade of energy). Our results are consistent with earlier results, which indicate quasi two-dimensionalization of quasi-static magnetohydrodynamic flows at high interaction parameters.
Bossetti, Chad A; Birdno, Merrill J; Grill, Warren M
2008-03-01
In models of electrical stimulation of the nervous system, the electric potential is typically calculated using the quasi-static approximation. The quasi-static approximation allows Maxwell's equations to be simplified by ignoring capacitive, inductive and wave propagation contributions to the potential. While this simplification has been validated for bioelectric sources, its application to rapid stimulation pulses, which contain more high-frequency power, may not be appropriate. We compared the potentials calculated using the quasi-static approximation with those calculated from the exact solution to the inhomogeneous Helmholtz equation. The mean absolute errors between the two potential calculations were limited to 5-13% for pulse widths commonly used for neural stimulation (25 micros-1 ms). We also quantified the excitation properties of extracellular point source stimulation of a myelinated nerve fiber model using potentials calculated from each method. Deviations between the strength-duration curves for potentials calculated using the quasi-static (sigma = 0.105 S m(-1)) and Helmholtz approaches ranged from 3 to 16%, with the minimal error occurring for 100 micros pulses. Differences in the threshold-distance curves for the two calculations ranged from 0 to 9%, for the same value of quasi-static conductivity. A sensitivity analysis of the material parameters revealed that the potential was much more strongly dependent on the conductivity than on the permittivity. These results indicate that for commonly used stimulus pulse parameters, the exact solution for the potential can be approximated by quasi-static simplifications only for appropriate values of conductivity.
Damage Instability and Transition From Quasi-Static to Dynamic Fracture
NASA Technical Reports Server (NTRS)
Davila, Carlos G.
2015-01-01
In a typical mechanical test, the loading phase is intended to be a quasi-static process, while the failure and collapse is usually a dynamic event. The structural strength and modes of damage can seldom be predicted without accounting for these two aspects of the response. For a proper prediction, it is therefore essential to use tools and methodologies that are capable of addressing both aspects of responses. In some cases, implicit quasi-static models have been shown to be able to predict the entire response of a structure, including the unstable path that leads to fracture. However, is it acceptable to ignore the effect of inertial forces in the formation of damage? In this presentation we examine aspects of the damage processes that must be simulated for an accurate prediction of structural strength and modes of failure.
Eigenmodes of quasi-static magnetic islands in current sheet
Li Yi; Cai Xiaohui; Chai Lihui; Wang Shui; Zheng Huinan; Shen Chao
2011-12-15
As observation have shown, magnetic islands often appear before and/or after the onset of magnetic reconnections in the current sheets, and they also appear in the current sheets in the solar corona, Earth's magnetotail, and Earth's magnetopause. Thus, the existence of magnetic islands can affect the initial conditions in magnetic reconnection. In this paper, we propose a model of quasi-static magnetic island eigenmodes in the current sheet. This model analytically describes the magnetic field structures in the quasi-static case, which will provide a possible approach to reconstructing the magnetic structures in the current sheet via observation data. This model is self-consistent in the kinetic theory. Also, the distribution function of charged particles in the magnetic island can be calculated.
Calculation of quasi-static helium triplet diffuse line profiles
NASA Technical Reports Server (NTRS)
Scott, C. D.
1972-01-01
Calculated spectral line profiles (intensity distributions) of the helium triplet diffuse series were obtained using the quasi-static approximation for ions and electrons. In these calculations, Doppler broadening, although negligible in most of the cases, was included as a device to avoid singularities. Plots and tabulations of the calculated profiles are presented, in addition to a discussion of the computational procedure and the validity of the calculations.
Quasi-static self-powered sensing and data logging
NASA Astrophysics Data System (ADS)
Lajnef, Nizar; Chakrabartty, Shantanu; Burgueño, Rigoberto; Borchani, Wassim
2014-04-01
Many signals of interest in the assessment of structural systems lie in the quasi-static range (frequency << 1Hz). This poses a significant challenge for the development of self-powered sensors that are required not only to monitor these events but also to harvest the energy for sensing, computation and storage from the signal being monitored. This paper combines the use of mechanically-equivalent frequency modulators and piezo-powered threshold detection modules capable of computation and data storage with a total current less than 10nA. The system is able to achieve events counting for input deformations at frequencies lower than 0.1Hz. The used mechanically-equivalent frequency modulators allow the transformation of the low-amplitude and low-rate quasi-static deformations into an amplified input to a piezoelectric transducer. The sudden transitions in unstable mode branch switching, during the elastic postbuckling response of slender columns and plates, are used to generate high-rate deformations. Experimental results show that an oscillating semi-crystalline plastic polyvinylidene fluoride (PVDF), attached to the up-converting modules, is able to generate a harvestable energy at levels between 0.8μJ to 2μJ. In this work, we show that a linear injection response of our combined frequency up-converter / piezo-floating-gate sensing system can be used for self-powered measurement and recording of quasi-static deformations levels. The experimental results demonstrate that a sensor fabricated in a 0.5- μm CMOS technology can count and record the number of quasi-static input events, while operating at a power level significantly lower than 1μW.
Quasi-Static Viscoelasticity Loading Measurements of an Aircraft Tire
NASA Technical Reports Server (NTRS)
Mason, Angela J.; Tanner, John A.; Johnson, Arthur R.
1997-01-01
Stair-step loading, cyclic loading, and long-term relaxation tests were performed on an aircraft tire to observe the quasi-static viscoelastic response of the tire. The data indicate that the tire continues to respond viscoelastically even after it has been softened by deformation. Load relaxation data from the stair-step test at the 15,000-lb loading was fit to a monotonically decreasing Prony series.
49 CFR 238.203 - Static end strength.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Static end strength. 238.203 Section 238.203... Equipment § 238.203 Static end strength. (a)(1) Except as further specified in this paragraph or in paragraph (d), on or after November 8, 1999 all passenger equipment shall resist a minimum static end...
49 CFR 238.203 - Static end strength.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Static end strength. 238.203 Section 238.203... Equipment § 238.203 Static end strength. (a)(1) Except as further specified in this paragraph or in paragraph (d), on or after November 8, 1999 all passenger equipment shall resist a minimum static end...
49 CFR 238.405 - Longitudinal static compressive strength.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Longitudinal static compressive strength. 238.405... II Passenger Equipment § 238.405 Longitudinal static compressive strength. (a) To form an effective... shall resist a minimum longitudinal static compressive force of 2,100,000 pounds without...
49 CFR 238.203 - Static end strength.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Static end strength. 238.203 Section 238.203... Equipment § 238.203 Static end strength. (a)(1) Except as further specified in this paragraph or in paragraph (d), on or after November 8, 1999 all passenger equipment shall resist a minimum static end...
49 CFR 238.203 - Static end strength.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Static end strength. 238.203 Section 238.203... Equipment § 238.203 Static end strength. (a)(1) Except as further specified in this paragraph or in paragraph (d), on or after November 8, 1999 all passenger equipment shall resist a minimum static end...
49 CFR 238.405 - Longitudinal static compressive strength.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Longitudinal static compressive strength. 238.405... II Passenger Equipment § 238.405 Longitudinal static compressive strength. (a) To form an effective... shall resist a minimum longitudinal static compressive force of 2,100,000 pounds without...
49 CFR 238.405 - Longitudinal static compressive strength.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Longitudinal static compressive strength. 238.405... II Passenger Equipment § 238.405 Longitudinal static compressive strength. (a) To form an effective... shall resist a minimum longitudinal static compressive force of 2,100,000 pounds without...
49 CFR 238.203 - Static end strength.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Static end strength. 238.203 Section 238.203... Equipment § 238.203 Static end strength. (a)(1) Except as further specified in this paragraph or in paragraph (d), on or after November 8, 1999 all passenger equipment shall resist a minimum static end...
49 CFR 238.405 - Longitudinal static compressive strength.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Longitudinal static compressive strength. 238.405... II Passenger Equipment § 238.405 Longitudinal static compressive strength. (a) To form an effective... shall resist a minimum longitudinal static compressive force of 2,100,000 pounds without...
49 CFR 238.405 - Longitudinal static compressive strength.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Longitudinal static compressive strength. 238.405... II Passenger Equipment § 238.405 Longitudinal static compressive strength. (a) To form an effective... shall resist a minimum longitudinal static compressive force of 2,100,000 pounds without...
Dynamic and quasi-static measurements of PBXN-5 and comp-B explosives
Brown, Geoffrey W; Ten Cate, James A; Deluca, Racci; Rae, Philip J; Todd, Steven N
2009-03-12
We have measured dynamic and quasi-static mechanical properties of PBXN-5 and Comp-B explosive materials to provide input data for modeling efforts. Dynamic measurements included acoustic and split-Hopkinson pressure bar tests. Quasi-static testing was done in compression on a load frame. Hopkinson bar and quasistatic testing was done at five temperatures from -50{sup o}C to 50{sup o}C. Our results were dominated by the low density of the samples and showed up as low acoustic velocities and lower strengths, as compared to other materials of the same or similar formulations. The effects seem to be consistent with the high porosity of the materials. The data do provide useful input to models that include density as a parameter and suggest caution when using measurements of ideal materials to predict behavior of damaged materials.
Quasi-static magnetohydrodynamic turbulence at high Reynolds number
NASA Astrophysics Data System (ADS)
Delache, A.; Favier, B.; Godeferd, F. S.; Cambon, C.; Bos, W. J. T.
2011-12-01
We analyse the anisotropy of turbulence in an electrically conducting fluid submitted to a uniform magnetic field, for low magnetic Reynolds number, using the quasi-static approximation. In the linear limit, the kinetic energy of velocity components normal to the magnetic field decays faster than the kinetic energy of the component along the magnetic field (Moffatt, 1967). However, numerous numerical studies predict a different behaviour, wherein the final state is characterised by dominant horizontal energy. We investigate the corresponding nonlinear phenomenon using Direct Numerical Simulations (DNS) and spectral closures based on Eddy Damping Quasi-Normal Markovian (EDQNM) models. The initial temporal evolution of the decaying flow indicates that the turbulence is very similar to the so-called "two-and-a-half-dimensional" flow (Montgomery & Turner, 1982) which explains the observations in numerical studies. EDQNM models confirm this statement at higher Reynolds number.
Modeling Quasi-Static and Fatigue-Driven Delamination Migration
NASA Technical Reports Server (NTRS)
De Carvalho, N. V.; Ratcliffe, J. G.; Chen, B. Y.; Pinho, S. T.; Baiz, P. M.; Tay, T. E.
2014-01-01
An approach was proposed and assessed for the high-fidelity modeling of progressive damage and failure in composite materials. It combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. Delamination, matrix cracking, and migration were captured failure and migration criteria based on fracture mechanics. Quasi-static and fatigue loading were modeled within the same overall framework. The methodology proposed was illustrated by simulating the delamination migration test, showing good agreement with the available experimental data.
Quasi-Static Analysis of LaRC THUNDER Actuators
NASA Technical Reports Server (NTRS)
Campbell, Joel F.
2007-01-01
An analytic approach is developed to predict the shape and displacement with voltage in the quasi-static limit of LaRC Thunder Actuators. The problem is treated with classical lamination theory and Von Karman non-linear analysis. In the case of classical lamination theory exact analytic solutions are found. It is shown that classical lamination theory is insufficient to describe the physical situation for large actuators but is sufficient for very small actuators. Numerical results are presented for the non-linear analysis and compared with experimental measurements. Snap-through behavior, bifurcation, and stability are presented and discussed.
Quasi-Static Indentation Analysis of Carbon-Fiber Laminates.
Briggs, Timothy; English, Shawn Allen; Nelson, Stacy Michelle
2015-12-01
A series of quasi - static indentation experiments are conducted on carbon fiber reinforced polymer laminates with a systematic variation of thicknesses and fixture boundary conditions. Different deformation mechanisms and their resulting damage mechanisms are activated b y changing the thickn ess and boundary conditions. The quasi - static indentation experiments have been shown to achieve damage mechanisms similar to impact and penetration, however without strain rate effects. The low rate allows for the detailed analysis on the load response. Moreover, interrupted tests allow for the incremental analysis of various damage mechanisms and pr ogressions. The experimentally tested specimens are non - destructively evaluated (NDE) with optical imaging, ultrasonics and computed tomography. The load displacement responses and the NDE are then utilized in numerical simulations for the purpose of model validation and vetting. The accompanying numerical simulation work serves two purposes. First, the results further reveal the time sequence of events and the meaning behind load dro ps not clear from NDE . Second, the simulations demonstrate insufficiencies in the code and can then direct future efforts for development.
Simulated bioprosthetic heart valve deformation under quasi-static loading.
Sun, Wei; Abad, Ajay; Sacks, Michael S
2005-11-01
For more than 40 years, the replacement of diseased natural heart valves with prosthetic devices has dramatically extended the quality and length of the lives of millions of patients worldwide. However, bioprosthetic heart valves (BHV) continue to fail due to structural failure resulting from poor tissue durability and faulty design. Clearly, an in-depth understanding of the biomechanical behavior of BHV at both the tissue and functional prosthesis levels is essential to improving BHV design and to reduce rates of failure. In this study, we simulated quasi-static BHV leaflet deformation under 40, 80, and 120 mm Hg quasi-static transvalvular pressures. A Fung-elastic material model was used that incorporated material parameters and axes derived from actual leaflet biaxial tests and measured leaflet collagen fiber structure. Rigorous experimental validation of predicted leaflet strain field was used to validate the model results. An overall maximum discrepancy of 2.36% strain between the finite element (FE) results and experiment measurements was obtained, indicating good agreement between computed and measured major principal strains. Parametric studies utilizing the material parameter set from one leaflet for all three leaflets resulted in substantial variations in leaflet stress and strain distributions. This result suggests that utilization of actual leaflet material properties is essential for accurate BHV FE simulations. The present study also underscores the need for rigorous experimentation and accurate constitutive models in simulating BHV function and design.
Biomagnetic localization from transient quasi-static events
Mosher, J.C.; Leahy, R.M.; Lewis, P.S. University of Southern California, Los Angeles, CA . Signal and Image Processing Inst.)
1993-01-01
Sensory stimuli, such as auditory, visual, or somatosensory, evoke neural responses in very localized regions of the brain. A SQUID biomagnetometer can measure the very weak fields that are generated outside of the head by this response. A simple source and head model of current dipoles inside a conducting sphere is typically used to interpret these magnetic field measurements or magnetoencephalogram (MEG). Locating dipole sources using data recorded from an array of biomagnetic sensors is distinguished from conventional array source localization techniques by the quasi-static transient nature of the data. Here, the basic MEG model is reviewed, then a localization example is given to motivate the need for partitioning the data to improve estimator performance. Tune-eigenspectrum analysis is introduced as a means of partitioning and interpreting spatio-temporal biomagnetic data. Examples using both simulated and somatosensory data are presented.
Biomagnetic localization from transient quasi-static events
Mosher, J.C.; Leahy, R.M.; Lewis, P.S. |
1993-02-01
Sensory stimuli, such as auditory, visual, or somatosensory, evoke neural responses in very localized regions of the brain. A SQUID biomagnetometer can measure the very weak fields that are generated outside of the head by this response. A simple source and head model of current dipoles inside a conducting sphere is typically used to interpret these magnetic field measurements or magnetoencephalogram (MEG). Locating dipole sources using data recorded from an array of biomagnetic sensors is distinguished from conventional array source localization techniques by the quasi-static transient nature of the data. Here, the basic MEG model is reviewed, then a localization example is given to motivate the need for partitioning the data to improve estimator performance. Tune-eigenspectrum analysis is introduced as a means of partitioning and interpreting spatio-temporal biomagnetic data. Examples using both simulated and somatosensory data are presented.
Quasi-Static Probabilistic Structural Analyses Process and Criteria
NASA Technical Reports Server (NTRS)
Goldberg, B.; Verderaime, V.
1999-01-01
Current deterministic structural methods are easily applied to substructures and components, and analysts have built great design insights and confidence in them over the years. However, deterministic methods cannot support systems risk analyses, and it was recently reported that deterministic treatment of statistical data is inconsistent with error propagation laws that can result in unevenly conservative structural predictions. Assuming non-nal distributions and using statistical data formats throughout prevailing stress deterministic processes lead to a safety factor in statistical format, which integrated into the safety index, provides a safety factor and first order reliability relationship. The embedded safety factor in the safety index expression allows a historically based risk to be determined and verified over a variety of quasi-static metallic substructures consistent with the traditional safety factor methods and NASA Std. 5001 criteria.
Localization from near-source quasi-static electromagnetic fields
Mosher, John Compton
1993-09-01
A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.
Brannon, Rebecca Moss; Lee, Moo Yul; Bronowski, David R.
2005-02-01
To establish mechanical properties and failure criteria of silicon carbide (SiC-N) ceramics, a series of quasi-static compression tests has been completed using a high-pressure vessel and a unique sample alignment jig. This report summarizes the test methods, set-up, relevant observations, and results from the constitutive experimental efforts. Results from the uniaxial and triaxial compression tests established the failure threshold for the SiC-N ceramics in terms of stress invariants (I{sub 1} and J{sub 2}) over the range 1246 < I{sub 1} < 2405. In this range, results are fitted to the following limit function (Fossum and Brannon, 2004) {radical}J{sub 2}(MPa) = a{sub 1} - a{sub 3}e -a{sub 2}(I{sub 1}/3) + a{sub 4} I{sub 1}/3, where a{sub 1} = 10181 MPa, a{sub 2} = 4.2 x 10{sup -4}, a{sub 3} = 11372 MPa, and a{sub 4} = 1.046. Combining these quasistatic triaxial compression strength measurements with existing data at higher pressures naturally results in different values for the least-squares fit to this function, appropriate over a broader pressure range. These triaxial compression tests are significant because they constitute the first successful measurements of SiC-N compressive strength under quasistatic conditions. Having an unconfined compressive strength of {approx}3800 MPa, SiC-N has been heretofore tested only under dynamic conditions to achieve a sufficiently large load to induce failure. Obtaining reliable quasi-static strength measurements has required design of a special alignment jig and load-spreader assembly, as well as redundant gages to ensure alignment. When considered in combination with existing dynamic strength measurements, these data significantly advance the characterization of pressure-dependence of strength, which is important for penetration simulations where failed regions are often at lower pressures than intact regions.
Quasi-static energy absorption of hollow microlattice structures
Liu, YL; Schaedler, TA; Jacobsen, AJ; Chen, X
2014-12-01
We present a comprehensive modeling and numerical study focusing on the energy quasi-static crushing behavior and energy absorption characteristics of hollow tube microlattice structures. The peak stress and effective plateau stress of the hollow microlattice structures are deduced for different geometrical parameters which gives volume and mass densities of energy absorption, D-v and D-m, scale with the relative density, (rho) over bar, as D-v similar to (rho) over bar (1) (5) and D-m similar to (rho) over bar (0 5), respectively, fitting very well to the experimental results of both 60 degrees inclined and 90 degrees predominately microlattices. Then the strategies for energy absorption enhancement are proposed for the engineering design of microlattice structures. By introducing a gradient in the thickness or radius of the lattice members, the buckle propagation can be modulated resulting in an increase in energy absorption density that can exceed 40%. Liquid filler is another approach to improve energy absorption by strengthening the microtruss via circumference expansion, and the gain may be over 100% in terms of volume density. Insight into the correlations between microlattice architecture and energy absorption performance combined with the high degree of architecture control paves the way for designing high performance microlattice structures for a range of impact and impulse mitigation applications for vehicles and structures. (C) 2014 Elsevier Ltd. All rights reserved.
Quasi-static and dynamic response of viscoelastic helical rods
NASA Astrophysics Data System (ADS)
Temel, Beytullah; Fırat Çalim, Faruk; Tütüncü, Naki
2004-04-01
In this study, the dynamic behaviour of cylindrical helical rods made of linear viscoelastic materials are investigated in the Laplace domain. The governing equations for naturally twisted and curved spatial rods obtained using the Timoshenko beam theory are rewritten for cylindrical helical rods. The curvature of the rod axis, effect of rotary inertia, and shear and axial deformations are considered in the formulation. The material of the rod is assumed to be homogeneous, isotropic and linear viscoelastic. In the viscoelastic material case, according to the correspondence principle, the material constants are replaced with their complex counterparts in the Laplace domain. Ordinary differential equations in scalar form obtained in the Laplace domain are solved numerically using the complementary functions method to calculate the dynamic stiffness matrix of the problem. In the solutions, the Kelvin model is employed. The solutions obtained are transformed to the real space using the Durbin's numerical inverse Laplace transform method. Numerical results for quasi-static and dynamic response of viscoelastic models are presented in the form of graphics.
Quasi-static elastography comparison of hyaline cartilage structures
NASA Astrophysics Data System (ADS)
McCredie, A. J.; Stride, E.; Saffari, N.
2009-11-01
Joint cartilage, a load bearing structure in mammals, has only limited ability for regeneration after damage. For tissue engineers to design functional constructs, better understanding of the properties of healthy tissue is required. Joint cartilage is a specialised structure of hyaline cartilage; a poroviscoelastic solid containing fibril matrix reinforcements. Healthy joint cartilage is layered, which is thought to be important for correct tissue function. However, the behaviour of each layer during loading is poorly understood. Ultrasound elastography provides access to depth-dependent information in real-time for a sample during loading. A 15 MHz focussed transducer provided details from scatterers within a small fixed region in each sample. Quasi-static loading was applied to cartilage samples while ultrasonic signals before and during compressions were recorded. Ultrasonic signals were processed to provide time-shift profiles using a sum-squared difference method and cross-correlation. Two structures of hyaline cartilage have been tested ultrasonically and mechanically to determine method suitability for monitoring internal deformation differences under load and the effect of the layers on the global mechanical material behaviour. Results show differences in both the global mechanical properties and the ultrasonically tested strain distributions between the two structures tested. It was concluded that these differences are caused primarily by the fibril orientations.
NASA Astrophysics Data System (ADS)
Coral, D. F.; Mendoza Zélis, P.; de Sousa, M. E.; Muraca, D.; Lassalle, V.; Nicolás, P.; Ferreira, M. L.; Fernández van Raap, M. B.
2014-01-01
In this work, the issue on whether dynamic magnetic properties of polydispersed magnetic colloids modeled using physical magnitudes derived from quasi-static magnetic measurement can be extrapolated to analyze specific absorption rate data acquired at high amplitudes and frequencies of excitation fields is addressed. To this end, we have analyzed two colloids of magnetite nanoparticles coated with oleic acid and chitosan in water displaying, under a radiofrequency field, high and low specific heat power release. Both colloids are alike in terms of liquid carrier, surfactant and magnetic phase composition but differ on the nanoparticle structuring. The colloid displaying low specific dissipation consists of spaced magnetic nanoparticles of mean size around 4.8 nm inside a large chitosan particle of 52.5 nm. The one displaying high specific dissipation consists of clusters of magnetic nanoparticles of mean size around 9.7 nm inside a chitosan particle of 48.6 nm. The experimental evaluation of Néel and Brown relaxation times (˜10-10 s and 10-4 s, respectively) indicate that the nanoparticles in both colloids magnetically relax by Néel mechanism. The isothermal magnetization curves analysis for this mechanism show that the magnetic nanoparticles behave in the interacting superparamagnetic regime. The specific absorption rates were determined calorimetrically at 260 kHz and up to 52 kA/m and were well modeled within linear response theory using the anisotropy density energy retrieved from quasi-static magnetic measurement, validating their use to predict heating ability of a given polydispersed particle suspension. Our findings provide new insight in the validity of quasi-static magnetic characterization to analyze the high frequency behavior of polydispersed colloids within the framework of the linear response and Wohlfarth theories and indicate that dipolar interactions play a key role being their strength larger for the colloid displaying higher dissipation, i
Benck, R.F.; Silsby, G.F.
1986-05-01
The results of quasi-static compression and tension tests of tantalum -10% tungsten alloy and Vascomax 300 CVM 300 trade maraging steel are presented. Young's modulus, Poisson's ratio, and yield strength and ultimate strength were determined at test temperatures of 23.9 C. Results provide engineering properties documentation for materials used in several terminal ballistic tests.
Meso-Scale Damage Simulation of 3D Braided Composites under Quasi-Static Axial Tension
NASA Astrophysics Data System (ADS)
Zhang, Chao; Mao, Chunjian; Zhou, Yexin
2017-01-01
The microstructure of 3D braided composites is composed of three phases: braiding yarn, matrix and interface. In this paper, a representative unit-cell (RUC) model including these three phases is established. Coupling with the periodical boundary condition, the damage behavior of 3D braided composites under quasi-static axial tension is simulated by using finite element method based on this RUC model. An anisotropic damage model based on Murakami damage theory is proposed to predict the damage evolution of yarns and matrix; a damage-friction combination interface constitutive model is adopted to predict the interface debonding behavior. A user material subroutine (VUMAT) involving these damage models is developed and implemented in the finite element software ABAQUS/Explicit. The whole process of damage evolution of 3D braided composites under quasi-static axial tension with typical braiding angles is simulated, and the damage mechanisms are revealed in detail in the simulation process. The tensile strength properties of the braided composites are predicted from the calculated stress-strain curves. Numerical results agree with the available experiment data and thus validates the proposed damage analysis model. The effects of certain material parameters on the predicted stress-strain responses are also discussed by numerical parameter study.
Dynamic and quasi-static measurements of C-4 and primasheet P1000 explosives
Brown, Geoffrey W; Thompson, Darla G; De Luca, Racci; Rae, Philip J; Cady, Carl M; Todd, Steven N
2010-01-01
We have measured dynamic and quasi-static mechanical properties of C-4 and Primasheet P1000 explosive materials to provide input data for modeling efforts. Primasheet P1000 is a pentaerythritol tetranitrate-based rubberized explosive. C-4 is a RDX-based moldable explosive. Dynamic measurements included acoustic and split-Hopkinson pressure bar tests. Quasi-static testing was done in compression on load frames and on a dynamic mechanical analyzer. Split-Hopkinson and quasi-static tests were done at five temperatures from -50 C to 50 C. Acoustic velocities were measured at, above, and below room temperature.
Quasi-static rotor morphing concepts for rotorcraft performance improvements
NASA Astrophysics Data System (ADS)
Mistry, Mihir
The current research is focused on two separate quasi-static rotor morphing concepts: Variable span and variable camber. Both concepts were analyzed from the perspective of the performance improvements they allow for, as well as their design requirements. The goal of this body of work is to develop a comprehensive understanding of the benefits and implementation challenges of both systems. For the case of the variable span rotor concept, the effects on aircraft performance were evaluated for a UH-60A type aircraft. The parametric analysis included the performance effects of the rotor span and rotor speed variation, both individually as well as in combination. The design space considered the effect of three different gross weights (16000 lbs, 18300 lbs and 24000 lbs), for a window of +/-11% variation of the rotor speed and a range between +17% to --16% of radius variation (about the baseline) for a range of altitudes. The results of the analysis showed that variable span rotors by themselves are capable of reducing the power requirement of the helicopter by up to 20% for high altitude and gross weight conditions. However, when combined with rotor speed variation, it was possible to reduce the overall power required by the aircraft by up to 30%. Complimentary to the performance analysis, an analytical study of actuation concepts for a variable span rotor was also conducted. This study considered the design of two active actuation systems: Hydraulic pistons and threaded rods (jackscrews), and two passive systems which employed the use of an internal spring type restraining device. For all the configurations considered, it was determined that the design requirements could not be satisfied when considering the constraints defined. The performance improvements due to a variable camber system were evaluated for a BO-105 type rotor in hover. The design space considered included three different thrust levels (4800 lbs, 5500 lbs and 6400 lbs) for a range of altitudes and
Strain rate sensitivity of autoclaved aerated concrete from quasi-static regime to shock loading
NASA Astrophysics Data System (ADS)
Mespoulet, Jérôme; Plassard, Fabien; Hereil, Pierre Louis
2015-09-01
The quasi-static mechanical behavior of autoclaved aerated concrete is well-known and can be expressed as a function of its density. There are however not much studies dealing with its dynamic behavior and its damping ability when subjected to a mechanical shock or a blast. This study presents experimental results obtained at the Shock Physics Laboratory of THIOT INGENIERIE company. The test specimens are made of YTONG(TM ) cellular concrete with porosity in the range of 75 to 80%. Experimental tests cover a large strain rate amplitude (higher than 104 s-1) for specimens up to 250 mm. They were carried out with a small compression press and with two facilities dedicated to dynamic material characterization: JUPITER dynamic large press (2 MN, 3 ms rising time) and TITAN multi-caliber single-stage gas gun. Results in un-confined conditions show an increase of the compressive strength when strain rate increases (45% increase at 5.102 s-1) but dynamic tests induce damage early in the experiment. This competition between dynamic strength raise and specimen fracture makes the complete compaction curve determination not to be done in unconfined dynamic condition. A 25% increase of the compressive strength has been observed between unconfined and confined condition in Q.S. regime.
Static and quasi-static analysis of lobed-pumpkin balloon
NASA Astrophysics Data System (ADS)
Nakashino, Kyoichi; Sasaki, Makoto; Hashimoto, Satoshi; Saito, Yoshitaka; Izutsu, Naoki
The present study is motivated by the need to improve design methodology for super pressure balloon with 3D gore design concept, currently being developed at the Scientific Balloon Center of ISAS/JAXA. The distinctive feature of the 3-D gore design is that the balloon film has excess materials not only in the circumferential direction but also in the meridional direction; the meridional excess is gained by attaching the film boundaries to the corresponding tendons of a shorter length with a controlled shortening rate. The resulting balloon shape is a pumpkin-like shape with large bulges formed between adjacent tendons. The balloon film, when fully inflated, develops wrinkles in the circumferential direction over its entire region, so that the stresses in the film are limited to a small amount of uniaxial tension in the circumferential direction while the high meridional loads are carried by re-enforced tendons. Naturally, the amount of wrinkling in the film is dominated by the shortening rate between the film boundaries and the tendon curve. In the 3-D gore design, as a consequence, the shortening rate becomes a fundamental design parameter along with the geometric parameters of the gore. In view of this, we have carried out a series of numerical study of the lobed-pumpkin balloon with varying gore geometry as well as with varying shortening rate. The numerical simula-tions were carried out with a nonlinear finite element code incorporating the wrinkling effect. Numerical results show that there is a threshold value for the shortening rate beyond which the stresses in the balloon film increases disproportionately. We have also carried out quasi-static simulations of the inflation process of the lobed-pumpkin balloon, and have obtained asymmetric deformations when the balloon films are in uniaxial tension state.
The influence of hole size in static strength and fatigue for CFRP composite materials
Yip, M.C.; Perng, T.B.
1993-12-31
The influence of hole size in static strength and fatigue property will be investigated. Carbon/Epoxy laminate is selected as testing materials which are widely used in aircraft industry. The arrangement of fiber orientation is [0{sup 0}/+45{sup 0}/{minus}45{sup 0}/90{sup 0}]{sub 2s}. The basic mechanical properties of smooth and notched specimens were detected. The strength of notched specimens are applied to compare with Whitney-Nuismer stress criterion. For average stress criteria, the theoretical value is in good agreement with experimental data for the parameter a{sub 0} is chosen 1.5 mm. For point stress criteria, the best choice of parameter do is 2.4 mm, but the agreement of experimental data is poorer than the average stress one. The characteristic curve of tension-tension fatigue for smooth and notched laminate were investigated. The notched specimens has a 1 mm diameter circular hole at the center, the stress ratio of fatigue test is 0.1. It is obvious that the data distribution of smooth specimens is more scatter than notched specimens. On the other hand, the reduction of modulus during fatigue process was inspected. After fatigue damage, the influence of hole size on residual strength for a quasi-isotropic laminate was investigated. It is found that residual strength of damaged specimens are higher than undamaged one in some fatigue damage range. When the maximum applied load of fatigue test is chosen 90 percent of static strength, it is seen that the influence is obviously in residual strength. The increment of strength decreases with hole size increasing. When the maximum applied load of fatigue test is chosen 80 percent of static strength, the influence is less than the previous case. The Whitney-Nuismer Average Stress Criteria is extended to predict the residual strength after fatigue. A good prediction can be shown by using the extended criteria.
Quasi-Static Compaction Studies for DDT Investigations: Inert Materials
1982-12-01
and Identify by block number) Compaction Melamine Porous Beds Sound Velocity Deflagration to Detonation Vickers Hardness Transition Shore Hardness...porous beds of two powdered inert materials: Teflon 7C, a highly crystalline polvmer and melamine , a molecular crystal. These two materials were...compaction measurements on melamine were funded by the NAVSEA 6.2 Explosives Block. The results and conclusions given in this report regarding the quasi
Quasi-static multiaxial testing of PBX 9501: Creep effects on Estane molecular weight
Peterson, P.D.; Idar, D.J.; Rabie, R.; Fugard, C.S.; King, W.; Buntain, G.A.; Crane, N.B.
1999-02-01
High explosives (HE) can be subjected to low level loading due to weapon design. As with other materials, loads well below the elastic limit may still lead to material property changes over time. PBX 9501, a conventional high explosive, has been used in several system designs. To evaluate potential environmental aging effects on HE, it is necessary to characterize material-flow and mechanical-property changes occurring in PBX 9501. Low-level loads may bring about material changes if creep related phenomena, such as polymer disentanglement or uncrosslinking, occur in the material. Recently, several studies on HE have increased understanding of the effects of density and the relative percentage of constituents on materials properties, e.g. elastic modulus, ultimate strength, and strain at ultimate strength, at low strain rates ({approx} 10{sup {minus}3} to 10{sup {minus}1} s{sup {minus}1}). However, the authors are only beginning to understand the effects of quasi-static multiaxial loading on PBX 9501 and Estane molecular weight (MW) changes. The results of these experiments are presented in this report.
Quasi-static and dynamic magnetic tension forces in arched, line-tied magnetic flux ropes
NASA Astrophysics Data System (ADS)
Myers, C. E.; Yamada, M.; Ji, H.; Yoo, J.; Jara-Almonte, J.; Fox, W.
2017-01-01
Solar eruptions are often driven by magnetohydrodynamic instabilities such as the torus and kink instabilities that act on line-tied magnetic flux ropes. Recent laboratory experiments designed to study these eruptive instabilities have demonstrated the key role of both dynamic (Myers et al 2015 Nature 528 526) and quasi-static (Myers et al 2016 Phys. Plasmas 23 112102) magnetic tension forces in contributing to the equilibrium and stability of line-tied magnetic flux ropes. In this paper, we synthesize these laboratory results and explore the relationship between the dynamic and quasi-static tension forces. While the quasi-static tension force is found to contribute to the flux rope equilibrium in a number of regimes, the dynamic tension force is substantial mostly in the so-called failed torus regime where magnetic self-organization events prevent the flux rope from erupting.
Scaling Effects in Carbon/Epoxy Laminates Under Transverse Quasi-Static Loading
NASA Technical Reports Server (NTRS)
Nettles, Alan T.; Douglas, Michael J.; Estes, Eric E.
1999-01-01
Scaling effects were considered for 8, 16, 32, and 64 ply IM-7/8551-7 carbon/epoxy composites plates transversely loaded to the first significant load drop by means of both a quasi-static and an equivalent impact force. The resulting damage was examined by x-ray and photomicroscopy analysis. Load-deflection curves were generated for the quasi-static tests and the resulting indentation depth was measured. Results showed that the load-deflection data scaled well for most of the various thicknesses of plates. However, damage did not scale as well. No correlation could be found between dent depth and any of the other parameters measured in this study. The impact test results showed that significantly less damage was formed compared to the quasi- static results for a given maximum transverse load. The criticality of ply-level scaling (grouping plies) was also examined.
Quasi-static and dynamic magnetic tension forces in arched, line-tied magnetic flux ropes
Myers, C. E.; Yamada, M.; Ji, H.; Yoo, J.; Jara-Almonte, J.; Fox, W.
2016-11-22
Solar eruptions are often driven by magnetohydrodynamic instabilities such as the torus and kink instabilities that act on line-tied magnetic flux ropes. We designed our recent laboratory experiments to study these eruptive instabilities which have demonstrated the key role of both dynamic (Myers et al 2015 Nature 528 526) and quasi-static (Myers et al 2016 Phys. Plasmas 23 112102) magnetic tension forces in contributing to the equilibrium and stability of line-tied magnetic flux ropes. In our paper, we synthesize these laboratory results and explore the relationship between the dynamic and quasi-static tension forces. And while the quasi-static tension force is found to contribute to the flux rope equilibrium in a number of regimes, the dynamic tension force is substantial mostly in the so-called failed torus regime where magnetic self-organization events prevent the flux rope from erupting.
Quasi-static and dynamic magnetic tension forces in arched, line-tied magnetic flux ropes
Myers, C. E.; Yamada, M.; Ji, H.; ...
2016-11-22
Solar eruptions are often driven by magnetohydrodynamic instabilities such as the torus and kink instabilities that act on line-tied magnetic flux ropes. We designed our recent laboratory experiments to study these eruptive instabilities which have demonstrated the key role of both dynamic (Myers et al 2015 Nature 528 526) and quasi-static (Myers et al 2016 Phys. Plasmas 23 112102) magnetic tension forces in contributing to the equilibrium and stability of line-tied magnetic flux ropes. In our paper, we synthesize these laboratory results and explore the relationship between the dynamic and quasi-static tension forces. And while the quasi-static tension force ismore » found to contribute to the flux rope equilibrium in a number of regimes, the dynamic tension force is substantial mostly in the so-called failed torus regime where magnetic self-organization events prevent the flux rope from erupting.« less
Effect of adherend steel strength on static and fatigue strength of adhesive/rivet combined joint
NASA Astrophysics Data System (ADS)
Imanaka, Makoto; Haraga, Kosuke; Nishikawa, Tetsuya
1992-02-01
Adhesive/rivet combined bonding has attracted special interest recently as a joining technique of high-strength steel because of its high joint efficiency. In this study, the effects of steel strength on the tensile and fatigue strength of adhesive/rivet combined and adhesive joints were investigated. In addition, the stress distributions of these joints were analyzed by finite-element methods, taking into consideration the plastic deformation of adherend steels. With the increase of steel strength, the tensile strength of combined and adhesive joints increased and tensile strength was improved by the combination with the rivet. However, irrespective of the steel strength, the fatigue strength of combined and adhesive joints was constant and the fatigue strength of the combined joint was similar to that of the adhesive joint. These findings could be explained from the difference of stress distribution between static and fatigue load conditions.
Using the ALEGRA Code for Analysis of Quasi-Static Magnetization of Metals
2015-09-01
ARL-TR-7415• SEP 2015 US Army Research Laboratory Using the ALEGRA Code for Analysis of Quasi-Static Magnetization of Metals by Michael Grinfeld...the originator. ARL-TR-7415• SEP 2015 US Army Research Laboratory Using the ALEGRA Code for Analysis of Quasi-Static Magnetization of Metals by...PERSON a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code ) Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std
Improved Quasi-Static Method: IQS Method Implementation for CFEM Diffusion in Rattlesnake
Prince, Zachary M.; Ragusa, Jean C.; Wang, Yaqi
2016-02-29
The improved quasi-static (IQS) method is a transient spatial kinetics method that involves factorizing flux into space- and time-dependent components. These components include the flux’s power and shape. Power is time-dependent, while the shape is both space- and time-dependent. However, the impetus of the method is the assumption that the shape is only weakly dependent on time; therefore, the shape may not require computation at every time step, invoking the quasi-static nature. This paper describes the implementation and testing of IQS as an alternative kinetics solver within Rattlesnake to provide improved time performance with minimal reduction in accuracy.
Terapascal static pressure generation with ultrahigh yield strength nanodiamond.
Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly
2016-07-01
Studies of materials' properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications.
Terapascal static pressure generation with ultrahigh yield strength nanodiamond
Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A.; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B.; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly
2016-01-01
Studies of materials’ properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications. PMID:27453944
NASA Astrophysics Data System (ADS)
Bharath Kumar, B. R.; Singh, Ashish Kumar; Doddamani, Mrityunjay; Luong, Dung D.; Gupta, Nikhil
2016-07-01
High strain rate compressive properties of high-density polyethylene (HDPE) matrix syntactic foams containing cenosphere filler are investigated. Thermoplastic matrix syntactic foams have not been studied extensively for high strain rate deformation response despite interest in them for lightweight underwater vehicle structures and consumer products. Quasi-static compression tests are conducted at 10-4 s-1, 10-3 s-1 and 10-2 s-1 strain rates. Further, a split-Hopkinson pressure bar is utilized for characterizing syntactic foams for high strain rate compression. The compressive strength of syntactic foams is higher than that of HDPE resin at the same strain rate. Yield strength shows an increasing trend with strain rate. The average yield strength values at high strain rates are almost twice the values obtained at 10-4 s-1 for HDPE resin and syntactic foams. Theoretical models are used to estimate the effectiveness of cenospheres in reinforcing syntactic foams.
A quasi-static polynomial nodal method for nuclear reactor analysis
Gehin, J.C.
1992-09-01
Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation.
Single-asperity friction during quasi-static sliding
NASA Astrophysics Data System (ADS)
Sharp, Tristan; Pastewka, Lars; Robbins, Mark
2015-03-01
The static friction of an asperity is investigated using atomic-scale simulations. We explore scale effects by varying the sphere radius R and the contact radius a from nanometers to micrometers. We first consider commensurate contact between bare lattices with repulsive interactions across the interface. In small contacts, all contacting atoms move coherently and the friction coefficient μ is independent of contact radius and load. In larger contacts, interfacial slip is mediated by localized dislocations, and the static friction coefficient μ ~ (Ra0/a2) 2 / 3 , where a0 is the nearest-neighbor spacing. In very large contacts μ stops decreasing and begins to increase with a, at fixed R. The results are in sharp contrast to Cattaneo-Mindlin continuum theory where μ is independent of contact size. Separate simulations are performed to connect the results to the dislocation-based models of contact-size effects due to Hurtado and Kim, and Gao, which assume adhesive interactions between surfaces and find μ ~ (a0/a)1/2. Simulations for incommensurate contacts show a transition from superlubricity for rigid contacts to a finite friction associated with the Peierls stress in very large contacts. Support from: DMR-1006805; NSF IGERT-0801471; OCI-0963185; CMMI-0923018
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Arnold, William A.; Roberts, Gary D.; Goldberg, Robert K.
2010-01-01
The reliability of impact simulations for aircraft components made with triaxial-braided carbon-fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Methods to characterize the material properties used in the analytical models from a systematically obtained set of test data are also lacking. A macroscopic finite element based analytical model to analyze the impact response of these materials has been developed. The stiffness and strength properties utilized in the material model are obtained from a set of quasi-static in-plane tension, compression and shear coupon level tests. Full-field optical strain measurement techniques are applied in the testing, and the results are used to help in characterizing the model. The unit cell of the braided composite is modeled as a series of shell elements, where each element is modeled as a laminated composite. The braided architecture can thus be approximated within the analytical model. The transient dynamic finite element code LS-DYNA is utilized to conduct the finite element simulations, and an internal LS-DYNA constitutive model is utilized in the analysis. Methods to obtain the stiffness and strength properties required by the constitutive model from the available test data are developed. Simulations of quasi-static coupon tests and impact tests of a represented braided composite are conducted. Overall, the developed method shows promise, but improvements that are needed in test and analysis methods for better predictive capability are examined.
Resistance training vs. static stretching: effects on flexibility and strength.
Morton, Sam K; Whitehead, James R; Brinkert, Ronald H; Caine, Dennis J
2011-12-01
Morton, SK, Whitehead, JR, Brinkert, RH, and Caine, DJ. Resistance training vs. static stretching: Effects on flexibility and strength. J Strength Cond Res 25(12): 3391-3398, 2011-The purpose of this study was to determine how full-range resistance training (RT) affected flexibility and strength compared to static stretching (SS) of the same muscle-joint complexes in untrained adults. Volunteers (n = 25) were randomized to an RT or SS training group. A group of inactive volunteers (n = 12) served as a convenience control group (CON). After pretesting hamstring extension, hip flexion and extension, shoulder extension flexibility, and peak torque of quadriceps and hamstring muscles, subjects completed 5-week SS or RT treatments in which the aim was to stretch or to strength train the same muscle-joint complexes over similar movements and ranges. Posttests of flexibility and strength were then conducted. There was no difference in hamstring flexibility, hip flexion, and hip extension improvement between RT and SS, but both were superior to CON values. There were no differences between groups on shoulder extension flexibility. The RT group was superior to the CON in knee extension peak torque, but there were no differences between groups on knee flexion peak torque. The results of this preliminary study suggest that carefully constructed full-range RT regimens can improve flexibility as well as the typical SS regimens employed in conditioning programs. Because of the potential practical significance of these results to strength and conditioning programs, further studies using true experimental designs, larger sample sizes, and longer training durations should be conducted with the aim of confirming or disproving these results.
Quasi-Static Calibration Method of a High-g Accelerometer.
Wang, Yan; Fan, Jinbiao; Zu, Jing; Xu, Peng
2017-02-20
To solve the problem of resonance during quasi-static calibration of high-g accelerometers, we deduce the relationship between the minimum excitation pulse width and the resonant frequency of the calibrated accelerometer according to the second-order mathematical model of the accelerometer, and improve the quasi-static calibration theory. We establish a quasi-static calibration testing system, which uses a gas gun to generate high-g acceleration signals, and apply a laser interferometer to reproduce the impact acceleration. These signals are used to drive the calibrated accelerometer. By comparing the excitation acceleration signal and the output responses of the calibrated accelerometer to the excitation signals, the impact sensitivity of the calibrated accelerometer is obtained. As indicated by the calibration test results, this calibration system produces excitation acceleration signals with a pulse width of less than 1000 μs, and realize the quasi-static calibration of high-g accelerometers with a resonant frequency above 20 kHz when the calibration error was 3%.
Insulator polarization effect in quasi-static and high-frequency C(V) curves
NASA Astrophysics Data System (ADS)
Tüttő, P.; Balázs, J.
1982-01-01
A new method is given to evaluate quasi-static and high frequency C(V) curves. Surface state density distribution and insulator polarization can be obtained simultaneously without the need of other measurements. Measurements of MNOS structures indicate that there are "free" charge carriers in the Si 3N 4 layer which move in a rather inhomogeneous electric field.
Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system
NASA Astrophysics Data System (ADS)
Hirata, Akimasa; Ito, Fumihiro; Laakso, Ilkka
2013-09-01
The present study discusses the applicability of the magneto-quasi-static approximation to the calculation of the specific absorption rate (SAR) in a cylindrical model for a wireless power transfer system. Resonant coils with different parameters were considered in the 10 MHz band. A two-step quasi-static method that is comprised of the method of moments and the scalar-potential finite-difference methods is applied, which can consider the effects of electric and magnetic fields on the induced SAR separately. From our computational results, the SARs obtained from our quasi-static method are found to be in good agreement with full-wave analysis for different positions of the cylindrical model relative to the wireless power transfer system, confirming the applicability of the quasi-static approximation in the 10 MHz band. The SAR induced by the external electric field is found to be marginal as compared to that induced by the magnetic field. Thus, the dosimetry for the external magnetic field, which may be marginally perturbed by the presence of biological tissue, is confirmed to be essential for SAR compliance in the 10 MHz band or lower. This confirmation also suggests that the current in the coil rather than the transferred power is essential for SAR compliance.
Quasi-Static Calibration Method of a High-g Accelerometer
Wang, Yan; Fan, Jinbiao; Zu, Jing; Xu, Peng
2017-01-01
To solve the problem of resonance during quasi-static calibration of high-g accelerometers, we deduce the relationship between the minimum excitation pulse width and the resonant frequency of the calibrated accelerometer according to the second-order mathematical model of the accelerometer, and improve the quasi-static calibration theory. We establish a quasi-static calibration testing system, which uses a gas gun to generate high-g acceleration signals, and apply a laser interferometer to reproduce the impact acceleration. These signals are used to drive the calibrated accelerometer. By comparing the excitation acceleration signal and the output responses of the calibrated accelerometer to the excitation signals, the impact sensitivity of the calibrated accelerometer is obtained. As indicated by the calibration test results, this calibration system produces excitation acceleration signals with a pulse width of less than 1000 μs, and realize the quasi-static calibration of high-g accelerometers with a resonant frequency above 20 kHz when the calibration error was 3%. PMID:28230743
Quasi-static vapor pressure measurements on reactive systems in inert atmosphere box
NASA Technical Reports Server (NTRS)
Fischer, A. K.
1968-01-01
Apparatus makes vapor pressure measurements on air-sensitive systems in an inert atmosphere glove box. Once the apparatus is loaded with the sample and all connections made, all measuring operations may be performed outside the box. The apparatus is a single-tube adaptation of the double-tube quasi-static technique.
Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system.
Hirata, Akimasa; Ito, Fumihiro; Laakso, Ilkka
2013-09-07
The present study discusses the applicability of the magneto-quasi-static approximation to the calculation of the specific absorption rate (SAR) in a cylindrical model for a wireless power transfer system. Resonant coils with different parameters were considered in the 10 MHz band. A two-step quasi-static method that is comprised of the method of moments and the scalar-potential finite-difference methods is applied, which can consider the effects of electric and magnetic fields on the induced SAR separately. From our computational results, the SARs obtained from our quasi-static method are found to be in good agreement with full-wave analysis for different positions of the cylindrical model relative to the wireless power transfer system, confirming the applicability of the quasi-static approximation in the 10 MHz band. The SAR induced by the external electric field is found to be marginal as compared to that induced by the magnetic field. Thus, the dosimetry for the external magnetic field, which may be marginally perturbed by the presence of biological tissue, is confirmed to be essential for SAR compliance in the 10 MHz band or lower. This confirmation also suggests that the current in the coil rather than the transferred power is essential for SAR compliance.
Simulated Hail Ice Mechanical Properties and Failure Mechanism at Quasi-Static Strain Rates
NASA Astrophysics Data System (ADS)
Swift, Jonathan M.
Hail is a significant threat to aircraft both on the ground and in the air. Aeronautical engineers are interested in better understanding the properties of hail to improve the safety of new aircraft. However, the failure mechanism and mechanical properties of hail, as opposed to clear ice, are not well understood. A literature review identifies basic mechanical properties of ice and a failure mechanism based upon the state of stress within an ice sphere is proposed. To better understand the properties of Simulated Hail Ice (SHI), several tests were conducted using both clear and cotton fiber reinforced ice. Pictures were taken to show the internal crystal structure of SHI. SHI crush tests were conducted to identify the overall force-displacement trends at various quasi-static strain rates. High speed photography was also used to visually track the failure mechanism of spherical SHI. Compression tests were done to measure the compression strength of SHI and results were compared to literature data. Fracture toughness tests were conducted to identify the crack resistance of SHI. Results from testing clear ice samples were successfully compared to previously published literature data to instill confidence in the testing methods. The methods were subsequently used to test and characterize the cotton fiber reinforced ice.
Relationship between Alfvén Wave and Quasi-Static Acceleration in Earth's Auroral Zone
NASA Astrophysics Data System (ADS)
Mottez, Fabrice
2016-02-01
There are two main categories of acceleration processes in the Earth's auroral zone: those based on quasi-static structures, and those based on Alfvén wave (AW). AWs play a nonnegligible role in the global energy budget of the plasma surrounding the Earth because they participate in auroral acceleration, and because auroral acceleration conveys a large portion of the energy flux across the magnetosphere. Acceleration events by double layers (DLs) and by AW have mostly been investigated separately, but many studies cited in this chapter show that they are not independent: these processes can occur simultaneously, and one process can be the cause of the other. The quasi-simultaneous occurrences of acceleration by AW and by quasi-static structures have been observed predominantly at the polar cap boundary of auroral arc systems, where often new bright arcs develop or intensify.
Biomechanics of the incudo-malleolar-joint - Experimental investigations for quasi-static loads.
Ihrle, S; Gerig, R; Dobrev, I; Röösli, C; Sim, J H; Huber, A M; Eiber, A
2016-10-01
Under large quasi-static loads, the incudo-malleolar joint (IMJ), connecting the malleus and the incus, is highly mobile. It can be classified as a mechanical filter decoupling large quasi-static motions while transferring small dynamic excitations. This is presumed to be due to the complex geometry of the joint inducing a spatial decoupling between the malleus and incus under large quasi-static loads. Spatial Laser Doppler Vibrometer (LDV) displacement measurements on isolated malleus-incus-complexes (MICs) were performed. With the malleus firmly attached to a probe holder, the incus was excited by applying quasi-static forces at different points. For each force application point the resulting displacement was measured subsequently at different points on the incus. The location of the force application point and the LDV measurement points were calculated in a post-processing step combining the position of the LDV points with geometric data of the MIC. The rigid body motion of the incus was then calculated from the multiple displacement measurements for each force application point. The contact regions of the articular surfaces for different load configurations were calculated by applying the reconstructed motion to the geometry model of the MIC and calculate the minimal distance of the articular surfaces. The reconstructed motion has a complex spatial characteristic and varies for different force application points. The motion changed with increasing load caused by the kinematic guidance of the articular surfaces of the joint. The IMJ permits a relative large rotation around the anterior-posterior axis through the joint when a force is applied at the lenticularis in lateral direction before impeding the motion. This is part of the decoupling of the malleus motion from the incus motion in case of large quasi-static loads.
Damage and fracture in fabric-reinforced composites under quasi-static and dynamic bending
NASA Astrophysics Data System (ADS)
Ullah, H.; Harland, A. R.; Silberschmidt, V. V.
2013-07-01
Fabric-reinforced polymer composites used in sports products can be exposed to different in-service conditions such as large deformations caused by quasi-static and dynamic loading. Composite materials subjected to such bending loads can demonstrate various damage modes - matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution in composites affects both their in-service properties and performance that can deteriorate with time. Such behaviour needs adequate means of analysis and investigation, the main approaches being experimental characterisation and non-destructive examination of internal damage in composite laminates. This research deals with a deformation behaviour and damage in carbon fabric-reinforced polymer (CFRP) laminates caused by quasi-static and dynamic bending. Experimental tests were carried out to characterise the behaviour of a CFRP material under large-deflection bending, first in quasi-static and then in dynamic conditions. Izod-type impact bending tests were performed on un-notched specimens of CFRP using a Resil impactor to assess the transient response and energy absorbing capability of the material. X-ray micro computed tomography (micro-CT) was used to analyse various damage modes in the tested specimens. X-ray tomographs revealed that through-thickness matrix cracking, inter-ply and intra-ply delamination such as tow debonding, and fabric fracture were the prominent damage modes both in quasi-static and dynamic test specimens. However, the inter-ply damage was localised at impact location in dynamically tested specimens, whereas in the quasi-static specimens, it spread almost over the entire interface.
3-D Gaussian beam scattering from a gyromagnetic perforated layer: Quasi-static approach
NASA Astrophysics Data System (ADS)
Yachin, Vladimir V.; Zinenko, Tatiana L.
2016-12-01
This paper is devoted to the study of the scattering of a three-dimensional (3-D) Gaussian beam with the circular cross section from a double periodic perforated gyromagnetic layer with polarization independent unit-cell, in the quasi-static approximation. We used the plane-wave spectrum representation for Gaussian beam field representation and reduced it to a single integral representation. The phenomena of the lateral beam shift influenced by Faraday rotation and the nearly total beam transmission when passing through gyromagnetic slab biased with an external static magnetic field in the Faraday configuration were considered.
Guiding and collimating fast electron beam by the quasi-static electromagnetic field array
Wang, J.; Zhao, Z. Q.; He, W. H.; Dong, K. G.; Wu, Y. C.; Zhu, B.; Zhang, T. K.; Zhang, B.; Zhang, Z. M.; Gu, Y. Q.; Cao, L. H.
2014-10-15
A guidance and collimation scheme for fast electron beam in a traverse periodic quasi-static electromagnetic field array is proposed with the semi-analytic method and the particle-in-cell simulation. The sheath electric fields on the surfaces of nanowires and the magnetic fields around the nanowires form a traverse periodic quasi-static electromagnetic field array. Therefore, most of the fast electrons are confined at the nanowire surfaces and transport forward. More importantly, due to the divergent property of the beams, the magnitudes of the generated fields decrease with the target depth. The lateral momenta of the electrons convert into the forward momenta through Lorenz force, and they cannot recover their initial values. Therefore, the fast electrons can be guided and collimated efficiently in the gaps between the nanowires. In our particle-in-cell simulations, the observed guiding efficiency exceeds 80% compared with the reference target.
Modeling energy dissipation induced by quasi-static compaction of granular HMX
Gonthier, K.A.; Menikoff, R.; Son, S.F.; Asay, B.W.
1998-07-01
A simple extension of a conventional two-phase continuum model of Deflagration-to-Detonation Transition (DDT) in energetic granular material is given to account for energy dissipation induced by quasi-static compaction. To this end, the conventional model equations are supplemented by a relaxation equation that accounts for irreversible changes in solid volume fraction due to intergranular friction, plastic deformation of granules, and granule fracture. The proposed model, which is consistent with the Second Law of Thermodynamics for a two-phase mixture, is demonstrated by applying it to the quasi-static compaction of granular HMX. The model predicts results commensurate with experimental data including stress relaxation and substantial dissipation; such phenomena have not been previously accounted for by two-phase DDT models. {copyright} {ital 1998 American Institute of Physics.}
Bridging the Quasi-Static and the Physical Optics Approximations: An Elliptic Disk Case
NASA Astrophysics Data System (ADS)
Karam, Mostafa A.
1998-03-01
A reformulated integral equation is solved inside an elliptic disk particle for an electromagnetic field formulation bridging the quasi-static and the physical optics approximations. The scattering amplitude tensor elements associated with such a field formulation are derived and then used to formulate the extinction cross sections. It is shown that the extinction cross sections have a frequency dependence and an incidence angle dependence similar to those associated with the physical optics approximation, and they have a particle shape dependence similar to that associated with the quasi-static approximation. Furthermore, at the high-frequency limits, it is shown that those cross sections could reach the value known in the literature by the extinction paradox, namely, twice the particle geometric shadow area.
Application of genetic algorithm in quasi-static fiber grating wavelength demodulation technology
NASA Astrophysics Data System (ADS)
Teng, Feng-Cheng; Yin, Wen-Wen; Wu, Fei; Li, Zhi-Quang; Wu, Ti-Hua
2007-07-01
A modified genetic algorithm (GA) has been proposed, which was used to wavelength demodulation in quasi-static fiber grating sensing system. The modification method of GA has been introduced and the relevant mathematical model has been established. The objective function and individual fitness evaluation strategy interrelated with GA are also established. The influence of population size, chromosome size, generations, crossover probability and mutation probability on the GA has been analyzed, and the optimal parameters of modified GA have been obtained. The simulations and experiments, show that the modified GA can be applied to quasi-static fiber grating sensing system, and the wavelength demodulation precision is equal to or less than 3 pm.
The plasma wave and quasi-static electric field instrument /PWI/ for dynamics Explorer-A
NASA Technical Reports Server (NTRS)
Shawhan, S. D.; Gurnett, D. A.; Odem, D. L.; Helliwell, R. A.; Park, C. G.
1981-01-01
It is explained that the Plasma Wave Instrument (PWI) on Dynamics Explorer-A measures both plasma wave phenomena and quasi-static electric fields. The quasi-static electric fields are measured parallel to the spin axis of the spacecraft in a range of 2 mV/m to 2 V/m and perpendicular to the spin axis 0.5 mV/m to 2 V/m at 16 samples/s. The ac electric field sensors include a 200-m tip-to-tip long wire antenna and a 0.6-m short electric antenna, both of which are perpendicular to the spin axis, and a 9-m tip-to-tip tubular antenna parallel to the spin axis. AC electric wave fields are measured over a frequency range of 1 Hz to 2 MHz and over an amplitude range of 0.03 microvolt/m to 100 mV/m.
A spatial bending fluidic actuator: fabrication and quasi-static characteristics
NASA Astrophysics Data System (ADS)
Chang, Benjamin; Chew, Allison; Naghshineh, Nastaran; Menon, Carlo
2012-04-01
This paper presents a novel silicone-based, millimeter-scale, fluidic actuator able to bend about two orthogonal axes. The implemented molding fabrication procedure is discussed and the quasi-static performance of the developed prototypes is experimentally investigated. The relationship between the pressurized working fluid and the position of the actuator tip is determined by using a stereovision measurement system. Such a relationship is mapped through a regression model, which is used to implement a minimalist position controller.
Admissible Shape Parameters for a Planar Quasi-Static Constraint Mode Tire Model
2014-01-21
Engineering Department b US Army Tank Automotive Research, Development and Engineering Center (TARDEC) ABSTRACT The interaction between the tire and terrain...SHAPE PARAMETERS FOR A PLANAR QUASI-STATIC CONSTRAINT MODE TIRE MODEL 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...efficiency, there are ever increasing demands on vehicle engineers. Clearly there are more electronic and mechatronic systems, more sensors and more
High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing
Lam, Timothy T.-Y.; Chow, Jong H.; Shaddock, Daniel A.; Littler, Ian C. M.; Gagliardi, Gianluca; Gray, Malcolm B.; McClelland, David E.
2010-07-20
We present a quasi-static fiber optic strain sensing system capable of resolving signals below nanostrain from 20 mHz. A telecom-grade distributed feedback CW diode laser is locked to a fiber Fabry-Perot sensor, transferring the detected signals onto the laser. An H{sup 13}C{sup 14}N absorption line is then used as a frequency reference to extract accurate low-frequency strain signals from the locked system.
Scaling the final deposits of dry cohesive granular columns after collapse and quasi-static fall
NASA Astrophysics Data System (ADS)
Mériaux, Catherine; Triantafillou, Trent
2008-03-01
This paper reports on laboratory experiments that were designed to investigate the collapse and quasi-static fall of dry cohesive granular columns. These experiments were compared with similar experiments that were performed with non-cohesive dry sand columns. A powder of gypsum (calcium sulphate dihydrate) was used to represent cohesive granular material. In all the experiments, the cohesive granular columns fractured and flowed in coherent blocks but, while faults remained steep in the quasi-static fall experiments, they flattened in the collapse experiments as the initial aspect ratio of the columns increased. Dilation was seen in the quasi-static fall experiments, while some air entrapment within the columns occurred in the collapse experiments. The final deposits of the cohesive granular columns were found to satisfy power law relationships as a function of the initial aspect ratio of the columns. Two asymptotes were found for the lower and higher range of initial aspect ratios, which varied between 0.5 and 8, respectively. When compared with the power law relationships found for dry noncohesive columns, the power dependence of the ratio of initial to final height and final runout to initial length with the aspect ratio of the columns was found to be similar. The prefactors of the power laws were found to slightly decrease with the increase of the cohesion or, equivalently, the decrease in grain size. Similar to the dry noncohesive case, the prefactors for the runout length were found to increase by a factor 2 with the increase of flow rate. When the collapse experiments were compared with the quasi-static fall experiments, a shift towards higher aspect ratios of the transition between the two asymptotic power laws was found.
NASA Astrophysics Data System (ADS)
Orlov, Pavel; Gazizov, Talgat; Zabolotsky, Aleksander
2016-09-01
A numerical analysis of microstrip meander delay lines is considered. Results of quasi-static and electromagnetic simulations are given. It is shown that when increasing a number of turns and proportionally reducing their length, distortions of a pulse signal in the line are reduced. At the same time, despite structure's electrical width increase, the agreement between the results of quasi-static and electromagnetic analyses is improved. Thus, it is demonstrated that when designing the microstrip meander delay lines with minimal distortions, the quasi-static analysis is relevant.
(In)stability of quasi-static paths of some finite dimensional smooth or elastic-plastic systems
NASA Astrophysics Data System (ADS)
Martins, J. A. C.; Monteiro Marques, M. D. P.; Petrov, A.; Rebrova, N. V.; Sobolev, V. A.; Coelho, I.
2005-01-01
In this paper we discuss some mathematical issues related to the stability of quasistatic paths of finite dimensional mechanical systems that have a smooth or an elastic-plastic behavior. The concept of stability of quasi-static paths used here is essentially a continuity property relatively to the size of the initial perturbations (as in Lyapunov stability) and to the smallness of the rate of application of the external forces (which here plays the role of the small parameter in singular perturbation problems). A related concept of attractiveness is also proposed. Sufficient conditions for attractiveness or for instability of quasi-static paths of smooth systems are presented. The Ziegler column and other examples illustrate these situations. Mathematical formulations (plus existence and uniqueness results) for dynamic and quasi-static elastic-plastic problems with linear hardening are recalled. A stability result is proved for the quasi-static evolution of these systems.
Hollaus, K; Weiss, B; Magele, Ch; Hutten, H
2004-02-01
The acceleration of the solution of the quasi-static electric field problem considering anisotropic complex conductivity simulated by tetrahedral finite elements of first order is investigated by geometric multigrid.
NASA Technical Reports Server (NTRS)
Krueger, Ronald
2012-01-01
The development of benchmark examples for quasi-static delamination propagation and cyclic delamination onset and growth prediction is presented and demonstrated for Abaqus/Standard. The example is based on a finite element model of a Double-Cantilever Beam specimen. The example is independent of the analysis software used and allows the assessment of the automated delamination propagation, onset and growth prediction capabilities in commercial finite element codes based on the virtual crack closure technique (VCCT). First, a quasi-static benchmark example was created for the specimen. Second, based on the static results, benchmark examples for cyclic delamination growth were created. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. Fourth, starting from an initially straight front, the delamination was allowed to grow under cyclic loading. The number of cycles to delamination onset and the number of cycles during delamination growth for each growth increment were obtained from the automated analysis and compared to the benchmark examples. Again, good agreement between the results obtained from the growth analysis and the benchmark results could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Overall the results are encouraging, but further assessment for mixed-mode delamination is required.
Quasi-Static Magnetic Field Shielding Using Longitudinal Mu-Near-Zero Metamaterials
NASA Astrophysics Data System (ADS)
Lipworth, Guy; Ensworth, Joshua; Seetharam, Kushal; Lee, Jae Seung; Schmalenberg, Paul; Nomura, Tsuyoshi; Reynolds, Matthew S.; Smith, David R.; Urzhumov, Yaroslav
2015-08-01
The control of quasi-static magnetic fields is of considerable interest in applications including the reduction of electromagnetic interference (EMI), wireless power transfer (WPT), and magnetic resonance imaging (MRI). The shielding of static or quasi-static magnetic fields is typically accomplished through the use of inherently magnetic materials with large magnetic permeability, such as ferrites, used sometimes in combination with metallic sheets and/or active field cancellation. Ferrite materials, however, can be expensive, heavy and brittle. Inspired by recent demonstrations of epsilon-, mu- and index-near-zero metamaterials, here we show how a longitudinal mu-near-zero (LMNZ) layer can serve as a strong frequency-selective reflector of magnetic fields when operating in the near-field region of dipole-like sources. Experimental measurements with a fabricated LMNZ sheet constructed from an artificial magnetic conductor - formed from non-magnetic, conducting, metamaterial elements - confirm that the artificial structure provides significantly improved shielding as compared with a commercially available ferrite of the same size. Furthermore, we design a structure to shield simultaneously at the fundamental and first harmonic frequencies. Such frequency-selective behavior can be potentially useful for shielding electromagnetic sources that may also generate higher order harmonics, while leaving the transmission of other frequencies unaffected.
Quasi-Static Magnetic Field Shielding Using Longitudinal Mu-Near-Zero Metamaterials
Lipworth, Guy; Ensworth, Joshua; Seetharam, Kushal; Lee, Jae Seung; Schmalenberg, Paul; Nomura, Tsuyoshi; Reynolds, Matthew S.; Smith, David R.; Urzhumov, Yaroslav
2015-01-01
The control of quasi-static magnetic fields is of considerable interest in applications including the reduction of electromagnetic interference (EMI), wireless power transfer (WPT), and magnetic resonance imaging (MRI). The shielding of static or quasi-static magnetic fields is typically accomplished through the use of inherently magnetic materials with large magnetic permeability, such as ferrites, used sometimes in combination with metallic sheets and/or active field cancellation. Ferrite materials, however, can be expensive, heavy and brittle. Inspired by recent demonstrations of epsilon-, mu- and index-near-zero metamaterials, here we show how a longitudinal mu-near-zero (LMNZ) layer can serve as a strong frequency-selective reflector of magnetic fields when operating in the near-field region of dipole-like sources. Experimental measurements with a fabricated LMNZ sheet constructed from an artificial magnetic conductor – formed from non-magnetic, conducting, metamaterial elements – confirm that the artificial structure provides significantly improved shielding as compared with a commercially available ferrite of the same size. Furthermore, we design a structure to shield simultaneously at the fundamental and first harmonic frequencies. Such frequency-selective behavior can be potentially useful for shielding electromagnetic sources that may also generate higher order harmonics, while leaving the transmission of other frequencies unaffected. PMID:26234929
Quasi-Static Magnetic Field Shielding Using Longitudinal Mu-Near-Zero Metamaterials.
Lipworth, Guy; Ensworth, Joshua; Seetharam, Kushal; Lee, Jae Seung; Schmalenberg, Paul; Nomura, Tsuyoshi; Reynolds, Matthew S; Smith, David R; Urzhumov, Yaroslav
2015-08-03
The control of quasi-static magnetic fields is of considerable interest in applications including the reduction of electromagnetic interference (EMI), wireless power transfer (WPT), and magnetic resonance imaging (MRI). The shielding of static or quasi-static magnetic fields is typically accomplished through the use of inherently magnetic materials with large magnetic permeability, such as ferrites, used sometimes in combination with metallic sheets and/or active field cancellation. Ferrite materials, however, can be expensive, heavy and brittle. Inspired by recent demonstrations of epsilon-, mu- and index-near-zero metamaterials, here we show how a longitudinal mu-near-zero (LMNZ) layer can serve as a strong frequency-selective reflector of magnetic fields when operating in the near-field region of dipole-like sources. Experimental measurements with a fabricated LMNZ sheet constructed from an artificial magnetic conductor - formed from non-magnetic, conducting, metamaterial elements - confirm that the artificial structure provides significantly improved shielding as compared with a commercially available ferrite of the same size. Furthermore, we design a structure to shield simultaneously at the fundamental and first harmonic frequencies. Such frequency-selective behavior can be potentially useful for shielding electromagnetic sources that may also generate higher order harmonics, while leaving the transmission of other frequencies unaffected.
NASA Technical Reports Server (NTRS)
Montgomery, Raymond C.; Scott, Michael A.; Weston, Robert P.
1998-01-01
This paper represents an initial study on the use of quasi-static shape change devices in aircraft maneuvering. The macroscopic effects and requirements for these devices in flight control are the focus of this study. Groups of devices are postulated to replace the conventional leading-edge flap (LEF) and the all-moving wing tip (AMT) on the tailless LMTAS-ICE (Lockheed Martin Tactical Aircraft Systems - Innovative Control Effectors) configuration. The maximum quasi-static shape changes are 13.8% and 7.7% of the wing section thickness for the LEF and AMT replacement devices, respectively. A Computational Fluid Dynamics (CFD) panel code is used to determine the control effectiveness of groups of these devices. A preliminary design of a wings-leveler autopilot is presented. Initial evaluation at 0.6 Mach at 15,000 ft. altitude is made through batch simulation. Results show small disturbance stability is achieved, however, an increase in maximum distortion is needed to statically offset five degrees of sideslip. This only applies to the specific device groups studied, encouraging future research on optimal device placement.
Electrical and thermal response of carbon nanotube composites under quasi-static and dynamic loading
NASA Astrophysics Data System (ADS)
O'Connell, Christopher D.
Carbon nanotube (CNT) composites have attracted much interest due to their possible technical applications as conductive polymers and sensory materials. This study will consist of two major objectives: 1.) to investigate the thermal conductivity and thermal response of multi-wall carbon nanotube (MWCNT) composites under quasi-static loading, and 2.) to investigate the electrical response of carboxyl-terminated butadiene (CTBN) rubber-reinforced MWCNT/Epoxy composites under quasi-static and dynamic loading. Similar studies have shown that the electrical conductivity of CNT/Epoxy composites dramatically increases with compressive strains up to 15%. Part 1 seeks to find out if thermal conductivity show a similar response to electrical conductivity under an applied load. Part 2 seeks to investigate how the addition of rubber affects the mechanical and electrical response of the composite subjected to quasi-static and dynamic loading. By knowing how thermal and electrical properties change under a given applied strain, we attempt to broaden the breadth of understanding of CNT/epoxy composites and inqure the microscopic interactions occurring between the two. Electrical experiments sought to investigate the electrical response of rubber-reinforced carbon nanotube epoxy composites under quasi-static and dynamic loading. Specimens were fabricated with CTBN rubber content of 10 parts per hundredth resin (phr), 20 phr, 30 phr and 0 phr for a basis comparison. Both quasi-static and dynamic mechanical response showed a consistent decrease in peak stress and Young's modulus with increasing rubber content. Trends in the electrical response between each case were clearly observed with peak resistance changes ranging from 58% to 73% and with each peak occurring at a higher value with increasing rubber content, with the exception of the rubber-free specimens. It was concluded that among the rubber-embedded specimens, the addition of rubber helped to delay micro-cracking and
ORNL Quasi-Static Mechanical Characterization and Analysis: FY09 Annual Report to TARDEC
Wereszczak, Andrew A; Kirkland, Timothy Philip; Strong, Kevin T; Holmquist, Timothy
2009-12-01
target ceramic compliance. More so than any other produced damage mechanism. This suggests that a ballistically induced median crack in an armor ceramic may be associated with the dwell penetration event. (7) Glass exhibits tensile strength that is very much dependent on the amount of material, the side being tested (air versus tin if a float glass), and where it is being tensile stressed (in the middle or near an edge). The management of these effects will improve ballistic resistance of transparent armor (or any ceramic armor that is undergoing deflection as a consequence of a ballistic impact). (8) Plasma-arc heat treatment is a quick and relatively inexpensive method to improve the strength of glass. It is implementable into the production line for the mass production of glass. Increased strain-to-failure and bending deflections are concomitant with increased strength, and therefore, ballistic resistance is improvable using this method. (9) The Hertzian stress field at high contact stresses is very similar to the stress field from a ballistic impact. This is significant because the results from Hertzian indentation measurements have the prospect of being used as input in ballistic models to predict dwell conditions. (10) The understanding of glass densification and fragmentation behaviors are aided by piezo-Raman spectroscopy and quasi-static, high-energy fracture. Continued refinement of these test methods will improve the understanding of glass impact resistance. (11) In addition to glass, strength-size scaling was evident in SiC and B{sub 4}C. Previously proposed strength dependencies on rate from shock experiments may instead be explained by this strength-size scaling effect. (12) The quantification of strength-size scaling in armor ceramics clearly shows there is no single strength value that can be used to describe that ceramic. A ballistic modeler can therefore use more appropriate failure stress value(s) as input to predict deflection and expanding cavity
Quasi-static and Dynamic Nanoindentation of Soft and Spatially Distinct Materials and Structures
NASA Astrophysics Data System (ADS)
Tian, Nannan
Quasi-static nanoindentation has been used to assess the mechanical properties of soft and spatially distinct materials for several years. Most of the soft materials exhibit time-dependent (viscoelastic) behavior; thereby dynamic nanoindentation analysis increased the possibility of obtaining an accurate mechanical response from the materials. Normally, the heterogonous microstructure of specimens can result in experimental error when analyzing nanoindentation results. The accurate assessment of nanoindentation on soft materials with spatially distinct structures is not fully understood in previous studies. Some existing features in specimens, such as the residual stresses generated during polymer parts processing, also significantly influences nanoindentation data analysis. The objective of this study is to systematically consider some of the uncertainties when it comes to characterize soft materials by nanoindentation and thus develop several improved characterization methods, and provide guidance for future measurement. The study sought to clear out four main uncertainties within nanoindentation analysis for viscoelastic and heterogeneous materials: 1. Does the free edge close to the indents affect the dynamic nanoindentation results? How can we improve the analysis method? 2. How should indentation results be utilized to estimate the potential residual stresses? 3. Could we perform the statistical nanoindnentation to obtain the comparable results of volume fraction of individual phases in heterogeneous materials? 4. During nanoindentation, what is the appropriate combination of the loading rate, unloading rate and the holding time setup in terms of viscoelastic materials? In this dissertation, the correlation of quasi-static nanoindentation analysis methods with the structural compliance, residual stress, sampling volume and various relaxation processes will be covered in the following chapters. Dynamic nanoindentation will be used to access the time
Wafer charging monitored by high frequency and quasi-static C- V measurements
NASA Astrophysics Data System (ADS)
En, Bill; Cheung, Nathan W.
1993-04-01
A combined high frequency and quasi-static C- V technique is used to monitor wafer charging of MOS structures during plasma immersion ion implantation (PIII). The test chip used consists of MOS capacitors spanning over five decades of area (25 μm 2 to 4 × 10 6 μm 2). Measured interface trap density ( Qit) is found to be dependent exponentially on plasma exposure time and linearly on the plasma ion density. The PIII pulsed bias voltage has no effect on wafer charging.
Quasi-static electromagnetic dosimetry: from basic principles to examples of applications.
Andreuccetti, Daniele; Zoppetti, Nicola
2006-01-01
An overview of quasi-static electromagnetic dosimetry is presented. After an introductive description of quantities and standards and a quick look at experimental and analytical approaches, attention is focused on numerical dosimetry. The process that leads to the calculation of results is analyzed in its basic steps, including the representation of the human body by means of a realistic voxel phantom. The most popular numerical methods are then described. An analysis of different methods in the same framework emphasizes common features and differences. This can help in choosing a more suitable method to solve a particular problem. An example of an application is finally reported.
Quasi-Static Analysis of Round LaRC THUNDER Actuators
NASA Technical Reports Server (NTRS)
Campbell, Joel F.
2007-01-01
An analytic approach is developed to predict the shape and displacement with voltage in the quasi-static limit of round LaRC Thunder Actuators. The problem is treated with classical lamination theory and Von Karman non-linear analysis. In the case of classical lamination theory exact analytic solutions are found. It is shown that classical lamination theory is insufficient to describe the physical situation for large actuators but is sufficient for very small actuators. Numerical results are presented for the non-linear analysis and compared with experimental measurements. Snap-through behavior, bifurcation, and stability are presented and discussed.
A quasi-static analysis of open-ended coaxial lines
NASA Astrophysics Data System (ADS)
Misra, Devendra K.
1987-10-01
A quasi-static analysis of an open-ended coaxial line terminated by a semi-infinite medium on ground plane is presented in this paper. The analysis is based on a variation formulation of the problem. A comparison of results obtained by this method with the experimental and the other theoretical approaches shows an excellent agreement. This analysis is expected to be helpful in the inverse problem of calculating the permittivity of materials in vivo for a given input impedance of the coaxial line.
Mode Jumping of an Isogrid Panel Under Quasi-Static Compression
NASA Technical Reports Server (NTRS)
Muheim, Danniella M.; Johnson, Eric R.
2003-01-01
A wide column test of a composite isogrid panel subjected to quasi-static, axial compression is modeled with a hybrid-static dynamic computational method. The data from the test panel exhibited discontinuous responses in the compressive load for slowly increased end-shortening. The computational model was developed to corroborate these discontinuities with the phenomenon of mode jumping. Mode jumping refers to the transient response of the panel from an unstable bifurcation point on a postbuckled equilibrium path to a second stable equilibrium state on a new equilibrium path. On the new equilibrium path, both the analysis and test show that the panel can resist increased endshortening beyond that of the unstable critical point. Fair agreement is achieved between the analysis and test.
Quasi-Static Analysis for Subsidence of Stacked B-25 Boxes
Wu, Tsu-te; Jones, William E.; Phifer, Mark A.
2005-05-24
This paper presents a quasi-static technique to evaluate the structural deformation of the four stacked B-25 boxes subjected to the static loads of overlaying soil and to determine the effect of corrosion on the deformation. Although the boxes are subjected to a static load, the structural responses of the boxes vary with time. The analytical results indeed show that the deflection, buckling and post buckling of the components of the stacked boxes occur in sequence rather than simultaneously. Therefore, it is more appropriate to treat the problems considered as quasistatic rather than static; namely, the structural response of the stacked boxes are dynamic but with very long duration. Furthermore, the finite-element model has complex contact and slide conditions between the interfaces of the adjoining components, and thus its numerical solution is more tractable by using explicit time integration schemes. The analysis covers the three corrosion scenarios following various time lengths of initial burial under an interim soil cover. The results qualitatively agree with expected differences in deformation for different degrees of corrosion subsidence potential reduction that can be achieved.
Quasi-static stop band with flexural metamaterial having zero rotational stiffness
Oh, Joo Hwan; Assouar, Badreddine
2016-01-01
Metamaterials realizing stop bands have attracted much attentions recently since they can break-through the well-known mass law. However, achieving the stop band at extremely low frequency has been still a big challenge in the fields of elastic metamaterials. In this paper, we propose a new metamaterial based on the idea of the zero rotational stiffness, to achieve extremely low frequency stop band for flexural elastic waves. Unlike the previous ways to achieve the stop band, we found that the zero rotational stiffness can provide a broad stop band at extremely low frequency, which starts from even almost zero frequency. To achieve the zero rotational stiffness, we propose a new elastic metamaterial consisting of blocks and links with the hinge connection. Analytic developments as well as numerical simulations evidence that this new metamaterial can exhibit extremely low and broad stop band, even at the quasi-static ranges. In addition, the metamaterial is shown to exhibit the negative group velocity at extremely low frequency ranges, as well as the quasi-static stop band, if it is properly designed. PMID:27651146
Protein folding by a quasi-static-like process: A first-order state transition
NASA Astrophysics Data System (ADS)
Chang, Chia-Ching; Su, Ya-Chi; Cheng, Ming-Sung; Kan, Lou-Sing
2002-08-01
In this paper we report that quasi-static-like processes, in which stable intermediates were introduced carefully and deliberately, may be used to reversibly unfold and refold purified native porcine growth hormone. Through circular dichroism (CD) and dynamic light scattering (DLS), we were able to study the secondary structure conformational changes, tertiary structure thermal stabilities, and the particle size distributions of both the intermediates and the final folded product. The CD data showed that the secondary structure was restored in the initial folding stage, whereas the tertiary structure within the protein was restored one step before the last folding stage, as elucidated by thermal stability experiments. DLS analysis suggested that the average hydrodynamic radii of the folding intermediates shrunk to nativelike size immediately after the first folding stage. Our data suggested that the denaturant-containing protein folding reaction is a first-order-like state transition process. This quasi-static-like process may be useful in the prevention of aggregate formation in protein purification and thus can be used in protein engineering to improve the overall yield from harvesting proteins.
Hot electrons injection in carbon nanotubes under the influence of quasi-static ac-field
NASA Astrophysics Data System (ADS)
Amekpewu, M.; Mensah, S. Y.; Musah, R.; Mensah, N. G.; Abukari, S. S.; Dompreh, K. A.
2016-07-01
The theory of hot electrons injection in carbon nanotubes (CNTs) where both dc electric field (Ez), and a quasi-static ac field exist simultaneously (i.e. when the frequency ω of ac field is much less than the scattering frequency v (ω ≪ v or ωτ ≪ 1, v =τ-1) where τ is relaxation time) is studied. The investigation is done theoretically by solving semi-classical Boltzmann transport equation with and without the presence of the hot electrons source to derive the current densities. Plots of the normalized current density versus dc field (Ez) applied along the axis of the CNTs in the presence and absence of hot electrons reveal ohmic conductivity initially and finally negative differential conductivity (NDC) provided ωτ ≪ 1 (i.e. quasi- static case). With strong enough axial injection of the hot electrons, there is a switch from NDC to positive differential conductivity (PDC) about Ez ≥ 75 kV / cm and Ez ≥ 140 kV / cm for a zigzag CNT and an armchair CNT respectively. Thus, the most important tough problem for NDC region which is the space charge instabilities can be suppressed due to the switch from the NDC behaviour to the PDC behaviour predicting a potential generation of terahertz radiations whose applications are relevance in current-day technology, industry, and research.
Fracto-emission in lanthanum-based metallic glass microwires under quasi-static tensile loading
NASA Astrophysics Data System (ADS)
Banerjee, Amit; Jiang, Chenchen; Lohiya, Lokesh; Yang, Yong; Lu, Yang
2016-04-01
Plastic deformation in metallic glasses is highly localized and often associated with shear banding, which may cause momentary release of heat upon fracture. Here, we report an explosive fracture phenomenon associated with momentary (˜10 ms) light emission (flash) in Lanthanum-based (LaAlNi) metallic glass microwires (dia. ˜50 μm) under quasi-static tensile loading. The load-displacement data as well as the visual information of the tensile deformation process were acquired through an in situ measurement set-up, which clearly showed nonlinear stress (σ)-strain ( ɛ) curves prior to yielding and also captured the occurrence of the flash at high fracture stresses (˜1 GPa). Through the postmortem fractographic analysis, it can be revealed that the fracto-emission upon quasi-static loading could be mainly attributed to the localized adiabatic work accumulated at a very large elastic strain confined within the microscale sample volume, followed by a localized high temperature rise up to ˜1000 K at the fracture surface through localized energy dissipation. Our findings suggest that the La-based metallic glass microwires could be useful for energetic microchips, micro-ignition devices, and other functional applications.
Micromechanical definition of an entropy for quasi-static deformation of granular materials
NASA Astrophysics Data System (ADS)
Rothenburg, L.; Kruyt, N. P.
2009-03-01
A micromechanical theory is formulated for quasi-static deformation of granular materials, which is based on information theory. A reasoning is presented that leads to the definition of an information entropy that is appropriate for quasi-static deformation of granular materials. This definition is based on the hypothesis that relative displacements at contacts with similar orientations are independent realisations of a random variable. This hypothesis is made plausible based on the results of Discrete Element simulations. The developed theory is then used to predict the elastic behaviour of granular materials in terms of micromechanical quantities. The case considered is that of two-dimensional assemblies consisting of non-rotating particles with an elastic contact constitutive relation. Applications of this case are the initial elastic (small-strain) deformation of granular materials. Theoretical results for the elastic moduli, relative displacements, energy distribution and probability density functions are compared with results obtained from the Discrete Element simulations for isotropic assemblies with various average numbers of contacts per particle and various ratios of tangential to normal contact stiffness. This comparison shows that the developed information theory is valid for loose systems, while a theory based on the uniform-strain assumption is appropriate for dense systems.
Quasi-static stop band with flexural metamaterial having zero rotational stiffness.
Oh, Joo Hwan; Assouar, Badreddine
2016-09-21
Metamaterials realizing stop bands have attracted much attentions recently since they can break-through the well-known mass law. However, achieving the stop band at extremely low frequency has been still a big challenge in the fields of elastic metamaterials. In this paper, we propose a new metamaterial based on the idea of the zero rotational stiffness, to achieve extremely low frequency stop band for flexural elastic waves. Unlike the previous ways to achieve the stop band, we found that the zero rotational stiffness can provide a broad stop band at extremely low frequency, which starts from even almost zero frequency. To achieve the zero rotational stiffness, we propose a new elastic metamaterial consisting of blocks and links with the hinge connection. Analytic developments as well as numerical simulations evidence that this new metamaterial can exhibit extremely low and broad stop band, even at the quasi-static ranges. In addition, the metamaterial is shown to exhibit the negative group velocity at extremely low frequency ranges, as well as the quasi-static stop band, if it is properly designed.
Plasma wakefield acceleration studies using the quasi-static code WAKE
Jain, Neeraj; Palastro, John; Antonsen, T. M.; Mori, Warren B.; An, Weiming
2015-02-15
The quasi-static code WAKE [P. Mora and T. Antonsen, Phys. Plasmas 4, 217 (1997)] is upgraded to model the propagation of an ultra-relativistic charged particle beam through a warm background plasma in plasma wakefield acceleration. The upgraded code is benchmarked against the full particle-in-cell code OSIRIS [Hemker et al., Phys. Rev. Spec. Top. Accel. Beams 3, 061301 (2000)] and the quasi-static code QuickPIC [Huang et al., J. Comput. Phys. 217, 658 (2006)]. The effect of non-zero plasma temperature on the peak accelerating electric field is studied for a two bunch electron beam driver with parameters corresponding to the plasma wakefield acceleration experiments at Facilities for Accelerator Science and Experimental Test Beams. It is shown that plasma temperature does not affect the energy gain and spread of the accelerated particles despite suppressing the peak accelerating electric field. The role of plasma temperature in improving the numerical convergence of the electric field with the grid resolution is discussed.
MSC/NASTRAN Stress Analysis of Complete Models Subjected to Random and Quasi-Static Loads
NASA Technical Reports Server (NTRS)
Hampton, Roy W.
2000-01-01
Space payloads, such as those which fly on the Space Shuttle in Spacelab, are designed to withstand dynamic loads which consist of combined acoustic random loads and quasi-static acceleration loads. Methods for computing the payload stresses due to these loads are well known and appear in texts and NASA documents, but typically involve approximations such as the Miles' equation, as well as possible adjustments based on "modal participation factors." Alternatively, an existing capability in MSC/NASTRAN may be used to output exact root mean square [rms] stresses due to the random loads for any specified elements in the Finite Element Model. However, it is time consuming to use this methodology to obtain the rms stresses for the complete structural model and then combine them with the quasi-static loading induced stresses. Special processing was developed as described here to perform the stress analysis of all elements in the model using existing MSC/NASTRAN and MSC/PATRAN and UNIX utilities. Fail-safe and buckling analyses applications are also described.
NASA Astrophysics Data System (ADS)
Nagy, Peter B.; Qu, Jianmin; Jacobs, Laurence J.
2014-02-01
A harmonic acoustic tone burst propagating through an elastic solid with quadratic nonlinearity produces not only a parallel burst of second harmonic but also an often neglected quasi-static pulse associated with the acoustic radiation-induced eigenstrain. Although initial analytical and experimental studies by Yost and Cantrell suggested that the pulse might have a right-angled triangular shape with the peak displacement at the leading edge being proportional to the length of the tone burst, more recent theoretical, analytical, numerical, and experimental studies proved that the pulse has a flat-top shape and the peak displacement is proportional to the propagation length. In this paper, analytical and numerical simulation results are presented to illustrate two types of finite-size effects. First, the finite axial dimension of the specimen cannot be simply accounted for by a linear reflection coefficient that neglects the nonlinear interaction between the combined incident and reflected fields. Second, the quasistatic pulse generated by a transducer of finite aperture suffers more severe divergence than both the fundamental and second harmonic pulses generated by the same transducer. These finite-size effects can make the top of the quasi-static pulse sloped rather than flat and therefore must be taken into consideration in the interpretation of experimental data.
Nagy, Peter B.; Qu, Jianmin; Jacobs, Laurence J.
2014-02-18
A harmonic acoustic tone burst propagating through an elastic solid with quadratic nonlinearity produces not only a parallel burst of second harmonic but also an often neglected quasi-static pulse associated with the acoustic radiation-induced eigenstrain. Although initial analytical and experimental studies by Yost and Cantrell suggested that the pulse might have a right-angled triangular shape with the peak displacement at the leading edge being proportional to the length of the tone burst, more recent theoretical, analytical, numerical, and experimental studies proved that the pulse has a flat-top shape and the peak displacement is proportional to the propagation length. In this paper, analytical and numerical simulation results are presented to illustrate two types of finite-size effects. First, the finite axial dimension of the specimen cannot be simply accounted for by a linear reflection coefficient that neglects the nonlinear interaction between the combined incident and reflected fields. Second, the quasistatic pulse generated by a transducer of finite aperture suffers more severe divergence than both the fundamental and second harmonic pulses generated by the same transducer. These finite-size effects can make the top of the quasi-static pulse sloped rather than flat and therefore must be taken into consideration in the interpretation of experimental data.
Algorithms for Quantitative Quasi-static Elasticity Imaging using Force Data
Tyagi, Mohit; Goenezen, Sevan; Barbone, Paul E.; Oberai, Assad A.
2014-01-01
Quasi-static elasticity imaging can improve diagnosis and detection of diseases that affect the mechanical behavior of tissue. In this methodology images of the shear modulus of the tissue are reconstructed from the measured displacement field. This is accomplished by seeking the spatial distribution of mechanical properties that minimizes the difference between the predicted and the measured displacement fields, where the former is required to satisfy a finite element approximation to the equations of equilibrium. In the absence of force data, the shear modulus is determined only up to a multiplicative constant. In this manuscript we address the problem of calibrating quantitative elastic modulus reconstructions created from measurements of quasi-static deformations. We present two methods that utilize the knowledge of the applied force on a portion of the boundary. The first involves rescaling the shear modulus of the original minimization problem to best match the measured force data. This approach is easily implemented but neglects the spatial distribution of tractions. The second involves adding a force-matching term to the original minimization problem and a change of variables, wherein we seek the log of the shear modulus. We present numerical results that demonstrate the usefulness of both methods. PMID:25073623
Quasi-static and multi-site high velocity impact response of composite structures
NASA Astrophysics Data System (ADS)
Deka, Lakshya
Understanding of low and high velocity transverse impact of laminated fiber reinforced composites is of interest in military, aerospace, marine and civilian structures. Recent advances in the field of numerical simulation provide a means of predicting the performance characteristics of layered materials for impact protection. The overall objective of this work is to investigate the behavior of laminated composites which include both thermoplastic and thermoset systems subjected to quasi-static, low and high velocity impact; both from an experimental and numerical modeling view point. To analyze this problem, a series of quasi-static, low and high velocity impact tests have been performed on laminated composite plates namely E-glass/polypropylene, S2-glass/epoxy and carbon/polyphenylene sulphide. To analyze the perforation mechanism, ballistic limit and damage evolution, an explicit three-dimensional finite element code LS-DYNA is used. Selecting proper material models and contact definition is one of the major criteria for obtaining accurate numerical simulation. Material model 162 (MAT 162), a progressive failure model based on modified Hashin's criteria and continuum damage mechanics (CDM) has been assigned to predict failure of the laminate. This approach is used because during transverse impact, a composite laminate undergoes progressive damage. The laminate and the projectile are meshed using brick elements with single integration points. The impact velocity ranges from 180 to 400 m s -1. This work focuses on three main aspects; (i) To obtain static and dynamic material properties to incorporate into the finite element model and predict the ballistic limit of a composite laminate based on the information from quasi-static punch shear test; (ii) To understand penetration, material erosion, ballistic limit and delamination mechanisms for single and multi-site high velocity (or ballistic) impact of composite laminates; (iii) To investigate the different failure
NASA Astrophysics Data System (ADS)
Perner, M.; Monner, H. P.; Krombholz, C.; Kruse, F. F.
2015-04-01
Smart fiber placement is an ambitious topic in current research for automated manufacturing of large-scale composite structures, e.g. wing covers. Adaptive systems get in focus to obtain a high degree of observability and controllability of the manufacturing process. In particular, vibrational issues and material failure have to be studied to significantly increase the production rate with no loss in accuracy of the fiber layup. As one contribution, an adaptive system has been developed to be integrated into the fiber placement head. It decouples the compaction roller from disturbances caused by misalignments, varying components' behavior over a large work area and acceleration changes during operation. Therefore, the smart system axially adapts the position of the compaction roller in case of disturbances. This paper investigates the behavior of the system to compensate quasi-static deviations from the desired path. In particular, the compensation efficiency of a constant offset, a linear drift with constant gradient and a single-curved drift is studied. Thus, the test bed with measurement devices and scenarios is explained. Based on the knowledge obtained by the experimental data, the paper concludes with a discussion of the proposed approach for its use under operating conditions and further implementation.
Nuclear reactor transient analysis via a quasi-static kinetics Monte Carlo method
Jo, YuGwon; Cho, Bumhee; Cho, Nam Zin
2015-12-31
The predictor-corrector quasi-static (PCQS) method is applied to the Monte Carlo (MC) calculation for reactor transient analysis. To solve the transient fixed-source problem of the PCQS method, fission source iteration is used and a linear approximation of fission source distributions during a macro-time step is introduced to provide delayed neutron source. The conventional particle-tracking procedure is modified to solve the transient fixed-source problem via MC calculation. The PCQS method with MC calculation is compared with the direct time-dependent method of characteristics (MOC) on a TWIGL two-group problem for verification of the computer code. Then, the results on a continuous-energy problem are presented.
Propagation of quasi-static modes in anisotropic transmission lines: application to MIC lines
Marques, R.; Horno, M.
1985-10-01
In this paper, we analyze the field propagation in a general N-conductor transmission line embedded in an inhomogeneous and anisotropic medium, through the series expansion of the field in powers of frequency. The quasi-static approach is deducted as a zero-order approach upon the field and a first-order approach for the propagation constant. It is shown that it is even possible to decompose the field into a sum of propagating modes with a scalar propagation factor. The special case of transmission lines in nonmagnetic media is explicitly considered. A method to find out the mode characteristics of any open planar MIC line with anisotropic dielectric substrates is developed and applied to some MIC structures of interest, specifically broadside edgecoupled microstrips with inverted and noninverted substrates.
NASA Astrophysics Data System (ADS)
Høgsberg, Jan; Krenk, Steen
2015-04-01
Resonant RL shunt circuits constitute a robust approach to piezoelectric damping, where the performance with respect to damping of flexible structures requires a precise calibration of the corresponding circuit components. The balanced calibration procedure of the present paper is based on equal damping of the two modes associated with the resonant vibration form of the structure, when including a quasi-static contribution from non-resonant vibration modes via a single background flexibility parameter. Explicit calibration formulae are presented, and it is demonstrated by a numerical example that the procedure leads to equal modal damping and effective response reduction, even for rather indirect placement of the transducer, provided that the correction for background flexibility is included in the calibration procedure.
Automated in-vivo measurement of quasi-static lung compliance in the rat.
LaBrie, L J; Palladino, J L; Grant, E J; Bronzino, J D; Thrall, R S
1996-01-01
Instrumentation to automate quasi-static lung compliance measurement in the rat was developed and values obtained with it were compared with manual measurements by a trained technician. Designed to be used during mechanical ventilation, this system interrupts ventilation to inflate and deflate the lungs and measures lung transmural pressure and volume as functions of time. Animal experiments demonstrated that the automated system is capable of generating correctly shaped volume-pressure curves. These curves yielded reproducible lung compliance values that compare favorably with those obtained by the manual method. No statistically significant difference was observed comparing the two methods when evaluating either inter- or intra-animal variation. This automated system thereby obviates the need for highly trained personnel to perform the test.
Behavior of tunnel form buildings under quasi-static cyclic lateral loading
Yuksel, S.B.; Kalkan, E.
2007-01-01
In this paper, experimental investigations on the inelastic seismic behavior of tunnel form buildings (i.e., box-type or panel systems) are presented. Two four-story scaled building specimens were tested under quasi-static cyclic lateral loading in longitudinal and transverse directions. The experimental results and supplemental finite element simulations collectively indicate that lightly reinforced structural walls of tunnel form buildings may exhibit brittle flexural failure under seismic action. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in outermost shear-walls. This type of failure takes place due to rupturing of longitudinal reinforcement without crushing of concrete, therefore is of particular interest in emphasizing the mode of failure that is not routinely considered during seismic design of shear-wall dominant structural systems.
Axial quasi-static crushing behaviour of cylindrical woven kenaf fiber reinforced composites
NASA Astrophysics Data System (ADS)
Abdullah, Noorhaslinda; Ismail, Al Emran
2017-01-01
This paper presents the crushing responses of cylindrical woven kenaf fibre reinforced composites under quasi-static compression. Kenaf fiber in the form of yarn is weaved into woven mat. It is then submerged into polyester bath before it is wrapped into a cylindrical shape. There are two important parameters investigated such as number of layers and fiber orientations. According to the experimental results, as expected increasing the number of layers increased the energy absorption performances. However, increasing the fibre orientations from 0o to 45o capable to decrease the energy absorption capability. It is also observed that during progressive collapses, localized buckling is the dominant failure mechanism where there is no large composite fragmentation occurred.
Modeling the Pulse Line Ion Accelerator (PLIA): an algorithm for quasi-static field solution.
Friedman, A; Briggs, R J; Grote, D P; Henestroza, E; Waldron, W L
2007-06-18
The Pulse-Line Ion Accelerator (PLIA) is a helical distributed transmission line. A rising pulse applied to the upstream end appears as a moving spatial voltage ramp, on which an ion pulse can be accelerated. This is a promising approach to acceleration and longitudinal compression of an ion beam at high line charge density. In most of the studies carried out to date, using both a simple code for longitudinal beam dynamics and the Warp PIC code, a circuit model for the wave behavior was employed; in Warp, the helix I and V are source terms in elliptic equations for E and B. However, it appears possible to obtain improved fidelity using a ''sheath helix'' model in the quasi-static limit. Here we describe an algorithmic approach that may be used to effect such a solution.
Stenroos, M; Mäntynen, V; Nenonen, J
2007-12-01
The boundary element method (BEM) is commonly used in the modeling of bioelectromagnetic phenomena. The Matlab language is increasingly popular among students and researchers, but there is no free, easy-to-use Matlab library for boundary element computations. We present a hands-on, freely available Matlab BEM source code for solving bioelectromagnetic volume conduction problems and any (quasi-)static potential problems that obey the Laplace equation. The basic principle of the BEM is presented and discretization of the surface integral equation for electric potential is worked through in detail. Contents and design of the library are described, and results of example computations in spherical volume conductors are validated against analytical solutions. Three application examples are also presented. Further information, source code for application examples, and information on obtaining the library are available in the WWW-page of the library: (http://biomed.tkk.fi/BEM).
Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics.
Price, Jared S; Sheng, Xing; Meulblok, Bram M; Rogers, John A; Giebink, Noel C
2015-02-05
Concentrating photovoltaics offer a way to lower the cost of solar power. However, the existing paradigm based on precise orientation of large-area concentrator modules towards the Sun limits their deployment to large, open land areas. Here, we explore an alternate approach using high-efficiency microcell photovoltaics embedded between a pair of plastic lenslet arrays to demonstrate quasi-static concentrating photovoltaic panels <1 cm thick that accomplish full-day tracking with >200x flux concentration ratio through small (<1 cm) lateral translation at fixed latitude tilt. Per unit of installed land area, cosine projection loss for fixed microtracking concentrating photovoltaic panels is ultimately offset by improved ground coverage relative to their conventional dual-axis counterparts, enabling a ~1.9x increase in daily energy output that may open up a new opportunity for compact, high-efficiency concentrating photovoltaics to be installed on rooftops and other limited-space urban environments.
Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics
NASA Astrophysics Data System (ADS)
Price, Jared S.; Sheng, Xing; Meulblok, Bram M.; Rogers, John A.; Giebink, Noel C.
2015-02-01
Concentrating photovoltaics offer a way to lower the cost of solar power. However, the existing paradigm based on precise orientation of large-area concentrator modules towards the Sun limits their deployment to large, open land areas. Here, we explore an alternate approach using high-efficiency microcell photovoltaics embedded between a pair of plastic lenslet arrays to demonstrate quasi-static concentrating photovoltaic panels <1 cm thick that accomplish full-day tracking with >200x flux concentration ratio through small (<1 cm) lateral translation at fixed latitude tilt. Per unit of installed land area, cosine projection loss for fixed microtracking concentrating photovoltaic panels is ultimately offset by improved ground coverage relative to their conventional dual-axis counterparts, enabling a ~1.9x increase in daily energy output that may open up a new opportunity for compact, high-efficiency concentrating photovoltaics to be installed on rooftops and other limited-space urban environments.
Quasi-static electromagnetic fields due to dipole antennas in bounded conducting media
NASA Astrophysics Data System (ADS)
Habashy, T. M.; Kong, J. A.; Tsang, L.
1985-05-01
Several techniques are employed to model dipole fields in a two-layer dissipative medium. The upper layer is assumed lossless, the lower lossy. Attention is limited to solutions of integrals over the vertical field by quasi-static approximation (QSA), steepest descent image-source (SDIS), residue and hybrid solution approaches. A comparison of the solutions with experimental data delineates the realms of effectiveness for each computational technique: QSA is good for frequencies below 100 kHz and measurements of less than 1/30 wavelength; SDIS is valid at high frequencies on thick layers; and, normal mode residue is applicable for low frequency thin layers. Finally, intermediate conditions require all three techniques.
Self-similar evolution of magnetized plasmas. I - Quasi-static solution
NASA Technical Reports Server (NTRS)
Yang, Wei-Hong
1992-01-01
The concept of linear expansion suggested by Wei-Hong (1989 and 1990), describes the self-similar evolution of a magnetic structure. Linear expansion can be represented by a single function which connects the evolving physical parameters of the plasma with their initial values in explicit forms. A general self-similar dynamic equation, therefore, is derived. As the first step toward more general consideration, the quasi-static solution is investigated in this paper. It is shown that a gamma = 4/3 polytrope may evolve through consecutive equilibria if its magnetic field expands self-similarly. The change of the energy everywhere inside the plasma equals the work done by the internal plasma pressure and magnetic field for the expansion. For the special case of an expanding force-free magnetic field, the self-similar expansion is a clean expansion. No free magnetic energy is left anywhere inside the magnetic structure. The approximation in quasi-state modeling of a pressure confined magnetized plasmoid is analyzed.
Distinguishing Between Quasi-static and Alfvénic Auroral Acceleration Processes
NASA Astrophysics Data System (ADS)
Lysak, R. L.; Song, Y.
2013-12-01
Models for the acceleration of auroral particles fall into two general classes. Quasi-static processes, such as double layers or magnetic mirror supported potential drops, produce a nearly monoenergetic beam of precipitating electrons and upward flowing ion beams. Time-dependent acceleration processes, often associated with kinetic Alfvén waves, can produce a broader range of energies and often have a strongly field-aligned pitch angle distribution. Both processes are associated with strong perpendicular electric fields as well as the parallel electric fields that are largely responsible for the particle acceleration. These electric fields and the related magnetic perturbations can be characterized by the ratio of the electric field to a perpendicular magnetic perturbation, which is related to the Pedersen conductivity in the static case and the Alfvén velocity in the time-dependent case. However, these considerations can be complicated by the interaction between upward and downward propagating waves. The relevant time and space scales of these processes will be assessed and the consequences for observation by orbiting spacecraft and ground-based instrumentation will be determined. These features will be illustrated by numerical simulations of the magnetosphere-ionosphere coupling with emphasis on what a virtual spacecraft passing through the simulation would be expected to observe.
NASA Astrophysics Data System (ADS)
Ligda, Jonathan Paul
The increase in strength due to the Hall-Petch effect, reduced strain hardening capacity, a reduced ductility, and changes in deformation mechanisms are all effects of reducing grain size (d) into the ultrafine-grained (UFG, 100 < d < 1000 nm) and nanocrystalline (NC, d<100 nm) state. However, most of the studies on the mechanical behavior of UFG/NC metals have been on face-centered cubic (FCC) metals. Of the few reports on UFG/NC body-centered cubic (BCC) metals, the interest is related to their increase in strength and reduced strain rate sensitivity. This combination increases their propensity to deform via adiabatic shear bands (ASBs) at high strain rates, which is a desired response for materials being considered as a possible replacement for depleted uranium in kinetic energy penetrators. However, an ideal replacement material must also plastically deform in tension under quasi-static rates to survive initial launch conditions. This raises the question: if the material forms ASBs at dynamic rates, will it also form shear bands at quasi-static isothermal rates? As well as, is there a specific grain size for a material that will plastically deform in tension at quasi-static rates but form adiabatic shear bands at dynamic rates? Using high pressure torsion, a polycrystalline bulk tantalum disk was refined into the UFG/NC regime. Using microscale mechanical testing techniques, such as nanoindentation, microcompression, and microtension, it is possible to isolate locations with a homogeneous grain size within the disk. Pillars are compressed using a nanoindenter with a flat punch tip, while "dog-bone" specimens were pulled in tension using a custom built in-situ tension stage within a scanning electron microscope (SEM). The observed mechanical behavior is related to the microstructure by using transmission electron microscopy (TEM) on the as-processed material and tested specimens. Synchrotron X-ray based texture analysis was also conducted on the disk to
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Arnold, William A.; Roberts, Gary d.; Goldberg, Robert K.
2008-01-01
In previous work, the ballistic impact resistance of triaxial braided carbon/epoxy composites made with large flat tows (12k and 24k) was examined by impacting 2 X2 X0.125" composite panels with gelatin projectiles. Several high strength, intermediate modulus carbon fibers were used in combination with both untoughened and toughened matrix materials. A wide range of penetration thresholds were measured for the various fiber/matrix combinations. However, there was no clear relationship between the penetration threshold and the properties of the constituents. During some of these experiments high speed cameras were used to view the failure process, and full-field strain measurements were made to determine the strain at the onset of failure. However, these experiments provided only limited insight into the microscopic failure processes responsible for the wide range of impact resistance observed. In order to investigate potential microscopic failure processes in more detail, quasi-static tests were performed in tension, compression, and shear. Full-field strain measurement techniques were used to identify local regions of high strain resulting from microscopic failures. Microscopic failure events near the specimen surface, such as splitting of fiber bundles in surface plies, were easily identified. Subsurface damage, such as fiber fracture or fiber bundle splitting, could be identified by its effect on in-plane surface strains. Subsurface delamination could be detected as an out-of-plane deflection at the surface. Using this data, failure criteria could be established at the fiber tow level for use in analysis. An analytical formulation was developed to allow the microscopic failure criteria to be used in place of macroscopic properties as input to simulations performed using the commercial explicit finite element code, LS-DYNA. The test methods developed to investigate microscopic failure will be presented along with methods for determining local failure criteria
NASA Astrophysics Data System (ADS)
Lee, Dong-Geon; Kim, Sangho; Lee, Sunghak; Soo Lee, Chong
2001-02-01
The effects of microstructural morphology on quasi-static and dynamic deformation behavior of a Ti-6Al-4V alloy were investigated in this study. Quasi-static and dynamic torsional tests were conducted using a torsional Kolsky bar for Widmanstätten, equiaxed, and bimodal microstructures, which were processed by different heat treatments, and then, the test data were analyzed in relation to microstructures, tensile properties, and fracture mode. Quasi-static torsional properties showed a tendency similar to tensile properties and ductile fracture occurred in all three microstructures. Under dynamic torsional loading, maximum shear stress of the three microstructures was higher and fracture shear strain was lower than those under quasi-static loading, but the overall tendency was similar. In the Widmanstätten and equiaxed microstructures, adiabatic shear bands were found in the deformed region of the fractured specimens. The possibility of the adiabatic shear band formation under dynamic loading was quantitatively analyzed, depending on how plastic deformation energy was distributed to either void initiation or adiabatic shear banding. It was found to be most likely in the equiaxed microstructure, whereas it was least likely in the bimodal microstructure.
Cartagena, Alexander; Raman, Arvind
2014-01-01
The measurement of viscoelasticity of cells in physiological environments with high spatio-temporal resolution is a key goal in cell mechanobiology. Traditionally only the elastic properties have been measured from quasi-static force-distance curves using the atomic force microscope (AFM). Recently, dynamic AFM-based methods have been proposed to map the local in vitro viscoelastic properties of living cells with nanoscale resolution. However, the differences in viscoelastic properties estimated from such dynamic and traditional quasi-static techniques are poorly understood. In this work we quantitatively reconstruct the local force and dissipation gradients (viscoelasticity) on live fibroblast cells in buffer solutions using Lorentz force excited cantilevers and present a careful comparison between mechanical properties (local stiffness and damping) extracted using dynamic and quasi-static force spectroscopy methods. The results highlight the dependence of measured viscoelastic properties on both the frequency at which the chosen technique operates as well as the interactions with subcellular components beyond certain indentation depth, both of which are responsible for differences between the viscoelasticity property maps acquired using the dynamic AFM method against the quasi-static measurements. PMID:24606928
NASA Astrophysics Data System (ADS)
Abd Kadir, N.; Aminanda, Y.; Ibrahim, M. S.; Mokhtar, H.
2016-10-01
A statistical analysis was performed to evaluate the effect of factor and to obtain the optimum configuration of Kraft paper honeycomb. The factors considered in this study include density of paper, thickness of paper and cell size of honeycomb. Based on three level factorial design, two-factor interaction model (2FI) was developed to correlate the factors with specific energy absorption and specific compression strength. From the analysis of variance (ANOVA), the most influential factor on responses and the optimum configuration was identified. After that, Kraft paper honeycomb with optimum configuration is used to fabricate foam-filled paper honeycomb with five different densities of polyurethane foam as filler (31.8, 32.7, 44.5, 45.7, 52 kg/m3). The foam-filled paper honeycomb is subjected to quasi-static compression loading. Failure mechanism of the foam-filled honeycomb was identified, analyzed and compared with the unfilled paper honeycomb. The peak force and energy absorption capability of foam-filled paper honeycomb are increased up to 32% and 30%, respectively, compared to the summation of individual components.
Detection of quasi-static displacement components of LP seismic sources near the volcanic summit
NASA Astrophysics Data System (ADS)
Thun, Johannes; Bean, Christopher J.; Lokmer, Ivan
2014-05-01
Seismic long-period (LP) events are still not completely understood, but widely accepted source models involve fluids and fluid-driven resonance processes. Due to the difficulties related to installing seismometers in summit regions of volcanoes, the observations of volcanic seismicity are usually performed at distances not closer than 1-2 km from the hypocentre of a seismic event. Observations from high-density network experiments on different volcanoes lead to a new model proposed by Bean et al. (Nature Geoscience, January 2014). Therein LP events are explained as a consequence of a brittle-ductile failure occurring under the low-stress conditions in the shallow volcanic edifice, rather than fluid-driven resonance. One consequence of this model is a static displacement associated with these LP events. Unfortunately, the expected amplitude of the static shift is only several micrometres, i.e. not detectable by typical deformation measurements. Therefore, we try to develop methods for using seismometers as static shift detecting sensors. Our current inability to recover the full spectrum of recorded displacement results in a band-limited representation of the true process derived from moment-tensor inversions. If the actual source process is of a broadband character, our narrow-band results can be quite misleading. In this study we are focusing on quasi-static displacements we observed on seismometer data from Turrialba Volcano (Costa Rica) and Mt Etna (Italy). These appear as ramp-like signals on displacement traces of LP events, most commonly on all three seismometer components, and have a magnitude of a few micrometres. Laboratory tests confirm that the seismometers used in our field experiments can indeed measure step-like signals, but they also show that long period noise can be a problem when trying to interpret these. Normal high pass filters suitable to remove this noise cannot be applied without losing the signal we are interested in. Therefore special
Measurement of Shear-Strength in Quasi-Isentropic Loading
NASA Astrophysics Data System (ADS)
Rosenberg, Z.; Bourne, N. K.; Millett, J. C. F.
2001-06-01
Recent work has indicated that an FCC material loaded at lower strain rate can exhibit higher strength than one loaded under shock. This result is puzzling given the hardening mechanisms involving dislocation pile-up usually accepted as occurring during shock. The effect may be followed by loading to a shocked state and then ringing up on an isentrope so that the loading departs from the Hugoniot after the first bounce. As a means of observing the strength of a material the lateral stress in the sample may be monitored along with the longitudinal stress so allowing a direct measurement in uniaxial strain as the difference between these two values. This relies on the development of an analysis to convert the voltage recorded in the gauge to lateral stress that must be checked for the step loading. The materials that are tested are iron and copper that are representative of BCC and FCC materials to give an insight as to the mechanism responsible for the observed phenomena. A mechanism is suggested to explain observations.
Strength of thin chemtempered lenses: static load testing.
Duckworth, W H; Rosenfield, A R; Gulati, S T; Rieger, R A; Hoekstra, K E
1979-01-01
Static load tests were conducted on heat-tempered and chemtempered plano white crown glass lenses from five different optical laboratories. With both ball-on-ring and ring-on-ring loading, chemtempered lenses considerably thinner than 2.0 mm were found to be as failure resistant as 2.0-mm-thick heat-tempered lenses. A similar result was obtained previously using the drop-ball test. It is shown that the theory of brittle fracture can be used to relate the results of different tests and provides a rational basis for comparing the relative performance of chemtempered and heat-tempered lenses.
Static Dielectric Breakdown Strength of Condensed Heterogeneous High Explosives
1987-06-01
3-1 TRIPLE JUNCTION . . .. . . . . . . . . . . . . . . . * * * .3-2 SURFACE FLASHOVER ...enhancement at dielectric interfaces, surface flashover , humidity, surrounding atmosphere, temperature, pressure, and excitation time), which are...discussed in Chapter 3. To obtain meaningful critical field strengths, it is necessary to suppress surface flashover around the insulator sides and
Static strength and failure mechanism of CFRP under biaxial loadings
NASA Astrophysics Data System (ADS)
Lee, C. S.; Hwang, W.; Park, H. C.; Han, K. S.
1998-01-01
Tests of cross-ply composite tubes were performed under combined axial and torsional loading up to failure. Strength properties and failure mechanisms were evaluated with reference to the biaxiality ratio of the loading. The scattering of the biaxial strength data was analyzed using the Weibull distribution. The axial contraction of carbon fiber-reinforced plastic (CFRP) tubes under biaxial loading was investigated theoretically and experimentally. Artificial neural networks were introduced to predict the failure strength using the algorithm of the error back-propagation. The prediction was also made by the Tsai-Wu theory using the experimental data and by the combined optimized tensor-polynomial theory. A comparison shows that the artificial neural network has the smallest root-mean square (RMS) error of the three prediction methods. The prediction of the axial contraction of the tubes correlates well with the results of a linear variable differential transformer (LVDT) of the testing machine. From the phenomenological analysis of the failure and the fractographic observations of the fracture surface, three types of failure modes and microscopic failure were investigated, depending on the biaxiality ratio, and the corresponding failure mechanisms are suggested.
Study of an athermal quasi static plastic deformation in a 2D granular material
NASA Astrophysics Data System (ADS)
Zhang, Jie; Zheng, Jie
2016-11-01
In crystalline materials, the plasticity has been well understood in terms of dynamics of dislocation, i.e. flow defects in the crystals where the flow defects can be directly visualized under a microscope. In a contrast, the plasticity in amorphous materials, i.e. glass, is still poorly understood due to the disordered nature of the materials. In this talk, I will discuss the recent results we have obtained in our ongoing research of the plasticity of a 2D glass in the athermal quasi static limit where the 2D glass is made of bi-disperse granular disks with very low friction. Starting from a densely packed homogeneous and isotropic initial state, we apply pure shear deformation to the system. For a sufficiently small strain, the response of the system is linear and elastic like; when the strain is large enough, the plasticity of the system gradually develops and eventually the shear bands are fully developed. In this study, we are particularly interested in how to relate the local plastic deformation to the macroscopic response of the system and also in the development of the shear bands.
Quasi-static extension of a tensile crack contained in a viscoelastic-plastic solid
NASA Technical Reports Server (NTRS)
Wnuk, M. P.
1973-01-01
Final stretch criterion of failure is applied to the problem of quasi-static extension of a crack embedded in an elastic-plastic or viscoelastic-plastic matrix. The slow growth under subcritical conditions in a rate-sensitive Tresca solid is shown to be a superposition of creep rupture and McClintock's ductile growth. This type of growth occurs at subcritical magnitude of the imposed K-factor and can be accounted for only through a recognition of inelastic properties of solids. In the subcritical range there is no unique value for K sub c independent of geometrical configuration and flaw size. Not only the produced states of stress and strain are dependent on the loading path, but also the material resistance to fracture turns out to be a function of the history of loading that precedes catastrophic failure. A nonlinear integro-differential equation of motion is derived for a crack progressing through a viscoelastic medium with some limited ability to plastic flow. Examples of numerical integration are given incorporating both monotonic and cyclic loading programs.
Ionospheric Joule heating and Poynting flux in quasi-static approximation
NASA Astrophysics Data System (ADS)
VanhamäKi, H.; Yoshikawa, A.; Amm, O.; Fujii, R.
2012-08-01
Energy flow is an important aspect of magnetosphere-ionosphere coupling. Electromagnetic energy is transported as Poynting flux from the magnetosphere to the ionosphere, where it is dissipated as Joule heating. Recently Richmond derived an "Equipotential Boundary Poynting Flux (EBPF) theorem", that the Poynting flux within a flux tube whose boundary is an equipotential curve is dissipated inside the ionospheric foot point of the flux tube. In this article we study Richmond's EBPF theorem more closely by considering the curl-free and divergence-free parts as well as the Hall and Pedersen parts of the ionospheric current system separately. Our main findings are that i) divergence-free currents are on average dissipationless, ii) the curl-free Pedersen current is responsible for the whole ionospheric Joule heating and iii) pointwise match between vertical Poynting flux and ionospheric Joule heating is broken by gradients of Hall and Pedersen conductances. Results i) and ii) hold when integrated over the whole ionosphere or any area bounded by an equipotential curve. The present study is limited to quasi-static phenomena. The more general topic of electrodynamic Joule heating and Poynting flux, including inductive effects, will be addressed in a future study.
Quasi-Static Viscoelastic Finite Element Model of an Aircraft Tire
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Tanner, John A.; Mason, Angela J.
1999-01-01
An elastic large displacement thick-shell mixed finite element is modified to allow for the calculation of viscoelastic stresses. Internal strain variables are introduced at the element's stress nodes and are employed to construct a viscous material model. First order ordinary differential equations relate the internal strain variables to the corresponding elastic strains at the stress nodes. The viscous stresses are computed from the internal strain variables using viscous moduli which are a fraction of the elastic moduli. The energy dissipated by the action of the viscous stresses is included in the mixed variational functional. The nonlinear quasi-static viscous equilibrium equations are then obtained. Previously developed Taylor expansions of the nonlinear elastic equilibrium equations are modified to include the viscous terms. A predictor-corrector time marching solution algorithm is employed to solve the algebraic-differential equations. The viscous shell element is employed to computationally simulate a stair-step loading and unloading of an aircraft tire in contact with a frictionless surface.
Control of layer stacking in CVD graphene under quasi-static condition.
Subhedar, Kiran M; Sharma, Indu; Dhakate, Sanjay R
2015-09-14
The type of layer stacking in bilayer graphene has a significant influence on its electronic properties because of the contrast nature of layer coupling. Herein, different geometries of the reaction site for the growth of bilayer graphene by the chemical vapor deposition (CVD) technique and their effects on the nature of layer stacking are investigated. Micro-Raman mapping and curve fitting analysis confirmed the type of layer stacking for the CVD grown bilayer graphene. The samples grown with sandwiched structure such as quartz/Cu foil/quartz along with a spacer, between the two quartz plates to create a sealed space, resulted in Bernal or AB stacked bilayer graphene while the sample sandwiched without a spacer produced the twisted bilayer graphene. The contrast difference in the layer stacking is a consequence of the difference in the growth mechanism associated with different geometries of the reaction site. The diffusion dominated process under quasi-static control is responsible for the growth of twisted bilayer graphene in sandwiched geometry while surface controlled growth with ample and continual supply of carbon in sandwiched geometry along with a spacer, leads to AB stacked bilayer graphene. Through this new approach, an efficient technique is presented to control the nature of layer stacking.
NASA Astrophysics Data System (ADS)
Salary, Mohammad Mahdi; Mosallaei, Hossein
2015-06-01
Interactions between the plasmons of noble metal nanoparticles and non-absorbing biomolecules forms the basis of the plasmonic sensors, which have received much attention. Studying these interactions can help to exploit the full potentials of plasmonic sensors in quantification and analysis of biomolecules. Here, a quasi-static continuum model is adopted for this purpose. We present a boundary-element method for computing the optical response of plasmonic particles to the molecular binding events by solving the Poisson equation. The model represents biomolecules with their molecular surfaces, thus accurately accounting for the influence of exact binding conformations as well as structural differences between different proteins on the response of plasmonic nanoparticles. The linear systems arising in the method are solved iteratively with Krylov generalized minimum residual algorithm, and the acceleration is achieved by applying precorrected-Fast Fourier Transformation technique. We apply the developed method to investigate interactions of biotinylated gold nanoparticles (nanosphere and nanorod) with four different types of biotin-binding proteins. The interactions are studied at both ensemble and single-molecule level. Computational results demonstrate the ability of presented model for analyzing realistic nanoparticle-biomolecule configurations. The method can provide comprehensive study for wide variety of applications, including protein structures, monitoring structural and conformational transitions, and quantification of protein concentrations. In addition, it is suitable for design and optimization of the nano-plasmonic sensors.
Hasseldine, Benjamin P J; Gao, Chao; Collins, Joseph M; Jung, Hyun-Do; Jang, Tae-Sik; Song, Juha; Li, Yaning
2017-01-06
The common millet (Panicum miliaceum) seedcoat has a fascinating complex microstructure, with jigsaw puzzle-like epidermis cells articulated via wavy intercellular sutures to form a compact layer to protect the kernel inside. However, little research has been conducted on linking the microstructure details with the overall mechanical response of this interesting biological composite. To this end, an integrated experimental-numerical-analytical investigation was conducted to both characterize the microstructure and ascertain the microscale mechanical properties and to test the overall response of kernels and full seeds under macroscale quasi-static compression. Scanning electron microscopy (SEM) was utilized to examine the microstructure of the outer seedcoat and nanoindentation was performed to obtain the material properties of the seedcoat hard phase material. A multiscale computational strategy was applied to link the microstructure to the macroscale response of the seed. First, the effective anisotropic mechanical properties of the seedcoat were obtained from finite element (FE) simulations of a microscale representative volume element (RVE), which were further verified from sophisticated analytical models. Then, macroscale FE models of the individual kernel and full seed were developed. Good agreement between the compression experiments and FE simulations were obtained for both the kernel and the full seed. The results revealed the anisotropic property and the protective function of the seedcoat, and showed that the sutures of the seedcoat play an important role in transmitting and distributing loads in responding to external compression.
Quasi-static characterisation and impact testing of auxetic foam for sports safety applications
NASA Astrophysics Data System (ADS)
Duncan, Olly; Foster, Leon; Senior, Terry; Alderson, Andrew; Allen, Tom
2016-05-01
This study compared low strain rate material properties and impact force attenuation of auxetic foam and the conventional open-cell polyurethane counterpart. This furthers our knowledge with regards to how best to apply these highly conformable and breathable auxetic foams to protective sports equipment. Cubes of auxetic foam measuring 150 × 150 × 150 mm were fabricated using a thermo-mechanical conversion process. Quasi-static compression confirmed the converted foam to be auxetic, prior to being sliced into 20 mm thick cuboid samples for further testing. Density, Poisson’s ratio and the stress-strain curve were all found to be dependent on the position of each cuboid from within the cube. Impact tests with a hemispherical drop hammer were performed for energies up to 6 J, on foams covered with a polypropylene sheet between 1 and 2 mm thick. Auxetic samples reduced peak force by ˜10 times in comparison to the conventional foam. This work has shown further potential for auxetic foam to be applied to protective equipment, while identifying that improved fabrication methods are required.
A translation micromirror with large quasi-static displacement and high surface quality
NASA Astrophysics Data System (ADS)
Xue, Yuan; He, Siyuan
2017-01-01
A large displacement with high surface quality translation micromirror is presented. The micromirror consists of a magnetic actuator and a mirror plate. The actuator and the mirror plate are fabricated separately using two processes and then bonded together. The actuator consists of a moving film which is a 20 µm thick nickel film fabricated by MetalMUMPs and a solenoid located underneath the moving film. The moving film is designed to curve up through the residual stress gradient in the nickel film and a curve-up mechanism which includes four trapezoidal plates and anchoring springs. The mirror plate is simply diced from a polished silicon wafer and coated with a metal thin film. The mirror plate is bonded onto the central ring of the moving film. A solenoid attracts the moving film along with the mirror plate downwards to realize translation. A quasi-static displacement of 123 µm is achieved at a driving current of 400 mA. A high mirror surface quality is realized, e.g. 15.6 m of curvature radius and 2 nm surface roughness.
Quasi-static modeling of human limb for intra-body communications with experiments.
Pun, Sio Hang; Gao, Yue Ming; Mak, PengUn; Vai, Mang I; Du, Min
2011-11-01
In recent years, the increasing number of wearable devices on human has been witnessed as a trend. These devices can serve for many purposes: personal entertainment, communication, emergency mission, health care supervision, delivery, etc. Sharing information among the devices scattered across the human body requires a body area network (BAN) and body sensor network (BSN). However, implementation of the BAN/BSN with the conventional wireless technologies cannot give optimal result. It is mainly because the high requirements of light weight, miniature, energy efficiency, security, and less electromagnetic interference greatly limit the resources available for the communication modules. The newly developed intra-body communication (IBC) can alleviate most of the mentioned problems. This technique, which employs the human body as a communication channel, could be an innovative networking method for sensors and devices on the human body. In order to encourage the research and development of the IBC, the authors are favorable to lay a better and more formal theoretical foundation on IBC. They propose a multilayer mathematical model using volume conductor theory for galvanic coupling IBC on a human limb with consideration on the inhomogeneous properties of human tissue. By introducing and checking with quasi-static approximation criteria, Maxwell's equations are decoupled and capacitance effect is included to the governing equation for further improvement. Finally, the accuracy and potential of the model are examined from both in vitro and in vivo experimental results.
NASA Astrophysics Data System (ADS)
Krak, Michael D.; Singh, Rajendra
2016-09-01
Vehicle clutch dampers belong to a family of torsional devices or isolators that contain multi-staged torsional springs, pre-load features, clearances, and multi-staged dry friction elements. Estimation of elastic and dissipative parameters is usually carried out under quasi-static loading and then these static parameters are often assumed when predicting dynamic responses. For the purpose of comparison, this article proposes a new time domain parameter estimation method under dynamic, transient loading conditions. The proposed method assumes a priori knowledge of few nonlinear features based on the design and quasi-static characterization. Angular motion measurements from a component-level laboratory experiment under dynamic loading are utilized. Elastic parameters are first estimated through an instantaneous stochastic linearization technique. A model-based approach and energy balance principle are employed to estimate a combination of viscous and Coulomb damping parameters for seven local (stage-dependent) and global damping formulations for a practical device. The proposed method is validated by comparing time domain predictions from nonlinear models to dynamic measurements. Nonlinear models that utilize the proposed damping formulations are found to be superior to those that solely rely on parameters from a quasi-static experiment.
Effect of preload on the fatigue and static strength of composite laminates with defects
NASA Technical Reports Server (NTRS)
Porter, T. R.; Smith, G. T.
1977-01-01
The effect of a preload cycle on the structural performance of three graphite/epoxy composite laminates was studied. The layups studied were a laminate typical of general purpose structures (L1), a laminate representative of a filament wound tank (L2), and a laminate representative of turboengine fan blades. The effects of three sizes of simulated initial defects were studied. The tests developed static strength data, fatigue to failure data, and residual static data after application of a predetermined number of fatigue cycles. For L1 specimens, there was a slight trend for the static strength to be greater for preloaded specimens. After application of cyclic loading, however, the influence of preloading was insignificant. In L2 and L3 specimens there was no consistent difference in the static or fatigue results between preloaded and nonpreloaded specimens.
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2015-12-01
Parallel E-fields play a crucial role for the acceleration of charged particles, creating discrete aurorae. However, once the parallel electric fields are produced, they will disappear right away, unless the electric fields can be continuously generated and sustained for a fairly long time. Thus, the crucial question in auroral physics is how to generate such a powerful and self-sustained parallel electric fields which can effectively accelerate charge particles to high energy during a fairly long time. We propose that nonlinear interaction of incident and reflected Alfven wave packets in inhomogeneous auroral acceleration region can produce quasi-stationary non-propagating electromagnetic plasma structures, such as Alfvenic double layers (DLs) and Charge Holes. Such Alfvenic quasi-static structures often constitute powerful high energy particle accelerators. The Alfvenic DL consists of localized self-sustained powerful electrostatic electric fields nested in a low density cavity and surrounded by enhanced magnetic and mechanical stresses. The enhanced magnetic and velocity fields carrying the free energy serve as a local dynamo, which continuously create the electrostatic parallel electric field for a fairly long time. The generated parallel electric fields will deepen the seed low density cavity, which then further quickly boosts the stronger parallel electric fields creating both Alfvenic and quasi-static discrete aurorae. The parallel electrostatic electric field can also cause ion outflow, perpendicular ion acceleration and heating, and may excite Auroral Kilometric Radiation.
Quasi-Static and Dynamic Response Characteristics of F-4 Bias-Ply and Radial-Belted Main Gear Tires
NASA Technical Reports Server (NTRS)
Davis, Pamela A.
1997-01-01
An investigation was conducted at Langley Research Center to determine the quasi-static and dynamic response characteristics of F-4 military fighter 30x11.5-14.5/26PR bias-ply and radial-belted main gear tires. Tire properties were measured by the application of vertical, lateral, and fore-and-aft loads. Mass moment-of-inertia data were also obtained. The results of the study include quasi-static load-deflection curves, free-vibration time-history plots, energy loss associated with hysteresis, stiffness and damping characteristics, footprint geometry, and inertia properties of each type of tire. The difference between bias-ply and radial-belted tire construction is given, as well as the advantages and disadvantages of each tire design. Three simple damping models representing viscous, structural, and Coulomb friction are presented and compared with the experimental data. The conclusions discussed contain a summary of test observations.
PyLith: A Finite-Element Code for Modeling Quasi-Static and Dynamic Crustal Deformation
NASA Astrophysics Data System (ADS)
Aagaard, B.; Williams, C. A.; Knepley, M. G.
2011-12-01
We have developed open-source finite-element software for 2-D and 3-D dynamic and quasi-static modeling of crustal deformation. This software, PyLith (current release is version 1.6) can be used for quasi-static viscoelastic modeling, dynamic spontaneous rupture and/or ground-motion modeling. Unstructured and structured finite-element discretizations allow for spatial scales ranging from tens of meters to hundreds of kilometers with temporal scales in dynamic problems ranging from milliseconds to minutes and temporal scales in quasi-static problems ranging from minutes to thousands of years. PyLith development is part of the NSF funded Computational Infrastructure for Geodynamics (CIG) and the software runs on a wide variety of platforms (laptops, workstations, and Beowulf clusters). Binaries (Linux, Darwin, and Windows systems) and source code are available from geodynamics.org. PyLith uses a suite of general, parallel, graph data structures called Sieve for storing and manipulating finite-element meshes. This permits use of a variety of 2-D and 3-D cell types including triangles, quadrilaterals, hexahedra, and tetrahedra. Current PyLith features include prescribed fault ruptures with multiple earthquakes and aseismic creep, spontaneous fault ruptures with a variety of fault constitutive models, time-dependent Dirichlet and Neumann boundary conditions, absorbing boundary conditions, time-dependent point forces, and gravitational body forces. PyLith supports infinitesimal and small strain formulations for linear elastic rheologies, linear and generalized Maxwell viscoelastic rheologies, power-law viscoelastic rheologies, and Drucker-Prager elastoplastic rheologies. Current software development focuses on coupling quasi-static and dynamic simulations to resolve multi-scale deformation across the entire seismic cycle and the coupling of elasticity to heat and/or fluid flow.
PyLith: A Finite-Element Code for Modeling Quasi-Static and Dynamic Crustal Deformation
NASA Astrophysics Data System (ADS)
Aagaard, B.; Williams, C.; Knepley, M.
2008-12-01
We have developed open-source finite-element software for 2-D and 3-D dynamic and quasi-static modeling of crustal deformation. This software, PyLith (current release is version 1.3), combines the quasi-static viscoelastic modeling functionality of PyLith 0.8 and its predecessors (LithoMop and Tecton) and the wave propagation modeling functionality of EqSim. The target applications contain spatial scales ranging from tens of meters to hundreds of kilometers with temporal scales for dynamic modeling ranging from milliseconds to minutes and temporal scales for quasi-static modeling ranging from minutes to hundreds of years. PyLith is part of the NSF funded Computational Infrastructure for Geodynamics (CIG) and runs on a wide variety of platforms (laptops, workstations, and Beowulf clusters). It uses a suite of general, parallel, graph data structures called Sieve for storing and manipulating finite-element meshes. This permits use of a variety of 2-D and 3-D cell types including triangles, quadrilaterals, hexahedra, and tetrahedra. Current features include kinematic fault ruptures, Dirichlet (displacement or velocity), Neumann (traction), and absorbing boundary conditions, linear elastic, generalized Maxwell, and Maxwell linear viscoelastic materials, gravitational body forces, and automatic time step selection for quasi-static problems. Future releases will add dynamic fault interface conditions (employing fault constitutive models), additional viscoelastic and viscoplastic materials, and automated calculation of suites of Green's functions. We also plan to extend PyLith to allow coupling multiple simultaneous simulations. For example, this could include (1) coupling an interseismic deformation simulation to a spontaneous earthquake rupture simulation (each using subsets of the software), (2) coupling a spontaneous earthquake rupture simulation to a global wave propagation simulation, or (3) coupling a short-term crustal deformation simulation to a mantle convection
PyLith: A Finite-Element Code for Modeling Quasi-Static and Dynamic Crustal Deformation
NASA Astrophysics Data System (ADS)
Aagaard, B.; Williams, C.; Knepley, M.
2007-12-01
We have developed open-source finite-element software for 2-D and 3-D dynamic and quasi-static modeling of crustal deformation. This software, PyLith version 1.1, combines the quasi-static viscoelastic modeling functionality of PyLith 0.8 and its predecessors (LithoMop and Tecton) and the wave propagation and spontaneous rupture modeling functionality of EqSim. The target applications contain spatial scales ranging from tens of meters to hundreds of kilometers with temporal scales for dynamic modeling ranging from milliseconds to minutes and temporal scales for quasi-static modeling ranging from minutes to hundreds of years. PyLith is part of the NSF funded Computational Infrastructure for Geodynamics (CIG) and runs on a wide variety of platforms, from laptops to Beowulf clusters. It uses a suite of general, parallel, graph data structures called Sieve for storing and manipulating finite-element meshes. This permits use of a variety of 2-D and 3-D cell types including triangles, quadrilaterals, hexahedra, and tetrahedra. Current features include kinematic fault interface conditions, Dirichlet (displacement or velocity), Neumann (traction), and absorbing boundary conditions, linear elastic, generalized Maxwell, and Maxwell linear viscoelastic materials, and quasi-static and dynamic time-stepping. Future releases will add dynamic fault interface conditions (employing fault constitutive models), additional viscoelastic and viscoplastic materials, and automated calculation of suites of Green's functions. We also plan to extend PyLith to allow coupling multiple simultaneous simulations. For example, this could include (1) coupling an interseismic deformation simulation to a spontaneous earthquake rupture simulation (each using subsets of the software), (2) coupling a spontaneous earthquake rupture simulation to a global wave propagation simulation, or (3) coupling a short-term crustal deformation simulation to a mantle convection simulation and an orogenesis and basin
Efficiencies of power plants, quasi-static models and the geometric-mean temperature
NASA Astrophysics Data System (ADS)
Johal, Ramandeep S.
2017-02-01
Observed efficiencies of industrial power plants are often approximated by the square-root formula: 1 - √T-/T+, where T+(T-) is the highest (lowest) temperature achieved in the plant. This expression can be derived within finite-time thermodynamics, or, by entropy generation minimization, based on finite rates for the processes. In these analyses, a closely related quantity is the optimal value of the intermediate temperature for the hot stream, given by the geometric-mean value: √T+/T-. In this paper, instead of finite-time models, we propose to model the operation of plants by quasi-static work extraction models, with one reservoir (source/sink) as finite, while the other as practically infinite. No simplifying assumption is made on the nature of the finite system. This description is consistent with two model hypotheses, each yielding a specific value of the intermediate temperature, say T1 and T2. The lack of additional information on validity of the hypothesis that may be actually realized, motivates to approach the problem as an exercise in inductive inference. Thus we define an expected value of the intermediate temperature as the equally weighted mean: (T1 + T2)/2. It is shown that the expected value is very closely given by the geometric-mean value for almost all of the observed power plants.
NASA Astrophysics Data System (ADS)
Sowmiya, C.; Kothawala, Ali Arshad; Thittai, Arun K.
2016-04-01
During manual palpation of breast masses, the perception of its stiffness and slipperiness are the two commonly used information by the physician. In order to reliably and quantitatively obtain this information several non-invasive elastography techniques have been developed that seek to provide an image of the underlying mechanical properties, mostly stiffness-related. Very few approaches have visualized the "slip" at the lesion-background boundary that only occurs for a loosely-bonded benign lesion. It has been shown that axial-shear strain distribution provides information about underlying slip. One such feature, referred to as "fill-in" was interpreted as a surrogate of the rotation undergone by an asymmetrically-oriented-loosely bonded-benign-lesion under quasi-static compression. However, imaging and direct visualization of the rotation itself has not been addressed yet. In order to accomplish this, the quality of lateral displacement estimation needs to be improved. In this simulation study, we utilize spatial compounding approach and assess the feasibility to obtain good quality rotation elastogram. The angular axial and lateral displacement estimates were obtained at different insonification angles from a phantom containing an elliptical inclusion oriented at 45°, subjected to 1% compression from the top. A multilevel 2D-block matching algorithm was used for displacement tracking and 2D-least square compounding of angular axial and lateral displacement estimates was employed. By varying the maximum steering angle and incremental angle, the improvement in the lateral motion tracking accuracy and its effects on the quality of rotational elastogram were evaluated. Results demonstrate significantly-improved rotation elastogram using this technique.
Simulation of quasi-static hydraulic fracture propagation in porous media with XFEM
NASA Astrophysics Data System (ADS)
Juan-Lien Ramirez, Alina; Neuweiler, Insa; Löhnert, Stefan
2015-04-01
Hydraulic fracturing is the injection of a fracking fluid at high pressures into the underground. Its goal is to create and expand fracture networks to increase the rock permeability. It is a technique used, for example, for oil and gas recovery and for geothermal energy extraction, since higher rock permeability improves production. Many physical processes take place when it comes to fracking; rock deformation, fluid flow within the fractures, as well as into and through the porous rock. All these processes are strongly coupled, what makes its numerical simulation rather challenging. We present a 2D numerical model that simulates the hydraulic propagation of an embedded fracture quasi-statically in a poroelastic, fully saturated material. Fluid flow within the porous rock is described by Darcy's law and the flow within the fracture is approximated by a parallel plate model. Additionally, the effect of leak-off is taken into consideration. The solid component of the porous medium is assumed to be linear elastic and the propagation criteria are given by the energy release rate and the stress intensity factors [1]. The used numerical method for the spatial discretization is the eXtended Finite Element Method (XFEM) [2]. It is based on the standard Finite Element Method, but introduces additional degrees of freedom and enrichment functions to describe discontinuities locally in a system. Through them the geometry of the discontinuity (e.g. a fracture) becomes independent of the mesh allowing it to move freely through the domain without a mesh-adapting step. With this numerical model we are able to simulate hydraulic fracture propagation with different initial fracture geometries and material parameters. Results from these simulations will also be presented. References [1] D. Gross and T. Seelig. Fracture Mechanics with an Introduction to Micromechanics. Springer, 2nd edition, (2011) [2] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal
NASA Technical Reports Server (NTRS)
Krueger, Ronald
2012-01-01
The development of benchmark examples for quasi-static delamination propagation prediction is presented. The example is based on a finite element model of the Mixed-Mode Bending (MMB) specimen for 50% mode II. The benchmarking is demonstrated for Abaqus/Standard, however, the example is independent of the analysis software used and allows the assessment of the automated delamination propagation prediction capability in commercial finite element codes based on the virtual crack closure technique (VCCT). First, a quasi-static benchmark example was created for the specimen. Second, starting from an initially straight front, the delamination was allowed to propagate under quasi-static loading. Third, the load-displacement as well as delamination length versus applied load/displacement relationships from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Overall, the results are encouraging, but further assessment for mixed-mode delamination fatigue onset and growth is required.
NASA Technical Reports Server (NTRS)
Krueger, Ronald
2012-01-01
The development of benchmark examples for quasi-static delamination propagation prediction is presented and demonstrated for a commercial code. The examples are based on finite element models of the Mixed-Mode Bending (MMB) specimen. The examples are independent of the analysis software used and allow the assessment of the automated delamination propagation prediction capability in commercial finite element codes based on the virtual crack closure technique (VCCT). First, quasi-static benchmark examples were created for the specimen. Second, starting from an initially straight front, the delamination was allowed to propagate under quasi-static loading. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. Good agreement between the results obtained from the automated propagation analysis and the benchmark results could be achieved by selecting input parameters that had previously been determined during analyses of mode I Double Cantilever Beam and mode II End Notched Flexure specimens. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Overall the results are encouraging, but further assessment for mixed-mode delamination fatigue onset and growth is required.
Comparison of Static and Dynamic Elastic Modules of Different Strength Concretes
NASA Astrophysics Data System (ADS)
Uyanık, Osman; Sabbaǧ, Nevbahar
2016-04-01
In this study, the static and dynamic elastic (Young) modules of concrete with different strength was intended to compare. For this purpose 150mm dimensions 9 for each design cubic samples prepared and they were subjected to water cure during 28 days. After Seismic Ultrasonic P and S wave travel time measurements of samples, P and S wave velocities and taking advantage of elasticity theory the dynamic elastic modules were calculated. Concrete strength was obtained from the uniaxial compression tests in order to calculate the static elastic modules of the samples. The static elastic modulus is calculated by using the empirical relationships used in international standards. The obtained static and dynamic elastic modules have been associated. A curve was obtained from this association result that approximately similar to the stress-strain curve of obtaining at failure criterion of the sample. This study was supported with OYP05277-DR-14 Project No. by SDU and State Hydraulic Works 13th Regional/2012-01 Project No. Keywords: Concrete Strength, P and S wave Velocities, Static, Dynamic, Young Modules
Analysis of the Static Strength and Relative Endurance of Women Athletes
ERIC Educational Resources Information Center
Heyward, Vivian; McCreary, Leslie
1977-01-01
Investigations of static strength and relative endurance of the grip muscles of women athletes revealed that mean endurance time was significantly greater than for men. Results were discussed in light of evidence suggesting possible sex differences in muscle hypertrophy, capillarization of muscle tissue, critical occluding tension level, and…
ERIC Educational Resources Information Center
Giagazoglou, Paraskevi; Arabatzi, Fotini; Dipla, Konstantina; Liga, Maria; Kellis, Eleftherios
2012-01-01
The aim of this study was to assess the effects of a hippotherapy program on static balance and strength in adolescents with intellectual disability (ID). Nineteen adolescents with moderate ID were assigned either an experimental group (n = 10) or a control group (n = 9). The experimental group attended a 10-week hippotherapy program. To assess…
An, Weiming; Decyk, Viktor K.; Mori, Warren B.; Antonsen, Thomas M.
2013-10-01
We present improvements to the three-dimensional (3D) quasi-static particle-in-cell (PIC) algorithm, which is used to efficiently model short-pulse laser and particle beam–plasma interactions. In this algorithm the fields including the index of refraction created by a static particle/laser beam are calculated. These fields are then used to advance the particle/laser beam forward in time (distance). For a 3D quasi-static code, calculating the wake fields is done using a two-dimensional (2D) PIC code where the time variable is ξ=ct-z and z is the propagation direction of the particle/laser beam. When calculating the wake, the fields, particle positions and momenta are not naturally time centered so an iterative predictor corrector loop is required. In the previous iterative loop in QuickPIC (currently the only 3D quasi-static PIC code), the field equations are derived using the Lorentz gauge. Here we describe a new algorithm which uses gauge independent field equations. It is found that with this new algorithm, the results converge to the results from fully explicitly PIC codes with far fewer iterations (typically 1 iteration as compared to 2–8) for a wide range of problems. In addition, we describe a new deposition scheme for directly depositing the time derivative of the current that is needed in one of the field equations. The new deposition scheme does not require message passing for the particles inside the iteration loop, which greatly improves the speed for parallelized calculations. Comparisons of results from the new and old algorithms and to fully explicit PIC codes are also presented.
NASA Astrophysics Data System (ADS)
Caudillo Mata, L.; Haber, E.
2013-12-01
Luz Angelica Caudillo-Mata, Eldad Haber Geophysics Department, The University of British Columbia. 4013-2207 Main Mall, Vancouver, B.C., Canada. Z. C. V6R 1Z4 Key words: Finite Volume, Quasi-static Maxwell's Equations, Optimization, Upscaling, Homogenization, Exploration Geophysics. Abstract: Mineral exploration has exploited the application of mathematical modelling and inversion methods to electromagnetic data by creating a thoughtful workflow that assists in the identification of potential geological targets, the understanding of the larger scale stratigraphy and structure in which a deposit might be located, or delineating finer scale detail in an existing deposit. [1] In recent years, electromagnetic modelling and inversion techniques based on finite volume and finite elements have been studied extensively due to their usefulness in theory as well as in practice [2]. Although the theoretical foundation for these methods is straight-forward, it can face major difficulties when used to simulate realistic situations. One of the fundamental issues is modelling the vast heterogeneity of geological targets in terms of scale, magnitude and anisotropy. Robust and accurate simulations require very fine meshes, especially when the earth is highly heterogeneous. Such meshes are difficult-to-work-with and may lead to very expensive-to-compute simulations when considering large earth-multiscale scenarios. For instance, geological characterizations typically contain on the order of 1e7 to 1e8 cells. These models, which are referred as fine models, represent geological variations on very fine scales vertically, though their areal resolution is still relatively coarse [3]. Numerical upscaling is a mathematical procedure that strive to develop coarse scale models to accurately approximate fine scale ones. Therefore, it is a useful resource to alleviate the computational cost. Upscaling of Maxwell's equations presents big challenges such as choosing the appropriate upscaling
Serra, Andrey J; Silva, José A; Marcolongo, Alessandra A; Manchini, Martha T; Oliveira, João V A; Santos, Luis F N; Rica, Roberta L; Bocalini, Danilo S
2013-08-01
This study examined whether passive static stretching reduces the maximum muscle strength achieved by different body segments in untrained and resistance-trained subjects. Twenty adult men were assigned to 1 of the following groups: untrained (UT, N = 9) and resistance-trained (RT, N = 11) groups. The subjects performed six 1 repetition maximum (1RM) load tests of the following exercises: horizontal bench press, lat pull-downs, bicep curls, and 45° leg press. The results achieved in the last two 1RM tests were used for statistical analyses. A passive static stretching program was incorporated before the sixth 1RM test. The body fat content was significantly higher in the UT group compared with the RT group (p < 0.0001). Moreover, the RT group showed significantly higher proportion of lean body mass compared with the UT group (p < 0.0001). Maximum muscle strength on all 4 exercises was significantly reduced in both groups after stretching (p < 0.01). Furthermore, the magnitude of muscle strength reduction was similar for the UT and the RT groups. The exception was for barbell curls, in which the muscle strength depression was significantly higher in the UT group compared with the RT group (p < 0.0001). In conclusion, the passive static stretching program was detrimental to upper- and lower-body maximal muscle strength performance in several body segments. The negative effects of stretching were similar for subjects participating in resistance training regimens.
Some remarks on static, creep and fatigue flexural strength of satin woven CFRP laminates
Miyano, Y.; McMurry, M.K.; Muki, R.
1995-12-31
This paper deals with the time-temperature dependent flexural strength of a satin-woven CFRP laminate having a matrix resin with a high glass transition temperature of T{sub g} = 236/C under static, creep and fatigue loading by 3-point bending tests. Static tests were conducted at various points in a wide range of deflection rates and temperatures. The creep and fatigue tests were carried out at various constant temperatures; the fatigue test was conducted at two frequencies. The results of the experimental study are as follows. The flexural strength of the CFRP laminates for all three loading types is time-temperature dependent even near room temperature well below T{sub g}. The time and temperature superposition principle for the matrix resin also holds for the flexural strength of the CFRP laminates. The fracture modes are almost the same for the three loading types under all conditions tested. Finally, we propose a method for predicting the flexural fatigue strength for a given number of cycles to failure at an arbitrary temperature, frequency and stress ratio based on the current experimental findings and considering the relationships among the static, creep and fatigue flexural strengths.
An approach to scaling size effect on strength of quasi-brittle biomedical materials.
Lei, Wei-Sheng; Su, Peng
2016-09-01
Two-parameter Weibull statistics is commonly used for characterizing and modeling strength distribution of biomedical materials and its size dependence. The calibrated scale parameter and shape factor are usually sensitive to specimen size. Since Weibull statistics is subject to the weakest link postulate, this work proposed to directly resort to the weakest-link formulation for the cumulative failure probability to characterize size effect on strength distribution of quasi-brittle biomedical materials. As a preliminary examination, the approach was assessed by two sets of published strength data. It shows that the resultant expression for the cumulative probability follows either Weibull distribution or other type of distributions. The calibrated model parameters are independent of specimen size, so they can be used to transfer strength distribution from one set of specimens to another set of specimens with geometrical similarity under same loading mode. These initial results motivate a more comprehensive validation of the proposed approach to proceed via a larger set of case studies covering different quasi-brittle biomedical materials over a wider range of size variation.
Effect of microstructure on static and dynamic mechanical properties of high strength steels
NASA Astrophysics Data System (ADS)
Qu, Jinbo
The high speed deformation behavior of a commercially available dual phase (DP) steel was studied by means of split Hopkinson bar apparatus in shear punch (25m/s) and tension (1000s-1) modes with an emphasis on the influence of microstructure. The cold rolled sheet material was subjected to a variety of heat treatment conditions to produce several different microstructures, namely ferrite plus pearlite, ferrite plus bainite and/or acicular ferrite, ferrite plus bainite and martensite, and ferrite plus different fractions of martensite. Static properties (0.01mm/s for shear punch and 0.001s -1 for tension) of all the microstructures were also measured by an MTS hydraulic machine and compared to the dynamic properties. The effects of low temperature tempering and bake hardening were investigated for some ferrite plus martensite microstructures. In addition, two other materials, composition designed as high strength low alloy (HSLA) steel and transformation induced plasticity (TRIP) steel, were heat treated and tested to study the effect of alloy chemistry on the microstructure and property relationship. A strong effect of microstructure on both static and dynamic properties and on the relationship between static and dynamic properties was observed. According to the variation of dynamic factor with static strength, three groups of microstructures with three distinct behaviors were identified, i.e. classic dual phase (ferrite plus less than 50% martensite), martensite-matrix dual phase (ferrite plus more than 50% martensite), and non-dual phase (ferrite plus non-martensite). Under the same static strength level, the dual phase microstructure was found to absorb more dynamic energy than other microstructures. It was also observed that the general dependence of microstructure on static and dynamic property relationship was not strongly influenced by chemical composition, except the ferrite plus martensite microstructures generated by the TRIP chemistry, which exhibited
Effects of quadriceps strength after static and dynamic whole-body vibration exercise.
Bush, Jill A; Blog, Gabriel L; Kang, Jie; Faigenbaum, Avery D; Ratamess, Nicholas A
2015-05-01
Numerous studies have shown performance benefits including whole-body vibration (WBV) as a training modality or an acute exercise protocol when used as a component of the resistance training program. Some studies have indicated that performing dynamic exercises as compared with static position exercises while exposed to WBV might be beneficial; however, evidence is lacking. Thus, the purpose of this study was to determine if an acute bout of dynamic versus static squats performed during WBV results in increase in quadriceps force production by means of dynamic isokinetic knee extension and flexion exercise. Nonresistance-trained healthy young men and women (N = 21) of 18-25 years participated in 4 protocols with 2-week rest in-between. Protocol 1 consisted of 5 sets of 10 dynamic squats without vibration; Protocol 2: 5 sets of 30-second static squats without vibration; Protocol 3: 5 sets of 10 dynamic squats with 30-Hz WBV for a total of 2.5 minutes; and Protocol 4: 5 sets of 30-second static squats with 30-Hz WBV for a total of 2.5 minutes. Prestrength tests (1 set of 4 repetitions at 100° · s(-1) for the knee extension exercise) was performed within 5 minutes of starting each protocol, and poststrength testing was performed within 1 minute of completing each protocol. Strength outcomes were analyzed by repeated measures analysis of variance with a significance level set at p ≤ 0.05. A significant decrease in strength was observed after dynamic and static squats without WBV (p = 0.002); an increase in strength after dynamic squats with WBV (p = 0.003); and a decrease in strength after static squats with WBV (p = 0.003). The inclusion of WBV to dynamic resistance exercise can be an added modality to increase strength. Whole-body vibration can have varied effects in altering muscle strength in untrained individuals according to the type of resistance training performed. As a dynamic squat with WBV seems to immediately potentiate neuromuscular functioning, the
NASA Astrophysics Data System (ADS)
Paul, B.; Sauvage, J.-F.; Mugnier, L. M.; Dohlen, K.; Petit, C.; Fusco, T.; Mouillet, D.; Beuzit, J.-L.; Ferrari, M.
2014-12-01
Context. The second-generation instrument SPHERE, dedicated to high-contrast imaging, will soon be in operation on the European Very Large Telescope. Such an instrument relies on an extreme adaptive optics system coupled with a coronagraph that suppresses most of the diffracted stellar light. However, the coronagraph performance is strongly limited by quasi-static aberrations that create long-lived speckles in the scientific image plane, which can easily be mistaken for planets. Aims: The wavefront analysis performed by SPHERE's adaptive optics system uses a dedicated wavefront sensor. The ultimate performance is thus limited by the unavoidable differential aberrations between the wavefront sensor and the scientific camera, which have to be estimated and compensated for. In this paper, we use the COFFEE approach to measure and compensate for SPHERE's quasi-static aberrations. Methods: COronagraphic Focal-plane waveFront Estimation for Exoplanet detection (COFFEE), which consists in an extension of phase diversity to coronagraphic imaging, estimates the quasi-static aberrations, including the differential ones, using only two focal plane images recorded by the scientific camera. In this paper, we use coronagraphic images recorded from SPHERE's infrared detector IRDIS to estimate the aberrations upstream of the coronagraph, which are then compensated for using SPHERE's extreme adaptive optics loop SAXO. Results: We first validate the ability of COFFEE to estimate high-order aberrations by estimating a calibrated influence function pattern introduced upstream of the coronagraph. We then use COFFEE in an original iterative compensation process to compensate for the estimated aberrations, leading to a contrast improvement by a factor that varies from 1.4 to 4.7 between 2λ/D and 15λ/D on IRDIS. The performance of the compensation process is also evaluated through simulations. An excellent match between experimental results and these simulations is found.
Chin, Eric Brian; English, Shawn Allen; Briggs, Timothy
2015-09-01
V arious phenomenological delamination initiation criteria are analyzed in quasi - static punch - shear tests conducted on six different geometries. These six geometries are modeled and analyzed using elastic, large - deformation finite element analysis. Analysis output is post - processed to assess different delamination initiation criteria, and their applicability to each of the geometries. These criteria are compared to test results to assess whether or not they are appropriate based on what occurred in testing. Further, examinations of CT scans and ultrasonic images o f test specimens are conducted in the appendix to determine the sequence of failure in each test geometry.
Gartling, D.K.
1996-05-01
The theoretical and numerical background for the finite element computer program, TORO II, is presented in detail. TORO II is designed for the multi-dimensional analysis of nonlinear, electromagnetic field problems described by the quasi-static form of Maxwell`s equations. A general description of the boundary value problems treated by the program is presented. The finite element formulation and the associated numerical methods used in TORO II are also outlined. Instructions for the use of the code are documented in SAND96-0903; examples of problems analyzed with the code are also provided in the user`s manual. 24 refs., 8 figs.
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2013-12-01
The nonlinear interaction of incident and reflected Alfven wave packets in auroral acceleration regions can create non-propagating electromagnetic-plasma structures, such as transverse Alfvenic double layers and charge holes. These dynamical structures are often characterized by localized strong electrostatic electric fields, localized density cavities and enhanced magnetic or mechanical stresses, and are responsible for auroral particle acceleration and the formation of both Alfvenic and quasi-static inverted-V discrete auroras. Similar electromagnetic-plasma structures should also be generated in other cosmic plasmas, and would constitute effective high energy accelerators of charged particles in cosmic plasmas.
NASA Astrophysics Data System (ADS)
Chen, Po-Yu
Antlers have a primary function in combat and are designed for sustaining high impact loading and bending moment without fracture. Learning from antler may shed a new light on traumatic bone fracture prevention and development of novel fracture-resistant, impact-absorbent materials. Antlers have a similar microstructure as bones, composed mainly of type-I collagen fibrils and carbonated apatite crystals, arranged in osteons in the compact bone and trabeculae in the cancellous bone. However, antlers have lower mineral content and consist mainly of primary osteons. The structure of antler at various hierarchical levels was thoroughly characterized and examined using various techniques and compared with bovine femur. Quasi-static mechanical tests (three-point bending, compression, and nanoindentation) were conducted on elk antlers and the results were compared to reported data. The flexural strength and elastic modulus are similar to other antlers but lower than bovine femur. However, the antler has much higher work of fracture and fracture toughness compared with bone. Dynamic behavior of antler was investigated using a split-Hopkinson pressure bar system. Results showed that antler can sustain large amount of deformation without catastrophic fracture. In situ mechanical testing under ESEM was performed to examine crack propagation in the longitudinal and transverse orientations in compact antler. Nonlinear-elastic fracture mechanics were applied to determine R-curves. The fracture toughness in the transverse orientation is much higher than that in the longitudinal orientation due to crack deflections/twists at the hypermineralized interface and the rising R-curve behavior was observed. Synchrotron X-ray computed tomography and SEM images showed toughening mechanisms, including crack deflections/twists, uncracked ligament and collagen fiber bridging. The structure and compressive mechanical properties of the mineral and protein constituents in cancellous antler and
A Comparison of Quasi-Static Indentation to Low-Velocity Impact
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Douglas, M. J.
2000-01-01
A static test method for modeling low-velocity foreign object impact events to composites would prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low-velocity impact tests were carried out and compared. Square specimens of many sizes and thicknesses were utilized to cover the array of types of low velocity impact events. Laminates with a pi/4 stacking sequence were employed since this is by far the most common type of engineering laminate. Three distinct flexural rigidities -under two different boundary conditions were tested in order to obtain damage ranging from that due to large deflection to contact stresses and levels in-between to examine if the static indentation-impact comparisons are valid under the spectrum of damage modes that can be experienced. Comparisons between static indentation and low-velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined included dent depth, back surface crack length, delamination area, and to a limited extent, load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low-velocity impact tests, indicating that static indentation can be used to represent a low-velocity impact event.
A new analysis for the static strength of bolted joint in composite laminates
NASA Astrophysics Data System (ADS)
Liu, Ping; Zhang, Kaida
1992-04-01
A new finite element program was developed for analyzing the static strength of bolted joint in composite laminates. Two fracture models were introduced in estimating the failure of mechanical joints. Theoretical results of ultimate stress as well as failure propagation were given for 21 different orientations of T300/648 Carbon/epoxy composite laminates. These results are in satisfactory agreement with the test data.
NASA Astrophysics Data System (ADS)
Borchani, Wassim
The deployability of structural health monitoring self-powered sensors relies on their capability to harvest energy from signals being monitored. Many of the signals required to assess the structure condition are quasi-static events which limits the levels of power that can be extracted. Several vibration-based techniques have been proposed to increase the transferred level of power and broaden the harvester operating bandwidth. However, these techniques require vibration input excitations at frequencies higher than dominant structural response frequencies which makes them inefficient and not suitable for ambient quasi-static excitations. This research proposes a novel sensing and energy harvesting technique at low frequencies using mechanical energy concentrators and triggers. These mechanisms consist of axially-loaded bilaterally-constrained beams with attached piezoelectric energy harvesters. When the quasi-static axial load reaches a certain mechanical threshold, a sudden snap-through mode-switching occurs. These transitions excite the attached piezoelectric scavengers with high-rate input accelerations, generating then electric power. The main objectives are to understand and model the post-buckling behavior of bilaterally-constrained beams, control it by tailoring geometry and material properties of the buckled elements or stacking them into system assemblies, and finally characterize the energy harvesting and sensing capability of the system under quasi-static excitations. The fundamental principle relies on the following concept. Under axial load, a straight slender beam buckles in the first buckling mode. The increased transverse deformations from a buckled shape lead to contact interaction with the lateral boundaries. The contact interaction generates transverse forces that induce the development of higher order buckling configurations. Transitions between the buckled configurations occur not only during loading, but also unloading. In this work, the post
NASA Astrophysics Data System (ADS)
Martinez, P.; Kasper, M.; Costille, A.; Sauvage, J. F.; Dohlen, K.; Puget, P.; Beuzit, J. L.
2013-06-01
Context. Observing sequences have shown that the major noise source limitation in high-contrast imaging is the presence of quasi-static speckles. The timescale on which quasi-static speckles evolve is determined by various factors, mechanical or thermal deformations, among others. Aims: Understanding these time-variable instrumental speckles and, especially, their interaction with other aberrations, referred to as the pinning effect, is paramount for the search for faint stellar companions. The temporal evolution of quasi-static speckles is, for instance, required for quantifying the gain expected when using angular differential imaging (ADI) and to determining the interval on which speckle nulling techniques must be carried out. Methods: Following an early analysis of a time series of adaptively corrected, coronagraphic images obtained in a laboratory condition with the high-order test bench (HOT) at ESO Headquarters, we confirm our results with new measurements carried out with the SPHERE instrument during its final test phase in Europe. The analysis of the residual speckle pattern in both direct and differential coronagraphic images enables the characterization of the temporal stability of quasi-static speckles. Data were obtained in a thermally actively controlled environment reproducing realistic conditions encountered at the telescope. Results: The temporal evolution of the quasi-static wavefront error exhibits a linear power law, which can be used to model quasi-static speckle evolution in the context of forthcoming high-contrast imaging instruments, with implications for instrumentation (design, observing strategies, data reduction). Such a model can be used for instance to derive the timescale on which non-common path aberrations must be sensed and corrected. We found in our data that quasi-static wavefront error increases with ~0.7 Å per minute.
Fukagawa, Akihiro; Hiroshima, Michio; Sakane, Isao; Tokunaga, Makio
2009-01-01
Experimental probing of a protein-folding energy landscape can be challenging, and energy landscapes comprising multiple intermediates have not yet been defined. Here, we quasi-statically unfolded single molecules of staphylococcal nuclease by constant-rate mechanical stretching with a feedback positioning system. Multiple discrete transition states were detected as force peaks, and only some of the multiple transition states emerged stochastically in each trial. This finding was confirmed by molecular dynamics simulations, and agreed with another result of the simulations which showed that individual trajectories took highly heterogeneous pathways. The presence of Ca2+ did not change the location of the transition states, but changed the frequency of the emergence. Transition states emerged more frequently in stabilized domains. The simulations also confirmed this feature, and showed that the stabilized domains had rugged energy surfaces. The mean energy required per residue to disrupt secondary structures was a few times the thermal energy (1–3 kBT), which agreed with the stochastic feature. Thus, single-molecule quasi-static measurement has achieved notable success in detecting stochastic features of a huge number of possible conformations of a protein. PMID:27857576
NASA Astrophysics Data System (ADS)
Ligda, J.; D'Antuono, D. Scotto; Taheri, M. L.; Schuster, B. E.; Wei, Q.
2016-11-01
In Part I of this work (this issue), we presented the microstructure of tantalum processed by high-pressure torsion (HPT). In this part, we will present results based on site-specific micro-mechanical testing. The experimental techniques were used due to the intrinsic microstructure gradient associated with HPT processing. The primary objective is to explore the grain size effect on the quasi-static mechanical properties of HPT processed tantalum with ultrafine grained (UFG, grain size d < 1000 nm and d > 100 nm) and nanocrystalline (NC, d < 100 nm) microstructure. Two distinct deformation modes are observed, i.e. a homogeneous (non-shearing) region and a localized (shear banding) region. Transmission electron microscopy (TEM) and orientation imaging microscopy (OIM) show that the shear bands form by grain rotation. Comparing d in these two regions to the mechanism proposed in the literature shows that reduced d in the shear banding region is more susceptible to localized shearing via grain rotation. This work unifies, or at least further substantiates, the notion that body-centered cubic metals with UFG/NC microstructure tend to have localized shear band even under quasi-static uniaxial compression.
Elastic properties and fracture strength of quasi-isotropic graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Sullivan, T. L.
1977-01-01
A research program is described which was devised to determine experimentally the elastic properties in tension and bending of quasi-isotropic laminates made from high-modulus graphite fiber and epoxy. Four laminate configurations were investigated, and determinations were made of the tensile modulus, Poisson's ratio, bending stiffness, fracture strength, and fracture strain. The measured properties are compared with those predicted by laminate theory, reasons for scatter in the experimental data are discussed, and the effect of fiber misalignment on predicted elastic tensile properties is examined. The results strongly suggest that fiber misalignment in combination with variation in fiber volume content is responsible for the scatter in both elastic constants and fracture strength.
Sun, Xin; Stephens, Elizabeth V.; Herling, Darrell R.
2004-09-14
In May 2003, ORNL and PNNL began collaboration on a four year research effort focused on developing joining techniques to overcome the technical issues associated with joining lightweight materials in heavy vehicles. The initial focus of research is the development and validation of joint designs for a composite structural member attached to a metal member that satisfy the structural requirements both economically and reliably. Huck-bolting is a common joining method currently used in heavy truck chassis structures. The initial round of testing was conducted to establish a performance benchmark by evaluating the static and fatigue behavior of an existing steel/steel chassis joint at the single huck-bolt level. Both tension and shear loading conditions were considered, and the resulting static and fatigue strengths will be used to guide the joint design for a replacement composite/steel joint. A commercially available, pultruded composite material was chosen to study the generic issues related to composite/steel joints. Extren is produced by STRONGWELL, and it is a combination of fiberglass reinforcement and thermosetting polyester or vinyl ester resin systems. Extren sheets of 3.2 mm thick were joined to 1.4 mm SAE1008 steel sheets with a standard grade 5 bolt with 6.35 mm diameter. Both tension and shear loading modes were considered for the single hybrid joint under static and fatigue loading conditions. Since fiberglass reinforced thermoset polymer composites are a non-homogenous material, their strengths and behavior are dependent upon the design of the composite and reinforcement. The Extren sheet stock was cut along the longitudinal direction to achieve maximum net-section strength. The effects of various manufacturing factors and operational conditions on the static and fatigue strength of the hybrid joint were modeled and experimentally verified. It was found that loading mode and washer size have significant influence on the static and fatigue strength of
Giagazoglou, Paraskevi; Arabatzi, Fotini; Dipla, Konstantina; Liga, Maria; Kellis, Eleftherios
2012-01-01
The aim of this study was to assess the effects of a hippotherapy program on static balance and strength in adolescents with intellectual disability (ID). Nineteen adolescents with moderate ID were assigned either an experimental group (n=10) or a control group (n=9). The experimental group attended a 10-week hippotherapy program. To assess static balance, three tasks of increasing difficulty (Double-Leg Stance with opened or closed eyes, and One-Leg Stance with opened eyes) were performed while standing on an EPS pressure platform (Loran Engineering S.r.I., Bologna, Italy). The strength measurements consisted of three maximal isometric half-squats from the seating position (knee joint at 90°). The hippotherapy intervention program resulted in significant improvements in strength parameters, and on the more complex balance task (i.e. standing on one leg). In conclusion, this study provides evidence that hippotherapy can be used as an effective intervention for improving balance and strength in individuals with ID, and could thus influence functional activities and quality of life.
Clément, Julien; Hagemeister, Nicola; Aissaoui, Rachid; de Guise, Jacques A
2014-01-01
Numerous studies have described 3D kinematics, 3D kinetics and electromyography (EMG) of the lower limbs during quasi-static or dynamic squatting activities. One study compared these two squatting conditions but only at low speed on healthy subjects, and provided no information on kinetics and EMG of the lower limbs. The purpose of the present study was to contrast simultaneous recordings of 3D kinematics, 3D kinetics and EMG of the lower limbs during quasi-stat ic and fast-dynamic squats in healthy and pathological subjects. Ten subjects were recruited: five healthy and five osteoarthritis subjects. A motion-capture system, force plate, and surface electrodes respectively recorded 3D kinematics, 3D kinetics and EMG of the lower limbs. Each subject performed a quasi-static squat and several fast-dynamic squats from 0° to 70° of knee flexion. The two squatting conditions were compared for positions where quasi-static and fast-dynamic knee flexion-extension angles were similar. Mean differences between quasi-static and fast-dynamic squats were 1.5° for rotations, 1.9 mm for translations, 2.1% of subjects' body weight for ground reaction forces, 6.6 Nm for torques, 11.2 mm for center of pressure, and 6.3% of maximum fast-dynamic electromyographic activities for EMG. Some significant differences (p<0.05) were found in internal rotation, anterior translation, vertical force and EMG. All differences between quasi-static and fast-dynamic squats were small. 69.5% of compared data were equivalent. In conclusion, this study showed that quasi-static and fast-dynamic squatting activities are comparable in terms of 3D kinematics, 3D kinetics and EMG, although some reservations still remain.
Aagaard, B.T.; Knepley, M.G.; Williams, C.A.
2013-01-01
We employ a domain decomposition approach with Lagrange multipliers to implement fault slip in a finite-element code, PyLith, for use in both quasi-static and dynamic crustal deformation applications. This integrated approach to solving both quasi-static and dynamic simulations leverages common finite-element data structures and implementations of various boundary conditions, discretization schemes, and bulk and fault rheologies. We have developed a custom preconditioner for the Lagrange multiplier portion of the system of equations that provides excellent scalability with problem size compared to conventional additive Schwarz methods. We demonstrate application of this approach using benchmarks for both quasi-static viscoelastic deformation and dynamic spontaneous rupture propagation that verify the numerical implementation in PyLith.
PyLith: A Finite-Element Code for Modeling Quasi-Static and Dynamic Crustal Deformation
NASA Astrophysics Data System (ADS)
Williams, C. A.; Aagaard, B.; Knepley, M. G.
2009-12-01
We have developed open-source finite-element software for 2-D and 3-D dynamic and quasi-static modeling of crustal deformation. This software, PyLith (current release is version 1.4), combines the quasi-static viscoelastic modeling functionality of PyLith 0.8 and its predecessors (LithoMop and Tecton) and the wave propagation modeling functionality of EqSim. The target applications contain spatial scales ranging from tens of meters to hundreds of kilometers with temporal scales for dynamic modeling ranging from milliseconds to minutes and temporal scales for quasi-static modeling ranging from minutes to thousands of years. PyLith development is part of the NSF funded Computational Infrastructure for Geodynamics (CIG) and the software runs on a wide variety of platforms (laptops, workstations, and Beowulf clusters). Binaries and source code are available from geodynamics.org. It uses a suite of general, parallel, graph data structures called Sieve for storing and manipulating finite-element meshes. This permits use of a variety of 2-D and 3-D cell types including triangles, quadrilaterals, hexahedra, and tetrahedra. Current features include kinematic fault ruptures with multiple sequential earthquakes and aseismic creep, time-dependent Dirichlet and Neumann boundary conditions, absorbing boundary conditions, time-dependent point forces, linear elastic rheologies, generalized Maxwell and Maxwell linear viscoelastic rheologies, power-law rheologies, and gravitational body forces. Current development focuses on implementing dynamic fault interface conditions (employing fault constitutive models) and additional viscoelastic and viscoplastic materials. Future development plans include support for large deformation and automated calculation of suites of Green's functions. We also plan to extend PyLith to allow coupling multiple simultaneous simulations. For example, this could include (1) coupling an interseismic deformation simulation to a spontaneous earthquake rupture
Failure in Three-Dimensional Woven Composites Subjected to Quasi-Static and Dynamic Indentation
2013-09-12
composites, High strain rate testing, Impact behavior, Interlaminar shear strength, Short beam shear strength, Textile composites Bhavani V. Sankar...propagation in plain woven laminates and 3D orthogonal woven composites during short beam shear tests were analyzed using FEA. Two kinds of 3D woven...delamination damage caused by such impacts the characterization of delamination damage in laminated composites becomes critical to creating safe designs. 3D
Zachary M. Prince; Jean C. Ragusa; Yaqi Wang
2016-02-01
Because of the recent interest in reactor transient modeling and the restart of the Transient Reactor (TREAT) Facility, there has been a need for more efficient, robust methods in computation frameworks. This is the impetus of implementing the Improved Quasi-Static method (IQS) in the RATTLESNAKE/MOOSE framework. IQS has implemented with CFEM diffusion by factorizing flux into time-dependent amplitude and spacial- and weakly time-dependent shape. The shape evaluation is very similar to a flux diffusion solve and is computed at large (macro) time steps. While the amplitude evaluation is a PRKE solve where the parameters are dependent on the shape and is computed at small (micro) time steps. IQS has been tested with a custom one-dimensional example and the TWIGL ramp benchmark. These examples prove it to be a viable and effective method for highly transient cases. More complex cases are intended to be applied to further test the method and its implementation.
Hepburn, Iain; Cannon, Robert; De Schutter, Erik
2013-01-01
We describe a novel method for calculating the quasi-static electrical potential on tetrahedral meshes, which we call E-Field. The E-Field method is implemented in STEPS, which performs stochastic spatial reaction-diffusion computations in tetrahedral-based cellular geometry reconstructions. This provides a level of integration between electrical excitability and spatial molecular dynamics in realistic cellular morphology not previously achievable. Deterministic solutions are also possible. By performing the Rallpack tests we demonstrate the accuracy of the E-Field method. Efficient node ordering is an important practical consideration, and we find that a breadth-first search provides the best solutions, although principal axis ordering suffices for some geometries. We discuss potential applications and possible future directions, and predict that the E-Field implementation in STEPS will play an important role in the future of multiscale neural simulations.
NASA Astrophysics Data System (ADS)
Pirro, L.; Ionica, I.; Ghibaudo, G.; Mescot, X.; Faraone, L.; Cristoloveanu, S.
2016-05-01
This paper presents a detailed investigation of the quasi-static capacitance-voltage (QSCV) technique in pseudo-metal-oxide-semiconductor field effect transistor (pseudo-MOSFET) configuration for evaluating the interface quality of bare silicon-on-insulator (SOI) wafers, without processing dedicated metal-oxide-semiconductor (MOS) test devices. A physical model is developed that is capable of explaining the experimental results. In addition, frequency effects are used to validate the equations by a systematic comparison between experimental and calculated characteristics, as well as by a direct comparison with the standard high-low frequency approach. An extraction procedure for interface trap density based solely on QSCV experimental results is proposed, and limits of the procedure are discussed. The proposed experimental and analytical procedure is demonstrated by characterizing SOI structures with different geometries and with different qualities of surface passivation of the top silicon film.
de Oliveira, Rafael E P; de Matos, Christiano J S
2013-12-30
Actively-controlled second harmonic generation in a silicon nitride ring resonator is proposed and simulated. The ring was designed to resonate at both pump and second harmonic wavelengths and quasi-phase-matched frequency conversion is induced by a periodic static electric field generated by voltage applied to electrodes arranged along the ring. Nonlinear propagation simulations were undertaken and an efficiency of -21.67 dB was calculated for 60 mW of pump power at 1550 nm and for a 30V applied voltage, which compares favorably with demonstrated all-optical second harmonic generation in integrated microresonators. Transient effects were also evaluated. The proposed design can be exploited for the construction of electro-optical devices based on nonlinear effects in CMOS compatible circuits.
Huang, Wen; Koric, Seid; Yu, Xin; Hsia, K Jimmy; Li, Xiuling
2014-11-12
Micro- and nanoscale tubular structures can be formed by strain-induced self-rolled-up nanomembranes. Precision engineering of the shape and dimension determines the performance of devices based on this platform for electronic, optical, and biological applications. A transient quasi-static finite element method (FEM) with moving boundary conditions is proposed as a general approach to design diverse types of three-dimensional (3D) rolled-up geometries. This method captures the dynamic release process of membranes through etching driven by mismatch strain and accurately predicts the final dimensions of rolled-up structures. Guided by the FEM modeling, experimental demonstration using silicon nitride membranes was achieved with unprecedented precision including controlling fractional turns of a rolled-up membrane, anisotropic rolling to form helical structures, and local stress control for 3D hierarchical architectures.
Hepburn, Iain; Cannon, Robert; De Schutter, Erik
2013-01-01
We describe a novel method for calculating the quasi-static electrical potential on tetrahedral meshes, which we call E-Field. The E-Field method is implemented in STEPS, which performs stochastic spatial reaction-diffusion computations in tetrahedral-based cellular geometry reconstructions. This provides a level of integration between electrical excitability and spatial molecular dynamics in realistic cellular morphology not previously achievable. Deterministic solutions are also possible. By performing the Rallpack tests we demonstrate the accuracy of the E-Field method. Efficient node ordering is an important practical consideration, and we find that a breadth-first search provides the best solutions, although principal axis ordering suffices for some geometries. We discuss potential applications and possible future directions, and predict that the E-Field implementation in STEPS will play an important role in the future of multiscale neural simulations. PMID:24194715
The Quasi-Static Self Quenching of Trp-X and X-Trp Dipeptides in Water: Ultrafast Fluorescence Decay
Xu, Jianhua; Knutson, Jay R.
2012-01-01
Time-resolved fluorescence decay profiles of N-acetyl-L-tryptophan-amide (NATA) and tryptophan (Trp) dipeptides of the form Trp-X and X-Trp, where X is another aminoacyl residue, have been investigated using an ultraviolet upconversion spectrophoto fluorometer with time resolution better than 350 fs, together with a time correlated single photon counting apparatus on the 100ps to 20ns time scale. We analyzed the set of fluorescence decay profiles at multiple wavelengths using the global analysis technique. Nanosecond fluorescence transients for Trp dipeptides all show multiexponential decay, while NATA exhibits a monoexponential decay near 3 ns independent of pH. In the first 100 ps, a time constant for the water “bulk relaxation” around Trp, NATA and Trp dipeptides is seen near 1-2 ps, with an associated preexponential amplitude that is positive or negative depending on emission wavelength, as expected for a population-conserving spectral shift. The initial brightness (sub-ps) we measure for all these dipeptides is less than that of NATA, implying even faster (<200fs) intra-molecular (quasi) static quenching occurs within them. A new, third, ultrafast decay, bearing an exponential time constant of 20-30 ps with positive amplitude, has been found in many of these dipeptides. We believe it verifies our previous predictions of dipeptide QSSQ (“quasi static self quenching”) –the loss of quantum yield to sub-100ps decay process (Chen et al., Biochemistry, 1991, 30, 5184). Most important, this term is found in proteins as well (J.A.C.S., 2006, 128, 1214; Biophysical Journal 2008, 94, 546; 2009, 96, 46a), suggesting an ultrafast quenching mechanism must be common to both. PMID:19708715
The effect of static pressure on the strength of inertial cavitation events.
Bader, Kenneth B; Mobley, Joel; Church, Charles C; Gaitan, D Felipe
2012-10-01
Recent investigations of cavitation in fluids pressurized up to 30 MPa found that the intensity of light emissions increased by 1000-fold over that measured for single bubble sonoluminescence. A series of measurements is reported here to extend this original work by resolving the static pressure dependence of the shock wave and light emissions from the first and the most energetic collapses, along with the total shock wave energy and light emissions for the event. Each of these parameters was found to increase with the static pressure of the fluid. Furthermore, the energy of these shock wave and light emissions was found to increase in proportion to the stored acoustic energy in the system. These findings were corroborated using the Gilmore equation to numerically compute the work done by the liquid during the bubble collapse. The overall findings suggest that the increased collapse strength at high static pressure is due to the increased tension required to generate inertial cavitation, and not an increased pressure gradient between the interior of the vaporous bubble and the surrounding liquid.
Measurements of displacement around holes in composite plates subjected to quasi-static compression
NASA Technical Reports Server (NTRS)
Duke, J. C., Jr.; Post, D.; Czarnek, R.; Asundi, A.
1982-01-01
Attempts to develop a whole-field, high sensitivity optical technque for measurement of load induced changes of thickness of composite plates are described. Graphite-epoxy plates of quasi-isotropic layup were used as test specimens. Changes of thickness of three plates, each with a central hole of different size, were measured as a function of applied compressive loads. The first test specimen showed localized zones where no holographic fringes were present, surrounded by zones of low fringe contrast. This was thought to be a result of localized motion or creep. Subsequent tests with an increased time interval between specimen loading and holographic exposure demonstrated no localized zones of absent fringes. No plausible explanation for radical differences in the quality of fringe patterns was found, although the use of specimens having a high quality mirrorized surface provided superior change of thickness patterns. Recommendations for further investigations and changes in test procedure are presented.
A quasi-static model of global atmospheric electricity. I - The lower atmosphere
NASA Technical Reports Server (NTRS)
Hays, P. B.; Roble, R. G.
1979-01-01
A quasi-steady model of global lower atmospheric electricity is presented. The model considers thunderstorms as dipole electric generators that can be randomly distributed in various regions and that are the only source of atmospheric electricity and includes the effects of orography and electrical coupling along geomagnetic field lines in the ionosphere and magnetosphere. The model is used to calculate the global distribution of electric potential and current for model conductivities and assumed spatial distributions of thunderstorms. Results indicate that large positive electric potentials are generated over thunderstorms and penetrate to ionospheric heights and into the conjugate hemisphere along magnetic field lines. The perturbation of the calculated electric potential and current distributions during solar flares and subsequent Forbush decreases is discussed, and future measurements of atmospheric electrical parameters and modifications of the model which would improve the agreement between calculations and measurements are suggested.
A Comparison of Low-Velocity Impact and Quasi-Static Indentation
2012-12-01
system. 12 6. References 1. ASTM D7136/D7136M-05. Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to...Strength Properties of Damaged Polymer Matrix Composite Plates. Annu. Book ASTM Stand. 2005. 3. Feraboli, P. Some Recommendations for the
Recovering Aerodynamic Side Loads on Rocket Nozzles using Quasi-Static Strain-Gage Measurements
NASA Technical Reports Server (NTRS)
Brown, Andrew; Ruf, Joseph H.; McDaniels, David M.
2009-01-01
During over-expanded operation of rocket nozzles, which is defined to be when the exit pressure is greater than internal pressure over some part of the nozzle, the nozzle will experience a transverse forcing function due to the pressure differential across the nozzle wall. Over-expansion occurs during the nozzle start-up and shutdown transient, even in high-altitude engines, because most test facilities cannot completely reproduce the near-vacuum pressures at those altitudes. During this transient, the pressure differential moves axially down the nozzle as it becomes pressurized, but this differential is never perfectly symmetric circumferentially. The character of the forcing function is highly complex and defined by a series of restricted and free shock separations. The subject of this paper is the determination of the magnitude of this loading during sub-scale testing via measurement of the structural dynamic response of the nozzle and its support structure. An initial attempt at back-calculating this load using the inverse of the transfer function was performed, but this attempt was shown to be highly susceptible to numerical error. The final method chosen was to use statically calibrated strain data and to filter out the system fundamental frequency such that the measured response yields close to the correct dynamic loading function. This method was shown to capture 93% of the pressure spectral energy using controlled load shaker testing. This method is one of the only practical ways for the inverse determination of the forcing function for non-stationary excitations, and, to the authors' knowledge, has not been described in the literature to date.
E-coil: an inverse boundary element method for a quasi-static problem.
Sanchez, Clemente Cobos; Garcia, Salvador Gonzalez; Power, Henry
2010-06-07
Boundary element methods represent a valuable approach for designing gradient coils; these methods are based on meshing the current carrying surface into an array of boundary elements. The temporally varying magnetic fields produced by gradient coils induce electric currents in conducting tissues and so the exposure of human subjects to these magnetic fields has become a safety concern, especially with the increase in the strength of the field gradients used in magnetic resonance imaging. Here we present a boundary element method for the design of coils that minimize the electric field induced in prescribed conducting systems. This work also details some numerical examples of the application of this coil design method. The reduction of the electric field induced in a prescribed region inside the coils is also evaluated.
NASA Astrophysics Data System (ADS)
Popescu, Alexandru Paul
The use of composite materials in aerospace vehicles has allowed for creation of lighter structures that provide excellent stiffness. Although they allow for easy disassembly and inspection of critical assemblies, bolted joints are common damage initiation sites in composite structures. In order for aging aircraft to be considered for life extension programs, the damage at these locations must be characterized and well-understood. Failure studies require that data be provided through experimental tests. The drawback of the present test standard for bolted composite joints is that it was initially designed for testing polymers. This thesis discusses deficiencies in the measurement of bearing strength as a result of this shortcoming, although the battery of bearing tests is modeled after this established test standard. The goal of the present work is to characterize the bearing load induced damage in laminates with pin bearing and countersunk fasteners through a series of bearing tests on laminated composites using a new modified ASTM D5961 fixture designed for testing countersunk bolted joints. This thesis examines variations in measurement of bearing strength that comes with using different test fixtures. The reliability of each test fixture to represent real conditions is evaluated using test fixtures that represent real joint configurations. Results for damage conditions and joint responses are compared. This thesis presents a study of the damage initiation and accumulation in composite specimens loaded in bearing using three different test fixtures: Procedure A, Procedure C, and Procedure A Modified. Procedure A, which is used to load the test specimen in double-shear via a straight pin, is a well known test fixture that comes from ASTM D5961. Procedure C has a countersunk fastener that loads the test specimen in single-shear. These types of fasteners are preferred in the aerospace industry over traditional bolts in order to maintain a smooth aerodynamic profile
NASA Astrophysics Data System (ADS)
Mitra, Abhas
2014-03-01
Even if one would assume the astrophysical massive compact objects (MCOs) to be Black Holes (BHs), no energy can be extracted from them because neutral vacuum BHs cannot acquire any (induced) electromagnetic property, neither can any current emerge from the central singularity. This is so despite wishful models claiming the contrary by attributing the Event Horizon (EH) or an imaginary "membrane" with wishful electromagnetic properties. Similarly various Quantum Gravity (QG) theories too attribute various imaginary and mysterious properties like "Brick Wall", "Fire Wall" with the EH even after claiming that the vacuum EH is a perfectly regular spacetime without any special property! The vacuum EH is also associated with imaginary material structures and entropy in a completely self-contradictory manner. To legitimize such contradictions & fudge, the "Holography" principle is invoked by which the information contained within the 3-D BH interior is hypothesized to be encoded on the 2-D EH. Further, some QG theories try to explain gravity & BH entropy (SBH) in terms of random motion of "atoms of vacuum" of dimension ~ ℓp (Planck Length). But since ℓp → 0 as ħ → 0, a classical vacuum would possess infinite entropy by such a hypothesis and so spacetime may not be granular ever. It is asserted that though BHs correspond to exact General Relativistic solutions, the relevant integration constants are zero, i.e., a Schwarzschild BH has M = 0 (Mitra, JMP 2009), and Kerr BHs too correspond to M = a = 0, implying SBH = 0 & BHs are asymptotic ground states of preceding collapse which radiates away entire mass-energy, angular momentum & entropy. Thus the finite mass BH Candidates must be Quasi-BHs. It has been shown that the most natural case for Quasi BHs are ultra-magnetized hot quasi-static balls of plasma, Magnetospheric Eternally Collapsing Objects (MECOs) radiating at their Eddington Luminosity. Spinning MECOs behave like ultramagatic GR pulsars and may naturally
The response of pediatric ribs to quasi-static loading: mechanical properties and microstructure.
Agnew, Amanda M; Moorhouse, Kevin; Kang, Yun-Seok; Donnelly, Bruce R; Pfefferle, Kiel; Manning, Angela X; Litsky, Alan S; Herriott, Rod; Abdel-Rasoul, Mahmoud; Bolte, John H
2013-12-01
Traumatic injury is a major cause of death in the child population. Motor vehicle crashes account for a large portion of these deaths, and a considerable effort is put forth by the safety community to identify injury mechanisms and methods of injury prevention. However, construction of biofidelic anthropomorphic test devices and computational models for this purpose requires knowledge of bone properties that is difficult to obtain. The objective of this study is to characterize the relationship between mechanical properties and measures of skeletal development in the growing rib. Anterolateral segments of 44 ribs from 12 pediatric individuals (age range: 5 months to 9 years) were experimentally tested in three-point bending. Univariate mixed models were used to assess the predictive abilities of development-related variables (e.g., age, stature, histomorphometry, cross-sectional geometry) on mechanical variables (material and structural properties). Results show that stature, in addition to age, may be a reliable predictor of bone strength, and that histomorphometry has potential to explain bone properties and to further our understanding of fracture mechanisms. For example, percent secondary lamellar bone (%Sd.Ar) successfully predicts peak force (F P) and Young's modulus (E). Application of these findings is not restricted to injury biomechanics, but can also be referenced in forensic and anthropological contexts.
Static properties and multiaxial strength criterion for design of composite automotive structures
Ruggles, M.B.; Yahr, G.T.; Battiste, R.L.
1998-11-01
The Durability of Lightweight Composite Structures Project was established at Oak Ridge National Laboratory (ORNL) by the US Department of Energy to provide the experimentally-based, durability-driven design guidelines necessary to assure long-term structural integrity of automotive composite components. The initial focus of the ORNL Durability Project was on one representative reference material -- an isocyanurate (polyurethane) reinforced with continuous strand, swirl-mat E-glass. The present paper describes tensile, compressive, flexure, and shear testing and results for the reference composite. Behavioral trends and proportional limit are established for both tension and compression. Damage development due to tensile loading, strain rate effects, and effects of temperature are discussed. Furthermore, effects on static properties of various fluids, including water at room and elevated temperatures, salt water, antifreeze, windshield washer fluid, used motor oil, battery acid, gasoline, and brake fluid, were investigated. Effects of prior loading were evaluated as well. Finally, the effect of multiaxial loading on strength was determined, and the maximum shear strength criterion was identified for design.
Tehrani, Mehran; Al-Haik, Marwan; Garmestani, Hamid; Li, Dongsheng
2012-01-01
In this study the effect of moderate magnetic fields on the microstructure of a structural epoxy system was investigated. The changes in the microstructure have been quantitatively investigated using wide angle x-ray diffraction (WAXD) and pole figure analysis. The mechanical properties (modulus, hardness and strain rate sensitivity parameter) of the epoxy system annealed in the magnetic field were probed with the aid of instrumented nanoindentation and the results are compared to the reference epoxy sample. To further examine the creep response of the magnetically annealed and reference samples, short 45 min duration creep tests were carried out. An equivalent to the macro scale creep compliance was calculated using the aforementioned nano-creep data. Using the continuous complex compliance (CCC) analysis, the phase lag angle, tan (δ), between the displacement and applied force in an oscillatory nanoindentation test was measured for both neat and magnetically annealed systems through which the effect of low magnetic fields on the viscoelastic properties of the epoxy was invoked. The comparison of the creep strain rate sensitivity parameter , A/d(0), from short term(80 ), creep tests and the creep compliance J(t) from the long term(2700 s) creep tests with the tan(δ) suggests that former parameter is a more useful comparative creep parameter than the creep compliance. The results of this investigation reveal that under low magnetic fields both the quasi-static and viscoelastic mechanical properties of the epoxy have been improved.
NASA Astrophysics Data System (ADS)
Jeong, Ju Won; Yoo, Young Ik; Shin, Dong Kil; Lim, Jae Hyuk; Kim, Kyung Won; Lee, Jung Ju
2014-02-01
A tape spring hinge (TSH) is a typical flexible deployment device for a satellite and becomes frequently used due to its simplicity, lightweight, low cost, and high deployment reliability. However, the performance of a TSH is quite limited due to trade-offs among deployed stiffness, deployment torque, and latch-up shock despite its many advantages. In this study, a novel conceptual design that circumvents the trade-offs among functional requirements (FRs) is proposed. The trade-offs are obviated by a newly proposed shape memory alloy damper that converts the deployment behavior of a conventional TSH from unstable dynamic to stable quasi-static. This makes it possible to maximize the deployment stiffness and deployment torque of a conventional TSH, which are larger-the-better FR, without any increase in the latch-up shock. Therefore, in view of conceptual design, it is possible to design a highly improved TSH that has much higher deployed stiffness and deployment torque compared to a conventional TSH while minimizing latch-up shock and deployment unstableness. Detailed design was performed through response surface method and finite element analysis. Finally, a prototype was manufactured and tested in order to verify its performance (four point, deployment torque, and latch-up shock tests). The test results confirm the feasibility of the proposed TSH mechanism.
Steinberg, J.T.
1988-01-01
As part of the Spacelab-2 mission on the Plasma Diagnostics Package (PDP) was released from the shuttle as a free flying satellite. The shuttle performed maneuvers around the PDP in order that the ionospheric plasma around the shuttle might be studied. One objective of the PDP was to measure quasi-static electric field sin the vicinity of the shuttle. During most of the free flight, the measured electric field was comparable to the induced electric field due to the orbital motion of the spacecraft. At certain times, when the shuttle thrusters were operating, decreases in the motional electric field by 10% to 20% were observed. During times when an electron beam was ejected from the shuttle, large signals were also recorded. These large signals were probably not due to ambient electric fields, but can be attributed to three causes: differences in fluxes of streaming electrons to the two probes due to shadowing by the PDP chassis, depressions in the plasma density caused by the PDP wake, and spatial gradients in the fluxes of energetic electrons reaching the probes. At 80 or more meters downstream from the beam, the energetic electrons had a preferential direction of motion opposite to the beam injection direction.
Jeong, Ju Won; Yoo, Young Ik; Shin, Dong Kil; Lim, Jae Hyuk; Kim, Kyung Won; Lee, Jung Ju
2014-02-01
A tape spring hinge (TSH) is a typical flexible deployment device for a satellite and becomes frequently used due to its simplicity, lightweight, low cost, and high deployment reliability. However, the performance of a TSH is quite limited due to trade-offs among deployed stiffness, deployment torque, and latch-up shock despite its many advantages. In this study, a novel conceptual design that circumvents the trade-offs among functional requirements (FRs) is proposed. The trade-offs are obviated by a newly proposed shape memory alloy damper that converts the deployment behavior of a conventional TSH from unstable dynamic to stable quasi-static. This makes it possible to maximize the deployment stiffness and deployment torque of a conventional TSH, which are larger-the-better FR, without any increase in the latch-up shock. Therefore, in view of conceptual design, it is possible to design a highly improved TSH that has much higher deployed stiffness and deployment torque compared to a conventional TSH while minimizing latch-up shock and deployment unstableness. Detailed design was performed through response surface method and finite element analysis. Finally, a prototype was manufactured and tested in order to verify its performance (four point, deployment torque, and latch-up shock tests). The test results confirm the feasibility of the proposed TSH mechanism.
NASA Astrophysics Data System (ADS)
Wong, Allan C. L.; Childs, Paul A.; Peng, Gang-Ding
2006-02-01
We present a multiplexed fibre Fizeau interferometer (FFI) and fibre Bragg grating (FBG) sensor system for simultaneous measurement of quasi-static strain and temperature. A combined spatial-frequency and wavelength- division multiplexing scheme is employed to multiplex the FFI and FBG sensors. A demodulation technique based on the discrete wavelet transform with signal processing enhancements is used to determine the measurand- induced physical changes of the sensors. The noise associated with the sensor signal is reduced by the block-level-thresholding wavelet denoising method, which is applied via the demodulation technique. This sensor system yields a high accuracy and resolution, and low crosstalk. It is well suited for long-term quasi-static measurements, especially for the structural health monitoring of large-scale structures.
Belov, Nikolay Kopanitsa, Dmitry Yugov, Alexey Kaparulin, Sergey Plyaskin, Andrey Kalichkina, Anna Ustinov, Artyom; Yugov, Nikolay; Kopanitsa, Georgy
2016-01-15
When designing buildings with reinforced concrete that are planned to resist dynamic loads it is necessary to calculate this structural behavior under operational static and emergency impact and blast loads. Calculations of the structures under shock-wave loads can be performed by solving dynamic equations that do not consider static loads. Due to this fact the calculation of reinforced concrete frame under a simultaneous static and dynamic load in full 3d settings becomes a very non trivial and resource consuming problem. This problem can be split into two tasks. The first one is a shock-wave problem that can be solved using software package RANET-3, which allows solving the problem using finite elements method adapted for dynamic task. This method calculates strain-stress state of the material and its dynamic destruction, which is considered as growth and consolidation of micro defects under loading. On the second step the results of the first step are taken as input parameters for quasi static calculation of simultaneous static and dynamic load using finite elements method in AMP Civil Engineering-11.
NASA Astrophysics Data System (ADS)
Belov, Nikolay; Yugov, Nikolay; Kopanitsa, Dmitry; Kopanitsa, Georgy; Yugov, Alexey; Kaparulin, Sergey; Plyaskin, Andrey; Kalichkina, Anna; Ustinov, Artyom
2016-01-01
When designing buildings with reinforced concrete that are planned to resist dynamic loads it is necessary to calculate this structural behavior under operational static and emergency impact and blast loads. Calculations of the structures under shock-wave loads can be performed by solving dynamic equations that do not consider static loads. Due to this fact the calculation of reinforced concrete frame under a simultaneous static and dynamic load in full 3d settings becomes a very non trivial and resource consuming problem. This problem can be split into two tasks. The first one is a shock-wave problem that can be solved using software package RANET-3, which allows solving the problem using finite elements method adapted for dynamic task. This method calculates strain-stress state of the material and its dynamic destruction, which is considered as growth and consolidation of micro defects under loading. On the second step the results of the first step are taken as input parameters for quasi static calculation of simultaneous static and dynamic load using finite elements method in AMP Civil Engineering-11.
NASA Astrophysics Data System (ADS)
Liu, Suihan; Burgueño, Rigoberto
2016-12-01
Axially compressed bilaterally constrained columns, which can attain multiple snap-through buckling events in their elastic postbuckling response, can be used as energy concentrators and mechanical triggers to transform external quasi-static displacement input to local high-rate motions and excite vibration-based piezoelectric transducers for energy harvesting devices. However, the buckling location with highest kinetic energy release along the element, and where piezoelectric oscillators should be optimally placed, cannot be controlled or isolated due to the changing buckling configurations. This paper proposes the concept of stiffness variations along the column to gain control of the buckling location for optimal placement of piezoelectric transducers. Prototyped non-prismatic columns with piece-wise varying thickness were fabricated through 3D printing for experimental characterization and numerical simulations were conducted using the finite element method. A simple theoretical model was also developed based on the stationary potential energy principle for predicting the critical line contact segment that triggers snap-through events and the buckling morphologies as compression proceeds. Results confirm that non-prismatic column designs allow control of the buckling location in the elastic postbuckling regime. Compared to prismatic columns, non-prismatic designs can attain a concentrated kinetic energy release spot and a higher number of snap-buckling mode transitions under the same global strain. The direct relation between the column’s dynamic response and the output voltage from piezoelectric oscillator transducers allows the tailorable postbuckling response of non-prismatic columns to be used as multi-stable energy concentrators with enhanced performance in micro-energy harvesters.
NASA Astrophysics Data System (ADS)
Lockerbie, N. A.; Tokmakov, K. V.
2014-10-01
This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect "Violin-Mode" (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a "synthesized split photodiode" detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC "shadow notch" outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing "jitter" at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm.
Lockerbie, N A; Tokmakov, K V
2014-10-01
This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect "Violin-Mode" (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a "synthesized split photodiode" detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC "shadow notch" outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing "jitter" at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm.
HyPEP FY-07 Report: Initial Calculations of Component Sizes, Quasi-Static, and Dynamics Analyses
Chang Oh
2007-07-01
The Very High Temperature Gas-Cooled Reactor (VHTR) coupled to the High Temperature Steam Electrolysis (HTSE) process is one of two reference integrated systems being investigated by the U.S. Department of Energy and Idaho National Laboratory for the production of hydrogen. In this concept a VHTR outlet temperature of 900 °C provides thermal energy and high efficiency electricity for the electrolysis of steam in the HTSE process. In the second reference system the Sulfur Iodine (SI) process is coupled to the VHTR to produce hydrogen thermochemically. This report describes component sizing studies and control system strategies for achieving plant production and operability goals for these two reference systems. The optimal size and design condition for the intermediate heat exchanger, one of the most important components for integration of the VHTR and HTSE plants, was estimated using an analytic model. A partial load schedule and control system was designed for the integrated plant using a quasi-static simulation. Reactor stability for temperature perturbations in the hydrogen plant was investigated using both a simple analytic method and a dynamic simulation. Potential efficiency improvements over the VHTR/HTSE plant were investigated for an alternative design that directly couples a High Temperature Steam Rankin Cycle (HTRC) to the HTSE process. This work was done using the HYSYS code and results for the HTRC/HTSE system were compared to the VHTR/HTSE system. Integration of the VHTR with SI process plants was begun. Using the ASPEN plus code the efficiency was estimated. Finally, this report describes planning for the validation and verification of the HYPEP code.
NASA Astrophysics Data System (ADS)
Pachoud, Alexandre J.; Schleiss, Anton J.
2016-04-01
Steel-lined pressure tunnels and shafts are constructed to convey water from reservoirs to hydroelectric power plants. They are multilayer structures made of a steel liner, a cracked backfill concrete layer, a cracked or loosened near-field rock zone and a sound far-field rock zone. Designers often assume isotropic behavior of the far-field rock, considering the most unfavorable rock mass elastic modulus measured in situ, and a quasi-static internal water pressure. Such a conventional model is thus axisymmetrical and has an analytical solution for stresses and displacements. However, rock masses often have an anisotropic behavior and such isotropic assumption is usually conservative in terms of quasi-static maximum stresses in the steel liner. In this work, the stresses and displacements in steel-lined pressure tunnels and shafts in anisotropic rock mass are studied by means of the finite element method. A quasi-static internal water pressure is considered. The materials are considered linear elastic, and tied contact is assumed between the layers. The constitutive models used for the rock mass and the cracked layers are presented and the practical ranges of variation of the parameters are discussed. An extensive systematic parametric study is performed and stresses and displacements in the steel liner and in the far-field rock mass are presented. Finally, correction factors are derived to be included in the axisymmetrical solution which allow a rapid estimate of the maximum stresses in the steel liners of pressure tunnels and shafts in anisotropic rock.
Maurer, M M; Badir, S; Pensalfini, M; Bajka, M; Abitabile, P; Zimmermann, R; Mazza, E
2015-06-25
Measuring the stiffness of the uterine cervix might be useful in the prediction of preterm delivery, a still unsolved health issue of global dimensions. Recently, a number of clinical studies have addressed this topic, proposing quantitative methods for the assessment of the mechanical properties of the cervix. Quasi-static elastography, maximum compressibility using ultrasound and aspiration tests have been applied for this purpose. The results obtained with the different methods seem to provide contradictory information about the physiologic development of cervical stiffness during pregnancy. Simulations and experiments were performed in order to rationalize the findings obtained with ultrasound based, quasi-static procedures. The experimental and computational results clearly illustrate that standardization of quasi-static elastography leads to repeatable strain values, but for different loading forces. Since force cannot be controlled, this current approach does not allow the distinction between a globally soft and stiff cervix. It is further shown that introducing a reference elastomer into the elastography measurement might overcome the problem of force standardization, but a careful mechanical analysis is required to obtain reliable stiffness values for cervical tissue. In contrast, the maximum compressibility procedure leads to a repeatable, semi-quantitative assessment of cervical consistency, due to the nonlinear nature of the mechanical behavior of cervical tissue. The evolution of cervical stiffness in pregnancy obtained with this procedure is in line with data from aspiration tests.
Lima, Camila D; Brown, Lee E; Wong, Megan A; Leyva, Whitney D; Pinto, Ronei S; Cadore, Eduardo L; Ruas, Cassio V
2016-11-01
Lima, CD, Brown, LE, Wong, MA, Leyva, WD, Pinto, RS, Cadore, EL, and Ruas, CV. Acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. J Strength Cond Res 30(11): 3220-3227, 2016-Stretching is used to increase joint range of motion, but the acute effects can decrease muscle strength. However, this may depend on the population or mode of stretching. The purpose of this study was to compare the acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. Fifteen resistance-trained women (age 23.8 ± 1.80 years, mass 67.47 ± 7.77 kg, height 168.30 ± 5.53 cm) and 12 ballet dancers (age 22.8 ± 3.04 years, mass 58.67 ± 5.65 kg, height 168.00 ± 7.69 cm) performed 5 days of testing. The first day was control (no stretching), whereas the other 4 days were static or ballistic stretching in a counterbalanced order. Range of motion, strength, and fatigue tests were also performed. Both groups demonstrated a significant decrease in hamstrings strength after static (102.71 ± 2.67 N·m) and ballistic stretching (99.49 ± 2.61 N·m) compared with control (113.059 ± 3.25 N·m), with no changes in quadriceps strength. For fatigue, only ballet dancers demonstrated a decrease from control (71.79 ± 4.88%) to ballistic (65.65 ± 8.19%), but no difference with static (65.01 ± 12.29%). These findings suggest that stretching decreases hamstrings strength similarly in ballet dancers and resistance-trained women, with no differences between modes of stretching. However, ballistic stretching only decreased muscular fatigue in ballet dancers, but not in resistance-trained women. Therefore, no stretching should be performed before strength performance. However, ballistic stretching may decrease acute muscular fatigue in ballet dancers.
ERIC Educational Resources Information Center
Kanetzke, Carol A.
The effects of Dynamic Range of Motion (D'ROM) exercises and static stretch on hip flexibility and hip strength were examined. One hundred one male and female college students were divided into three groups: D'ROM, static stretch (ST), and control (C). All subjects were measured before and after treatment for hip flexibility and strength. Two…
Small repeating earthquakes activity and interplate quasi-static slips in the Hyuga-nada, SW Japan
NASA Astrophysics Data System (ADS)
Yamashita, Y.; Shimizu, H.; Goto, K.
2009-12-01
The Hyuga-nada region, a high-angle subduction zone belong the Kyushu-Ryukyu arc, is one of the most seismically active area in Japan and earthquakes with magnitude from 6.5 to 7.5 usually occur at dozens of years interval. In this region, the Philippine Sea Plate (PHS) subducts northwestward beneath the Eurasian Plate (EU) at a rate of about 5cm/year [Seno et al. (1993)]. We detected small repeating earthquakes in and around the Hyuga-nada using waveform similarity based on Igarashi et al. (2003). We used about 20,000 earthquakes which occurred in and around the Hyuga-nada and magnitude range is more than 2.0 detected by SEVO, Kyushu University from 1994 to 2008. We identified about 1,000 small repeating earthquakes, and they were compiled 390 groups. Most of small repeating earthquakes occur near the plate boundary between the PHS and the EU. They do not distribute in large moment-release areas of large earthquakes, but they distribute in those areas surrounding them; these characteristics are also found in NE Japan [e.g. Igarashi et al. (2003); Uchida et al. (2003)]. We selected 145 groups of small repeating earthquakes occurring in the plate boundary based on focal mechanism analysis. Almost all of them distribute the southern side from 32.5N, which suggests that an interplate coupling is probably changing near 32.5N. This result is consistent with present study of interplate coupling in and around Hyuga-nada using a geodetic data by GPS observation [e.g., Nishimura et al. (1999)]. We also estimated interplate quasi-static slip rate distribution in the Hyuga-nada using small repeating earthquakes. The result shows that the slip rate of shallow side of plate boundary is relatively larger than deep side of that in the area of 31.3~32N. In the deep side, the Hyuga-nada earthquakes (Mw6.7) occurred in Dec. 1996. It suggests that the interplate coupling of deep side is stronger than that of shallow side. Acknowledgments: In this study, we have used the data of
Boyce, B. L.; Kramer, S. L. B.; Bosiljevac, T. R.; ...
2016-03-14
Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Instead of evaluating the predictions of a single simulation approach, the Sandia Fracture Challenge relied on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive modelsmore » to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in ~ 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. In addition, shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary
Boyce, B. L.; Kramer, S. L. B.; Bosiljevac, T. R.; Corona, E.; Moore, J. A.; Elkhodary, K.; Simha, C. H. M.; Williams, B. W.; Cerrone, A. R.; Nonn, A.; Hochhalter, J. D.; Bomarito, G. F.; Warner, J. E.; Carter, B. J.; Warner, D. H.; Ingraffea, A. R.; Zhang, T.; Fang, X.; Lua, J.; Chiaruttini, V.; Mazière, M.; Feld-Payet, S.; Yastrebov, V. A.; Besson, J.; Chaboche, J. -L.; Lian, J.; Di, Y.; Wu, B.; Novokshanov, D.; Vajragupta, N.; Kucharczyk, P.; Brinnel, V.; Döbereiner, B.; Münstermann, S.; Neilsen, M. K.; Dion, K.; Karlson, K. N.; Foulk, J. W.; Brown, A. A.; Veilleux, M. G.; Bignell, J. L.; Sanborn, S. E.; Jones, C. A.; Mattie, P. D.; Pack, K.; Wierzbicki, T.; Chi, S. -W.; Lin, S. -P.; Mahdavi, A.; Predan, J.; Zadravec, J.; Gross, A. J.; Ravi-Chandar, K.; Xue, L.
2016-03-14
Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Instead of evaluating the predictions of a single simulation approach, the Sandia Fracture Challenge relied on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in ~ 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. In addition, shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need
NASA Astrophysics Data System (ADS)
Thun, Johannes; Bean, Christopher J.; Lokmer, Ivan
2014-05-01
Volcanic long-period (LP) events are commonly thought to be related to fluid pressure fluctuations in cracks and conduits beneath volcanoes. Sudden pressure fluctuations can generate slow/crack waves that can propagate along the fluid-solid boundaries between the fluid-filled source and the surrounding medium and thus sustain the resonance of the source. Although there are different variations of this model proposed in the literature, all of them include the source resonance sustained by crack waves. An alternative model (Bean et al., 2014) involves slow-slip fracturing of the shallow volcanic edifice. One of the difficulties in confirming or disproving these models lies in the limited frequency band in which moment tensor inversions of seismic LP signals are typically carried out in order to obtain acceptable solutions. In order to remove low-frequency noise and the high-frequency part of signals, which is difficult to model with numerical simulations, signals are band pass filtered in their most energetic frequency band before the inversions. However, this means we are only recovering a narrow band of the source-time history and any information outside this range is lost. Furthermore, as possible lower frequency components are less sensitive to the complex (and usually poorly known) velocity structure in the shallow edifice, they are particularly interesting for inversions. In this study we are investigating possibilities to include a broader frequency spectrum of the observed displacement signals into moment tensor inversions. In particular, we have observed quasi-static displacement steps for numerous LP events on different volcanoes. These are visible mostly on stations near the summit area and have amplitudes of a few micrometres. We are exploring possibilities to use these signals and distinguish them from noise (e.g. induced by tilting of the instrument). For our analysis we use a combination of numerical simulations and laboratory data to constrain the
Van Toen, Carolyn; Carter, Jarrod W; Oxland, Thomas R; Cripton, Peter A
2014-12-01
The tolerance of the spine to bending moments, used for evaluation of injury prevention devices, is often determined through eccentric axial compression experiments using segments of the cadaver spine. Preliminary experiments in our laboratory demonstrated that eccentric axial compression resulted in "unexpected" (artifact) moments. The aim of this study was to evaluate the static and dynamic effects of test configuration on bending moments during eccentric axial compression typical in cadaver spine segment testing. Specific objectives were to create dynamic equilibrium equations for the loads measured inferior to the specimen, experimentally verify these equations, and compare moment responses from various test configurations using synthetic (rubber) and human cadaver specimens. The equilibrium equations were verified by performing quasi-static (5 mm/s) and dynamic experiments (0.4 m/s) on a rubber specimen and comparing calculated shear forces and bending moments to those measured using a six-axis load cell. Moment responses were compared for hinge joint, linear slider and hinge joint, and roller joint configurations tested at quasi-static and dynamic rates. Calculated shear force and bending moment curves had similar shapes to those measured. Calculated values in the first local minima differed from those measured by 3% and 15%, respectively, in the dynamic test, and these occurred within 1.5 ms of those measured. In the rubber specimen experiments, for the hinge joint (translation constrained), quasi-static and dynamic posterior eccentric compression resulted in flexion (unexpected) moments. For the slider and hinge joints and the roller joints (translation unconstrained), extension ("expected") moments were measured quasi-statically and initial flexion (unexpected) moments were measured dynamically. In the cadaver experiments with roller joints, anterior and posterior eccentricities resulted in extension moments, which were unexpected and expected, for those
Kapilevich, Leonid V; Zakharova, Anna N; Kabachkova, Anastasia V; Kironenko, Tatyana A; Orlov, Sergei N
2017-01-01
Extensive exercise increases the plasma content of IL-6, IL-8, IL-15, leukemia inhibitory factor (LIF), and several other cytokines via their augmented transcription in skeletal muscle cells. However, the relative impact of aerobic and resistant training interventions on cytokine production remains poorly defined. In this study, we compared effects of dynamic and static load on cytokine plasma content in elite strength- and endurance-trained athletes vs. healthy untrained volunteers. The plasma cytokine content was measured before, immediately after, and 30 min post-exercise using enzyme-linked immunosorbent assay. Pedaling on a bicycle ergometer increased IL-6 and IL-8 content in the plasma of trained athletes by about 4- and 2-fold, respectively. In contrast to dynamic load, weightlifting had negligible impact on these parameters in strength exercise-trained athletes. Unlike IL-6 and IL-8, dynamic exercise had no impact on IL-15 and LIF, whereas static load increases the content of these cytokines by ~50%. Two-fold increment of IL-8 content seen in athletes subjected to dynamic exercise was absent in untrained individuals, whereas the ~50% increase in IL-15 triggered by static load in the plasma of weightlifting athletes was not registered in the control group. Thus, our results show the distinct impact of static and dynamic exercises on cytokine content in the plasma of trained athletes. They also demonstrate that both types of exercises differentially affect cytokine content in plasma of athletes and untrained persons.
Kapilevich, Leonid V.; Zakharova, Anna N.; Kabachkova, Anastasia V.; Kironenko, Tatyana A.; Orlov, Sergei N.
2017-01-01
Extensive exercise increases the plasma content of IL-6, IL-8, IL-15, leukemia inhibitory factor (LIF), and several other cytokines via their augmented transcription in skeletal muscle cells. However, the relative impact of aerobic and resistant training interventions on cytokine production remains poorly defined. In this study, we compared effects of dynamic and static load on cytokine plasma content in elite strength- and endurance-trained athletes vs. healthy untrained volunteers. The plasma cytokine content was measured before, immediately after, and 30 min post-exercise using enzyme-linked immunosorbent assay. Pedaling on a bicycle ergometer increased IL-6 and IL-8 content in the plasma of trained athletes by about 4- and 2-fold, respectively. In contrast to dynamic load, weightlifting had negligible impact on these parameters in strength exercise-trained athletes. Unlike IL-6 and IL-8, dynamic exercise had no impact on IL-15 and LIF, whereas static load increases the content of these cytokines by ~50%. Two-fold increment of IL-8 content seen in athletes subjected to dynamic exercise was absent in untrained individuals, whereas the ~50% increase in IL-15 triggered by static load in the plasma of weightlifting athletes was not registered in the control group. Thus, our results show the distinct impact of static and dynamic exercises on cytokine content in the plasma of trained athletes. They also demonstrate that both types of exercises differentially affect cytokine content in plasma of athletes and untrained persons. PMID:28194116
Fatigue-Crack Propagation and Residual Static Strength of PH 15-7 Mo (TH 1050) Stainless Steel
1965-12-01
section prior to the application of load.) A method of quantitatively predicting fatigue-crack growth rates in aluminum alloys was developed in...section stress. A method of calculating stress-concentration factors based on Neuber’s analysis of stresses around sharp notches (ref. 2) was...developed in the crack-growth analysis. A simple engineering method for predicting the strength of cracked aluminum parts under static loading was
NASA Astrophysics Data System (ADS)
Li, Wangnan; Cai, Hongneng; Li, Chao
2014-11-01
This paper deals with the characterization of the strength of the constituents of carbon fiber reinforced plastic laminate (CFRP), and a prediction of the static compressive strength of open-hole structure of polymer composites. The approach combined with non-linear analysis in macro-level and a linear elastic micromechanical failure analysis in microlevel (non-linear MMF) is proposed to improve the prediction accuracy. A face-centered cubic micromechanics model is constructed to analyze the stresses in fiber and matrix in microlevel. Non-interactive failure criteria are proposed to characterize the strength of fiber and matrix. The non-linear shear behavior of the laminate is studied experimentally, and a novel approach of cubic spline interpolation is used to capture significant non-linear shear behavior of laminate. The user-defined material subroutine UMAT for the non-linear share behavior is developed and combined in the mechanics analysis in the macro-level using the Abaqus Python codes. The failure mechanism and static strength of open-hole compressive (OHC) structure of polymer composites is studied based on non-linear MMF. The UTS50/E51 CFRP is used to demonstrate the application of theory of non-linear MMF.
A Comparison of Quasi-Static Indentation and Drop-Weight Impact Testing on Carbon/Epoxy Laminates
NASA Technical Reports Server (NTRS)
Prabhakaran, R.; Douglas, Michael J.
2000-01-01
This project was initiated to investigate the damage tolerance of polymer matrix composites (PMC). After a low velocity impact-such as the ones that can occur during manufacturing or service there is usually very little visual damage. There are two possible methods to simulate foreign object impact on PMC: static indentation and drop weight impact. A static method for modeling low velocity foreign object impact events for composites can prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low velocity impact tests were performed and compared. Square specimens of different sizes and thicknesses were tested to cover a wide array of low velocity impact events. Laminates with a 45 degree stacking sequence were used since this is a common type of engineering laminate. Three distinct flexural rigidities under two different boundary conditions were tested in order to obtain damage due to large deflections. Comparisons between static indentation and low velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined were dent depth, back surface crack length, delamination area, and load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low velocity impact tests, indicating that static indentation tests can be used to simulate low velocity impact events.
Götz, C; Lim, G T; Puskas, J E; Altstädt, V
2012-06-01
This study examines the morphology, thermal, quasi-static and long-term dynamic creep properties of one linear and three arborescent polyisobutylene-based block copolymers (L_SIBS31, D_IBS16, D_IBS27 and D_IBS33). Silicone rubber, a common biopolymer, was considered as a benchmark material for comparison. A unique hysteretic testing methodology of Stepwise Increasing Load Test (SILT) and Single Load Test (SLT) was used in this study to evaluate the long-term dynamic fatigue performance of these materials. Our experimental findings revealed that the molecular weight of polyisobutylene (PIB) and polystyrene (PS) arms [M(n)(PIB(arm)) and M(n)(PS(arm))], respectively had a profound influence on the nano-scaled phase separation, quasi-static tensile, thermal transition, and dynamic creep resistance behaviors of these PIB-based block copolymers. However, silicone rubber outperformed the PIB-based block copolymers in terms of dynamic creep properties due to its chemically crosslinked structure. This indicates a need for a material strategy to improve the dynamic fatigue and creep of this class of biopolymers to be considered as alternative to silicone rubber for biomedical devices.
Vemareddy, P.; Wiegelmann, T. E-mail: wiegelmann@mps.mpg.de
2014-09-01
We study the quasi-static evolution of coronal magnetic fields constructed from the non-linear force-free field (NLFFF) approximation aiming to understand the relation between the magnetic field topology and ribbon emission during an X1.5 flare in active region (AR) NOAA 11166. The flare with a quasi-elliptical and two remote ribbons occurred on 2011 March 9 at 23:13 UT over a positive flux region surrounded by negative flux at the center of the bipolar AR. Our analysis of the coronal magnetic structure with potential and NLFFF solutions unveiled the existence of a single magnetic null point associated with a fan-spine topology and is co-spatial with the hard X-ray source. The footpoints of the fan separatrix surface agree with the inner edge of the quasi-elliptical ribbon and the outer spine is linked to one of the remote ribbons. During the evolution, the slow footpoint motions stressed the field lines along the polarity inversion line and caused electric current layers in the corona around the fan separatrix surface. These current layers trigger magnetic reconnection as a consequence of dissipating currents, which are visible as cusp-shaped structures at lower heights. The reconnection process reorganized the magnetic field topology whose signatures are observed at the separatrices/quasi-separatrix layer structure in both the photosphere and the corona during the pre-to-post flare evolution. In agreement with previous numerical studies, our results suggest that the line-tied footpoint motions perturb the fan-spine system and cause null point reconnection, which eventually causes the flare emission at the footpoints of the field lines.
Elastic properties and fracture strength of quasi-isotropic graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Sullivan, T. L.
1977-01-01
The layups of the studied laminates are (0, + or - 60) sub s, (0, + or - 45, 90) sub s, (0, + or - 30, + or - 60, 90) sub s (0, + or - 22 1/2, + or - 45, + or - 67 1/2, 90) sub s. The properties determined were tensile modulus, Poisson's ratio, bending stiffness, fracture strength and fracture strain. Measured properties and properties predicted using laminate theory were found to be in reasonable agreement. Reasons for data scatter were determined.
Zeighami, A; Dumas, R; Kanhonou, M; Hagemeister, N; Lavoie, F; de Guise, J A; Aissaoui, R
2017-02-28
The aim of this study was to quantify the tibio-femoral contact point (CP) locations in healthy and osteoarthritic (OA) subjects during a weight-bearing squat using stand-alone biplanar X-ray images. Ten healthy and 9 severe OA subjects performed quasi-static squats. Bi-planar X-ray images were recorded at 0°, 15°, 30°, 45°, and 70° of knee flexion. A reconstruction/registration process was used to create 3D models of tibia, fibula, and femur from bi-planar X-rays and to measure their positions at each posture. A weighted centroid of proximity algorithm was used to calculate the tibio-femoral CP locations. The accuracy of the reconstruction/registration process in measuring the quasi-static kinematics and the contact parameters was evaluated in a validation study. The quasi-static kinematics data revealed that in OA knees, adduction angles were greater (p<0.01), and the femur was located more medially relative to the tibia (p<0.01). Similarly, the average CP locations on the medial and lateral tibial plateaus of the OA patients were shifted (6.5±0.7mm; p<0.01) and (9.6±3.1mm; p<0.01) medially compared to the healthy group. From 0° to 70° flexion, CPs moved 8.1±5.3mm and 8.9±5.3mm posteriorly on the medial and lateral plateaus of healthy knees; while in OA joints CPs moved 10.1±8.4mm and 3.6±2.8mm posteriorly. The average minimum tibio-femoral bone-to-bone distances of the OA joints were lower in both compartments (p<0.01). The CPs in the OA joints were located more medially and displayed a higher ratio of medial to lateral posterior translations compared to healthy joints.
NASA Astrophysics Data System (ADS)
Le, Jia-Liang; Bažant, Zdeněk P.; Bazant, Martin Z.
2011-07-01
Engineering structures must be designed for an extremely low failure probability such as 10 -6, which is beyond the means of direct verification by histogram testing. This is not a problem for brittle or ductile materials because the type of probability distribution of structural strength is fixed and known, making it possible to predict the tail probabilities from the mean and variance. It is a problem, though, for quasibrittle materials for which the type of strength distribution transitions from Gaussian to Weibullian as the structure size increases. These are heterogeneous materials with brittle constituents, characterized by material inhomogeneities that are not negligible compared to the structure size. Examples include concrete, fiber composites, coarse-grained or toughened ceramics, rocks, sea ice, rigid foams and bone, as well as many materials used in nano- and microscale devices. This study presents a unified theory of strength and lifetime for such materials, based on activation energy controlled random jumps of the nano-crack front, and on the nano-macro multiscale transition of tail probabilities. Part I of this study deals with the case of monotonic and sustained (or creep) loading, and Part II with fatigue (or cyclic) loading. On the scale of the representative volume element of material, the probability distribution of strength has a Gaussian core onto which a remote Weibull tail is grafted at failure probability of the order of 10 -3. With increasing structure size, the Weibull tail penetrates into the Gaussian core. The probability distribution of static (creep) lifetime is related to the strength distribution by the power law for the static crack growth rate, for which a physical justification is given. The present theory yields a simple relation between the exponent of this law and the Weibull moduli for strength and lifetime. The benefit is that the lifetime distribution can be predicted from short-time tests of the mean size effect on
Balle, S S; Magnusson, S P; McHugh, M P
2015-12-01
The purpose of this study was to determine the acute effects of contract-relax stretching (CRS) vs static stretching (SS) on strength loss and the length-tension relationship. We hypothesized that there would be a greater muscle length-specific effect of CRS vs SS. Isometric hamstring strength was measured in 20 healthy people at four knee joint angles (90°, 70°, 50°, 30°) before and after stretching. One leg received SS, the contralateral received CRS. Both stretching techniques resulted in significant strength loss, which was most apparent at short muscle lengths [SS: P = 0.025; stretching × angle P < 0.001; 11.7% at 90° P < 0.01; 5.6% at 70° nonsignificant (ns); 1.3% at 50° ns; -3.7% at 30° ns. CRS: P < 0.001; stretching × angle P < 0.001; 17.7% at 90°, 13.4% at 70°, 11.4% at 50°, all P < 0.01, 4.3% at 30° ns]. The overall stretch-induced strength loss was greater (P = 0.015) after CRS (11.7%) vs SS (3.7%). The muscle length effect on strength loss was not different between CRS and SS (stretching × angle × stretching technique P = 0.43). Contrary to the hypothesis, CRS did not result in a greater shift in the length-tension relationship, and in fact, resulted in greater overall strength loss compared with SS. These results support the use of SS for stretching the hamstrings.
Mitchell, John Anthony; Epp, David S.; Wittwer, Jonathan W.
2005-10-01
Damping vibrations is important in the design of some types of inertial sensing devices. One method for adding damping to a device is to use magnetic forces generated by a static magnetic field interacting with eddy currents. In this report, we develop a 2-dimensional finite element model for the analysis of quasistatic eddy currents in a thin sheet of conducting material. The model was used for design and sensitivity analyses of a novel mechanical oscillator that consists of a shuttle mass (thin sheet of conducting material) and a set of folded spring elements. The oscillator is damped through the interaction of a static magnetic field and eddy currents in the shuttle mass. Using a prototype device and Laser Dopler Velocimetry (LDV), measurements were compared to the model in a validation study using simulation based uncertainty analyses. Measurements were found to follow the trends predicted by the model.
NASA Astrophysics Data System (ADS)
Qian, Ping; Cavallo, Robert; Park, Hye-Sook; Plechaty, Chris; Prisbrey, Shon; Wilson, Mike; Maddox, Brian; Blobaum, Kerri; May, Robert
2012-10-01
We present results from a material strength analysis of tantalum using a multimode rippled target under quasi-isentropic plasma loading at pressure greater than 100GPa and strain rate above 106 s-1. The results are compared with test data measured at Omega Laser. A conventional approach [1,2] utilizes the RTI (Rayleigh-Taylor Instability) mechanism to infer material strength from the growth of a single sinusoidal mode pre-imposed on a target. This method was proven reliable [2,3], but there is room for improvement in efficiency. By deploying an initial perturbation with two or more sinusoidal modes superimposed onto a single target, we are able to collect more test data in a single experiment. Presented in this paper are the verification of a multimode approach against single mode; mode coupling development during the loading sequence; the behavior of induced modes; and the detection of those modes in both simulation and test measurements.[4pt] [1] B.A. Remington et at., Material Science and Technology, Vol. 22, No. 4, 2006[0pt] [2] H.S. Park et al., PRL. 104, 135504 (2010)[0pt] [3] N. R. Barton et al., J. of Applied Physics, 109, 073501, 2011
NASA Astrophysics Data System (ADS)
Rae, Philip J.; Trujillo, Carl P.; Lovato, Manuel L.
2009-12-01
The assumption that Young's modulus is strain-rate invariant is tested for 6061-T6 aluminium alloy and 1018 steel over 10 decades of strain-rate. For the same billets of material, 3 quasi-static strain-rates are investigated with foil strain gauges at room temperature. The ultrasonic sound speeds are measured and used to calculate the moduli at approximately 104 s-1. Finally, 1D plate impact is used to generate an elastic pre-cursor in the alloys at a strain-rate of approximately 106 s1 from which the longitudinal sound speed may be obtained. It is found that indeed the Young's modulus is strain-rate independent within the experimental accuracy.
Tsamados, M; Tanguy, A; Léonforte, F; Barrat, J-L
2008-07-01
We present a numerical study of the mechanical response of a 2D Lennard-Jones amorphous solid under steady quasi-static and athermal shear. We focus here on the evolution of local stress components. While the local stress is usually taken as an order parameter in the description of the rheological behaviour of complex fluids, and for plasticity in glasses, we show here that the knowledge of local stresses is not sufficient for a complete description of the plastic behaviour of our system. The distribution of local stresses can be approximately described as resulting from the sum of localized quadrupolar events with an exponential distribution of amplitudes. However, we show that the position of the center of the quadrupoles is not related to any special evolution of the local stress, but must be described by another variable.
Rae, Philip J; Trujillo, Carl; Lovato, Manuel
2009-01-01
The assumption that Young's modulus is strain-rate invariant is tested for 6061-T6 aluminium alloy and 1018 steel over 10 decades of strain-rate. For the same billets of material, 3 quasi-static strain-rates are investigated with foil strain gauges at room temperature. The ultrasonic sound speeds are measured and used to calculate the moduli at approximately 10{sup 4} s{sup -1}. Finally, ID plate impact is used to generate an elastic pre-cursor in the alloys at a strain-rate of approximately 10{sup 6} s{sup -1} from which the longitudinal sound speed may be obtained. It is found that indeed the Young's modulus is strain-rate independent within the experimental accuracy.
NASA Astrophysics Data System (ADS)
N'Diaye, M.; Vigan, A.; Dohlen, K.; Sauvage, J.-F.; Caillat, A.; Costille, A.; Girard, J. H. V.; Beuzit, J.-L.; Fusco, T.; Blanchard, P.; Le Merrer, J.; Le Mignant, D.; Madec, F.; Moreaux, G.; Mouillet, D.; Puget, P.; Zins, G.
2016-08-01
Warm or massive gas giant planets, brown dwarfs, and debris disks around nearby stars are now routinely observed by dedicated high-contrast imaging instruments that are mounted on large, ground-based observatories. These facilities include extreme adaptive optics (ExAO) and state-of-the-art coronagraphy to achieve unprecedented sensitivities for exoplanet detection and their spectral characterization. However, low spatial frequency differential aberrations between the ExAO sensing path and the science path represent critical limitations for the detection of giant planets with a contrast lower than a few 10-6 at very small separations (<0.3'') from their host star. In our previous work, we proposed a wavefront sensor based on Zernike phase-contrast methods to circumvent this problem and measure these quasi-static aberrations at a nanometric level. We present the design, manufacturing, and testing of ZELDA, a prototype that was installed on VLT/SPHERE during its reintegration in Chile. Using the internal light source of the instrument, we first performed measurements in the presence of Zernike or Fourier modes introduced with the deformable mirror. Our experimental results are consistent with the results in simulations, confirming the ability of our sensor to measure small aberrations (<50 nm rms) with nanometric accuracy. Following these results, we corrected the long-lived non-common path aberrations in SPHERE based on ZELDA measurements and estimated a contrast gain of 10 in the coronagraphic image at 0.2'', reaching the raw contrast limit set by the coronagraph in the instrument. In addition to this encouraging result, the simplicity of the design and its phase reconstruction algorithm makes ZELDA an excellent candidate for the online measurements of quasi-static aberrations during the observations. The implementation of a ZELDA-based sensing path on the current and future facilities (ELTs, future space missions) could facilitate the observation of cold gaseous
A Comparison of Quasi-Static Indentation and Drop-Weight Impact Testing on Carbon-Epoxy Laminates
NASA Technical Reports Server (NTRS)
Prabhakaran, R.
2001-01-01
The project had two objectives: 1) The primary objective was to characterize damage tolerance of composite materials. To accomplish this, polymer matrix composites were to be subjected to static indentation as well as low-velocity impacts and the results analyzed. 2) A second objective was to investigate the effects of laser shock peening on the damage tolerance of aerospace materials, such as aluminum alloys, in terms of crack nucleation and crack propagation. The impact testing was proposed to be performed using a Dynatup drop tower. The specimens were to be placed over a square opening in a steel platen and impacted with a hemispherical tup. The damage was to be characterized in the laminate specimens. The damage tolerance of aerospace alloys was to be studied by conducting fatigue tests on aluminum alloy specimens with prior shock peening treatment. The crack length was to be monitored by a microscope and the crack propagation rate, da/dN, determined.
Frazin, Richard A.
2013-04-10
Heretofore, the literature on exoplanet detection with coronagraphic telescope systems has paid little attention to the information content of short exposures and methods of utilizing the measurements of adaptive optics wavefront sensors. This paper provides a framework for the incorporation of the wavefront sensor measurements in the context of observing modes in which the science camera takes millisecond exposures. In this formulation, the wavefront sensor measurements provide a means to jointly estimate the static speckle and the planetary signal. The ability to estimate planetary intensities in as little as a few seconds has the potential to greatly improve the efficiency of exoplanet search surveys. For simplicity, the mathematical development assumes a simple optical system with an idealized Lyot coronagraph. Unlike currently used methods, in which increasing the observation time beyond a certain threshold is useless, this method produces estimates whose error covariances decrease more quickly than inversely proportional to the observation time. This is due to the fact that the estimates of the quasi-static aberrations are informed by a new random (but approximately known) wavefront every millisecond. The method can be extended to include angular (due to diurnal field rotation) and spectral diversity. Numerical experiments are performed with wavefront data from the AEOS Adaptive Optics System sensing at 850 nm. These experiments assume a science camera wavelength {lambda} of 1.1 {mu}, that the measured wavefronts are exact, and a Gaussian approximation of shot-noise. The effects of detector read-out noise and other issues are left to future investigations. A number of static aberrations are introduced, including one with a spatial frequency exactly corresponding the planet location, which was at a distance of Almost-Equal-To 3{lambda}/D from the star. Using only 4 s of simulated observation time, a planetary intensity, of Almost-Equal-To 1 photon ms{sup -1
Static and cyclic strength of austenitic corrosion-resistant cast Cr-Ni-Mn-Mo-N steel
NASA Astrophysics Data System (ADS)
Kostina, M. V.; Muradyan, S. O.; Terent'ev, V. F.; Blinov, E. V.; Prosvirin, D. V.
2015-05-01
The resistance to cyclic loading of high-nitrogen corrosion-resistant cast austenitic 05Kh22AG15N8M2FL (˜0.5% N) steel is studied for the first time (high-cycle tests of plane specimens at 20°C in air upon repeated tension). The structure of the steel, its static strength, and the fracture in regions of high- and low-cycle fatigues are investigated. It is shown that the structural state of the steel (solid-solution treatment of the as-cast and deformed steel, hot plastic deformation, and aging) and the test conditions influence the fatigue life. The results are compared with the high-cycle fatigue life of austenitic steels with 0.1-1.1% N treated for solid solution, and the fatigue limit is compared to the ultimate strength, the grain size, and the total content of nitrogen and carbon in the steels. Fractographic studies are performed for the fracture surfaces of cast 05Kh22AG15N8M2FL steel after fatigue tests.
A stack-based flex-compressive piezoelectric energy harvesting cell for large quasi-static loads
NASA Astrophysics Data System (ADS)
Wang, Xianfeng; Shi, Zhifei; Wang, Jianjun; Xiang, Hongjun
2016-05-01
In this paper, a flex-compressive piezoelectric energy harvesting cell (F-C PEHC) is proposed. This cell has a large load capacity and adjustable force transmission coefficient assembled from replaceable individual components. A statically indeterminate mechanical model for the cell is established and the theoretical force transmission coefficient is derived based on structural mechanics. An inverse correlation between the force transmission coefficient and the relative stiffness of Element 1’s limbs is found. An experimental study is also conducted to verify the theoretical results. Both weakened and enhanced modes are achieved for this experiment. The maximum power output approaches 4.5 mW at 120 kΩ resistive load under a 4 Hz harmonic excitation with 600 N amplitude for the weakened mode, whereas the maximum power output approaches 17.8 mW at 120 kΩ under corresponding load for the enhanced mode. The experimental measurements of output voltages are compared with the theoretical ones in both weakened and enhanced modes. The experimental measurements of open-circuit voltages are slightly smaller for harmonic excitations with amplitudes that vary from 400 N to 800 N and the errors are within 14%. During the experiment, the maximum load approaches 2.8 kN which is quite large but not the ultimate bearing capacity of the present device. The mechanical model and theoretical transmission coefficient can be used in other flex-compressive mode energy transducers.
Ching, E; Cook, P A; Bubb, N L; Wood, D J
2000-10-01
This study addressed the question of whether shear and tensile loads applied 15 minutes after bonding metal brackets to enamel affected the shear/peel bond strength of the adhesive. Ninety standard 0.022-inch stainless steel edgewise premolar mesh-backed brackets were bonded using a no-mix chemical-cured adhesive to 90 teeth, which had been prepared in a standardized manner. After 15 minutes three groups of 30 teeth were subjected to the following regimes: no applied load, tensile static load of 0.77 N (78 g), and shear static load of 0.77 N. After 14 days storage in 100 per cent relative humidity at 37 degrees C, the shear/peel strength of the adhesive bond was measured using a purpose built jig mounted on a universal testing machine. Shear/peel bond strengths were analysed using Weibull statistics. The Weibull moduli of the three groups indicated that the adhesive performed consistently despite early static loading. Characteristic strengths were 9.22, 9.27, and 9.05 MPa for the control, tensile, and shear groups, respectively. The findings indicate that static loads (such as tying in of archwires) can be placed on brackets 15 minutes after cementation, without a clinically significant reduction in bond strength of the tested adhesive.
Forsell, Caroline; Swedenborg, Jesper; Roy, Joy; Gasser, T Christian
2013-07-01
Assessing the risk for abdominal aortic aneurysm (AAA) rupture is critical in the management of aneurysm patients and an individual assessment is possible with the biomechanical rupture risk assessment. Such an assessment could potentially be improved by a constitutive AAA wall model that accounts for irreversible damage-related deformations. Because of that the present study estimated the elastic and inelastic properties of the AAA wall through a mixed experimental-numerical approach. Specifically, finite element (FE) models of bone-shaped tensile specimens were used to merge data from failure testing of the AAA wall with their measured collagen orientation distribution. A histo-mechanical constitutive model for collagen fibers was employed, where plastic fibril sliding determined not only remaining deformations but also weakening of the fiber. The developed FE models were able to replicate the experimentally recorded load-displacement property of all 16 AAA wall specimens that were investigated in the study. Tensile testing in longitudinal direction of the AAA defined a Cauchy strength of 569(SD 411) kPa that was reached at a stretch of 1.436(SD 0.118). The stiffness and strength of specimens decreased with the wall thickness and were elevated (p = 0.018; p = 0.030) in patients with chronic obstructive pulmonary disease (COPD). Smoking affected the tissue parameters that were related to the irreversible deformation response, and no correlation with gender and age was found. The observed effects on the biomechanical properties of the AAA wall could have long-term consequences for the management of aneurysm patients, i.e., specifically they might influence future AAA rupture risk assessments. However, in order to design appropriate clinical validation studies our findings should firstly be verified in a larger patient cohort.
NASA Astrophysics Data System (ADS)
Mohammed, Touseef Ahmed Faisal
Since 2000, renewable electricity installations in the United States (excluding hydropower) have more than tripled. Renewable electricity has grown at a compounded annual average of nearly 14% per year from 2000-2010. Wind, Concentrated Solar Power (CSP) and solar Photo Voltaic (PV) are the fastest growing renewable energy sectors. In 2010 in the U.S., solar PV grew over 71% and CSP grew by 18% from the previous year. Globally renewable electricity installations have more than quadrupled from 2000-2010. Solar PV generation grew by a factor of more than 28 between 2000 and 2010. The amount of CSP and solar PV installations are increasing on the distribution grid. These PV installations transmit electrical current from the load centers to the generating stations. But the transmission and distribution grid have been designed for uni-directional flow of electrical energy from generating stations to load centers. This causes imbalances in voltage and switchgear of the electrical circuitry. With the continuous rise in PV installations, analysis of voltage profile and penetration levels remain an active area of research. Standard distributed photovoltaic (PV) generators represented in simulation studies do not reflect the exact location and variability properties such as distance between interconnection points to substations, voltage regulators, solar irradiance and other environmental factors. Quasi-Static simulations assist in peak load planning hour and day ahead as it gives a time sequence analysis to help in generation allocation. Simulation models can be daily, hourly or yearly depending on duty cycle and dynamics of the system. High penetration of PV into the power grid changes the voltage profile and power flow dynamically in the distribution circuits due to the inherent variability of PV. There are a number of modeling and simulations tools available for the study of such high penetration PV scenarios. This thesis will specifically utilize OpenDSS, a open source
NASA Astrophysics Data System (ADS)
Ritz, E.; Pollard, D. D.
2011-12-01
Geological and geophysical investigations demonstrate that faults are geometrically complex structures, and that the nature and intensity of off-fault damage is spatially correlated with geometric irregularities of the slip surfaces. Geologic observations of exhumed meter-scale strike-slip faults in the Bear Creek drainage, central Sierra Nevada, CA, provide insight into the relationship between non-planar fault geometry and frictional slip at depth. We investigate natural fault geometries in an otherwise homogeneous and isotropic elastic material with a two-dimensional displacement discontinuity method (DDM). Although the DDM is a powerful tool, frictional contact problems are beyond the scope of the elementary implementation because it allows interpenetration of the crack surfaces. By incorporating a complementarity algorithm, we are able to enforce appropriate contact boundary conditions along the model faults and include variable friction and frictional strength. This tool allows us to model quasi-static slip on non-planar faults and the resulting deformation of the surrounding rock. Both field observations and numerical investigations indicate that sliding along geometrically discontinuous or irregular faults may lead to opening of the fault and the formation of new fractures, affecting permeability in the nearby rock mass and consequently impacting pore fluid pressure. Numerical simulations of natural fault geometries provide local stress fields that are correlated to the style and spatial distribution of off-fault damage. We also show how varying the friction and frictional strength along the model faults affects slip surface behavior and consequently influences the stress distributions in the adjacent material.
NASA Astrophysics Data System (ADS)
Lajnef, N.; Burgueño, R.; Borchani, W.; Sun, Y.
2014-05-01
A major obstacle limiting the development of deployable sensing and actuation solutions is the scarcity of power. Converted energy from ambient loading using piezoelectric scavengers is a possible solution. Most of the previously developed research focused on vibration-based piezoelectric harvesters which are typically characterized by a response with a narrow natural frequency range. Several techniques were used to improve their effectiveness. These methods focus only on the transducer’s properties and configurations, but do little to improve the stimuli from the source. In contrast, this work proposes to focus on the input deformations generated within the structure, and the induction of an amplified amplitude and up-converted frequency toward the harvesters’ natural spectrum. This paper introduces the concept of using mechanically-equivalent energy converters and frequency modulators that can transform low-amplitude and low-rate service deformations into an amplified vibration input to the piezoelectric transducer. The introduced concept allows energy conversion within the unexplored quasi-static frequency range (≪1 Hz). The post-buckling behavior of bilaterally constrained columns is used as the mechanism for frequency up-conversion. A bimorph cantilever polyvinylidene fluoride (PVDF) piezoelectric beam is used for energy conversion. Experimental prototypes were built and tested to validate the introduced concept and the levels of extractable power were evaluated for different cases under varying input frequencies. Finally, finite element simulations are reported to provide insight into the scalability and performance of the developed concept.
Azar, Nadia R; Kallakuri, Srinivasu; Chen, Chaoyang; Lu, Ying; Cavanaugh, John M
2009-12-01
The aim of this study was to investigate the response of cervical muscles to physiologic tensile stretch of cervical facet joint capsule (FJC) at a quasi-static displacement rate of 0.5mm/s. In vivo caprine left C5-C6 FJC preparations were subjected to an incremental tensile displacement paradigm. EMG activity was recorded during FJC stretch from the right trapezius (TR) and multifidus (MF) muscle groups at the C5 and C6 levels and bilaterally from the sternomastoid (SM) and longus colli (LC) muscle groups at the C5-C6 level. Onset of muscular activity was later analyzed using visual and computer-based methods. Capsule load and strain at the time of onset were recorded and compared between the muscle groups. Results indicated capsule load was a better indicator of the tensile stretch thresholds for muscular recruitment than capsule strain. MF responded at significantly smaller capsule loads than TR and LC, while TR and LC activation loads were not significantly different. SM did not respond to physiologic FJC stretch. Muscle group recruitment order reflected the muscles' fiber type compositions and functional roles in the spine. This study provides the first evidence that the cervical ligamento-muscular reflex pathways are activated via tensile FJC stretch and extend to superficial and deep musculature on the anterior and posterior aspects of the neck, ipsilateral and contralateral to the side of FJC stretch.
NASA Astrophysics Data System (ADS)
Lee, Dong-Geun; Lee, Sunghak; Lee, Chong Soo; Hur, Sunmoo
2003-11-01
The effects of microstructural factors on the quasi-static tensile and dynamic torsional deformation behaviors in Ti-6Al-4V alloys with Widmanstätten structures were investigated in this study. Dynamic torsional tests were conducted using a torsional Kolsky bar for five Widmanstätten structures, in which microstructural parameters such as colony size and α lamellar spacing were varied by heat treatments, and then the test data were analyzed in relation to microstructures, tensile properties, and fracture mode. Under dynamic torsional loading, maximum shear stress was largely dependent on colony size, whereas shear strain at the maximum shear stress point was on colony size as well as α lamellar spacing. Adiabatic shear bands were found in the deformed area of the fractured torsional specimens, and their width was smallest in the structure whose colony size and α lamellar spacing were both large. The possibility of the adiabatic shear band formation was quantitatively analyzed in relation to microstructural factors. It was the highest in the coarse Widmanstätten structure, which was confirmed by the theoretical critical shear strain (υ c ) condition for the adiabatic shear band formation.
Vasco, D.W.
2011-10-01
Using an asymptotic technique, valid when the medium properties are smoothly-varying, I derive a semi-analytic expression for the propagation velocity of a quasi-static disturbance traveling within a nonlinear-elastic porous medium. The phase, a function related to the propagation time, depends upon the properties of the medium, including the pressure-sensitivities of the medium parameters, and on pressure and displacement amplitude changes. Thus, the propagation velocity of a disturbance depends upon its amplitude, as might be expected for a nonlinear process. As a check, the expression for the phase function is evaluated for a poroelastic medium, when the material properties do not depend upon the fluid pressure. In that case, the travel time estimates agree with conventional analytic estimates, and with values calculated using a numerical simulator. For a medium with pressure-dependent permeability I find general agreement between the semi-analytic estimates and estimates from a numerical simulation. In this case the pressure amplitude changes are obtained from the numerical simulator.
NASA Astrophysics Data System (ADS)
Dovgii, V. T.; Linnik, A. I.; Kamenev, V. I.; Tarenkov, V. Yu.; Sidorov, S. L.; Todris, B. M.; Mikhailov, V. I.; Davideiko, N. V.; Linnik, T. A.; Popov, Ju. F.; Balbashov, A. M.
2016-06-01
Hysteresis features of magnetization and resistance of Nd0.5Sr0.5MnO3 single crystal in quasi-static (up to 9 T) and pulse (up to 14 T) magnetic fields are studied. The relaxation processes of magnetization and resistance after the action of a magnetic field of 9 T are also studied. It is shown that relaxation curves are approximated by two exponents with different time constants. These two constants relate to relaxation of the metastable ferromagnetic phase towards two different crystal structures (Imma and p21/m). Mechanism of phase transitions: antiferromagnetic insulator↔ferromagnetic metal (AFM/I↔FM/M) and existence of a high-conductive state of a sample after removal of magnetizing field in the temperature range below 150 K is proposed. The mechanism is connected with structural transition induced by magnetic field (due to magnetostriction) and slow relaxation of the FM-phase (larger volume) to the equilibrium AFM-phase (smaller volume) after field removal. It is shown that during pulse magnetization at the temperature 18 K time required for the AFM/I→FM/M phase transition is by six-seven orders of magnitude less than for realization of the FM/M→AFM/I phase transition.
NASA Astrophysics Data System (ADS)
Dovgii, V. T.; Linnik, A. I.; Kamenev, V. I.; Tarenkov, V. Yu.; Sidorov, S. L.; Todris, B. M.; Mikhailov, V. I.; Davydeiko, N. V.; Linnik, T. A.; Popov, Yu. F.; Balbashov, A. M.
2015-12-01
The hysteresis features in the behavior of the magnetization and resistance of Nd0.5Sr0.5MnO3 single crystals in quasi-static (up to 9 T) and pulsed (up to 14 T) magnetic fields have been studied. Relaxation processes of magnetization and resistance after the action of a magnetic field of 9 T have also been investigated. It has been shown that relaxation curves are approximated by two exponents with different time constants, which are related to relaxation of the metastable ferromagnetic phase towards two different antiferromagnetic crystal structures ( I mma and p21/ m). Mechanism of the phase transitions antiferromagnetic insulator ↔ ferromagnetic metal (AFM/I ↔ FM/M) and existence of a high-conductive state of a sample after removal of magnetizing field in the temperature range below 150 K is proposed. The mechanism is determined by the structural transition, which is induced by a magnetic field (due to magnetostriction), and by a slow relaxation of the FM-phase (larger volume) to the stable AFM-phase (smaller volume) after field removal. It has been shown that, during pulse magnetization at the temperature 18 K, the time required for the AFM/I → FM/M phase transition is six-seven orders of magnitude shorter than that for the FM/M → AFM/I phase transition.
Converse, Gabriel L; Armstrong, Matt; Quinn, Rachael W; Buse, Eric E; Cromwell, Michael L; Moriarty, Sara J; Lofland, Gary K; Hilbert, Stephen L; Hopkins, Richard A
2012-07-01
Decellularized allografts offer potential as heart valve substitutes and scaffolds for cell seeding. The effects of decellularization on the quasi-static and time-dependent mechanical behavior of the pulmonary valve leaflet under biaxial loading conditions have not previously been reported in the literature. In the current study, the stress-strain, relaxation and creep behaviors of the ovine pulmonary valve leaflet were investigated under planar-biaxial loading conditions to determine the effects of decellularization and a novel post-decellularization extracellular matrix (ECM) conditioning process. As expected, decellularization resulted in increased stretch along the loading axes. A reduction in relaxation was observed following decellularization. This was accompanied by a reduction in glycosaminoglycan (GAG) content. Based on previous implant studies, these changes may be of little functional consequence in the short term; however, the long term effects of decreased relaxation and GAG content remain unknown. Some restoration of relaxation was observed following ECM conditioning, especially in the circumferential specimen direction, which may help mitigate any detrimental effects due to decellularization. Regardless of processing, creep under biaxial loading was negligible.
Chen, Xi Mei; Mak, Peng Un; Pun, Sio Hang; Gao, Yue Ming; Lam, Chan-Tong; Vai, Mang I; Du, Min
2012-11-27
Intra-Body Communication (IBC), which modulates ionic currents over the human body as the communication medium, offers a low power and reliable signal transmission method for information exchange across the body. This paper first briefly reviews the quasi-static electromagnetic (EM) field modeling for a galvanic-type IBC human limb operating below 1 MHz and obtains the corresponding transfer function with correction factor using minimum mean square error (MMSE) technique. Then, the IBC channel characteristics are studied through the comparison between theoretical calculations via this transfer function and experimental measurements in both frequency domain and time domain. High pass characteristics are obtained in the channel gain analysis versus different transmission distances. In addition, harmonic distortions are analyzed in both baseband and passband transmissions for square input waves. The experimental results are consistent with the calculation results from the transfer function with correction factor. Furthermore, we also explore both theoretical and simulation results for the bit-error-rate (BER) performance of several common modulation schemes in the IBC system with a carrier frequency of 500 kHz. It is found that the theoretical results are in good agreement with the simulation results.
ERIC Educational Resources Information Center
Fong, Shirley S. M.; Chung, Joanne W. Y.; Chow, Lina P. Y.; Ma, Ada W. W.; Tsang, William W. N.
2013-01-01
This randomized controlled trial aimed to investigate the effect of short-term intensive TKD training on the isokinetic knee muscle strength and reactive and static balance control of children with developmental coordination disorder (DCD). Among the 44 children with DCD (mean age: 7.6 plus or minus 1.3 years) recruited, 21 were randomly assigned…
NASA Astrophysics Data System (ADS)
Datta, Supratik
2009-12-01
Iron-gallium alloys (Galfenol) are structural magnetostrictive materials that exhibit high free-strain at low magnetic fields, high stress-sensitivity and useful thermo-mechanical properties. Galfenol, like smart materials in general, is attractive for use as a dynamic actuator and/or sensor material and can hence find use in active shape and vibration control, real-time structural health monitoring and energy harvesting applications. Galfenol possesses significantly higher yield strength and greater ductility than most smart materials, which are generally limited to use under compressive loads. The unique structural attributes of Galfenol introduce opportunities for use of a smart material in applications that involve tension, bending, shear or torsion. A principal motivation for the research presented in this dissertation is that bending and shear loads lead to development of non-uniform stress and magnetic fields in Galfenol which introduce significantly more complexity to the considerations to be modeled, compared to modeling of purely axial loads. This dissertation investigates the magnetostrictive response of Galfenol under different stress and magnetic field conditions which is essential for understanding and modeling Galfenol's behavior under bending, shear or torsion. Experimental data are used to calculate actuator and sensor figures of merit which can aid in design of adaptive structures. The research focuses on the bending behavior of Galfenol alloys as well as of laminated composites having Galfenol attached to other structural materials. A four-point bending test under magnetic field is designed, built and conducted on a Galfenol beam to understand its performance as a bending sensor. An extensive experimental study is conducted on Galfenol-Aluminum laminated composites to evaluate the effect of magnetic field, bending moment and Galfenol-Aluminum thickness ratio on actuation and sensing performance. A generalized recursive algorithm is presented for
NASA Astrophysics Data System (ADS)
Rocco, Alessandra S.; Coppola, Giuseppe; Ferraro, Pietro; Foti, Giuseppe; Iodice, Mario
2004-09-01
Optical fiber sensors are the ideal system to monitor "smart structures" and on-site/real time stress measurements: they can be in fact easily embedded or attached to the structures under test and are not affected by electro- magnetic noise. In particular a signal from a Fiber Bragg grating sensor (FBG) may be processed such that its information remains immune to optical power fluctuations. Different interrogation methods can be used for reading out Bragg wavelength shifts. In this paper we propose a very simple interferometric method for interrogating FBG sensors, based on bi-polished silicon sample acting like an etalon tuneable filter (ETF). The Bragg wavelength shift can be evaluated by analyzing the spectral response of signal reflected by the FBG sensor and filtered by the ETF that is continuously and rapidly tuned. Tuning was obtained by rotating the ETF. Variation in the strain at the FBG causes a phase shift in the analyzed signal. The overall spectral signal, collected with time, consists in an interferometric figure which finesse and fringe contrast depending on the geometrical sizes and facets reflectivity of the silicon sample. The fringe pattern, expressed by the Airy's formula, depends on the wavelength l of the incident radiation and on the angle of incidence. The phase of fringe pattern can be retrieved by a standard FFT method giving quantitative measurements of the quasi-static strain variation sensed by the FBG. In this way, the method allows a valuable visualization of the time-evolution of the incremental strain applied to the FBG. Principle of functioning of this method is described and first results obtained employing such configuration, are reported.
Lockerbie, N. A.; Tokmakov, K. V.
2014-10-15
This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect “Violin-Mode” (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a “synthesized split photodiode” detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC “shadow notch” outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing “jitter” at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm.
Thompson, B.D.; Young, R.P.; Lockner, D.A.
2006-01-01
New observations of fracture nucleation are presented from three triaxial compression experiments on intact samples of Westerly granite, using Acoustic Emission (AE) monitoring. By conducting the tests under different loading conditions, the fracture process is demonstrated for quasi-static fracture (under AE Feedback load), a slowly developing unstable fracture (loaded at a 'slow' constant strain rate of 2.5 ?? 10-6/s) and an unstable fracture that develops near instantaneously (loaded at a 'fast' constant strain rate of 5 ?? 10-5/s). By recording a continuous ultrasonic waveform during the critical period of fracture, the entire AE catalogue can be captured and the exact time of fracture defined. Under constant strain loading, three stages are observed: (1) An initial nucleation or stable growth phase at a rate of ??? 1.3 mm/s, (2) a sudden increase to a constant or slowly accelerating propagation speed of ??? 18 mm/s, and (3) unstable, accelerating propagation. In the ??? 100 ms before rupture, the high level of AE activity (as seen on the continuous record) prevented the location of discrete AE events. A lower bound estimate of the average propagation velocity (using the time-to-rupture and the existing fracture length) suggests values of a few m/s. However from a low gain acoustic record, we infer that in the final few ms, the fracture propagation speed increased to 175 m/s. These results demonstrate similarities between fracture nucleation in intact rock and the nucleation of dynamic instabilities in stick slip experiments. It is suggested that the ability to constrain the size of an evolving fracture provides a crucial tool in further understanding the controls on fracture nucleation. ?? Birkha??user Verlag, Basel, 2006.
Plastic Instabilities and Their Consequences in Steels and Other High Strength Alloys
1991-09-01
rate yes Superalloys * Alloy 600 quasi-static no Rend 41 quasi-static no Steels * HY80 quasi-static no ultra-soft5 no low temperatures no AISI 4340...AD-A240 976 ([f) A Final Technical Report Contract No. N00014-88-K-0111 S PLASTIC INSTABILITIES AND THEIR CONSEQUENCES IN STEELS AND OTHER HIGH...PLASTIC INSTABILITIES AND THEIR CONSEQUENCES IN STEELS AND OTHER HIGH STRENGTH ALLOYS Submitted to: Office of Naval Research 800 North Quincy Street
NASA Technical Reports Server (NTRS)
Oluseyi, Hakeem M.; Walker, A. B. C., II; Porter, Jason; Hoover, Richard B.; Barbee, Troy W., Jr.
1998-01-01
We report on observations of the solar atmosphere in several extreme ultraviolet and far-ultraviolet bandpasses obtained by the Multi-Spectral Solar Telescope Array, a rocket borne spectroheliograph, on flights in 1987, 1991, and 1994, spanning the last solar maximum. Quiet sun emission observed in the 171 A - 175 A bandpass, which includes lines of 0Ov, O vi, Fe ix, and Fe x, has been analyzed to test models of the temperatures and geometries of the structures responsible for this emission. Analyses of intensity variations above the solar limb reveal scale heights consistent with a quiet sun plasma temperature of 500 000 K less than or equal to T(sub e) less than or equal to 800 000 K. Intensity modulations in the quiet sun are observed to occur on a scale comparable to the supergranular scale. The structures responsible for the quiet sun EUV emission are modeled as small quasi-static loops. We find that the emission predicted by loop models with maximum temperatures between 700 000 K and 900 000 K are consistent with our observations. We also present a preliminary comparison of the predictions of our models with observations of diagnostic spectral line ratios obtained from previous observers. We discuss the implications a distribution of loops of the type we model here would have for heating the lower transition region. Finally, in fight of the models we calculate here, we briefly review the current state of knowledge concerning the contributions thermal conduction from coronal (T(sub e) greater than or equal to 10(exp 6) K) and upper transition region (10(exp 5) K less than T(sub e) less than 10(esp 6) K) structures make to lower transition region emission. We argue that the evidence which has lead many authors to conclude that the interface of hotter and cooler plasmas makes a negligible contribution to lower transition region emission is much less compelling in light of recent observations and analyses. We further argue that it is the interface of
Wojtuszewski Poulin, Kristi; Smirnov, Aleksandr V; Hawkins, Mary E; Balis, Frank M; Knutson, Jay R
2009-09-22
Two different microenvironments in the DNA sequence 5'-act aGa gat ccc tca gac cct ttt agt cag tGt gga-3' (in both single- and double-stranded forms) are explored using two similar fluorescent nucleoside analogues, 3MI and 6MI. Each probe was evaluated in two environments, one strand with the probe flanked by thymines (PTRT) and the other by adenines (PTRA) with positions indicated by G's in the sequence. Both time-resolved anisotropies and lifetimes of the probes depend upon local interactions, and these are altered by duplex formation. Integrals of lifetime curves compared with quantum yields reveal that each probe displays a "dark" component (below detection limits, with a lifetime of <70 ps). For 6MI in PTRA, this QSSQ "quasi-static self-quenching" or "dark" component represents approximately half the molecules, whether in single- or double-stranded form. In PTRT, 6MI displays an unusual increase in the quantum yield upon formation of the double strand (from 0.107 to 0.189) apparently the result of escape from QSSQ which simultaneously declines from 66 to 33%. This is also accompanied by doubling of steady-state anisotropy. Only 6MI in the PTRT duplex displays a rotational correlation time of >7 ns. In other words, the DS 6MI PTRA environment fails to constrain local motion and QSSQ remains the same as in the single strand; in contrast, the flanking T duplex environment restricts local motion and halves QSSQ. We collected both steady-state and time-resolved fluorescence quenching titrations of 3MI and 6MI in solution with the mononucleotides AMP, CMP, GMP, and TMP. The dynamic quenching rank of the free probes (quenching constant, kq: T > A > G > C) is totally different from that of incorporated probes. We hypothesize the production of weak 3MI.C or 6MI.C complexes that are somehow rendered less subject to dynamic quenching by collision with subsequent C molecules.
Fong, Shirley S M; Chung, Joanne W Y; Chow, Lina P Y; Ma, Ada W W; Tsang, William W N
2013-05-01
This randomized controlled trial aimed to investigate the effect of short-term intensive TKD training on the isokinetic knee muscle strength and reactive and static balance control of children with developmental coordination disorder (DCD). Among the 44 children with DCD (mean age: 7.6 ± 1.3 years) recruited, 21 were randomly assigned to undergo daily TKD training for 1h over three consecutive months, with the remaining 23 children being assigned to the DCD control group. Eighteen typically developing children (mean age: 7.2 ± 1.0 years) received no training as normal controls. Knee extensor and flexor muscle strength and reactive and static balance control were assessed using an isokinetic machine (with low, moderate and high movement velocities), a motor control test (MCT) and a unilateral stance test (UST), respectively. A repeated measures MANCOVA revealed a significant group through time interaction effect in isokinetic outcomes at 180°/s and in the UST outcome. Post hoc analysis demonstrated that DCD-TKD children's isokinetic knee muscle strength, specifically at 180°/s, was as high as that of the normal control children (p>0.0083) after TKD training. Moreover, UST body sway velocity was slower in the DCD-TKD group than in the DCD control group (p<0.001), and was comparable to that of the normal control group (p>0.05) after TKD training. However, no such improvement in balance was observed in the MCT (p>0.025). The results show that children with DCD who undergo a 3-month program of intensive TKD training experience improvements in isokinetic knee muscle strength at 180°/s and static single-leg standing balance control, but do not benefit from improved reactive balance control.
ERIC Educational Resources Information Center
Katsioloudis, Petros; Dickerson, Daniel; Jovanovic, Vukica; Jones, Mildred
2015-01-01
The benefit of using static versus dynamic visualizations is a controversial one. Few studies have explored the effectiveness of static visualizations to those of dynamic visualizations, and the current state of the literature remains somewhat unclear. During the last decade there has been a lengthy debate about the opportunities for using…
NASA Astrophysics Data System (ADS)
Uchida, N.; Matsuzawa, T.; Hirahara, S.; Igarashi, T.; Hasegawa, A.; Kasahara, M.
2005-12-01
We have estimated spatio-temporal distribution of interplate quasi-static slips around the source areas of the 2003 Tokachi-oki (M8.0) and 2005 Miyagi-oki (M7.2) earthquakes by using small repeating earthquakes. The small repeating earthquakes are thought to be caused by repeated rupture of small asperities surrounded by stable sliding areas on the fault. Here we estimated cumulative slips for small repeating earthquakes assuming that they were equal to the quasi-static slip histories in the surrounding areas on the plate boundaries (Igarashi et al., 2003; Uchida et al., 2003). The 2003 Tokachi-oki earthquake occurred on September 26, 2003 off the southeast of Hokkaido, Japan. The present analyses show that the slips in the areas around and to the east of the asperity of the earthquake were slow before the earthquake but that it was significantly accelerated after the earthquake. The slip rate acceleration to the east of the asperity probably triggered a M7.1 event which occurred on November 29, 2004 at the eastern edge of the accelerated area (about 100km east from the hypocenter of the Tokachi-oki earthquake). It seems that the quasi-static slip released the slip deficit in the locked area between the asperities of the 2003 Tokachi-oki and 1973 Nemuro-oki (M7.4) earthquakes. The 2005 Miyagi-oki earthquake occurred on August 16, 2005 in the anticipated source area for the recurrent _eMiyagi-oki earthquake_f. However, it was estimated that the earthquake did not destroyed the whole area of the asperity which caused the previous Miyagi-oki earthquake in 1978 (The Headquarters for Earthquake Research Promotion, 2005). Our result shows the quasi-static slips for the period of 20 years before the earthquake was almost constant to the west of the source area of the 2005 earthquake. The slips after the earthquake were not significant for the period of 15 days which suggests the plate boundary around the asperity for the earthquake is still locking.
NASA Astrophysics Data System (ADS)
Noda, A.; Ogawa, H.; Ishikawa, Y.; Ohno, Y.; Kato, S.; Si, H.; Fukahata, Y.
2012-12-01
Stress change caused by a great earthquake affects seismicity in the surrounding area, as shown by the fact that the 2011 M9.0 Tohoku Earthquake induced M6-7 earthquakes. In Southwest Japan, great interplate earthquakes along the Nankai trough (M~8) have occurred repeatedly with the interval of 100-150 years. In addition, there is a great active fault system, Median Tectonic Line (MTL), consisted of arc-parallel strike-slip fault segments, whose total fault length is about 360km. The occurrences of these earthquakes around the same time will wreak tremendous damage. This is a pressing problem, because the probabilities of earthquake occurrence within 30 years are estimated to be 70 % and 60 % for the next Tonankai and Nankai earthquakes, respectively. In the present study, we simulate the stress change in Southwest Japan in recent 440 years and evaluate the effect of interplate earthquake cycle on the MTL by change in the Coulomb Failure Function (CFF). We constructed a kinematic simulation model composed of the layered elastic-viscoelastic half-space with realistic 3-D geometry of the Eurasian-Philippine Sea plate interface (Hashimoto et al., 2004). The cause of stress change is essentially in kinematic plate interaction at plate boundaries, which is represented by the increase of discontinuity in tangential displacement across the plate interface (Matsu'ura & Sato, 1989). We can decompose the total slip motion on the plate interface into a steady slip over the whole plate interface and its perturbation, earthquake cycles. The long-term effect of steady subduction cannot be ignored, because it inevitably causes secular change in tectonic stress (Hashimoto et al., 2006). Assuming slip history at plate boundary based on the global plate motion NUVEL-1A (DeMets et al., 1994) and historical earthquake data, we calculated the stress accumulation due to steady subduction and the cyclic stress change due to earthquake cycle, respectively, by using quasi-static
NASA Astrophysics Data System (ADS)
Di Carlo, A.; Carbonell Garcia, A.
2012-07-01
The frequency response solution (SOL 111) of MSC Nastran versions prior to 2012 only allows the output of element stress components and element forces and does not allow the calculation of composite failure indices or Von-Mises stress for metallic parts. The analysis of a sandwich panel comprises several strength verifications, such as the check of facesheet and core failure as well as the check of facesheet and core local stability (shear crimping, wrinkling). In static analysis (SOL 101), MSC Nastran provides failure index output which can be used to generate fringe plots of Margins of Safety (MoS) in any post- processing tool. The other verifications (core strength and local stability) must be performed using different tools. For the dynamic analysis of sandwich panels, an analysis technique based on element forces and on failure envelope at laminate level has been developed and implemented in a Fortran program (SineMOS) which allows evaluating facesheet and core failure as well as local stability, taking into account modulus and phase information of the element forces. SineMOS is able to produce files containing information used to generate plots of minimum Margin of Safety in Patran for each failure mode. This paper shows the various steps of the analysis process, starting from the building of the failure envelope for the CFRP facesheet laminate. Finally some validation example is shown, comparing SineMOS results with results based on the application of static displacements to the nodes of the model.
Verdan, Princess J R; Marzilli, Thomas S; Barna, Geanina I; Roquemore, Anntionette N; Fenter, Brad A; Blujus, Brittany; Gosselin, Kevin P
2012-08-01
The purpose of this study was to determine the effect of Power Balance® bands on strength, flexibility, and balance. Strength and flexibility were measured using the MicroFit system. Strength was measured via a bicep curl and flexibility via the sit-and-reach method. Balance was measured by the BIODEX System SD. There were 4 different conditions for the balance test: eyes open on a firm surface (EOFS), eyes closed on a firm surface (ECFS), eyes open on a foam surface (EOFoS), and eyes closed on a foam surface (ECFoS). There were 24 subjects in the study (10 men and 14 women). A counterbalance, double-blind, placebo, controlled within-subject design was used. Each of the subjects participated in 3 treatment sessions, consisting of Power Balance®, placebo band, and no band. An alpha level of p ≤ 0.05 was set a priori. There were no significant differences in strength, flexibility, or balance with regard to the treatments used. There was a significant difference between the conditions in the balance test (p = 0.000): EOFS (0.51), ECFS (0.68), EOFoS (0.99), and ECFoS (2.18); however, these were independent of the treatment conditions. The results indicate that the Power Balance® bands did not have an effect on strength, flexibility, or balance.
NASA Astrophysics Data System (ADS)
Kim, Hyunok; Mohr, William; Yang, Yu-Ping; Zelenak, Paul; Kimchi, Menachem
2011-08-01
Numerical modeling of local formability, such as hole-edge cracking and shear fracture in bending of AHSS, is one of the challenging issues for simulation engineers for prediction and evaluation of stamping and crash performance of materials. This is because continuum-mechanics-based finite element method (FEM) modeling requires additional input data, "failure criteria" to predict the local formability limit of materials, in addition to the material flow stress data input for simulation. This paper presents a numerical modeling approach for predicting hole-edge failures during static bend tests of AHSS structures. A local-strain-based failure criterion and a stress-triaxiality-based failure criterion were developed and implemented in LS-DYNA simulation code to predict hole-edge failures in component bend tests. The holes were prepared using two different methods: mechanical punching and water-jet cutting. In the component bend tests, the water-jet trimmed hole showed delayed fracture at the hole-edges, while the mechanical punched hole showed early fracture as the bending angle increased. In comparing the numerical modeling and test results, the load-displacement curve, the displacement at the onset of cracking, and the final crack shape/length were used. Both failure criteria also enable the numerical model to differentiate between the local formability limit of mechanical-punched and water-jet-trimmed holes. The failure criteria and static bend test developed here are useful to evaluate the local formability limit at a structural component level for automotive crash tests.
Ma, Yingfang; Acosta, Diana M; Whitney, Jon R; Podgornik, Rudolf; Steinmetz, Nicole F; French, Roger H; Parsegian, V Adrian
2015-01-01
Composition-gradient multi-angle static light scattering (CG-MALS) is an emerging technique for the determination of intermolecular interactions via the second virial coefficient B22. With CG-MALS, detailed studies of the second virial coefficient can be carried out more accurately and effectively than with traditional methods. In addition, automated mixing, delivery and measurement enable high speed, continuous, fluctuation-free sample delivery and accurate results. Using CG-MALS we measure the second virial coefficient of bovine serum albumin (BSA) in aqueous solutions at various values of pH and ionic strength of a univalent salt (NaCl). The systematic variation of the second virial coefficient as a function of pH and NaCl strength reveals the net charge change and the isoelectric point of BSA under different solution conditions. The magnitude of the second virial coefficient decreases to 1.13 x 10(-5) ml*mol/g(2) near the isoelectric point of pH 4.6 and 25 mM NaCl. These results illuminate the role of fundamental long-range electrostatic and van der Waals forces in protein-protein interactions, specifically their dependence on pH and ionic strength.
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Sotiris, Kellas
2006-01-01
Static 3-point bend tests of Reinforced Carbon-Carbon (RCC) were conducted to failure to provide data for additional validation of an LS-DYNA RCC model suitable for predicting the threshold of impact damage to shuttle orbiter wing leading edges. LS-DYNA predictions correlated well with the average RCC failure load, and were good in matching the load vs. deflection. However, correlating the detectable damage using NDE methods with the cumulative damage parameter in LS-DYNA material model 58 was not readily achievable. The difficulty of finding internal RCC damage with NDE and the high sensitivity of the mat58 damage parameter to the load near failure made the task very challenging. In addition, damage mechanisms for RCC due to dynamic impact of debris such as foam and ice and damage mechanisms due to a static loading were, as expected, not equivalent.
Biffle, J.H.; Blanford, M.L.
1994-05-01
JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.
Biffle, J.H.
1993-02-01
JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.
NASA Astrophysics Data System (ADS)
Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.
2015-01-01
Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.
Arai, Mitsuo; Shiratani, Tomoko
2015-10-01
The objective of the study was to examine the after-effects of static contractions of upper extremity muscles in different shoulder joint positions and at different pinch-force strengths on the maximal active range of motion (MAROM) and wrist agonist/antagonist IEMG activities for patients with restricted wrist flexion range of motion (ROM) due to upper limb pain and dysfunction. The subjects were 10 outpatients (3 males, 7 females) with restricted wrist joints. These subjects performed four static contractions of upper extremity muscles in neutral and diagonal shoulder joint positions and with weak and strong pinch-force strengths in random order. Two-way repeated measures analysis of variance showed that the change in MAROM was significantly larger (P < 0.05) after diagonal-strong static contractions than after neutral-weak static contractions. There were no significant correlations between changes in MAROM and IEMG activities. These results indicate that shoulder joint position and pinch-force strength should be considered for effective induction of remote after-effects of static contractions for increasing MAROM for restricted wrist flexion ROM.
Static and non-static black holes with the Liouville mode
NASA Astrophysics Data System (ADS)
Moskalets, T. M.; Nurmagambetov, A. J.
2017-03-01
We present a new class of static and non-static quasi-spherical black hole solutions in four-dimensional Minkowski and Anti-de Sitter spaces and briefly discuss its employing in the Gauge/Gravity duality.
NASA Astrophysics Data System (ADS)
Ligda, J.; Scotto D'Antuono, D.; Taheri, M. L.; Schuster, B. E.; Wei, Q.
2016-11-01
Grain size reduction of metals into ultrafine-grained (UFG, grain size 100 nm < d < 1000 nm) and nanocrystalline (NC, d < 100 nm) regimes results in considerable increase in strength along with other changes in mechanical behavior such as vanishing strain hardening and limited ductility. Severe plastic deformation (SPD) has been among the favored technologies for the fabrication of UFG/NC metals. Primary past research efforts on SPD UFG/NC metals have been focused on easy-to-work metals, especially face-centered cubic metals such as copper, nickel, etc., and the limited efforts on body-centered cubic metals have mainly focused on high strain rate behavior where these metals are shown to deform via adiabatic shear bands. Except for the work on Fe, only a few papers can be found associated with UFG/NC refractory metals. In the first part of the present work (Part I), high-pressure torsion (HPT) is used to process UFG/NC tantalum, a typical refractory metal. The microstructure of the HPT disk as a function of radial location as well as orientation will be examined. In the subsequent part (Part II), the location-specific mechanical behavior will be presented and discussed. It is suggested that refractory metals such as Ta are ideal to employ SPD technology for microstructure refinement because of the extremely high melting point and relatively good workability.
Curtis, Peter; Park, Jongbae; Faurot, Keturah R.; Coble, Rebecca; Suchindran, Chirayath; Coeytaux, Remy R.; Wilkinson, Laurel; Mann, J. Douglas
2011-01-01
Abstract Background Developing valid control groups that generate similar perceptions and expectations to experimental complementary and alternative (CAM) treatments can be challenging. The perceived credibility of treatment and outcome expectancy often contributes to positive clinical responses to CAM therapies, thereby confounding efficacy data. As part of a clinical feasibility study, credibility and expectancy data were obtained from subjects suffering from migraine who received either CranioSacral therapy (CST) or an attention-control, sham, and low-strength magnet (LSSM) intervention. Objective The objective of this study was to evaluate whether the LSSM intervention generated similar levels of subject credibility and expectancy compared to CST. Design This was a two-arm randomized controlled trial. Subjects Sixty-five (65) adults with moderate to severe migraine were the subjects of this study. Interventions After an 8-week baseline, subjects were randomized to eight weekly treatments of either CST (n=36) or LSSM (n=29). The latter involved the use of a magnet-treatment protocol using inactive and low-strength static magnets designed to mimic the CST protocol in terms of setting, visit timing, body positioning, and therapist–subject interaction. Outcome measures A four-item, self-administered credibility/expectancy questionnaire, based on a validated instrument, was completed after the first visit. Results Using a 0–9 rating scale, the mean score for perceived logicality of treatment was significantly less for LSSM (5.03, standard deviation [SD] 2.34) compared to CST (6.64, SD 2.19). Subject confidence that migraine would improve was greater for CST (5.94, SD 2.01) than for LSSM (4.9, SD 2.21), a difference that was not statistically significant. Significantly more subjects receiving CST (6.08, SD 2.27) would confidently recommend treatment to a friend than those receiving LSSM (4.69, SD 2.49). Conclusions Although LSSM did not achieve a comparable level
Fahrig, R; Wen, Z; Ganguly, A; DeCrescenzo, G; Rowlands, J A; Stevens, G M; Saunders, R F; Pelc, N J
2005-06-01
Minimally invasive procedures are increasing in variety and frequency, facilitated by advances in imaging technology. Our hybrid imaging system (GE Apollo flat panel, custom Brand x-ray static anode x-ray tube, GE Lunar high-frequency power supply and 0.5 T Signa SP) provides both x-ray and MR imaging capability to guide complex procedures without requiring motion of the patient between two distant gantries. The performance of the x-ray tube in this closely integrated system was evaluated by modeling and measuring both the response of the filament to an externally applied field and the behavior of the electron beam for field strengths and geometries of interest. The performance of the detector was assessed by measuring the slanted-edge modulation transfer function (MTF) and when placed at zero field and at 0.5 T. Measured resonant frequencies of filaments can be approximated using a modified vibrating beam model, and were at frequencies well below the 25 kHz frequency of our generator for our filament geometry. The amplitude of vibration was not sufficient to cause shorting of the filament during operation within the magnetic field. A simple model of electrons in uniform electric and magnetic fields can be used to estimate the deflection of the electron beam on the anode for the fields of interest between 0.2 and 0.5 T. The MTF measured at the detector and the DQE showed no significant difference inside and outside of the magnetic field. With the proper modifications, an x-ray system can be fully integrated with a MR system, with minimal loss of image quality. Any x-ray tube can be assessed for compatibility when placed at a particular location within the field using the models. We have also concluded that a-Si electronics are robust against magnetic fields. Detailed knowledge of the x-ray system installation is required to provide estimates of system operation.
Large scale static and dynamic friction experiments
Bakhtar, K.; Barton, N.
1984-12-31
A series of nineteen shear tests were performed on fractures 1 m/sup 2/ in area, generated in blocks of sandstone, granite, tuff, hydrostone and concrete. The tests were conducted under quasi-static and dynamic loading conditions. A vertical stress assisted fracturing technique was developed to create the fractures through the large test blocks. Prior to testing, the fractured surface of each block was characterized using the Barton JRC-JCS concept. the results of characterization were used to generate the peak strength envelope for each fractured surface. Attempts were made to model the stress path based on the classical transformation equations which assumes a theoretical plane, elastic isotropic properties, and therefore no slip. However, this approach gave rise to a stress path passing above the strength envelope which is clearly unacceptable. The results of the experimental investigations indicated that actual stress path is affected by the dilatancy due to fracture roughness, as well as by the side friction imposed by the boundary conditions. By introducing the corrections due to the dilation and boundary conditions into the stress transformation equation, the fully corrected stress paths for predicting the strength of fractured blocks were obtained.
Brownian particle-kinetics in a superparamagnetic ferrofluid subjected to static magnetic-field
NASA Astrophysics Data System (ADS)
Trisnanto, Suko Bagus; Kitamoto, Yoshitaka
2017-01-01
The stochastic Brownian particle-kinetics in a superparamagnetic ferrofluid at room temperature is of significance in nullifying total magnetization vectors of the suspended particles. Correspondingly, the apparent magnetization response observed under static magnetic field shows no hysteresis loop, but being linear at a given finite field-difference. Owing to this superparamagnetism, we propose a differential magnetometry to analyze the static field-induced particle-kinetics and further to identify the effective field-strength in reorienting particle-moments toward the applied field direction. A polydispersive ferrofluid containing iron-oxide nanoparticles, in practice, is subjected to a very-low oscillatory-field, immediately after applying the static-field. For a given frequency, we confirm a decreasing ac susceptibility as dc field-strength increases, which suggests a statistically less fluctuating magnetization-vectors. Via numerical integration of ac susceptibility recorded, we furthermore estimate the nonlinear quasi-static magnetization at various measurement frequencies. The resulting nonlinearity is attributable to the contributing relaxation dynamics of the particles. More importantly, the difference between dc and ac susceptibilities is found to be field-strength and frequency-dependent. Its value is further maximized at an effective field-strength, from which we identified the coexisting energy-barriers.
Volcano collapse promoted by progressive strength reduction: New data from Mount St. Helens
Reid, Mark E.; Keith, Terry E.C.; Kayen, Robert; Iverson, Neal R.; Iverson, Richard M.; Brien, Dianne
2010-01-01
Rock shear strength plays a fundamental role in volcano flank collapse, yet pertinent data from modern collapse surfaces are rare. Using samples collected from the inferred failure surface of the massive 1980 collapse of Mount St. Helens (MSH), we determined rock shear strength via laboratory tests designed to mimic conditions in the pre-collapse edifice. We observed that the 1980 failure shear surfaces formed primarily in pervasively shattered older dome rocks; failure was not localized in sloping volcanic strata or in weak, hydrothermally altered rocks. Our test results show that rock shear strength under large confining stresses is reduced ∼20% as a result of large quasi-static shear strain, as preceded the 1980 collapse of MSH. Using quasi-3D slope-stability modeling, we demonstrate that this mechanical weakening could have provoked edifice collapse, even in the absence of transiently elevated pore-fluid pressures or earthquake ground shaking. Progressive strength reduction could promote collapses at other volcanic edifices.
Sims, J.R.; Naumovich, G.J.; Hoang, T.A.; Dent, P.C.
1996-05-01
The National High Magnetic Field Laboratory is completing a quasi-continuous magnet which will sustain a constant field of 60 T for 100 ms in a 32-mm 77 K bore. This magnet consists of 9 mechanically independent, nested, liquid nitrogen-cooled coils which are individually reinforced by high-strength stainless steel outer shells. The coils were wound from rectangular large cross-section, high-strength, high-conductivity copper conductor insulated wtih polyimide and fiberglass tapes. After winding, the coils were inserted into closely fitted, stainless steel reinforcing shells and impregnated with epoxy resin. Design, analysis, material, fabrication and operational issues for this class of magnets are reviewed. Fabrication and quality assurance testing of the 60 T coil set are covered in detail. Future growth of and possible links from this technology to other magnet systems are discussed. Needed improvements in design, analysis, materials, and fabrication are outlined.
Papp, E.; Micu, C.; Racolta, D.
2013-11-13
In this paper one deals with the theoretical derivation of energy bands and of related wavefunctions characterizing quasi 1D semiconductor heterostructures, such as InAs quantum wire models. Such models get characterized this time by equal coupling strength superpositions of Rashba and Dresselhaus spin-orbit interactions of dimensionless magnitude a under the influence of in-plane magnetic fields of magnitude B. We found that the orientations of the field can be selected by virtue of symmetry requirements. For this purpose one resorts to spin conservations, but alternative conditions providing sensible simplifications of the energy-band formula can be reasonably accounted for. Besides the wavenumber k relying on the 1D electron, one deals with the spin-like s=±1 factors in the front of the square root term of the energy. Having obtained the spinorial wavefunction, opens the way to the derivation of spin precession effects. For this purpose one resorts to the projections of the wavenumber operator on complementary spin states. Such projections are responsible for related displacements proceeding along the Ox-axis. This results in a 2D rotation matrix providing both the precession angle as well as the precession axis.
2012-01-01
static and high strain rate compressive properties of Al-A380-Al2O3 syntactic foams J. A. Santa Maria 1 , B. F. Schultz 1 , J. B. Ferguson 1 , N...variety of matrices including aluminum [7-22], magnesium [23], zinc [24], iron [15,22,25-26] and titanium [15,27] alloys. Various hollow spheres have been...5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) J. Santa Maria; B;. Schultz ; J. Ferguson; N. Gupta; P. Rohatgi 5d. PROJECT NUMBER 5e
Modeling of hydrogen-assisted cracking in iron crystal using a quasi-Newton method.
Telitchev, Igor Ye; Vinogradov, Oleg
2008-07-01
A Quasi-Newton method was applied in the context of a molecular statics approach to simulate the phenomenon of hydrogen embrittlement of an iron lattice. The atomic system is treated as a truss-type structure. The interatomic forces between the hydrogen-iron and the iron-iron atoms are defined by Morse and modified Morse potential functions, respectively. Two-dimensional hexagonal and 3D bcc crystal structures were subjected to tensile numerical tests. It was shown that the Inverse Broyden's Algorithm-a quasi-Newton method-provides a computationally efficient technique for modeling of the hydrogen-assisted cracking in iron crystal. Simulation results demonstrate that atoms of hydrogen placed near the crack tip produce a strong deformation and crack propagation effect in iron lattice, leading to a decrease in the residual strength of numerically tested samples.
Comparing Techniques for Certified Static Analysis
NASA Technical Reports Server (NTRS)
Cachera, David; Pichardie, David
2009-01-01
A certified static analysis is an analysis whose semantic validity has been formally proved correct with a proof assistant. The recent increasing interest in using proof assistants for mechanizing programming language metatheory has given rise to several approaches for certification of static analysis. We propose a panorama of these techniques and compare their respective strengths and weaknesses.
On the tensile strength of insect swarms
NASA Astrophysics Data System (ADS)
Ni, Rui; Ouellette, Nicholas T.
2016-08-01
Collective animal groups are often described by the macroscopic patterns they form. Such global patterns, however, convey limited information about the nature of the aggregation as a whole. Here, we take a different approach, drawing on ideas from materials testing to probe the macroscopic mechanical properties of mating swarms of the non-biting midge Chironomus riparius. By manipulating ground-based visual features that tend to position the swarms in space, we apply an effective tensile load to the swarms, and show that we can quasi-statically pull single swarms apart into multiple daughter swarms. Our results suggest that swarms surprisingly have macroscopic mechanical properties similar to solids, including a finite Young’s modulus and yield strength, and that they do not flow like viscous fluids.
Johnson - Cook Strength Models for Mild and DP 590 Steels
Vedantam, K.; Brar, N. S.; Bajaj, D.; Hill, S.
2006-07-28
Automotive steels, Mild and Dual Phase590 (DP590) are characterized in tension at room temperature, using the quasi-static and split Hopkinson bar techniques at various strain rates ranging from {approx}10-3/s to {approx}1800/s. Tension stress-strain data for both the steels are analyzed to determine the Johnson-Cook Strength model constants, J-C strength model constants for mild steel are A=217 MPa, B = 234 MPa, n = 0.643 and C = 0.076 and for DP590 steel are A = 430 MPa, B = 824 MPa, n = 0.510 and C = 0.017. Higher value of strain rate sensitivity constant C for mild steel (0.076) compared to DP 590 (0.017) is also reflected in the stress- strain data at various strain rates.
The effect of energy feedbacks on continental strength.
Regenauer-Lieb, Klaus; Weinberg, Roberto F; Rosenbaum, Gideon
2006-07-06
The classical strength profile of continents is derived from a quasi-static view of their rheological response to stress--one that does not consider dynamic interactions between brittle and ductile layers. Such interactions result in complexities of failure in the brittle-ductile transition and the need to couple energy to understand strain localization. Here we investigate continental deformation by solving the fully coupled energy, momentum and continuum equations. We show that this approach produces unexpected feedback processes, leading to a significantly weaker dynamic strength evolution. In our model, stress localization focused on the brittle-ductile transition leads to the spontaneous development of mid-crustal detachment faults immediately above the strongest crustal layer. We also find that an additional decoupling layer forms between the lower crust and mantle. Our results explain the development of decoupling layers that are observed to accommodate hundreds of kilometres of horizontal motions during continental deformation.
The effect of new dynamic splint in pinch strength in De Quervain syndrome: a comparative study.
Nemati, Zahra; Javanshir, Mohammad Ali; Saeedi, Hassan; Farmani, Farzad; Aghajani Fesharaki, Siamak
2016-02-17
Objective For patients with De Quervain syndrome using thumb spica orthosis is restricting, so many patient are dissatisfied with using static model. The aim of this study is to compare the effect of modified dynamic and conventional static orthoses on pinch power and functional abilities of hand in De Quervain syndrome. Method In this quasi-experimental study, palmar and lateral pinch strength of the thumb, pain and functional abilities of hand, patient's satisfaction of orthoses, were evaluated after using modified dynamic and conventional static orthosis in two groups. Results Both orthoses improved palmar and lateral pinch strength of the thumb, pain level and functional abilities. In comparison of mentioned variables, there was no significant difference between two groups regarding to pain recovery and abilities improvement (p > 0.05). However, the satisfaction level of the patients who had used dynamic orthosis was higher (p < 0.05). Conclusion It seems, adding a joint to the static thumb spica leads to patient's relief and consequently to their satisfaction. Implications for Rehabilitation The dynamic thumb spica, is easier to use and patients satisfaction is higher than static thumb spica. Therefore, it can be used for conservative treatment of De Quervain syndrome.
Static versus dynamic fracturing in shallow carbonate fault zones
NASA Astrophysics Data System (ADS)
Fondriest, Michele; Doan, Mai-Linh; Aben, Frans; Fusseis, Florian; Mitchell, Thomas M.; Voorn, Maarten; Secco, Michele; Di Toro, Giulio
2017-03-01
Moderate to large earthquakes often nucleate within and propagate through carbonates in the shallow crust. The occurrence of thick belts of low-strain fault-related breccias is relatively common within carbonate damage zones and was generally interpreted in relation to the quasi-static growth of faults. Here we report the occurrence of hundreds of meters thick belts of intensely fragmented dolostones along a major transpressive fault zone in the Italian Southern Alps. These fault rocks have been shattered in-situ with negligible shear strain accumulation. The conditions of in-situ shattering were investigated by deforming the host dolostones in uniaxial compression both under quasi-static (strain rate ∼10-5 s-1) and dynamic (strain rate > 50 s-1) loading. Dolostones deformed up to failure under low-strain rate were affected by single to multiple discrete extensional fractures sub-parallel to the loading direction. Dolostones deformed under high-strain rate were shattered above a strain rate threshold of ∼ 120 s-1 and peak stresses on average larger than the uniaxial compressive strength of the rock, whereas they were split in few fragments or remained macroscopically intact at lower strain rates. Fracture networks were investigated in three dimensions showing that low- and high-strain rate damage patterns (fracture intensity, aperture, orientation) were significantly different, with the latter being similar to that of natural in-situ shattered dolostones (i.e., comparable fragment size distributions). In-situ shattered dolostones were thus interpreted as the result of high energy dynamic fragmentation (dissipated strain energies >1.8 MJ/m3) similarly to pulverized rocks in crystalline lithologies. Given their seismic origin, the presence of in-situ shattered dolostones can be used in earthquake hazard studies as evidence of the propagation of seismic ruptures at shallow depths.
14 CFR 33.64 - Pressurized engine static parts.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Pressurized engine static parts. 33.64... engine static parts. (a) Strength. The applicant must establish by test, validated analysis, or a combination of both, that all static parts subject to significant gas or liquid pressure loads for...
14 CFR 33.64 - Pressurized engine static parts.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pressurized engine static parts. 33.64... engine static parts. (a) Strength. The applicant must establish by test, validated analysis, or a combination of both, that all static parts subject to significant gas or liquid pressure loads for...
14 CFR 33.64 - Pressurized engine static parts.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Pressurized engine static parts. 33.64... engine static parts. (a) Strength. The applicant must establish by test, validated analysis, or a combination of both, that all static parts subject to significant gas or liquid pressure loads for...
14 CFR 33.64 - Pressurized engine static parts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pressurized engine static parts. 33.64... engine static parts. (a) Strength. The applicant must establish by test, validated analysis, or a combination of both, that all static parts subject to significant gas or liquid pressure loads for...
14 CFR 33.64 - Pressurized engine static parts.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Pressurized engine static parts. 33.64... engine static parts. (a) Strength. The applicant must establish by test, validated analysis, or a combination of both, that all static parts subject to significant gas or liquid pressure loads for...
Measuring Static and Dynamic Properties of Frozen Silty Soils
Furnish, M.D.
1998-09-30
A mechanical characterization of frozen silty soils has been conducted to support computer modeling of penetrators. The soils were obtained from the Eilson AFB (Alaska) vicinity. Quasi-static testing with a multiaxial system in a cold room and intermediate strain rate testing with a split Hopkinson pressure bar were conducted. Maximum stresses achieved were slightly above 1 GPa, apparently limiting the observed behavior primarily to elastic compression and pore crushing phenomena. Lower temperatures seem to increase the strength of the material markedly, although not by a simple factor. Lower temperatures and higher strain rates increase the apparent Young's and bulk moduli as well (an increase of {approximately} a factor of two is observed for strain rate increasing from 0.001 s{sup {minus}1} to 800 s{sup {minus}1}). The strength also depends strongly on strain rate. Increasing the strain rate from 0.001 {sup {minus}1} to 0.07 {sup {minus}1} increases the strength by a factor of five to ten (to values of order 1 GPa). However,only a small increase in strength is seen as strain rate is increased to {approximately} 10{sup 2}--10{sup 3} s{sup {minus}1}. The reliability of the strength measurements at strain rates< 1 s{sup {minus}1} is decreased due to details of the experimental geometry, although general trends are observable. A recipe is provided for a simulant soil based on bentonite, sand, clay-rich soil and water to fit the {approximately} 6% air-filled porosity, density and water content of the Alaska soils, based on benchtop mixing and jacketed compression testing of candidate mixes.
Static penetration resistance of soils
NASA Technical Reports Server (NTRS)
Durgunoglu, H. T.; Mitchell, J. K.
1973-01-01
Model test results were used to define the failure mechanism associated with the static penetration resistance of cohesionless and low-cohesion soils. Knowledge of this mechanism has permitted the development of a new analytical method for calculating the ultimate penetration resistance which explicitly accounts for penetrometer base apex angle and roughness, soil friction angle, and the ratio of penetration depth to base width. Curves relating the bearing capacity factors to the soil friction angle are presented for failure in general shear. Strength parameters and penetrometer interaction properties of a fine sand were determined and used as the basis for prediction of the penetration resistance encountered by wedge, cone, and flat-ended penetrometers of different surface roughness using the proposed analytical method. Because of the close agreement between predicted values and values measured in laboratory tests, it appears possible to deduce in-situ soil strength parameters and their variation with depth from the results of static penetration tests.
Degradation in the Fatigue Strength of Dentin by Cutting, Etching and Adhesive Bonding
Lee, H.-H.; Majd, H.; Orrego, S.; Majd, B.; Romberg, E.; Mutluay, M.M.; Arola, D.
2014-01-01
The processes involved in placing resin composite restorations may degrade the fatigue strength of dentin and increase the likelihood of fractures in restored teeth. Objective The objective of this study was to evaluate the relative changes in strength and fatigue behavior of dentin caused by bur preparation, etching and resin bonding procedures using a 3-step system. Methods Specimens of dentin were prepared from the crowns of unrestored 3rd molars and subjected to either quasi-static or cyclic flexural loading to failure. Four treated groups were prepared including dentin beams subjected to a burr treatment only with a conventional straight-sided bur, or etching treatment only. An additional treated group received both bur and etching treatments, and the last was treated by bur treatment and etching, followed by application of a commercial resin adhesive. The control group consisted of “as sectioned” dentin specimens. Results Under quasi-static loading to failure there was no significant difference between the strength of the control group and treated groups. Dentin beams receiving only etching or bur cutting treatments exhibited fatigue strengths that were significantly lower (p≤0.0001) than the control; there was no significant difference in the fatigue resistance of these two groups. Similarly, the dentin receiving bur and etching treatments exhibited significantly lower (p≤0.0001) fatigue strength than that of the control, regardless of whether an adhesive was applied. Significance The individual steps involved in the placement of bonded resin composite restorations significantly decrease the fatigue strength of dentin, and application of a bonding agent does not increase the fatigue strength of dentin. PMID:24985539
Modeling quasi-static poroelastic propagation using an asymptotic approach
Vasco, D.W.
2007-11-01
Since the formulation of poroelasticity (Biot(1941)) and its reformulation (Rice & Cleary(1976)), there have been many efforts to solve the coupled system of equations. Perhaps because of the complexity of the governing equations, most of the work has been directed towards finding numerical solutions. For example, Lewis and co-workers published early papers (Lewis & Schrefler(1978); Lewis et al.(1991)Lewis, Schrefler, & Simoni) concerned with finite-element methods for computing consolidation, subsidence, and examining the importance of coupling. Other early work dealt with flow in a deformable fractured medium (Narasimhan & Witherspoon 1976); Noorishad et al.(1984)Noorishad, Tsang, & Witherspoon. This effort eventually evolved into a general numerical approach for modeling fluid flow and deformation (Rutqvist et al.(2002)Rutqvist, Wu, Tsang, & Bodvarsson). As a result of this and other work, numerous coupled, computer-based algorithms have emerged, typically falling into one of three categories: one-way coupling, loose coupling, and full coupling (Minkoff et al.(2003)Minkoff, Stone, Bryant, Peszynska, & Wheeler). In one-way coupling the fluid flow is modeled using a conventional numerical simulator and the resulting change in fluid pressures simply drives the deformation. In loosely coupled modeling distinct geomechanical and fluid flow simulators are run for a sequence of time steps and at the conclusion of each step information is passed between the simulators. In full coupling, the fluid flow and geomechanics equations are solved simultaneously at each time step (Lewis & Sukirman(1993); Lewis & Ghafouri(1997); Gutierrez & Lewis(2002)). One disadvantage of a purely numerical approach to solving the governing equations of poroelasticity is that it is not clear how the various parameters interact and influence the solution. Analytic solutions have an advantage in that respect; the relationship between the medium and fluid properties is clear from the form of the solution. Unfortunately, analytic solutions are only available for highly idealized conditions, such as a uniform (Rudnicki(1986)) or one-dimensional (Simon et al.(1984)Simon, Zienkiewicz, & Paul; Gajo & Mongiovi(1995); Wang & Kumpel(2003)) medium. In this paper I derive an asymptotic, semi-analytic solution for coupled deformation and flow. The approach is similar to trajectory- or ray-based methods used to model elastic and electromagnetic wave propagation (Aki & Richards(1980); Kline & Kay(1979); Kravtsov & Orlov(1990); Keller & Lewis(1995)) and, more recently, diffusive propagation (Virieux et al.(1994)Virieux, Flores-Luna, & Gibert; Vasco et al.(2000)Vasco, Karasaki, & Keers; Shapiro et al.(2002)Shapiro, Rothert, Rath, & Rindschwentner; Vasco(2007)). The asymptotic solution is valid in the presence of smoothly-varying, heterogeneous flow properties. The situation I am modeling is that of a formation with heterogeneous flow properties and uniform mechanical properties. The boundaries of the layer may vary arbitrary and can define discontinuities in both flow and mechanical properties. Thus, using the techniques presented here, it is possible to model a stack of irregular layers with differing mechanical properties. Within each layer the hydraulic conductivity and porosity can vary smoothly but with an arbitrarily large magnitude. The advantages of this approach are that it produces explicit, semi-analytic expressions for the arrival time and amplitude of the Biot slow and fast waves, expressions which are valid in a medium with heterogeneous properties. As shown here, the semi-analytic expressions provide insight into the nature of pressure and deformation signals recorded at an observation point. Finally, the technique requires considerably fewer computer resources than does a fully numerical treatment.
Convergence of the Quasi-static Antenna Design Algorithm
2013-04-01
used to minimize the error in the radiation resistance. The dipole eigenmode LOSA and COSA values are a good approximation to the reactance; they are...fit for improved LOSA and COSA values. This iteration process was repeated until a self-consistent numerical solution was obtained. Figure 7...circuit model. Parameters Eigenmode 1 Eigenmode 1 & 2 QSADA CDC 95.87 90.364 pF COSA 90.15 pF 90.292385 pF N/A LOSA 0.67295 uH 0.67164778 uH
Jamming transition as probed by quasi-static shear simulations
NASA Astrophysics Data System (ADS)
Heussinger, Claus
2010-03-01
This contribution deals with flow properties of amorphous colloidal or granular materials close to their jamming threshold. There is by now ample evidence that the (athermal) jamming transition (``point J'') can be thought of as a critical phenomenon with a divergent length-scale. While much effort has been put into characterizing the critical properties of the arrested solid state, only little is known about the actual physical mechanisms that lead to this arrest when coming from the flowing side. We try to fill this gap by studying the particle dynamics in the flowing state. We show how the motion of single particles is connected to the growth of dynamical heterogeneities. Approaching point J from below we find a diverging dynamical susceptibility. The associated particle mobilities show signs of strong spatial correlations, with patterns involving string- and loop-like excitations as well as compact regions of active particles. As a result we can develop an intuitive and appealing picture that describes flow in terms of a ``liquid of temporarily rigid clusters''. This picture of how flow is realized below point J contrasts well with the traditional view of plastic flow in ``soft-glassy'' materials, where flow is described by the failure of localized defects embedded in an elastic solid. We argue that this latter behavior is observed in the yield-stress flow regime above point J.
Monitoring Contamination of the subsurface with Quasi-Static Deformation
NASA Astrophysics Data System (ADS)
Spetzler, H.; Snieder, R.; Zhang, J.
2005-12-01
Data from a field experiment suggest that we can detect the infiltration of contaminated water (contaminated with 150 ppm of a biosurfactant, Rhamnolipid) into the vadose zone with tilt meters. Three sets of instruments were installed in the vicinity of a 50m x 50m field, which was instrumented and could be irrigated in a controlled manner. Each set consisted of one tiltmeter at the bottom of a 10m cased borehole and one seismometer buried to a depth of about 1m. The instruments were installed in late summer and early fall of 2002. The drift in tilt caused by their installation decayed to near background levels in about one year. The site was irrigated with plain water at 50,000 l/day for 40 days during the fall of 2003. The irrigation was repeated in the fall of 2004 for 50 days, again with 50,000 l/day. This time the irrigation water contained 150ppm of a biosurfactant. This surfactant was chosen to simulate a contaminant through its effect on the modification of surface tension and because it is environmentally benign. It was developed for bioremediation. We expected subtle changes in the relative responses of the instruments as the elastic properties of the vadose zone were altered by the contaminant. This expectation is based on a long series of laboratory measurements, e.g. W. Brunner and H.A. Spetzler 2002. We used natural sources for the excitation of the instruments, solid Earth tides for the tiltmeters and microseisms, i.e. ocean generated noise at about 6s periods, for the seismometers. In the case of the tilt meters we used theoretical site specific tilt and compared that with our measured tilt. We found no significant change in the correlation coefficient between theoretical and measured tilt for the water-only irrigation. The correlation coefficient was generally above 0.9. The correlation coefficient dropped precipitously about ten days after we had started irrigating with the surfactant. It recovered again about ten days after irrigation was stopped. A preliminary analysis of the seismic data shows similar trends, but with much more noise. Using a Born approximation we calculate that a slight perturbation of the complex moduli near the surface does indeed yield changes in tidally-induced tilt near the observed values. Brunner, W. M. and H. A. Spetzler, Contaminant-Induced Mechanical Damping in Partially Saturated Berea Sandstone, Geophys. Res. Lett., Vol.29, No.16, 10.1029/2002GL015455 ,2002
Monitoring the subsurface with quasi-static deformation
Sneider, Roel; Spetzler, Hartmut
2013-09-06
This project consisted of three sub-projects that are all aimed at monitoring the subsurface with geophysical methods. The objectives of these sub-projects are: to investigate the use of seismic waves for remote monitoring of temperature changes in the Yucca Mountain nuclear repository; to investigate the use of measured changes in the tidal tilt as a diagnostic for the infiltration of fluids in the subsurface; and to extract the electrostatic response from dynamic field fluctuations.
Inherent Conservatism in Deterministic Quasi-Static Structural Analysis
NASA Technical Reports Server (NTRS)
Verderaime, V.
1997-01-01
The cause of the long-suspected excessive conservatism in the prevailing structural deterministic safety factor has been identified as an inherent violation of the error propagation laws when reducing statistical data to deterministic values and then combining them algebraically through successive structural computational processes. These errors are restricted to the applied stress computations, and because mean and variations of the tolerance limit format are added, the errors are positive, serially cumulative, and excessively conservative. Reliability methods circumvent these errors and provide more efficient and uniform safe structures. The document is a tutorial on the deficiencies and nature of the current safety factor and of its improvement and transition to absolute reliability.
Real-time quasi-static ultrasound elastography
Treece, Graham; Lindop, Joel; Chen, Lujie; Housden, James; Prager, Richard; Gee, Andrew
2011-01-01
Ultrasound elastography is a technique used for clinical imaging of tissue stiffness with a conventional ultrasound machine. It was first proposed two decades ago, but active research continues in this area to the present day. Numerous clinical applications have been investigated, mostly related to cancer imaging, and though these have yet to prove conclusive, the technique has seen increasing commercial and clinical interest. This paper presents a review of the most widely adopted, non-quantitative, techniques focusing on technical innovations rather than clinical applications. The review is not intended to be exhaustive, concentrating instead on placing the various techniques in context according to the authors' perspective of the field. PMID:22866230
A fundamental model of quasi-static wheelchair biomechanics.
Leary, M; Gruijters, J; Mazur, M; Subic, A; Burton, M; Fuss, F K
2012-11-01
The performance of a wheelchair system is a function of user anatomy, including arm segment lengths and muscle parameters, and wheelchair geometry, in particular, seat position relative to the wheel hub. To quantify performance, researchers have proposed a number of predictive models. In particular, the model proposed by Richter is extremely useful for providing initial analysis as it is simple to apply and provides insight into the peak and transient joint torques required to achieve a given angular velocity. The work presented in this paper identifies and corrects a critical error; specifically that the Richter model incorrectly predicts that shoulder torque is due to an anteflexing muscle moment. This identified error was confirmed analytically, graphically and numerically. The authors have developed a corrected, fundamental model which identifies that the shoulder anteflexes only in the first half of the push phase and retroflexes in the second half. The fundamental model has been extended by the authors to obtain novel data on joint and net power as a function of push progress. These outcomes indicate that shoulder power is positive in the first half of the push phase (concentrically contracting anteflexors) and negative in the second half (eccentrically contracting retroflexors). As the eccentric contraction introduces adverse negative power, these considerations are essential when optimising wheelchair design in terms of the user's musculoskeletal system. The proposed fundamental model was applied to assess the effect of vertical seat position on joint torques and power. Increasing the seat height increases the peak positive (concentric) shoulder and elbow torques while reducing the associated (eccentric) peak negative torque. Furthermore, the transition from positive to negative shoulder torque (as well as from positive to negative power) occurs later in the push phase with increasing seat height. These outcomes will aid in the optimisation of manual wheelchair propulsion biomechanics by minimising adverse negative muscle power, and allow joint torques to be manipulated as required to minimise injury or aid in rehabilitation.
Spatiotemporal binary interaction and designer quasi-particle condensates
NASA Astrophysics Data System (ADS)
Ramaswamy, Radha; Pattu Sakthi, Vinayagam; Hyun Jong, Shin; Kuppuswamy, Porsezian
2014-03-01
We introduce a new integrable model to investigate the dynamics of two component quasi-particle condensates with spatiotemporal interaction strengths. We derive the associated Lax pair of the coupled Gross—Pitaevskii (GP) equation and construct matter wave solitons. We show that the spatiotemporal binary interaction strengths not only facilitate the stabilization of the condensates, but also enables one to fabricate condensates with desirable densities, geometries, and properties, leading to the so-called “designer quasi-particle condensates”.
Static and dynamic bending responses of the human cervical spine.
Voo, L M; Pintar, F A; Yoganandan, N; Liu, Y K
1998-12-01
The quasi-static and dynamic bending responses of the human mid-lower cervical spine were determined using cadaver intervertebral joints fixed at the base to a six-axis load cell. Flexion bending moment was applied to the superior end of the specimen using an electrohydraulic piston. Each specimen was tested under three cycles of quasi-static load-unload and one high-speed dynamic load. A total of five specimens were included in this study. The maximum intervertebral rotation ranged from 11.0 to 15.4 deg for quasi-static tests and from 22.9 to 34.4 deg for dynamic tests. The resulting peak moments at the center of the intervertebral joint ranged from 3.8 to 6.9 Nm for quasi-static tests and from 14.0 to 31.8 Nm for dynamic tests. The quasi-static stiffness ranged from 0.80 to 1.35 Nm/deg with a mean of 1.03 Nm/deg (+/- 0.11 Nm/deg). The dynamic stiffness ranged from 1.08 to 2.00 Nm/deg with a mean of 1.50 Nm/deg (+/- 0.17 Nm/deg). The differences between the two stiffnesses were statistically significant (p < 0.01). Exponential functions were derived to describe the quasi-static and dynamic moment-rotation responses. These results provide input data for lumped-parameter models and validation data for finite element models to better investigate the biomechanics of the human cervical spine.
Inter-subband structure factor for a quasi-one-dimensional polaron gas
NASA Astrophysics Data System (ADS)
Machado, Paulo César Miranda; Osório, Francisco Aparecido Pinto; Borges, Antônio Newton
2016-08-01
In this work, the collective excitation spectra of quasi-one-dimensional plasmon in a rectangular GaAs quantum wire is investigated. Our calculations are performed within the Singwi, Tosi, Land and Sjölander (STLS) self-consistent theory taking into account the plasmon-longitudinal optical (LO) phonon coupling effects. We have employed a three subband model with only the first subband occupied by electrons and we have considered intra-subband and inter-subband transitions. We show that the polaronic effects cause the appearance of dips and oscillations in the static structure factor dispersion relation, which are directly related with the oscillator strength transfer between the collective excitation energy branches. We have also observed oscillations in the pair-correlation function that are characteristic of inter-subband transitions and it denotes partial localization of the particle.
Initiation of Massive Landsliding through Progressive Strength Reduction in Volcanoes
NASA Astrophysics Data System (ADS)
Reid, M. E.; Keith, T. C.; Kayen, R. E.; Iverson, N. R.; Iverson, R. M.; Brien, D. L.
2011-12-01
Landslides that sculpt deeply into volcano edifices can be extremely large. For example, the 1980 collapse of Mount St. Helens (MSH) volcano generated a 2.8 km3 debris-avalanche deposit from a series of massive retrogressive failures. Rock shear strength plays a fundamental role in such landsliding, yet pertinent data from modern volcano collapse surfaces are rare. The collapse crater at MSH affords access to rocks directly from the failure surface of the1980 massive landslide. We used a combination of field observations, laboratory strength tests designed to mimic conditions in the pre-collapse edifice, and quasi-3D slope-stability analyses to investigate the effects of progressive strength reduction, caused by pre-collapse deformation, on the instability of the volcano's edifice. Within the MSH crater, we observed that the basal shear zone from the outermost initial landslide block (Block I) of the 1980 failure formed primarily in pervasively shattered older dacitic dome rocks; shearing was not localized in sloping volcanic strata or in weak, hydrothermally altered rocks. We collected relatively undisturbed tube samples and disturbed bulk samples of the shattered dacite from near the slip surface of Block I. Using a triaxial testing device, equipped with high-pressure components to mimic overburden stresses in the pre-collapse edifice, we determined the quasi-static drained shear strength of the undisturbed samples. These tests indicated a peak angle of internal friction, φ, of 35° and a residual φ (after undergoing axial strain up to 20%) of 29°. We also determined residual shear strength using a specially constructed large-volume ring-shear apparatus that imposed large quasi-static shear strains exceeding 100%. These tests yielded a similar residual strength, with φ of 27°. Prior to its catastrophic collapse in 1980, the MSH edifice was deformed northward tens of meters by an intruding cryptodome, which likely caused shearing along a summit fault and
A Report on the Validation of Beryllium Strength Models
Armstrong, Derek Elswick
2016-02-05
This report discusses work on validating beryllium strength models with flyer plate and Taylor rod experimental data. Strength models are calibrated with Hopkinson bar and quasi-static data. The Hopkinson bar data for beryllium provides strain rates up to about 4000 per second. A limitation of the Hopkinson bar data for beryllium is that it only provides information on strain up to about 0.15. The lack of high strain data at high strain rates makes it difficult to distinguish between various strength model settings. The PTW model has been calibrated many different times over the last 12 years. The lack of high strain data for high strain rates has resulted in these calibrated PTW models for beryllium exhibiting significantly different behavior when extrapolated to high strain. For beryllium, the α parameter of PTW has recently been calibrated to high precision shear modulus data. In the past the α value for beryllium was set based on expert judgment. The new α value for beryllium was used in a calibration of the beryllium PTW model by Sky Sjue. The calibration by Sjue used EOS table information to model the temperature dependence of the heat capacity. Also, the calibration by Sjue used EOS table information to model the density changes of the beryllium sample during the Hopkinson bar and quasi-static experiments. In this paper, the calibrated PTW model by Sjue is compared against experimental data and other strength models. The other strength models being considered are a PTW model calibrated by Shuh- Rong Chen and a Steinberg-Guinan type model by John Pedicini. The three strength models are used in a comparison against flyer plate and Taylor rod data. The results show that the Chen PTW model provides better agreement to this data. The Chen PTW model settings have been previously adjusted to provide a better fit to flyer plate data, whereas the Sjue PTW model has not been changed based on flyer plate data. However, the Sjue model provides a reasonable fit to
Generalized quasi variational inequalities
Noor, M.A.
1996-12-31
In this paper, we establish the equivalence between the generalized quasi variational inequalities and the generalized implicit Wiener-Hopf equations using essentially the projection technique. This equivalence is used to suggest and analyze a number of new iterative algorithms for solving generalized quasi variational inequalities and the related complementarity problems. The convergence criteria is also considered. The results proved in this paper represent a significant improvement and refinement of the previously known results.
Influence of loading-rate and steel fibers on the shear strength of ultra high performance concrete
NASA Astrophysics Data System (ADS)
Bratislav, Lukic; Pascal, Forquin
2015-09-01
The paper describes quasi-static and dynamic experimental methods used to examine the confined shear strength of an Ultra High Performance Concrete, with and without the presence of steel fibers in the concrete composition. An experimental setup was created to investigate the concrete shear strength under quasi-static loading regime using a hydraulic press Schenk while dynamic shear strength was characterized by subjecting concrete samples to dynamic loading through a modified Split Hopkinson Pressure Bar. Both methods are based on a Punch Through Shear (PTS) test with a well-instrumented aluminum passive confinement ring that allows measuring the change of radial stress in the shear ligament throughout the test. Firstly, four equally distributed radial notches have been performed in order to deduce the radial stress by suppressing a self-confinement of the sample peripheral part. However, by analyzing the strain gauge data from the confinement ring, it has been noticed that these were apparently insufficient, especially for fiber-reinforced samples, resulting in subsequently practicing eight radial notches through the sample peripheral part. The results obtained from both procedures are reported and discussed.
The Influence of Notches Under Static Stress
NASA Technical Reports Server (NTRS)
Matthaes, K
1938-01-01
From the described experiments it is seen that notches are a potential source of strength decrease even under static stress, which the designer must take into consideration. Section I is a general treatment of notch influence under the various types of stresses. Section II treats the influence of notches in thin sheet as is used in airplane construction.
Static and dynamic friction in sliding colloidal monolayers
NASA Astrophysics Data System (ADS)
Vanossi, Andrea; Manini, Nicola; Tosatti, Erio
2013-03-01
In a recent experimental breakthrough, the controlled sliding of 2D colloidal crystals over perfectly regular, laser generated periodic or quasi-periodic `corrugation` potentials has been realized in Bechinger's group. Based on realistic MD simulations which reproduce the main experimentally observed features, we explore the potential impact of colloid monolayer sliding in nanotribology. The free motion of edge-spawned kinks and antikinks in smooth incommensurate sliding is contrasted with the kink-antikink pair nucleation at the large static friction threshold in the commensurate case. The Aubry pinning/depinning transition is also demonstrated, e.g., as a function of the corrugation amplitude. Simulated sliding data allow the extraction of frictional work directly from particles coordinates and velocities as a function of classic friction parameters, primarily speed, and corrugation strength. Analogies with sliding charge-density waves, driven Josephson systems, sliding of rare gas islands, and other novel features suggest further experiments and insights, which promote colloid sliding to a novel friction study instrument. Research partly sponsored by Sinergia Project CRSII2 136287/1.
Microstructure and mechanical properties of high strength Al—Mg—Si—Cu profiles for safety parts
NASA Astrophysics Data System (ADS)
Österreicher, J. A.; Schiffl, A.; Falkinger, G.; Bourret, G. R.
2016-03-01
Aluminium extrudate used for safety parts in cars need to exhibit high yield strength and ductility, a combination that is not easily achieved. In this work, the mechanical properties and microstructure of profiles with a yield strength greater than 280MPa achieved by two different artificial ageing treatments were studied. Profiles from one of the heat treatments performed well in quasi-static compression testing while those from the other heat treatment clearly failed. The batch of profiles that failed showed higher uniform elongation in tensile testing but a lower reduction in area. However, the difference in bending angles in the three-point-bending test were not as pronounced. Microscopic investigation of polished sections and fracture surfaces revealed that failure is dominated by the fracture of intermetallic phases resulting in voids. The growth and coalescence of these voids is facilitated by another population of smaller voids within the matrix, presumably nucleating at secondary phases.
Johnson-Cook Strength Model Constants for VascoMax 300 and 1080 Steels
Cinnamon, J. D.; Palazotto, A. N.; Kennan, Z.; Brar, N. S.; Bajaj, D.
2006-07-28
High strength steels, VascoMax 300 and 1080, are characterized under tension at strain rates of {approx}1/s, {approx}500/s, {approx}1000/s, and {approx}1500/s and at high temperatures using the quasi-static and split Hopkinson bar techniques. The data on 1080 steel exhibited a typical strain hardening response, whereas Vasco-Max 300 steel showed diminishing flow stress beyond yielding because of localized necking in gauge section of the tested specimens. The tension data are analyzed to determine the Johnson-Cook (J-C) strength model constants for the two steels. The flow stress values for VascoMax are adjusted to account for necking, and the corrected J-C model is developed.
A comparison of quasi-symmetries in stellarators
NASA Astrophysics Data System (ADS)
Johnson, Alex; Ware, Andrew
2016-10-01
This work explores the differences between the equilibrium, stability and transport properties of quasi-helically (QH) symmetric, quasi-axisymmetric (QA) and quasi-poloidally (QP) symmetric stellarator configurations with the same major radius, aspect ratio, average magnetic field strength, plasma β and pressure profiles. Previous work on quasi-symmetry in stellarators has typically focused on one type of quasi-symmetry. Optimized stellarators have been developed for QH, QA and QP configurations but at very different plasma parameters. In this work computational studies of optimized cases of all three cases have been undertaken. Results of the studies will be presented. Work supported by U.S. Department of Energy under Grant DE-FG02-03ER54699 at the University of Montana.
THE QUASI NONGOVERNMENTAL ORGANIZATION.
ERIC Educational Resources Information Center
PIFER, ALAN
ORGANIZED TO MEET URGENT NATIONAL NEEDS, PROVIDE INDEPENDENT JUDGMENT, AND OFFER FRESH SOLUTIONS TO COMPLEX PROBLEMS, THE QUASI NONGOVERNMENTAL ORGANIZATION IS DEFINED AS A NONPROFIT ASSOCIATION OR INSTITUTION LODGED IN THE PRIVATE SECTOR OF SOCIETY BUT FINANCED LARGELY OR ENTIRELY BY THE FEDERAL GOVERNMENT, RESPONSIBLE TO ITS OWN BOARD OF…
Pokhozhaev, Stanislav I
2011-06-30
The notion of Riemann quasi-invariants is introduced and their applications to several conservation laws are considered. The case of nonisentropic flow of an ideal polytropic gas is analysed in detail. Sufficient conditions for gradient catastrophes are obtained. Bibliography: 16 titles.
2003-01-01
QUASI- ANONYMOUS CHANNELS Ira S. Moskowitz Center for High Assurance Computer Systems - Code 5540 Naval Research Laboratory, Washington, DC...Assurance Computer Systems - Code 5540 Naval Research Laboratory, Washington, DC 20375, USA Abstract Although both anonymity and covert...channels are part of the larger topic of information hiding, there also exists an intrinsic linkage between anonymity and covert channels. This linkage
Rectifier cabinet static breaker
Costantino, Jr, Roger A.; Gliebe, Ronald J.
1992-09-01
A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.
Static Response of Neutron Matter.
Buraczynski, Mateusz; Gezerlis, Alexandros
2016-04-15
We generalize the problem of strongly interacting neutron matter by adding a periodic external modulation. This allows us to study from first principles a neutron system that is extended and inhomogeneous, with connections to the physics of both neutron-star crusts and neutron-rich nuclei. We carry out fully nonperturbative microscopic quantum Monte Carlo calculations of the energy of neutron matter at different densities, as well as different strengths and periodicities of the external potential. In order to remove systematic errors, we examine finite-size effects and the impact of the wave function ansatz. We also make contact with energy-density functional theories of nuclei and disentangle isovector gradient contributions from bulk properties. Finally, we calculate the static density-density linear response function of neutron matter and compare it with the response of other physical systems.
NASA Astrophysics Data System (ADS)
Kobayashi, H.; Daimaruya, M.; Tsuda, H.; Horikawa, K.
2006-08-01
The impact tensile properties of laser welded butt joints of two kinds of high strength steel plates with the tensile strength level of 590 MPa and 780 MPa (denoted by HR590 and HR780, respectively), were investigated using split Hopkinson bar tensile testing apparatus. Impact tension tests for the joint specimens pre-fatigued were also carried out to examine the effect of pre-fatigue. There were no significant effects of strain-rate and pre-fatigue on the dynamic and quasi-static tensile strength of laser welded butt joints. However, the decrease in the elongation of HR780 welded joints subjected high cycle pre-fatigue was observed only at a high strain-rate. From the observation of fracture surface, it was found that the decrease in the elongation may be caused by a number of damages due to the combination of high cycle pre-fatigue and high strain-rate.
Observing the Forces Involved in Static Friction under Static Situations
ERIC Educational Resources Information Center
Kaplan, Daniel
2013-01-01
Static friction is an important concept in introductory physics. Later in the year students apply their understanding of static friction under more complex conditions of static equilibrium. Traditional lab demonstrations in this case involve exceeding of the maximum level of static friction, resulting in the "onset of motion." (Contains…
Quasi-steady operation of reversed field pinches
Nebel, R.A.
1980-01-01
A three fluid, Lagrangian mesh, transport and stability code (RFPBRN) has been developed and applied to the Reversed Field Pinch reactor concept. Using a circular cylinder, quasi-static approximation, RFPBRN follows the time evolution of the temperature, density, and magnetic field profiles for the RFP while simultaneously monitoring ideal MHD stability. Local stability is monitored for Suydam modes while global stability is monitored using a Rayleigh-Ritz expansion of the energy principle.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.
1990-01-01
Scale model technology represents one method of investigating the behavior of advanced, weight-efficient composite structures under a variety of loading conditions. It is necessary, however, to understand the limitations involved in testing scale model structures before the technique can be fully utilized. These limitations, or scaling effects, are characterized. in the large deflection response and failure of composite beams. Scale model beams were loaded with an eccentric axial compressive load designed to produce large bending deflections and global failure. A dimensional analysis was performed on the composite beam-column loading configuration to determine a model law governing the system response. An experimental program was developed to validate the model law under both static and dynamic loading conditions. Laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic were tested to examine a diversity of composite response and failure modes. The model beams were loaded under scaled test conditions until catastrophic failure. A large deflection beam solution was developed to compare with the static experimental results and to analyze beam failure. Also, the finite element code DYCAST (DYnamic Crash Analysis of STructure) was used to model both the static and impulsive beam response. Static test results indicate that the unidirectional and cross ply beam responses scale as predicted by the model law, even under severe deformations. In general, failure modes were consistent between scale models within a laminate family; however, a significant scale effect was observed in strength. The scale effect in strength which was evident in the static tests was also observed in the dynamic tests. Scaling of load and strain time histories between the scale model beams and the prototypes was excellent for the unidirectional beams, but inconsistent results were obtained for the angle ply, cross ply, and quasi-isotropic beams. Results show
NASA Astrophysics Data System (ADS)
Gavrilik, A. M.; Kachurik, I. I.; Rebesh, A. P.
2010-06-01
We study the properties of the sequences of the energy eigenvalues for some generalizations of q-deformed oscillators including the p, q-oscillator, and the three-, four- and five-parameter deformed oscillators given in the literature. It is shown that most of the considered models belong to the class of so-called Fibonacci oscillators for which any three consecutive energy levels satisfy the relation En + 1 = λEn + ρEn - 1 with real constants λ, ρ. On the other hand, for a certain μ-oscillator known since 1993, we prove its non-Fibonacci nature. Possible generalizations of the three-term Fibonacci relation are discussed, among which for the μ-oscillator we choose, as the most adequate, the so-called quasi-Fibonacci (or local Fibonacci) property of the energy levels. The property is encoded in the three-term quasi-Fibonacci (QF) relation with the non-constant, n-dependent coefficients λ and ρ. Various aspects of the QF relation are elaborated for the μ-oscillator and some of its extensions.
Forces acting in quasi 2d emulsions
NASA Astrophysics Data System (ADS)
Orellana, Carlos; Lowensohn, Janna; Weeks, Eric
We study the forces in a quasi two dimensional emulsion system. Our samples are oil-in-water emulsions confined between two close-spaced parallel plates, so that the oil droplets are deformed into pancake shapes. By means of microscopy, we measure the droplet positions and their deformation, which we can relate to the contact forces due to surface tension. We improve over prior work in our lab, achieving a better force resolution. We use this result to measure and calibrate the viscous forces acting in our system, which fully determine all the forces on the droplets. Our results can be applied to study static configurations of emulsion, as well as faster flows.
ERIC Educational Resources Information Center
Naab, Laurie; Henry, David
2009-01-01
Using Wiggins and McTighe's (1998) concept of Big Ideas, the authors planned and designed an electricity investigation to address common student misconceptions about static electricity. With Styrofoam plates and transparent tape, elementary students investigated many properties of electrically charged and uncharged objects in a 5E learning cycle…
ERIC Educational Resources Information Center
Nelson, Clayton C.; And Others
1986-01-01
Describes a statics course developed at Texas A&M University in the engineering curriculum which utilizes computer-assisted instruction. Discusses the organization and management of the team that developed the course, the selection of the hardware and software used, and the implementation model and lesson prototype developed for the course.…
NASA Technical Reports Server (NTRS)
Aiken, T. N.
1973-01-01
An investigation was made of the static, wind-on aerodynamic and static noise characteristics of an augmentor wing having lobe type nozzles. The study was made in the Ames 7-by 10-Foot No. 1 Wind Tunnel using a small-scale, quasi-two-dimensional model. Several configurations of lobe nozzles as well as a normal slot nozzle were tested. Results indicate that lobe nozzles offer improved static and wind-on aerodynamics and reduced static noise relative to slot nozzles. Best wind-on performance was obtained when the tertiary gap was closed even though the static thrust augmentation was maximum with the gap open. Static thrust augmentation, wind-on lift and drag, and static noise directivity are presented as well as typical static and wind-on exit velocity profiles, surface pressure distributions and noise spectrums. The data are presented with limited discussion.
ERIC Educational Resources Information Center
Londeree, Ben R.
1981-01-01
Postural deviations resulting from strength and flexibility imbalances include swayback, scoliosis, and rounded shoulders. Screening tests are one method for identifying strength problems. Tests for the evaluation of postural problems are described, and exercises are presented for the strengthening of muscles. (JN)
Residual strength of cracked 7075 T6 Al-alloy sheets under high loading rates
NASA Astrophysics Data System (ADS)
Vasek, A.; Schijve, J.
1995-04-01
Dynamic tests were carried out on long sheet specimens with two collinear cracks. First the ligament between the two cracks fails, which implies that the cracks are linked up to a single crack. Linking up did increase the loading rate (dK/dt) of the outer crack tips up to 2 x 10(exp 4) MPa (sq root) m/s. COD measurements during the fast running crack were made. The residual strength was decreased by about 10 percent as compared to the quasi-static result. Fractographic evidence indicates that a high dK/dt has some effect on the shear lips. It promotes some plane-strain influence, associated with an increased yield stress, due to the high plastic strain rate in the crack tip zone. The results were evaluated in terms of fracture mechanics. The results are bearing on the damage tolerance of aircraft structures built up from 7075-T6 sheet material.
Mechanical strength study of SiO2 isolation blocks merged in silicon substrate
NASA Astrophysics Data System (ADS)
Morozov, O.; Postnikov, A.
2015-01-01
Quasi-static bending, compressive, tensile and fatigue tests of freestanding thermally oxidized crystal silicon microelements fabricated by the deep-reactive-ion etching process were performed to evaluate the strength and the reliability of structures. These structures serve as bearings and electrical isolation for microelectromechanical systems. The tests were conducted at device level using a specially designed electromagnetic actuator based on a testing machine (load range: 1 mN-1 N, accuracy: ± 0.08 mN) which enables mechanical testing of microelements. We have developed a method to calibrate an actuator using the silicon cantilevers on the microscale. A finite element model of the test structure is proposed. This model is used to calculate the displacements and stresses produced by an applied load force. Isolation structures are fractured from both the front and back sides of the wafer, and fracture strength results are compiled for each of these cases. It was found that the tensile strength of the structures is 200 MPa and the ultimate bending stress is 550 MPa. Data on strength and failure stress as found in the study may be very important for reliability evaluation of isolation merged in single crystal silicon wafer.
Sandrock, H.E.
1982-05-06
Static axial mixing apparatus includes a plurality of channels, forming flow paths of different dimensions. The axial mixer includes a flow adjusting device for adjustable selective control of flow resistance of various flow paths in order to provide substantially identical flows through the various channels, thereby reducing nonuniform coating of interior surfaces of the channels. The flow adjusting device may include diaphragm valves, and may further include a pressure regulating system therefor.
Static cylindrically symmetric spacetimes
NASA Astrophysics Data System (ADS)
Fjällborg, Mikael
2007-05-01
We prove the existence of static solutions to the cylindrically symmetric Einstein Vlasov system, and we show that the matter cylinder has finite extension in two of the three spatial dimensions. The same results are also proved for a quite general class of equations of state for perfect fluids coupled to the Einstein equations, extending the class of equations of state considered by Bicak et al (2004 Class. Quantum Grav.21 1583). We also obtain this result for the Vlasov Poisson system.
Static & Dynamic Response of 2D Solids
Lin, Jerry
1996-07-15
NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.
... strengthens your heart and lungs. When you strength train with weights, you're using your muscles to ... see there are lots of different ways to train with weights. Try a few good basic routines ...
Firefly flashing under strong static magnetic field.
Barua, Anurup Gohain; Iwasaka, Masakazu; Miyashita, Yuito; Kurita, Satoru; Owada, Norio
2012-02-01
Firefly flashing has been the subject of numerous scientific investigations. Here we present in vivo flashes from male specimens of three species of fireflies-two Japanese species Luciola cruciata, Luciola lateralis and one Indian species Luciola praeusta-positioned under a superconducting magnet. When the OFF state of the firefly becomes long after flashing in an immobile state under the strong static magnetic field of strength 10 Tesla for a long time, which varies widely from species to species as well as from specimen to specimen, the effect of the field becomes noticeable. The flashes in general are more rapid, and occasionally overlap to produce broad compound flashes. We present the broadest flashes recorded to date, and propose that the strong static magnetic field affects the neural activities of fireflies, especially those in the spent up or 'exhausted' condition.
Static magnetotherapy for the treatment of insomnia.
Shieh, Yao Y; Tsai, Fong Y
2008-01-01
Magnets have been used for centuries to treat a number of physical disorders. The vast majority of research, however, on static magnet therapy for insomnia has been confined to the auricular type of therapy, with publications limited to Chinese journals. Most of these studies have depended on the subjective self-assessment of participants rather than objective scientific measurements. In this study, the authors report the positive preliminary results of insomnia treatment using pillows with embedded magnets, magnetic insoles and TriPhase bracelets. The analysis is based on objective actigraphic and polysomnographic data. A theory of accelerated transition from wakefulness to sleep is proposed to explain the process of insomnia relief through low-strength static magnetic fields. Analysis by functional Magnetic Resonance Imaging (fMRI) is used to further investigate the theory.
PEBBLES Simulation of Static Friction and New Static Friction Benchmark
Joshua J. Cogliati; Abderrafi M. Ougouag
2010-05-01
Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.
Elastic properties, strength and damage tolerance of pultruded composites
NASA Astrophysics Data System (ADS)
Saha, Mrinal Chandra
Pultruded composites are candidate materials for civil engineering infrastructural applications due their higher corrosion resistance and lower life cycle cost. Efficient use of materials like structural members requires thorough understanding of the mechanism that affects their response. The present investigation addresses the modeling and characterization of E-glass fiber/polyester resin matrix pultruded composites in the form of sheets of various thicknesses. The elastic constants were measured using static, vibration and ultrasonic methods. Two types of piezoelectric crystals were used in ultrasonic measurements. Finally, the feasibility of using a single specimen, in the form of a circular disk, was shown in measuring all the elastic constants using ultrasonic technique. The effects of stress gradient on tensile strength were investigated. A large number of specimens, parallel and transverse to the pultrusion direction, were tested in tension, 3-point flexure, and 4-point flexure. A 2-parameter Weibull model was applied to predict the tensile strength from the flexure tests. The measured and Weibull-predicted ratios did not show consistent agreement. Microstructural observations suggested that the flaw distribution in the material was not uniform, which appears to be a basic requirement for the Weibull distribution. Compressive properties were measured using a short-block compression test specimen of 44.4-mm long and 25.4-mm wide. Specimens were tested at 0°, 30°, 45°, 60° and 90° orientations. The compression test specimen was modeled using 4-noded isoparametric layered plate and shell elements. The predicted elastic properties for the roving layer and the continuous strand mat layer was used for the finite element study. The damage resistance and damage tolerance were investigated experimentally. Using a quasi-static indentation loading, damage was induced at various incrementally increased force levels to investigate the damage growth process. Damage
Static Properties of Skyrmions
NASA Astrophysics Data System (ADS)
Adkins, Gregory S.
The following sections are included: * INTRODUCTION * CHIRAL FIELD THEORY * The Skyrme Lagrangian * Topological Solitons * Symmetries and Currents * THE SKYRMION * The Hedgehog * The Shape Function * The Rotating Soliton * QUANTIZATION * Quantization and Wave Functions * Matrix Elements * STATIC PROPERTIES * Masses * Sizes and Magnetic Moments * Electric and Magnetic Transition Elements * Axial Coupling and the Goldberger-Treiman Relation * More Results and Predictions * DISCUSSION AND CONCLUSIONS * APPENDIX A: NOTATION * APPENDIX B: PAULI MATRIX ALGEBRA * APPENDIX C: THE ADJOINT REPRESENTATION OF SU(2) * APPENDIX D: A FEW USEFUL FACTS * ACKNOWLEDGEMENTS * REFERENCES
Luttinger parameter of quasi-one-dimensional para -H2
NASA Astrophysics Data System (ADS)
Ferré, G.; Gordillo, M. C.; Boronat, J.
2017-02-01
We have studied the ground-state properties of para-hydrogen in one dimension and in quasi-one-dimensional configurations using the path-integral ground-state Monte Carlo method. This method produces zero-temperature exact results for a given interaction and geometry. The quasi-one-dimensional setup has been implemented in two forms: the inner channel inside a carbon nanotube coated with H2 and a harmonic confinement of variable strength. Our main result is the dependence of the Luttinger parameter on the density within the stable regime. Going from one dimension to quasi-one dimension, keeping the linear density constant, produces a systematic increase of the Luttinger parameter. This increase is, however, not enough to reach the superfluid regime and the system always remain in the quasicrystal regime, according to Luttinger liquid theory.
Static friction between silicon nanowires and elastomeric substrates.
Qin, Qingquan; Zhu, Yong
2011-09-27
This paper reports the first direct measurements of static friction force and interfacial shear strength between silicon (Si) nanowires (NWs) and poly(dimethylsiloxane) (PDMS). A micromanipulator is used to manipulate and deform the NWs under a high-magnification optical microscope in real time. The static friction force is measured based on "the most-bent state" of the NWs. The static friction and interface shear strength are found to depend on the ultraviolet/ozone (UVO) treatment of PDMS. The shear strength starts at 0.30 MPa without UVO treatment, increases rapidly up to 10.57 MPa at 60 min of treatment and decreases for longer treatment. Water contact angle measurements suggest that the UVO-induced hydrophobic-to-hydrophilic conversion of PDMS surface is responsible for the increase in the static friction, while the hydrophobic recovery effect contributes to the decrease. The static friction between NWs and PDMS is of critical relevance to many device applications of NWs including NW-based flexible/stretchable electronics, NW assembly and nanocomposites (e.g., supercapacitors). Our results will enable quantitative interface design and control for such applications.
NASA Astrophysics Data System (ADS)
Le Thien, Q.; McDermott, D.; Olson Reichhardt, C. J.; Reichhardt, C.
2016-01-01
We examine the statics and dynamics of vortices in the presence of a periodic quasi-one-dimensional substrate, focusing on the limit where the vortex lattice constant is smaller than the substrate lattice period. As a function of the substrate strength and filling factor, within the pinned state, we observe a series of order-disorder transitions associated with buckling phenomena in which the number of vortex rows that fit between neighboring substrate maxima increases. These transitions coincide with steps in the depinning threshold, jumps in the density of topological defects, and changes in the structure factor. At the buckling transition, the vortices are disordered, while between the buckling transitions the vortices form a variety of crystalline and partially ordered states. In the weak substrate limit, the buckling transitions are absent and the vortices form an ordered hexagonal lattice that undergoes changes in its orientation with respect to the substrate as a function of vortex density. At intermediate substrate strength, certain ordered states appear that are correlated with peaks in the depinning force. Under an applied drive, the system exhibits a rich variety of distinct dynamical phases, including plastic flow, a density-modulated moving crystal, and moving floating solid phases. We also find a dynamic smectic-to-smectic transition in which the smectic ordering changes from being aligned with the substrate to being aligned with the external drive. The different dynamical phases can be characterized using velocity histograms and the structure factor. We discuss how these results are related to recent experiments on vortex ordering in thin films with periodic thickness modulations. Our results should also be relevant for other types of systems such as ions, colloids, or Wigner crystals interacting with periodic quasi-one-dimensional substrates.
NASA Astrophysics Data System (ADS)
Cheng, C. H.; Johnston, David H.
1981-01-01
Static and dynamic bulk moduli (Ks and Kd) are measured as continuous functions of pressure from zero to 2-3 kilobars for two sandstones, a tuff, limestone, granite, and oil shale. Results for the sandstones and granite are in good agreement with previously reported data with Ks/Kd varying from about 0.5 at atmospheric pressure to close to unity at pressures 2 kilobars and above. For rocks behaving elastically under static loading, the Ks/Kd ratio is inversely related to the microcrack density. For the limestone, time dependent deformation associated with pore collapse results in Ks/Kd ratios approaching 0.1 at high pressure. Upon unloading, while initially high ( ˜ 1.0) at high pressures, Ks/Kd becomes lower than values obtained during loading at low pressures ( < 1 kilobar) due to opening of microcracks generated during pore collapse. For the oil shale, in which few microcracks exist, Ks/Kd remains relatively constant with pressure at a value of about 0.7.
Fluorescent lamp with static magnetic field generating means
Moskowitz, P.E.; Maya, J.
1987-09-08
A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.
Fluorescent lamp with static magnetic field generating means
Moskowitz, Philip E.; Maya, Jakob
1987-01-01
A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed.
Experimental study on the seismic behavior of high strength concrete filled double-tube columns
NASA Astrophysics Data System (ADS)
Qian, Jiaru; Li, Ningbo; Ji, Xiaodong; Zhao, Zuozhou
2014-03-01
To study the seismic behavior of high strength concrete filled double-tube (CFDT) columns, each consisting of an external square steel tube and an internal circular steel tube, quasi-static tests on eight CFDT column specimens were conducted. The test variables included the width-to-thickness ratio ( β 1) and the area ratio ( β 2) of the square steel tube, the wall thickness of the circular steel tube, and the axial force (or the axial force ratio) applied to the CFDT columns. The test results indicate that for CFDT columns with a square steel tube with β 1 of 50.1 and 24.5, local buckling of the specimen was found at a drift ratio of 1/150 and 1/50, respectively. The lateral force-displacement hysteretic loops of all specimens were plump and stable. Reducing the width-to-thickness ratio of the square steel tube, increasing its area ratio, or increasing the wall thickness of the internal circular steel tube, led to an increased flexural strength and deformation capacity of the specimens. Increasing the design value of the axial force ratio from 0.8 to 1.0 may increase the flexural strength of the specimens, while it may also decrease the ultimate deformation capacity of the specimen with β 1 of 50.1.
ERIC Educational Resources Information Center
Nagasawa, Yoshinori; Demura, Shinichi
2010-01-01
This study examined age group and individual differences in controlled force exertion by emulating sinusoidal and quasi-random waveforms in 222 right-handed female adults aged 20 to 86 years. The subjects matched their submaximal grip strength by the dominant hand to changing demand values displayed as either a sinusoidal or a quasi-random…
No-dipole-hair theorem for higher-dimensional static black holes
Emparan, Roberto; Ohashi, Seiju; Shiromizu, Tetsuya
2010-10-15
We prove that static black holes in n-dimensional asymptotically flat spacetime cannot support nontrivial electric p-form field strengths when (n+1)/2{<=}p{<=}n-1. This implies, in particular, that static black holes cannot possess dipole hair under these fields.
Perturbative no-hair property of form fields for higher dimensional static black holes
Shiromizu, Tetsuya; Ohashi, Seiju; Tanabe, Kentaro
2011-04-15
In this paper we examine the static perturbation of p-form field strengths around higher dimensional Schwarzschild spacetimes. As a result, we can see that the static perturbations do not exist when p{>=}3. This result supports the no-hair properties of p-form fields. However, this does not exclude the presence of the black objects having nonspherical topology.
The plane strain shear fracture of the advanced high strength steels
NASA Astrophysics Data System (ADS)
Sun, Li
2013-12-01
The "shear fracture" which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of "shear fracture" phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a "shear fracture" in the component.
The plane strain shear fracture of the advanced high strength steels
Sun, Li
2013-12-16
The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component.
Investigation of static and cyclic bearing failure mechanisms for GR/EP laminates
NASA Technical Reports Server (NTRS)
Walter, R. W.; Tuttle, M. M.
1992-01-01
Static, cyclic load (fatigue), and residual strength testing of graphite-epoxy (GR/EP) and aluminum pin bearing joints was completed to study bearing failure mechanisms. Parameters investigated included static strength, failure mode, fatigue life, hole growth, joint stiffness, and residual strength. Comparative evaluation of these results show that the MIL-HDBK-5 convention for the definition of bearing strength can be used for GR/EP materials while maintaining the same, or improved, level of structural integrity shown for metal joints.
A Modified Johnson-Cook Model for Advanced High-Strength Steels Over a Wide Range of Temperatures
NASA Astrophysics Data System (ADS)
Qingdong, Zhang; Qiang, Cao; Xiaofeng, Zhang
2014-12-01
Advanced high-strength steel (AHSS) is widely used in automotive industry. In order to investigate the mechanical behaviors of AHSS over a wide range of temperatures, quasi-static tensile experiments were conducted at the temperatures from 298 to 1073 K on a Gleeble-3500 thermo-simulation machine. The results show that flow behaviors are affected by testing temperature significantly. In order to describe the flow features of AHSS, the Johnson-Cook (JC) model is employed. By introducing polynomial functions to consider the effects of temperature on hardening behavior, the JC model is modified and used to predict flow behavior of AHSS at different experimental conditions. The accuracy of the modified JC model is verified and the predicted flow stress is in good agreement with experimental results, which confirms that the modified JC model can give an accurate and precise estimate over a wide range of temperatures.
14 CFR 25.305 - Strength and deformation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation... appreciably higher than those corresponding to static loads, the effects of this rate of application must...
Wheelchair armrest strength testing.
Cooper, R A; Rentschler, A J; O'Connor, T J; Ster, J F
2000-01-01
There are about 1.4 million manual wheelchair users, 100,000 electric-powered wheelchair users, and 60,000 electric-powered scooter users. The current study was undertaken to determine if the fasteners of a clamp-type armrest receiver were prone to failure. The first test was used to examine the potential misalignment of the armrest receiver components that attach it to the frame. The second test was to evaluate the entire armrest using the American National Standards Institute/Rehabilitation Engineering and Assistive Technology Society of North America armrest static strength standard. Finally, we conducted three fatigue tests. The first fatigue test was performed by repeating the static stability tests multiple times. The last two tests were a modified version of the double-drum wheelchair fatigue test used to apply repeated loading and vibration simultaneously. A paired t-test showed that there is no statistically significant difference (p = 0.08), with a confidence of 95%, between critical alignment measurements. The armrest including the receiver passed the standard requirement of a force of 760 N being applied outward at 15 degrees. During fatigue testing, we found that armrests did not exhibit any visible or functional damage. Upon completion of the tests, the armrests and receivers functioned properly. At about 100,289 cycles on a double-drum test machine, three bolts failed on each armrest receiver when the screws were loosened to have only five threads engaged prior to commencing the test. The design of the armrest tested was in compliance with existing national and international standards. Currently, both International Standards Organization and American National Standards Institute/Rehabilitation Engineering and Assistive Technology Society committees are developing standards for seating systems that will include static, impact, and fatigue strength testing of devices like lateral torso supports, lateral hip support, etc. Methods similar to those
Schellenberg, Florian; Oberhofer, Katja; Taylor, William R.; Lorenzetti, Silvio
2015-01-01
Background. Knowledge of the musculoskeletal loading conditions during strength training is essential for performance monitoring, injury prevention, rehabilitation, and training design. However, measuring muscle forces during exercise performance as a primary determinant of training efficacy and safety has remained challenging. Methods. In this paper we review existing computational techniques to determine muscle forces in the lower limbs during strength exercises in vivo and discuss their potential for uptake into sports training and rehabilitation. Results. Muscle forces during exercise performance have almost exclusively been analysed using so-called forward dynamics simulations, inverse dynamics techniques, or alternative methods. Musculoskeletal models based on forward dynamics analyses have led to considerable new insights into muscular coordination, strength, and power during dynamic ballistic movement activities, resulting in, for example, improved techniques for optimal performance of the squat jump, while quasi-static inverse dynamics optimisation and EMG-driven modelling have helped to provide an understanding of low-speed exercises. Conclusion. The present review introduces the different computational techniques and outlines their advantages and disadvantages for the informed usage by nonexperts. With sufficient validation and widespread application, muscle force calculations during strength exercises in vivo are expected to provide biomechanically based evidence for clinicians and therapists to evaluate and improve training guidelines. PMID:26417378
1975-03-01
at"), where t is time and a and ß are constants to be determined from experi- mental data (ref. 6. eq 177). However, these approaches have no...Minerva Tecnica . :j. Assur. A. (1962) Surfacing submarines through ice. Proc. Army Science Conference, vol. I. 4. Assur, A. (1967) Flexural and
NASA Astrophysics Data System (ADS)
Martinez, M.; Rocha, B.; Li, M.; Shi, G.; Beltempo, A.; Rutledge, R.; Yanishevsky, M.
2012-11-01
The National Research Council Canada (NRC) has worked on the development of structural health monitoring (SHM) test platforms for assessing the performance of sensor systems for load monitoring applications. The first SHM platform consists of a 5.5 m cantilever aluminum beam that provides an optimal scenario for evaluating the ability of a load monitoring system to measure bending, torsion and shear loads. The second SHM platform contains an added level of structural complexity, by consisting of aluminum skins with bonded/riveted stringers, typical of an aircraft lower wing structure. These two load monitoring platforms are well characterized and documented, providing loading conditions similar to those encountered during service. In this study, a micro-electro-mechanical system (MEMS) for acquiring data from triads of gyroscopes, accelerometers and magnetometers is described. The system was used to compute changes in angles at discrete stations along the platforms. The angles obtained from the MEMS were used to compute a second, third or fourth order degree polynomial surface from which displacements at every point could be computed. The use of a new Kalman filter was evaluated for angle estimation, from which displacements in the structure were computed. The outputs of the newly developed algorithms were then compared to the displacements obtained from the linear variable displacement transducers connected to the platforms. The displacement curves were subsequently post-processed either analytically, or with the help of a finite element model of the structure, to estimate strains and loads. The estimated strains were compared with baseline strain gauge instrumentation installed on the platforms. This new approach for load monitoring was able to provide accurate estimates of applied strains and shear loads.
Characterization of Depleted-Uranium Strength and Damage Behavior
Gray, III, George T.; Chen, Shuh-Rong; Bronkhorst, Curt A.; Dennis-Koller, Darcie; Cerreta, Ellen K.; Cady, Carl M.; McCabe, Rodney J.; Addessio, Francis L.; Schraad, Mark W.; Thoma, Dan J.; Lopez, Mike F.; Mason, Thomas A.; Papin, Pallas A.; Trujillo, Carl P.; Korzekwa, Deniece R.; Luscher, Darby J.; Hixson, Robert S.; Maudlin, Paul J.; Kelly, A. M.
2012-12-17
The intent of this report is to document the status of our knowledge of the mechanical and damage behavior of Depleted Uranium(DU hereafter). This report briefly summaries the motivation of the experimental and modeling research conducted at Los Alamos National Laboratory(LANL) on DU since the early 1980’s and thereafter the current experimental data quantifying the strength and damage behavior of DU as a function of a number of experimental variables including processing, strain rate, temperature, stress state, and shock prestraining. The effect of shock prestraining on the structure-property response of DU is described and the effect on post-shock mechanical behavior of DU is discussed. The constitutive experimental data utilized to support the derivation of two constitutive strength (plasticity) models, the Preston-Tonks-Wallace (PTW) and Mechanical Threshold Stress (MTS) models, for both annealed and shock prestrained DU are detailed and the Taylor cylinder validation tests and finite-element modeling (FEM) utilized to validate these strength models is discussed. The similarities and differences in the PTW and MTS model descriptions for DU are discussed for both the annealed and shock prestrained conditions. Quasi-static tensile data as a function of triaxial constraint and spallation test data are described. An appendix additionally briefly describes low-pressure equation-of-state data for DU utilized to support the spallation experiments. The constitutive behavior of DU screw/bolt material is presented. The response of DU subjected to dynamic tensile extrusion testing as a function of temperature is also described. This integrated experimental technique is planned to provide an additional validation test in the future. The damage data as a function of triaxiality, tensile and spallation data, is thereafter utilized to support derivation of the Tensile Plasticity (TEPLA) damage model and simulations for comparison to the DU spallation data are presented
NASA Astrophysics Data System (ADS)
Lucking, Greg; Stark, Nina; Lippmann, Thomas; Smyth, Stephen
2017-01-01
Tidal estuaries feature spatially and temporally varying sediment dynamics and characteristics. Particularly, the variability of geotechnical sediment parameters is still poorly understood, limiting the prediction of long-term sediment stability and dynamics. This paper presents results from an in situ investigation of surficial sediments (≤50 cm) in a tidal estuary in New Hampshire (USA), using a portable free fall penetrometer. The aim is to investigate variations in sediment strength and pore pressure behavior with regard to sediment type and seabed morphology. The study also provides a detailed analysis of high velocity impact pore pressure data to derive information about sediment type and permeability. The penetrometer was deployed 227 times, and the findings are correlated to 78 sediment samples. Differences in sediment strength and type were found when transitioning from tidal flats to the deeper channels. Finer-grained sediments located predominantly on the tidal flats appeared well consolidated with noticeable and spatially consistent sediment strength (reflected in an estimate of quasi-static bearing capacity qsbcmax 10 kPa). Sediments with higher sand content (>75%) showed more variations in strength relating to differences in gradation, and likely represent loose and poorly consolidated sands (qsbcmax 10-55 kPa). The rate at which the recorded excess pore pressures approached equilibrium after penetration was classified and related to sediment type. The data indicate that the development of excess pore pressures upon impact and during penetration may provide additional insight into the nature and layering of bed material, such as identifying a desiccated or over-consolidated dilative surficial layer. In summary, with varying sediment grain size distributions, bulk densities and morphology, sediment strength and pore pressure behavior can vary significantly within a tidal estuary.
Static Dissipative Cable Ties, Such as for Radiation Belt Storm Probes
NASA Technical Reports Server (NTRS)
Langley, Patrick T. (Inventor); Siddique, Fazle E. (Inventor)
2013-01-01
Methods of cyclically heating and cooling an article formed of a static dissipative ETFE resin, such as to reduce an electrical resistivity and/or to increase a tensile strength of the article, and methods of irradiating an article formed of a static dissipative ETFE resin, such as to increase a tensile strength of the article. Also disclosed herein are articles formed of a static dissipative ETFE resin, and processed in accordance with methods disclosed herein. Such an article may include, for example and without limitation, a cable strap to wrap, support, and/or secure one or more wires or cables, such as a cable tie.
Structural testing for static failure, flutter and other scary things
NASA Technical Reports Server (NTRS)
Ricketts, R. H.
1983-01-01
Ground test and flight test methods are described that may be used to highlight potential structural problems that occur on aircraft. Primary interest is focused on light-weight general aviation airplanes. The structural problems described include static strength failure, aileron reversal, static divergence, and flutter. An example of each of the problems is discussed to illustrate how the data acquired during the tests may be used to predict the occurrence of the structural problem. While some rules of thumb for the prediction of structural problems are given the report is not intended to be used explicitly as a structural analysis handbook.
Resolving nanophotonic spectra with quasi-normal modes (Conference Presentation)
NASA Astrophysics Data System (ADS)
Powell, David A.
2016-09-01
Many nanophotonic systems are strongly coupled to radiating waves, or suffer significant dissipative losses. Furthermore, they may have complex shapes which are not amenable to closed form calculations. This makes it challenging to determine their modes without resorting to quasi-static or point dipole approximations. To solve this problem, the quasi-normal modes (QNMs) are found from an integral equation model of the particle. These give complex frequencies where excitation can be supported without any incident field. The corresponding eigenvectors yield the modal distributions, which are non-orthogonal due to the non-Hermitian nature of the system. The model based on quasi-normal modes is applied to plasmonic and dielectric particles, and compared with a spherical multipole decomposition. Only with the QNMs is it possible to resolve all features of the extinction spectrum, as each peak in the spectrum can be attributed to a particular mode. In contrast, many of the multipole coefficient have multiple peaks and dips. Furthermore, by performing a multipolar decomposition of each QNM, the spectrum of multipole coefficients is explained in terms of destructive interference between modes of the same multipole order.
The Strength of Shell Bodies : Theory and Practice
NASA Technical Reports Server (NTRS)
Ebner, H
1937-01-01
The monocoque form of airplane construction has introduced a number of new problems to the stress calculator and the designer. The problems for the stress calculator fall into two groups: the determination of the stress condition (shell statics) and the determination of the failing strength (shell strength). The present report summarizes the most important theoretical and experimental results on this subject.
Evaluation of conductive concrete for anti-static flooring applications
NASA Astrophysics Data System (ADS)
Yehia, Sherif; Qaddoumi, Nasser; Hassan, Mohamed; Swaked, Bassam
2015-04-01
Static electricity, exchange of electrons, and retention of charge between any two materials due to contact and separation are affected by the condition of the materials being nonconductive or insulated from ground. Several work environments, such as electronics industry, hospitals, offices, and computer rooms all require electro-static discharge (ESD) mitigation. Carpet Tile, Carpet Broadloom, Vinyl Tile, Vinyl sheet, Epoxy and Rubber are examples of existing flooring systems in the market. However, each system has its advantages and limitations. Conductive concrete is a relatively new material technology developed to achieve high electrical conductivity and high mechanical strength. The conductive concrete material can be an economical alternative for these ESD flooring systems. In this paper, the effectiveness of conductive concrete as an anti-static flooring system was evaluated. The initial results indicated that the proposed conductive concrete flooring and ground system met the acceptance criteria stated by ASTM F150.
Graphical Models for Quasi-Experimental Designs
ERIC Educational Resources Information Center
Kim, Yongnam; Steiner, Peter M.; Hall, Courtney E.; Su, Dan
2016-01-01
Experimental and quasi-experimental designs play a central role in estimating cause-effect relationships in education, psychology, and many other fields of the social and behavioral sciences. This paper presents and discusses the causal graphs of experimental and quasi-experimental designs. For quasi-experimental designs the authors demonstrate…
Cylindrical quasi-Gaussian beams.
Mitri, F G
2013-11-15
Making use of the complex-source-point method in cylindrical coordinates, an exact solution representing a cylindrical quasi-Gaussian beam of arbitrary waist w(0) satisfying both the Helmholtz and Maxwell's equations is introduced. The Cartesian components of the electromagnetic field are derived stemming from different polarizations of the magnetic and electric vector potentials based on Maxwell's vectorial equations and Lorenz's gauge condition, without any approximations. Computations illustrate the theory for tightly focused and quasi-collimated cylindrical beams. The results are particularly useful in beam-forming design using high-aperture or collimated cylindrical laser beams in imaging microscopy, particle manipulation, optical tweezers, and the study of scattering, radiation forces, and torque on cylindrical structures.
NASA Technical Reports Server (NTRS)
Wunder, Charles C.; Cook, Kenneth M.; Watkins, Stanley R.; Moressi, William J.
1987-01-01
The dependence of gravitationally related changes in femur bone strength on the comparable changes in calcium content was investigated in rats exposed to chronic simulations of altered gravity from the 28th to 42nd day of age. Zero G was simulated by harness suspension and 3 G by centrifugation. Bone strength (S) was determined by bending (using modified quasi-static cantilever bending methods and equipment described by Wunder et al., 1977 and 1979) and Ca content (C, by mass pct) determined by atomic absorption spectrometry; results were compared with data obtained on both normal and harnessed control animals at 1 G. Multiple regression showed significant dependence of S upon earth's gravity, independent from C, for which there was no significant coefficient of partial regression. It is suggested that the lack of S/C correlation might have been due to the fact that considerable fraction of the calcium in these young, developing bones has not yet crystallized into the hydroxyapatite which provides strength.
NASA Astrophysics Data System (ADS)
Domnisoru, L.; Modiga, A.; Gasparotti, C.
2016-08-01
At the ship's design, the first step of the hull structural assessment is based on the longitudinal strength analysis, with head wave equivalent loads by the ships' classification societies’ rules. This paper presents an enhancement of the longitudinal strength analysis, considering the general case of the oblique quasi-static equivalent waves, based on the own non-linear iterative procedure and in-house program. The numerical approach is developed for the mono-hull ships, without restrictions on 3D-hull offset lines non-linearities, and involves three interlinked iterative cycles on floating, pitch and roll trim equilibrium conditions. Besides the ship-wave equilibrium parameters, the ship's girder wave induced loads are obtained. As numerical study case we have considered a large LPG liquefied petroleum gas carrier. The numerical results of the large LPG are compared with the statistical design values from several ships' classification societies’ rules. This study makes possible to obtain the oblique wave conditions that are inducing the maximum loads into the large LPG ship's girder. The numerical results of this study are pointing out that the non-linear iterative approach is necessary for the computation of the extreme loads induced by the oblique waves, ensuring better accuracy of the large LPG ship's longitudinal strength assessment.
Ideal statistically quasi Cauchy sequences
NASA Astrophysics Data System (ADS)
Savas, Ekrem; Cakalli, Huseyin
2016-08-01
An ideal I is a family of subsets of N, the set of positive integers which is closed under taking finite unions and subsets of its elements. A sequence (xk) of real numbers is said to be S(I)-statistically convergent to a real number L, if for each ɛ > 0 and for each δ > 0 the set { n ∈N :1/n | { k ≤n :| xk-L | ≥ɛ } | ≥δ } belongs to I. We introduce S(I)-statistically ward compactness of a subset of R, the set of real numbers, and S(I)-statistically ward continuity of a real function in the senses that a subset E of R is S(I)-statistically ward compact if any sequence of points in E has an S(I)-statistically quasi-Cauchy subsequence, and a real function is S(I)-statistically ward continuous if it preserves S(I)-statistically quasi-Cauchy sequences where a sequence (xk) is called to be S(I)-statistically quasi-Cauchy when (Δxk) is S(I)-statistically convergent to 0. We obtain results related to S(I)-statistically ward continuity, S(I)-statistically ward compactness, Nθ-ward continuity, and slowly oscillating continuity.
Spin quasi-distribution functions
NASA Astrophysics Data System (ADS)
Scully, M. O.; Wódkiewicz, K.
1994-01-01
Two-classes of phase-space spin quasi-distribution functions are introduced and discussed. The first class of these distributions is based on the delta function construction. It is shown that such a construction can be carried out for an arbitrary spin s and an arbitrary ordering of the spin operators. The second class of the spin distributions is constructed with the help of the spin coherent states. The connection of the spin coherent states to the Stratonovich formalism is established and discussed. It is shown that the c-number phase-space description of quantum fluctuations provides a simple statistical picture of quantum fluctuations of spinoperators in terms of random directions on a unit sphere. For quantum states of the spin system the statistics of these random orientations is given by non-positive spin quasi-distribution functions. It is shown that the application of these spin quasi-distribution functions to the Einstein-Podolsky-Rosen correlations provide an insight into the quantum theory of measurement.
Statics and dynamics of Giacobini-Zinner magnetic tail
NASA Technical Reports Server (NTRS)
Siscoe, G. L.; Slavin, J. A.; Smith, E. J.; Tsurutani, B. T.; Jones, D. E.
1986-01-01
The data gathered by the International Cometary Explorer during its traversal of Comet Giacobini-Zinner's tail are subjected to stress balance requirements, yielding estimates of unmeasured quantities. It is noted that the comet's tail is embedded in an ionosheath whose static pressure is nearly equal to the solar wind stagnation pressure, leading to a large lobe field strength. A systematic variation is found in the ion temperature across the tail, implying the variation of the pickup velocity of new ions. Axial stress balance yields an expression for the strength of the lobe field which reveals weak variation with axial distance.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2011-01-01
Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin is caused by an undamping of the aerodynamics in one of the lower frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic lineloads derived from steady rigid computational fluid dynamics (CFD). However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers where experiment or unsteady computational aeroelastic (CAE) analysis show a reduced or even negative aerodynamic damping. This paper will present a method of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics. The enhanced formulation uses unsteady CFD to compute the response of selected lower frequency modes. The response is contained in a time history of the vehicle lineloads. A proper orthogonal decomposition of the unsteady aerodynamic lineload response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping and mass matrices. The results of the enhanced quasi-static aeroelastic stability analysis are compared with the damping and frequency computed from unsteady CAE analysis and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady CAE analysis.
Critical taper wedge strength varies with structural style: results from distinct-element models
NASA Astrophysics Data System (ADS)
Strayer, L. M.; Suppe, J.
2015-12-01
Critical-taper theory has given diverse insight into kinematics, roles of erosion and sedimentation, and the morphology of compressive mountain belts. We have made progress by recasting the parameter-rich mathematics into a simpler form that describes a linear, co-varying relationship between surface slope and detachment dip (α, β), and internal- and basal-sliding strengths (W, F). Using distinct-element models, we tested this simpler theory over a range of wedge strengths and structural styles. We also obtained W & F from observations of surface slope α and detachment dip β in active natural systems, all of which including the numerical models, show wedges are strong but detachments are weak, with F/W=0.1 or less. Model-derived W & F vary about a mean that matches geometry-derived values. Time- and spatially-averaged dynamical F & W are observed to be equal to wedge-derived results. Critical taper reflects the dynamical strengths during wedge growth and is controlled dynamically as base friction varies between an assigned quasi-static value and lower values during slip events. In the wedge, W varies more than F, which may also be true for natural systems. Detachments have frictional stick/slip behavior on a basal wall, but the wedge has more going on within it. Tandem faulting & folding serve to simultaneously weaken and strengthen the wedge, and may occur anywhere: structural style appears to be important to wedge strength evolution. The dynamics of deformation within the wedge and slip upon the base control the finite wedge geometry: static strengths drop to dynamic levels during seismicity, resulting in materials and faults that are weaker than prescribed in models or determined by testing. Relationships between α and W & F are complex. All sudden, stepwise changes in α, W & F with time coincide with seismicity spikes in the models. Large events trigger or are triggered by large changes in F and W. We examine the complex details of dynamically driven
NASA Astrophysics Data System (ADS)
Du, Z. Z.; Liu, H. M.; Xie, Y. L.; Wang, Q. H.; Liu, J.-M.
2016-10-01
We present a comprehensive study of the magnetic properties of the long-range-ordered quasi-one-dimensional J1-J2 systems with a newly developed torque equilibrium spin-wave expansion approach, which can describe the spin Casimir and magnon decay effects in a unified framework. While the framework does not lose generality, our discussion will be restricted to two representative systems, each of which has only one type of interchain coupling (J3 or J4) and is referred to as the J3 or J4 system, respectively. In spite of the long-range spiral order, the dynamical properties of these systems turn out to be highly nontrivial due to the incommensurate noncollinear spin configuration and the strong quantum fluctuation effects enhanced by the frustration and low dimensionality. Both the systems show prominent spin Casimir effects induced by the vacuum fluctuation of the spin waves and related modification of the ordering vector, Lifshitz point position, and sublattice magnetization. In addition to these static properties, the dynamical behaviors of these systems are also remarkable. Significant and spontaneous magnon decay effects are manifested in the quantum corrections to the excitation spectrum, including the broadening of the spectrum linewidth and downward renormalization of the excitation energy. Furthermore, the excitation spectrum appears to be very sensitive to the types of the interchain coupling and manifests three distinct features: (i) the magnon decay patterns between the J3 and J4 systems are very different, (ii) the renormalized spectrum and the overall decay rate of the J3 and J4 systems show very different sensitivity to the magnetic anisotropy, and (iii) there is a nearly flat mode in the renormalized magnon spectrum of the J4 system along the X-M direction. By adjusting the strength of magnetic anisotropy and varying the approximation scheme, it is revealed that these striking distinct features are quite robust and have deep connection with both the
Static heterogeneities in liquid water
NASA Astrophysics Data System (ADS)
Stanley, H. Eugene; Buldyrev, Sergey V.; Giovambattista, Nicolas
2004-10-01
The thermodynamic behavior of water seems to be closely related to static heterogeneities. These static heterogeneities are related to the local structure of water molecules, and when properly characterized, may offer an economical explanation of thermodynamic data. The key feature of liquid water is not so much that the existence of hydrogen bonds, first pointed out by Linus Pauling, but rather the local geometry of the liquid molecules is not spherical or oblong but tetrahedral. In the consideration of static heterogeneities, this local geometry is critical. Recent experiments suggested more than one phase of amorphous solid water, while simulations suggest that one of these phases is metastable with respect to another, so that in fact there are only two stable phases.
NASA Astrophysics Data System (ADS)
Shrivastava, Sachin; Mohite, P. M.
2015-01-01
The minimization of weight and maximization of payload is an ever challenging design procedure for air vehicles. The present study has been carried out with an objective to redesign control surface of an advanced all-metallic fighter aircraft. In this study, the structure made up of high strength aluminum, titanium and ferrous alloys has been attempted to replace by carbon fiber composite (CFC) skin, ribs and stiffeners. This study presents an approach towards development of a methodology for optimization of first-ply failure index (FI) in unidirectional fibrous laminates using Genetic-Algorithms (GA) under quasi-static loading. The GAs, by the application of its operators like reproduction, cross-over, mutation and elitist strategy, optimize the ply-orientations in laminates so as to have minimum FI of Tsai-Wu first-ply failure criterion. The GA optimization procedure has been implemented in MATLAB and interfaced with commercial software ABAQUS using python scripting. FI calculations have been carried out in ABAQUS with user material subroutine (UMAT). The GA's application gave reasonably well-optimized ply-orientations combination at a faster convergence rate. However, the final optimized sequence of ply-orientations is obtained by tweaking the sequences given by GA's based on industrial practices and experience, whenever needed. The present study of conversion of an all metallic structure to partial CFC structure has led to 12% of weight reduction. Therefore, the approach proposed here motivates designer to use CFC with a confidence.
Voltage Sensors Monitor Harmful Static
NASA Technical Reports Server (NTRS)
2009-01-01
A tiny sensor, small enough to be worn on clothing, now monitors voltage changes near sensitive instruments after being created to alert Agency workers to dangerous static buildup near fuel operations and avionics. San Diego s Quasar Federal Systems received a Small Business Innovation Research (SBIR) contract from Kennedy Space Center to develop its remote voltage sensor (RVS), a dime-sized electrometer designed to measure triboelectric changes in the environment. One of the unique qualities of the RVS is that it can detect static at greater distances than previous devices, measuring voltage changes from a few centimeters to a few meters away, due to its much-improved sensitivity.
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Furrow, Keith W.
1993-01-01
Results are presented from an experimental evaluation of the combined effects of temperature and humidity cycling on AS4/3501-6 composites (unstitched, Kevlar 29 stitched, and S-2 glass stitched uniweave fabric) and AS4/E905L composites (2-D, S-2 glass stitched 2-D, and 3-D braided fabric). The AS4/3501-6 uniweave material had a quasi-isotropic layup, whereas the AS4/E905L materials were braided in a (+/-30 deg/0 deg)(sub s) orientation. Data presented include compression strengths and compression-compression fatigue results for uncycled composites and cycled composites (160, 480, 720, and 1280 cycles from 140 deg F at 95 percent relative humidity to -67 deg F). To observe the presence of microcracking within the laminates, photomicrographs were taken of each material type at the end of each cycling period. Microcracks were found to be more prevalent within stitched laminates, predominantly around individual stitches. The glass stitched laminates showed significant microcracking even before cycling. Less microcracking was evident in the Kevlar stitched materials, whereas the unstitched uniweave material developed microcracks only after cycling. The 3-D braid did not develop microcracks. The static compression strengths of the unstitched and Kevlar stitched uniweave materials were degraded by about 10 percent after 1280 temperature/humidity cycles, whereas the reduction in compression strength for the glass stitched uniweave was less than 3 percent. The reduction in compression strength for the glass stitched 2-D braid was less than 8 percent. The unstitched 2-D and 3-D braids did not lose strength from temperature/humidity cycling. The compression-compression fatigue properties of all six material types were not affected by temperature/humidity cycling.
Vasco, D.W.; Ferretti, Alessandro; Novali, Fabrizio
2008-05-01
Transient pressure variations within a reservoir can be treated as a propagating front and analyzed using an asymptotic formulation. From this perspective one can define a pressure 'arrival time' and formulate solutions along trajectories, in the manner of ray theory. We combine this methodology and a technique for mapping overburden deformation into reservoir volume change as a means to estimate reservoir flow properties, such as permeability. Given the entire 'travel time' or phase field, obtained from the deformation data, we can construct the trajectories directly, there-by linearizing the inverse problem. A numerical study indicates that, using this approach, we can infer large-scale variations in flow properties. In an application to Interferometric Synthetic Aperture (InSAR) observations associated with a CO{sub 2} injection at the Krechba field, Algeria, we image pressure propagation to the northwest. An inversion for flow properties indicates a linear trend of high permeability. The high permeability correlates with a northwest trending fault on the flank of the anticline which defines the field.
Inelastic Deformation of Metals and Structures under Dynamic and Quasi-Static Cyclic Loading
1984-05-01
SECTION 3 NUMERICAL PROCEDURE Cyclic thermo-elasto- plastic problems may be solved by means of the .. method of successive elastic solutions in which...process. The thermal load is now applied incrementally and the thermo-elasto- " plastic problem is solved with the initial values of plastic strains -P
Quasi-Static Tensile Stress Strain Curves--II, Rolled Homogeneous Armor
1976-11-01
Aluminum Alloys, 2024-T3510, 5083-H131 and 7039-T64 as Measured by a Sonic Technique", Ballistic Research Laboratories, Abei-deen Proving Ground , MD. 6R...Hugoniot of Rolled Homogeneous Armor ", Ballistic Research Laboratories, Aberdeen Proving Ground , MD. 7 11. TEST PROCEDURES The material properties of...Gov’t. agencies only; Test and Evaluation; NOV 1976. Other requests shall be referred to Ballistic Research Laboratories, Aberdeen Proving Ground , MD
Quasi-static fault growth and shear fracture energy in granite
Lockner, D.A.; Byerlee, J.D.; Kuksenko, V.; Ponomarev, A.; Sidorin, A.
1991-01-01
The failure process in a brittle granite sample can be stabilized by controlling axial stress to maintain a constant rate of acoustic emission. As a result, the post-failure stress curve can be followed quasistatically, extending to hours the fault growth process which normally would occur violently in a fraction of a second. Using a procedure originally developed to locate earthquakes, acoustic emission arrival-time data are inverted to obtain three-dimensional locations of microseisms. These locations provide a detailed view of fracture nucleation and growth.
NASA Technical Reports Server (NTRS)
Davis, G. L.; Scharton, T. D.; Tsoi, W. B.
2002-01-01
In mid 2003, NASA will launch identical spacecraft to deliver two large rovers to the Martian surface. As with the successful Mars Pathfinder (MPF) mission, the MER spacecraft will use an airbag landing system to safely deliver its payload.
High Strain-Rate and Quasi-Static Ductile Failure Mechanisms in Porous Materials
2007-11-02
detailed understanding of the interrelated physical mechanisms that can result in ductile material failure in rate-dependent porous crystalline materials subjected...strains and slip-rates, and hydrostatic stresses on failure paths and ligament damage in face centered cubic (f.c.c.) crystalline materials have been
The effect of device fabrication on quasi-static elastic behaviour of silicon nanocantilever arrays
NASA Astrophysics Data System (ADS)
Gleeson, Peter; Lin, Kevin; Potie, Alexis; Pawashe, Chytra; de Silva, Johann P.; Cross, Graham L. W.; Boland, John J.
2015-12-01
As CMOS technology scaling continues, leakage current is increasingly degrading energy efficiency. The leakage problem can potentially be addressed by nanoelectromechanical (NEMS) relay technology, where the off state leakage current is virtually zero. These devices incorporate a suspended nanobeam which is drawn across a gap to make contact in similar fashion to a traditional relay. The properties of this nanobeam must be carefully engineered to minimise stiffness (hence operating voltage), while simultaneously maintaining sufficient restoring force to overcome the adhesion forces at the contact surface which are significant at the nanoscale. To engineer the beam stiffness, detailed understanding of the beam composition and geometry, combined with accurate modelling is required. Simple analytical models over-estimate the stiffness of the cantilever beam along its length, and both analytical and FEA models which account for the manufacturing induced geometrical complexity are required. In this work, spatial force mapping of fabricated beams was used to experimentally validate analytical and FEA models incorporating detailed beam dimensions. An excellent fit was achieved, and this provides a method for targeting beam properties in a NEMS device.
Quasi-static model of collimated jets and radio lobes. I. Accretion disk and jets
Colgate, Stirling A.; Li, Hui; Fowler, T. Kenneth; Pino, Jesse
2014-07-10
This is the first of a series of papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetic helix that could explain both the observed radio jet/lobe structures on very large scales and ultimately the enormous power inferred from the observed ultra-high-energy cosmic rays. In this work, we solve a set of one-dimensional equations similar to the steady-state standard accretion disk model, but now including the large-scale magnetic fields giving rises to jets. We find that the frequently made assumption that large-scale fields are frozen into the disk is fundamentally incorrect, due to the necessity for current and the accreting mass to flow perpendicular to magnetic flux surfaces. A correct treatment greatly simplifies the calculations, yielding fields that leave the disk nearly vertically with magnetic profiles uniquely determined by disk angular momentum conservation. Representative solutions of the magnetic fields in different radial regions of the disk surface are given, and they determine the overall key features in the jet structure and its dissipation, which will be the subjects of later papers.
Dynamic and Quasi Static Mechanical Properties of Comp B and TNT.
1985-11-01
cast. These are designated Coap B I (cyclotol) and Coup 5 Il and Inrormation on these are given in table 1. Coup B I differs from Coop B because of...temperature. These two forms of Coup B were cast in the 105 - split mold following approximately the same proceedure given above for Coap B and TNT. In addition...VjugVOS PAGE 17 i- S L4 I°_____________________________________ __ - - , ... ,.. m••% " -. Table I. Composition of Coup B I and Coop B III Coop II Coap
Quasi-static analysis of elastic behavior for some systems having higher fracture densities.
Berryman, J.G.; Aydin, A.
2009-10-15
Elastic behavior of geomechanical systems with interacting (but not intersecting) fractures is treated using generalizations of the Backus and the Schoenberg-Muir methods for analyzing layered systems whose layers are intrinsically anisotropic due to locally aligned fractures. By permitting the axis of symmetry of the locally anisotropic compliance matrix for individual layers to differ from that of the layering direction, we derive analytical formulas for interacting fractured regions with arbitrary orientations to each other. This procedure provides a systematic tool for studying how contiguous, but not yet intersecting, fractured domains interact, and provides a direct (though approximate) means of predicting when and how such interactions lead to more dramatic weakening effects and ultimately to failure of these complicated systems. The method permits decomposition of the system elastic behavior into specific eigenmodes that can all be analyzed, and provides a better understanding about which of these specific modes are expected to be most important to the evolving failure process.
NASA Astrophysics Data System (ADS)
Osman, Todd M.; Hassan, Hala A.; Lewandowski, John J.
2008-08-01
Trilayer laminates consisting of two layers of aluminum alloy 7093 surrounding one layer of 7093/SiC/15 p were produced via two roll-bonding techniques as well as by adhesive bonding. The effects of systematic changes in interface characteristics ( i.e., weak bond via roll bonding with a thin ductile interlayer material, stronger bond via roll bonding without a thin ductile interlayer, and strongest bond via adhesive bonding with a semibrittle material) on the subsequent laminate toughness was studied. The fracture resistance of the laminates and the constituent materials was examined via instrumented Charpy notched impact testing in the crack-arrester orientation as well as by fracture-toughness testing of bend bars tested in the crack-divider and the crack-arrester orientations. The notched impact resistance of the trilayer crack-arrester laminates was found to be greater than both monolithic 7093/SiC/15 p and 7093 samples of similar global thickness. The laminated structure promoted crack arrest, deflection, and large-scale deformation of the unreinforced layers, producing R-curve behavior. The tendency for interface delamination was predicted and confirmed based on recent mechanics-based analyses. The trilayer laminate structures tested in the crack-divider orientation exhibited a greater R-curve than either of the 7093/SiC/15 p or 7093 samples tested at similar global thickness. Both types of roll-bonded laminates ( i.e., stronger interface and weak interface containing a thin metal interlayer) exhibited a greater enhancement in Charpy impact toughness and mode I fracture toughness than did the adhesively bonded ( i.e., semibrittle interface) laminates. These relative improvements in toughness were rationalized by estimating the contributions to energy absorption by the delamination and crack bridging in these systems and by the effects of the interface type on these processes. These results are generally relevant to the performance of these materials under impact and under certain blast loading and penetration situations.
Dynamics of a turbojet engine considered as a quasi-static system
NASA Technical Reports Server (NTRS)
Otto, Edward W; Taylor, Burt L, III
1951-01-01
A determination of the dynamic characteristics of a typical turbojet engine with a centrifugal compressor, a sonic-flow turbine-nozzle diaphragm, and fixed area exhaust nozzle is presented. A generalized equation for transient behavior of the engine was developed; this equation was then verified by calculations using compressor and turbine performance charts extrapolated from equilibrium operating data and by experimental data obtained from an engine operated under transients in fuel flow. The results indicate that a linear differential equation for engine acceleration as a function of fuel flow and engine speed for operation near a steady-state operating condition can be written. The coefficients of this equation can be obtained either from actual transient data or, with a fair degree of accuracy, from the steady-state performance maps of the compressor and turbine, and can be corrected for altitude in the same manner that steady-state performance data are corrected.
How pinning and contact angle hysteresis govern quasi-static liquid drop transfer.
Chen, H; Tang, T; Zhao, H; Law, K-Y; Amirfazli, A
2016-02-21
This paper presents both experimental and numerical simulations of liquid transfer between two solid surfaces with contact angle hysteresis (CAH). Systematic studies on the role of the advancing contact angle (θa), receding contact angle (θr) and CAH in determining the transfer ratio (volume of the liquid transferred onto the acceptor surface over the total liquid volume) and the maximum adhesion force (Fmax) were performed. The transfer ratio was found to be governed by contact line pinning at the end of the transfer process caused by CAH of surfaces. A map based on θr of the two surfaces was generated to identify the three regimes for liquid transfer: (I) contact line pinning occurs only on the donor surface, (II) contact line pinning occurs on both surfaces, and (III) contact line pinning occurs only on the acceptor surface. With this map, an empirical equation is provided which is able to estimate the transfer ratio by only knowing θr of the two surfaces. The value of Fmax is found to be strongly influenced by the contact line pinning in the early stretching stage. For symmetric liquid bridges between two identical surfaces, Fmax may be determined only by θa, only by θr, or by both θa and θr, depending on the magnitude of the contact angles. For asymmetric bridges, Fmax is found to be affected by the period when contact lines are pinned on both surfaces.
NASA Astrophysics Data System (ADS)
Areias, P.; Rabczuk, T.; de Melo, F. J. M. Queirós; de Sá, J. César
2015-01-01
We propose, in this paper, a distinct perspective on the solution of the Coulomb frictional contact problem. By combining the prediction/correction method for the contact force vector with the correction step being a cone projection and writing the friction cone surface in the quadratic form, we directly calculate the contact force. The distance along the friction cone normal is determined by solving a nonlinear problem in closed form. Numerical advantages of this projection are apparent for large values of friction coefficient. Six problems previously indicated as difficult to solve by the node-to-segment discretization and the operator split algorithm are here solved with the new projection algorithm. Discretization follows node-to segment and node-to-face derivations with gap vector defined in a global frame (without tangential and normal decomposition). In addition, we provide source codes for the 2D and 3D contact cases.
From a quasi-static fluid-based evolutionary topology optimization to a generalization of BESO
NASA Astrophysics Data System (ADS)
Daróczy, László; Jármai, Károly
2015-05-01
A new algorithm is proposed for topology optimization based on a fluid dynamics analogy. It possesses characteristics similar to most well-known methods, such as the Evolutionary Structural Optimization (ESO)/Bidirectional Evolutionary Structural Optimization (BESO) method due to Xie and Steven (1993, "A Simple Evolutionary Procedure for Structural Optimisation." Computers and Structures 49 (5): 885-896.), which works with discrete values, and the Solid Isotropic Material with Penalization (SIMP) method due to Bendsøe (1989, "Optimal Shape Design as aMaterial Distribution Problem." Structural Optimization 1 (4): 193-202.) and Zhou and Rozvany (1991, "The COCAlgorithm-Part II: Topological, Geometry and Generalized Shape Optimization." Computer Methods in Applied Mechanics and Engineering 89 (1-3): 309-336.) (using Optimality Criterion (OC) or Method of Moving Asymptotes (MMA)), which works with intermediate values, as it is able to work both with discrete and intermediate densities, but always yields a solution with discrete densities. It can be proven mathematically that the new method is a generalization of the BESO method and using appropriate parameters it will operate exactly as the BESO method. The new method is less sensitive to rounding errors of the matrix solver as compared to the BESO method and is able to give alternative topologies to well-known problems. The article presents the basic idea and the optimization algorithm, and compares the results of three cantilever optimizations to the results of the SIMP and BESO methods.
QUASI-STATIC MODEL OF MAGNETICALLY COLLIMATED JETS AND RADIO LOBES. II. JET STRUCTURE AND STABILITY
Colgate, Stirling A.; Li, Hui; Fowler, T. Kenneth; Hooper, E. Bickford; McClenaghan, Joseph; Lin, Zhihong
2015-11-10
This is the second in a series of companion papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetically driven, and mediated helix that could explain both the observed radio jet/lobe structures and ultimately the enormous power inferred from the observed ultrahigh-energy cosmic rays. In the first paper, we showed self-consistently that minimizing viscous dissipation in the disk naturally leads to jets of maximum power with boundary conditions known to yield jets as a low-density, magnetically collimated tower, consistent with observational constraints of wire-like currents at distances far from the black hole. In this paper we show that these magnetic towers remain collimated as they grow in length at nonrelativistic velocities. Differences with relativistic jet models are explained by three-dimensional magnetic structures derived from a detailed examination of stability properties of the tower model, including a broad diffuse pinch with current profiles predicted by a detailed jet solution outside the collimated central column treated as an electric circuit. We justify our model in part by the derived jet dimensions in reasonable agreement with observations. Using these jet properties, we also discuss the implications for relativistic particle acceleration in nonrelativistically moving jets. The appendices justify the low jet densities yielding our results and speculate how to reconcile our nonrelativistic treatment with general relativistic MHD simulations.
Radiation Belt Dynamic and Quasi-Static Modeling Based on CRRES Data
1994-06-30
Short-Term Responses of Outer-Belt Relativistic Electrons to Dst Variations Michael Schulz, Michael A. Rinaldi, Richard W. Nightingale, and Y.T. Chiu...1994 23 Short-Term Responses of Outer-Belt Relativistic Electrons to Dst Variations Michael Schulz, Michael A. Rinaldi, Richard W. Nightingale, and Y...this finding is that Kp should be a leading indicator (although not by as much as several days) for Dst . (Enhanced Kp accompanies enhanced transport of
Study of Sub-interfacial Quasi-static Crack Propagation Using Shearing Interferometry
NASA Astrophysics Data System (ADS)
Lee, Hansuk; Krishnaswamy, Sridhar
Cracks on the interface between two materials have been extensively studied in view of their applications to failure processes in composite materials [1-3]. In this work, we look at the case of cracks that are off but close to an interface. Some early studies have indicated that under certain circumstances such sub-interfacial cracks tend to grow along a path that is parallel to the interface at a characteristic distance from the interface depending on the loading and material properties of the two materials. In this study, we optically map crack-tip stress fields for cracks that start off the interface, and track them as they subsequently propagate off the interface. The optical technique that was developed in our laboratory and which is used in this study will be explained. This shearing interferometer is used in conjunction with a 1000 frame/sec video camera. The resulting fringe patterns are evaluated to obtain information about the stress-state during initiation and propagation. The conditions for crack propagation parallel to the interface are explained. The experimental results are compared with crack trajectories predicted by finite element simulations.
NASA Astrophysics Data System (ADS)
Zhang, Xiaohan; Acharya, Amit; Walkington, Noel J.; Bielak, Jacobo
2015-11-01
We describe a model based on continuum mechanics that reduces the study of a significant class of problems of discrete dislocation dynamics to questions of the modern theory of continuum plasticity. As applications, we explore the questions of the existence of a Peierls stress in a continuum theory, dislocation annihilation, dislocation dissociation, finite-speed-of-propagation effects of elastic waves vis-a-vis dynamic dislocation fields, supersonic dislocation motion, and short-slip duration in rupture dynamics.
NASA Astrophysics Data System (ADS)
Wang, Bin; Ling, Tao; Shen, Yong; Wang, Yan; Zheng, Hairong; Li, Faqi
2012-10-01
Monitoring of Focused Ultrasound (FUS) therapy has always been a key factor for a successful therapy. Although B-mode ultrasound has long been used for monitoring FUS therapy, the gray scale changes can not precisely reflect the lesion formation inside the tissue, while MR thermometry is considered to be too expensive. In this study, elastography had been performed using a commercial ultrasound system to investigate lesions produced by FUS irradiation in vitro. Several motion detection algorithms had been performed to improve the motion detection accuracy in the elastography. The effects of different algorithms on the motion detection accuracy were compared. Experimental results on the FUS induced lesion in swine muscle were introduced. The results indicated that lesions induced by small dosage of FUS inside the tissue can be successfully detected, which has a profound clinical meaning for the monitoring of FUS therapy.
High Frame-Rate Imaging Applied to Quasi-static Elastography
NASA Astrophysics Data System (ADS)
Ramalli, Alessandro; Boni, Enrico; Basset, Olivier; Cachard, Christian; Tortoli, Piero
Ultrasound elastography is an imaging technique addressed to investigate the tissue elastic properties. In freehand elastography, the ultrasound probe is moved by the operator to compress the tissue while the echo RF-data are processed to estimate the axial strain tensor by calculating the gradient of the corresponding displacement.
Using MR Elastography to Image Force Chains in a Quasi-Static Granular Assembly
NASA Astrophysics Data System (ADS)
Sanfratello, L.; Altobelli, S. A.; Behringer, R. P.; Fukushima, E.
2008-03-01
Questions about the internal structure of dense granular assemblies remain unanswered for lack of 3D experimental data. It is known from 2D observations and from the boundaries of 3D systems that non-uniform stresses are present on container boundaries as well as at the bottom of granular piles. These forces are seen in 2D to be distributed by force chains, where most of the stress is transmitted through a small number of chains with much of the assembly transmitting little or none of the force. However, force chains have yet to be fully visualized in 3D. We propose a variation of magnetic resonance elastography (MRE) to image 3D force chains within a densely packed granular assembly. MRE is an MRI technique whereby small periodic displacements within an elastic material can be measured. Multiple bipolar motion encoding gradients incorporated into a typical pulse sequence, and applied at the frequency of mechanical oscillations, are used to detect the displacements. We have verified our MRE technique using a gel (Perma-Gel). We now extend this method to image force chains within a 3D granular assembly of particles under stress, on top of which is superimposed a small-amplitude vibration. It is our hypothesis that significant coherent displacements will be found only along force chains while most particles will move randomly. Experimental results will be presented.
Quasi-static extension of cohesive crack described by the energy partition technique
NASA Astrophysics Data System (ADS)
Amini, Behzad; Wnuk, Michael P.
1993-02-01
Nonlinear differential equation governing mode 1 fracture under small scale yielding condition has been derived on the basis of the energy partition concept. This technique is associated with a cohesive crack model. The nonlinear zone which precedes a propagating crack has been assumed to have a structured nature. In addition to this microstructural assumption, it has been postulated that the energy dissipated within the process zone (Delta), embedded in a larger nonlinear zone (R), remains invariant to the extent of crack growth. Upper and lower bounds of the tearing modulus have been related to the material ductility via closed form expressions. It has been demonstrated that the energy screening, measured by the ratio of the true fracture energy (W) to the total work expended in the cohesive zone during the process of irreversible deformation, is a monotonic function of the crack growth increment, resembling a reciprocal of the apparent material resistance to cracking described by an R-curve.
Optical position feedback of quasi-static 2D MOEMS mirrors
NASA Astrophysics Data System (ADS)
Tortschanoff, A.; Baumgart, M.; Holzmann, D.; Lenzhofer, M.; Sandner, T.; Kenda, A.
2013-05-01
Recently, we have realized a new position sensing device for MOEMS mirrors applicable to arbitrary trajectories, which is based on the measurement of a reflected light beam with a quadrant diode. In this work we present the characteristics of this device, showing first experimental results obtained with a test set-up, but also theoretical considerations and optical ray-tracing simulations.
Inelastic Deformation of Metals and Structures under Dynamic and Quasi-Static Cyclic Loading.
1983-05-01
carried out by Corum et al /4/ on thin tubes made from initially annealed 304 stainless steel under severe thermal downshocks between 11000 F and 800 0 F...strip sppecimens using a pulley apparatus to investigate the behaviour of 316 stainless steel at room and elevated temperatures. In this paper...equilibrium conditions is Afa (x) dA = c- . A where A is the cross-sectional At(P 0 0 area of the specimens and dA is the area of a bar at the relative
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Static Noise Test Protocols-In-Cab Static H... Appendix H to Part 229—Static Noise Test Protocols—In-Cab Static This appendix prescribes the procedures for the in-cab static measurements of locomotives. I. Measurement Instrumentation The...
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Static Noise Test Protocols-In-Cab Static H... Appendix H to Part 229—Static Noise Test Protocols—In-Cab Static This appendix prescribes the procedures for the in-cab static measurements of locomotives. I. Measurement Instrumentation The...
Electrical response of carbon nanotube reinforced nanocomposites under static and dynamic loading
NASA Astrophysics Data System (ADS)
Heeder, Nicholas J.
The electrical response of multi-wall carbon nanotube (MWCNT) reinforced epoxy nanocomposites under quasi-static and dynamic compressive loading is experimentally investigated. The objective of this project was to study the electrical response of CNT-reinforced nanocomposites under mechanical loading where the carbon nanotubes are used to create an internal sensory network within, capable of detecting important information such as strain and damage. Experimental techniques were developed to effectively obtain the bulk resistance change of the nanocomposite material while subjected to quasi-static and dynamic loading. A combination of shear mixing and ultrasonication was used to fabricate the low resistance nanocomposite material. The fabrication process parameters and the optimum weight fraction of MWCNTs for generating a well-dispersed percolation network were first determined. A screw-driven testing machine, a drop weight tower, and a split Hopkinson pressure bar (SHPB) apparatus were utilized to load the specimens. Absolute resistance values were measured with a high-resolution four-point probe method for both quasi-static and dynamic loading. In addition to measuring the percentage change in electrical resistance, real-time damage was captured using high-speed photography. The real-time damage was correlated to both load and percentage change in resistance profiles to better understand the electrical behavior of CNT reinforced nanocomposites under mechanical loading. The experimental findings indicate that the bulk electrical resistance of the nanocomposites, under both quasi-static and drop weight loading conditions, initially decreased between 40%--60% during compression and then increased as damage initiated and propagated. Similarly, a 65%--85% decrease in resistance was observed when the nanocomposites were subjected to SHPB loading. Damage initiation and propagation was also captured by the resistance measurements owing to the ability of the CNTs to be
Application of Strength Diagnosis.
ERIC Educational Resources Information Center
Newton, Robert U.; Dugan, Eric
2002-01-01
Discusses the various strength qualities (maximum strength, high- and low-load speed strength, reactive strength, rate of force development, and skill performance), noting why a training program design based on strength diagnosis can lead to greater efficacy and better performance gains for the athlete. Examples of tests used to assess strength…
Development of quasi-isodynamic stellarators
NASA Astrophysics Data System (ADS)
Nührenberg, Jürgen
2010-12-01
Theoretical stellarator research from MHD-stable stellarators via quasi-helically symmetric ones to Wendelstein 7-X, quasi-axisymmetric tokamaks and quasi-isodynamic stellarators is sketched. Research strategy, computational aspects and various favorable properties are emphasized. The results found, but only together with the completion of according experimental devices and their scientific exploitation, may form a basis for selecting the confinement geometry most viable for fusion.
The principal components of response strength.
Killeen, P R; Hall, S S
2001-01-01
As Skinner (1938) described it, response strength is the "state of the reflex with respect to all its static properties" (p. 15), which include response rate, latency, probability, and persistence. The relations of those measures to one another was analyzed by probabilistically reinforcing, satiating, and extinguishing pigeons' key pecking in a trials paradigm. Reinforcement was scheduled according to variable-interval, variable-ratio, and fixed-interval contingencies. Principal components analysis permitted description in terms of a single latent variable, strength, and this was validated with confirmatory factor analyses. Overall response rate was an excellent predictor of this state variable. PMID:11394483
The principal components of response strength.
Killeen, P R; Hall, S S
2001-03-01
As Skinner (1938) described it, response strength is the "state of the reflex with respect to all its static properties" (p. 15), which include response rate, latency, probability, and persistence. The relations of those measures to one another was analyzed by probabilistically reinforcing, satiating, and extinguishing pigeons' key pecking in a trials paradigm. Reinforcement was scheduled according to variable-interval, variable-ratio, and fixed-interval contingencies. Principal components analysis permitted description in terms of a single latent variable, strength, and this was validated with confirmatory factor analyses. Overall response rate was an excellent predictor of this state variable.
Correlation among proprioception, muscle strength, and balance.
Wang, Huihui; Ji, Zhongqiu; Jiang, Guiping; Liu, Weitong; Jiao, Xibian
2016-12-01
[Purpose] To study the correlation among proprioception, muscle strength, and balance. [Subjects and Methods] A balance testing system (Biodex Balance System, BBS) and an isokinetic testing system (Biodex System 4, BS4) were used to test related indexes in 24 healthy young females. [Results] With the knee joint at 15 degree flexion, proprioception was significantly correlated with Limits of Stability-Time values, and was highly significantly correlated with Limits of Stability-Overall and Athlete Single Leg Medial/Lateral values. The sense of force was significantly correlated with Limits of Stability-Overall and Athlete Single Leg-Overall values. Quadriceps strength was significantly associated with Limits of Stability-Overall, Athlete Single Leg Medial/Lateral, and Athlete Double Leg-Overall values. The ratio of Quadriceps to Hamstring strength was significantly correlated with Athlete Single Leg Medial/Lateral, and Athlete Single Leg-Overall values. With the knee joint at 45°, proprioception was highly significantly correlated with dynamic balance, and was significantly correlated with double foot support under static balance; force sense had a high correlation with Limits of Stability-Overall, but no correlation with other indexes. Quadriceps strength had a significant correlation with dynamic and static balance; the ratio of Quadriceps/Hamstring had a highly significant correlation with Limits of Stability-Overall, Athlete Single Leg-Anterior/Posterior and Athlete Single Leg-Overall. [Conclusion] At different knee angles, the correlation differs among proprioception, force sense, quadriceps strength, the Quadriceps/Hamstring ratio, and balance.
NASA Astrophysics Data System (ADS)
Long, Nicholas James
This thesis serves to develop a preliminary foundational methodology for evaluating the static complexity of future lunar oxygen production systems when extensive information is not yet available about the various systems under consideration. Evaluating static complexity, as part of a overall system complexity analysis, is an important consideration in ultimately selecting a process to be used in a lunar base. When system complexity is higher, there is generally an overall increase in risk which could impact the safety of astronauts and the economic performance of the mission. To evaluate static complexity in lunar oxygen production, static complexity is simplified and defined into its essential components. First, three essential dimensions of static complexity are investigated, including interconnective complexity, strength of connections, and complexity in variety. Then a set of methods is developed upon which to separately evaluate each dimension. Q-connectivity analysis is proposed as a means to evaluate interconnective complexity and strength of connections. The law of requisite variety originating from cybernetic theory is suggested to interpret complexity in variety. Secondly, a means to aggregate the results of each analysis is proposed to create holistic measurement for static complexity using the Single Multi-Attribute Ranking Technique (SMART). Each method of static complexity analysis and the aggregation technique is demonstrated using notional data for four lunar oxygen production processes.
Accessing ultrahigh-pressure, quasi-isentropic states of matter
Lorenz, K.T.; Edwards, M.J.; Glendinning, S.G.; Jankowski, A.F.; McNaney, J.; Pollaine, S.M.; Remington, B.A.
2005-05-15
A new approach to the study of material strength of metals at extreme pressures has been developed on the Omega laser, using a ramped plasma piston drive. The laser drives a shock through a solid plastic reservoir that unloads at the rear free surface, expands across a vacuum gap, and stagnates on the metal sample under study. This produces a gently increasing ram pressure, compressing the sample nearly isentropically. The peak pressure on the sample, inferred from interferometric measurements of velocity, can be varied by adjusting the laser energy and pulse length, gap size, and reservoir density, and obeys a simple scaling relation [J. Edwards et al., Phys. Rev. Lett. 92, 075002 (2004)]. In an important application, using in-flight x-ray radiography, the material strength of solid-state samples at high pressure can be inferred by measuring the reductions in the growth rates (stabilization) of Rayleigh-Taylor unstable interfaces. This paper reports the first attempt to use this new laser-driven, quasi-isentropic technique for determining material strength in high-pressure solids. Modulated foils of Al-6061-T6 were accelerated and compressed to peak pressures of {approx}200 kbar. Modulation growth was recorded at a series of times after peak acceleration and well into the release phase. Fits to the growth data, using a Steinberg-Guinan constitutive strength model, give yield strengths 38% greater than those given by the nominal parameters for Al-6061-T6. Calculations indicate that the dynamic enhancement to the yield strength at {approx}200 kbar is a factor of {approx}3.6x over the ambient yield strength of 2.9 kbar. Experimental designs based on this drive developed for the National Ignition Facility laser [W. Hogan, E. Moses, B. Warner, M. Sorem, and J. Soures, Nuclear Fusion 41, 567 (2001)] predict that solid-state samples can be quasi-isentropically driven to pressures an order of magnitude higher than on Omega, accessing new regimes of dense, high
Accessing ultrahigh-pressure, quasi-isentropic states of mattera)
NASA Astrophysics Data System (ADS)
Lorenz, K. T.; Edwards, M. J.; Glendinning, S. G.; Jankowski, A. F.; McNaney, J.; Pollaine, S. M.; Remington, B. A.
2005-05-01
A new approach to the study of material strength of metals at extreme pressures has been developed on the Omega laser, using a ramped plasma piston drive. The laser drives a shock through a solid plastic reservoir that unloads at the rear free surface, expands across a vacuum gap, and stagnates on the metal sample under study. This produces a gently increasing ram pressure, compressing the sample nearly isentropically. The peak pressure on the sample, inferred from interferometric measurements of velocity, can be varied by adjusting the laser energy and pulse length, gap size, and reservoir density, and obeys a simple scaling relation [J. Edwards et al., Phys. Rev. Lett. 92, 075002 (2004)]. In an important application, using in-flight x-ray radiography, the material strength of solid-state samples at high pressure can be inferred by measuring the reductions in the growth rates (stabilization) of Rayleigh-Taylor unstable interfaces. This paper reports the first attempt to use this new laser-driven, quasi-isentropic technique for determining material strength in high-pressure solids. Modulated foils of Al-6061-T6 were accelerated and compressed to peak pressures of ˜200kbar. Modulation growth was recorded at a series of times after peak acceleration and well into the release phase. Fits to the growth data, using a Steinberg-Guinan constitutive strength model, give yield strengths 38% greater than those given by the nominal parameters for Al-6061-T6. Calculations indicate that the dynamic enhancement to the yield strength at ˜200kbar is a factor of ˜3.6× over the ambient yield strength of 2.9kbar. Experimental designs based on this drive developed for the National Ignition Facility laser [W. Hogan, E. Moses, B. Warner, M. Sorem, and J. Soures, Nuclear Fusion 41, 567 (2001)] predict that solid-state samples can be quasi-isentropically driven to pressures an order of magnitude higher than on Omega, accessing new regimes of dense, high-pressure matter.
Predictors of static balance in ambulatory persons with multiple sclerosis.
Fry, Donna K; Huang, Min H; Rodda, Becky J
2016-03-01
People with multiple sclerosis (MS) experience a high rate of falls and have decreased static and dynamic balance. The purpose of this study was to determine best predictors of static standing balance, as measured by a single limb stance (SLS) timed test, in ambulatory persons with MS (PwMS) from among commonly used medical and rehabilitation clinical tests. Ambulatory PwMS participated in a single test session. Medical exam data gathered included the Function System (FS) neurologic exam and Expanded Disability Status Score (EDSS). A variety of commonly administered rehabilitation clinical tests addressing static balance, dynamic balance, gait endurance, functional lower extremity strength, abdominal and respiratory muscle strength were completed. Descriptive statistics, Pearson product moment correlations, and forward step-wise linear regressions were calculated. Twenty-eight ambulatory PwMS completed this study. Mean age was 54.74 years. Mean SLS score was 14.6 s. Pyramidal, sensory, bowel/bladder, and visual FS scores and the EDSS were significantly correlated with SLS. Maximal step length scores were significantly correlated with SLS at P less than 0.05 and the Functional Stair Test (FST) and 6-min walk test were correlated with SLS at P less than 0.10. Medical exam data EDSS and FS sensory explain 72.1% of the variance in SLS scores. Rehabilitation exam data FS sensory and FST explain 68.8% of the variance. The FS sensory, EDSS, and FST together explain 73.3% of the variance.
NASA Astrophysics Data System (ADS)
Moussessian, Alina
Quasi-optical power combiners such as quasi-optical grids provide an efficient means of combining the output power of many solid-state devices in free space. Unlike traditional power combiners no transmission lines are used, therefore, high output powers with less loss can be achieved at higher frequencies. This thesis investigates four different active antenna grids. The first investigation is into X-band High Electron Mobility Transistor (HEMT) grid amplifiers. Modelling and stability issues of these grids are discussed, and gain and power measurements are presented. A grid amplifier with a maximum efficiency of 22.5% at 10 GHz and a peak gain of 11dB is presented. The second grid is a varactor grid used as a positive feedback network for a grid amplifier to construct a tunable grid oscillator. Reflection measurements for the varactor grid show a tuning range of 1.2 GHz. The third grid is a self- complementary grid amplifier. The goal is to design a new amplifier with a unit cell structure that can be directly modelled using CAD tools. The properties of self- complementary structures are studied and used in the design of this new amplifier grid. The fourth grid is a 12 x 12 terahertz Schottky grid frequency doubler with a measured output power of 24 mW at 1 THz for 3.1-μs 500-GHz input pulses with a peak power of 47 W. A passive millimeter-wave travelling-wave antenna built on a dielectric substrate is also presented. Calculations indicate that the antenna has a gain of 15 dB with 3-dB beamwidths of 10o in the H-plane and 64o in the E-plane. Pattern measurements at 90 GHz support the theory. The antenna is expected to have an impedance in the range of 50/Omega to 80/Omega.
Water cooled static pressure probe
NASA Technical Reports Server (NTRS)
Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)
1991-01-01
An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.
Nanomechanics Model for Static Equilibrium
NASA Astrophysics Data System (ADS)
Jung, Sunghoon
2002-09-01
This study presented a computational technique to model and simulate atomistic behavior of materials under static loads, Interatomic potential energy was used to maintain equilibrium among atoms under static loads and constraints, In addition, the atomistic model was coupled with the finite element analysis model so that more flexible loads and constraints could be applied to the atomistic model A multi-scale technique was also presented for some single wall nanotubes of both zigzag and armchair and then their effective stiffness were estimated Those designed nanotubes are woven into fabric composites, which can be used in various military applications including body armored, vehicles, and infantry transportation vehicles because advanced nano- composites could be much lighter and stronger than current ones, Some example problems were presented to illustrate the developed technique for the nano-composites and SWNTs, The proposed technique for nanomechanics can be used for design and analysis of materials at the atomic or molecular level,
Static Detection of Disassembly Errors
Krishnamoorthy, Nithya; Debray, Saumya; Fligg, Alan K
2009-10-13
Static disassembly is a crucial first step in reverse engineering executable files, and there is a consider- able body of work in reverse-engineering of binaries, as well as areas such as semantics-based security anal- ysis, that assumes that the input executable has been correctly disassembled. However, disassembly errors, e.g., arising from binary obfuscations, can render this assumption invalid. This work describes a machine- learning-based approach, using decision trees, for stat- ically identifying possible errors in a static disassem- bly; such potential errors may then be examined more closely, e.g., using dynamic analyses. Experimental re- sults using a variety of input executables indicate that our approach performs well, correctly identifying most disassembly errors with relatively few false positives.
Smith, Jovanca J.; Bishop, Joseph E.
2013-11-01
This report summarizes the work performed by the graduate student Jovanca Smith during a summer internship in the summer of 2012 with the aid of mentor Joe Bishop. The projects were a two-part endeavor that focused on the use of the numerical model called the Lattice Discrete Particle Model (LDPM). The LDPM is a discrete meso-scale model currently used at Northwestern University and the ERDC to model the heterogeneous quasi-brittle material, concrete. In the first part of the project, LDPM was compared to the Karagozian and Case Concrete Model (K&C) used in Presto, an explicit dynamics finite-element code, developed at Sandia National Laboratories. In order to make this comparison, a series of quasi-static numerical experiments were performed, namely unconfined uniaxial compression tests on four varied cube specimen sizes, three-point bending notched experiments on three proportional specimen sizes, and six triaxial compression tests on a cylindrical specimen. The second part of this project focused on the application of LDPM to simulate projectile perforation on an ultra high performance concrete called CORTUF. This application illustrates the strengths of LDPM over traditional continuum models.
Three Inexpensive Static-Electricity Demonstrations.
ERIC Educational Resources Information Center
Gore, Gordon R.; Gregg, William R.
1992-01-01
Describes demonstrations to (1) construct an inexpensive static electricity detector; (2) obtain an abundant supply of either negative or positive charge using household items; and (3) create static electricity using a Tesla coil or Van de Graaff generator. (MDH)
Minimax discrimination of quasi-Bell states
Kato, Kentaro
2014-12-04
An optimal quantum measurement is considered for the so-called quasi-Bell states under the quantum minimax criterion. It is shown that the minimax-optimal POVM for the quasi-Bell states is given by its square-root measurement and is applicable to the teleportation of a superposition of two coherent states.
Quasi-Experimental Designs for Causal Inference
ERIC Educational Resources Information Center
Kim, Yongnam; Steiner, Peter
2016-01-01
When randomized experiments are infeasible, quasi-experimental designs can be exploited to evaluate causal treatment effects. The strongest quasi-experimental designs for causal inference are regression discontinuity designs, instrumental variable designs, matching and propensity score designs, and comparative interrupted time series designs. This…
Quasi-Einstein metrics on hypersurface families
NASA Astrophysics Data System (ADS)
Hall, Stuart James
2013-02-01
We construct quasi-Einstein metrics on some hypersurface families. The hypersurfaces are circle bundles over the product of Fano, Kähler-Einstein manifolds. The quasi-Einstein metrics are related to various gradient Kähler-Ricci solitons constructed by Dancer and Wang and some Hermitian, non-Kähler, Einstein metrics constructed by Wang and Wang on the same manifolds.
Static and dynamic friction in sliding colloidal monolayers
Vanossi, Andrea; Manini, Nicola; Tosatti, Erio
2012-01-01
In a pioneer experiment, Bohlein et al. realized the controlled sliding of two-dimensional colloidal crystals over laser-generated periodic or quasi-periodic potentials. Here we present realistic simulations and arguments that besides reproducing the main experimentally observed features give a first theoretical demonstration of the potential impact of colloid sliding in nanotribology. The free motion of solitons and antisolitons in the sliding of hard incommensurate crystals is contrasted with the soliton–antisoliton pair nucleation at the large static friction threshold Fs when the two lattices are commensurate and pinned. The frictional work directly extracted from particles’ velocities can be analyzed as a function of classic tribological parameters, including speed, spacing, and amplitude of the periodic potential (representing, respectively, the mismatch of the sliding interface and the corrugation, or “load”). These and other features suggestive of further experiments and insights promote colloid sliding to a unique friction study instrument. PMID:23019582
Quasi-biennial oscillation of the tropical stratospheric aerosol layer
NASA Astrophysics Data System (ADS)
Hommel, R.; Timmreck, C.; Giorgetta, M. A.; Graf, H. F.
2015-05-01
This study describes how aerosol in an aerosol-coupled climate model of the middle atmosphere is influenced by the quasi-biennial oscillation (QBO) during times when the stratosphere is largely unperturbed by volcanic material. In accordance with satellite observations, the vertical extent of the stratospheric aerosol layer in the tropics is modulated by the QBO by up to 6 km, or ~ 35% of its mean vertical extent between 100-7 hPa (about 16-33 km). Its largest vertical extent lags behind the occurrence of strongest QBO westerlies. The largest reduction lags behind maximum QBO easterlies. Strongest QBO signals in the aerosol surface area (30 %) and number densities (up to 100% e.g. in the Aitken mode) are found in regions where aerosol evaporates, that is above the 10 hPa pressure level (~ 31 km). Positive modulations are found in the QBO easterly shear, negative modulations in the westerly shear. Below 10 hPa, in regions where the aerosol mixing ratio is largest (50-20 hPa, or ~ 20-26 km), in most of the analysed parameters only moderate statistically significant QBO signatures (< 10%) have been found. QBO signatures in the model prognostic aerosol mixing ratio are significant at the 95% confidence level throughout the tropical stratosphere where modelled mixing ratios exceed 0.1 ppbm. In some regions of the tropical lower stratosphere the QBO signatures in other analysed parameters are partly not statistically significant. Peak-to-peak amplitudes of the QBO signature in the prognostic mixing ratios are up to twice as large as seasonal variations in the region where aerosols evaporate and between 70-30 hPa. Between the tropical tropopause and 70 hPa the QBO signature is relatively weak and seasonal variations dominate the variability of the simulated Junge layer. QBO effects on the upper lid of the tropical aerosol layer turn the quasi-static balance between processes maintaining the layer's vertical extent into a cyclic balance when considering this dominant mode
Quasi parton distributions and the gradient flow
Monahan, Christopher; Orginos, Kostas
2017-03-22
We propose a new approach to determining quasi parton distribution functions (PDFs) from lattice quantum chromodynamics. By incorporating the gradient flow, this method guarantees that the lattice quasi PDFs are finite in the continuum limit and evades the thorny, and as yet unresolved, issue of the renormalization of quasi PDFs on the lattice. In the limit that the flow time is much smaller than the length scale set by the nucleon momentum, the moments of the smeared quasi PDF are proportional to those of the lightfront PDF. Finally, we use this relation to derive evolution equations for the matching kernelmore » that relates the smeared quasi PDF and the light-front PDF.« less
14 CFR 31.61 - Static discharge.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static discharge. 31.61 Section 31.61... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.61 Static discharge. Unless shown not to be... gas as a lifting means to ensure that the effects of static discharges will not create a hazard....
14 CFR 31.61 - Static discharge.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static discharge. 31.61 Section 31.61... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.61 Static discharge. Unless shown not to be... gas as a lifting means to ensure that the effects of static discharges will not create a hazard....
14 CFR 31.61 - Static discharge.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static discharge. 31.61 Section 31.61... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.61 Static discharge. Unless shown not to be... gas as a lifting means to ensure that the effects of static discharges will not create a hazard....
14 CFR 31.61 - Static discharge.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static discharge. 31.61 Section 31.61... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.61 Static discharge. Unless shown not to be... gas as a lifting means to ensure that the effects of static discharges will not create a hazard....
14 CFR 31.61 - Static discharge.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static discharge. 31.61 Section 31.61... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.61 Static discharge. Unless shown not to be... gas as a lifting means to ensure that the effects of static discharges will not create a hazard....
30 CFR 18.26 - Static electricity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static electricity. 18.26 Section 18.26 Mineral... § 18.26 Static electricity. Nonmetallic rotating parts, such as belts and fans, shall be provided with a means to prevent an accumulation of static electricity....
30 CFR 18.26 - Static electricity.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Static electricity. 18.26 Section 18.26 Mineral... § 18.26 Static electricity. Nonmetallic rotating parts, such as belts and fans, shall be provided with a means to prevent an accumulation of static electricity....
30 CFR 18.26 - Static electricity.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Static electricity. 18.26 Section 18.26 Mineral... § 18.26 Static electricity. Nonmetallic rotating parts, such as belts and fans, shall be provided with a means to prevent an accumulation of static electricity....
30 CFR 18.26 - Static electricity.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Static electricity. 18.26 Section 18.26 Mineral... § 18.26 Static electricity. Nonmetallic rotating parts, such as belts and fans, shall be provided with a means to prevent an accumulation of static electricity....
30 CFR 18.26 - Static electricity.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Static electricity. 18.26 Section 18.26 Mineral... § 18.26 Static electricity. Nonmetallic rotating parts, such as belts and fans, shall be provided with a means to prevent an accumulation of static electricity....
In-Flight Pitot-Static Calibration
NASA Technical Reports Server (NTRS)
Foster, John V. (Inventor); Cunningham, Kevin (Inventor)
2016-01-01
A GPS-based pitot-static calibration system uses global output-error optimization. High data rate measurements of static and total pressure, ambient air conditions, and GPS-based ground speed measurements are used to compute pitot-static pressure errors over a range of airspeed. System identification methods rapidly compute optimal pressure error models with defined confidence intervals.
Static electric fields modify the locomotory behaviour of cockroaches.
Jackson, Christopher W; Hunt, Edmund; Sharkh, Suleiman; Newland, Philip L
2011-06-15
Static electric fields are found throughout the environment and there is growing interest in how electric fields influence insect behaviour. Here we have analysed the locomotory behaviour of cockroaches (Periplaneta americana) in response to static electric fields at levels equal to and above those found in the natural environment. Walking behaviour (including velocity, distance moved, turn angle and time spent walking) were analysed as cockroaches approached an electric field boundary in an open arena, and also when continuously exposed to an electric field. On approaching an electric field boundary, the greater the electric field strength the more likely a cockroach would be to turn away from, or be repulsed by, the electric field. Cockroaches completely exposed to electric fields showed significant changes in locomotion by covering less distance, walking slowly and turning more often. This study highlights the importance of electric fields on the normal locomotory behaviour of insects.
Effects of a static electric field on two-color photoassociation between different atoms
Chakraborty, Debashree; Deb, Bimalendu
2014-01-15
We study non-perturbative effects of a static electric field on two-color photoassociation of different atoms. A static electric field induces anisotropy in scattering between two different atoms and hybridizes field-free rotational states of heteronuclear dimers or polar molecules. In a previous paper [D. Chakraborty et al., J. Phys. B 44, 095201 (2011)], the effects of a static electric field on one-color photoassociation between different atoms has been described through field-modified ground-state scattering states, neglecting electric field effects on heteronuclear diatomic bound states. To study the effects of a static electric field on heteronuclear bound states, and the resulting influence on Raman-type two-color photoassociation between different atoms in the presence of a static electric field, we develop a non-perturbative numerical method to calculate static electric field-dressed heteronuclear bound states. We show that the static electric field induced scattering anisotropy as well as hybridization of rotational states strongly influence two-color photoassociation spectra, leading to significant enhancement in PA rate and large shift. In particular, for static electric field strengths of a few hundred kV/cm, two-color PA rate involving high-lying bound states in electronic ground-state increases by several orders of magnitude even in the weak photoassociative coupling regime.
Effect of internal nitriding on the fatigue strength of ferritic corrosion-resistant steel
NASA Astrophysics Data System (ADS)
Rogachev, S. O.; Nikulin, S. A.; Terent'ev, V. F.; Khatkevich, V. M.; Prosvirnin, D. V.; Savicheva, R. O.
2015-04-01
The effect of internal nitriding and subsequent annealing on the mechanical properties of ferritic corrosion-resistance 08Kh17T steel has been studied during static and cyclic loading. Nitriding was shown to increase the static and cyclic strength of ferritic steel substantially and to decrease its plasticity slightly. These changes are confirmed by results of fractographic studies.
Static feed water electrolysis module
NASA Technical Reports Server (NTRS)
Powell, J. D.; Schubert, F. H.; Jensen, F. C.
1974-01-01
An advanced static feed water electrolysis module (SFWEM) and associated instrumentation for generating breathable O2 was developed. The system also generates a H2 byproduct for use in an air revitalization system for O2 recovery from metabolic CO2. Special attention was given to: (1) eliminating water feed compartment degassing, (2) eliminating need for zero gravity condenser/separators, (3) increasing current density capability, and (4) providing a self contained module so that operation is independent of laboratory instrumentation and complicated startup/shutdown procedures.
NASA Astrophysics Data System (ADS)
Mo, Pinxi; Jiang, Weikang
2017-02-01
Beamforming approaches are developed to locate and quantify either static or moving acoustic sources by phased microphone array measurements. They would meet difficulties in mapping combined sources consisting of both static and moving sources. In this work, a hybrid deconvolution approach is proposed to separate static and moving single-tone sources. The approach is derived based on the source independence assumption as in the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS). The static beamforming and the moving beamforming are integrated to construct a linear matrix equation. The source distributions for the static sources and moving sources are simultaneously obtained by solving the equation. Numerical simulations and experiments were implemented on the combined sources with one static source and one rotating source. From the results, the hybrid deconvolution approach shows its effectiveness in separating the two sources, even with large source strength differences.
Static polarizability measurements and inertial sensing with nanograting atom interferometry
NASA Astrophysics Data System (ADS)
Gregoire, Maxwell D.
I used a Mach-Zehnder atom interferometer to measure the static electric-dipole polarizabilities of K, Rb, and Cs atoms with 0.11% uncertainty. Static polarizability measurements serve as benchmark tests for ab initio atomic structure calculations. Calculating atomic properties such as polarizabilities, van der Waals coefficients, state lifetimes, or oscillator strengths involves accurately calculating the valence electrons' electric-dipole transition matrix elements. Additionally, testing Cs atomic structure calculations helps interpret the results of parity non-conservation experiments, which in turn places constraints on beyond-the-standard-model physics. I discuss improvements to our experiment that allowed us to measure static polarizabilities with 0.11% uncertainty, and we present our results in the context of recent ab initio and semi-empirical static polarizabilities and recent, high-precision measurements of excited state lifetimes and van der Waals C6 coefficients. I also used our interferometer to develop a new technique for inertial sensing. High precision, portable, atom-interferometer gyroscopes and accelerometers are desirable for self-contained inertial navigation and in the future may be used for tests of General Relativity and searches for gravitational waves using satellite-mounted inertial sensors. Satellite-mounted atom interferometers are challenging to build because of size, weight, power, and reliability constraints. Atom interferometers that use nanogratings to diffract atoms are attractive for satellite-mounted inertial sensing applications because nanogratings weigh approximately nothing and require no power. We developed a new in situ measurement technique using our nanograting atom interferometer, and we used it to measure inertial forces for the benefit of our static polarizability measurements. I also review how to calculate the sensitivity of a nanograting atom interferometer, and I employed these calculations in order to design a
First arrival time surface, estimation of statics
Chun, J.H.; Jacewitz, C.A.
1983-09-05
The problem of obtaining surface consistent statics using first arrival refractions has several phases. To begin with, the first arrivals must be picked in some reasonable, consistent fashion. Next, appropriate techniques must be used to solve for surface-consistent statics. Finally, the interpreter must be provided with an evaluation of the quality of the estimated statics. First arrival refractions are part of reflection seismic data. Early seismic reflection work used first arrival refractions for weathering static corrections. With the advent of the common midpoint (CMP) method, first arrivals lost their predominance in statics to correlation techniques within CMP gathers. However, the increasing use of a large number of receivers and a small group interval has made first arrival statics more reliable. In addition, recent work has helped to revitalize interest in the use of first arrival refractions for surface-consistent static corrections.
Measurement of static pressure on aircraft
NASA Technical Reports Server (NTRS)
Gracey, William
1958-01-01
Existing data on the errors involved in the measurement of static pressure by means of static-pressure tubes and fuselage vents are presented. The errors associated with the various design features of static-pressure tubes are discussed for the condition of zero angle of attack and for the case where the tube is inclined to flow. Errors which result from variations in the configuration of static-pressure vents are also presented. Errors due to the position of a static-pressure tube in the flow field of the airplane are given for locations ahead of the fuselage nose, ahead of the wing tip, and ahead of the vertical tail fin. The errors of static-pressure vents on the fuselage of an airplane are also presented. Various methods of calibrating static-pressure installations in flight are briefly discussed.
Static Balance in Patients With Patellofemoral Pain Syndrome
Citaker, Seyit; Kaya, Defne; Yuksel, Inci; Yosmaoglu, Baran; Nyland, John; Atay, Ozgur Ahmet; Doral, Mahmut Nedim
2011-01-01
Background: The relationship between one-leg static standing balance (OLSSB) and patellofemoral pain syndrome (PFPS) is unknown. Hypothesis: OLSSB decreases in patients with PFPS. Design: Prospective case series. Methods: Fifty-two women with unilateral PFPS were enrolled in this study. OLSSB was evaluated with a stabilometer. Q angle was measured with a lengthened-arm universal goniometer. Lower extremity alignment was analyzed with full-length standing anteroposterior teleroentgenograms. Quadriceps and hamstring strength was measured on an isokinetic dynamometer. Results: There were significant differences in OLSSB, Q angle, and strength of quadriceps and hamstring between the symptomatic and asymptomatic sides. There was a correlation between the strength of the quadriceps and hamstring and OLSSB, while there was no correlation between OLSSB and the severity of pain, lower extremity alignment, and Q angle on the symptomatic side. Conclusions: OLSSB and quadriceps and hamstring strength decreased and Q angle increased on the symptomatic side in PFPS patients. A relationship between OLSSB and pain, Q angle, and lower extremity alignment was not detected, while there was a correlation between the strength of the quadriceps and hamstring and OLSSB. Clinical Relevance: A quadriceps and hamstring strengthening may be beneficial to improve OLSSB in patients with PFPS. PMID:23016053
Quasi-Periodically Driven Quantum Systems
NASA Astrophysics Data System (ADS)
Verdeny, Albert; Puig, Joaquim; Mintert, Florian
2016-10-01
Floquet theory provides rigorous foundations for the theory of periodically driven quantum systems. In the case of non-periodic driving, however, the situation is not so well understood. Here, we provide a critical review of the theoretical framework developed for quasi-periodically driven quantum systems. Although the theoretical footing is still under development, we argue that quasi-periodically driven quantum systems can be treated with generalisations of Floquet theory in suitable parameter regimes. Moreover, we provide a generalisation of the Floquet-Magnus expansion and argue that quasi-periodic driving offers a promising route for quantum simulations.
Static magnetic fields: animal studies.
Saunders, Richard
2005-01-01
Various experimental studies carried out over the last 30-40 years have examined the effects of the chronic or acute exposure of laboratory animals to static magnetic fields. Many of the earlier studies have been adequately reviewed elsewhere; few adverse effects were identified. This review focuses on studies carried out more recently, mostly those using vertebrates, particularly mammals. Four main areas of investigation have been covered, viz., nervous system and behavioural studies, cardiovascular system responses, reproduction and development, and genotoxicity and cancer. Work on the role of the natural geomagnetic field in animal orientation and migration has been omitted. Generally, the acute responses found during exposure to static fields above about 4 T are consistent with those found in volunteer studies, namely the induction of flow potentials around the heart and the development of aversive/avoidance behaviour resulting from body movement in such fields. No consistently demonstrable effects of exposure to fields of approximately 1T and above have been seen on other behavioural or cardiovascular endpoints. In addition, no adverse effects of such fields on reproduction and development or on the growth and development of tumours have been firmly established. Overall, however, far too few animal studies have been carried out to reach any firm conclusions.
Electrowetting -- from statics to dynamics.
Chen, Longquan; Bonaccurso, Elmar
2014-08-01
More than one century ago, Lippmann found that capillary forces can be effectively controlled by external electrostatic forces. As a simple example, by applying a voltage between a conducting liquid droplet and the surface it is sitting on we are able to adjust the wetting angle of the drop. Since Lippmann's findings, electrocapillary phenomena - or electrowetting - have developed into a series of tools for manipulating microdroplets on solid surfaces, or small amounts of liquids in capillaries for microfluidic applications. In this article, we briefly review some recent progress of fundamental understanding of electrowetting and address some still unsolved issues. Specifically, we focus on static and dynamic electrowetting. In static electrowetting, we discuss some basic phenomena found in DC and AC electrowetting, and some theories about the origin of contact angle saturation. In dynamic electrowetting, we introduce some studies about this rather recent area. At last, we address some other capillary phenomena governed by electrostatics and we give an outlook that might stimulate further investigations on electrowetting.
Static and dynamic analyses of tensegrity structures
NASA Astrophysics Data System (ADS)
Nishimura, Yoshitaka
Tensegrity structures are a class of truss structures consisting of a continuous set of tension members (cables) and a discrete set of compression members (bars). Since tensegrity structures are light weight and can be compactly stowed and deployed, cylindrical tensegrity modules have been proposed for space structures. From a view point of structural dynamics, tensegrity structures pose a new set of problems, i.e., initial shape finding. Initial configurations of tensegrity structures must be computed by imposing a pre-stressability condition to initial equilibrium equations. There are ample qualitative statements regarding the initial geometry of cylindrical and spherical tensegrity modules. Quantitative initial shape anlyses have only been performed on one-stage and two-stage cylindrical modules. However, analytical expressions for important geometrical parameters such as twist angles and overlap ratios lack the definition of the initial shape of both cylindrical and spherical tensegrity modules. In response to the above needs, a set of static and dynamic characterization procedures for tensegrity modules was first developed. The procedures were subsequently applied to Buckminster Fuller's spherical tensegrity modules. Both the initial shape and the corresponding pre-stress mode were analytically obtained by using the graphs of the tetrahedral, octahedral (cubic), and icosahedral (dodecahedral) groups. For pre-stressed configurations, modal analyses were conducted to classify a large number of infinitesimal mechanism modes. The procedures also applied tocyclic cylindrical tensegrity modules with an arbitrary number of stages. It was found that both the Maxwell number and the number of infinitesimal mechanism modes are independent of the number of stages in the axial direction. A reduced set of equilibrium equations was derived by incorporating cyclic symmetry and the flip, or quasi-flip, symmetry of the cylindrical modules. For multi-stage modules with more than
Static Dissipative Cable Ties, Such as for Radiation Belt Storm Probes
NASA Technical Reports Server (NTRS)
Langley, Patrick T. (Inventor); Siddique, Fazle E. (Inventor)
2015-01-01
An article, such as, but not limited to, a cable strap to wrap, support, or secure one or more wires or cables, is formed by cyclically heating and cooling and/or irradiating an article formed of a static dissipative ethylene tetrafluoroethylen (ETFE) resin, to reduce an electrical resistivity and/or to increase a tensile strength of the article.
Flexibility and Muscular Strength.
ERIC Educational Resources Information Center
Liemohn, Wendell
1988-01-01
This definition of flexibility and muscular strength also explores their roles in overall physical fitness and focuses on how increased flexibility and muscular strength can help decrease or eliminate lower back pain. (CB)
Quasi-random array imaging collimator
Fenimore, E.E.
1980-08-20
A hexagonally shaped quasi-random no-two-holes-touching imaging collimator. The quasi-random array imaging collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasing throughput by elimination of a substrate. The present invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.
Physical Strength and Performance of Moderate Duration Physical Tasks
2007-11-02
abilities from the predictive equation. Approach Structural equation modeling was applied to data from a study of steelworkers. Task... structural equation modeling to test explicit theoretical formulations. The analyses focused on two hypotheses. First, the association between static...Strength and Moderate Duration Tasks References -14- Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review
Negative effect of static stretching restored when combined with a sport specific warm-up component.
Taylor, Kristie-Lee; Sheppard, Jeremy M; Lee, Hamilton; Plummer, Norma
2009-11-01
There is substantial evidence that static stretching may inhibit performance in strength and power activities. However, most of this research has involved stretching routines dissimilar to those practiced by athletes. The purpose of this study was to evaluate whether the decline in performance normally associated with static stretching pervades when the static stretching is conducted prior to a sport specific warm-up. Thirteen netball players completed two experimental warm-up conditions. Day 1 warm-up involved a submaximal run followed by 15 min of static stretching and a netball specific skill warm-up. Day 2 followed the same design; however, the static stretching was replaced with a 15 min dynamic warm-up routine to allow for a direct comparison between the static stretching and dynamic warm-up effects. Participants performed a countermovement vertical jump and 20m sprint after the first warm-up intervention (static or dynamic) and also after the netball specific skill warm-up. The static stretching condition resulted in significantly worse performance than the dynamic warm-up in vertical jump height (-4.2%, 0.40 ES) and 20m sprint time (1.4%, 0.34 ES) (p<0.05). However, no significant differences in either performance variable were evident when the skill-based warm-up was preceded by static stretching or a dynamic warm-up routine. This suggests that the practice of a subsequent high-intensity skill based warm-up restored the differences between the two warm-up interventions. Hence, if static stretching is to be included in the warm-up period, it is recommended that a period of high-intensity sport-specific skills based activity is included prior to the on-court/field performance.
Doubles of Quasi-Quantum Groups
NASA Astrophysics Data System (ADS)
Hausser, Frank; Nill, Florian
In [Dr1] Drinfeld showed that any finite dimensional Hopf algebra extends to a quasitriangular Hopf algebra , the quantum double of . Based on the construction of a so-called diagonal crossed product developed by the authors in [HN], we generalize this result to the case of quasi-Hopf algebras . As for ordinary Hopf algebras, as a vector space the ``quasi-quantum double'' is isomorphic to , where denotes the dual of . We give explicit formulas for the product, the coproduct, the R-matrix and the antipode on and prove that they fulfill Drinfeld's axioms of a quasitriangular quasi-Hopf algebra. In particular becomes an associative algebra containing as a quasi-Hopf subalgebra. On the other hand, is not a subalgebra of unless the coproduct on is strictly coassociative. It is shown that the category of finite dimensional representations of coincides with what has been called the double category of -modules by S. Majid [M2]. Thus our construction gives a concrete realization of Majid's definition of quasi-quantum doubles in terms of a Tannaka-Krein-like reconstruction procedure. The whole construction is shown to generalize to weak quasi-Hopf algebras with now being linearly isomorphic to a subspace of $.
Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios
Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin
2015-01-01
AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension (P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension
Direct measurement of osmotic pressure via adaptive confinement of quasi hard disc colloids
NASA Astrophysics Data System (ADS)
Williams, Ian; Oğuz, Erdal C.; Bartlett, Paul; Löwen, Hartmut; Royall, C. Patrick
2013-10-01
Confining a system in a small volume profoundly alters its behaviour. Hitherto, attention has focused on static confinement where the confining wall is fixed such as in porous media. However, adaptive confinement where the wall responds to the interior has clear relevance in biological systems. Here we investigate this phenomenon with a colloidal system of quasi hard discs confined by a ring of particles trapped in holographic optical tweezers, which form a flexible elastic wall. This elasticity leads to quasi-isobaric conditions within the confined region. By measuring the displacement of the tweezed particles, we obtain the radial osmotic pressure. We further find a novel bistable state of a hexagonal structure and concentrically layered fluid mimicking the shape of the confinement. The hexagonal configurations are found at lower pressure than those of the fluid, thus the bistability is driven by the higher entropy of disordered arrangements, unlike bulk hard systems.
ERIC Educational Resources Information Center
Connaughton, Daniel; Connaughton, Angela; Poor, Linda
2001-01-01
Strength training can be fun, safe, and appropriate for young girls and women and is an important component of any fitness program when combined with appropriate cardiovascular and flexibility activities. Concerns and misconceptions regarding girls' strength training are discussed, presenting general principles of strength training for children…
ERIC Educational Resources Information Center
Halupa, Colleen M.; Caldwell, Benjamin W.
2015-01-01
This quasi-experimental research study evaluated two intact undergraduate engineering statics classes at a private university in Texas. Students in the control group received traditional lecture, readings and homework assignments. Those in the experimental group also were given access to a complete set of online video lectures and videos…
NASA Astrophysics Data System (ADS)
Cotto-Figueroa, D.; Asphaug, E. I.; Garvie, L. A. J.; Morris, M. A.; Rai, A.; Chattopadhyay, A.; Johnston, J.; Borkowski, L.
2015-12-01
Meteorites are pieces of natural space debris, which have survived ejection from their parent bodies and passage through the Earth's atmosphere. As such, they provide a unique opportunity to study the fundamental physical and mechanical properties of early Solar System materials. But to date, few direct studies of physical properties have been conducted on meteoritic materials, in contrast to extensive chemical and isotopic analyses. It is important to determine these properties as they are related to disruption and fragmentation of bolides and asteroids, and activities related to sample return and hazardous asteroid mitigation. Here we present results from an ongoing suite of scale-dependent studies of meteorite strength and fragmentation. The meteorites studied are Tamdakht (H5), an ordinary chondrite that exhibits a heterogeneous structure criss-crossed with shock veins and centimeter-sized regions of white and light grey, and the carbonaceous chondrite Allende (CV3), which suitable pieces are light grey with abundant chondrules and CAIs. Uniaxial compression tests are performed on meteorite cubes ranging from 0.5 to 4 centimeters using an Instron 5985 frame with a 250 kN load cell and compression fixtures with 145mm diameter radial platens. All tests are conducted at room temperature and in displacement control with a displacement rate of 0.25 mm per minute to ensure quasi-static conditions. A three-dimensional digital image correlation (DIC) system that enables noncontact measurement of displacement and strain fields is also used. Analysis of the strength and failure process of the two meteorite types is conducted and compared to terrestrial materials.
Changes in the stiffness, strength, and toughness of human cortical bone with age.
Zioupos, P; Currey, J D
1998-01-01
Aging adversely affects the elastic and ultimate properties of human cortical bone as seen in uniaxial tests in quasi static loading, high strain rate impact or fatigue. Little is known about the full effects of aging on toughness and its relationship with strength. In the present article the elastic modulus (E), strength (sigma f), fracture toughness (KC and J-integral), and work of fracture (Wf) were determined in specimens of male human femoral bone aged between 35-92 years. In this way we investigated whether fracture of bone in three situations, allowing various amounts of damage prior to fracture, can provide a better insight into the fracture process and also the relative importance of these experimental methods for assessing the soundness of bone material. We found a steady and significant decrease with age for all these mechanical measures. E fell by 2.3%, from its value of 15.2 GPa at 35 years of age, per decade of later life; sigma f fell similarly from 170 MPa by 3.7%; KC from 6.4 MPa m1/2 by 4.1%; J-integral from 1.2 kJ m-2 by 3%, and the Wf from 3.4 kJ m-2 by 8.7%. In aging bone there was a deterioration in the elastic properties of the material. This reduced the (elastically calculated) critical stress intensity level (KC) required to initiate a macrocrack, or the nonlinear energy associated with the onset of fracture (J). The macrocrack was preceded by less damage, and once created needed less energy to drive through the tissue (Wf).
Static latching arrangement and method
Morrison, Larry
1988-01-01
A latching assembly for use in latching a cable to and unlatching it from a given object in order to move an object from one location to another is disclosed herein. This assembly includes a weighted sphere mounted to one end of a cable so as to rotate about a specific diameter of the sphere. The assembly also includes a static latch adapted for connection with the object to be moved. This latch includes an internal latching cavity for containing the sphere in a latching condition and a series of surfaces and openings which cooperate with the sphere in order to move the sphere into and out of the latching cavity and thereby connect the cable to and disconnect it from the latch without using any moving parts on the latch itself.
NASA Technical Reports Server (NTRS)
Carson, William; Lindemuth, Kathleen; Mich, John; White, K. Preston; Parker, Peter A.
2009-01-01
Probabilistic engineering design enhances safety and reduces costs by incorporating risk assessment directly into the design process. In this paper, we assess the format of the quantitative metrics for the vehicle which will replace the Space Shuttle, the Ares I rocket. Specifically, we address the metrics for in-flight measurement error in the vector position of the motor nozzle, dictated by limits on guidance, navigation, and control systems. Analyses include the propagation of error from measured to derived parameters, the time-series of dwell points for the duty cycle during static tests, and commanded versus achieved yaw angle during tests. Based on these analyses, we recommend a probabilistic template for specifying the maximum error in angular displacement and radial offset for the nozzle-position vector. Criteria for evaluating individual tests and risky decisions also are developed.
Free Breathing Static Dehumidification Systems.
1987-01-01
1?336 FREE NNERTHIN STATIC DMIDIFICATIOU SYS*kNS(U) RJR In__ FORME PRCKRGING EVJRTIN ROENCY WIIT-RTTERMO WD ON S A M~Y Jfh 97 DST -7-R-1 LOL lSSFFI...0 . LiW- M -. ’*5 iq - a . L O 37 Figure 12. Field Layout at SM-ALC/ DST , McClellan AFB CA .tr 4j w, I , D 4.- 4, 4J 4) :3 4j CCD ko LL o. 0.U UU -4 4...USAeLE11 I Wash DC 20330 HQ Ar’SC/LG’ I O)C-ALC/ DST Tinker Ar’B OK 73145 U0-ALC/ OST 1 Hill AFB UT 84406 SA-ALC/ DST i I. Kelly AeBN TIX 78241 SM-ALC
Alloy with metallic glass and quasi-crystalline properties
Xing, Li-Qian; Hufnagel, Todd C.; Ramesh, Kaliat T.
2004-02-17
An alloy is described that is capable of forming a metallic glass at moderate cooling rates and exhibits large plastic flow at ambient temperature. Preferably, the alloy has a composition of (Zr, Hf).sub.a Ta.sub.b Ti.sub.c Cu.sub.d Ni.sub.e Al.sub.f, where the composition ranges (in atomic percent) are 45.ltoreq.a.ltoreq.70, 3.ltoreq.b.ltoreq.7.5, 0.ltoreq.c.ltoreq.4, 3.ltoreq.b+c.ltoreq.10, 10.ltoreq.d.ltoreq.30, 0.ltoreq.e.ltoreq.20, 10.ltoreq.d+e.ltoreq.35, and 5.ltoreq.f.ltoreq.15. The alloy may be cast into a bulk solid with disordered atomic-scale structure, i.e., a metallic glass, by a variety of techniques including copper mold die casting and planar flow casting. The as-cast amorphous solid has good ductility while retaining all of the characteristic features of known metallic glasses, including a distinct glass transition, a supercooled liquid region, and an absence of long-range atomic order. The alloy may be used to form a composite structure including quasi-crystals embedded in an amorphous matrix. Such a composite quasi-crystalline structure has much higher mechanical strength than a crystalline structure.
Static deformation of space elevator tether due to climber
NASA Astrophysics Data System (ADS)
Cohen, Stephen; Misra, Arun K.
2015-06-01
As higher strength to density ratio materials become available, the construction of a space elevator on Earth becomes more plausible. Though many fundamental aspects of the mechanical behaviour of a space elevator have been previously analysed, several details have not been rigorously explored. This paper examines the deformation of the tether from its nominal state when it is loaded with a climber at any altitude. Using an assumed modes numerical approach, the equilibrium conditions governing the static deformation of the elevator tether are derived, taking into account the presence of a climber. These discretised equations are solved numerically to determine the static deformation of the tether. A spectrum of statically deformed tether profiles is presented. Strain, stress and tension profiles are also computed and discussed. In general, when a climber is present below GEO, the extension (and stress) of the portion of tether below it is reduced and that above it is largely unaffected. When a climber is present above GEO, the extension (and stress) of the portion of tether below it is increased (that above it remains largely unaffected). Finally, the absolute displacement of the apex anchor (counterweight) is plotted against climber locations.
Superattraction mediated by quantum fluctuations of plasmon quasi-continuum.
Andrianov, E S; Chtchelkatchev, N M; Pukhov, A A
2015-05-01
We investigate the force between a plasmonic nanoparticle and a highly excited two-level system (molecule). Usually van der Waals' force between nanoscale electrically neutral systems is monotonic and attractive at moderate and larger distances and repulsive at small distances. In our system, the van der Waals' force acting on a molecule has a quantum-optical nature. At moderate distances it is attractive as usual but its strength highly increases in narrow distance ranges (lacunas). We show that quantum fluctuations of quasi-continuum of multipole plasmons of high, nearly infinite degree, altogether form an effective environment and determine the interaction force while their spectral peculiarities stand behind the large and narrow lacunas in force. We exactly solve the Hamiltonian problem and discuss the role of the dissipation.
NASA Astrophysics Data System (ADS)
Hsieh, Chih-Yung; Chen, Shu-Hsia
2003-11-01
We report a new electrically switching bistable chiral quasi-homeotropic liquid crystal device with low driving voltage. This device is operated from the initial twisted-homeotropic state to either +90° or -270° twisted static state showing dark and bright transmittances, respectively, using different switching processes. The critical applied voltage to achieve the switching bistability of our device is only 4.3 V, which is approximately twice its threshold voltage for Freedericksz transition. In addition, the switching characteristics of this device with different driving waveforms are also investigated in this paper.
NASA Technical Reports Server (NTRS)
Badler, N. I.; Lee, P.; Wong, S.
1985-01-01
Strength modeling is a complex and multi-dimensional issue. There are numerous parameters to the problem of characterizing human strength, most notably: (1) position and orientation of body joints; (2) isometric versus dynamic strength; (3) effector force versus joint torque; (4) instantaneous versus steady force; (5) active force versus reactive force; (6) presence or absence of gravity; (7) body somatotype and composition; (8) body (segment) masses; (9) muscle group envolvement; (10) muscle size; (11) fatigue; and (12) practice (training) or familiarity. In surveying the available literature on strength measurement and modeling an attempt was made to examine as many of these parameters as possible. The conclusions reached at this point toward the feasibility of implementing computationally reasonable human strength models. The assessment of accuracy of any model against a specific individual, however, will probably not be possible on any realistic scale. Taken statistically, strength modeling may be an effective tool for general questions of task feasibility and strength requirements.
Correlation among proprioception, muscle strength, and balance
Wang, Huihui; Ji, Zhongqiu; Jiang, Guiping; Liu, Weitong; Jiao, Xibian
2016-01-01
[Purpose] To study the correlation among proprioception, muscle strength, and balance. [Subjects and Methods] A balance testing system (Biodex Balance System, BBS) and an isokinetic testing system (Biodex System 4, BS4) were used to test related indexes in 24 healthy young females. [Results] With the knee joint at 15 degree flexion, proprioception was significantly correlated with Limits of Stability-Time values, and was highly significantly correlated with Limits of Stability-Overall and Athlete Single Leg Medial/Lateral values. The sense of force was significantly correlated with Limits of Stability-Overall and Athlete Single Leg-Overall values. Quadriceps strength was significantly associated with Limits of Stability-Overall, Athlete Single Leg Medial/Lateral, and Athlete Double Leg-Overall values. The ratio of Quadriceps to Hamstring strength was significantly correlated with Athlete Single Leg Medial/Lateral, and Athlete Single Leg-Overall values. With the knee joint at 45°, proprioception was highly significantly correlated with dynamic balance, and was significantly correlated with double foot support under static balance; force sense had a high correlation with Limits of Stability-Overall, but no correlation with other indexes. Quadriceps strength had a significant correlation with dynamic and static balance; the ratio of Quadriceps/Hamstring had a highly significant correlation with Limits of Stability-Overall, Athlete Single Leg-Anterior/Posterior and Athlete Single Leg-Overall. [Conclusion] At different knee angles, the correlation differs among proprioception, force sense, quadriceps strength, the Quadriceps/Hamstring ratio, and balance. PMID:28174475
Shear strength of metal - SiO2 contacts
NASA Technical Reports Server (NTRS)
Pepper, S. V.
1978-01-01
The strength of the bond between metals and SiO2 was studied by measuring the static coefficient of friction of metals contacting alpha-quartz in ultrahigh vacuum. It was found that copper with either chemisorbed oxygen, nitrogen, or sulphur exhibited higher contact strength on stoichiometric SiO2 than did clean copper. Since the surface density of states induced by these species on copper is similar, it appears that the strength of the interfacial bond can be related to the density of states on the metal surface.
Coagulation of grains in static and collapsing protostellar clouds
NASA Technical Reports Server (NTRS)
Weidenschilling, S. J.; Ruzmaikina, T. V.
1994-01-01
We simulate collisional evolution of grains in dense turbulent molecular cloud cores (or Bok globules) in static equilibrium and free-fall collapse, assuming spherical symmetry. Relative velocities are due to thermal motions, differential settling, and turbulence, with the latter dominant for sonic turbulence with an assumed Kolmogorov spectrum. Realistic criteria are used to determine outcomes of collisions (coagulation vs. destruction) as functions of particle size and velocity. Results are presented for a variety of cloud parameters (radial density profile, turbulent velocity) and particle properties (density, impact strength). Results are sensitive to the assumed mechanical properties (density and impact strength) of grain aggregates. Particle growth is enhanced if aggregates have low density or fractal structures. On a timescale of a few Myr, an initial population of 0.1 micrometers grains may produce dense compact particles approximately 1 micrometer in size, or fluffy aggregates approximately 100 micrometers. For impact strengths less than or equal to 10(exp 6) ergs/g, a steady state is reached between coagulation of small grains and collisional disruption of larger aggregates. Formation of macroscopic aggregates requires high mechanical strengths and low aggregate densities. We assume sonic turbulence during collapse, with varied eddy size scales determining the dissipation rate or turbulence strength. The degree of collisional evolution during collapse is sensitive to the assumed small-scale structure (inner sc ale) of the turbulence. Weak turbulence results in few collisions and preserves the precollapse particle size distribution with little change. Strong turbulence tends to produce net destruction, rather than particle growth, during infall, unless inpact strengths are greater than 10(exp 6)ergs/g.
Performance Optimization of Self-Piercing Rivets through Analytical Rivet Strength Estimation
Sun, Xin; Khaleel, Mohammad A.
2005-08-01
This paper presents the authors' work on strength optimization and failure mode prediction of self-piercing rivets (SPR) for automotive applications. The limit load-based strength estimator is used to estimate the static strength of an SPR under cross tension loading configuration. Failure modes associated with the estimated failure strength are also predicted. Experimental strength and failure mode observations are used to validate the model. It is shown that the strength of an SPR joint depends on the material and gage combinations, rivet design, die design and riveting direction. The rivet strength estimator is then used to optimize the rivet strength by comparing the measured rivet strength and failure mode with the predicted ones. Two illustrative examples are used in which rivet strength is optimized by changing rivet design and riveting direction from the original manufacturing parameters.
The analemma criterion: accidental quasi-satellites are indeed true quasi-satellites
NASA Astrophysics Data System (ADS)
de la Fuente Marcos, C.; de la Fuente Marcos, R.
2016-11-01
In the Solar system, a quasi-satellite is an object that follows a heliocentric path with an orbital period that matches almost exactly with that of a host body (planetary or not). The trajectory is of such nature that, without being gravitationally attached, the value of the angular separation between host and quasi-satellite as seen from the Sun remains confined within relatively narrow limits for time-spans that exceed the length of the host's sidereal orbital period. Here, we show that under these conditions, a quasi-satellite traces an analemma in the sky as observed from the host in a manner similar to that found for geosynchronous orbits. The analemmatic curve (figure-eight-, teardrop-, ellipse-shaped) results from the interplay between the tilt of the rotational axis of the host and the properties of the orbit of the quasi-satellite. The analemma criterion can be applied to identify true quasi-satellite dynamical behaviour using observational or synthetic astrometry and it is tested for several well-documented quasi-satellites. For the particular case of 15810 (1994 JR1), a putative accidental quasi-satellite of dwarf planet Pluto, we show explicitly that this object describes a complex analemmatic curve for several Plutonian sidereal periods, confirming its transient quasi-satellite status.
Quasi-idempotent Rota-Baxter operators arising from quasi-idempotent elements
NASA Astrophysics Data System (ADS)
Jian, Run-Qiang
2017-02-01
In this short note, we construct quasi-idempotent Rota-Baxter operators by quasi-idempotent elements and show that every finite dimensional Hopf algebra admits nontrivial Rota-Baxter algebra structures and tridendriform algebra structures. Several concrete examples are provided, including finite quantum groups and Iwahori-Hecke algebras.
Contribution of Hydrogen Bonds to Paper Strength Properties
Przybysz, Piotr; Dubowik, Marcin; Kucner, Marta Anna; Przybysz, Kazimierz; Przybysz Buzała, Kamila
2016-01-01
The objective of this work was to investigate the influence of hydrogen bonds between fibres on static and dynamic strength properties of paper. A commercial bleached pinewood kraft pulp was soaked in water, refined in a PFI, and used to form paper webs in different solvents, such as water, methanol, ethanol, n-propanol and n-butanol, to determine the effect of their dipole moment on static and dynamic strength properties of resulting paper sheets. Paper which was formed in water, being the solvent of the highest dipole moment among the tested ones, showed the highest breaking length and tear resistance. When paper webs were formed in n-butanol, which was the least polar among the solvents, these parameters were reduced by around 75%. These results provide evidence of the importance of water in paper web formation and strong impact of hydrogen bonds between fibres on strength properties of paper. PMID:27228172
Compression Strength of Composite Primary Structural Components
NASA Technical Reports Server (NTRS)
Johnson, Eric R.
1998-01-01
Research conducted under NASA Grant NAG-1-537 focussed on the response and failure of advanced composite material structures for application to aircraft. Both experimental and analytical methods were utilized to study the fundamental mechanics of the response and failure of selected structural components subjected to quasi-static loads. Most of the structural components studied were thin-walled elements subject to compression, such that they exhibited buckling and postbuckling responses prior to catastrophic failure. Consequently, the analyses were geometrically nonlinear. Structural components studied were dropped-ply laminated plates, stiffener crippling, pressure pillowing of orthogonally stiffened cylindrical shells, axisymmetric response of pressure domes, and the static crush of semi-circular frames. Failure of these components motivated analytical studies on an interlaminar stress postprocessor for plate and shell finite element computer codes, and global/local modeling strategies in finite element modeling. These activities are summarized in the following section. References to literature published under the grant are listed on pages 5 to 10 by a letter followed by a number under the categories of journal publications, conference publications, presentations, and reports. These references are indicated in the text by their letter and number as a superscript.
Quasi-kernel polynomials and convergence results for quasi-minimal residual iterations
NASA Technical Reports Server (NTRS)
Freund, Roland W.
1992-01-01
Recently, Freund and Nachtigal have proposed a novel polynominal-based iteration, the quasi-minimal residual algorithm (QMR), for solving general nonsingular non-Hermitian linear systems. Motivated by the QMR method, we have introduced the general concept of quasi-kernel polynomials, and we have shown that the QMR algorithm is based on a particular instance of quasi-kernel polynomials. In this paper, we continue our study of quasi-kernel polynomials. In particular, we derive bounds for the norms of quasi-kernel polynomials. These results are then applied to obtain convergence theorems both for the QMR method and for a transpose-free variant of QMR, the TFQMR algorithm.
NASA Technical Reports Server (NTRS)
Krueger, Ronald
2012-01-01
The application of benchmark examples for the assessment of quasi-static delamination propagation capabilities is demonstrated for ANSYS. The examples are independent of the analysis software used and allow the assessment of the automated delamination propagation in commercial finite element codes based on the virtual crack closure technique (VCCT). The examples selected are based on two-dimensional finite element models of Double Cantilever Beam (DCB), End-Notched Flexure (ENF), Mixed-Mode Bending (MMB) and Single Leg Bending (SLB) specimens. First, the quasi-static benchmark examples were recreated for each specimen using the current implementation of VCCT in ANSYS . Second, the delamination was allowed to propagate under quasi-static loading from its initial location using the automated procedure implemented in the finite element software. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Overall the results are encouraging, but further assessment for three-dimensional solid models is required.
The Neglect of Monotone Comparative Statics Methods
ERIC Educational Resources Information Center
Tremblay, Carol Horton; Tremblay, Victor J.
2010-01-01
Monotone methods enable comparative static analysis without the restrictive assumptions of the implicit-function theorem. Ease of use and flexibility in solving comparative static and game-theory problems have made monotone methods popular in the economics literature and in graduate courses, but they are still absent from undergraduate…
Frictional strength of wet- and dry- talc gouge in high-velocity shear experiments
NASA Astrophysics Data System (ADS)
Chen, X.; Reches, Z.; Elwood Madden, A. S.
2015-12-01
The strength of the creeping segment of the San Andres fault may be controlled by the distinct weakness and stability of talc (Moore & Rymer, 2007). We analyze talc frictional strength at high slip-velocity of 0.002 - 0.66 m/s, long slip-distances of 0.01 m to 33 m, and normal stresses up to 4.1 MPa. This analysis bridges the gap between nucleation stage of low velocity/distance, and the frictional behavior during large earthquakes. We tested wet and dry samples of pure talc gouge in a confined rotary cell, and continuously monitored the slip-velocity, stresses, dilation and temperature. We run 29 experiments of single and stepped velocities to obtain 243 values of quasi-static frictional coefficients. Dry talc gouge showed distinct slip-strengthening: friction coefficient of µ ~0.4 at short slip-distances of D < 0.1 m, and it increased systematically to µ ~0.8 at slip-distances of D = 0.1- 1 m; at D > 1 m, the frictional strength saturated at µ= 0.8 - 1 level. Wet talc gouge (16-20% water) displayed low frictional strength of µ= 0.1-0.3, in agreement with published triaxial tests. The stepped-velocity runs revealed a consistent velocity-strengthening trend. For a velocity jump from V1 to V2, we used VD = (µ2 -µ1)/ln (V2/V1), and found that on average VD = 0.06 and 0.03 for dry and wet talc, respectively, and for slip distances shorter than 1 m. Microstructural analysis of post-shearing wet talc gouge revealed extreme slip localization to a principal-slip-zone of a few microns, and significant shear compaction of 10-30%. In contrast, dry talc gouge exhibited distributed shear in a wide zone and systematic shear dilation (10-50%). We propose slip along weak interlayer talc plates and thermal-pressurization as the possible weakening mechanisms for wet talc. The development of distributed secondary fault network along with substantial grain crushing is responsible for slip-strengthening in dry condition. Fig. 1. Friction maps of talc gouge as function of slip
Statical longitudinal stability of airplanes
NASA Technical Reports Server (NTRS)
Warner, Edward P
1921-01-01
This report, which is a continuation of the "Preliminary report on free flight testing" (report no. NACA-TR-70), presents a detailed theoretical analysis of statical stability with free and locked controls and also the results of many free flight test on several types of airplanes. In developing the theory of stability with locked controls an expression for pitching moment is derived in simple terms by considering the total moment as the sum of the moments due to wings and tail surface. This expression, when differentiated with respect to angle of incidence, enables an analysis to be made of the factors contributing to the pitching moment. The effects of slipstream and down wash are also considered and it is concluded that the C. G. Location has but slight effect or stability, and that stability is much improved by increasing the efficiency of the tail surfaces, which may be done by using an "inverted" tail plane. The results of free flight tests with locked controls are discussed at length and it is shown that the agreement between the experimental results and theory is very satisfactory. The theory of stability with free controls is not amendable to the simple mathematical treatment used in the case of locked controls, but a clear statement of the conditions enables several conclusions to be drawn, one of which is that the fixed tail surfaces should be much larger than the movable surfaces.
Static pressure seal of earmolds.
Macrae, J
1990-01-01
Four experiments were carried out to investigate the effect on the static pressure seal of earmolds made from currently used impression and earmold materials; the occasional practice of making more than one earmold from an impression; the earmoldmaker buildup of impressions; and the multistage buildup of impressions by the impression taker. Experiment 1 showed that the chance of sealing the ear with earmolds made by the ordinary two-stage technique with only general buildup of the impression was approximately 10 percent and that none of the impression or earmold materials significantly improved the chance of obtaining a seal. Experiment 2 showed that the chance of obtaining a seal with multiple earmolds made from the one impression was zero, or very close to zero. Experiment 3 revealed that the chance of obtaining a seal increased to 55 percent when the earmold was made from an impression which was specially built up by the earmoldmaker. Experiment 4 showed that the chance of sealing the ear with earmolds made from multistage impressions was significantly greater (87.5 percent) than sealing the ear with those made from impressions specially built up by the earmoldmaker.
Alumina fiber strength improvement
NASA Technical Reports Server (NTRS)
Pepper, R. T.; Nelson, D. C.
1982-01-01
The effective fiber strength of alumina fibers in an aluminum composite was increased to 173,000 psi. A high temperature heat treatment, combined with a glassy carbon surface coating, was used to prevent degradation and improve fiber tensile strength. Attempts to achieve chemical strengthening of the alumina fiber by chromium oxide and boron oxide coatings proved unsuccessful. A major problem encountered on the program was the low and inconsistent strength of the Dupont Fiber FP used for the investigation.
Heinrich, Angela; Szostek, Anne; Meyer, Patric; Reinhard, Iris; Gilles, Maria; Paslakis, Georgios; Rauschenberg, Jaane; Gröbner, Jens; Semmler, Wolfhard; Deuschle, Michael; Meyer-Lindenberg, Andreas; Flor, Herta; Nees, Frauke
2014-10-01
Increasing field strengths in MRI necessitate the examination of potential side effects. Previously reported results have been contradictory, possibly caused by imbalanced samples. We aimed to examine whether special groups of people are more prone to develop side effects that might have led to contradictory results in previous studies. We examined the occurrence of sensory side effects in static magnetic fields of MRI scanners of 1.5, 3, and 7 T and a mock scanner in 41 healthy participants. The contribution of field strength, sex, age, and attention to bodily processes, and stress hormone levels to the sensation of dizziness was examined in separate univariate analyses and in a joint analysis that included all variables. Field strength and sex were significant factors in the joint analysis (P=0.001), with women being more strongly affected than men by dizziness in higher static magnetic fields. This effect was not mediated by the other variables such as attention to bodily symptoms or stress hormones. Further research needs to elucidate the underlying factors of increased dizziness in women in static magnetic fields in MRI. We hypothesize that imbalanced samples of earlier studies might be one reason for previous contradictory results on the side effects of static magnetic fields.
NASA Technical Reports Server (NTRS)
Snider, H. L.; Reeder, F. L.; Dirkin, W. J.
1972-01-01
Fourteen C-130 airplane center wings, each containing service-imposed fatigue damage resulting from 4000 to 13,000 accumulated flight hours, were tested to determine their fatigue crack propagation and static residual strength characteristics. Eight wings were subjected to a two-step constant amplitude fatigue test prior to static testing. Cracks up to 30 inches long were generated in these tests. Residual static strengths of these wings ranged from 56 to 87 percent of limit load. The remaining six wings containing cracks up to 4 inches long were statically tested as received from field service. Residual static strengths of these wings ranged from 98 to 117 percent of limit load. Damage-tolerant structural design features such as fastener holes, stringers, doublers around door cutouts, and spanwise panel splices proved to be effective in retarding crack propagation.