Sample records for quasi-optical sis mixer

  1. Quasi-Optical SIS Mixer Development

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1997-01-01

    This grant supported our ongoing development of sensitive quasi-optical SIS mixers for the submillimeter band. The technology developed under this grant is now being applied to NASA missions, including the NASA/USRA SOFIA airborne observatory and and the ESA/NASA FIRST/Herschel space astronomy mission.

  2. A Dual Polarized Quasi-Optical SIS Mixer at 550-GHz

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Miller, David; LeDuc, Henry G.; Zmuidzinas, Jonas

    2000-01-01

    We describe the design, fabrication, and the performance of a low-noise dual-polarized quasi-optical superconductor insulator superconductor (SIS) mixer at 550 GHz. The mixer utilizes a novel cross-slot antenna on a hyperhemispherical substrate lens, two junction tuning circuits, niobium trilayer junctions, and an IF circuit containing a lumped element 180 deg hybrid. The antenna consists of an orthogonal pair of twin-slot antennas, and has four feed points, two for each polarization. Each feed point is coupled to a two-junction SIS mixer. The 180 deg IF hybrid is implemented using a lumped element/microstrip circuit located inside the mixer block. Fourier transform spectrometer (FTS) measurements of the mixer frequency response show good agreement with computer simulations. The measured co-polarized and cross-polarized patterns for both polarizations also agree with the theoretical predictions. The noise performance of the dual-polarized mixer is excellent, giving uncorrected receiver noise temperature of better than 115 K (DSB) at 528 GHz for both the polarizations.

  3. Low-noise SIS mixer for far-infrared radio astronomy

    NASA Astrophysics Data System (ADS)

    Karpov, Alexandre; Miller, David; Rice, Frank R.; Stern, Jeffrey A.; Bumble, Bruce; LeDuc, Henry G.; Zmuidzinas, Jonas

    2004-10-01

    We present a low noise SIS mixer developed for the 1.2 THz band of the heterodyne spectrometer of the Herschel Space Observatory. With the launch of the Herschel SO in 2007, this device will be among the first SIS mixers flown in space. This SIS mixer has a quasi-optical design, with a double slot planar antenna and an extended spherical lens made of pure Si. The SIS junctions are Nb/AlN/NbTiN with a critical current density of about 30 KA/cm2 and with the junction area of a quarter of a micron square. Our mixer circuit uses two SIS junctions biased in parallel. To improve the simultaneous suppression of the Josephson current in each of them, we use diamond-shaped junctions. A low loss Nb/Au micro-strip transmission line is used for the first time in the mixer circuit well above the gap frequency of Nb. The minimum uncorrected Double Sideband receiver noise is 550 K (Y=1.34). The minimum receiver noise corrected for the local oscillator beam splitter and for the cryostat window is 340 K, about 6 hv/k, the lowest value achieved thus far in the THz frequencies range.

  4. Embedding impedance approximations in the analysis of SIS mixers

    NASA Technical Reports Server (NTRS)

    Kerr, A. R.; Pan, S.-K.; Withington, S.

    1992-01-01

    Future millimeter-wave radio astronomy instruments will use arrays of many SIS receivers, either as focal plane arrays on individual radio telescopes, or as individual receivers on the many antennas of radio interferometers. Such applications will require broadband integrated mixers without mechanical tuners. To produce such mixers, it will be necessary to improve present mixer design techniques, most of which use the three-frequency approximation to Tucker's quantum mixer theory. This paper examines the adequacy of three approximations to Tucker's theory: (1) the usual three-frequency approximation which assumes a sinusoidal LO voltage at the junction, and a short-circuit at all frequencies above the upper sideband; (2) a five-frequency approximation which allows two LO voltage harmonics and five small-signal sidebands; and (3) a quasi five-frequency approximation in which five small-signal sidebands are allowed, but the LO voltage is assumed sinusoidal. These are compared with a full harmonic-Newton solution of Tucker's equations, including eight LO harmonics and their corresponding sidebands, for realistic SIS mixer circuits. It is shown that the accuracy of the three approximations depends strongly on the value of omega R(sub N)C for the SIS junctions used. For large omega R(sub N)C, all three approximations approach the eight-harmonic solution. For omega R(sub N)C values in the range 0.5 to 10, the range of most practical interest, the quasi five-frequency approximation is a considerable improvement over the three-frequency approximation, and should be suitable for much design work. For the realistic SIS mixers considered here, the five-frequency approximation gives results very close to those of the eight-harmonic solution. Use of these approximations, where appropriate, considerably reduces the computational effort needed to analyze an SIS mixer, and allows the design and optimization of mixers using a personal computer.

  5. Optimization of SIS mixer elements

    NASA Technical Reports Server (NTRS)

    Mattauch, Robert J.

    1985-01-01

    Superconductor-Insulator-Superconductor (SIS) quantum mixers provide an approach to millimeter wave mixing - potentially offering conversion gain, a low local oscillator power demand, and potential mixer noise temperatures near the quantum limit. The development of a reliable fabrication technology for producing such high quality SIS devices for mixer applications in radio astronomy is the focus of the work.

  6. A low-noise double-dipole antenna SIS mixer at 1 THz

    NASA Astrophysics Data System (ADS)

    Shitov, S. V.; Jackson, B. D.; Baryshev, A. M.; Markov, A. V.; Iosad, N. N.; Gao, J.-R.; Klapwijk, T. M.

    2002-08-01

    A quasi-optical mixer employing a Nb/Al/AlO x/Nb twin-SIS junction with a NbTiN/SiO 2/Al microstrip coupling circuit is tested at 800-1000 GHz. The receiver noise temperature TRX=250 K (DSB) is measured at 935 GHz for the bath temperature 2 K at IF=1.5 GHz; TRX remains below 350 K within the frequency range 850-1000 GHz. The integrated lens-antenna demonstrated good beam symmetry with sidelobes below -16 dB.

  7. Low-Loss NbTiN Films for THz SIS Mixer Tuning Circuits

    NASA Technical Reports Server (NTRS)

    Kooi, J. W.; Stern, J. A.; Chattopadhyay, G.; LeDuc, H. G.; Bumble, B.; Zmuidzinas, J.

    1998-01-01

    Recent results at 1 THz using normal-metal tuning circuits have shown that SIS mixers can work well up to twice the gap frequency of the junction material (niobium). However, the performance at 1 THz is limited by the substantial loss in the normal metal films. For better performance superconducting films with a higher gap frequency than niobium and with low RF loss are needed. Niobium nitride has long been considered a good candidate material, but typical NbN films suffer from high RF loss. To circumvent this problem we are currently investigating the RF loss in NbTiN films, a 15 K Tc compound superconductor, by incorporating them into quasi-optical slot antenna SIS devices.

  8. Low Noise 1.2 THz SIS Receiver

    NASA Technical Reports Server (NTRS)

    Karpov, A.; Miller, D.; Rice, F.; Zmuidzinas, J.; Stern, J. A.; Bumble, B.; LeDuc, H. G.

    2001-01-01

    We present the development of a low noise superconductor insulator superconductor (SIS) mixer for the 1.1 - 1.25 THz heterodyne receiver of FIRST space radiotelescope. The quasi-optical SIS mixer has two NbTiN/AlN/Nb junctions with critical current density 30 kA/sq cm. The individual junction area is close to 0.65 square micrometers. The SIS junctions are coupled to the optical input beam through a planar double slot antenna and a Si hyperhemispherical lens. The minimum DSB receiver noise temperature is 650 K, about 12 hv/k.

  9. Wide-band operation of quasi-optical distributed superconductor/insulator/superconductor mixers with epitaxial NbN/AlN/NbN junctions

    NASA Astrophysics Data System (ADS)

    Kohjiro, S.; Shitov, S. V.; Wang, Z.; Uzawa, Y.; Miki, S.; Kawakami, A.; Shoji, A.

    2004-05-01

    For the optimum design of integrated receivers operating above the gap frequency of Nb, we have designed, fabricated and tested NbN-based quasi-optical superconductor/insulator/superconductor (SIS) mixers. The mixer chip incorporates a resonant half-wavelength epitaxial NbN/AlN/NbN junction, a twin-slot antenna and their coupling circuits. We adopted two kinds of coupling circuit between the antenna and the SIS junction: one is an in-phase feed with a length of 95 µm and the other is an anti-phase feed of 30 µm length. It was found that the anti-phase mixer reveals a 3 dB bandwidth of 43% of the centre frequency; the uncorrected double-sideband receiver noise temperature TRX = 691 K at 0.91 THz and TRX = 844 K at 0.80 THz, while 17% and TRX = 1250 K at 0.79 THz for the in-phase version. Possible reasons for this difference are discussed, which could be transmission loss and its robustness with respect to the variation of junction parameters. These experimental results suggest the NbN-based distributed mixer with the anti-phase feed is a better candidate for wide-band integrated receivers operating above 0.7 THz.

  10. Quantum noise in SIS mixers

    NASA Astrophysics Data System (ADS)

    Zorin, A. B.

    1985-03-01

    In the present, quantum-statistical analysis of SIS heterodyne mixer performance, the conventional three-port model of the mixer circuit and the microscopic theory of superconducting tunnel junctions are used to derive a general expression for a noise parameter previously used for the case of parametric amplifiers. This expression is numerically evaluated for various quasiparticle current step widths, dc bias voltages, local oscillator powers, signal frequencies, signal source admittances, and operation temperatures.

  11. Development of Balanced SIS Mixers for ALMA Band-10

    NASA Astrophysics Data System (ADS)

    Shitov, Sergey V.; Koryukin, Oleg V.; Uzawa, Yoshinory; Noguchi, Takashi; Uvarov, Andrey V.; Cohn, Ilya A.

    2006-05-01

    A few concepts of a wide-band balanced SIS mixer employing submicron-sized SIS junctions are under development for 787-950 GHz frequency range. A quasioptical DSB balanced mixer with integrated cross-slot antenna is considered as the less laborious and cheaper option. The silicon lens-antenna beam efficiency is expected above 80 % across the whole band with first-order sidelobe below -16 dB. To use the conservative horn antenna solution, a single chamber waveguide DSB balanced mixer is developed. Two equal probe-type SIS chips are inserted into a full-height waveguide through its opposite broad walls; these two mixers are driven by the signal waveguide in series. The LO current is transferred to the mixers in parallel via a capacitive probe inserted through the narrow wall of the signal waveguide from the neighboring LO waveguide. The HFSS model demonstrated the LO power coupling efficiency above -3 dB, almost perfect signal transfer and the LO cross talk below -30 dB that take into account misalignment (misbalance) of the chips. It is demonstrated numerically using Tucker's 3-port model that unequal pump of junctions of a twin-SIS mixer can lead, in spite of the perfect signal coupling, to degradation of the gain performance up to -3 dB, especially at the top of the ALMA Band-10.

  12. Development of SIS Mixers for 1 THz

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.; Kooi, J.; Chattopadhyay, G.; Bumble, B.; LeDuc, H. G.; Stern, J. A.

    1998-01-01

    SIS heterodyne mixer technology based on niobium tunnel junctions has now been pushed to frequencies over 1 THz, clearly demonstrating that the SIS junctions are capable of mixing at frequencies up to twice the energy gap frequency (4 Delta/h). However, the performance degrades rapidly above the gap frequency of niobium (2 Delta/h approx. 700 GHz) due to substantial ohmic losses in the on-chip tuning circuit. To solve this problem, the tuning circuit should be fabricated using a superconducting film with a larger energy gap, such as NbN; unfortunately, NbN films often have a substantial excess surface resistance in the submillimeter band. In contrast, the SIS mixer measurements we present in this paper indicate that the losses for NbTiN thin films can be quite low.

  13. Quasi-optical antenna-mixer-array design for terahertz frequencies

    NASA Technical Reports Server (NTRS)

    Guo, Yong; Potter, Kent A.; Rutledge, David B.

    1992-01-01

    A new quasi-optical antenna-mixer-array design for terahertz frequencies is presented. In the design, antenna and mixer are combined into an entity, based on the technology in which millimeter-wave horn antenna arrays have been fabricated in silicon wafers. It consists of a set of forward- and backward-looking horns made with a set of silicon wafers. The front side is used to receive incoming signal, and the back side is used to feed local oscillator signal. Intermediate frequency is led out from the side of the array. Signal received by the horn array is picked up by antenna probes suspended on thin silicon-oxynitride membranes inside the horns. Mixer diodes will be located on the membranes inside the horns. Modeling of such an antenna-mixer-array design is done on a scaled model at microwave frequencies. The impedance matching, RF and LO isolation, and patterns of the array have been tested and analyzed.

  14. Development of Submillimeter SIS Mixers and Broadband HEMT Amplifiers

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    2004-01-01

    This is the final technical report for NASA grant NAG5-9493. entitled "Development of Submillimeter SIS Mixers and Broadband HEMT Amplifiers". The goal of this project was to develop and demonstrate a new generation of superconducting tunnel junction (SIS) receivers with extremely wide instantaneous (intermediate-frequency, or IF) bandwidths. of order 12 GHz. along with the wideband low-noise microwave HEMT (high electron mobility transistor) amplifiers which follow the SIS mixer. These wideband SIS/HEMT receivers would allow rapid submillimeter wavelength spectral line surveys to be carried out, for instance with the NASA airborne observatory SOFIA. and could potentially be useful for future submillimeter space missions such as SAFIR. In addition, there are potential NASA earth science applications. such as the monitoring of the distribution of chemical species in the stratosphere and troposphere using the limb-sounding technique. The overall goals of this project have been achieved: a broadband 200-300 SIS receiver was designed and constructed, and was demonstrated in the field through a test run at the Caltech Submillimeter Observatory on Mauna Kea. HI. The technical details are described in the appendices. which are primarily conference publications. but Appendix A also includes an unpublished summary of the latest results. The work on the SIS mixer design are described in the conference publications (appendices B and C). The "Supermix" software package that was developed at Caltech and used for the SIS design is also described in two conference papers, but has been substantially revised, debugged. and extended as part of the work completed for this grant. The Supermix package is made available to the community at no charge. The electromagnetic design of a radial waveguide probe similar to the one used in this work is described in a journal publication. Details of the novel fabrication procedure used for producing the SIS devices at JPL are also given in an

  15. A 30% bandwidth tunerless SIS mixer of quantum-limited sensitivity for Herschel / HIFI Band 1

    NASA Astrophysics Data System (ADS)

    Salez, Morvan; Delorme, Yan; Peron, I.; Lecomte, Benoit; Dauplay, Frederic; Boussaha, Faouzi; Spatazza, J.; Feret, A.; Krieg, J. M.; Schuster, Karl-Friedrich

    2003-02-01

    We report on the status of the development of a 30% bandwidth tunerless SIS double-sideband mixer for the "Band 1" (480 GHz-630 GHz) channel of the heterodyne instrument (HIFI) of ESA"s Herschel Space Observatory, scheduled for launch in 2007. After exposing the main features of our mixer design, we present the performance achieved by the demonstration mixer, measured via Fourier Transform Spectroscopy and heterodyne Y factor calibrations. We infer from a preliminary mixer analysis that the mixer has very low, quantum-limited noise and low conversion loss. We also report on some pre-qualification tests, as we currently start to manufacture the qualification models and design the last iteration of masks for SIS junction production.

  16. Performance and Uniformity of Mass-Produced SIS Mixers for ALMA Band 8 Receiver Cartridges

    NASA Astrophysics Data System (ADS)

    Tomura, Tomonuri; Noguchi, Takashi; Sekimoto, Yutaro; Shan, Wenlei; Sato, Naohisa; Iizuka, Yoshizo; Kumagai, Kazuyoshi; Niizeki, Yasuaki; Iwakuni, Mikio; Ito, Tetsuya

    2015-05-01

    The Atacama large millimeter/submillimeter array (ALMA), which was jointly built in Chile by Europe, North America and East Asia, has an observational band from 30 to 950 GHz [1], [2]. We developed receiver cartridges for ALMA Band 8 (385-500 GHz) [3]-[5] which is one of ALMA 10 frequency bands. The Band 8 receiver cartridges were produced as 73 cartridges, and 292 SIS mixers were installed in their cartridges. Also, their all cartridges were required to meet following ALMA specifications: 1. The noise temperature is less than 196 K over 80% of the frequency range and less than 292 K at any frequency from 385 to 500 GHz. 2. The image rejection ratio is larger than 10 dB over 90% of the frequency range. 3. The IF output power variation is less than 7.0 dB peak-to-peak in the 4-8 GHz band. 4. The gain compression to RF load temperatures between 77 and 373 K is less than 5%. 5. The Allan variance of the IF output power is less than 4.0×10-7 in the time scale of 0.05 s≤T≤100 s and 3.0×10-6 at 300 s. To meet these specifications, the performance and uniformity of the SIS mixers are crucial. The SIS mixers with Nb/Al-AlOx/Nb superconductor-insulator-superconductor (SIS) tunnel junctions were fabricated in a clean room of National Astronomical Observatory of Japan and over 1000 mixer chips were mass-produced. After screening these mixers, 73 Band 8 receivers were assembled and tested. We report the test results of the mass-produced mixers and the receiver cartridges in detail from a statistical point of view.

  17. Comparison of measured and predicted performance of a SIS waveguide mixer at 345 GHz

    NASA Technical Reports Server (NTRS)

    Honingh, C. E.; Delange, G.; Dierichs, M. M. T. M.; Schaeffer, H. H. A.; Wezelman, J.; Vandekuur, J.; Degraauw, T.; Klapwijk, T. M.

    1992-01-01

    The measured gain and noise of a SIS waveguide mixer at 345 GHz have been compared with theoretical values, calculated from the quantum mixer theory using a three port model. As a mixing element, we use a series array of two Nb-Al2O3-Nb SIS junctions. The area of each junction is 0.8 sq microns and the normal state resistance is 52 omega. The embedding impedance of the mixer has been determined from the pumped DC-IV curves of the junction and is compared to results from scale model measurements (105 x). Good agreement was obtained. The measured mixer gain, however, is a factor of 0.45 plus or minus 0.5 lower than the theoretical predicted gain. The measured mixer noise temperature is a factor of 4-5 higher than the calculated one. These discrepancies are independent on pump power and are valid for a broad range of tuning conditions.

  18. Micromachined Millimeter- and Submillimeter-Wave SIS Heterodyne Receivers for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Hu, Qing

    1998-01-01

    A heterodyne mixer with a micromachined horn antenna and a superconductor -insulator-superconductor (SIS) tunnel junction as mixing element is tested in the W-band (75-115 GHz) frequency range. Micromachined integrated horn antennas consist of a dipole antenna suspended on a thin Si3N4 dielectric membrane inside a pyramidal cavity etched in silicon. The mixer performance is optimized by using a backing plane behind the dipole antenna to tune out the capacitance of the tunnel junction. The lowest receiver noise temperature of 30+/-3 K without any correction) is measured at 106 GHz with a 3-dB bandwidth of 8 GHz. This sensitivity is comparable to the state-of-the-art waveguide and quasi-optical SIS receivers, showing the potential use of micromachined horn antennas in imaging arrays.

  19. Making Wide-IF SIS Mixers with Suspended Metal-Beam Leads

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama; Bumble, Bruce; Lee, Karen; LeDuc, Henry; Rice, Frank; Zmuidzinas, Jonas

    2005-01-01

    A process that employs silicon-on-insulator (SOI) substrates and silicon (Si) micromachining has been devised for fabricating wide-intermediate-frequency-band (wide-IF) superconductor/insulator/superconductor (SIS) mixer devices that result in suspended gold beam leads used for radio-frequency grounding. The mixers are formed on 25- m-thick silicon membranes. They are designed to operate in the 200 to 300 GHz frequency band, wherein wide-IF receivers for tropospheric- chemistry and astrophysical investigations are necessary. The fabrication process can be divided into three sections: 1. The front-side process, in which SIS devices with beam leads are formed on a SOI wafer; 2. The backside process, in which the SOI wafer is wax-mounted onto a carrier wafer, then thinned, then partitioned into individual devices; and 3. The release process, in which the individual devices are separated using a lithographic dicing technique. The total thickness of the starting 4-in. (10.16-cm)-diameter SOI wafer includes 25 m for the Si device layer, 0.5 m for the buried oxide (BOX) layer, and 350 m the for Si-handle layer. The front-side process begins with deposition of an etch-stop layer of SiO2 or AlN(x), followed by deposition of a Nb/Al- AlN(x) /Nb trilayer in a load-locked DC magnetron sputtering system. The lithography for four of a total of five layers is performed in a commercial wafer-stepping apparatus. Diagnostic test dies are patterned concurrently at certain locations on the wafer, alongside the mixer devices, using a different mask set. The conventional, self-aligned lift-off process is used to pattern the SIS devices up to the wire level.

  20. Low-Noise Submillimeter-Wave NbTiN Superconducting Tunnel Junction Mixers

    NASA Technical Reports Server (NTRS)

    Kawamura, J.; Chen, J.; Miller, D.; Kooi, J.; Zmuidzinas, J.; Bumble, B.; LeDuc, H. G.; Stern, J. A.

    1999-01-01

    We have developed a low-noise 850 GHz superconductor-insulator-superconductor (SIS) quasi-particle mixer with NbTiN thin-film microstrip tuning circuits and hybrid Nb/AlN/NbTiN tunnel junctions. The mixer uses a quasioptical configuration with a planar twin-slot antenna feeding a two-junction tuning circuit. At 798 GHz, we measured an uncorrected double-sideband receiver noise temperature of T(sub RX) = 260 K at 4.2 K bath temperature. This mixer outperforms current Nb SIS mixers by a factor of nearly 2 near 800 GHz. The high gap frequency and low loss at 800 GHz make NbTiN an attractive material with which to fabricate tuning circuits for SIS mixers. NbTiN mixers can potentially operate up to the gap frequency, 2(delta)/h is approximately 1.2THz.

  1. A 220-GHz SIS Mixer Tightly Integrated With a Sub-Hundred-Microwatt SiGe IF Amplifier

    NASA Astrophysics Data System (ADS)

    Montazeri, Shirin; Grimes, Paul K.; Tong, Cheuk-Yu Edward; Bardin, Joseph C.

    2016-01-01

    Future kilopixel-scale heterodyne focal plane arrays based on superconductor-insulator-superconductor (SIS) mixers will require submilliwatt power consumption low-noise amplifiers (LNAs) which are tightly integrated with the mixers. In this paper, an LNA that is optimized for direct connection to a 220-GHz SIS mixer chip and requires less than 100 μW of dc power is reported. The amplifier design process is described, and measurement results are presented. It is shown that, when pumped at local oscillator frequencies between 214 and 226 GHz, the mixer/amplifier module achieves a double-sideband system noise temperature between 35 and 50 K over the 3.3-6 GHz IF frequency range while requiring just 90 μW of dc power. Moreover, the potential to further reduce the power consumption is explored and successful operation is demonstrated for LNA power consumption as low as 60 μW.

  2. A Low-noise Micromachined Millimeter-Wave Heterodyne Mixer using Nb Superconducting Tunnel Junctions

    NASA Technical Reports Server (NTRS)

    DeLange, Gert; Jacobson, Brian R.; Hu, Qing

    1996-01-01

    A heterodyne mixer with a micromachined horn antenna and a superconductor-insulator-superconductor (SIS) tunnel junction as mixing element is tested in the W-band (75-115 GHz) frequency range. Micromachined integrated horn antennas consist of a dipole antenna suspended on a thin Si3N4 dielectric membrane inside a pyramidal cavity etched in silicon. The mixer performance is optimized by using a backing plane behind the dipole antenna to tune out the capacitance of the tunnel junction. The lowest receiver noise temperature of 30 +/- 3 K (without any correction) is measured at 106 GHz with a 3-dB bandwidth of 8 GHz. This sensitivity is comparable to the state-of-the-art waveguide and quasi-optical SIS receivers, showing the potential use of micromachined horn antennas in imaging arrays.

  3. Design of Balanced Mixers for ALMA Band-10

    NASA Astrophysics Data System (ADS)

    Shitov, Sergey V.; Koryukin, Oleg V.; Uzawa, Yoshinori; Noguchi, Takashi; Uvarov, Andrey V.; Bukovski, Maksim A.; Cohn, Ilya A.

    2007-06-01

    Two variants of balanced mixer employing twin-SIS structure are under development for 787-950 GHz frequency range. Easy-to-use Geometry Transformation method for modeling of superconducting microstrips is developed, compared to referenced methods and used for design of the mixers. Lens-antenna mixer is based on cross-slot antenna; it does not need any intervening optics between its lens and sub-reflector of ALMA telescope; simple yet efficient composition of lens-antenna cartridge is suggested. Compact single-chamber balanced waveguide mixer employs two SIS chips and capacitive probe for LO injection; coupling above -3 dB and signal loss below -20 dB are expected. Need in shifting of resonance frequency of twin-SIS mixer towards top of the frequency band is predicted using Tucker's theory in large-signal approximation. TRX considerably below 200 K (DSB) is simulated using high-quality hybrid SIS junction for NbTiN/Nb - AlOx - Nb/Al for Jc = 12 kA/cm2.

  4. Submillimeter SIS Mixers Using High Current Density Nb/AIN/Nb Tunnel Junctions and NbTiN Films

    NASA Astrophysics Data System (ADS)

    Kawamura, J.; Miller, D.; Chen, J.; Kooi, J.; Zmuidzinas, J.; Bumble, B.; Leduc, H.; Stern, J.

    1999-03-01

    We are currently exploring ways to improve the performance of SIS mixers above 700 GHz. One approach is to use NbTiN in place of Nb for all or some of the mixer circuitry. With its high gap frequency and low losses demonstrated up to 800 GHz, it should be possible to fabricate an all-NbTiN SIS mixer with near quantum-limited noise performance up to 1.2 THz. Using a quasioptical twin-slot two-junction mixer with NbTiN ground plane and wiring and hybrid Nb/A1N/NbTiN junctions, we measured an uncorrected receiver noise temperature of TRx ~ 500 K across 790-850 GHz at 4.2 K bath temperature. Our second approach is to reduce the RC product of the mixer by employing very high current density Nb/A1N/Nb junctions. By using these we will greatly relax the requirement on tuning circuits, which is where substantial losses occur in mixers operating above the Nb gap frequency. These junctions have resistance-area products of R_N*A ~ 5.6 Ohm um2, good subgap to normal resistance ratios, R_sg/R_N ~ 10, and good run-to-run reproducibility. From FTS measurements we infer that omega*R_N*C = 1 at 270 GHz in these junctions. This is a substantial improvement over that available using Nb/Al0x/Nb technology. The sensitivity of a receiver incorporating these high current density mixers is T_Rx = 110 K at 533 GHz using a design for lower J_c mixers, which is close to the best we have measured with lower J_c Nb/Al0x/Nb mixers.

  5. A millimeter wave quasi-optical mixer and multiplier

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The results of an experimental study of a biconical quasi-optical Schottky barrier diode mount design which could be used for mixing and multiplying in the frequency range 200-1000 Ghz are reported. The biconical mount is described and characteristics measured at 185 Ghz are presented. The use of the mount for quasi-optical frequency doubling from 56 to 112 Ghz is described and efficiency estimates given.

  6. Modelling and performance of Nb SIS mixers in the 1.3 mm and 0.8 mm bands

    NASA Technical Reports Server (NTRS)

    Karpov, A.; Carter, M.; Lazareff, B.; Billon-Pierron, D.; Gundlach, K. H.

    1992-01-01

    We describe the modeling and subsequent improvements of SIS waveguide mixers for the 200-270 and 330-370 GHz bands (Blundell, Carter, and Gundlach 1988, Carter et al 1991). These mixers are constructed for use in receivers on IRAM radiotelescopes on Pico Veleta (Spain, Sierra Nevada) and Plateau de Bure (French Alps), and must meet specific requirements. The standard reduced height waveguide structure with suspended stripline is first analyzed and a model is validated through comparison with scale model and working scale measurements. In the first step, the intrinsic limitations of the standard mixer structure are identified, and the parameters are optimized bearing in mind the radioastronomical applications. In the second step, inductive tuning of the junctions is introduced and optimized for minimum noise and maximum bandwidth. In the 1.3 mm band, a DSB receiver temperature of less than 110 K (minimum 80 K) is measured from 180 through 260 GHz. In the 0.8 mm band, a DSB receiver temperature of less than 250 K (minimum 175 K) is obtained between 325 and 355 GHz. All these results are obtained with room-temperature optics and a 4 GHz IF chain having a 500 MHz bandwidth and a noise temperature of 14 K.

  7. Observational demonstration of a high image rejection SIS mixer receiver using a new waveguide filter at 230 GHz

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yutaka; Asayama, Shinichiro; Harada, Ryohei; Tokuda, Kazuki; Kimura, Kimihiro; Ogawa, Hideo; Onishi, Toshikazu

    2017-12-01

    A new sideband separation method was developed for use in millimeter-/submillimeter-band radio receivers using a novel waveguide frequency separation filter (FSF), which consists of two branch line hybrid couplers and two waveguide high-pass filters. The FSF was designed to allow the radio frequency (RF) signal to pass through to an output port when the frequency is higher than a certain value (225 GHz), and to reflect the RF signal back to another output port when the frequency is lower. The FSF is connected to two double sideband superconductor-insulator-superconductor (SIS) mixers, and an image rejection ratio (IRR) is determined by the FSF characteristics. With this new sideband separation method, we can achieve good and stable IRR without the balancing two SIS mixers such as is necessary for conventional sideband-separating SIS mixers. To demonstrate the applicability of this method, we designed and developed an FSF for simultaneous observations of the J = 2-1 rotational transition lines of three CO isotopes (12CO, 13CO, and C18O): the 12CO line is in the upper sideband and the others are in the lower sideband with an intermediate-frequency range of 4-8 GHz at the radio frequency of 220/230 GHz. This FSF was then installed in the receiver system of the 1.85 m radio telescope of Osaka Prefecture University, and was used during the 2014 observation season. The observation results indicate that the IRR of the proposed receiver is 25 dB or higher for the 12CO line, and no significant fluctuation larger than 1 dB in the IRR was observed throughout the season. These results demonstrate the practical utility of the FSF receiver for observations like extensive molecular cloud surveys in specified lines with a fixed frequency setting.

  8. A general numerical analysis of the superconducting quasiparticle mixer

    NASA Technical Reports Server (NTRS)

    Hicks, R. G.; Feldman, M. J.; Kerr, A. R.

    1985-01-01

    For very low noise millimeter-wave receivers, the superconductor-insulator-superconductor (SIS) quasiparticle mixer is now competitive with conventional Schottky mixers. Tucker (1979, 1980) has developed a quantum theory of mixing which has provided a basis for the rapid improvement in SIS mixer performance. The present paper is concerned with a general method of numerical analysis for SIS mixers which allows arbitrary terminating impedances for all the harmonic frequencies. This analysis provides an approach for an examination of the range of validity of the three-frequency results of the quantum mixer theory. The new method has been implemented with the aid of a Fortran computer program.

  9. A low noise 665 GHz SIS quasi-particle waveguide receiver

    NASA Technical Reports Server (NTRS)

    Kooi, J. W.; Walker, C. K.; Leduc, H. G.; Hunter, T. R.; Benford, D. J.; Phillips, T. G.

    1993-01-01

    Recent results on a 565-690 GHz SIS heterodyne receiver employing a 0.36 micron(sup 2) Nb/AlOx/Nb SIS tunnel junction with high quality circular non-contacting back short and E-plane tuners in a full height wave guide mount are reported. No resonant tuning structures were incorporated in the junction design at this time, even though such structures are expected to help the performance of the receiver. The receiver operates to at least the gap frequency of Niobium, approximately 680 GHz. Typical receiver noise temperatures from 565-690 GHz range from 160K to 230K with a best value of 185K DSB at 648 GHz. With the mixer cooled from 4.3K to 2K the measured receiver noise temperatures decreased by approximately 15 percent, giving roughly 180K DSB from 660 to 680 GHz. The receiver has a full 1 GHz IF pass band and was successfully installed at the Caltech Submillimeter Observatory in Hawaii.

  10. A Low Noise NbTiN-Based 850 GHz SIS Receiver for the Caltech Submillimeter Observatory

    NASA Technical Reports Server (NTRS)

    Kooi, J. W.; Kawamura, J.; Chen, J.; Chattopadhyay, G.; Pardo, J. R.; Zmuidzinas, J.; Phillips, T. G.; Bumble, B.; Stern, J.; LeDuc, H. G.

    2000-01-01

    We have developed a niobium titanium nitride (NbTiN) based superconductor- insulator-superconductor (SIS) receiver to cover the 350 micron atmospheric window. This frequency band lies entirely above the energy gap of niobium (700 GHz), a commonly used SIS superconductor. The instrument uses an open structure twin-slot SIS mixer that consists of two Nb/AlN/NbTiN tunnel junctions, NbTiN thin-film microstrip tuning elements, and a NbTiN ground plane. The optical configuration is very similar to the 850 GHz waveguide receiver that was installed at the Caltech Submillimeter Observatory (CSO) in 1997. To minimize front-end loss, we employed reflecting optics and a cooled beamsplitter at 4 K. The instrument has an uncorrected receiver noise temperature of 205K DSB at 800 GHz and 410K DSB at 900 GHz. The degradation in receiver sensitivity with frequency is primarily due to an increase in the mixer conversion loss, which is attributed to the mismatch between the SIS junction and the twin-slot antenna impedance. The overall system performance has been confirmed through its use at the telescope to detect a wealth of new spectroscopic lines.

  11. A 850 GHz SIS receiver employing silicon micro-machining technology

    NASA Technical Reports Server (NTRS)

    Kooi, J. W.; Pety, J.; Schaffer, P. L.; Phillips, T. G.; Bumble, B.; LeDuc, H. G.; Walker, C. K.

    1996-01-01

    A 850 GHz superconductor-insulator-superconductor (SIS) heterodyne receiver which uses a radiofrequency tuned niobium tunnel junction fabricated on a 1 micron thick silicon nitrate membrane, is reported. From video and heterodyne measurements, it was calculated that the niobium film loss in the radiofrequency matching network is about 6.8 dB at 822 GHz. These results are approximately a factor of two higher than the theoretical loss predicted by the Mattis-Bardeen theory in the extreme anomalous limit. The junction design and the receiver configuration are described, including the mixer block, the membrane construction and the cooled optics. The performance tests using a Fourier transform spectrometer to measure the response of the radiofrequency matching network, and the SIS simulations of the receiver response to cold and hot loads, the infrared noise contribution and the overall mixer conversion efficiency, are reported. It is concluded that the receiver response is limited by the absorption loss in the radiofrequency matching network.

  12. SIS Mixer Design for a Broadband Millimeter Spectrometer Suitable for Rapid Line Surveys and Redshift Determinations

    NASA Technical Reports Server (NTRS)

    Rice, F.; Sumner, M.; Zmuidzinas, J.; Hu, R.; LeDuc, H.; Harris, A.; Miller, D.

    2004-01-01

    We present some detail of the waveguide probe and SIS mixer chip designs for a low-noise 180-300 GHz double- sideband receiver with an instantaneous RF bandwidth of 24 GHz. The receiver's single SIS junction is excited by a broadband, fixed-tuned waveguide probe on a silicon substrate. The IF output is coupled to a 6-18 GHz MMIC low- noise preamplifier. Following further amplification, the output is processed by an array of 4 GHz, 128-channel analog autocorrelation spectrometers (WASP 11). The single-sideband receiver noise temperature goal of 70 Kelvin will provide a prototype instrument capable of rapid line surveys and of relatively efficient carbon monoxide (CO) emission line searches of distant, dusty galaxies. The latter application's goal is to determine redshifts by measuring the frequencies of CO line emissions from the star-forming regions dominating the submillimeter brightness of these galaxies. Construction of the receiver has begun; lab testing should begin in the fall. Demonstration of the receiver on the Caltech Submillimeter Observatory (CSO) telescope should begin in spring 2003.

  13. Compact terahertz passive spectrometer with wideband superconductor-insulator-superconductor mixer.

    PubMed

    Kikuchi, K; Kohjiro, S; Yamada, T; Shimizu, N; Wakatsuki, A

    2012-02-01

    We developed a compact terahertz (THz) spectrometer with a superconductor-insulator-superconductor (SIS) mixer, aiming to realize a portable and highly sensitive spectrometer to detect dangerous gases at disaster sites. The receiver cryostat which incorporates the SIS mixer and a small cryocooler except for a helium compressor has a weight of 27 kg and dimensions of 200 mm × 270 mm × 690 mm. In spite of the small cooling capacity of the cryocooler, the SIS mixer is successfully cooled lower than 4 K, and the temperature variation is suppressed for the sensitive measurement. By adopting a frequency sweeping system using photonic local oscillator, we demonstrated a spectroscopic measurement of CH(3)CN gas in 0.2-0.5 THz range.

  14. Low-noise submillimeter-wave NbTiN superconducting tunnel junction mixers

    NASA Astrophysics Data System (ADS)

    Kawamura, Jonathan; Chen, Jian; Miller, David; Kooi, Jacob; Zmuidzinas, Jonas; Bumble, Bruce; LeDuc, Henry G.; Stern, Jeff A.

    1999-12-01

    We have developed a low-noise 850 GHz superconductor-insulator-superconductor quasiparticle mixer with NbTiN thin-film microstrip tuning circuits and hybrid Nb/AlN/NbTiN tunnel junctions. The mixer uses a quasioptical configuration with a planar twin-slot antenna feeding a two-junction tuning circuit. At 798 GHz, we measured an uncorrected double-sideband receiver noise temperature of TRX=260 K at 4.2 K bath temperature. This mixer outperforms current Nb SIS mixers by a factor of nearly 2 near 800 GHz. The high-gap frequency and low loss at 800 GHz make NbTiN an attractive material with which to fabricate tuning circuits for SIS mixers. NbTiN mixers can potentially operate up to the gap frequency, 2Δ/h˜1.2 THz.

  15. Classical and low-light-level detection and pulse characterization using optical-frequency mixers

    NASA Astrophysics Data System (ADS)

    Langrock, Carsten

    2007-12-01

    Classical all-optical signal processing for telecommunication applications greatly benefits from the availability of highly efficient optical frequency (OF) mixers, the optical analogue of radio-frequency mixers used in RF signal processing. The OF mixers presented in this dissertation are based on reverse-proton-exchange (RPE) periodically-poled lithium niobate (PPLN) waveguides, one of the most efficient and versatile material systems in the field of nonlinear optics to date. Taking advantage of fabrication technologies developed in Prof. Martin Fejer's group over the past two decades, we expand the range of applications for these OF mixers to low-light-level signal detection and pulse characterization. We demonstrate high-speed high-efficiency single-photon counting at telecommunication wavelengths, used for the implementation of record-breaking quantum-key distribution systems, which allow unconditionally secure data transfer. In collaboration with researchers at the MIT Lincoln Laboratory, we also show that the very same technology can be used to achieve an order of magnitude improvement in the sensitivity of classical few-photon free-space communication links based on pulse-position modulation. These extremely sensitive receivers (1 photon/bit) are being developed to facilitate deep-space communication over several hundred million kilometers between Mars and Earth. OF mixers can also be used to fully characterize, potentially weak, ultrashort pulses, as well as time-magnify segments of ultra-high-speed data streams to be detected in real time by conventional streak cameras and oscilloscopes. We will present a novel implementation of both collinear autocorrelation as well as parametric temporal imaging (in collaboration with the Lawrence Livermore National Laboratory) based on mode-multiplexing in integrated asymmetric Y-junctions in combination with linearly-chirped apodized quasi-phasematching gratings. For the first time, background-free autocorrelation

  16. A quasi-optical flight mixer. [Schottky diodes and wire grid lenses

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A mechanically stable single block mixer design is described utilizing a recessed whisker and beamwidth equalization lens. A stripline I.F. matching section which is an integral part of the mixer is presented. Engineering measurements of wire grids and dielectric transmission loss near one millimeter wavelength are given and an anomolous I-V curve behavior observed during diode whiskering is discussed.

  17. High-sweeping-speed optically synchronized dual-channel terahertz-signal generator for driving a superconducting tunneling mixer and its application to active gas sensing.

    PubMed

    Oh, Kyoung-Hwan; Shimizu, Naofumi; Kohjiro, Satoshi; Kikuchi, Ken'ichi; Wakatsuki, Atsushi; Kukutsu, Naoya; Kado, Yuichi

    2009-10-12

    We propose a high-sweeping-speed optically synchronized dual-channel terahertz (THz) signal generator for an active gas-sensing system with a superconductor-insulator-superconductor (SIS) mixer. The generator can sweep a frequency range from 200 to 500 GHz at a speed of 375 GHz/s and a frequency resolution of 500 MHz. With the developed gas-sensing system, a gas-absorption-line measurement was successfully carried out with N(2)O gas in that frequency range.

  18. A general numerical analysis program for the superconducting quasiparticle mixer

    NASA Technical Reports Server (NTRS)

    Hicks, R. G.; Feldman, M. J.; Kerr, A. R.

    1986-01-01

    A user-oriented computer program SISCAP (SIS Computer Analysis Program) for analyzing SIS mixers is described. The program allows arbitrary impedance terminations to be specified at all LO harmonics and sideband frequencies. It is therefore able to treat a much more general class of SIS mixers than the widely used three-frequency analysis, for which the harmonics are assumed to be short-circuited. An additional program, GETCHI, provides the necessary input data to program SISCAP. The SISCAP program performs a nonlinear analysis to determine the SIS junction voltage waveform produced by the local oscillator. The quantum theory of mixing is used in its most general form, treating the large signal properties of the mixer in the time domain. A small signal linear analysis is then used to find the conversion loss and port impedances. The noise analysis includes thermal noise from the termination resistances and shot noise from the periodic LO current. Quantum noise is not considered. Many aspects of the program have been adequately verified and found accurate.

  19. Wideband fixed-tuned SIS receiver for 200-GHz operation

    NASA Technical Reports Server (NTRS)

    Blundell, Raymond; Tong, Cheuk-Yu E.; Papa, D. Cosmo; Leombruno, R. Louie; Zhang, Xiaolei; Paine, Scott; Stern, Jeffrey A.; Leduc, Henry G.; Bumble, Bruce

    1995-01-01

    We report on the design and development of a heterodyne receiver, designed to cover the frequency range 176-256 GHz. This receiver incorporates a niobium superconductor-insulator-superconductor (SIS) tunnel junction mixer, which, chiefly for reasons of reliability and ease of operation, is a fixed-tuned waveguide design. On-chip tuning is provided to resonate out the junction's geometric capacitance and produce a good match to the waveguide circuit. Laboratory measurements on the first test receiver indicate that the required input bandwidth (about 40%) is achieved with an average receiver noise temperature of below 50 K. Mixer conversion gain is observed at some frequencies, and the lowest measured receiver noise is less than 30 K. Furthermore, the SIS mixer used in this receiver is of simple construction, is easy to assemble and is therefore a good candidate for duplication.

  20. A Wide-Band High-Gain Compact SIS Receiver Utilizing a 300-μW SiGe IF LNA

    NASA Astrophysics Data System (ADS)

    Montazeri, Shirin; Grimes, Paul K.; Tong, Cheuk-Yu Edward; Bardin, Joseph C.

    2017-06-01

    Low-power low-noise amplifiers integrated with superconductor-insulator-superconductor (SIS) mixers are required to enable implementation of large-scale focal plane arrays. In this work, a 220-GHz SIS mixer has been integrated with a high-gain broad-band low-power IF amplifier into a compact receiver module. The low noise amplifier (LNA) was specifically designed to match to the SIS output impedance and contributes less than 7 K to the system noise temperature over the 4-8 GHz IF frequency range. A receiver noise temperature of 30-45 K was measured for a local oscillator frequency of 220 GHz over an IF spanning 4-8 GHz. The LNA power dissipation was only 300-μW. To the best of the authors' knowledge, this is the lowest power consumption reported for a high-gain wide-band LNA directly integrated with an SIS mixer.

  1. Early Days of SIS Receivers

    NASA Astrophysics Data System (ADS)

    Woody, D. P.

    2009-12-01

    The modern era of millimeter and submillimeter spectral line observations and interferometry started at end of the 1979 with the invention of the Superconductor-Insulator-Superconductor (SIS) mixer. Tom Phillips co-invented this device while working at Bell Telephone Labs (BTL) in Murray Hill, NJ. His group built the first astronomically useful SIS heterodyne receiver which was deployed on the Leighton 10.4 m telescope at the Caltech Owens Valley Radio Observatory (OVRO) in the same year. Tom Phillips joined the Caltech faculty in the early 1980s where his group continues to lead the way in developing state-of-the-art SIS receivers throughout the millimeter and submillimeter wavelength bands. The rapid progress in millimeter and submillimeter astronomy during 1980s required developments on many fronts including the theoretical understanding of the device physics, advances in device fabrication, microwave and radio frequency (RF) circuit design, mixer block construction, development of wideband low-noise intermediate frequency (IF) amplifiers and the telescopes used for making the observations. Many groups around the world made important contributions to this field but the groups at Caltech and the Jet Propulsion Laboratory (JPL) under the leadership of Tom Phillips made major contributions in all of these areas. The end-to-end understanding and developments from the theoretical device physics to the astronomical observations and interpretation has made this group uniquely productive.

  2. Investigation of SIS Up-Converters for Use in Multi-pixel Receivers

    NASA Astrophysics Data System (ADS)

    Uzawa, Yoshinori; Kojima, Takafumi; Shan, Wenlei; Gonzalez, Alvaro; Kroug, Matthias

    2018-02-01

    We propose the use of SIS junctions as a frequency up-converter based on quasiparticle mixing in frequency division multiplexing circuits for multi-pixel heterodyne receivers. Our theoretical calculation showed that SIS junctions have the potential to achieve positive gain and low-noise characteristics in the frequency up-conversion process at local oscillator (LO) frequencies larger than the voltage scale of the dc nonlinearity of the SIS junction. We experimentally observed up-conversion gain in a mixer with four-series Nb-based SIS junctions at the LO frequency of 105 GHz for the first time.

  3. High-k Scattering Receiver Mixer Performance for NSTX-U

    NASA Astrophysics Data System (ADS)

    Barchfeld, Robert; Riemenschneider, Paul; Domier, Calvin; Luhmann, Neville; Ren, Yang; Kaita, Robert

    2016-10-01

    The High-k Scattering system detects primarily electron-scale turbulence k θ spectra for studying electron thermal transport in NSTX-U. A 100 mW, 693 GHz probe beam passes through plasma, and scattered power is detected by a 4-pixel quasi optical, mixer array. Remotely controlled receiving optics allows the scattering volume to be located from core to edge with a k θ span of 7 to 40 cm-1. The receiver array features 4 RF diagonal input horns, where the electric field polarization is aligned along the diagonal of a square cross section horn, at 30 mm channel spacing. The local oscillator is provided by a 14.4 GHz source followed by a x48 multiplier chain, giving an intermediate frequency of 1 GHz. The receiver optics receive 4 discreet scattering angles simultaneously, and then focus the signals as 4 parallel signals to their respective horns. A combination of a steerable probe beam, and translating receiver, allows for upward or downward scattering which together can provide information about 2D turbulence wavenumber spectrum. IF signals are digitized and stored for later computer analysis. The performance of the receiver mixers is discussed, along with optical design features to enhance the tuning and performance of the mixers. Work supported in part by U.S. DOE Grant DE-FG02-99ER54518 and DE-AC02-09CH1146.

  4. Very high-current-density Nb/AlN/Nb tunnel junctions for low-noise submillimeter mixers

    NASA Astrophysics Data System (ADS)

    Kawamura, Jonathan; Miller, David; Chen, Jian; Zmuidzinas, Jonas; Bumble, Bruce; LeDuc, Henry G.; Stern, Jeff A.

    2000-04-01

    We have fabricated and tested submillimeter-wave superconductor-insulator-superconductor (SIS) mixers using very high-current-density Nb/AlN/Nb tunnel junctions (Jc≈30 kA cm-2). The junctions have low-resistance-area products (RNA≈5.6 Ω μm2), good subgap-to-normal resistance ratios Rsg/RN≈10, and good run-to-run reproducibility. From Fourier transform spectrometer measurements, we infer that ωRNC=1 at 270 GHz. This is a factor of 2.5 improvement over what is generally available with Nb/AlOx/Nb junctions suitable for low-noise mixers. The AlN-barrier junctions are indeed capable of low-noise operation: we measure an uncorrected double-sideband receiver noise temperature of TRX=110 K at 533 GHz for an unoptimized device. In addition to providing wider bandwidth operation at lower frequencies, the AlN-barrier junctions will considerably improve the performance of THz SIS mixers by reducing rf loss in the tuning circuits.

  5. Performance of all-NbN superconductive tunnel junctions as mixers at 205 GHz

    NASA Technical Reports Server (NTRS)

    Mcgrath, W. R.; Leduc, H. G.; Stern, J. A.

    1990-01-01

    Small-area (1x1 sq micron) high-current-density NbN-MgO-NbN tunnel junctions with I-V characteristics suitable for high frequency mixers were fabricated. These junctions are integrated with superconducting microstrip lines designed to resonate out the large junction capacitance. The mixer gain and noise performance were studied near 205 GHz as a function of the inductance provided by the microstrip. This has yielded values of junction capacitance of 85 fF/sq microns and magnetic penetration depth of 3800 angstroms. Mixer noise as low as 133 K has been obtained for properly tuned junctions. This is the best noise performance ever reported for an NbN SIS mixer.

  6. A 380 GHz SIS receiver using Nb/AlO(x)/Nb junctions for a radioastronomical balloon-borne experiment: PRONAOS

    NASA Technical Reports Server (NTRS)

    Febvre, P.; Feautrier, P.; Robert, C.; Pernot, J. C.; Germont, A.; Hanus, M.; Maoli, R.; Gheudin, M.; Beaudin, G.; Encrenaz, P.

    1992-01-01

    The superheterodyne detection technique used for the spectrometer instrument of the PRONAOS project will provide a very high spectral resolution (delta nu/nu = 10(exp -6)). The most critical components are those located at the front-end of the receiver: their contribution dominates the total noise of the receiver. Therefore, it is important to perform accurate studies for specific components, such as mixers and multipliers working in the submillimeter wave range. Difficulties in generating enough local oscillator (LO) power at high frequencies make SIS mixers very desirable for operation above 300 GHz. The low LO power requirements and the low noise temperature of these mixers are the primary reason for building an SIS receiver. This paper reports the successful fabrication of small (less than or equal to 1 sq micron) Nb/Al-O(x)/Nb junctions and arrays with excellent I-V characteristics and very good reliability, resulting in a low noise receiver performance measured in the 368/380 GHz frequency range.

  7. An Extremely Wide Bandwidth, Low-Noise SIS Heterodyne Receiver Design for Millimeter and Submillimeter Observations

    NASA Technical Reports Server (NTRS)

    Sumner, Matthew; Blain, Andrew; Harris, Andrew; Hu, Robert; Rice, Frank; LeDuc, H. G.; Weinreb, Sander; Zmuidzinas, Jonas

    2002-01-01

    Millimeter and submillimeter heterodyne receivers using state-of-the-art SIS detectors are capable of extremely large instantaneous bandwidths with noise temperatures within a few Kelvin of the quantum limit. We present the design for a broadband, sensitive, heterodyne spectrometer under development for the Caltech Submillimeter Observatory (CSO). The 180-300 GHz double-sideband design uses a single SIS device excited by a full bandwidth, fixed-tuned waveguide probe on a silicon substrate. The IF output frequency (limited by the MMIC low noise IF preamplifier) is 6-18 GHz, providing an instantaneous RF bandwidth of 24 GHz (double-sideband). The SIS mixer conversion loss should be no more than 1-2 dB with mixer noise temperatures across the band within 10 K of the quantum limit. The single-sideband receiver noise temperature goal is 70 K. The wide instantaneous bandwidth and low noise will result in an instrument capable of a variety of important astrophysical observations beyond the capabilities of current instruments. Lab testing of the receiver will begin in the summer of 2002, and the first use on the CSO should occur in the spring of 2003.

  8. Very High Current Density Nb/AlN/Nb Tunnel Junctions for Low-Noise Submillimeter Mixers

    NASA Technical Reports Server (NTRS)

    Kawamura, Jonathan; Miller, David; Chen, Jian; Zmuidzinas, Jonas; Bumble, Bruce; LeDuc, Henry G.; Stern, Jeff A.

    2000-01-01

    We have fabricated and tested submillimeter-wave superconductor-insulator-superconductor (SIS) mixers using very high current density Nb/AlN/Nb tunnel junctions (J(sub c) approximately equal 30 kA/sq cm) . The junctions have low resistance-area products (R(sub N)A approximately 5.6 Omega.sq micron), good subgap to normal resistance ratios R(sub sg)/R(sub N) approximately equal 10, and good run-to-run reproducibility. From Fourier transform spectrometer measurements, we infer that omega.R(sub N)C = 1 at 270 GHz. This is a factor of 2.5 improvement over what is generally available with Nb/AlO(x)/Nb junctions suitable for low-noise mixers. The AlN-barrier junctions are indeed capable of low-noise operation: we measure an uncorrected receiver noise temperature of T(sub RX) = 110 K (DSB) at 533 GHz for an unoptimized device. In addition to providing wider bandwidth operation at lower frequencies, the AlN-barrier junctions will considerably improve the performance of THz SIS mixers by reducing RF loss in the tuning circuits.

  9. Superconducting Nb DHEB Mixer Arrays for Far-Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Gerecht, E.; Reintsema, C. D.; Grossman, E. N.; Betz, A. L.; Boreiko, R. T.

    2001-01-01

    We are developing a heterodyne focal plane array with up to eight elements to study lines of the interstellar medium and planetary atmospheres with frequencies of 2 THz and above. Our fabrication process utilizes selective ion milling techniques to produce Nb Diffusion-Cooled Hot Electron Bolometric (DHEB) mixers from a bilayer thin film of Au/Nb deposited on a silicon substrate. A micro-bridge of 10 nm thick Nb forms the HEB device. The first generation of devices with lateral dimensions of 100 nm by 80 nm were fabricated at the feed of a broadband spiral antenna with a frequency response designed for up to 16 THz. Harmonic multiplier sources becoming available within the next few years should have sufficient power to provide a local-oscillator source for small-format, quasi-optically coupled arrays of these mixers. First generation devices measured at our laboratory have demonstrated a critical temperature (Tc) of 4.8 K with a 0.5 K transition width. These DHEB mixers are expected to have an optimum operational temperature of 1.8-2.0 K. The current four element array mixer block will ultimately be replaced by a dual polarization slot-ring array configuration with up to eight elements.

  10. All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter.

    PubMed

    Gao, Yongsheng; Wen, Aijun; Chen, Wei; Li, Xiaoyan

    2017-03-15

    An all-optical and ultra-wideband microwave in-phase/quadrature (I/Q) mixer, based on a dual-parallel Mach-Zehnder modulator and a wavelength division multiplexer, is proposed. Due to the simultaneous frequency down-conversion and 360-deg tunable phase shifting in the optical domain, the proposed I/Q mixer has the advantages of high conversion gain and excellent quadrature phase balance (<±1.3 deg⁡) with a wide operating frequency from 10 to 40 GHz. Assisted by an analog or digital intermediate-frequency quadrature coupler, an image-reject frequency down-converter is then implemented, with an image rejection exceeding 50 dB over the working band.

  11. Quasi-monolithic tunable optical resonator

    NASA Technical Reports Server (NTRS)

    Arbore, Mark (Inventor); Tapos, Francisc (Inventor)

    2003-01-01

    An optical resonator has a piezoelectric element attached to a quasi-monolithic structure. The quasi-monolithic structure defines an optical path. Mirrors attached to the structure deflect light along the optical path. The piezoelectric element controllably strains the quasi-monolithic structure to change a length of the optical path by about 1 micron. A first feedback loop coupled to the piezoelectric element provides fine control over the cavity length. The resonator may include a thermally actuated spacer attached to the cavity and a mirror attached to the spacer. The thermally actuated spacer adjusts the cavity length by up to about 20 microns. A second feedback loop coupled to the sensor and heater provides a coarse control over the cavity length. An alternative embodiment provides a quasi-monolithic optical parametric oscillator (OPO). This embodiment includes a non-linear optical element within the resonator cavity along the optical path. Such an OPO configuration is broadly tunable and capable of mode-hop free operation for periods of 24 hours or more.

  12. A 0.2-0.5 THz single-band heterodyne receiver based on a photonic local oscillator and a superconductor-insulator-superconductor mixer

    NASA Astrophysics Data System (ADS)

    Kohjiro, Satoshi; Kikuchi, Kenichi; Maezawa, Masaaki; Furuta, Tomofumi; Wakatsuki, Atsushi; Ito, Hiroshi; Shimizu, Naofumi; Nagatsuma, Tadao; Kado, Yuichi

    2008-09-01

    We have demonstrated that a superconductor-insulator-superconductor (SIS) mixer pumped by a photonic local oscillator (LO) covers the whole frequency range of 0.2-0.5THz. In the bandwidth of 74% of the center frequency, this single-band receiver exhibits noise temperature of TRX⩽20hf/kB, where h is Planck's constant, f is the frequency, and kB is Boltzmann's constant. Resultant TRX is almost equal to TRX of the identical SIS mixer pumped by three conventional frequency-multiplier-based LOs which share the 0.2-0.5THz band. This technique will contribute to simple, wide-band, and low-noise heterodyne receivers in the terahertz region.

  13. Thermal Signature Identification System (TheSIS)

    NASA Technical Reports Server (NTRS)

    Merritt, Scott; Bean, Brian

    2015-01-01

    We characterize both nonlinear and high order linear responses of fiber-optic and optoelectronic components using spread spectrum temperature cycling methods. This Thermal Signature Identification System (TheSIS) provides much more detail than conventional narrowband or quasi-static temperature profiling methods. This detail allows us to match components more thoroughly, detect subtle reversible shifts in performance, and investigate the cause of instabilities or irreversible changes. In particular, we create parameterized models of athermal fiber Bragg gratings (FBGs), delay line interferometers (DLIs), and distributed feedback (DFB) lasers, then subject the alternative models to selection via the Akaike Information Criterion (AIC). Detailed pairing of components, e.g. FBGs, is accomplished by means of weighted distance metrics or norms, rather than on the basis of a single parameter, such as center wavelength.

  14. Micromechanical Waveguide Mounts for Hot Electron Bolometer Terahertz Mixers

    NASA Astrophysics Data System (ADS)

    Brandt, Michael; Jacobs, Karl; Honingh, C. E.; Stodolka, Jörg

    The superior beam matching of waveguide horn antennas to a telescope suggests using waveguide mounts even at THz-frequencies. In contrast to the more common quasi-optical (substrate lens) designs, the exceedingly small dimensions of the waveguide require novel micro-mechanical fabrication technologies. We will present a novel fabrication scheme for 1.9 THz waveguide mixers for SOFIA. Hot Electron Bolometer devices (HEB) are fabricated on 2 μm thick Si3N4 membrane strips. The strips are robust enough to be mounted on a separately fabricated Si support frame using an adapted flip-chip technology. Mounted onto the frame, the devices can be easily positioned and glued into a copper waveguide mount. Further developments regarding micro-mechanical processes to fabricate this copper waveguide mount and the receiving horn antenna will be presented, as well as the KOSMA Micro Assembly Station and its capabilities to handle mixer substrates.

  15. A submillimeter tripler using a quasi-waveguide structure

    NASA Technical Reports Server (NTRS)

    Erickson, Neal R.; Cortes-Medellin, German

    1992-01-01

    A new type of frequency multiplier structure is being developed which is suitable for application at frequencies above 1 THz. This structure preserves some of the properties of waveguide for mode control, yet is not truly single mode. The device resembles a sectoral horn, with a varactor diode mounted near the throat. Input and output coupling are through the same aperture, requiring a quasi-optical diplexer. Initial tests are directed at building a tripler at 500 GHz, for comparison with waveguide structures. The diplexer is a blazed diffraction grating with appropriate focusing optics. Model studies show that the impedance match to a varactor should be good, and initial tests of the beam patterns of the prototype indicate that optical coupling efficiency should be very high. The structure also has the potential for use as a fundamental mixer, or as a third harmonic mixer.

  16. AlGaAs/GaAs quasi-bulk effect mixers: Analysis and experiments

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. S.; Yang, J.-X.; Agahi, F.; Dai, D.; Musante, C.; Grammer, W.; Lau, K. M.

    1992-01-01

    The lowest noise temperature for any receiver in the 0.5 to 1 THz range has been achieved with the bulk InSb hot electron mixer, which unfortunately suffers from the problem of having a very narrow bandwidth (1-2 MHz). We have demonstrated a three order of magnitude improvement in the bandwidth of hot electron mixers, by using the two-dimensional electron gas (2DEG) medium at the hetero-interface between AlGaAs and GaAs. We have tested both inhouse MOCVD-grown material, and MBE materials, with similar results. The conversion loss (L(sub c)) at 94 GHz is presently 18 dB for a mixer operating at 20 K, and calculations indicate that L(sub c) can be decreased to about 10 dB in future devices. Calculated and measured curves of L(sub c), versus PLO and IDC, respectively, agree well. We argue that there are several different configurations of hot electron mixers, which will also show wide bandwidth, and that these devices are likely to become important as low-noise THz receivers in the future.

  17. 5 Gbps wireless transmission link with an optically pumped uni-traveling carrier photodiode mixer at the receiver.

    PubMed

    Mohammad, Ahmad W; Shams, Haymen; Balakier, Katarzyna; Graham, Chris; Natrella, Michele; Seeds, Alwyn J; Renaud, Cyril C

    2018-02-05

    We report the first demonstration of a uni-traveling carrier photodiode (UTC-PD) used as a 5 Gbps wireless receiver. In this experiment, a 35.1 GHz carrier was electrically modulated with 5 Gbps non-return with zero on-off keying (NRZ-OOK) data and transmitted wirelessly over a distance of 1.3 m. At the receiver, a UTC-PD was used as an optically pumped mixer (OPM) to down-convert the received radio frequency (RF) signal to an intermediate frequency (IF) of 11.7 GHz, before it was down-converted to the baseband using an electronic mixer. The recovered data show a clear eye diagram, and a bit error rate (BER) of less than 10 -8 was measured. The conversion loss of the UTC-PD optoelectronic mixer has been measured at 22 dB. The frequency of the local oscillator (LO) used for the UTC-PD is defined by the frequency spacing between the two optical tones, which can be broadly tuneable offering the frequency agility of this photodiode-based receiver.

  18. Low-Noise Wide Bandwith, Hot Electron Bolometer Mixers for Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    McGrath, W. R.

    1995-01-01

    Recently a novel superconductive hot-electron micro-bolometer has been proposed which is both fast and sensitive (D. E. Prober, Appl. Phys. Lett. 62, 2119, 1993). This device has several important properties which make it useful as a heterodyne sensor for radioastronomy applications at frequencies above 1 THz. The thermal response time of the device is fast enough, several 10's of picoseconds, to allow for IF's of several GHz. This bolometer mixer should operate well up to at least 10 THz. There is no energy gap limitation as in an SIS mixer, since the mixing process relies on heating of the electron gas. In fact, rf power is absorbed more uniformly above the gap frequency. The mixer noise should be near quantum-limited, and the local oscillator (LO) power requirement is very low: / 10 nW for a Nb device. One of the unique features of this device is that it employs rapid electron diffusion into a normal metal, rather than phonon emission, as the thermal conductance that cools the heated electrons. In order for diffusion to dominate over phonon emission, the device must be short, less than 0.5.

  19. Submillimeter wave detection with superconducting tunnel diodes

    NASA Technical Reports Server (NTRS)

    Wengler, Michael J.

    1992-01-01

    Superconductor-Insulator-Superconductor (SIS) diodes are the detector elements in the most sensitive heterodyne receivers available from 100 to 500 GHz. SIS mixers are the front end of radio astronomical systems around the world. SIS mixer technology is being extended to 1 THz and higher frequencies for eventual use on spaceborne astronomical experiments. Here is a short review of submillimeter SIS mixers. The role of impedance matching in the proper design of an SIS mixer is described. A variety of methods for achieving good impedance match at submillimeter frequencies are presented. The experimental state of the submillimeter SIS mixer art is described and summarized.

  20. Synthesis, structural, electronic and linear electro-optical features of new quaternary Ag2Ga2SiS6 compound

    NASA Astrophysics Data System (ADS)

    Piasecki, M.; Myronchuk, G. L.; Parasyuk, O. V.; Khyzhun, O. Y.; Fedorchuk, A. O.; Pavlyuk, V. V.; Kozer, V. R.; Sachanyuk, V. P.; El-Naggar, A. M.; Albassam, A. A.; Jedryka, J.; Kityk, I. V.

    2017-02-01

    For the first time phase equilibria and phase diagram of the AgGaS2-SiS2 system were successfully explored by differential thermal and X-ray phase analysis methods. Crystal structure of low-temperature (LT) modification of Ag2Ga2SiS6 (LT- Ag2Ga2SiS6) was studied by X-ray powder method and it belongs to tetragonal space group I-42d, with unit cell parameters a=5.7164(4) Å, c=9.8023(7) Å, V=320.32(7) Å3. Additional details regarding the crystal structure exploration are available at the web page Fachinformationszentrum Karlsruhe. X-ray photoelectron core-level and valence-band spectra were measured for pristine LT- Ag2Ga2SiS6 crystal surface. In addition, the X-ray photoelectron valence-band spectrum of LT-Ag2Ga2SiS6 was matched on a common energy scale with the X-ray emission S Kβ1,3 and Ga Kβ2 bands, which give information on the energy distribution of the S 3p and Ga 4p states, respectively. The presented X-ray spectroscopy results indicate that the valence S p and Ga p atomic states contribute mainly to the upper and central parts of the valence band of LT-Ag2Ga2SiS6, respectively, with a less significant contribution also to other valence-band regions. Band gap energy was estimated by measuring the quantum energy in the spectral range of the fundamental absorption. We have found that energy gap Eg is equal to 2.35 eV at 300 K. LT-Ag2Ga2SiS6 is a photosensitive material and reveals two spectral maxima on the curve of spectral photoconductivity spectra at λmax1 =590 nm and λmax2 =860 nm. Additionally, linear electro-optical effect of LT-Ag2Ga2SiS6 for the wavelengths of a cw He-Ne laser at 1150 nm was explored.

  1. All-Optical Quasi-Phase Matching for Laser Electron Acceleration

    DTIC Science & Technology

    2016-06-01

    T E C H N IC A L R E P O R T DTRA-TR-16-65 All-Optical Quasi -Phase Matching for Laser Electron Acceleration Distribution Statement A...outcomes of the project “All-Optical Quasi - Phase Matching for Laser Electron Acceleration”, a project awarded to the Pennsylvania State University by the...can be used to simultaneously extend the accel- eration distance beyond several Rayleigh ranges and to achieve quasi -phase matching between the laser

  2. Fiber optic multiplex optical transmission system

    NASA Technical Reports Server (NTRS)

    Bell, C. H. (Inventor)

    1977-01-01

    A multiplex optical transmission system which minimizes external interference while simultaneously receiving and transmitting video, digital data, and audio signals is described. Signals are received into subgroup mixers for blocking into respective frequency ranges. The outputs of these mixers are in turn fed to a master mixer which produces a composite electrical signal. An optical transmitter connected to the master mixer converts the composite signal into an optical signal and transmits it over a fiber optic cable to an optical receiver which receives the signal and converts it back to a composite electrical signal. A de-multiplexer is coupled to the output of the receiver for separating the composite signal back into composite video, digital data, and audio signals. A programmable optic patch board is interposed in the fiber optic cables for selectively connecting the optical signals to various receivers and transmitters.

  3. BIB mixers

    NASA Technical Reports Server (NTRS)

    1995-01-01

    We have determined that the multi-pin 'microprocessor style' packages in which current Blocked Impurity Band (BIB) devices are mounted will not meet our IF bandwidth spec of greater than 2 GHz for a practical mixer. Hence we have started to repackage the Ga:Ge BIB devices in new microwave compatible packages. The smaller size of the microwave package mount necessitates cutting the BIB array down to include only the 3 smallest detectors: 0.2, 0.4, and 0.6 mm sq. A FIR beam incident at f/1.5 can be focussed on the smallest element for wavelengths shorter than 100 microns. A more typical (easier) beam convergence of f/3 will require 0.4 mm elements at 100 microns and 0.6 mm elements at 170 microns wavelength. Since the device capacitance (parasitic loss) scales with detector size, there is a tradeoff of speed of response and optical convenience. Our existing optics produce only the slower convergence beam, so we need to redesign the optical layout and are looking at long focal length all-reflective microscope objectives. BIB detectors and the edge-coupled microbolometers have restricted IF bandwidths, an order of magnitude less than what is possible with the Schottky-diode mixers we currently use for astronomical observations. Consequently the frequencies of the FIR laser lines must be close to the astronomical line of interest to be an effective Local Oscillator (LO). We have therefore begun a coordinated effort to discover and measure new FIR laser transition lines in close frequency coincidence with important astrophysical lines. Most of this effort involves pumping isotopic variants of known good laser molecules with laser lines from isotopic variants of CO2. We have been most successful in detecting new FIR lines in deuterated ammonia. One line in particular is very close to the frequency of HD rotational line at 2675 GHz.

  4. Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex.

    PubMed

    Liang, Yansheng; Lei, Ming; Yan, Shaohui; Li, Manman; Cai, Yanan; Wang, Zhaojun; Yu, Xianghua; Yao, Baoli

    2018-01-01

    Low-refractive-index microparticles, such as hollow microspheres, have shown great significance in some applications, such as biomedical sensing and targeted drug delivery. However, optical trapping and manipulation of low-refractive-index microparticles are challenging, owing to the repelling force exerted by typical optical traps. In this paper, we demonstrated optical trapping and rotating of large-sized low-refractive-index microparticles by using quasi-perfect optical vortex (quasi-POV) beams, which were generated by Fourier transform of high-order quasi-Bessel beams. Numerical simulation was carried out to characterize the focusing property of the quasi-POV beams. The dynamics of low-refractive-index microparticles in the quasi-POV with various topological charges was investigated in detail. To improve the trapping and rotating performances of the vortex, a point trap was introduced at the center of the ring. Experimental results showed that the quasi-POV was preferable for manipulation of large-sized low-refractive-index microparticles, with its control of the particles' rotating velocity dependent only on the topological charge due to the unchanged orbital radius.

  5. A Low-Noise NbTiN Hot Electron Bolometer Mixer

    NASA Technical Reports Server (NTRS)

    Tong, C. Edward; Stern, Jeffrey; Megerian, Krikor; LeDuc, Henry; Sridharan, T. K.; Gibson, Hugh; Blundell, Raymond

    2001-01-01

    Hot electron bolometer (HEB) mixer elements, based on niobium titanium nitride (NbTiN) thin film technology, have been fabricated on crystalline quartz substrates over a 20 nm thick AlN buffer layer. The film was patterned by optical lithography, yielding bolometer elements that measure about 1 micrometer long and between 2 and 12 micrometers wide. These mixer chips were mounted in a fixed-tuned waveguide mixer block, and tested in the 600 and 800 GHz frequency range. The 3-dB output bandwidth of these mixers was determined to be about 2.5 GHz and we measured a receiver noise temperature of 270 K at 630 GHz using an intermediate frequency of 1.5 GHz. The receiver has excellent amplitude stability and the noise temperature measurements are highly repeatable. An 800 GHz receiver incorporating one of these mixer chips has recently been installed at the Sub-Millimeter Telescope in Arizona for field test and for astronomical observations.

  6. Terahertz radiation mixer

    DOEpatents

    Wanke, Michael C [Albuquerque, NM; Allen, S James [Santa Barbara, CA; Lee, Mark [Albuquerque, NM

    2008-05-20

    A terahertz radiation mixer comprises a heterodyned field-effect transistor (FET) having a high electron mobility heterostructure that provides a gatable two-dimensional electron gas in the channel region of the FET. The mixer can operate in either a broadband pinch-off mode or a narrowband resonant plasmon mode by changing a grating gate bias of the FET. The mixer can beat an RF signal frequency against a local oscillator frequency to generate an intermediate frequency difference signal in the microwave region. The mixer can have a low local oscillator power requirement and a large intermediate frequency bandwidth. The terahertz radiation mixer is particularly useful for terahertz applications requiring high resolution.

  7. Bluff Body Fuel Mixer

    NASA Technical Reports Server (NTRS)

    Cheung, Albert K. (Inventor); Hoke, James B. (Inventor); McKinney, Randal G. (Inventor)

    2017-01-01

    A combustor is provided. The combustor may include an axial fuel injection system, and a radial fuel injection system aft of the axial fuel injection system. The axial fuel injection system includes a mixer having a bluff body at an exit port of the mixer, and a fuel injector disposed within the mixer. A fuel and air mixer is also provided and comprises an outer housing with an exit port and a bluff body. The bluff body extends across the exit port of the outer housing. A fuel injection system is also provided. The systems comprise a mixer having a bluff body at an exit port of the mixer and a fuel injector disposed within the mixer.

  8. STME Hydrogen Mixer Study

    NASA Technical Reports Server (NTRS)

    Blumenthal, Rob; Kim, Dongmoon; Bache, George

    1992-01-01

    The hydrogen mixer for the Space Transportation Main Engine is used to mix cold hydrogen bypass flow with warm hydrogen coolant chamber gas, which is then fed to the injectors. It is very important to have a uniform fuel temperature at the injectors in order to minimize mixture ratio problems due to the fuel density variations. In addition, the fuel at the injector has certain total pressure requirements. In order to achieve these objectives, the hydrogen mixer must provide a thoroughly mixed fluid with a minimum pressure loss. The AEROVISC computational fluid dynamics (CFD) code was used to analyze the STME hydrogen mixer, and proved to be an effective tool in optimizing the mixer design. AEROVISC, which solves the Reynolds Stress-Averaged Navier-Stokes equations in primitive variable form, was used to assess the effectiveness of different mixer designs. Through a parametric study of mixer design variables, an optimal design was selected which minimized mixed fuel temperature variation and fuel mixer pressure loss. The use of CFD in the design process of the STME hydrogen mixer was effective in achieving an optimal mixer design while reducing the amount of hardware testing.

  9. Terahertz Mixing Characteristics of NbN Superconducting Tunnel Junctions and Related Astronomical Observations

    NASA Astrophysics Data System (ADS)

    Li, J.

    2010-01-01

    High-sensitivity superconducting SIS (superconductor-insulator-superconductor) mixers are playing an increasingly important role in the terahertz (THz) astronomical observation, which is an emerging research frontier in modern astrophysics. Superconducting SIS mixers with niobium (Nb) tunnel junctions have reached a sensitivity close to the quantum limit, but have a frequency limit about 0.7 THz (i.e., gap frequency of Nb tunnel junctions). Beyond this frequency Nb superconducting films will absorb energetic photons (i.e., energy loss) to break Cooper pairs, thereby resulting in significant degradation of the mixer performance. Therefore, it is of particular interest to develop THz superconducting SIS mixers incorporating tunnel junctions with a larger energy gap. Niobium-nitride (NbN) superconducting tunnel junctions have been long known for their large energy gap, almost double that of Nb ones. With the introduction of epitaxially grown NbN films, the fabrication technology of NbN superconducting tunnel junctions has been considerably improved in the recent years. Nevertheless, their performances are still not as good as Nb ones, and furthermore they are not yet demonstrated in real astronomical applications. Given the facts mentioned above, in this paper we systematically study the quantum mixing behaviors of NbN superconducting tunnel junctions in the THz regime and demonstrate an astronomical testing observation with a 0.5 THz superconducting SIS mixer developed with NbN tunnel junctions. The main results of this study include: (1) successful design and fabrication of a 0.4˜0.6 THz waveguide mixing circuit with the high-dielectric-constant MgO substrate; (2) successful fabrication of NbN superconducting tunnel junctions with the gap voltage reaching 5.6 mV and the quality factor as high as 15; (3) demonstration of a 0.5 THz waveguide NbN superconducting SIS mixer with a measured receiver noise temperature (no correction) as low as five times the quantum limit

  10. Quasi-Phasematched Nonlinear Optics: Materials and Devices

    DTIC Science & Technology

    2007-04-16

    the soliton energy in pump, signal and idler waves as a function of the final wave- vector mismatch in the chirped QPM gratings. We see good agreement...devices including OP-GaAs devices for broadband optical parametric generation (OPG) at mid-infrared wavelengths, bulk PPLN devices for soliton ...Carrasco, and L. Torner,"Engineering of multi-color spatial solitons with chirped-period quasi-phase-matching gratings in optical parametric amplification

  11. Timing noise measurement of 320 GHz optical pulses using an improved optoelectronic harmonic mixer.

    PubMed

    Tsuchida, Hidemi

    2006-03-01

    An improved optoelectronic harmonic mixer (OEHM) has been employed for measuring the timing noise of 320 GHz optical pulses that are generated from a 160 GHz mode-locked laser diode by the temporal Talbot effect. The OEHM makes use of a low-drive voltage LiNbO3 modulator and a W-band unitraveling carrier photodiode for converting the 320 GHz pulse intensity into a low-frequency electrical signal. The time domain demodulation technique has been used for the precise evaluation of phase noise power spectral density. The rms timing jitter has been estimated to be 311 fs for the 10 Hz-18.6 MHz bandwidth.

  12. Optical multidimensional multiple access(O-MDMA): a new concept for free-space laser communication based on photonic mixer devices

    NASA Astrophysics Data System (ADS)

    Hess, Holger; Albrecht, Martin; Grothof, Markus; Hussmann, Stephan; Schwarte, Rudolf

    2004-01-01

    Working on optical distance measurement a new optical correlator was developed at the Institute for Data Processing of the University of Siegen in the last years. The so called Photonic Mixer Device (PMD), to be meant originally for laser ranging systems, offers a lot of advantages for wireless optical data communication like high speed spatial light demodulation up to the GHz range and inherent backlight suppression. This contribution describes the application of such PMDs in a free space interconnect based on the principle of Multi Dimensional Multiple Access (MDMA) and the advantages of this new approach, starting from the MDMA principle and followed by the fundamental functionality of PMDs. After that an Optical MDMA (O-MDMA) demonstrator and first measurement results will be presented.

  13. Study of image reconstruction for terahertz indirect holography with quasi-optics receiver.

    PubMed

    Gao, Xiang; Li, Chao; Fang, Guangyou

    2013-06-01

    In this paper, an indirect holographic image reconstruction algorithm was studied for terahertz imaging with a quasi-optics receiver. Based on the combination of the reciprocity principle and modified quasi-optics theory, analytical expressions of the received spatial power distribution and its spectrum are obtained for the interference pattern of target wave and reference wave. These results clearly give the quantitative relationship between imaging quality and the parameters of a Gaussian beam, which provides a good criterion for terahertz quasi-optics transceivers design in terahertz off-axis holographic imagers. To validate the effectiveness of the proposed analysis method, some imaging results with a 0.3 THz prototype system are shown based on electromagnetic simulation.

  14. Flashback resistant pre-mixer assembly

    DOEpatents

    Laster, Walter R [Oviedo, FL; Gambacorta, Domenico [Oviedo, FL

    2012-02-14

    A pre-mixer assembly associated with a fuel supply system for mixing of air and fuel upstream from a main combustion zone in a gas turbine engine. The pre-mixer assembly includes a swirler assembly disposed about a fuel injector of the fuel supply system and a pre-mixer transition member. The swirler assembly includes a forward end defining an air inlet and an opposed aft end. The pre-mixer transition member has a forward end affixed to the aft end of the swirler assembly and an opposed aft end defining an outlet of the pre-mixer assembly. The aft end of the pre-mixer transition member is spaced from a base plate such that a gap is formed between the aft end of the pre-mixer transition member and the base plate for permitting a flow of purge air therethrough to increase a velocity of the air/fuel mixture exiting the pre-mixer assembly.

  15. Source conductance scaling for high frequency superconducting quasiparticle receivers

    NASA Technical Reports Server (NTRS)

    Ke, Qing; Feldman, M. J.

    1992-01-01

    It has been suggested that the optimum source conductance G(sub s) for the superconductor-insulator-superconductor (SIS) quasiparticle mixer should have a l/f dependence. This would imply that the critical current density of SIS junctions used for mixing should increase as frequency squared, a stringent constraint on the design of submillimeter SIS mixers, rather than in simple proportion to frequency as previously believed. We have used Tucker's quantum theory of mixing for extensive numerical calculations to determine G(sub s) for an optimized SIS receiver. We find that G(sub s) is very roughly independent of frequency (except for the best junctions at low frequency), and discuss the implications of our results for the design of submillimeter SIS mixers.

  16. Quasi-optical simulation of the electron cyclotron plasma heating in a mirror magnetic trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalashov, A. G., E-mail: ags@appl.sci-nnov.ru; Balakin, A. A.; Khusainov, T. A.

    The resonance microwave plasma heating in a large-scale open magnetic trap is simulated taking into account all the basic wave effects during the propagation of short-wavelength wave beams (diffraction, dispersion, and aberration) within the framework of the consistent quasi-optical approximation of Maxwell’s equations. The quasi-optical method is generalized to the case of inhomogeneous media with absorption dispersion, a new form of the quasi-optical equation is obtained, the efficient method for numerical integration is found, and simulation results are verified on the GDT facility (Novosibirsk).

  17. SiS in Circumstellar Shells

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Wootten, A.; Clegg, R. E. S.

    1985-07-01

    The author has observed the spectrum of SiS toward the Mira variable IRC+10216, and made a detailed model incorporating a radial SiS abundance gradient due to photodissociation by interstellar UV (Sahai, Wootten, and Clegg 1984). The sensitive search for SiS J = 7-6 and J = 6-5 lines in other carbon-rich, oxygen-rich, and S-type envelopes has revealed three new sources, CIT 6, CRL 2688 and IRC+20370, all of which are carbon-rich.

  18. Improved Optics For Quasi-Elastic Light Scattering

    NASA Technical Reports Server (NTRS)

    Cheung, Harry Michael

    1995-01-01

    Improved optical train devised for use in light-scattering measurements of quasi-elastic light scattering (QELS) and laser spectroscopy. Measurements performed on solutions, microemulsions, micellular solutions, and colloidal dispersions. Simultaneous measurements of total intensity and fluctuations in total intensity of light scattered from sample at various angles provides data used, in conjunction with diffusion coefficients, to compute sizes of particles in sample.

  19. Energy Efficient Engine Exhaust Mixer Model Technology

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Larkin, M.

    1981-01-01

    An exhaust mixer test program was conducted to define the technology required for the Energy Efficient Engine Program. The model configurations of 1/10 scale were tested in two phases. A parametric study of mixer design options, the impact of residual low pressure turbine swirl, and integration of the mixer with the structural pylon of the nacelle were investigated. The improvement of the mixer itself was also studied. Nozzle performance characteristics were obtained along with exit profiles and oil smear photographs. The sensitivity of nozzle performance to tailpipe length, lobe number, mixer penetration, and mixer modifications like scalloping and cutbacks were established. Residual turbine swirl was found detrimental to exhaust system performance and the low pressure turbine system for Energy Efficient Engine was designed so that no swirl would enter the mixer. The impact of mixer/plug gap was also established, along with importance of scalloping, cutbacks, hoods, and plug angles on high penetration mixers.

  20. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission.

    PubMed

    van Beijnum, Frerik; Rétif, Chris; Smiet, Chris B; Liu, Haitao; Lalanne, Philippe; van Exter, Martin P

    2012-12-20

    A metal film perforated by a regular array of subwavelength holes shows unexpectedly large transmission at particular wavelengths, a phenomenon known as the extraordinary optical transmission (EOT) of metal hole arrays. EOT was first attributed to surface plasmon polaritons, stimulating a renewed interest in plasmonics and metallic surfaces with subwavelength features. Experiments soon revealed that the field diffracted at a hole or slit is not a surface plasmon polariton mode alone. Further theoretical analysis predicted that the extra contribution, from quasi-cylindrical waves, also affects EOT. Here we report the experimental demonstration of the relative importance of surface plasmon polaritons and quasi-cylindrical waves in EOT by considering hole arrays of different hole densities. From the measured transmission spectra, we determine microscopic scattering parameters which allow us to show that quasi-cylindrical waves affect EOT only for high densities, when the hole spacing is roughly one wavelength. Apart from providing a deeper understanding of EOT, the determination of microscopic scattering parameters from the measurement of macroscopic optical properties paves the way to novel design strategies.

  1. Large dynamic range terahertz spectrometers based on plasmonic photomixers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Javadi, Hamid; Jarrahi, Mona

    2017-02-01

    Heterodyne terahertz spectrometers are highly in demand for space explorations and astrophysics studies. A conventional heterodyne terahertz spectrometer consists of a terahertz mixer that mixes a received terahertz signal with a local oscillator signal to generate an intermediate frequency signal in the radio frequency (RF) range, where it can be easily processed and detected by RF electronics. Schottky diode mixers, superconductor-insulator-superconductor (SIS) mixers and hot electron bolometer (HEB) mixers are the most commonly used mixers in conventional heterodyne terahertz spectrometers. While conventional heterodyne terahertz spectrometers offer high spectral resolution and high detection sensitivity levels at cryogenic temperatures, their dynamic range and bandwidth are limited by the low radiation power of existing terahertz local oscillators and narrow bandwidth of existing terahertz mixers. To address these limitations, we present a novel approach for heterodyne terahertz spectrometry based on plasmonic photomixing. The presented design replaces terahertz mixer and local oscillator of conventional heterodyne terahertz spectrometers with a plasmonic photomixer pumped by an optical local oscillator. The optical local oscillator consists of two wavelength-tunable continuous-wave optical sources with a terahertz frequency difference. As a result, the spectrometry bandwidth and dynamic range of the presented heterodyne spectrometer is not limited by radiation frequency and power restrictions of conventional terahertz sources. We demonstrate a proof-of-concept terahertz spectrometer with more than 90 dB dynamic range and 1 THz spectrometry bandwidth.

  2. Mixer assembly for a gas turbine engine having a pilot mixer with a corner flame stabilizing recirculation zone

    NASA Technical Reports Server (NTRS)

    Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor)

    2012-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer, and a pilot mixer having an annular housing in which a corner is formed between an aft portion of the housing and a bulkhead wall in which a corner recirculation zone is located to stabilize and anchor the flame of the pilot mixer. The pilot mixer can further include features to cool the annular housing, including in the area of the corner recirculation zone.

  3. Integrated optical phased arrays for quasi-Bessel-beam generation.

    PubMed

    Notaros, Jelena; Poulton, Christopher V; Byrd, Matthew J; Raval, Manan; Watts, Michael R

    2017-09-01

    Integrated optical phased arrays for generating quasi-Bessel beams are proposed and experimentally demonstrated in a CMOS-compatible platform. Owing to their elongated central beams, Bessel beams have applications in a range of fields, including multiparticle trapping and laser lithography. In this Letter, continuous Bessel theory is manipulated to formulate the phase and amplitude conditions necessary for generating free-space-propagating Bessel-Gauss beams using on-chip optical phased arrays. Discussion of the effects of select phased array parameters on the generated beam's figures of merit is included. A one-dimensional splitter-tree-based phased array architecture is modified to enable arbitrary passive control of the array's element phase and amplitude distributions. This architecture is used to experimentally demonstrate on-chip quasi-Bessel-beam generation with a ∼14  mm Bessel length and ∼30  μm power full width at half maximum.

  4. 670-GHz Schottky Diode-Based Subharmonic Mixer with CPW Circuits and 70-GHz IF

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Schlecht, Erich T.; Lee, Choonsup; Lin, Robert H.; Gill, John J.; Mehdi, Imran; Sin, Seth; Deal, William; Loi, Kwok K.; Nam, Peta; hide

    2012-01-01

    GaAs-based, sub-harmonically pumped Schottky diode mixers offer a number of advantages for array implementation in a heterodyne receiver system. Since the radio frequency (RF) and local oscillator (LO) signals are far apart, system design becomes much simpler. A proprietary planar GaAs Schottky diode process was developed that results in very low parasitic anodes that have cutoff frequencies in the tens of terahertz. This technology enables robust implementation of monolithic mixer and frequency multiplier circuits well into the terahertz frequency range. Using optical and e-beam lithography, and conventional epitaxial layer design with innovative usage of GaAs membranes and metal beam leads, high-performance terahertz circuits can be designed with high fidelity. All of these mixers use metal waveguide structures for housing. Metal machined structures for RF and LO coupling hamper these mixers to be integrated in multi-pixel heterodyne array receivers for spectroscopic and imaging applications. Moreover, the recent developments of terahertz transistors on InP substrate provide an opportunity, for the first time, to have integrated amplifiers followed by Schottky diode mixers in a heterodyne receiver at these frequencies. Since the amplifiers are developed on a planar architecture to facilitate multi-pixel array implementation, it is quite important to find alternative architecture to waveguide-based mixers.

  5. Engineered Quasi-Phase Matching for Nonlinear Quantum Optics in Waveguides

    NASA Astrophysics Data System (ADS)

    Van Camp, Mackenzie A.

    Entanglement is the hallmark of quantum mechanics. Quantum entanglement--putting two or more identical particles into a non-factorable state--has been leveraged for applications ranging from quantum computation and encryption to high-precision metrology. Entanglement is a practical engineering resource and a tool for sidestepping certain limitations of classical measurement and communication. Engineered nonlinear optical waveguides are an enabling technology for generating entangled photon pairs and manipulating the state of single photons. This dissertation reports on: i) frequency conversion of single photons from the mid-infrared to 843nm as a tool for incorporating quantum memories in quantum networks, ii) the design, fabrication, and test of a prototype broadband source of polarization and frequency entangled photons; and iii) a roadmap for further investigations of this source, including applications in quantum interferometry and high-precision optical metrology. The devices presented herein are quasi-phase-matched lithium niobate waveguides. Lithium niobate is a second-order nonlinear optical material and can mediate optical energy conversion to different wavelengths. This nonlinear effect is the basis of both quantum frequency conversion and entangled photon generation, and is enhanced by i) confining light in waveguides to increase conversion efficiency, and ii) quasi-phase matching, a technique for engineering the second-order nonlinear response by locally altering the direction of a material's polarization vector. Waveguides are formed by diffusing titanium into a lithium niobate wafer. Quasi-phase matching is achieved by electric field poling, with multiple stages of process development and optimization to fabricate the delicate structures necessary for broadband entangled photon generation. The results presented herein update and optimize past fabrication techniques, demonstrate novel optical devices, and propose future avenues for device development

  6. A reflective-type, quasi-optical metasurface filter

    NASA Astrophysics Data System (ADS)

    Sima, Boyu; Momeni Hasan Abadi, Seyed Mohamad Amin; Behdad, Nader

    2017-08-01

    We introduce a new technique for designing quasi-optical, reflective-type spatial filters. The proposed filter is a reflective metasurface with a one dimensional, frequency-dependent phase gradient along the aperture. By careful design of each unit cell of the metasurface, the phase shift gradient provided by the adjacent unit cells can be engineered to steer the beam towards a desired, anomalous reflection direction over the passband region of the filter. Outside of that range, the phase shift gradient required to produce the anomalous reflection is not present and hence, the wave is reflected towards the specular reflection direction. This way, the metasurface acts as a reflective filter in a quasi-optical system where the detector is placed along the direction of anomalous reflection. The spectral selectivity of this filter is determined by the frequency dispersion of the metasurface's phase response. Based on this principle, a prototype of the proposed metasurface filter, which operates at 10 GHz and has a bandwidth of 3%, is designed. The device is modeled using a combination of theoretical analysis using the phased-array theory and full-wave electromagnetic simulations. A prototype of this device is also fabricated and characterized using a free-space measurement system. Experimental results agree well with the simulations.

  7. Optical analysis of a compound quasi-microscope for planetary landers

    NASA Technical Reports Server (NTRS)

    Wall, S. D.; Burcher, E. E.; Huck, F. O.

    1974-01-01

    A quasi-microscope concept, consisting of facsimile camera augmented with an auxiliary lens as a magnifier, was introduced and analyzed. The performance achievable with this concept was primarily limited by a trade-off between resolution and object field; this approach leads to a limiting resolution of 20 microns when used with the Viking lander camera (which has an angular resolution of 0.04 deg). An optical system is analyzed which includes a field lens between camera and auxiliary lens to overcome this limitation. It is found that this system, referred to as a compound quasi-microscope, can provide improved resolution (to about 2 microns ) and a larger object field. However, this improvement is at the expense of increased complexity, special camera design requirements, and tighter tolerances on the distances between optical components.

  8. Advanced Optics for a Full Quasi-Optical Front Steering ECRH Upper Launcher for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moro, A.; Alessi, E.; Bruschi, A.

    2009-11-26

    A full quasi-optical setup for the internal optics of the Front Steering Electron Cyclotron Resonance Heating (ECRH) Upper Launcher for ITER was designed, proving to be feasible and favorable in terms of additional flexibility and cost reduction with respect to the former design. This full quasi-optical solution foresees the replacement of the mitre-bends in the final section of the launcher with dedicated free-space mirrors to realize the last changes of directions in the launcher. A description of the launcher is given and its advantages presented. The parameters of the expected output beams as well as preliminary evaluations of truncation effectsmore » with the physical optics GRASP code are shown. Moreover, a study of mitre-bends replacement with single mirrors for multiple beams is described. In principle it could allow the beams to be larger at the mirror locations (with a further decrease of the peak power density due to partial overlapping) and has the additional advantage to get a larger opening with compressed beams to avoid conflicts with side-walls port. Constraints on the setup, arising both from the resulting beam characteristics in the space of free parameters and from mechanical requirements are taken into account in the analysis.« less

  9. Optical Quasi-Soliton Solutions for the Cubic-Quintic Nonlinear SCHRÖDINGER Equation with Variable Coefficients

    NASA Astrophysics Data System (ADS)

    Yang, Qin; Zhang, Jie-Fang

    Optical quasi-soliton solutions for the cubic-quintic nonlinear Schrödinger equation (CQNLSE) with variable coefficients are considered. Based on the extended tanh-function method, we not only successfully obtained bright and dark quasi-soliton solutions, but also obtained the kink quasi-soliton solutions under certain parametric conditions. We conclude that the quasi-solitons induced by the combined effects of the group velocity dispersion (GVD) distribution, the nonlinearity distribution, higher-order nonlinearity distribution, and the amplification or absorption coefficient are quite different from those of the solitons induced only by the combined effects of the GVD, the nonlinearity distribution, and the amplification or absorption coefficient without considering the higher-order nonlinearity distribution (i.e. α(z)=0). Furthermore, we choose appropriate optical fiber parameters D(z) and R(z) to control the velocity of quasi-soliton and time shift, and discuss the evolution behavior of the special quasi-soliton.

  10. DREAMS-SIS: The Solar Irradiance Sensor on-board the ExoMars 2016 lander

    NASA Astrophysics Data System (ADS)

    Arruego, I.; Apéstigue, V.; Jiménez-Martín, J.; Martínez-Oter, J.; Álvarez-Ríos, F. J.; González-Guerrero, M.; Rivas, J.; Azcue, J.; Martín, I.; Toledo, D.; Gómez, L.; Jiménez-Michavila, M.; Yela, M.

    2017-07-01

    The Solar Irradiance Sensor (SIS) was part of the DREAMS (Dust characterization, Risk assessment, and Environment Analyzer on the Martian Surface) payload package on board the ExoMars 2016 Entry and Descent Module (EDM), "Schiaparelli". DREAMS was a meteorological station aimed at the measurement of several atmospheric parameters, as well as the presence of electric fields, during the surface operations of EDM. DREAMS-SIS is a highly miniaturized lightweight sensor designed for small meteorological stations, capable of estimating the aerosol optical depth (AOD) several times per sol, as well as performing a direct measurement of the global (direct plus scattered) irradiance on the Martian surface in the spectral range between 200 and 1100 nm. AOD is estimated from the irradiance measurements at two different spectral bands - Ultraviolet (UV) and near infrared (NIR) - which also enables color index (CI) analysis for the detection of clouds. Despite the failure in the landing of Schiaparelli, DREAMS-SIS is a valuable precursor for new developments being carried-on at present. The concept and design of DREAMS-SIS are here presented and its operating principles, supported by preliminary results from a short validation test, are described. Lessons learnt and future work towards a new generation of Sun irradiance sensors is also outlined.

  11. Full three-dimensional isotropic carpet cloak designed by quasi-conformal transformation optics.

    PubMed

    Silva, Daniely G; Teixeira, Poliane A; Gabrielli, Lucas H; Junqueira, Mateus A F C; Spadoti, Danilo H

    2017-09-18

    A fully three-dimensional carpet cloak presenting invisibility in all viewing angles is theoretically demonstrated. The design is developed using transformation optics and three-dimensional quasi-conformal mapping. Parametrization strategy and numerical optimization of the coordinate transformation deploying a quasi-Newton method is applied. A discussion about the minimum achievable anisotropy in the 3D transformation optics is presented. The method allows to reduce the anisotropy in the cloak and an isotropic medium could be considered. Numerical simulations confirm the strategy employed enabling the design of an isotropic reflectionless broadband carpet cloak independently of the incident light direction and polarization.

  12. Optical quasi-soliton solutions for higher-order nonlinear Schrödinger equation with variable coefficients

    NASA Astrophysics Data System (ADS)

    Zhang, Jiefang; Yang, Qin; Dai, Chaoqing

    2005-04-01

    Optical quasi-soliton solutions for higher-order nonlinear Schrödinger equation (HNLS) with variable coefficients are considered. Based on the extended tanh-function method, we successfully obtained bright and dark quasi-soliton solutions under certain parametric conditions. We conclude that the parameter k(z) is unnecessary to be zero compared with [R. Yang et al., Opt. Commun. 242 (2004) 285]. Furthermore, we choose appropriate optical fiber parameters D2(z) and D3(z) to control the velocity of quasi-soliton and time shift, and discuss the evolution behavior of the special quasi-soliton. For D3(z) = α(z) = f(z) = 0, that is to say, under the absence of the higher order terms, we give same results as early reported in [R.Y. Hao, L. Li, Z.H. Li, W.R. Xue, G.S. Zhou, Opt. Commun. 236 (2004) 79]. As discussed examples, we also analyze three optical systems with real physical significance and obtain results which can be recovered in earlier papers.

  13. Quasi-distributed sol-gel coated fiber optic oxygen sensing probe

    NASA Astrophysics Data System (ADS)

    Zolkapli, Maizatul; Saharudin, Suhairi; Herman, Sukreen Hana; Abdullah, Wan Fazlida Hanim

    2018-03-01

    In the field of aquaculture, optical sensor technology is beginning to provide alternatives to the conventional electrical sensor. Hence, the development and characterization of a multipoint quasi-distributed optical fiber sensor for oxygen measurement is reported. The system is based on 1 mm core diameter plastic optical fiber where sections of cladding have been removed and replaced with three metal complexes sol-gel films to form sensing points. The sensing locations utilize luminophores that have emission peaks at 385 nm, 405 nm and 465 nm which associated with each of the sensing points. Interrogation of the optical sensor system is through a fiber optic spectrometer incorporating narrow bandpass emission optical filter. The sensors showed comparable sensitivity and repeatability, as well as fast response and recovery towards oxygen.

  14. OPTICAL PROCESSING OF INFORMATION: Potential applications of quasi-cw partially coherent radiation in optical data recording and processing

    NASA Astrophysics Data System (ADS)

    Volkov, L. V.; Larkin, A. I.

    1994-04-01

    Theoretical and experimental investigations are reported of the potential applications of quasi-cw partially coherent radiation in optical systems based on diffraction—interference principles. It is shown that the spectral characteristics of quasi-cw radiation influence the data-handling capabilities of a holographic correlator and of a partially coherent holographic system for data acquisition. Relevant experimental results are reported.

  15. Forced Mixer Nozzle Optimization

    NASA Technical Reports Server (NTRS)

    Sheoran, Yogi; Hoover, Robert; Schuster, William; Anderson, Morris; Weir, Donald S.

    1999-01-01

    Computational fluid dynamic (CFD) and computational acoustic analyses (CAA) were performed for a TFE731-40 compound nozzle, a TFE731-60 mixer nozzle and an Energy Efficient Engine (E(sup 3)) mixer nozzle for comparison with available data. The CFD analyses were performed with a three dimensional, Navier-Stokes solution of the flowfield on an unstructured grid using the RAMPANT program. The CAA analyses were performed with the NASA Glenn MGB program using a structured grid. A successful aerodynamic solution for the TFE731-40 compound nozzle operating statically was obtained, simulating an engine operating on a test stand. Analysis of the CFD results of the TFE731-40 with the MGB program produced predicted sound power levels that agree quite well with the measured data front full-scale static engine tests. Comparison of the predicted sound pressure with the data show good agreement near the jet axis, but the noise levels are overpredicted at angles closer to the inlet. The predicted sound power level for the TFE731-60 did not agree as well with measured static engine data as the TFE731-40. Although a reduction in the predicted noise level due to the mixed flow was observed, the reduction was not as significant as the measured data. The analysis of the V2 mixer from the E(sup 3) study showed that peak temperatures predicted in the mixer exit flowfield were within 5 percent of the values measured by the exit probes. The noise predictions of the V2 mixer nozzle tended to be 3-5 dB higher in peak noise level than the measurements. In addition, the maximum frequency of the noise was also overpredicted. An analysis of the 3 candidate mixer nozzle configurations demonstrated the feasibility of using centerbody lobes and porosity to improve mixing efficiency. A final configuration was designed with a predicted thermal mixing efficiency that was 5 percent higher than the 3 candidate mixers. The results of the MGB noise calculations show that the final design will exceed the

  16. Turbofan forced mixer lobe flow modeling. 2: Three-dimensional inviscid mixer analysis (FLOMIX)

    NASA Technical Reports Server (NTRS)

    Barber, T.

    1988-01-01

    A three-dimensional potential analysis (FLOMIX) was formulated and applied to the inviscid flow over a turbofan foced mixer. The method uses a small disturbance formulation to analytically uncouple the circumferential flow from the radial and axial flow problem, thereby reducing the analysis to the solution of a series of axisymmetric problems. These equations are discretized using a flux volume formulation along a Cartesian grid. The method extends earlier applications of the Cartesian method to complex cambered geometries. The effects of power addition are also included within the potential formulation. Good agreement is obtained with an alternate small disturbance analysis for a high penetration symmetric mixer in a planar duct. In addition, calculations showing pressure distributions and induced secondary vorticity fields are presented for practical trubofan mixer configurations, and where possible, comparison was made with available experimental data. A detailed description of the required data input and coordinate definition is presented along with a sample data set for a practical forced mixer configuration. A brief description of the program structure and subroutines is also provided.

  17. Scalar transport in inline mixers with spatially periodic flows

    NASA Astrophysics Data System (ADS)

    Baskan, Ozge; Rajaei, Hadi; Speetjens, Michel F. M.; Clercx, Herman J. H.

    2017-01-01

    Spatially persisting patterns form during the downstream evolution of passive scalars in three-dimensional (3D) spatially periodic flows due to the coupled effect of stretching and folding mechanisms of the flow field. This has been investigated in many computational and theoretical studies of 2D time-periodic and 3D spatially periodic flow fields. However, experimental studies, to date, have mainly focused on flow visualization with streaks of dye rather than fully 3D scalar field measurements. Our study employs 3D particle tracking velocimetry and 3D laser-induced fluorescence to analyze the evolution of 3D flow and scalar fields and the correlation between the coherent flow/scalar field structures in a representative inline mixer, the Quatro static mixer. For this purpose an experimental setup that consists of an optically accessible test section with transparent internal elements accommodating a pressure-driven pipe flow has been built. The flow and scalar fields clearly underline the complementarity of the experimental results with numerical simulations and provide validation of the periodicity assumption needed in numerical studies. The experimental procedure employed in this investigation, which allows studying the scalar transport in the advective limit, demonstrates the suitability of the present method for exploratory mixing studies of a variety of mixing devices, beyond the Quatro static mixer.

  18. Measurement of dust optical depth using the solar irradiance sensor (SIS) onboard the ExoMars 2016 EDM

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Arruego, I.; Apéstigue, V.; Jiménez, J. J.; Gómez, L.; Yela, M.; Rannou, P.; Pommereau, J.-P.

    2017-04-01

    The solar irradiance sensor (SIS) was included in the DREAMS package onboard the ExoMars 2016 Entry Descent and Landing Demonstrator Module, and has been selected in the METEO meteorological station onboard the ExoMars 2020 Lander. This instrument is designed to measure at different time intervals the scattered flux or the sum of direct flux and scattered flux in UVA (315-400 nm) and NIR (700-1100 nm) bands. For SIS'16, these measurements are performed by a total of 3 sensors per band placed at the faces of a truncated tetrahedron with face inclination angles of 60°. The principal goal of SIS'16 design is to perform measurements of the dust opacity in UVA and NIR wavelengths ranges, crucial parameters in the understanding of the Martian dust cycle. The retrieval procedure is based on the use of radiative transfer simulations to reproduce SIS observations acquired during daytime as a function of dust opacity. Based on different sensitivity analysis, the retrieval procedure also requires to include as free parameters (1) the dust effective radius; (2) the dust effective variance; and (3) the imaginary part of the refractive index of dust particles in UVA band. We found that the imaginary part of the refractive index of dust particles does not have a big impact on NIR signal, and hence we can kept constant this parameter in the retrieval of dust opacity at this channel. In addition to dust opacity measurements, this instrument is also capable to detect and characterize clouds by looking at the time variation of the color index (CI), defined as the ratio between the observations in NIR and UVA channels, during daytime or twilight. By simulating CI signals with a radiative transfer model, the cloud opacity and cloud altitude (only during twilight) can be retrieved. Here the different retrieval procedures that are used to analyze SIS measurements, as well as the results obtained in different sensitivity analysis, are presented and discussed.

  19. Metriwave final report

    NASA Technical Reports Server (NTRS)

    Williams, Wyman

    1991-01-01

    The superconductor-insulator-superconductor (SIS) mixer is a device which is being used in the construction of very sensitive receivers in the millimeter and submillimeter wavelength regions. With its potential for conversion gain and quantum-limited performance, it is becoming a device of prime importance in radio astronomy as well as earth and planetary atmospheric research. Many of the parameters of the SIS mixer cannot be readily measured in the laboratory, however, since most commercially available test instruments use test signal powers large enough to saturate or destroy SIS junctions. Detailed here is the construction of a microwave network analyzer with extremely low test signal powers. The results of a development performed by Dynamics Technology, Inc., under a Phase 2 SBIR contract from NASA (NAS7-1025) are documented. The work resulted in a network analyzer to be delivered to workers at the Jet Propulsion Laboratory, which should be capable of SIS mixer characterization in support of their ongoing work in this area.

  20. Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene.

    PubMed

    Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D'Orazio, Antonella; Bruno, Giovanni

    2015-11-25

    In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices.

  1. Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene

    PubMed Central

    Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D’Orazio, Antonella; Bruno, Giovanni

    2015-01-01

    In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices. PMID:26603112

  2. Quasi-optical grids with thin rectangular patch/aperture elements

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao

    1993-01-01

    Theoretical analysis is presented for an efficient and accurate performance evaluation of quasi-optical grids comprised of thin rectangular patch/aperture elements with/without a dielectric substrate/superstrate. The convergence rate of this efficient technique is improved by an order of magnitude with the approximate edge conditions incorporated in the basis functions of the integral equation solution. Also presented are the interesting applications of this efficient analytical technique to the design and performance evaluation of the coupling grids and beam splitters in the optical systems as well as thermal protection sunshields used in the communication systems of satellites and spacecrafts.

  3. Quantum-limited detection of millimeter waves using superconducting tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mears, Carl Atherton

    1991-09-01

    The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit bymore » studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 ± 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker`s theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs.« less

  4. Quantum-limited detection of millimeter waves using superconducting tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mears, C.A.

    1991-09-01

    The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit bymore » studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 {plus minus} 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker's theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs.« less

  5. A Quasi-Optical Transmit/Receive Switch for the Goldstone Solar System Radar

    NASA Technical Reports Server (NTRS)

    Bhanji, Al

    1997-01-01

    A novel quasi-optical transmit/receive switch design for use with a high transmit power, low receive noise planetary imaging radar system is described. Design tradeoffs and implementation are discussed.

  6. Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media.

    PubMed

    Phillips, C R; Mayer, B W; Gallmann, L; Keller, U

    2016-07-11

    Advances in the amplification and manipulation of ultrashort laser pulses have led to revolutions in several areas. Examples include chirped pulse amplification for generating high peak-power lasers, power-scalable amplification techniques, pulse shaping via modulation of spatially-dispersed laser pulses, and efficient frequency-mixing in quasi-phase-matched nonlinear crystals to access new spectral regions. In this work, we introduce and demonstrate a new platform for nonlinear optics which has the potential to combine these separate functionalities (pulse amplification, frequency transfer, and pulse shaping) into a single monolithic device that is bandwidth- and power-scalable. The approach is based on two-dimensional (2D) patterning of quasi-phase-matching (QPM) gratings combined with optical parametric interactions involving spatially dispersed laser pulses. Our proof of principle experiment demonstrates this technique via mid-infrared optical parametric chirped pulse amplification of few-cycle pulses. Additionally, we present a detailed theoretical and numerical analysis of such 2D-QPM devices and how they can be designed.

  7. Mixer Assembly for a Gas Turbine Engine

    NASA Technical Reports Server (NTRS)

    Smith, Lance L. (Inventor); Fotache, Catalin G. (Inventor); Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Hautman, Donald J. (Inventor)

    2015-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer with fuel injection holes located between at least one radial swirler and at least one axial swirler, wherein the fuel injected into the main mixer is atomized and dispersed by the air flowing through the radial swirler and the axial swirler.

  8. Mixer Assembly for a Gas Turbine Engine

    NASA Technical Reports Server (NTRS)

    Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor); Hautman, Donald J. (Inventor); Smith, Lance L. (Inventor)

    2018-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer with fuel injection holes located between at least one radial swirler and at least one axial swirler, wherein the fuel injected into the main mixer is atomized and dispersed by the air flowing through the radial swirler and the axial swirler.

  9. Electrochemical cell apparatus having an exterior fuel mixer nozzle

    DOEpatents

    Reichner, Philip; Doshi, Vinod B.

    1992-01-01

    An electrochemical apparatus (10) is made having a generator section (22) containing electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one hot gaseous spent fuel recirculation channel (46), where the spent fuel recirculation channel (46), a portion of which is in contact with the outside of a mixer chamber (52), passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) at the entrance to the mixer chamber, and a mixer nozzle (50) is located at the entrance to the mixer chamber, where the mixer chamber (52) connects with the reforming chamber (54), and where the mixer-diffuser chamber (52) and mixer nozzle (50) are exterior to and spaced apart from the combustion chamber (24), and the generator chamber (22), and the mixer nozzle (50) can operate below 400.degree. C.

  10. Thrust Augmentation with Mixer/Ejector Systems

    NASA Technical Reports Server (NTRS)

    Presz, Walter M., Jr.; Reynolds, Gary; Hunter, Craig

    2002-01-01

    Older commercial aircraft often exceed FAA (Federal Aviation Administration) sideline noise regulations. The major problem is the jet noise associated with the high exhaust velocities of the low bypass ratio engines on such aircraft. Mixer/ejector exhaust systems can provide a simple means of reducing the jet noise on these aircraft by mixing cool ambient air with the high velocity engine gases before they are exhausted to ambient. This paper presents new information on thrust performance predictions, and thrust augmentation capabilities of mixer/ejectors. Results are presented from the recent development program of the patented Alternating Lobe Mixer Ejector Concept (ALMEC) suppressor system for the Gulfstream GII, GIIB and GIII aircraft. Mixer/ejector performance procedures are presented which include classical control volume analyses, compound compressible flow theory, lobed nozzle loss correlations and state of the art computational fluid dynamic predictions. The mixer/ejector thrust predictions are compared to subscale wind tunnel test model data and actual aircraft flight test measurements. The results demonstrate that a properly designed mixer/ejector noise suppressor can increase effective engine bypass ratio and generate large thrust gains at takeoff conditions with little or no thrust loss at cruise conditions. The cruise performance obtained for such noise suppressor systems is shown to be a strong function of installation effects on the aircraft.

  11. Folded Fabry-Perot quasi-optical ring resonator diplexer Theory and experiment

    NASA Technical Reports Server (NTRS)

    Pickett, H. M.; Chiou, A. E. T.

    1983-01-01

    Performance of folded Fabry-Perot quasi-optical ring resonator diplexers with different geometries of reflecting surfaces is investigated both theoretically and experimentally. Design of optimum surface geometry for minimum diffraction, together with the figure of merit indicating improvement in performance, are given.

  12. Dielectric prisms would improve performance of quasi-optical microwave components

    NASA Technical Reports Server (NTRS)

    Carson, J. W.

    1967-01-01

    Properties of the Brewster angle and internal reflection in a dielectric prism are proposed as the basis of a new type of element for use in oversize waveguide in quasi-optical microwave components. Waveguide loss is reduced and precision broadband attenuators, phase shifters, and directional couplers can be constructed on the basis of the properties.

  13. Biasable, Balanced, Fundamental Submillimeter Monolithic Membrane Mixer

    NASA Technical Reports Server (NTRS)

    Siegel, Peter; Schlecht, Erich; Mehdi, Imran; Gill, John; Velebir, James; Tsang, Raymond; Dengler, Robert; Lin, Robert

    2010-01-01

    rightward to the diodes. Because the RF is in a quasi- TEM (suspended, microstrip-like) mode, it impinges on the diodes in an anti-parallel mode that does not couple to the waveguide mode. This isolates the LO and RF signals. This operation is similar to a cross-bar mixer used at low frequencies, except the RF signal enters through the back-short end of the waveguide rather than through the side. The RF probe also conveys the down-converted intermediate frequency (IF) signal out to an off-chip circuit board through a simple LC low-pass filter to the left as indicated. The bias is brought to the diodes through a bypass capacitor at the top.

  14. Quasi-particle energies and optical excitations of hydrogenated and fluorinated germanene.

    PubMed

    Shu, Huabing; Li, Yunhai; Wang, Shudong; Wang, Jinlan

    2015-02-14

    Using density functional theory, the G0W0 method and Bethe-Salpeter equation calculations, we systematically explore the structural, electronic and optical properties of hydrogenated and fluorinated germanene. The hydrogenated/fluorinated germanene tends to form chair and zigzag-line configurations and its electronic and optical properties show close geometry dependence. The chair hydrogenated/fluorinated and zigzag-line fluorinated germanene are direct band-gap semiconductors, while the zigzag-line hydrogenated germanene owns an indirect band-gap. Moreover, the quasi-particle corrections are significant and strong excitonic effects with large exciton binding energies are observed. Moreover, the zigzag-line hydrogenated/fluorinated germanene shows highly anisotropic optical responses, which may be used as a good optical linear polarizer.

  15. Fabrication and characterization of 8.87 THz schottky barrier mixer diodes for mixer

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Li, Qian; An, Ning; Tong, Xiaodong; Zeng, Jianping

    2018-04-01

    In this paper we report on the fabrication and characterization of GaAs-based THz schottky barrier mixer diodes. Considering the analyzed results as well as fabrication cost and complexity, a group of trade-off parameters was determined. Electron-beam lithography and air-bridge technique have been used to obtain schottky diodes with a cut off frequency of 8.87 THz. Equivalent values of series resistance, ideal factor and junction capacitance of 10.2 (1) Ω, 1.14 (0.03) and 1.76(0.03) respectively have been measured for 0.7um diameter anode devices by DC and RF measurements. The schottky barrier diodes fabrication process is fully planar and very suitable for integration in THz frequency multiplier and mixer circuits. THz Schottky barrier diodes based on such technology with 2 μm diameter anodes have been tested at 1.6 THz in a sub-harmonic mixer.

  16. EHF Test-Bed Subharmonic Mixer.

    DTIC Science & Technology

    1981-07-14

    work undertaken between June 1979 and April 1981 to develop a low noise, subharmonically pumped mixer f or a satel- lite receiver. A further objective is...waveguide with LO filter, of structure in Fig. 7a. 27 LO( J FILTER VRF TWT - Cj C10 RF SOURCE Fig. 8. Mixer equivalent circuit at RP. zo 9 VRF j Fig. 9

  17. Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers

    NASA Technical Reports Server (NTRS)

    Skalare, Anders; McGrath, William; Bumble, Bruce; LeDuc, Henry

    2004-01-01

    A batch of experimental diffusion-cooled hot-electron bolometers (HEBs), suitable for use as mixers having input frequencies in the terahertz range and output frequencies up to about a gigahertz, exploit the superconducting/normal-conducting transition in a thin strip of tantalum. The design and operation of these HEB mixers are based on mostly the same principles as those of a prior HEB mixer that exploited the superconducting/normal- conducting transition in a thin strip of niobium and that was described elsewhere.

  18. Planar doped barrier devices for subharmonic mixers

    NASA Technical Reports Server (NTRS)

    Lee, T. H.; East, J. R.; Haddad, G. I.

    1991-01-01

    An overview is given of planar doped barrier (PDB) devices for subharmonic mixer applications. A simplified description is given of PDB characteristics along with a more complete numerical analysis of the current versus voltage characteristics of typical structures. The analysis points out the tradeoffs between the device structure and the resulting characteristics that are important for mixer performance. Preliminary low-frequency characterization results are given for the device structures, and a computer analysis of subharmonic mixer parameters and performance is presented.

  19. Instrumentation for submillimeter spectroscopy; Proceedings of the Meeting, Cannes, France, December 5, 6, 1985

    NASA Technical Reports Server (NTRS)

    Kollberg, Eric (Editor)

    1986-01-01

    The design and performance of spectroscopic instruments for submm-wave astronomy are discussed in reviews and reports. Topics examined include superconducting mixers, Schottky-diode mixers, local oscillators, antennas and quasi-optical components, spectrometry, and systems aspects. Special emphasis is given to candidate components for the 8-m heterodyne FIR and Submm Space Telescope being developed by ESA.

  20. Fiber-optic delay-line stabilization of heterodyne optical signal generator and method using same

    NASA Technical Reports Server (NTRS)

    Logan, Ronald T. (Inventor)

    1997-01-01

    The present invention is a laser heterodyne frequency generator system with a stabilizer for use in the microwave and millimeter-wave frequency ranges utilizing a photonic mixer as a photonic phase detector in a stable optical fiber delay-line. Phase and frequency fluctuations of the heterodyne laser signal generators are stabilized at microwave and millimeter wave frequencies by a delay line system operating as a frequency discriminator. The present invention is free from amplifier and mixer 1/.function. noise at microwave and millimeter-wave frequencies that typically limit phase noise performance in electronic cavity stabilized electronic oscillators. Thus, 1/.function. noise due to conventional mixers is eliminated and stable optical heterodyne generation of electrical signals is achieved.

  1. Characterization of SIS1, a Saccharomyces cerevisiae homologue of bacterial dnaJ proteins

    PubMed Central

    1991-01-01

    The Saccharomyces cerevisiae SIS1 gene was identified as a high copy number suppressor of the slow growth phenotype of strains containing mutations in the SIT4 gene, which encodes a predicted serine/threonine protein phosphatase. The SIS1 protein is similar to bacterial dnaJ proteins in the amino-terminal third and carboxyl-terminal third of the proteins. In contrast, the middle third of SIS1 is not similar to dnaJ proteins. This region of SIS1 contains a glycine/methionine-rich region which, along with more amino-terminal sequences, is required for SIS1 to associate with a protein of apparent molecular mass of 40 kD. The SIS1 gene is essential. Strains limited for the SIS1 protein accumulate cells that appear blocked for migration of the nucleus from the mother cell into the daughter cell. In addition, many of the cells become very large and contain a large vacuole. The SIS1 protein is localized throughout the cell but is more concentrated at the nucleus. About one- fourth of the SIS1 protein is released from a nuclear fraction upon treatment with RNase. We also show that overexpression of YDJ1, another yeast protein with similarity to bacterial dnaJ proteins, can not substitute for SIS1. PMID:1714460

  2. CosmoSIS: A system for MC parameter estimation

    DOE PAGES

    Bridle, S.; Dodelson, S.; Jennings, E.; ...

    2015-12-23

    CosmoSIS is a modular system for cosmological parameter estimation, based on Markov Chain Monte Carlo and related techniques. It provides a series of samplers, which drive the exploration of the parameter space, and a series of modules, which calculate the likelihood of the observed data for a given physical model, determined by the location of a sample in the parameter space. While CosmoSIS ships with a set of modules that calculate quantities of interest to cosmologists, there is nothing about the framework itself, nor in the Markov Chain Monte Carlo technique, that is specific to cosmology. Thus CosmoSIS could bemore » used for parameter estimation problems in other fields, including HEP. This paper describes the features of CosmoSIS and show an example of its use outside of cosmology. Furthermore, it also discusses how collaborative development strategies differ between two different communities: that of HEP physicists, accustomed to working in large collaborations, and that of cosmologists, who have traditionally not worked in large groups.« less

  3. DIP1 modulates stem cell homeostasis in Drosophila through regulation of sisR-1.

    PubMed

    Wong, Jing Ting; Akhbar, Farzanah; Ng, Amanda Yunn Ee; Tay, Mandy Li-Ian; Loi, Gladys Jing En; Pek, Jun Wei

    2017-10-02

    Stable intronic sequence RNAs (sisRNAs) are by-products of splicing and regulate gene expression. How sisRNAs are regulated is unclear. Here we report that a double-stranded RNA binding protein, Disco-interacting protein 1 (DIP1) regulates sisRNAs in Drosophila. DIP1 negatively regulates the abundance of sisR-1 and INE-1 sisRNAs. Fine-tuning of sisR-1 by DIP1 is important to maintain female germline stem cell homeostasis by modulating germline stem cell differentiation and niche adhesion. Drosophila DIP1 localizes to a nuclear body (satellite body) and associates with the fourth chromosome, which contains a very high density of INE-1 transposable element sequences that are processed into sisRNAs. DIP1 presumably acts outside the satellite bodies to regulate sisR-1, which is not on the fourth chromosome. Thus, our study identifies DIP1 as a sisRNA regulatory protein that controls germline stem cell self-renewal in Drosophila.Stable intronic sequence RNAs (sisRNAs) are by-products of splicing from introns with roles in embryonic development in Drosophila. Here, the authors show that the RNA binding protein DIP1 regulates sisRNAs in Drosophila, which is necessary for germline stem cell homeostasis.

  4. Optical properties of quasi-tetragonal BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Chen, P.; Podraza, N. J.; Xu, X. S.; Melville, A.; Vlahos, E.; Gopalan, V.; Ramesh, R.; Schlom, D. G.; Musfeldt, J. L.

    2010-03-01

    Optical transmission spectroscopy and spectroscopic ellipsometry were used to extract the optical properties of an epitaxially grown quasi-tetragonal BiFeO3 thin film in the near infrared to near ultraviolet range. The absorption spectrum is overall blue shifted compared with that of rhombohedral BiFeO3, with an absorption onset near 2.25 eV, a direct 3.1 eV band gap, and charge transfer excitations that are ˜0.4 eV higher than those of the rhombohedral counterpart. We interpret these results in terms of structural strain and local symmetry breaking.

  5. 21 CFR 888.4210 - Cement mixer for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in mixing...

  6. 21 CFR 888.4210 - Cement mixer for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in mixing...

  7. 21 CFR 888.4210 - Cement mixer for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in mixing...

  8. 21 CFR 888.4210 - Cement mixer for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in mixing...

  9. 21 CFR 888.4210 - Cement mixer for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in mixing...

  10. Surface assessment of CaF2 deep-ultraviolet and vacuum-ultraviolet optical components by the quasi-Brewster angle technique.

    PubMed

    Wang, Jue; Maier, Robert L

    2006-08-01

    The requirements for optical components have drastically increased for the deep-ultraviolet and vacuum-ultraviolet spectral regions. Low optical loss, high laser damage threshold, and long lifetime fluoride optics are required for microlithographic applications. A nondestructive quasi-Brewster angle technique (qBAT) has been developed for evaluating the quality of optical surfaces including both top surface and subsurface information. By using effective medium approximation, the negative quasi-Brewster angle shift at wavelengths longer than 200 nm has been used to model the distribution of subsurface damage, whereas the positive quasi-Brewster angle shift for wavelengths shorter than 200 nm has been explained by subsurface contamination. The top surface roughness depicted by the qBAT is consistent with atomic force microscopy measurements. The depth and the microporous structure of the subsurface damage measured by the qBAT has been confirmed by magnetorheological finishing. The technique has been extended to evaluate both polished and antireflection-coated CaF(2) components.

  11. 21 CFR 868.5330 - Breathing gas mixer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing gas mixer. 868.5330 Section 868.5330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5330 Breathing gas mixer. (a...

  12. 21 CFR 868.5330 - Breathing gas mixer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing gas mixer. 868.5330 Section 868.5330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5330 Breathing gas mixer. (a...

  13. Influence of the Exomars 2016 lander elements in the uncertainty of irradiance measurements for the dreams-SIS instrument.

    NASA Astrophysics Data System (ADS)

    Alvarez-Ríos, F. J.; Jiménez, J. J.; Apestigue, V.; Arruego, I.; Martin, I.; Sanchez-Brea, L. M.

    2017-09-01

    DREAMS SIS is an optical radiometer that will provide measurement of the sun irradiance on the Mars surface [1],[2],[3]. The instrument will be on board as payload of the EDM, (Entry and Descend module) of EXOMARS 2016 ESA [4] mission showed in Fig. 1a. (Courtesy of ESA).

  14. Symmetric Gain Optoelectronic Mixers for LADAR

    DTIC Science & Technology

    2008-12-01

    photodetector in the receiver is used as an optoelectronic mixer (OEM). Adding gain to the optoelectronic mixer allows the following transimpedance ...output is the low frequency difference signal, several orders of magnitude lower than the LO signal. Therefore, the gain of the transimpedance ... amplifier (TZA) following the photodetector can be increased, improving LADAR range. The metal-semiconductor- metal (MSM) Schottky detector is such a

  15. SIS (Superconductor-Insulator-Superconductor) Mixer Research.

    DTIC Science & Technology

    1988-02-01

    performed in that work was unique in that it employed the complete equations of the quantum theory of mixing in the three- frequency , low -intermediate...addition, these results cast doubt upon recent reports of low - noise single-junction 5IS rec, ivers which have extremely wide bandwidths. In conjunction...have significant and widespread implications for any active arrayed device which has a very low driving power. 3. High frequency : The third objective

  16. Electrokinetically driven active micro-mixers utilizing zeta potential variation induced by field effect

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Yen; Lee, Gwo-Bin; Fu, Lung-Ming; Lee, Kuo-Hoong; Yang, Ruey-Jen

    2004-10-01

    This paper presents a new electrokinetically driven active micro-mixer which uses localized capacitance effects to induce zeta potential variations along the surface of silica-based microchannels. The mixer is fabricated by etching bulk flow and shielding electrode channels into glass substrates and then depositing Au/Cr thin films within the latter to form capacitor electrodes, which establish localized zeta potential variations near the electrical double layer (EDL) region of the electroosmotic flow (EOF) within the microchannels. The potential variations induce flow velocity changes within a homogeneous fluid and a rapid mixing effect if an alternating electric field is provided. The current experimental data confirm that the fluid velocity can be actively controlled by using the capacitance effect of the buried shielding electrodes to vary the zeta potential along the channel walls. While compared with commonly used planar electrodes across the microchannels, the buried shielding electrodes prevent current leakage caused by bad bonding and allow direct optical observation during operation. It also shows that the buried shielding electrodes can significantly induce the field effect, resulting in higher variations of zeta potential. Computational fluid dynamic simulations are also used to study the fluid characteristics of the developed active mixers. The numerical and experimental results demonstrate that the developed microfluidic device permits a high degree of control over the fluid flow and an efficient mixing effect. Moreover, the developed device could be used as a pumping device as well. The development of the active electrokinetically driven micro-mixer could be crucial for micro-total-analysis-systems.

  17. Research of UHPC properties prepared with industrial mixer

    NASA Astrophysics Data System (ADS)

    Šerelis, E.; Vaitkevičius, V.; Kerševičius, V.

    2017-09-01

    Ultra-high performance concrete (UHPC) mixture with advanced mechanical and durability properties was created using decent Zyklos ZZ50HE mixer. Zyklos ZZ50HE rotating pan mixer is similar to mixer which has common concrete plants. In experiment UHPC was prepared with Zyklos ZZ50HE mixer and thereafter best composition was selected and prepared with industrial HPGM 1125 mixer. Experiment results revealed that UHPC with W/C=0.29 and advanced mechanical and durability properties can be prepared. In experiment tremendous amount of micro steel fibres (up to 147 kg/m3) were incorporated in UHPC. Concrete with excellent salt scaling resistance and great mechanical properties was obtained. Compressive strength was increased about 30 % from 116 MPa to 150 MPa and flexural strength was increased about 5 times from 6.7 to 36.2 MPa. Salt-scaling resistance at 40 cycles in 3 % NaCl solution varied from 0.006 kg/m2 to 0.197 kg/m2. There were a few attempts to create UHPC and UHPFRC with decent technology, however, unsuccessfully till now. In the world practice this new material is currently used in the construction of bridges and viaducts.

  18. Experimental evaluation of exhaust mixers for an Energy Efficient Engine

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Kraft, G.

    1980-01-01

    Static scale model tests were conducted to evaluate exhaust system mixers for a high bypass ratio engine as part of the NASA sponsored Energy Efficient program. Gross thrust coefficients were measured for a series of mixer configurations which included variations in the number of mixer lobes, tailpipe length, mixer penetration, and length. All of these parameters have a significant impact on exhaust system performance. In addition, flow visualization pictures and pressure/temperature traverses were obtained for selected configurations. Parametric performance trends are discussed and the results considered relative to the Energy Efficient Engine program goals.

  19. 7 CFR 58.228 - Dump hoppers, screens, mixers and conveyors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Dump hoppers, screens, mixers and conveyors. 58.228... Service 1 Equipment and Utensils § 58.228 Dump hoppers, screens, mixers and conveyors. The product contact surfaces of dump hoppers, screens, mixers and conveyors which are used in the process of transferring dry...

  20. Instant provisioning of wavelength service using quasi-circuit optical burst switching

    NASA Astrophysics Data System (ADS)

    Xie, Hongyi; Li, Yanhe; Zheng, Xiaoping; Zhang, Hanyi

    2006-09-01

    Due to the recent outstanding advancement of optical networking technology, pervasive Grid computing will be a feasible option in the near future. As Grid infrastructure, optical networks must be able to handle different Grid traffic patterns with various traffic characteristics as well as different QoS requirements. With current optical switching technology, optical circuit switching is suitable for data-intensive Grid applications while optical burst switching is suitable to submit small Grid jobs. However, there would be high bandwidth short-lived traffic in some emerging Grid applications such as multimedia editing. This kind of traffic couldn't be well supported by both OCS and conventional OBS because of considerable path setup delay and bandwidth waste in OCS and inherent loss in OBS. Quasi-Circuit OBS (QCOBS) is proposed in this paper to address this challenge, providing one-way reserved, nearly lossless, instant provisioned wavelength service in OBS networks. Simulation results show that QCOBS achieves lossless transmission at low and moderate loads, and very low loss probability at high loads with proper guard time configuration.

  1. Double dipole antenna SIS receivers at 100 and 400 GHz

    NASA Technical Reports Server (NTRS)

    Skalare, A.; Vandestadt, H.; Degraauw, T.; Panhuyzen, R. A.; Dierichs, M. M. T. M.

    1992-01-01

    Antenna patterns were measured between 95 and 120 GHz for a double dipole antenna / ellipsoidal lens combination. The structure produces a non-astigmatic beam with low side lobe levels over that whole band. A heterodyne SIS receiver based on this concept gave a best noise temperature of 145 K DSB at 98 GHz. Measurements were also made with a 400 GHz heterodyne SIS receiver, using a double dipole antenna in conjunction with a hyperhemispherical lens. The best noise temperature was 220 K DSB at 402 GHz. On-chip stubs were used to tune out the SIS junction capacitance.

  2. Inverted Ultrathin Organic Solar Cells with a Quasi-Grating Structure for Efficient Carrier Collection and Dip-less Visible Optical Absorption.

    PubMed

    In, Sungjun; Park, Namkyoo

    2016-02-23

    We propose a metallic-particle-based two-dimensional quasi-grating structure for application to an organic solar cell. With the use of oblate spheroidal nanoparticles in contact with an anode of inverted, ultrathin organic solar cells (OSCs), the quasi-grating structure offers strong hybridization between localized surface plasmons and plasmonic gap modes leading to broadband (300~800 nm) and uniform (average ~90%) optical absorption spectra. Both strong optical enhancement in extreme confinement within the active layer (90 nm) and improved hole collection are thus realized. A coupled optical-electrical multi-physics optimization shows a large (~33%) enhancement in the optical absorption (corresponding to an absorption efficiency of ~47%, AM1.5G weighted, visible) when compared to a control OSC without the quasi-grating structure. That translates into a significant electrical performance gain of ~22% in short circuit current and ~15% in the power conversion efficiency (PCE), leading to an energy conversion efficiency (~6%) which is comparable to that of optically-thick inverted OSCs (3-7%). Detailed analysis on the influences of mode hybridization to optical field distributions, exciton generation rate, charge carrier collection efficiency and electrical conversion efficiency is provided, to offer an integrated understanding on the coupled optical-electrical optimization of ultrathin OSCs.

  3. Acoustic characteristics of externally blown flap systems with mixer nozzles

    NASA Technical Reports Server (NTRS)

    Goodykoontz, J. H.; Dorsch, R. G.; Wagner, J. M.

    1974-01-01

    Noise tests were conducted on a large scale, cold flow model of an engine-under-the-wing externally blown flap lift augmentation system employing a mixer nozzle. The mixer nozzle was used to reduce the flap impingement velocity and, consequently, try to attenuate the additional noise caused by the interaction between the jet exhaust and the wing flap. Results from the mixer nozzle tests are summarized and compared with the results for a conical nozzle. The comparison showed that with the mixer nozzle, less noise was generated when the trailing flap was in a typical landing setting (e.g., 60 deg). However, for a takeoff flap setting (20 deg), there was little or no difference in the acoustic characteristics when either the mixer or conical nozzle was used.

  4. Credit BG. This view looks northwest (290°) in the mixer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. This view looks northwest (290°) in the mixer room at the 30-gallon Baker-Perkins model 121/2 PVM mixer and its associated equipment. The hopper in the left background feeds ingredients to the mixing pot when the hopper is mounted on the mixer frame; the hoist overhead is used to mount the hopper. The mixing pot is in its lowered position beneath the mixer blades. The pot is normally raised and secured to the upper half of the mixer, and a vacuum is applied during mixing operations to prevent the entrainment of air bubbles in the mix. A second mixing pot appears in the right background, and a pot vacuum lid appears in the extreme right foreground. The equipment on the palette in the left foreground is not related to the mixer. Note the explosion-proof fluorescent lighting fixtures suspended from the ceiling. The floor has an electrically conductive coating to dissipate static electrical charges - Jet Propulsion Laboratory Edwards Facility, Mixer & Casting Building, Edwards Air Force Base, Boron, Kern County, CA

  5. Concrete Mixing Methods and Concrete Mixers: State of the Art

    PubMed Central

    Ferraris, Chiara F.

    2001-01-01

    As for all materials, the performance of concrete is determined by its microstructure. Its microstructure is determined by its composition, its curing conditions, and also by the mixing method and mixer conditions used to process the concrete. This paper gives an overview of the various types of mixing methods and concrete mixers commercially available used by the concrete industry. There are two main types of mixers used: batch mixers and continuous mixers. Batch mixers are the most common. To determine the mixing method best suited for a specific application, factors to be considered include: location of the construction site (distance from the batching plant), the amount of concrete needed, the construction schedule (volume of concrete needed per hour), and the cost. Ultimately, the quality of the concrete produced determines its performance after placement. An important measure of the quality is the homogeneity of the material after mixing. This paper will review mixing methods in regards to the quality of the concrete produced. Some procedures used to determine the effectiveness of the mixing will be examined. PMID:27500029

  6. Noise tests of a mixer nozzle-externally blown flap system

    NASA Technical Reports Server (NTRS)

    Goodykoontz, J. H.; Dorsch, R. G.; Groesbeck, D. E.

    1973-01-01

    Noise tests were conducted on a large scale model of an externally blown flap lift augmentation system, employing a mixer nozzle. The mixer nozzle consisted of seven flow passages with a total equivalent diameter of 40 centimeters. With the flaps in the 30 - 60 deg setting, the noise level below the wing was less with the mixer nozzle than when a standard circular nozzle was used. At the 10 - 20 deg flap setting, the noise levels were about the same when either nozzle was used. With retracted flaps, the noise level was higher when the mixer nozzle was used.

  7. Effects of Corrugated Temperature Sheets on Optical Propagation along Quasi-Horizontal Paths in the Stably Stratified Atmosphere

    DTIC Science & Technology

    2015-12-11

    diameter) are consistent with theoretical predictions based on Taylor’s frozen- turbulence hypothesis and the geometrical - optics approximation. Short...theoretical predictions based on Taylor’s frozen- turbulence hypothesis and the geometrical - optics approximation. Short-term (less than a few seconds... turbulent , quasi-horizontal interfaces, or “sheets”. Collocated in- situ and optical field measurements conducted in the atmospheric surface layer

  8. Rogue wave generation by inelastic quasi-soliton collisions in optical fibres

    NASA Astrophysics Data System (ADS)

    Eberhard, M.; Savojardo, A.; Maruta, A.; Römer, R. A.

    2017-11-01

    We demonstrate a simple cascade mechanism that drives the formation and emergence of rogue waves in the generalized non-linear Schr\\"{o}dinger equation with third-order dispersion. This conceptually novel generation mechanism is based on inelastic collisions of quasi-solitons and is well described by a resonant-like scattering behaviour for the energy transfer in pair-wise quasi-soliton collisions. Our results demonstrate a threshold for rogue wave emergence and the existence of a period of reduced amplitudes - a "calm before the storm" - preceding the arrival of a rogue wave event. Comparing with ultra-long time window simulations of $3.865\\times 10^{6}$ps we observe the statistics of rogue waves in optical fibres with an unprecedented level of detail and accuracy, unambiguously establishing the long-ranged character of the rogue wave power-distribution function over seven orders of magnitude.

  9. A superconducting tunnel junction receiver for millimeter-wave astronomy

    NASA Technical Reports Server (NTRS)

    Pan, S. K.; Kerr, A. R.

    1986-01-01

    The development and construction of an ultralow noise heterodyne receiver for millimeter wave astronomy is described along with its use for 115.3 GHz Co line observations. The receiver uses a Superconductor-Insulator-Superconductor (SIS) quasiparticle tunnel junction mixer to convert the millimeter wave signal to a microwave intermediate frequency. Experiments aimed at quantitative verification of J. R. Tucker's quantum mixer theory are studied, to see whether it could be used as the basis for the design of a practical receiver. The experimental results were in excellent agreement with the theory, assuming the three frequency approximation. Infinite available gain and negative output resistance were observed for the first time, nonclassical effects which are not seen in conventional diode mixers. Using Tucker's theory, an SIS receiver was then designed and constructed. At 115 GHz, the single sideband receiver noise temperature is 83K, the lowest ever reported in this frequency range. A CO survey toward Cygnus-X region, using this SIS receiver on the Columbia-GISS 4 ft. telescope, is also described.

  10. Nonlinear Modeling and Control of a Propellant Mixer

    NASA Technical Reports Server (NTRS)

    Barbieri, Enrique; Richter, Hanz; Figueroa, Fernando

    2003-01-01

    A mixing chamber used in rocket engine combustion testing at NASA Stennis Space Center is modeled by a second order nonlinear MIMO system. The mixer is used to condition the thermodynamic properties of cryogenic liquid propellant by controlled injection of the same substance in the gaseous phase. The three inputs of the mixer are the positions of the valves regulating the liquid and gas flows at the inlets, and the position of the exit valve regulating the flow of conditioned propellant. The outputs to be tracked and/or regulated are mixer internal pressure, exit mass flow, and exit temperature. The outputs must conform to test specifications dictated by the type of rocket engine or component being tested downstream of the mixer. Feedback linearization is used to achieve tracking and regulation of the outputs. It is shown that the system is minimum-phase provided certain conditions on the parameters are satisfied. The conditions are shown to have physical interpretation.

  11. SynopSIS: integrating physician sign-out with the electronic medical record.

    PubMed

    Sarkar, Urmimala; Carter, Jonathan T; Omachi, Theodore A; Vidyarthi, Arpana R; Cucina, Russell; Bokser, Seth; van Eaton, Erik; Blum, Michael

    2007-09-01

    Safe delivery of care depends on effective communication among all health care providers, especially during transfers of care. The traditional medical chart does not adequately support such communication. We designed a patient-tracking tool that enhances provider communication and supports clinical decision making. To develop a problem-based patient-tracking tool, called Sign-out, Information Retrieval, and Summary (SynopSIS), in order to support patient tracking, transfers of care (ie, sign-outs), and daily rounds. Tertiary-care, university-based teaching hospital. SynopSIS compiles and organizes information from the electronic medical record to support hospital discharge and disposition decisions, daily provider decisions, and overnight or cross-coverage decisions. It reflects the provider's patient-care and daily work-flow needs. We plan to use Web-based surveys, audits of daily use, and interdisciplinary focus groups to evaluate SynopSIS's impact on communication between providers, quality of sign-out, patient continuity of care, and rounding efficiency. We expect SynopSIS to improve care by facilitating communication between care teams, standardizing sign-out, and automating daily review of clinical and laboratory trends. SynopSIS redesigns the clinical chart to better serve provider and patient needs. (c) 2007 Society of Hospital Medicine.

  12. Hot-electron bolometer terahertz mixers for the Herschel Space Observatory.

    PubMed

    Cherednichenko, Sergey; Drakinskiy, Vladimir; Berg, Therese; Khosropanah, Pourya; Kollberg, Erik

    2008-03-01

    We report on low noise terahertz mixers (1.4-1.9 THz) developed for the heterodyne spectrometer onboard the Herschel Space Observatory. The mixers employ double slot antenna integrated superconducting hot-electron bolometers (HEBs) made of thin NbN films. The mixer performance was characterized in terms of detection sensitivity across the entire rf band by using a Fourier transform spectrometer (from 0.5 to 2.5 THz, with 30 GHz resolution) and also by measuring the mixer noise temperature at a limited number of discrete frequencies. The lowest mixer noise temperature recorded was 750 K [double sideband (DSB)] at 1.6 THz and 950 K DSB at 1.9 THz local oscillator (LO) frequencies. Averaged across the intermediate frequency band of 2.4-4.8 GHz, the mixer noise temperature was 1100 K DSB at 1.6 THz and 1450 K DSB at 1.9 THz LO frequencies. The HEB heterodyne receiver stability has been analyzed and compared to the HEB stability in the direct detection mode. The optimal local oscillator power was determined and found to be in a 200-500 nW range.

  13. Methodology for calculating power consumption of planetary mixers

    NASA Astrophysics Data System (ADS)

    Antsiferov, S. I.; Voronov, V. P.; Evtushenko, E. I.; Yakovlev, E. A.

    2018-03-01

    The paper presents the methodology and equations for calculating the power consumption necessary to overcome the resistance of a dry mixture caused by the movement of cylindrical rods in the body of a planetary mixer, as well as the calculation of the power consumed by idling mixers of this type. The equations take into account the size and physico-mechanical properties of mixing material, the size and shape of the mixer's working elements and the kinematics of its movement. The dependence of the power consumption on the angle of rotation in the plane perpendicular to the axis of rotation of the working member is presented.

  14. Noise and loss in balanced and subharmonically pumped mixers. I - Theory. II - Application

    NASA Technical Reports Server (NTRS)

    Kerr, A. R.

    1979-01-01

    The theory of noise and frequency conversion for two-diode balanced and subharmonically pumped mixers is presented. The analysis is based on the equivalent circuit of the Schottky diode, having nonlinear capacitance, series resistance, and shot and thermal noise. Expressions for the conversion loss, noise temperature, and input and output impedances are determined in a form suitable for numerical analysis. In Part II, the application of the theory to practical mixers is demonstrated, and the properties of some two-diode mixers are examined. The subharmonically pumped mixer is found to be much more strongly affected by the loop inductance than the balanced mixer, and the ideal two-diode mixer using exponential diodes has a multiport noise-equivalent network (attenuator) similar to that of the ideal single-diode mixer. It is concluded that the theory can be extended to mixers with more than two diodes and will be useful for their design and analysis, provided a suitable nonlinear analysis is available to determine the diode waveforms.

  15. Alternate paddle configuration for improved wear resistance in the saltstone mixer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M.; Fowley, M.

    The Saltstone Production Facility has a 10-inch Readco-Kurimoto continuous mixer that mixes the premix dry feeds and low-level waste salt solution to make fresh (uncured) saltstone. Inspection of the mixer in January 2013 showed significant wear on the third, fourth and fifth paddle pairs after the conveying augers. A 2-inch Readco-Kurimoto continuous mixer was used to test alternate paddle configurations for use in the 10-inch mixer to decrease the wear rate on the paddles. Two wear tests were conducted to investigate a method of reducing wear on the mixer paddles. The first test (wear test 2a) had a paddle configurationmore » similar to the currently installed 10-inch mixer in the SPF. This test established baseline wear. The second test (wear test 2b) had a reconfigured paddle arrangement that replaced the flat paddles with helical paddles for paddle pairs 2 - 6 and aligned paddle pair 1 with the augers. The intent of the reconfiguration was to more effectively convey the partially wetted dry feeds through the transition region and into the liquid feed where paddle wear is reduced due to dry feeds and salt solution being mixed at the intended water to premix ratio. The design of the helical paddles provides conveyance through the transition region to the liquid feed inlet. The alignment with the auger is aimed to provide a smoother transition (minimizing the discontinuity between the auger and paddle pair 1) into the downstream paddles. A soft metal with low wear resistance (6000 series aluminum) was used for the wear testing paddles to determine wear patterns while minimizing run time and maximizing wear rate. For the two paddle configurations tested using the scaled 2-inch Readco-Kurimoto continuous mixer, with the first six paddles after the augers replaced by the wear paddles and the remaining paddles were stainless steel. Since the 10-inch SPF mixer is designed with the liquid inlet centered over paddle pairs 5 and 6, the scaled 2-inch mixer was

  16. Planar Submillimeter-Wave Mixer Technology with Integrated Antenna

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Gautam; Mehdi, Imran; Gill, John J.; Lee, Choonsup; lombart, Muria L.; Thomas, Betrand

    2010-01-01

    High-performance mixers at terahertz frequencies require good matching between the coupling circuits such as antennas and local oscillators and the diode embedding impedance. With the availability of amplifiers at submillimeter wavelengths and the need to have multi-pixel imagers and cameras, planar mixer architecture is required to have an integrated system. An integrated mixer with planar antenna provides a compact and optimized design at terahertz frequencies. Moreover, it leads to a planar architecture that enables efficient interconnect with submillimeter-wave amplifiers. In this architecture, a planar slot antenna is designed on a thin gallium arsenide (GaAs) membrane in such a way that the beam on either side of the membrane is symmetric and has good beam profile with high coupling efficiency. A coplanar waveguide (CPW) coupled Schottky diode mixer is designed and integrated with the antenna. In this architecture, the local oscillator (LO) is coupled through one side of the antenna and the RF from the other side, without requiring any beam sp litters or diplexers. The intermediate frequency (IF) comes out on a 50-ohm CPW line at the edge of the mixer chip, which can be wire-bonded to external circuits. This unique terahertz mixer has an integrated single planar antenna for coupling both the radio frequency (RF) input and LO injection without any diplexer or beamsplitters. The design utilizes novel planar slot antenna architecture on a 3- mthick GaAs membrane. This work is required to enable future multi-pixel terahertz receivers for astrophysics missions, and lightweight and compact receivers for planetary missions to the outer planets in our solar system. Also, this technology can be used in tera hertz radar imaging applications as well as for testing of quantum cascade lasers (QCLs).

  17. A picoliter-volume mixer for microfluidic analytical systems.

    PubMed

    He, B; Burke, B J; Zhang, X; Zhang, R; Regnier, F E

    2001-05-01

    Mixing confluent liquid streams is an important, but difficult operation in microfluidic systems. This paper reports the construction and characterization of a 100-pL mixer for liquids transported by electroosmotic flow. Mixing was achieved in a microfabricated device with multiple intersecting channels of varying lengths and a bimodal width distribution. All channels running parallel to the direction of flow were 5 microm in width whereas larger 27-microm-width channels ran back and forth through the parallel channel network at a 45 degrees angle. The channel network composing the mixer was approximately 10 microm deep. It was observed that little mixing of the confluent solvent streams occurred in the 100-microm-wide, 300-microm-long mixer inlet channel where mixing would be achieved almost exclusively by diffusion. In contrast, after passage through the channel network in the approximately 200-microm-length static mixer bed, mixing was complete as determined by confocal microscopy and CCD detection. Theoretical simulations were also performed in an attempt to describe the extent of mixing in microfabricated systems.

  18. 11. VIEW OF HORIZONTAL MIXER (GedgeGray Co., Lockland, Ohio), LOCATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF HORIZONTAL MIXER (Gedge-Gray Co., Lockland, Ohio), LOCATED IN THE BASEMENT, MIXED ANIMAL FEED TO ORDER. THE WATER-POWERED MIXER WAS SUPERSEDED BY TWO ELECTRIC-POWERED VERTICAL MIXERS, ADDED IN THE 1940S. Photographer: Louise Taft Cawood, July 1986 - Alexander's Grist Mill, Lock 37 on Ohio & Erie Canal, South of Cleveland, Valley View, Cuyahoga County, OH

  19. CosmoSIS: Modular cosmological parameter estimation

    DOE PAGES

    Zuntz, J.; Paterno, M.; Jennings, E.; ...

    2015-06-09

    Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. Here we present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in CosmoSIS, including CAMB, Planck, cosmicmore » shear calculations, and a suite of samplers. Lastly, we illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis« less

  20. Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers

    Science.gov Websites

    to Its Fleet Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet on Twitter Bookmark

  1. High-pressure liquid chromatographic gradient mixer

    DOEpatents

    Daughton, C.G.; Sakaji, R.H.

    1982-09-08

    A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.

  2. Characterization of Sugar Insensitive (sis) Mutants of Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, Susan I.

    Despite the fact that soluble sugar levels have been postulated to play an important role in the control of a wide variety of plant metabolic and developmental pathways, the mechanisms by which plants respond to soluble sugar levels remain poorly understood. Plant responses to soluble sugar levels are also important in bioenergy production, as plant sugar responses are believed to help regulate both carbon fixation and carbon partitioning. For example, accumulation of soluble sugars, such as sucrose and glucose, in source tissues leads to feedback inhibition of photosynthesis, thereby decreasing rates of carbon fixation. Soluble sugar levels can also affectmore » sink strengths, affecting the rates of accumulation of carbon-based compounds into both particular molecular forms (e.g. carbohydrates versus lipids versus proteins) and particular plant organs and tissues. Mutants of Arabidopsis that are defective in the ability to respond to soluble sugar levels were isolated and used as tools to identify some of the factors involved in plant sugar response. These sugar insensitive (sis) mutants were isolated by screening mutagenized seeds for those that were able to germinate and develop relatively normal shoot systems on media containing 0.3 M glucose or 0.3 M sucrose. At these sugar concentrations, wild-type Arabidopsis germinate and produce substantial root systems, but show little to no shoot development. Twenty-eight sis mutants were isolated during the course of four independent mutant screens. Based on a preliminary characterization of all of these mutants, sis3 and sis6 were chosen for further study. Both of these mutations appear to lie in previously uncharacterized loci. Unlike many other sugar-response mutants, sis3 mutants exhibit a wild-type or near wild-type response in all phytohormone-response assays conducted to date. The sis6-1 mutation is unusual in that it appears to be due to overexpression of a gene, rather than representing a loss of function

  3. On-chip quasi-digital optical switch using silicon microring resonator-coupled Mach-Zehnder interferometer.

    PubMed

    Song, Junfeng; Luo, Xianshu; Tu, Xiaoguang; Jia, Lianxi; Fang, Qing; Liow, Tsung-Yang; Yu, Mingbin; Lo, Guo-Qiang

    2013-05-20

    In this work, we demonstrate thermo-optical quasi-digital optical switch (q-DOS) using silicon microring resonator-coupled Mach-Zehnder interferometer. The optical transmission spectra show box-like response with 1-dB and 3-dB bandwidths of ~1.3 nm and ~1.6 nm, respectively. Such broadband flat-top optical response improves the tolerance to the light source wavelength fluctuation of ± 6 Å and temperature variation of ± 6 °C. Dynamic characterizations show the device with switching power of ~37 mW, switching time of ~7 μs, and on/off ratio of > 30 dB. For performance comparison, we also demonstrate a carrier injection-based electro-optical q-DOS by integrating lateral P-i-N junction with the microring resonator, which significantly reduces power consumption to ~12 mW and switching time to ~0.7 ns only.

  4. Internal optical bistability of quasi-two-dimensional semiconductor nanoheterostructures

    NASA Astrophysics Data System (ADS)

    Derevyanchuk, Oleksandr V.; Kramar, Natalia K.; Kramar, Valeriy M.

    2018-01-01

    We represent the results of numerical computations of the frequency and temperature domains of possible realization of internal optical bistability in flat quasi-two-dimensional semiconductor nanoheterostructures with a single quantum well (i.e., nanofilms). Particular computations have been made for a nanofilm of layered semiconductor PbI2 embedded in dielectric medium, i.e. ethylene-methacrylic acid (E-MAA) copolymer. It is shown that an increase in the nanofilm's thickness leads to a long-wave shift of the frequency range of the manifestation the phenomenon of bistability, to increase the size of the hysteresis loop, as well as to the expansion of the temperature interval at which the realization of this phenomenon is possible.

  5. Flow regimes in a T-mixer operating with a binary mixture

    NASA Astrophysics Data System (ADS)

    Camarri, Simone; Siconolfi, Lorenzo; Galletti, Chiara; Salvetti, Maria Vittoria

    2015-11-01

    Efficient mixing in small volumes is a key target in many processes. Among the most common micro-devices, passive T-shaped micro-mixers are widely used. For this reason, T-mixers have been studied in the literature and its working flow regimes have been identified. However, in most of the available theoretical studies it is assumed that only one working fluid is used, i.e. that the same fluid at the same thermodynamic conditions is entering the two inlet conduits of the mixer. Conversely, the practical use of micro-devices often involves the mixing of two different fluids or of the same fluid at different thermodynamic conditions. In this case flow regimes significantly different than those observed for a single working fluid may occur. The present work aims at investigating the flow regimes in a T-mixers when water at two different temperatures, i.e. having different viscosity and density, is entering the mixer. The effect of the temperature difference on the flow regimes in a 3D T-mixer is investigated by DNS and stability analysis and the results are compared to the case in which a single working fluid is employed.

  6. Experimental Investigation of Spatially-Periodic Scalar Patterns in an Inline Mixer

    NASA Astrophysics Data System (ADS)

    Baskan, Ozge; Speetjens, Michel F. M.; Clercx, Herman J. H.

    2015-11-01

    Spatially persisting patterns with exponentially decaying intensities form during the downstream evolution of passive scalars in three-dimensional (3D) spatially periodic flows due to the coupled effect of the chaotic nature of the flow and the diffusivity of the material. This has been investigated in many computational and theoretical studies on 3D spatially-periodic flow fields. However, in the limit of zero-diffusivity, the evolution of the scalar fields results in more detailed structures that can only be captured by experiments due to limitations in the computational tools. Our study employs the-state-of-the-art experimental methods to analyze the evolution of 3D advective scalar field in a representative inline mixer, called Quatro static mixer. The experimental setup consists of an optically accessible test section with transparent internal elements, accommodating a pressure-driven pipe flow and equipped with 3D Laser-Induced Fluorescence. The results reveal that the continuous process of stretching and folding of material creates finer structures as the flow progresses, which is an indicator of chaotic advection and the experiments outperform the simulations by revealing far greater level of detail.

  7. GUI for Computational Simulation of a Propellant Mixer

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Richter, Hanz; Barbieri, Enrique; Granger, Jamie

    2005-01-01

    Control Panel is a computer program that generates a graphical user interface (GUI) for computational simulation of a rocket-test-stand propellant mixer in which gaseous hydrogen (GH2) is injected into flowing liquid hydrogen (LH2) to obtain a combined flow having desired thermodynamic properties. The GUI is used in conjunction with software that models the mixer as a system having three inputs (the positions of the GH2 and LH2 inlet valves and an outlet valve) and three outputs (the pressure inside the mixer and the outlet flow temperature and flow rate). The user can specify valve characteristics and thermodynamic properties of the input fluids via userfriendly dialog boxes. The user can enter temporally varying input values or temporally varying desired output values. The GUI provides (1) a set-point calculator function for determining fixed valve positions that yield desired output values and (2) simulation functions that predict the response of the mixer to variations in the properties of the LH2 and GH2 and manual- or feedback-control variations in valve positions. The GUI enables scheduling of a sequence of operations that includes switching from manual to feedback control when a certain event occurs.

  8. Cross-Stream PIV Measurements of Jets With Internal Lobed Mixers

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2004-01-01

    With emphasis being placed on enhanced mixing of jet plumes for noise reduction and on predictions of jet noise based upon turbulent kinetic energy, unsteady measurements of jet plumes are a very important part of jet noise studies. Given that hot flows are of most practical interest, optical techniques such as Particle Image Velocimetry (PIV) are applicable. When the flow has strong azimuthal features, such as those generated by chevrons or lobed mixers, traditional PIV, which aligns the measurement plane parallel to the dominant flow direction is very inefficient, requiring many planes of data to be acquired and stacked up to produce the desired flow cross-sections. This paper presents PIV data acquired in a plane normal to the jet axis, directly measuring the cross-stream gradients and features of an internally mixed nozzle operating at aircraft engine flow conditions. These nozzle systems included variations in lobed mixer penetration, lobe count, lobe scalloping, and nozzle length. Several cases validating the accuracy of the PIV data are examined along with examples of its use in answering questions about the jet noise generation processes in these nozzles. Of most interest is the relationship of low frequency aft-directed noise with turbulence kinetic energy and mean velocity.

  9. A Matlab-Based Graphical User Interface for Simulation and Control Design of a Hydrogen Mixer

    NASA Technical Reports Server (NTRS)

    Richter, Hanz; Figueroa, Fernando

    2003-01-01

    A Graphical User Interface (GUI) that facilitates prediction and control design tasks for a propellant mixer is described. The Hydrogen mixer is used in rocket test stand operations at the NASA John C. Stennis Space Center. The mixer injects gaseous hydrogen (GH2) into a stream of liquid hydrogen (LH2) to obtain a combined flow with desired thermodynamic properties. The flows of GH2 and LH2 into the mixer are regulated by two control valves, and a third control valve is installed at the exit of the mixer to regulate the combined flow. The three valves may be simultaneously operated in order to achieve any desired combination of total flow, exit temperature and mixer pressure within the range of operation. The mixer, thus, constitutes a three-input, three-output system. A mathematical model of the mixer has been obtained and validated with experimental data. The GUI presented here uses the model to predict mixer response under diverse conditions.

  10. INTERIOR VIEW OF MIXER LOCATED ON SECOND FLOOR OF BATCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF MIXER LOCATED ON SECOND FLOOR OF BATCH PLANT. RECENTLY PURCHASED TO REPLACE OLD MIXER. USED TO MIX THE BATCH - Chambers-McKee Window Glass Company, Batch Plant, Clay Avenue Extension, Jeannette, Westmoreland County, PA

  11. Computer design of microfluidic mixers for protein/RNA folding studies.

    PubMed

    Inguva, Venkatesh; Kathuria, Sagar V; Bilsel, Osman; Perot, Blair James

    2018-01-01

    Kinetic studies of biological macromolecules increasingly use microfluidic mixers to initiate and monitor reaction progress. A motivation for using microfluidic mixers is to reduce sample consumption and decrease mixing time to microseconds. Some applications, such as small-angle x-ray scattering, also require large (>10 micron) sampling areas to ensure high signal-to-noise ratios and to minimize parasitic scattering. Chaotic to marginally turbulent mixers are well suited for these applications because this class of mixers provides a good middle ground between existing laminar and turbulent mixers. In this study, we model various chaotic to marginally turbulent mixing concepts such as flow turning, flow splitting, and vortex generation using computational fluid dynamics for optimization of mixing efficiency and observation volume. Design iterations show flow turning to be the best candidate for chaotic/marginally turbulent mixing. A qualitative experimental test is performed on the finalized design with mixing of 10 M urea and water to validate the flow turning unsteady mixing concept as a viable option for RNA and protein folding studies. A comparison of direct numerical simulations (DNS) and turbulence models suggests that the applicability of turbulence models to these flow regimes may be limited.

  12. Solution immersed silicon (SIS)-based biosensors: a new approach in biosensing.

    PubMed

    Diware, M S; Cho, H M; Chegal, W; Cho, Y J; Jo, J H; O, S W; Paek, S H; Yoon, Y H; Kim, D

    2015-02-07

    A novel, solution immersed silicon (SIS)-based sensor has been developed which employs the non-reflecting condition (NRC) for a p-polarized wave. The SIS sensor's response is almost independent of change in the refractive index (RI) of a buffer solution (BS) which makes it capable of measuring low-concentration and/or low-molecular-weight compounds.

  13. High pressure liquid chromatographic gradient mixer

    DOEpatents

    Daughton, Christian G.; Sakaji, Richard H.

    1985-01-01

    A gradient mixer which effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum "band-broadening".

  14. Interferometric source of multi-color, multi-beam entangled photons with mirror and mixer

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-06-01

    53 Systems and methods are described for an interferometric source of multi-color, multi-beam entangled photons. An apparatus includes: a multi-refringent device optically coupled to a source of coherent energy, the multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device i) including a mirror and a mixer and ii) converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a tunable phase adjuster optically coupled to the condenser device, the tunable phase adjuster changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometeric multi-color entangled photon beam; and a beam splitter optically coupled to the condenser device, the beam splitter combining the first interferometeric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam.

  15. Turbofan forced mixer lobe flow modeling. Part 3: Application to augment engines

    NASA Technical Reports Server (NTRS)

    Barber, T.; Moore, G. C.; Blatt, J. R.

    1988-01-01

    Military engines frequently need large quantities of thrust for short periods of time. The addition of an augmentor can provide such thrust increases but with a penalty of increased duct length and engine weight. The addition of a forced mixer to the augmentor improves performance and reduces the penalty, as well as providing a method for siting the required flame holders. In this report two augmentor concepts are investigated: a swirl-mixer augmentor and a mixer-flameholder augmentor. Several designs for each concept are included and an experimental assessment of one of the swirl-mixer augmentors is presented.

  16. Noiseless optical amplification in quasi-phase-matched bulk lithium niobate

    NASA Astrophysics Data System (ADS)

    Lovering, D. J.; Levenson, J. A.; Vidakovic, P.; Webjörn, J.; Russell, P. St. J.

    1996-09-01

    An optical parametric amplifier (OPA) has been demonstrated in bulk, periodically poled lithium niobate and is shown to operate with a noise figure well below the classical limit. In contrast to conventional OPA's, this device uses quasi-phase matching to provide the coupling between the pump and the signal. Comparison of the measured performance with that of a theoretical model reveals that the main intrinsic contribution to the output noise is due to spatial and temporal mode mixing, which arises as a consequence of tight focusing of the incident beams. Factors that affect the performance of this amplifier are identified theoretically and their relative importance investigated for both amplification and squeezing.

  17. A Multidisciplinary Approach to Mixer-Ejector Analysis and Design

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric, S.; Seidel, Jonathan, A.

    2012-01-01

    The design of an engine for a civil supersonic aircraft presents a difficult multidisciplinary problem to propulsion system engineers. There are numerous competing requirements for the engine, such as to be efficient during cruise while yet quiet enough at takeoff to meet airport noise regulations. The use of mixer-ejector nozzles presents one possible solution to this challenge. However, designing a mixer-ejector which will successfully address both of these concerns is a difficult proposition. Presented in this paper is an integrated multidisciplinary approach to the analysis and design of these systems. A process that uses several low-fidelity tools to evaluate both the performance and acoustics of mixer-ejectors nozzles is described. This process is further expanded to include system-level modeling of engines and aircraft to determine the effects on mission performance and noise near airports. The overall process is developed in the OpenMDAO framework currently being developed by NASA. From the developed process, sample results are given for a notional mixer-ejector design, thereby demonstrating the capabilities of the method.

  18. SEPIA - a new single pixel receiver at the APEX telescope

    NASA Astrophysics Data System (ADS)

    Belitsky, V.; Lapkin, I.; Fredrixon, M.; Meledin, D.; Sundin, E.; Billade, B.; Ferm, S.-E.; Pavolotsky, A.; Rashid, H.; Strandberg, M.; Desmaris, V.; Ermakov, A.; Krause, S.; Olberg, M.; Aghdam, P.; Shafiee, S.; Bergman, P.; Beck, E. De; Olofsson, H.; Conway, J.; Breuck, C. De; Immer, K.; Yagoubov, P.; Montenegro-Montes, F. M.; Torstensson, K.; Pérez-Beaupuits, J.-P.; Klein, T.; Boland, W.; Baryshev, A. M.; Hesper, R.; Barkhof, J.; Adema, J.; Bekema, M. E.; Koops, A.

    2018-04-01

    Context. We describe the new Swedish-ESO PI Instrument for APEX (SEPIA) receiver, which was designed and built by the Group for Advanced Receiver Development (GARD), at Onsala Space Observatory (OSO) in collaboration with ESO. It was installed and commissioned at the APEX telescope during 2015 with an ALMA Band 5 receiver channel and updated with a new frequency channel (ALMA Band 9) in February 2016. Aim. This manuscript aims to provide, for observers who use the SEPIA receiver, a reference in terms of the hardware description, optics and performance as well as the commissioning results. Methods: Out of three available receiver cartridge positions in SEPIA, the two current frequency channels, corresponding to ALMA Band 5, the RF band 158-211 GHz, and Band 9, the RF band 600-722 GHz, provide state-of-the-art dual polarization receivers. The Band 5 frequency channel uses 2SB SIS mixers with an average SSB noise temperature around 45 K with IF (intermediate frequency) band 4-8 GHz for each sideband providing total 4 × 4 GHz IF band. The Band 9 frequency channel uses DSB SIS mixers with a noise temperature of 75-125 K with IF band 4-12 GHz for each polarization. Results: Both current SEPIA receiver channels are available to all APEX observers.

  19. Competing collinear and noncollinear interactions in chirped quasi-phase-matched optical parametric amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charbonneau-Lefort, Mathieu; Afeyan, Bedros; Fejer, M. M.

    Chirped quasi-phase-matched optical parametric amplifiers (chirped QPM OPAs) are investigated experimentally. The measured collinear gain is constant over a broad bandwidth, which makes these devices attractive candidates for use in femtosecond amplifier systems. The experiment also shows that chirped QPM OPAs support noncollinear gain-guided modes. These modes can dominate the desired collinear gain and generate intense parametric fluorescence. Finally, design guidelines to mitigate these parasitic processes are discussed.

  20. Liquid/Gas Flow Mixers

    NASA Technical Reports Server (NTRS)

    Fabris, Gracio

    1994-01-01

    Improved devices mix gases and liquids into bubbly or foamy flows. Generates flowing, homogeneous foams or homogeneous dispersions of small, noncoalescing bubbles entrained in flowing liquids. Mixers useful in liquid-metal magnetohydrodynamic electric-power generator, froth flotation in mining industry, wastewater treatment, aerobic digestion, and stripping hydrocarbon contaminants from ground water.

  1. Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design.

    PubMed

    Gao, Hui; Li, Yang; Chen, Lianwei; Jin, Jinjin; Pu, Mingbo; Li, Xiong; Gao, Ping; Wang, Changtao; Luo, Xiangang; Hong, Minghui

    2018-01-03

    The quasi-Talbot effect of orbital angular momentum (OAM) beams, in which the centers are placed in a rotationally symmetric position, is demonstrated both numerically and experimentally for the first time. Since its multiplication factor is much higher than the conventional fractional Talbot effect, the quasi-Talbot effect can be used in the generation of vortex beam arrays. A metasurface based on this theory was designed and fabricated to test the validity of this assumption. The agreement between the numerical and measured results suggests the practicability of this method to realize vortex beam arrays with high integrated levels, which can open a new door to achieve various potential uses related to optical vortex arrays in integrated optical systems for wide-ranging applications.

  2. Low-noise and wideband hot-electron superconductive mixer for terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Karasik, Boris S.; Skalare, Anders; McGrath, William R.; Bumble, Bruce; Leduc, Henry G.; Barner, J. B.; Kleinsasser, Alan W.; Burke, P. J.; Schoelkopf, Robert J.; Prober, Daniel E.

    1998-11-01

    Superconductive hot-electron bolometer (HEB) mixers have been built and tested in the frequency range from 1.1 THz to 2.5 THz. The mixer device is a 0.15 - 0.3 micrometer microbridge made from a 10 nm thick Nb film. This device employs diffusion as a cooling mechanism for hot electrons. The double sideband noise temperature was measured to be less than or equal to 3000 K at 2.5 THz and the mixer IF bandwidth is expected to be at least 10 GHz for a 0.1 micrometer long device. The local oscillator (LO) power dissipated in the HEB microbridge was 20 - 100 nW. Further improvement of the mixer characteristics can be potentially achieved by using Al microbridges. The advantages and parameters of such devices are evaluated. The HEB mixer is a primary candidate for ground based, airborne and spaceborne heterodyne instruments at THz frequencies. HEB receivers are planned for use on the NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) and the ESA Far Infrared and Submillimeter Space Telescope (FIRST). The prospects of a submicron-size YBa2Cu3O7-(delta ) (YBCO) HEB are discussed. The expected LO power of 1 - 10 (mu) W and SSB noise temperature of approximately equals 2000 K may make this mixer attractive for various remote sensing applications.

  3. The development of mixer machine for organic animal feed production: Proposed study

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Wahab, R. Abdul; Zakaria, Supaat; Feriyanto, Dafit; Nor, M. I. F. Che Mohd; Muzarpar, Syafiq

    2017-09-01

    Mixer machine plays a major role in producing homogenous composition of animal feed. Long time production, inhomogeneous and minor agglomeration has been observed by existing mixer. Therefore, this paper proposed continuous mixer to enhance mixing efficiency with shorter time of mixing process in order to abbreviate the whole process in animal feed production. Through calculation of torque, torsion, bending, power and energy consumption will perform in mixer machine process. Proposed mixer machine is designed by two layer buckets with purpose for continuity of mixing process. Mixing process was performed by 4 blades which consists of various arm length such as 50, 100,150 and 225 mm in 60 rpm velocity clockwise rotation. Therefore by using this machine will produce the homogenous composition of animal feed through nutrition analysis and short operation time of mixing process approximately of 5 minutes. Therefore, the production of animal feed will suitable for various animals including poultry and aquatic fish. This mixer will available for various organic material in animal feed production. Therefore, this paper will highlights some areas such as continues animal feed supply chain and bio-based animal feed.

  4. TEX-SIS FOLLOW-UP: Student Follow-up Management Information System. Activities Manual.

    ERIC Educational Resources Information Center

    Tarrant County Junior Coll. District, Ft. Worth, TX.

    Project FOLLOW-UP was conducted to develop, test, and validate a statewide management information system for follow-up of Texas public junior and community college students. This activities manual provides an overview of the resultant student information system (TEX-SIS) and its characteristics. Seven subsystems comprise SIS, each with its own…

  5. Efficacy of the Supports Intensity Scale (SIS) to Predict Extraordinary Support Needs

    ERIC Educational Resources Information Center

    Wehmeyer, Michael; Chapman, Theodore E.; Little, Todd D.; Thompson, James R.; Schalock, Robert; Tasse, Marc J.

    2009-01-01

    Data were collected on 274 adults to investigate the efficacy of the Supports Intensity Scale (SIS) as a tool to measure the support needs of individuals with intellectual and related developmental disabilities. Findings showed that SIS scores contributed significantly to a model that predicted greater levels of support need. Moreover, scores from…

  6. The spurious response of microwave photonic mixer

    NASA Astrophysics Data System (ADS)

    Xiao, Yongchuan; Zhong, Guoshun; Qu, Pengfei; Sun, Lijun

    2018-02-01

    Microwave photonic mixer is a potential solution for wideband information systems due to the ultra-wide operating bandwidth, high LO-to-RF isolation, the intrinsic immunity to electromagnetic interference, and the compatibility with exsiting microwave photonic transmission systems. The spurious response of microwave photonic mixer cascading in series a pair of Mach-Zehnder interferometric intensity modulators has been simulated and analyzed in this paper. The low order spurious products caused by the nonlinearity of modulators are non-negligible, and the proper IF frequency and accurate bias-controlling are of great importance to mitigate the impact of spurious products.

  7. Axial static mixer

    DOEpatents

    Sandrock, H.E.

    1982-05-06

    Static axial mixing apparatus includes a plurality of channels, forming flow paths of different dimensions. The axial mixer includes a flow adjusting device for adjustable selective control of flow resistance of various flow paths in order to provide substantially identical flows through the various channels, thereby reducing nonuniform coating of interior surfaces of the channels. The flow adjusting device may include diaphragm valves, and may further include a pressure regulating system therefor.

  8. Sound suppression mixer

    NASA Technical Reports Server (NTRS)

    Brown, William H. (Inventor)

    1994-01-01

    A gas turbine engine flow mixer includes at least one chute having first and second spaced apart sidewalls joined together at a leading edge, with the sidewalls having first and second trailing edges defining therebetween a chute outlet. The first trailing edge is spaced longitudinally downstream from the second trailing edge for defining a septum in the first sidewall extending downstream from the second trailing edge. The septum includes a plurality of noise attenuating apertures.

  9. Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers.

    PubMed

    Ugwu, C U; Ogbonna, J C; Tanaka, H

    2002-04-01

    The feasibility of improving mass transfer characteristics of inclined tubular photobioreactors by installation of static mixers was investigated. The mass transfer characteristics of the tubular photobioreactor varied depending on the type (shape) and the number of static mixers. The volumetric oxygen transfer coefficient ( k(L)a) and gas hold up of the photobioreactor with internal static mixers were significantly higher than those of the photobioreactor without static mixers. The k(L)a and gas hold up increased with the number of static mixers but the mixing time became longer due to restricted liquid flow through the static mixers. By installing the static mixers, the liquid flow changed from plug flow to turbulent mixing so that cells were moved between the surface and bottom of the photobioreactor. In outdoor culture of Chlorella sorokiniana, the photobioreactor with static mixers gave higher biomass productivities irrespective of the standing biomass concentration and solar radiation. The effectiveness of the static mixers (average percentage increase in the productivities of the photobioreactor with static mixers over the productivities obtained without static mixers) was higher at higher standing biomass concentrations and on cloudy days (solar radiation below 6 MJ m(-2) day(-1)).

  10. Numerical Investigation on Aerodynamic and Combustion Performance of Chevron Mixer Inside an Afterburner.

    PubMed

    Yong, Shan; JingZhou, Zhang; Yameng, Wang

    2014-11-01

    To improve the performance of the afterburner for the turbofan engine, an innovative type of mixer, namely, the chevron mixer, was considered to enhance the mixture between the core flow and the bypass flow. Computational fluid dynamics (CFD) simulations investigated the aerodynamic performances and combustion characteristics of the chevron mixer inside a typical afterburner. Three types of mixer, namely, CC (chevrons tilted into core flow), CB (chevrons tilted into bypass flow), and CA (chevrons tilted into core flow and bypass flow alternately), respectively, were studied on the aerodynamic performances of mixing process. The chevrons arrangement has significant effect on the mixing characteristics and the CA mode seems to be advantageous for the generation of the stronger streamwise vortices with lower aerodynamic loss. Further investigations on combustion characteristics for CA mode were performed. Calculation results reveal that the local temperature distribution at the leading edge section of flame holder is improved under the action of streamwise vortices shedding from chevron mixers. Consequently, the combustion efficiency increased by 3.5% compared with confluent mixer under the same fuel supply scheme.

  11. HgCdTe Photoconductive Mixers for 2-8 THz

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Boreiko, R. T.; Sivananthan, S.; Ashokan, R.

    2001-01-01

    Heterodyne spectroscopy has been taken to wavelengths as short as 63 micrometers with Schottky-diode mixers. Schottkys, however, are relatively insensitive compared to superconducting mixers such as the hot-electron microbolometer (HEB), which has an effective quantum efficiency of 3% at 120 micrometers (2.5 THz). Although HEB sensitivities are bound to improve, there will always be losses associated with antenna coupling of radiation into sub-micron size devices. Another approach to far infrared (FIR) mixer design is to use a photoconductive device which can be made much larger than a wavelength, and thus act as its own antenna. For example, HgCdTe photodiodes have been used as mixers in the lambda = 10 micrometers band for over 25 years, with sensitivities now only a factor of 2 from the quantum-noise-limit. HgCdTe can also be applied at FIR wavelengths, but surprisingly little work has been done to date. The exception is the pioneering work of Spears and Kostiuk and Spears, who developed HgCdTe photomixers for the 20-120 micrometer region. The spectral versatility of the HgCdTe alloy is well recognized for wavelengths as long as 8-20 micrometers. What is not so recognized, however, is that theoretically there is no long wavelength limit for appropriately composited HgCdTe. Although Spears successfully demonstrated a photoconductive response from HgCdTe at 120 micrometers, this initial effort was apparently never followed up, in part because of the difficulty of controlling the HgCdTe alloy composition with liquid-phase-epitaxy (LPE) techniques. With the availability of precise molecular-beam-epitaxy (MBE) since the early 1990's, it is now appropriate to reconsider HgCdTe for detector applications longward of lambda = 20 micrometers. We recently initiated an effort to fabricate detectors and mixers using II-VI materials for FIR wavelengths. Of particular interest are device structures called superlattices, which offer a number of advantages for high sensitivity

  12. Topics in the optimization of millimeter-wave mixers

    NASA Technical Reports Server (NTRS)

    Siegel, P. H.; Kerr, A. R.; Hwang, W.

    1984-01-01

    A user oriented computer program for the analysis of single-ended Schottky diode mixers is described. The program is used to compute the performance of a 140 to 220 GHz mixer and excellent agreement with measurements at 150 and 180 GHz is obtained. A sensitivity analysis indicates the importance of various diode and mount characteristics on the mixer performance. A computer program for the analysis of varactor diode multipliers is described. The diode operates in either the reverse biased varactor mode or with substantial forward current flow where the conversion mechanism is predominantly resistive. A description and analysis of a new H-plane rectangular waveguide transformer is reported. The transformer is made quickly and easily in split-block waveguide using a standard slitting saw. It is particularly suited for use in the millimeter-wave band, replacing conventional electroformed stepped transformers. A theoretical analysis of the transformer is given and good agreement is obtained with measurements made at X-band.

  13. Superconducting terahertz mixer using a transition-edge microbolometer

    NASA Technical Reports Server (NTRS)

    Prober, D. E.

    1993-01-01

    We present a new device concept for a mixer element for THz frequencies. This uses a superconducting transition-edge microbridge biased at the center of its superconducting transition near 4.2 K. It is fed from an antenna or waveguide structure. Power from a local oscillator and an RF signal produce a temperature and resulting resistance variation at the difference frequency. The new aspect is the use of a very short bridge in which rapid (less than 0.1 ns) outdiffusion of hot electrons occurs. This gives large intermediate frequency (IF) response. The mixer offers about 4 GHz IF bandwidth, about 80 ohm RF resistive impedance, good match to the IF amplifier, and requires only 1-20 nW of local oscillator power. The upper RF frequency is determined by antenna or waveguide properties. Predicted mixer conversion efficiency is 1/8, and predicted double-sideband receiver noise temperatures are 260 and 90 K for transition widths of 0.1 and 0.5 Tc, respectively.

  14. Qualification test of the Ross Double Planetary Mixer

    NASA Technical Reports Server (NTRS)

    Lueders, Kurt F.

    1993-01-01

    This test report describes the qualification test of the Ross Double Planetary Mixer used to mix room temperature vulcanized (RTV) silicone (Dow Corning 90-006-2) for the redesigned solid rocket motor (RSRM) nozzle joints. Testing was completed 18 June 1993 in the M-113A Nozzle Fabrication Facility at Thiokol Corporation, Space Operations, Brigham City, Utah. The Ross mixer provides better mixing and better control on temperature and humidity, resulting in better quality RTV and a longer usable pot life. The test began on 3 May 1993 and was stopped due to operator error during the tensile strength and elongation testing. Specimens were ruined without gathering any useful data. A 'no test' was declared, the problem was remedied, and the test was re-run with MSFC approval. The test was run and all pass/fail criteria were met, most with a considerable margin. The Ross Double Planetary Mixer met all certification objectives and is recommended for immediate use for mixing RTV silicone for RSRM nozzle joints.

  15. Overexpression of the essential Sis1 chaperone reduces TDP-43 effects on toxicity and proteolysis

    PubMed Central

    Park, Sei-Kyoung; Hong, Joo Y.; Arslan, Fatih; Tietsort, Alex; Tank, Elizabeth M. H.; Li, Xingli

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by selective loss of motor neurons with inclusions frequently containing the RNA/DNA binding protein TDP-43. Using a yeast model of ALS exhibiting TDP-43 dependent toxicity, we now show that TDP-43 overexpression dramatically alters cell shape and reduces ubiquitin dependent proteolysis of a reporter construct. Furthermore, we show that an excess of the Hsp40 chaperone, Sis1, reduced TDP-43’s effect on toxicity, cell shape and proteolysis. The strength of these effects was influenced by the presence of the endogenous yeast prion, [PIN+]. Although overexpression of Sis1 altered the TDP-43 aggregation pattern, we did not detect physical association of Sis1 with TDP-43, suggesting the possibility of indirect effects on TDP-43 aggregation. Furthermore, overexpression of the mammalian Sis1 homologue, DNAJB1, relieves TDP-43 mediated toxicity in primary rodent cortical neurons, suggesting that Sis1 and its homologues may have neuroprotective effects in ALS. PMID:28531192

  16. Airfoil-shaped micro-mixers for reducing fouling on membrane surfaces

    DOEpatents

    Ho, Clifford K; Altman, Susan J; Clem, Paul G; Hibbs, Michael; Cook, Adam W

    2012-10-23

    An array of airfoil-shaped micro-mixers that enhances fluid mixing within permeable membrane channels, such as used in reverse-osmosis filtration units, while minimizing additional pressure drop. The enhanced mixing reduces fouling of the membrane surfaces. The airfoil-shaped micro-mixer can also be coated with or comprised of biofouling-resistant (biocidal/germicidal) ingredients.

  17. Lobed Mixer Optimization for Advanced Ejector Geometries

    NASA Technical Reports Server (NTRS)

    Waitz, Ian A.

    1996-01-01

    The overall objectives are: 1) to pursue analytical, computational, and experimental studies that enhance basic understanding of forced mixing phenomena relevant to supersonic jet noise reduction, and 2) to integrate this enhanced understanding (analytical, computational, and empirical) into a design-oriented model of a mixer-ejector noise suppression system. The work is focused on ejector geometries and flow conditions typical of those being investigated in the NASA High Speed Research Program (HSRP). The research will be carried out in collaboration with the NASA HSRP Nozzle Integrated Technology Development (ITD) Team, and will both contribute to, and benefit from, the results of other HSRP research. The noise suppressor system model that is being developed under this grant is distinct from analytical tools developed by industry because it directly links details of lobe geometry to mixer-ejector performance. In addition, the model provides a 'technology road map to define gaps in the current understanding of various phenomena related to mixer-ejector design and to help prioritize research areas. This report describes research completed in the past year, as well as work proposed for the following year.

  18. Reliability of sternal instability scale (SIS) for transverse sternotomy in lung transplantation (LTX).

    PubMed

    Fuller, Louise M; El-Ansary, Doa; Button, Brenda; Bondarenko, Janet; Marasco, Silvana; Snell, Greg; Holland, Anne E

    2018-01-25

    A surgical incision for bilateral sequential lung transplantation (BSLTX) is the "clam shell" (CSI) approach via bilateral anterior thoracotomies and a transverse sternotomy to allow for sequential replacement of the lungs. This can be associated with significant post-operative pain, bony overriding or sternal instability. The sternal instability scale (SIS) is a non-invasive manual assessment tool that can be used to detect early bony non-union or instability following CSI; however, its reliability is unknown. This prospective blinded reliability study aimed to assess intra-rater and inter-rater reliability of the SIS following lung transplantation. Participants post BSLTX aged older than 18 years underwent sternal assessment utilizing the SIS. Two assessors examined the sternum using a standardized protocol at two separate time points with a test-re-test time of 48 hours. The outcome measure was SIS tool using four categories from 0 (clinically stable) to 3 (separated sternum with overriding). In total, 20 participants (75% female) with a mean age of 48 years (SD 17) and mean pain score of 3 out of 10 were included, 60% having well healed wounds and 25% reporting symptoms of sternal clicking. The most painful self-reported painful activity was coughing. The SIS demonstrated excellent reliability with a kappa = 0.91 by different assessors on the same day, and kappa = 0.83 for assessments by the same assessor on different days. The SIS is a reliable manual assessment tool for evaluation of sternal instability after CSI following BSLTX and may facilitate the timely detection and management of sternal instability.

  19. Reduced T(sub c) Niobium Superconducting HEB Mixers

    NASA Technical Reports Server (NTRS)

    Siddiqi, I.; Prober, D. E.; Bumble, B.; LeDuc, H. G.

    2001-01-01

    A reduction in the mixer noise is expected when using superconductors with a lower transition temperature (T(sub c)) since the thermal noise components of the mixer noise should scale with T(sub c). Also, the local oscillator (LO) power required for a diffusion-cooled device should decrease as T(sub c) when T(sub bath) << T(sub c). We previously studied mixing in aluminum based hot-electron bolometers (HEBs) at microwave frequencies (approximately 30 GHz), and observed a significant improvement in noise performance, and a reduction in LO power as predicted. However, the bias voltage range over which good mixer performance was observed was approximately 5 - 10 microV. These devices are thus susceptible to saturation effects, in particular output saturation. In the present work, we have investigated Nb HEBs whose T(sub c) is lowered by applying a magnetic field. The goal is to study a case intermediate between Nb and Al, and hopefully to find properties that will allow use in practical receivers. A 15 kOe perpendicular magnetic field was applied to a Nb HEB (L = 0.16 micrometers, W = 0.08 micrometers, R(sub N) = 90 ohms) to reduce T(sub c) from 5.2 K to 2.4 K. The mixer noise, as inferred from the output noise and the conversion efficiency, decreased from 390 K, DSB to 171 K, DSB. The LO power required for near optimum mixer conversion efficiency (eta(sub mixer) = -9 dB in this device) was 8 nW in zero field, and approximately 2 nW when T(sub c) was reduced to 2.4 K. T(sub bath) = 0.22 K. The conversion bandwidth was previously measured to be 2.4 GHz and the same bandwidth was observed in the presence of a magnetic field. By lowering T(sub c), the voltage range over which good mixing was observed also decreased. However, even with T(sub c) reduced to 2.4 K, the conversion efficiency dropped by 3 dB from its maximum value only when the bias voltage was changed by approximately 90 microV. Saturation effects should thus be much less of a concern in these devices than in

  20. Conversion loss and noise of microwave and millimeter-wave mixers. I - Theory. II - Experiment

    NASA Technical Reports Server (NTRS)

    Held, D. N.; Kerr, A. R.

    1978-01-01

    The conversion loss and noise of microwave and millimeter-wave mixers are analyzed. Nonlinear capacitance, arbitrary embedding impedances, as well as shot, thermal and scattering noise arising in the diode, figure in the analysis. The anomalous mixer noise noted in millimeter-wave mixers by Kerr (1975) is shown to be explainable in terms of the correlation of down-converted components of the time-varying shot noise. A digital computer analysis of the conversion loss, noise, and output impedance of an 80-120-GHz mixer is also conducted.

  1. Matlab GUI for a Fluid Mixer

    NASA Technical Reports Server (NTRS)

    Barbieri, Enrique

    2005-01-01

    The Test and Engineering Directorate at NASA John C. Stennis Space Center developed an interest to study the modeling, evaluation, and control of a liquid hydrogen (LH2) and gas hydrogen (GH2) mixer subsystem of a ground test facility. This facility carries out comprehensive ground-based testing and certification of liquid rocket engines including the Space Shuttle Main engine. A software simulation environment developed in MATLAB/SIMULINK (M/S) will allow NASA engineers to test rocket engine systems at relatively no cost. In the progress report submitted in February 2004, we described the development of two foundation programs, a reverse look-up application using various interpolation algorithms, a variety of search and return methods, and self-checking methods to reduce the error in returned search results to increase the functionality of the program. The results showed that these efforts were successful. To transfer this technology to engineers who are not familiar with the M/S environment, a four-module GUI was implemented allowing the user to evaluate the mixer model under open-loop and closed-loop conditions. The progress report was based on an udergraduate Honors Thesis by Ms. Jamie Granger Austin in the Department of Electrical Engineering and Computer Science at Tulane University, during January-May 2003, and her continued efforts during August-December 2003. In collaboration with Dr. Hanz Richter and Dr. Fernando Figueroa we published these results in a NASA Tech Brief due to appear this year. Although the original proposal in 2003 did not address other components of the test facility, we decided in the last few months to extend our research and consider a related pressurization tank component as well. This report summarizes the results obtained towards a Graphical User Interface (GUI) for the evaluation and control of the hydrogen mixer subsystem model and for the pressurization tank each taken individually. Further research would combine the two

  2. Noise Reduction with Lobed Mixers: Nozzle-Length and Free-Jet Speed Effects

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G.; Dalton, William N.; Bridges, James C.; Boyd, Kathy C.

    1997-01-01

    Acoustic test results are presented for 1/4th-scaled nozzles with internal lobed mixers used for reduction of subsonic jet noise of turbofan engines with bypass ratio above 5 and jet speeds up to 830 ft/s. One coaxial and three forced lobe mixers were tested with variations in lobe penetration, cut-outs in lobe-sidewall, lobe number and nozzle-length. Measured exit flow profiles and thrusts are used to assist the inferences from acoustic data. It is observed that lobed mixers reduce the low-frequency noise due to more uniformly mixed exit flow; but they may also increase the high-frequency noise at peak perceived noise (PNL) angle and angles upstream of it due to enhanced mixing inside the nozzle. Cut-outs and low lobe penetration reduce the annoying portion of the spectrum but lead to less uniform exit flow. Due to the dominance of internal duct noise in unscalloped, high-penetration mixers their noise is not reduced as much with increase in free-jet speed as that of coaxial or cut-out lobed mixers. The latter two mixers also show no change in PNL over the wide range of nozzle-lengths tested because most of their noise sources are outside the nozzle; whereas, the former show an increase in noise with decrease in nozzle-length.

  3. Quasi-optical design for systems to diagnose the electron temperature and density fluctuations on EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Qifo; Liu, Yong; Zhao, Hailin, E-mail: zhaohailin@ipp.ac.cn

    A system to simultaneously diagnose the electron temperature and density fluctuations is proposed for Experimental Advanced Superconducting Tokamak device. This system includes a common quasi-optical antenna, a correlation electron cyclotron emission (CECE) system that is used to measure the electron temperature fluctuations and a Doppler backscattering (DBS) system that is used to measure the electron density fluctuations. The frequency range of the proposed CECE system is 108-120 GHz, and this corresponds to a radial coverage of normalized radius ((R − R{sub 0})/a, R{sub 0} = 1850 mm, a = 450 mm) from 0.2 to 0.67 for the plasma operation withmore » a toroidal magnetic field of 2.26 T. This paper focuses on the design of the quasi-optical antenna and aims at optimizing the poloidal resolution for different frequency bands. An optimum result gives the beam radius for the CECE system of 13-15 mm and this corresponds to a wave number range of k{sub θ} < 2.4 cm{sup −1}. The beam radius is 20-30 mm for V band (50-75 GHz) and 15-20 mm for W band (75-110 GHz).« less

  4. Self-anchoring mast for deploying a high-speed submersible mixer in a tank

    DOEpatents

    Cato, Jr., Joseph E.; Shearer, Paul M [Aiken, SC; Rodwell, Philip O [Evans, GA

    2004-10-12

    A self-anchoring mast for deploying a high-speed submersible mixer in a tank includes operably connected first and second mast members (20, 22) and a foot member 46 operably connected to the second mast member for supporting the mast in a tank. The second mast member includes a track (36, 38) for slidably receiving a bearing of the mixer to change the orientation of the mixer in the tank.

  5. Thermal signature identification system (TheSIS): a spread spectrum temperature cycling method

    NASA Astrophysics Data System (ADS)

    Merritt, Scott

    2015-03-01

    NASA GSFC's Thermal Signature Identification System (TheSIS) 1) measures the high order dynamic responses of optoelectronic components to direct sequence spread-spectrum temperature cycling, 2) estimates the parameters of multiple autoregressive moving average (ARMA) or other models the of the responses, 3) and selects the most appropriate model using the Akaike Information Criterion (AIC). Using the AIC-tested model and parameter vectors from TheSIS, one can 1) select high-performing components on a multivariate basis, i.e., with multivariate Figures of Merit (FOMs), 2) detect subtle reversible shifts in performance, and 3) investigate irreversible changes in component or subsystem performance, e.g. aging. We show examples of the TheSIS methodology for passive and active components and systems, e.g. fiber Bragg gratings (FBGs) and DFB lasers with coupled temperature control loops, respectively.

  6. Modelling of Safety Instrumented Systems by using Bernoulli trials: towards the notion of odds on for SIS failures analysis

    NASA Astrophysics Data System (ADS)

    Cauffriez, Laurent

    2017-01-01

    This paper deals with the modeling of a random failures process of a Safety Instrumented System (SIS). It aims to identify the expected number of failures for a SIS during its lifecycle. Indeed, the fact that the SIS is a system being tested periodically gives the idea to apply Bernoulli trials to characterize the random failure process of a SIS and thus to verify if the PFD (Probability of Failing Dangerously) experimentally obtained agrees with the theoretical one. Moreover, the notion of "odds on" found in Bernoulli theory allows engineers and scientists determining easily the ratio between “outcomes with success: failure of SIS” and “outcomes with unsuccess: no failure of SIS” and to confirm that SIS failures occur sporadically. A Stochastic P-temporised Petri net is proposed and serves as a reference model for describing the failure process of a 1oo1 SIS architecture. Simulations of this stochastic Petri net demonstrate that, during its lifecycle, the SIS is rarely in a state in which it cannot perform its mission. Experimental results are compared to Bernoulli trials in order to validate the powerfulness of Bernoulli trials for the modeling of the failures process of a SIS. The determination of the expected number of failures for a SIS during its lifecycle opens interesting research perspectives for engineers and scientists by completing the notion of PFD.

  7. Roles of intramolecular and intermolecular interactions in functional regulation of the Hsp70 J-protein co-chaperone sis1

    DOE PAGES

    Yu, Hyun Young; Ziegelhoffer, Thomas; Osipiuk, Jerzy; ...

    2015-02-13

    Unlike other Hsp70 molecular chaperones, those of the eukaryotic cytosol have four residues, EEVD, at their C-termini. EEVD(Hsp70) binds adaptor proteins of the Hsp90 chaperone system and mitochondrial membrane preprotein receptors, thereby facilitating processing of Hsp70-bound clients through protein folding and translocation pathways. Among J-protein co-chaperones functioning in these pathways Sis1 is unique, as it also binds the EEVD(Hsp70) motif. However, little is known about the role of the Sis1:EEVD(Hsp70) interaction. We found that deletion of EEVD(Hsp70) abolished the ability of Sis1, but not the ubiquitous J-protein Ydj1, to partner with Hsp70 in in vitro protein refolding. Sis1 co-chaperone activitymore » with Hsp70ΔEEVD was restored upon substitution of a glutamic acid of the J-domain. Structural analysis revealed that this key glutamic acid, which is not present in Ydj1, forms a salt bridge with an arginine of the immediately adjacent glycine-rich region. Thus, restoration of Sis1 in vitro activity suggests that intramolecular interaction(s) between the J-domain and glycine-rich region controls co-chaperone activity, which is optimal only when Sis1 interacts with the EEVD(Hsp70) motif. Yet, we found that disruption of the Sis1:EEVD(Hsp70) interaction enhances the ability of Sis1 to substitute for Ydj1 in vivo. Our results are consistent with the idea that interaction of Sis1 with EEVD(Hsp70) minimizes transfer of Sis1-bound clients to Hsp70s that are primed for client transfer to folding and translocation pathways by their preassociation with EEVD-binding adaptor proteins. Finally, these interactions may be one means by which cells triage Ydj1- and Sis1-bound clients to productive and quality control pathways, respectively.« less

  8. Roles of Intramolecular and Intermolecular Interactions in Functional Regulation of the Hsp70 J-protein Co-Chaperone Sis1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hyun Young; Ziegelhoffer, Thomas; Osipiuk, Jerzy

    2015-04-01

    Unlike other Hsp70 molecular chaperones, those of the eukaryotic cytosol have four residues, EEVD, at heir C-termini. EEVD(Hsp70) binds adaptor proteins of the Hsp90 chaperone system and mitochondrial membrane preprotein receptors, thereby facilitating processing of Hsp70-bound clients through protein folding and translocation pathways. Among J-protein co-chaperones functioning in these pathways, Sis1 is unique, as it also binds the EEVD(Hsp70) motif. However, little is known about the role of the Sis1:EEVD(Hsp70) interaction. We found that deletion of EEVD(Hsp70) abolished the ability of Sis1, but not the ubiquitous J-protein Ydj1, to partner with Hsp70 in in vitro protein refolding. Sis1 co-chaperone activitymore » with Hsp70ΔEEVD was restored upon substitution of a glutamic acid of the J-domain. Structural analysis revealed that this key glutamic acid, which is not present in Ydj1, forms a salt bridge with an arginine of the immediately adjacent glycine-rich region. Thus, restoration of Sis1 in vitro activity suggests that intramolecular interactions between the J-domain and glycine-rich region control co-chaperone activity, which is optimal only when Sis1 interacts with the EEVD(Hsp70) motif. However, we found that disruption of the Sis1:EEVD(Hsp70) interaction enhances the ability of Sis1 to substitute for Ydj1 in vivo. Our results are consistent with the idea that interaction of Sis1 with EEVD(Hsp70) minimizes transfer of Sis1-bound clients to Hsp70s that are primed for client transfer to folding and translocation pathways by their preassociation with EEVD binding adaptor proteins. These interactions may be one means by which cells triage Ydj1- and Sis1-bound clients to productive and quality control pathways, respectively.« less

  9. Roles of Intramolecular and Intermolecular Interactions in Functional Regulation of the Hsp70 J-protein Co-chaperone Sis1

    PubMed Central

    Yu, Hyun Young; Ziegelhoffer, Thomas; Osipiuk, Jerzy; Ciesielski, Szymon J.; Baranowski, Maciej; Zhou, Min; Joachimiak, Andrzej; Craig, Elizabeth A.

    2015-01-01

    Unlike other Hsp70 molecular chaperones, those of the eukaryotic cytosol have four residues, EEVD, at their C-termini. EEVD(Hsp70) binds adaptor proteins of the Hsp90 chaperone system and mitochondrial membrane preprotein receptors, thereby facilitating processing of Hsp70-bound clients through protein folding and translocation pathways. Among J-protein co-chaperones functioning in these pathways Sis1 is unique, as it also binds the EEVD(Hsp70) motif. However, little is known about the role of the Sis1:EEVD(Hsp70) interaction. We found that deletion of EEVD(Hsp70) abolished the ability of Sis1, but not the ubiquitous J-protein Ydj1, to partner with Hsp70 in in vitro protein refolding. Sis1 co-chaperone activity with Hsp70ΔEEVD was restored upon substitution of a glutamic acid of the J-domain. Structural analysis revealed that this key glutamic acid, which is not present in Ydj1, forms a salt bridge with an arginine of the immediately adjacent glycine-rich region. Thus, restoration of Sis1 in vitro activity suggests that intramolecular interaction(s) between the J-domain and glycine-rich region controls co-chaperone activity, which is optimal only when Sis1 interacts with the EEVD(Hsp70) motif. Yet, we found that disruption of the Sis1:EEVD(Hsp70) interaction enhances the ability of Sis1 to substitute for Ydj1 in vivo. Our results are consistent with the idea that interaction of Sis1 with EEVD(Hsp70) minimizes transfer of Sis1-bound clients to Hsp70s that are primed for client transfer to folding and translocation pathways by their preassociation with EEVD-binding adaptor proteins. These interactions may be one means by which cells triage Ydj1- and Sis1-bound clients to productive and quality control pathways, respectively. PMID:25687964

  10. Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-03-06

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissionsmore » Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.« less

  11. Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-01-31

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissionsmore » Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.« less

  12. Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-04-10

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissionsmore » Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.« less

  13. 180-GHz I-Q Second Harmonic Resistive Mixer MMIC

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Lai, Richard; Mei, Xiaobing

    2010-01-01

    An indium phosphide MMIC (monolithic microwave integrated circuit) mixer was developed, processed, and tested in the NGC 35-nm-gate-length HEMT (high electron mobility transistor) process. This innovation is very compact in size and operates with very low LO power. Because it is a resistive mixer, this innovation does not require DC power. This is an enabling technology for the miniature receiver modules for the GeoSTAR instrument, which is the only viable option for the NRC decadal study mission PATH.

  14. Low Noise in a Diffusion-Cooled Hot-Electron Mixer at 2.5 THz

    NASA Technical Reports Server (NTRS)

    Karasik, B. S.; Gaidis, M. C.; McGrath, W. R.; Bumble, B.; LeDuc, H. G.

    1997-01-01

    The noise performance of a Nb hot-electron bolometer mixer at 2.5 THz has been investigated. The devices are fabricated from a 12-nm-thick Nb film, and have a 0.30 micrometer x 0.15 micrometer in-plane size, thus exploiting diffusion as the electron cooling mechanism. The rf coupling was provided by a twin-slot planar antenna on an elliptical Si lens. The experimentally measured double sideband noise temperature of the receiver was as low as 2750 +/- 250 K with an estimated mixer noise temperature of approximately equal 900 K. The mixer bandwidth derived from both noise bandwidth and IF impedance measurements was approximately equal 1.4 GHz. These results demonstrate the low-noise operation of the diffusion-cooled bolometer mixer above 2 THz.

  15. Submillimeter Spectroscopy with a 500-1000 GHz SIS Receiver

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1997-01-01

    Sub-millimeter Spectroscopy with a 500-1000 GHz SIS Receiver, which extended over the period October 1, 1991 through January 31, 1997. The purpose of the grant was to fund the development and construction of a sensitive heterodyne receiver system for the submillimeter band (500-1000 GHz), using our newly-developed sensitive superconducting (SIS) detectors, and to carry out astronomical observations with this system aboard the NASA Kuiper Air- borne Observatory (a Lockheed C-141 aircraft carrying a 91 cm telescope). A secondary purpose of the grant was to stimulate the continued development of sensitive submillimeter detectors, in order to prepare for the next-generation airborne observatory, SOFIA, as well as future space missions (such as the ESA/NASA FIRST mission).

  16. The Strength Analysis of Differential Planetary Gears of Gearbox for Concrete Mixer Truck

    NASA Astrophysics Data System (ADS)

    Bae, M. H.; Bae, T. Y.; Kim, D. J.

    2018-03-01

    The power train of mixer gearbox for concrete mixer truck includes differential planetary gears to get large reduction ratio for operating mixer a drum and simple structure. The planetary gears are very important part of a mixer gearbox where strength problems namely gear bending stress, gear compressive stress and scoring failure are the main concern. In the present study, calculating specifications of the differential planetary gears and analyzing the gear bending and compressive stresses as well as scoring factor of the differential planetary gears gearbox for an optimal design of the mixer gearbox in respect to cost and reliability are investigated. The analyses of actual gear bending and compressive stresses of the differential planetary gears using Lewes & Hertz equation and verifications of the calculated specifications of the differential planetary gears evaluate the results with the data of allowable bending and compressive stress from the Stress-No. of cycles curves of gears. In addition, we also analyze actual gear scoring factor as well as evaluate the possibility of scoring failure of the differential planetary gear.

  17. Planar doped barrier subharmonic mixers

    NASA Technical Reports Server (NTRS)

    Lee, T. H.; East, J. R.; Haddad, G. I.

    1992-01-01

    The Planar Doped Barrier (PDB) diode is a device consisting of a p(+) doping spike between two intrinsic layers and n(+) ohmic contacts. This device has the advantages of controllable barrier height, diode capacitance and forward to reverse current ratio. A symmetrically designed PDB has an anti-symmetric current vs. voltage characteristic and is ideal for use as millimeter wave subharmonic mixers. We have fabricated such devices with barrier heights of 0.3, 0.5 and 0.7 volts from GaAs and InGaAs using a multijunction honeycomb structure with junction diameters between one and ten microns. Initial RF measurements are encouraging. The 0.7 volt barrier height 4 micron GaAs devices were tested as subharmonic mixers at 202 GHz with an IF frequency of 1 GHz and had 18 dB of conversion loss. The estimated mismatch loss was 7 dB and was due to higher diode capacitance. The LO frequency was 100.5 GHz and the pump power was 8 mW.

  18. Submersible canned motor mixer pump

    DOEpatents

    Guardiani, Richard F.; Pollick, Richard D.

    1997-01-01

    A mixer pump used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the mixer pump.

  19. Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charbonneau-Lefort, Mathieu; Afeyan, Bedros; Fejer, M. M.

    Optical parametric amplifiers using chirped quasi-phase-matching (QPM) gratings offer the possibility of engineering the gain and group delay spectra. We give practical formulas for the design of such amplifiers. We consider linearly chirped QPM gratings providing constant gain over a broad bandwidth, sinusoidally modulated profiles for selective frequency amplification and a pair of QPM gratings working in tandem to ensure constant gain and constant group delay at the same time across the spectrum. Finally, the analysis is carried out in the frequency domain using Wentzel–Kramers–Brillouin analysis.

  20. Optical phonon effect in quasi-one-dimensional semiconductor quantum wires: Band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Dan, Nguyen Trung; Bechstedt, F.

    1996-02-01

    We present theoretical studies of dynamical screening in quasi-one-dimensional semiconductor quantum wires including electron-electron and electron-LO-phonon interactions. Within the random-phase approximation we obtain analytical expressions for screened interaction potentials. These expressions can be used to calculate the band-gap renormalization of quantum wires, which depends on the free-carrier density and temperature. We find that the optical phonon interaction effect plays a significant role in band-gap renormalization of quantum wires. The numerical results are compared with some recent experiment measurements as well as available theories.

  1. Superconducting Mixers for Far-Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Boreiko, R. T.; Grossman, E. R.; Reintsema, C. D.; Ono, R. H.; Gerecht, E.

    2002-01-01

    The goal of this project was to fabricate and test planar arrays of superconducting mixers for the 2-6 THz band. The technology is intended for multi-beam receivers aboard Explorer-class missions and the SOFIA Airborne Observatory. The mixer technology is the superconducting transition-edge microbolometer, which is more commonly known as the Hot-Electron micro-Bolometer (HEB). As originally proposed, two superconducting technologies were to be developed: (1) low-Tc niobium HEBs which could approach quantum-noise-limited sensitivities but require cooling to 2- 4 K, and (2) high-Tc YBCO HEBs with sensitivities 10 times worse but with a relaxed cooling requirement of 30-60 K. The low-Tc devices would be best for astronomy applications on SOFIA, whereas the high-Tc devices would be more suitable for planetary missions using systems without stored cryogens. The work plan called for planar micro-fabrication and initial testing of HEB devices at the NIST Boulder clean-room facility. Subsequent assembly and RF testing of selected devices would be done at the CASA laboratory at U. Colorado. Approximately 1-year after work began on this project, Dr. Eyal Gerecht joined the NIST group, and assumed day-to-day responsibility for Nb-HEB development at NIST outside of micro-fabrication. The YBCO-HEB work was to be guided by Dr. Ron Ono, who was the NIST expert in YBCO technology. Unfortunately, recurrent health problems limited the time Ron could devote to the project in its first year. These problems became aggravated in early 2001, and sadly led to Ron's death in October, 2001. His loss was not only a blow to his friends and associates at NIST, but was mounted by the US superconductivity community at large. With his passing, work on high-Tc HEBs ceased at NIST. There was no one to replace him or his expertise. Our work subsequently shifted solely to Nb-HEB devices. In the sections which follow, our progress in the development of diffusion-cooled Nb-HEB mixers is detailed. To

  2. AZ-101 Mixer Pump Test Qualification Test Procedures (QTP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    THOMAS, W.K.

    2000-01-10

    Describes the Qualification test procedure for the AZ-101 Mixer Pump Data Acquisition System (DAS). The purpose of this Qualification Test Procedure (QTP) is to confirm that the AZ-101 Mixer Pump System has been properly programmed and hardware configured correctly. This QTP will test the software setpoints for the alarms and also check the wiring configuration from the SIMcart to the HMI. An Acceptance Test Procedure (ATP), similar to this QTP will be performed to test field devices and connections from the field.

  3. Highly integrated optical heterodyne phase-locked loop with phase/frequency detection.

    PubMed

    Lu, Mingzhi; Park, Hyunchul; Bloch, Eli; Sivananthan, Abirami; Bhardwaj, Ashish; Griffith, Zach; Johansson, Leif A; Rodwell, Mark J; Coldren, Larry A

    2012-04-23

    A highly-integrated optical phase-locked loop with a phase/frequency detector and a single-sideband mixer (SSBM) has been proposed and demonstrated for the first time. A photonic integrated circuit (PIC) has been designed, fabricated and tested, together with an electronic IC (EIC). The PIC integrates a widely-tunable sampled-grating distributed-Bragg-reflector laser, an optical 90 degree hybrid and four high-speed photodetectors on the InGaAsP/InP platform. The EIC adds a single-sideband mixer, and a digital phase/frequency detector, to provide single-sideband heterodyne locking from -9 GHz to 7.5 GHz. The loop bandwith is 400 MHz. © 2012 Optical Society of America

  4. Turbofan forced mixer-nozzle internal flowfield. Volume 1: A benchmark experimental study

    NASA Technical Reports Server (NTRS)

    Paterson, R. W.

    1982-01-01

    An experimental investigation of the flow field within a model turbofan forced mixer nozzle is described. Velocity and thermodynamic state variable data for use in assessing the accuracy and assisting the further development of computational procedures for predicting the flow field within mixer nozzles are provided. Velocity and temperature data suggested that the nozzle mixing process was dominated by circulations (secondary flows) of a length scale on the order the lobe dimensions which were associated with strong radial velocities observed near the lobe exit plane. The 'benchmark' model mixer experiment conducted for code assessment purposes is discussed.

  5. Simultaneous and quasi-independent strain and temperature sensor based on microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Lopez-Aldaba, A.; Auguste, J.-L.; Jamier, R.; Roy, P.; Lopez-Amo, M.

    2017-04-01

    In this paper, a new sensor system for simultaneous and quasi-independent strain and temperature measurements is presented. The interrogation of the sensing head has been carried out by monitoring the FFT phase variations of two of the microstructured optical fiber (MOF) cavity interference frequencies. This method is independent of the signal amplitude and also avoids the need to track the wavelength evolution in the spectrum, which can be a handicap when there are multiple interference frequency components with different sensitivities. The sensor is operated within a range of temperature of 30°C-75°C, and 380μɛ of maximum strain were applied; being the sensitivities achieved of 127.5pm/°C and -19.1pm/μɛ respectively. Because the system uses an optical interrogator as unique active element, the system presents a cost-effective feature.

  6. Lobed Mixer Design for Noise Suppression Acoustic and Aerodynamic Test Data Analysis

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G.; Dalton, William N.; Boyd, Kathleen (Technical Monitor); Bridges, James (Technical Monitor)

    2002-01-01

    A comprehensive database for the acoustic and aerodynamic characteristics of several model-scale lobe mixers of bypass ratio 5 to 6 has been created for mixed jet speeds up to 1080 ft/s at typical take-off (TO) conditions of small-to-medium turbofan engines. The flight effect was simulated for Mach numbers up to 0.3. The static thrust performance and plume data were also obtained at typical TO and cruise conditions. The tests were done at NASA Lewis anechoic dome and ASK's FluiDyne Laboratories. The effect of several lobe mixer and nozzle parameters, such as, lobe scalloping, lobe count, lobe penetration and nozzle length was examined in terms of flyover noise at constant altitude. Sound in the nozzle reference frame was analyzed to understand the source characteristics. Several new concepts, mechanisms and methods are reported for such lobed mixers, such as, "boomerang" scallops, "tongue" mixer, detection of "excess" internal noise sources, and extrapolation of flyover noise data from one flight speed to different flight speeds. Noise reduction of as much as 3 EPNdB was found with a deeply scalloped mixer compared to annular nozzle at net thrust levels of 9500 lb for a 29 in. diameter nozzle after optimizing the nozzle length.

  7. Roles of intramolecular and intermolecular interactions in functional regulation of the Hsp70 J-protein co-chaperone Sis1.

    PubMed

    Yu, Hyun Young; Ziegelhoffer, Thomas; Osipiuk, Jerzy; Ciesielski, Szymon J; Baranowski, Maciej; Zhou, Min; Joachimiak, Andrzej; Craig, Elizabeth A

    2015-04-10

    Unlike other Hsp70 molecular chaperones, those of the eukaryotic cytosol have four residues, EEVD, at their C-termini. EEVD(Hsp70) binds adaptor proteins of the Hsp90 chaperone system and mitochondrial membrane preprotein receptors, thereby facilitating processing of Hsp70-bound clients through protein folding and translocation pathways. Among J-protein co-chaperones functioning in these pathways, Sis1 is unique, as it also binds the EEVD(Hsp70) motif. However, little is known about the role of the Sis1:EEVD(Hsp70) interaction. We found that deletion of EEVD(Hsp70) abolished the ability of Sis1, but not the ubiquitous J-protein Ydj1, to partner with Hsp70 in in vitro protein refolding. Sis1 co-chaperone activity with Hsp70∆EEVD was restored upon substitution of a glutamic acid of the J-domain. Structural analysis revealed that this key glutamic acid, which is not present in Ydj1, forms a salt bridge with an arginine of the immediately adjacent glycine-rich region. Thus, restoration of Sis1 in vitro activity suggests that intramolecular interactions between the J-domain and glycine-rich region control co-chaperone activity, which is optimal only when Sis1 interacts with the EEVD(Hsp70) motif. However, we found that disruption of the Sis1:EEVD(Hsp70) interaction enhances the ability of Sis1 to substitute for Ydj1 in vivo. Our results are consistent with the idea that interaction of Sis1 with EEVD(Hsp70) minimizes transfer of Sis1-bound clients to Hsp70s that are primed for client transfer to folding and translocation pathways by their preassociation with EEVD binding adaptor proteins. These interactions may be one means by which cells triage Ydj1- and Sis1-bound clients to productive and quality control pathways, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Mixing Study in a Multi-dimensional Motion Mixer

    NASA Astrophysics Data System (ADS)

    Shah, R.; Manickam, S. S.; Tomei, J.; Bergman, T. L.; Chaudhuri, B.

    2009-06-01

    Mixing is an important but poorly understood aspect in petrochemical, food, ceramics, fertilizer and pharmaceutical processing and manufacturing. Deliberate mixing of granular solids is an essential operation in the production of industrial powder products usually constituted from different ingredients. The knowledge of particle flow and mixing in a blender is critical to optimize the design and operation. Since performance of the product depends on blend homogeneity, the consequence of variability can be detrimental. A common approach to powder mixing is to use a tumbling blender, which is essentially a hollow vessel horizontally attached to a rotating shaft. This single axis rotary blender is one of the most common batch mixers among in industry, and also finds use in myriad of application as dryers, kilns, coaters, mills and granulators. In most of the rotary mixers the radial convection is faster than axial dispersion transport. This slow dispersive process hinders mixing performance in many blending, drying and coating applications. A double cone mixer is designed and fabricated which rotates around two axes, causing axial mixing competitive to its radial counterpart. Discrete Element Method (DEM) based numerical model is developed to simulate the granular flow within the mixer. Digitally recorded mixing states from experiments are used to fine tune the numerical model. Discrete pocket samplers are also used in the experiments to quantify the characteristics of mixing. A parametric study of the effect of vessel speeds, relative rotational speed (between two axes of rotation), on the granular mixing is investigated by experiments and numerical simulation. Incorporation of dual axis rotation enhances axial mixing by 60 to 85% in comparison to single axis rotation.

  9. Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation

    NASA Astrophysics Data System (ADS)

    Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Papa, D. C.; Hunter, T. R.; Paine, S. N.; Patt, F.; Gol'Tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E.

    2000-04-01

    In this paper, we describe a superconductive hot-electron-bolometer mixer receiver designed to operate in the partially transmissive 350-μm atmospheric window. The receiver employs an NbN thin-film microbridge as the mixer element, in which the main cooling mechanism of the hot electrons is through electron-phonon interaction. At a local-oscillator frequency of 808 GHz, the measured double-sideband receiver noise temperature is Trx=970 K, across a 1-GHz intermediate-frequency bandwidth centered at 1.8 GHz. We have measured the linearity of the receiver and the amount of local-oscillator power incident on the mixer for optimal operation, which is PLO ≈ 1 microwatt. This receiver was used in making observations as a facility instrument at the Heinrich Hertz Telescope, Mt. Graham, AZ, during the 1998-1999 winter observing season.

  10. Micromachined Millimeter- and Submillimeter-wave SIS Heterodyne Receivers for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Hu, Qing

    1997-01-01

    This is a progress report for the second year of a NASA-sponsored project. The report discusses the design and fabrication of micromachined Superconductor Insulator Superconductor (SIS) heterodyne receivers with integrated tuning elements. These receivers tune out the functional capacitance at desired frequencies, resulting in less noise, lower temperatures and broader bandwidths. The report also discusses the design and fabrication of the first monolithic 3x3 focal-plane arrays for a frequency range of 170-210 GHz. Also addressed is the construction of a 9-channel bias and read-out system, as well as the redesign of the IF connections to reduce cross talk between SIS junctions, which become significant a frequency of 1.5 GHz IF. Uniformity of the junction arrays were measured and antenna beam patterns of several array elements under operating conditions also were measured. Finally, video and heterodyne responses of our focal-plane arrays were measured as well. Attached is a paper on: 'Development of a 170-210 GHz 3x3 micromachined SIS imaging array'.

  11. Discrete time Markov chains (DTMC) susceptible infected susceptible (SIS) epidemic model with two pathogens in two patches

    NASA Astrophysics Data System (ADS)

    Lismawati, Eka; Respatiwulan; Widyaningsih, Purnami

    2017-06-01

    The SIS epidemic model describes the pattern of disease spread with characteristics that recovered individuals can be infected more than once. The number of susceptible and infected individuals every time follows the discrete time Markov process. It can be represented by the discrete time Markov chains (DTMC) SIS. The DTMC SIS epidemic model can be developed for two pathogens in two patches. The aims of this paper are to reconstruct and to apply the DTMC SIS epidemic model with two pathogens in two patches. The model was presented as transition probabilities. The application of the model obtain that the number of susceptible individuals decreases while the number of infected individuals increases for each pathogen in each patch.

  12. A Study of Microwave and Millimeter-Wave Quasi-Optical Planar Mixers.

    DTIC Science & Technology

    1983-08-31

    reasons of symmetry a mode is not excited at all, N goes to infinity and the series impedance at the primary vanishes. Determining the impedance...taken from Araki and Itoh (1]. The primary aim of their work was to calculate the resonanc frequency of a -, circular microstrip patch antenna. They...T11 ALLEVIATE THIS# A TRAO IS PLACED TO SIIUNTITUTE * THE SMALL-ARGUNENT APPftVINATIfI% To THE FUCTION 0WHeW * ARP.I’PRIATE. THE FPLLfljI IF STATENENT

  13. Interrater Reliability of the Supports Intensity Scale (SIS)

    ERIC Educational Resources Information Center

    Thompson, James R.; Tasse, Marc J.; McLaughlin, Colleen A.

    2008-01-01

    The interrater reliability of the Supports Intensity Scale (SIS) was investigated under the condition that interviewers had to have been trained and/or experienced in its administration and scoring. Both corrected and noncorrected Pearson's product-moment coefficients were generated to assess interinterviewer, interrespondent, and mixed interrater…

  14. Recent advances in superconducting-mixer simulations

    NASA Technical Reports Server (NTRS)

    Withington, S.; Kennedy, P. R.

    1992-01-01

    Over the last few years, considerable progress have been made in the development of techniques for fabricating high-quality superconducting circuits, and this success, together with major advances in the theoretical understanding of quantum detection and mixing at millimeter and submillimeter wavelengths, has made the development of CAD techniques for superconducting nonlinear circuits an important new enterprise. For example, arrays of quasioptical mixers are now being manufactured, where the antennas, matching networks, filters and superconducting tunnel junctions are all fabricated by depositing niobium and a variety of oxides on a single quartz substrate. There are no adjustable tuning elements on these integrated circuits, and therefore, one must be able to predict their electrical behavior precisely. This requirement, together with a general interest in the generic behavior of devices such as direct detectors and harmonic mixers, has lead us to develop a range of CAD tools for simulating the large-signal, small-signal, and noise behavior of superconducting tunnel junction circuits.

  15. Turbofan forced mixer lobe flow modeling. 1: Experimental and analytical assessment

    NASA Technical Reports Server (NTRS)

    Barber, T.; Paterson, R. W.; Skebe, S. A.

    1988-01-01

    A joint analytical and experimental investigation of three-dimensional flowfield development within the lobe region of turbofan forced mixer nozzles is described. The objective was to develop a method for predicting the lobe exit flowfield. In the analytical approach, a linearized inviscid aerodynamical theory was used for representing the axial and secondary flows within the three-dimensional convoluted mixer lobes and three-dimensional boundary layer analysis was applied thereafter to account for viscous effects. The experimental phase of the program employed three planar mixer lobe models having different waveform shapes and lobe heights for which detailed measurements were made of the three-dimensional velocity field and total pressure field at the lobe exit plane. Velocity data was obtained using Laser Doppler Velocimetry (LDV) and total pressure probing and hot wire anemometry were employed to define exit plane total pressure and boundary layer development. Comparison of data and analysis was performed to assess analytical model prediction accuracy. As a result of this study a planar mixed geometry analysis was developed. A principal conclusion is that the global mixer lobe flowfield is inviscid and can be predicted from an inviscid analysis and Kutta condition.

  16. Implementation of an optimized microfluidic mixer in alumina employing femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Juodėnas, M.; Tamulevičius, T.; Ulčinas, O.; Tamulevičius, S.

    2018-01-01

    Manipulation of liquids at the lowest levels of volume and dimension is at the forefront of materials science, chemistry and medicine, offering important time and resource saving applications. However, manipulation by mixing is troublesome at the microliter and lower scales. One approach to overcome this problem is to use passive mixers, which exploit structural obstacles within microfluidic channels or the geometry of channels themselves to enforce and enhance fluid mixing. Some applications require the manipulation and mixing of aggressive substances, which makes conventional microfluidic materials, along with their fabrication methods, inappropriate. In this work, implementation of an optimized full scale three port microfluidic mixer is presented in a slide of a material that is very hard to process but possesses extreme chemical and physical resistance—alumina. The viability of the selected femtosecond laser fabrication method as an alternative to conventional lithography methods, which are unable to process this material, is demonstrated. For the validation and optimization of the microfluidic mixer, a finite element method (FEM) based numerical modeling of the influence of the mixer geometry on its mixing performance is completed. Experimental investigation of the laminar flow geometry demonstrated very good agreement with the numerical simulation results. Such a laser ablation microfabricated passive mixer structure is intended for use in a capillary force assisted nanoparticle assembly setup (CAPA).

  17. A wideband current-commutating passive mixer for multi-standard receivers in a 0.18 μm CMOS

    NASA Astrophysics Data System (ADS)

    Kuan, Bao; Xiangning, Fan; Wei, Li; Zhigong, Wang

    2013-01-01

    This paper reports a wideband passive mixer for direct conversion multi-standard receivers. A brief comparison between current-commutating passive mixers and active mixers is presented. The effect of source and load impedance on the linearity of a mixer is analyzed. Specially, the impact of the input impedance of the transimpedance amplifier (TIA), which acts as the load impedance of a mixer, is investigated in detail. The analysis is verified by a passive mixer implemented with 0.18 μm CMOS technology. The circuit is inductorless and can operate over a broad frequency range. On wafer measurements show that, with radio frequency (RF) ranges from 700 MHz to 2.3 GHz, the mixer achieves 21 dB of conversion voltage gain with a -1 dB intermediate frequency (IF) bandwidth of 10 MHz. The measured IIP3 is 9 dBm and the measured double-sideband noise figure (NF) is 10.6 dB at 10 MHz output. The chip occupies an area of 0.19 mm2 and drains a current of 5.5 mA from a 1.8 V supply.

  18. The role of Mixer in patterning the early Xenopus embryo.

    PubMed

    Kofron, Matt; Wylie, Chris; Heasman, Janet

    2004-05-01

    The transcription factor VegT, is required in early Xenopus embryos for the formation of both the mesoderm and endoderm germ layers. Inherited as a maternal mRNA localized only in vegetal cells, VegT activates the transcription of a large number of transcription factors, as well as signaling ligands that induce cells in the vegetal mass to form endoderm, and the marginal zone to form mesoderm. It is important now to understand the extent to which transcription factors downstream of VegT play individual, or overlapping, roles in the specification and patterning of the endoderm and mesoderm. In addition, it is important to understand the mechanism that specifies the boundary between endoderm and mesoderm. One of the downstream targets of VegT, the homeodomain protein Mixer, is expressed at high levels at the mesoderm/endoderm boundary at the late blastula stage. We therefore examined its functions by blocking its translation using morpholino oligos. In Mixer-depleted embryos, the expression of many signaling ligands and transcription factors was affected. In particular, we found that the expression of several genes, including several normally expressed in mesoderm, was upregulated. Functional assays of Mixer-depleted vegetal cells showed that they have increased mesoderm-inducing activity. This demonstrates that Mixer plays an essential role in controlling the amount of mesoderm induction by the vegetal cells.

  19. Submersible canned motor mixer pump

    DOEpatents

    Guardiani, R.F.; Pollick, R.D.

    1997-10-07

    A mixer pump is described used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the mixer pump. 10 figs.

  20. A corner-reflector mixer mount for far infrared wavelengths.

    PubMed

    Zmuidzinas, J; Betz, A L; Boreiko, R T

    1989-01-01

    A new type of corner-reflector mixer mount, which has the advantages of ease of fabrication and assembly as well as frequency versatility, has been designed and constructed. The mixer works with arbitrary antenna lengths > or = 4 lambda with the reflector to antenna spacing adjusted to give a strong and symmetric central lobe. The predicted response patterns have been experimentally verified for various antenna lengths and operating frequencies between 800 and 2000 GHz. An important design feature is the incorporation of a microstrip matching network which eliminates IF impedance mismatch and provides mechanical isolation of the whisker antenna.

  1. Analysis of Fuel Vaporization, Fuel-Air Mixing, and Combustion in Integrated Mixer-Flame Holders

    NASA Technical Reports Server (NTRS)

    Deur, J. M.; Cline, M. C.

    2004-01-01

    Requirements to limit pollutant emissions from the gas turbine engines for the future High-Speed Civil Transport (HSCT) have led to consideration of various low-emission combustor concepts. One such concept is the Integrated Mixer-Flame Holder (IMFH). This report describes a series of IMFH analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. To meet the needs of this study, KIVA-II's boundary condition and chemistry treatments are modified. The study itself examines the relationships between fuel vaporization, fuel-air mixing, and combustion. Parameters being considered include: mixer tube diameter, mixer tube length, mixer tube geometry (converging-diverging versus straight walls), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases are run with and without combustion to examine the variations in fuel-air mixing and potential for flashback due to the above parameters. The degree of fuel-air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state. Results indicate that fuel-air mixing can be enhanced by a variety of means, the best being a combination of air inlet swirl and a converging-diverging mixer tube geometry. With the IMFH configuration utilized in the present study, flashback becomes more common as the mixer tube diameter is increased and is instigated by disturbances associated with the dilution hole flow.

  2. Efficient gas-liquid contact using microfluidic membrane devices with staggered herringbone mixers.

    PubMed

    Femmer, Tim; Eggersdorfer, Max L; Kuehne, Alexander J C; Wessling, Matthias

    2015-08-07

    We describe a novel membrane based gas-liquid-contacting device with increased mass transport and reduced pressure loss by combining a membrane with a staggered herringbone static mixer. Herringbone structures are imposed on the microfluidic channel geometry via soft lithography, acting as mixers which introduce secondary flows at the membrane interface. Such flows include Dean vortices and Taylor flows generating effective mixing while improving mass transport and preventing concentration polarization in microfluidic channels. Furthermore, our static herringbone mixer membranes effectively reduce pressure losses leading to devices with enhanced transfer properties for microfluidic gas-liquid contact. We investigate the red blood cell distribution to tailor our devices towards miniaturised extracorporeal membrane oxygenation and improved comfort of patients with lung insufficiencies.

  3. A compact D-band monolithic APDP-based sub-harmonic mixer

    NASA Astrophysics Data System (ADS)

    Zhang, Shengzhou; Sun, Lingling; Wang, Xiang; Wen, Jincai; Liu, Jun

    2017-11-01

    The paper presents a compact D-band monolithic sub-harmonic mixer (SHM) with 3 μm planar hyperabrupt schottky-varactor diodes offered by 70 nm GaAs mHEMT technology. According to empirical equivalent-circuit models, a wide-band large signal equivalent circuit model of the diode is proposed. Based on the extracted model, the mixer is implemented and optimized with a shunt-mounted anti-parallel diode pair (APDP) to fulfill the sub-harmonic mixing mechanism. Furthermore, a modified asymmetric three-transmission-line coupler is devised to achieve high-level coupling and minimize the chip size. The measured results show that the conversion gain varies between -13.9 dB and -17.5 dB from 110 GHz to 145 GHz, with a local oscillator (LO) power level of 14 dBm and an intermediate frequency (IF) of 1 GHz. The total chip size including probe GSG pads is 0.57 × 0.68mm2. In conclusion, the mixer exhibits outstanding figure-of-merits.

  4. Polaronic effects due to quasi-confined optical phonons in wurtzite nitride nanowire in the presence of an electric field

    NASA Astrophysics Data System (ADS)

    Vardanyan, Karen A.; Asatryan, Anna L.; Vartanian, Arshak L.

    2015-07-01

    Considering the effect of an external electric field in wurtzite nitride cylindrical nanowire (NW), the polaron self-energy and effective mass due to the electron interaction with the quasi-confined optical phonons are studied theoretically by means of Lee-Low-Pines variational approach. The analytical expressions for the quasi-one-dimensional Fröhlich polaron self-energy and effective mass are obtained as functions of the wire radius and the strength of the electric field applied perpendicular to the wire axis. It is found that the main contribution to polaron basic parameters is from higher frequency optical phonon modes. The numerical results on the GaN material show that the polaron self-energy increases with the increase of the electric field and is more sensitive to the field when the wire radius is larger. It is also found that the polaron self-energy in GaN NWs is higher than that in zinc-blende GaAs-based cylindrical NWs.

  5. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwahara, D., E-mail: dkuwahar@cc.tuat.ac.jp; Ito, N.; Nagayama, Y.

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  6. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics.

    PubMed

    Kuwahara, D; Ito, N; Nagayama, Y; Yoshinaga, T; Yamaguchi, S; Yoshikawa, M; Kohagura, J; Sugito, S; Kogi, Y; Mase, A

    2014-11-01

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  7. On the Relationship Between Schottky Barrier Capacitance and Mixer Performance at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    1996-01-01

    The flat-band voltage is the Schottky junction voltage required to shrink the depletion width to zero. At cryogenic temperatures, mixer diodes are generally biased and/or pumped beyond the flat-band condition to minimize conversion loss and noise figure. This occurs despite the presumed sharp increase in junction capacitance near flat-band, which should instead limit mixer performance. Past moderate forward bias, the diode C-V relationship is difficult to measure. A simple analytic expression for C(V) is usually used to model and predict mixer performance. This letter provides experimental data on C(V) at 77 K based on a microwave measurement and modeling technique. Data is also provided on the conversion loss of a singly balanced mixer optimized for 77 K operation. The connection between junction capacitance, flat-band potential, and conversion loss is examined. It is shown that the analytic expression greatly overestimates the junction capacitance that occurs as flat-band is approached.

  8. Design Two-dimensional Materials with Superb Electronic and Optoelectronic Properties: The case of SiS

    NASA Astrophysics Data System (ADS)

    Wei, Su-Huai; Yang, Ji-Hui; Zhang, Yueyu; Yin, Wan-Jian; Gong, X. G.; Yakobson, Boris I.

    Two-dimensional (2D) semiconductors have many unique electronic and optoelectronic properties that is suitable for novel device applications. Most of the current study are focused on group IV or transition metal chalcogenides. In this study, using atomic transmutation and global optimization methods, we identified two group IV-VI 2D materials, Pma2-SiS and silicene sulfide that can overcome shortcomings encountered in conventional 2D semiconducttord. Pma2-SiS is found to be both chemically, energetically, and thermally stable. Most importantly, Pma2-SiS has unique electronic and optoelectronic properties, including direct bandgaps suitable for solar cells, good mobility for nanoelectronics, good flexibility of property tuning by layer thickness and strain appliance, and good air stability as well. Therefore, Pma2-SiS is expected to be a very promising 2D material in the field of 2D electronics and optoelectronics. Silicene sulfide also shows similar properties. We believe that the designing principles and approaches used to identify these materials have great potential to accelerate future finding of new functional materials within the 2D families.

  9. Ionic electroactive polymer actuators as active microfluidic mixers

    DOE PAGES

    Meis, Catherine; Montazami, Reza; Hashemi, Nastaran

    2015-11-06

    On-chip sample processing is integral to the continued development of lab-on-a-chip devices for various applications. An active microfluidic mixer prototype is proposed using ionic electroactive polymer actuators (IEAPAs) as artificial cilia. A proof-of-concept experiment was performed in which the actuators were shown to produce localized flow pattern disruptions in the laminar flow regime. Suggestions for further engineering and optimization of a scaled-down, complete device are provided. Furthermore, the device in its current state of development necessitates further engineering, the use of IEAPAs addresses issues currently associated with the use of electromechanical actuators as active microfluidic mixers and may prove tomore » be a useful alternative to other similar materials.« less

  10. Detailed evaluation of the performance of microfluidic T mixers using fluorescence and ultraviolet resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Masca, Sergiu I.; Rodriguez-Mendieta, Iñigo R.; Friel, Claire T.; Radford, Sheena E.; Smith, D. Alastair

    2006-05-01

    A reliable device that produces efficient mixing with a short dead time has enormous utility in the kinetic analysis of biochemical and chemical processes. We have designed two different T mixers that use moderate flow rates (0.2-0.4ml/s), can monitor reactions up to several milliseconds, and achieve mixing times as low as 20μs. The two mixers are easy to build and dismantle, reliable, and can perform hundreds of experiments without blocking. The first mixer comprises a stainless steel block, containing a microchannel, glued to a quartz cuvette, containing a 200×200μm2 observation channel defining a conventional T mixer. The reactions are monitored by imaging the length of the observation channel onto a charge-coupled device camera. In the second mixer the entire T (200×200μm2 internal cross section) is contained within a 40-mm-long quartz cuvette. We have adopted a novel approach to controlling the entrance channel bore by inserting a stainless steel wire in order to increase the linear speed of the impinging fluids. Using a dye to visualize the flow profile inside the second T mixer, it was shown that in this T geometry segregation of the reactants is observed in the junction between the inlet channels and the observation channel (T junction) and mixing occurs entirely in the observation channel. We thoroughly tested the two mixers through several kinetic reactions using both fluorescence and ultraviolet resonance Raman spectroscopy measurements. We show that both mixers provide efficient mixing with nominal dead times (using 1:10 v /v dilution), calculated using the quenching of the fluorescence of N-acetyl-L-tryptophanamide by N-bromosuccinimide, of 200±20 and 100±10μs, for each mixer, respectively. However, the ability to monitor within the inlet channels and the entire observation channel of the second mixer shows that this standard approach to estimating the dead time is artifactual, since it relies on assuming a constant flow speed throughout the

  11. EVALUATION AND RECOMMENDATION OF SALTSTONE MIXER AUGER/PADDLES MATERIALS OF CONSTRUCTION FOR IMPROVED WEAR RESISTANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J.; Torres, R.

    2012-08-15

    Wear and corrosion testing were conducted to evaluate alternate materials of construction for the Saltstone mixer auger and paddles. These components have been degraded by wear from the slurry processed in the mixer. Material test options included PVD coatings (TiN, TiCN, and ZrN), weld overlays (Stellite 12 and Ultimet) and higher hardness steels and carbides (D2 and tungsten carbide). The corrosion testing demonstrated that the slurry is not detrimental to the current materials of construction or the new candidates. The ASTM G75 Miller wear test showed that the high hardness materials and the Stellite 12 weld overlay provide superior wearmore » relative to the Astralloy and CF8M stainless steel, which are the current materials of construction, as well as the PVD coatings and Ultimet. The following recommendations are made for selecting new material options and improving the overall wear resistance of the Saltstone mixer components: A Stellite 12 weld overlay or higher hardness steel (with toughness equivalent to Astralloy) be used to improve the wear resistance of the Saltstone mixer paddles; other manufacturing specifications for the mixer need to be considered in this selection. The current use of the Stellite 12 weld overlay be evaluated so that coverage of the 316 auger can be optimized for improved wear resistance of the auger. The wear surfaces of the Saltstone mixer auger and paddles be evaluated so that laboratory data can be better correlated to actual service. The 2-inch Saltstone mixer prototype be used to verify material performance.« less

  12. Convex Grooves in Staggered Herringbone Mixer Improve Mixing Efficiency of Laminar Flow in Microchannel.

    PubMed

    Kwak, Tae Joon; Nam, Young Gyu; Najera, Maria Alejandra; Lee, Sang Woo; Strickler, J Rudi; Chang, Woo-Jin

    2016-01-01

    The liquid streams in a microchannel are hardly mixed to form laminar flow, and the mixing issue is well described by a low Reynolds number scheme. The staggered herringbone mixer (SHM) using repeated patterns of grooves in the microchannel have been proved to be an efficient passive micro-mixer. However, only a negative pattern of the staggered herringbone mixer has been used so far after it was first suggested, to the best of our knowledge. In this study, the mixing efficiencies from negative and positive staggered herringbone mixer patterns as well as from opposite flow directions were tested to investigate the effect of the micro-structure geometry on the surrounding laminar flow. The positive herringbone pattern showed better mixing efficiency than the conventionally used negative pattern. Also, generally used forward flow gives better mixing efficiency than reverse flow. The mixing was completed after two cycles of staggered herringbone mixer with both forward and reverse flow in a positive pattern. The traditional negative pattern showed complete mixing after four and five cycles in forward and reverse flow direction, respectively. The mixing effect in all geometries was numerically simulated, and the results confirmed more efficient mixing in the positive pattern than the negative. The results can further enable the design of a more efficient microfluidic mixer, as well as in depth understanding of the phenomena of positive and negative patterns existing in nature with regards to the surrounding fluids.

  13. Convex Grooves in Staggered Herringbone Mixer Improve Mixing Efficiency of Laminar Flow in Microchannel

    PubMed Central

    Nam, Young Gyu; Najera, Maria Alejandra; Lee, Sang Woo; Strickler, J. Rudi; Chang, Woo-Jin

    2016-01-01

    The liquid streams in a microchannel are hardly mixed to form laminar flow, and the mixing issue is well described by a low Reynolds number scheme. The staggered herringbone mixer (SHM) using repeated patterns of grooves in the microchannel have been proved to be an efficient passive micro-mixer. However, only a negative pattern of the staggered herringbone mixer has been used so far after it was first suggested, to the best of our knowledge. In this study, the mixing efficiencies from negative and positive staggered herringbone mixer patterns as well as from opposite flow directions were tested to investigate the effect of the micro-structure geometry on the surrounding laminar flow. The positive herringbone pattern showed better mixing efficiency than the conventionally used negative pattern. Also, generally used forward flow gives better mixing efficiency than reverse flow. The mixing was completed after two cycles of staggered herringbone mixer with both forward and reverse flow in a positive pattern. The traditional negative pattern showed complete mixing after four and five cycles in forward and reverse flow direction, respectively. The mixing effect in all geometries was numerically simulated, and the results confirmed more efficient mixing in the positive pattern than the negative. The results can further enable the design of a more efficient microfluidic mixer, as well as in depth understanding of the phenomena of positive and negative patterns existing in nature with regards to the surrounding fluids. PMID:27814386

  14. Static Mixer for Heat Transfer Enhancement for Mold Cooling Application

    NASA Astrophysics Data System (ADS)

    Becerra, Rodolfo; Barbosa, Raul; Lee, Kye-Hwan; Park, Younggil

    Injection molding is the process by which a material is melted in a barrel and then it is injected through a nozzle in the mold cavity. When it cools down, the material solidifies into the shape of the cavity. Typical injection mold has cooling channels to maintain constant mold temperature during injection molding process. Even and constant temperature throughout the mold are very critical for a part quality and productivity. Conformal cooling improves the quality and productivity of injection molding process through the implementation of cooling channels that ``conform'' to the shape of the molded part. Recent years, the use of conformal cooling increases with advance of 3D printing technology such as Selective Laser Melting (SLM). Although it maximizes cooling, material and dimension limitations make SLM methods highly expensive. An alternative is the addition of static mixers in the molds with integrated cooling channels. A static mixer is a motionless mixing device that enhances heat transfer by producing improved flow mixing in the pipeline. In this study, the performance of the cooling channels will be evaluated with and without static mixers, by measuring temperature, pressure drop, and flow rate. The following question is addressed: Can a static mixer effectively enhance heat transfer for mold cooling application processes? This will provide insight on the development of design methods and guidelines that can be used to increase cooling efficiency at a lower cost.

  15. The optimised sc dipole of SIS100 for series production

    NASA Astrophysics Data System (ADS)

    Roux, Christian; Mierau, Anna; Bleile, Alexander; Fischer, Egbert; Kaether, Florian; Körber, Boris; Schnizer, Pierre; Sugita, Kei; Szwangruber, Piotr

    2017-02-01

    At the international facility for antiproton and ion research (FAIR) in Darmstadt, Germany, an accelerator complex is developed for fundamental research in various fields of modern physics. In the SIS100 heavy-ion synchrotron, the main accelerator of FAIR, superconducting dipoles are used to bend the particle beam. The fast ramped dipoles are 3 m long super-ferric curved magnets operated at 4.5 K. The demands on field homogeneity required for sufficient beam stability are given by ΔB/B ≤ ±6 · 10-4. An intense measurement program of the First of Series (FoS) dipole showed excellent quench behavior and lower than expected AC losses yielding the main load on the SIS100 cryoplant. The FoS is capable to provide a field strength of 1.9 T. However, with sophisticated measurement systems slight distortions of the dipole field were detected. Those effects were tracked down to mechanical inaccuracies of the yoke proven by appropriate geometrical measurements and simulations. After a survey on alternative fabrication techniques a magnet with a new yoke was built with substantial changes to improve the mechanical accuracy. Its characteristics concerning cryogenic losses, cold geometry and the resulting magnetic-field quality are presented and an outlook on the series production of superconducting dipoles for SIS100 is given.

  16. Accurate experimental and theoretical comparisons between superconductor-insulator-superconductor mixers showing weak and strong quantum effects

    NASA Technical Reports Server (NTRS)

    Mcgrath, W. R.; Richards, P. L.; Face, D. W.; Prober, D. E.; Lloyd, F. L.

    1988-01-01

    A systematic study of the gain and noise in superconductor-insulator-superconductor mixers employing Ta based, Nb based, and Pb-alloy based tunnel junctions was made. These junctions displayed both weak and strong quantum effects at a signal frequency of 33 GHz. The effects of energy gap sharpness and subgap current were investigated and are quantitatively related to mixer performance. Detailed comparisons are made of the mixing results with the predictions of a three-port model approximation to the Tucker theory. Mixer performance was measured with a novel test apparatus which is accurate enough to allow for the first quantitative tests of theoretical noise predictions. It is found that the three-port model of the Tucker theory underestimates the mixer noise temperature by a factor of about 2 for all of the mixers. In addition, predicted values of available mixer gain are in reasonable agreement with experiment when quantum effects are weak. However, as quantum effects become strong, the predicted available gain diverges to infinity, which is in sharp contrast to the experimental results. Predictions of coupled gain do not always show such divergences.

  17. Study on installation of the submersible mixer

    NASA Astrophysics Data System (ADS)

    Tian, F.; Shi, W. D.; He, X. H.; Jiang, H.; Xu, Y. H.

    2013-12-01

    Study on installation of the submersible mixer for sewage treatment has been limited. In this article, large-scale computational fluid dynamics software FLUENT6.3 was adopted. ICEM software was used to build an unstructured grid of sewage treatment pool. After that, the sewage treatment pool was numerically simulated by dynamic coordinate system technology and RNG k-ε turbulent model and PIOS algorithm. Agitation pools on four different installation location cases were simulated respectively, and the external characteristic of the submersible mixer and the velocity cloud of the axial section were respectively comparatively analyzed. The best stirring effect can be reached by the installation location of case C, which is near the bottom of the pool 600 mm and blade distance the bottom at least for 200 mm wide and wide edge and narrow edge distance by 4:3. The conclusion can guide the engineering practice.

  18. Design of a mixer for the thrust-vectoring system on the high-alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Pahle, Joseph W.; Bundick, W. Thomas; Yeager, Jessie C.; Beissner, Fred L., Jr.

    1996-01-01

    One of the advanced control concepts being investigated on the High-Alpha Research Vehicle (HARV) is multi-axis thrust vectoring using an experimental thrust-vectoring (TV) system consisting of three hydraulically actuated vanes per engine. A mixer is used to translate the pitch-, roll-, and yaw-TV commands into the appropriate TV-vane commands for distribution to the vane actuators. A computer-aided optimization process was developed to perform the inversion of the thrust-vectoring effectiveness data for use by the mixer in performing this command translation. Using this process a new mixer was designed for the HARV and evaluated in simulation and flight. An important element of the Mixer is the priority logic, which determines priority among the pitch-, roll-, and yaw-TV commands.

  19. Quasi-Optical Network Analyzers and High-Reliability RF MEMS Switched Capacitors

    NASA Astrophysics Data System (ADS)

    Grichener, Alexander

    The thesis first presents a 2-port quasi-optical scalar network analyzer consisting of a transmitter and receiver both built in planar technology. The network analyzer is based on a Schottky-diode mixer integrated inside a planar antenna and fed differentially by a CPW transmission line. The antenna is placed on an extended hemispherical high-resistivity silicon substrate lens. The LO signal is swept from 3-5 GHz and high-order harmonic mixing in both up- and down- conversion mode is used to realize the 15-50 GHz RF bandwidth. The network analyzer resulted in a dynamic range of greater than 40 dB and was successfully used to measure a frequency selective surface with a second-order bandpass response. Furthermore, the system was built with circuits and components for easy scaling to millimeter-wave frequencies which is the primary motivation for this work. The application areas for a millimeter and submillimeter-wave network analyzer include material characterization and art diagnostics. The second project presents several RF MEMS switched capacitors designed for high-reliability operation and suitable for tunable filters and reconfigurable networks. The first switched-capacitor resulted in a digital capacitance ratio of 5 and an analog capacitance ratio of 5-9. The analog tuning of the down-state capacitance is enhanced by a positive vertical stress gradient in the the beam, making it ideal for applications that require precision tuning. A thick electroplated beam resulted in Q greater than 100 at C to X-band frequencies, and power handling of 0.6-1.1 W. The design also minimized charging in the dielectric, resulting in excellent reliability performance even under hot-switched and high power (1 W) conditions. The second switched-capacitor was designed without any dielectric to minimize charging. The device was hot-switched at 1 W of RF power for greater than 11 billion cycles with virtually no change in the C-V curve. The final project presents a 7-channel

  20. Phased-Array Study of Dual-Flow Jet Noise: Effect of Nozzles and Mixers

    NASA Technical Reports Server (NTRS)

    Soo Lee, Sang; Bridges, James

    2006-01-01

    A 16-microphone linear phased-array installed parallel to the jet axis and a 32-microphone azimuthal phased-array installed in the nozzle exit plane have been applied to identify the noise source distributions of nozzle exhaust systems with various internal mixers (lobed and axisymmetric) and nozzles (three different lengths). Measurements of velocity were also obtained using cross-stream stereo particle image velocimetry (PIV). Among the three nozzle lengths tested, the medium length nozzle was the quietest for all mixers at high frequency on the highest speed flow condition. Large differences in source strength distributions between nozzles and mixers occurred at or near the nozzle exit for this flow condition. The beamforming analyses from the azimuthal array for the 12-lobed mixer on the highest flow condition showed that the core flow and the lobe area were strong noise sources for the long and short nozzles. The 12 noisy spots associated with the lobe locations of the 12-lobed mixer with the long nozzle were very well detected for the frequencies 5 KHz and higher. Meanwhile, maps of the source strength of the axisymmetric splitter show that the outer shear layer was the most important noise source at most flow conditions. In general, there was a good correlation between the high turbulence regions from the PIV tests and the high noise source regions from the phased-array measurements.

  1. Contrasting effects of strong ties on SIR and SIS processes in temporal networks

    NASA Astrophysics Data System (ADS)

    Sun, Kaiyuan; Baronchelli, Andrea; Perra, Nicola

    2015-12-01

    Most real networks are characterized by connectivity patterns that evolve in time following complex, non-Markovian, dynamics. Here we investigate the impact of this ubiquitous feature by studying the Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Susceptible (SIS) epidemic models on activity driven networks with and without memory (i.e., Markovian and non-Markovian). We find that memory inhibits the spreading process in SIR models by shifting the epidemic threshold to larger values and reducing the final fraction of recovered nodes. On the contrary, in SIS processes memory reduces the epidemic threshold and, for a wide range of disease parameters, increases the fraction of nodes affected by the disease in the endemic state. The heterogeneity in tie strengths, and the frequent repetition of strong ties it entails, allows in fact less virulent SIS-like diseases to survive in tightly connected local clusters that serve as reservoir for the virus. We validate this picture by studying both processes on two real temporal networks.

  2. NbTiN Based SIS Multilayer Structures for SRF Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valente, Anne-marie; Eremeev, Grigory; Phillips, H

    2013-09-01

    For the past three decades, bulk niobium has been the material of choice for SRF cavities applications. RF cavity performance is now approaching the theoretical limit for bulk niobium. For further improvement of RF cavity performance for future accelerator projects, Superconductor Insulator - Superconductor (SIS) multilayer structures (as recently proposed by Alex Gurevich) present the theoretical prospect to reach RF performance beyond bulk Nb, using thinly layered higher-Tc superconductors with enhanced Hc1. Jefferson Lab (JLab) is pursuing this approach with the development of NbTiN and AlN based multilayer SIS structures. This paper presents the results on the characteristics of NbTiNmore » films and the first RF measurements on NbTiN-based multilayer structure on thick Nb films.« less

  3. Highly efficient evaluation of a gas mixer using a hollow waveguide based laser spectral sensor.

    PubMed

    Du, Z; Yang, X; Li, J; Yang, Y; Qiao, C

    2017-05-01

    This paper aims to provide a fast, sensitive, and accurate characterization of a Mass Flow Controller (MFC) based gas mixer. The gas mixer was evaluated by using a hollow waveguide based laser spectral sensor with high efficiency. Benefiting from the sensor's fast response, high sensitivity and continuous operation, multiple key parameters of the mixer, including mixing uncertainty, linearity, and response time, were acquired by a one-round test. The test results show that the mixer can blend multi-compound gases quite efficiently with an uncertainty of 1.44% occurring at a flow rate of 500 ml/min, with the linearity of 0.998 43 and the response time of 92.6 s. The results' reliability was confirmed by the relative measurement of gas concentration, in which the isolation of the sensor's uncertainty was conducted. The measured uncertainty has shown well coincidence with the theoretical uncertainties of the mixer, which proves the method to be a reliable characterization. Consequently, this sort of laser based characterization's wide appliance on gas analyzer's evaluations is demonstrated.

  4. Highly efficient evaluation of a gas mixer using a hollow waveguide based laser spectral sensor

    NASA Astrophysics Data System (ADS)

    Du, Z.; Yang, X.; Li, J.; Yang, Y.; Qiao, C.

    2017-05-01

    This paper aims to provide a fast, sensitive, and accurate characterization of a Mass Flow Controller (MFC) based gas mixer. The gas mixer was evaluated by using a hollow waveguide based laser spectral sensor with high efficiency. Benefiting from the sensor's fast response, high sensitivity and continuous operation, multiple key parameters of the mixer, including mixing uncertainty, linearity, and response time, were acquired by a one-round test. The test results show that the mixer can blend multi-compound gases quite efficiently with an uncertainty of 1.44% occurring at a flow rate of 500 ml/min, with the linearity of 0.998 43 and the response time of 92.6 s. The results' reliability was confirmed by the relative measurement of gas concentration, in which the isolation of the sensor's uncertainty was conducted. The measured uncertainty has shown well coincidence with the theoretical uncertainties of the mixer, which proves the method to be a reliable characterization. Consequently, this sort of laser based characterization's wide appliance on gas analyzer's evaluations is demonstrated.

  5. QCGAT mixer compound exhaust system design and static big model test report

    NASA Technical Reports Server (NTRS)

    Blackmore, W. L.; Thompson, C. E.

    1978-01-01

    A mixer exhaust system was designed to meet the proposed performance and exhaust jet noise goals for the AiResearch QCGAT engine. Some 0.35 scale models of the various nozzles were fabricated and aerodynamically and acoustically tested. Preliminary optimization, engine cycle matching, model test data and analysis are presented. A final mixer exhaust system is selected for optimum performance for the overall flight regime.

  6. Factors which influence the behavior of turbofan forced mixer nozzles

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Povinelli, L. A.

    1981-01-01

    A finite difference procedure was used to compute the mixing for three experimentally tested mixer geometries. Good agreement was obtained between analysis and experiment when the mechanisms responsible for secondary flow generation were properly modeled. Vorticity generation due to flow turning and vorticity generated within the centerbody lobe passage were found to be important. Results are presented for two different temperature ratios between fan and core streams and for two different free stream turbulence levels. It was concluded that the dominant mechanisms in turbofan mixers is associated with the secondary flows arising within the lobe region and their development within the mixing section.

  7. THz instrumentation for the Herschel Space Observatory's heterodyne instrument for far infrared

    NASA Astrophysics Data System (ADS)

    Pearson, John C.; Mehdi, Imran; Ward, John S.; Maiwald, Frank W.; Ferber, Robert R.; LeDuc, Henry G.; Schlecht, Erich T.; Gill, John J.; Hatch, William A.; Kawamura, Jonathan H.; Stern, Jeffrey A.; Gaier, Todd C.; Samoska, Lorene A.; Weinreb, Sander; Bumble, Bruce; Pukala, David M.; Javadi, Hamid H.; Finamore, Bradley P.; Lin, Robert H.; Dengler, Robert J.; Velebir, James R.; Luong, Edward M.; Tsang, Raymond; Peralta, Alejandro; Wells, Mary; Chun, William; Zmuidzinas, Jonas; Karpov, Alexandre; Phillips, Thomas; Miller, David; Maestrini, Alain E.; Erickson, Neal; Swift, Gerald; Liao, K. T.; Paquette, Michael

    2004-10-01

    The Heterodyne Instrument for Far Infrared (HIFI) on ESA's Herschel Space Observatory utilizes a variety of novel RF components in its five SIS receiver channels covering 480- 1250 GHz and two HEB receiver channels covering 1410-1910 GHz. The local oscillator unit will be passively cooled while the focal plane unit is cooled by superfluid helium and cold helium vapors. HIFI employs W-band GaAs amplifiers, InP HEMT low noise IF amplifiers, fixed tuned broadband planar diode multipliers, high power W-band Isolators, and novel material systems in the SIS mixers. The National Aeronautics and Space Administration through the Jet Propulsion Laboratory is managing the development of the highest frequency (1119-1250 GHz) SIS mixers, the local oscillators for the three highest frequency receivers as well as W-band power amplifiers, high power W-band isolators, varactor diode devices for all high frequency multipliers and InP HEMT components for all the receiver channels intermediate frequency amplifiers. The NASA developed components represent a significant advancement in the available performance. This paper presents an update of the performance and the current state of development.

  8. THz Instrumentation for the Herschel Space Observatory's Heterodyne Instrument for Far Infrared

    NASA Technical Reports Server (NTRS)

    Pearson, J. C.; Mehdi, I.; Ward, J. S.; Maiwald, F.; Ferber, R. R.; Leduc, H. G.; Schlecht, E. T.; Gill, J. J.; Hatch, W. A.; Kawamura, J. H.; hide

    2004-01-01

    The Heterodyne Instrument for Far Infrared (HIFI) on ESA's Herschel Space Observatory utilizes a variety of novel RF components in its five SIS receiver channels covering 480-1250 GHz and two HEB receiver channels covering 1410-1910 GHz. The local oscillator unit will be passively cooled while the focal plane unit is cooled by superfluid helium and cold helium vapors. HIFI employs W-band GaAs amplifiers, InP HEMT low noise IF amplifiers, fixed tuned broadband planar diode multipliers, high power W-bapd Isolators, and novel material systems in the SIS mixers. The National Aeronautics and Space Administration through the Jet Propulsion Laboratory is managing the development of the highest frequency (1119-1250 GHz) SIS mixers, the local oscillators oscillators for the three highest frequency receivers as well as W-band power amplifiers, high power W-band isolators, varactor diode devices for all high frequency multipliers and InP HEMT components for all the receiver channels intermediate frequency amplifiers. The NASA developed components represent a significant advancement in the available performance. This paper presents an update of the performance and the current state of development.

  9. Muller Mixer Fire - Lessons Learned

    DTIC Science & Technology

    1986-08-01

    wheel National Engineering stainless steel Special Simpson Porto Muller equipped with two-200 pound muller wheels plus an inside and outside plow...The mixer wheels /plows revolve at approximately 18 RPM and are driven by an 1800 RPM 3 H.P. motor through a double belt sheave and gear box. The bowl...diameter is approximately 39 inches and 12 inches deep with the mulling wheels /plows geared to move in a counterclockwise rotation. All bays are

  10. Cultural Heritage Documentation in SIS Environment: AN Application for "PORTA SIRENA" in the Archaeological Site of Paestum

    NASA Astrophysics Data System (ADS)

    Pepe, M.; Parente, C.

    2017-05-01

    The Heritage Documentation allows the monitoring, maintenance and conservation by the most recent, efficient investigation techniques and storage of data. A key role in Heritage Documentation is represented by the Geographic Information Systems (GIS) and Spatial Information System (SIS), thanks to the possibility offered by this instrument not only to connect spatial elements (geographical features) to attribute tables, but also manage various information in the form of raster (terrestrial, aerial and satellite imagery), 3D point clouds, 3D models and other vector data. The paper describes all the activities that lead to the construction of a SIS, especially in relation to the new survey technologies with particular focus at survey performed by Close Range Photogrammetry (CRP). In addition, after explaining the relationships between the different information systems that contribute towards creating of a SIS and the various professions involved, a case study in Paestum area (Italy), showing the efficiency of Spatial Information System (SIS) technology, is discussed.

  11. A compact design for the Josephson mixer: The lumped element circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillet, J.-D.; Collège de France, 11 place Marcelin Berthelot, 75005 Paris; Flurin, E.

    2015-06-01

    We present a compact and efficient design in terms of gain, bandwidth, and dynamical range for the Josephson mixer, the superconducting circuit performing three-wave mixing at microwave frequencies. In an all lumped-element based circuit with galvanically coupled ports, we demonstrate nondegenerate amplification for microwave signals over a bandwidth up to 50 MHz for a power gain of 20 dB. The quantum efficiency of the mixer is shown to be about 70%, and its saturation power reaches −112 dBm.

  12. Scale model performance test investigation of exhaust system mixers for an Energy Efficient Engine /E3/ propulsion system

    NASA Technical Reports Server (NTRS)

    Kuchar, A. P.; Chamberlin, R.

    1980-01-01

    A scale model performance test was conducted as part of the NASA Energy Efficient Engine (E3) Program, to investigate the geometric variables that influence the aerodynamic design of exhaust system mixers for high-bypass, mixed-flow engines. Mixer configuration variables included lobe number, penetration and perimeter, as well as several cutback mixer geometries. Mixing effectiveness and mixer pressure loss were determined using measured thrust and nozzle exit total pressure and temperature surveys. Results provide a data base to aid the analysis and design development of the E3 mixed-flow exhaust system.

  13. Applications of Submillimeter Wave Technology for SDI,

    DTIC Science & Technology

    1992-05-21

    equivalent to the center frequency (in GHz) divided by 2. If we allow a 13 dB "rule of thumb" signal-to- noise ratio (S/N) to account for such items as...suited for low - noise heterodyne mixing. This has led to the rapid development of SIS mixers for use in low - noise millimeter wave receivers for radio...JPL is building a 630 GHz SIS receiver13 for astrophysical remote-sensing applications. Preliminary measurements show its noise temperature to be a

  14. 120. COOLANT LINES TO SIS HEAT EXCHANGER No.1 IN AUXILIARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    120. COOLANT LINES TO SIS HEAT EXCHANGER No.1 IN AUXILIARY CHAMBER, NOVEMBER 1, 1976 - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  15. A micromechanical analogue mixer with dynamic displacement amplification

    NASA Astrophysics Data System (ADS)

    Erismis, M. A.

    2018-06-01

    A new micromechanical device is proposed which is capable of modulation, demodulation and filtering operations. The device uses a patented 3-mass coupled micromechanical resonator which dynamically amplifies the displacement within a frequency range of interest. Modulation can be obtained by exciting different masses of the resonator with the data and the carrier signals. Demodulation can be obtained similarly by exciting the actuator with the input and carrier signals at the same time. With the help of dynamic motion amplification, filtering and signal amplification can be achieved simultaneously. A generic design approach is introduced which can be applied from kHz to MHz regime frequencies of interest. A sample mixer design for an silicon on insulator-based process is provided. A SPICE (Simulation Program with Integrated Circuit Emphasis)-based electro-mechanical co-simulation platform is also developed and the proposed mixer is simulated.

  16. Optimization of integrated impeller mixer via radiotracer experiments.

    PubMed

    Othman, N; Kamarudin, S K; Takriff, M S; Rosli, M I; Engku Chik, E M F; Adnan, M A K

    2014-01-01

    Radiotracer experiments are carried out in order to determine the mean residence time (MRT) as well as percentage of dead zone, V dead (%), in an integrated mixer consisting of Rushton and pitched blade turbine (PBT). Conventionally, optimization was performed by varying one parameter and others were held constant (OFAT) which lead to enormous number of experiments. Thus, in this study, a 4-factor 3-level Taguchi L9 orthogonal array was introduced to obtain an accurate optimization of mixing efficiency with minimal number of experiments. This paper describes the optimal conditions of four process parameters, namely, impeller speed, impeller clearance, type of impeller, and sampling time, in obtaining MRT and V dead (%) using radiotracer experiments. The optimum conditions for the experiments were 100 rpm impeller speed, 50 mm impeller clearance, Type A mixer, and 900 s sampling time to reach optimization.

  17. Optical properties of periodic, quasi-periodic, and disordered one-dimensional photonic structures

    NASA Astrophysics Data System (ADS)

    Bellingeri, Michele; Chiasera, Alessandro; Kriegel, Ilka; Scotognella, Francesco

    2017-10-01

    Photonic structures are building blocks for many optical applications in which light manipulation is required spanning optical filtering, lasing, light emitting diodes, sensing and photovoltaics. The fabrication of one-dimensional photonic structures is achievable with a variety of different techniques, such as spin coating, sputtering, evaporation, pulse laser deposition, or extrusion. Such different techniques enable facile integration of the photonic structure with many types of devices. Photonic crystals are characterized by a spatial modulation of the dielectric constant on the length scale of the wavelength of light giving rise to energy ranges where light cannot propagate through the crystal - the photonic band gap. While mostly photonic crystals are referred to as periodic arrangements, in this review we aim to highlight as well how aperiodicity and disorder affects light modulation. In this review article, we introduce the concepts of periodicity, quasi-periodicity, and disorder in photonic crystals, focussing on the one-dimensional case. We discuss in detail the physical peculiarities, the fabrication techniques, and the applications of periodic, quasi-periodic, and disorder photonic structures, highlighting how the degree of crystallinity matters in the manipulation of light. We report different types of disorder in 1D photonic structures and we discuss their properties in terms of light transmission. We discuss the relationship between the average total transmission, in a range of wavelengths around the photonic band gap of the corresponding photonic crystal, and the homogeneity of the photonic structures, quantified by the Shannon index. Then we discuss the light transmission in structures in which the high refractive index layers are aggregated in clusters following a power law distribution. Finally, in the case of structures in which the high refractive index layers are aggregated in clusters with a truncated uniform distribution, we discuss: i) how

  18. 670 GHz Schottky Diode Based Subharmonic Mixer with CPW Circuits and 70 GHz IF

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam (Inventor); Schlecht, Erich T. (Inventor); Lee, Choonsup (Inventor); Lin, Robert H. (Inventor); Gill, John J. (Inventor); Sin, Seth (Inventor); Mehdi, Imran (Inventor)

    2014-01-01

    A coplanar waveguide (CPW) based subharmonic mixer working at 670 GHz using GaAs Schottky diodes. One example of the mixer has a LO input, an RF input and an IF output. Another possible mixer has a LO input, and IF input and an RF output. Each input or output is connected to a coplanar waveguide with a matching network. A pair of antiparallel diodes provides a signal at twice the LO frequency, which is then mixed with a second signal to provide signals having sum and difference frequencies. The output signal of interest is received after passing through a bandpass filter tuned to the frequency range of interest.

  19. Experiment evaluation of speckle suppression efficiency of 2D quasi-spiral M-sequence-based diffractive optical element.

    PubMed

    Lapchuk, A; Pashkevich, G A; Prygun, O V; Yurlov, V; Borodin, Y; Kryuchyn, A; Korchovyi, A A; Shylo, S

    2015-10-01

    The quasi-spiral 2D diffractive optical element (DOE) based on M-sequence of length N=15 is designed and manufactured. The speckle suppression efficiency by the DOE rotation is measured. The speckle suppression coefficients of 10.5, 6, and 4 are obtained for green, violet, and red laser beams, respectively. The results of numerical simulation and experimental data show that the quasi-spiral binary DOE structure can be as effective in speckle reduction as a periodic 2D DOE structure. The numerical simulation and experimental results show that the speckle suppression efficiency of the 2D DOE structure decreases approximately twice at the boundaries of the visible range. It is shown that a replacement of this structure with the bilateral 1D DOE allows obtaining the maximum speckle suppression efficiency in the entire visible range of light.

  20. CHEMICAL INDUCTION MIXER VERIFICATION - ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM

    EPA Science Inventory

    The Wet-Weather Flow Technologies Pilot of the Environmental Technology Verification (ETV) Program, which is supported by the U.S. Environmental Protection Agency and facilitated by NSF International, has recently evaluated the performance of chemical induction mixers used for di...

  1. Analytic solution for quasi-Lambertian radiation transfer.

    PubMed

    Braun, Avi; Gordon, Jeffrey M

    2010-02-10

    An analytic solution is derived for radiation transfer between flat quasi-Lambertian surfaces of arbitrary orientation, i.e., surfaces that radiate in a Lambertian fashion but within a numerical aperture smaller than unity. These formulas obviate the need for ray trace simulations and provide exact, physically transparent results. Illustrative examples that capture the salient features of the flux maps and the efficiency of flux transfer are presented for a few configurations of practical interest. There is also a fundamental reciprocity relation for quasi-Lambertian exchange, akin to the reciprocity theorem for fully Lambertian surfaces. Applications include optical fiber coupling, fiber-optic biomedical procedures, and solar concentrators.

  2. 26 CFR 48.4061-1 - Temporary regulations with respect to floor stock refunds or credits on cement mixers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... stock refunds or credits on cement mixers. 48.4061-1 Section 48.4061-1 Internal Revenue INTERNAL REVENUE... § 48.4061-1 Temporary regulations with respect to floor stock refunds or credits on cement mixers. (a... of tax on motor vehicles) on the sale of a cement mixer after June 30, 1968, and before January 1...

  3. 26 CFR 48.4061-1 - Temporary regulations with respect to floor stock refunds or credits on cement mixers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... stock refunds or credits on cement mixers. 48.4061-1 Section 48.4061-1 Internal Revenue INTERNAL REVENUE... § 48.4061-1 Temporary regulations with respect to floor stock refunds or credits on cement mixers. (a... of tax on motor vehicles) on the sale of a cement mixer after June 30, 1968, and before January 1...

  4. 26 CFR 48.4061-1 - Temporary regulations with respect to floor stock refunds or credits on cement mixers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... stock refunds or credits on cement mixers. 48.4061-1 Section 48.4061-1 Internal Revenue INTERNAL REVENUE... § 48.4061-1 Temporary regulations with respect to floor stock refunds or credits on cement mixers. (a... of tax on motor vehicles) on the sale of a cement mixer after June 30, 1968, and before January 1...

  5. 26 CFR 48.4061-1 - Temporary regulations with respect to floor stock refunds or credits on cement mixers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... stock refunds or credits on cement mixers. 48.4061-1 Section 48.4061-1 Internal Revenue INTERNAL REVENUE... § 48.4061-1 Temporary regulations with respect to floor stock refunds or credits on cement mixers. (a... of tax on motor vehicles) on the sale of a cement mixer after June 30, 1968, and before January 1...

  6. Frequency mixer having ferromagnetic film

    DOEpatents

    Khitun, Alexander; Roshchin, Igor V.; Galatsis, Kosmas; Bao, Mingqiang; Wang, Kang L.

    2016-03-29

    A frequency conversion device, which may include a radiofrequency (RF) mixer device, includes a substrate and a ferromagnetic film disposed over a surface of the substrate. An insulator is disposed over the ferromagnetic film and at least one microstrip antenna is disposed over the insulator. The ferromagnetic film provides a non-linear response to the frequency conversion device. The frequency conversion device may be used for signal mixing and amplification. The frequency conversion device may also be used in data encryption applications.

  7. Fabrication and characterization of high current-density, submicron, NbN/MgO/NbN tunnel junctions

    NASA Technical Reports Server (NTRS)

    Stern, J. A.; Leduc, Henry G.; Judas, A. J.

    1992-01-01

    At near-millimeter wavelengths, heterodyne receivers based on SIS tunnel junctions are the most sensitive available. However, in order to scale these results to submillimeter wavelengths, certain device properties should be scaled. The tunnel-junction's current density should be increased to reduce the RC product. The device's area should be reduced to efficiently couple power from the antenna to the mixer. Finally, the superconductor used should have a large energy gap to minimize RF losses. Most SIS mixers use Nb or Pb-alloy tunnel junctions; the gap frequency for these materials is approximately 725 GHz. Above the gap frequency, these materials exhibit losses similar to those in a normal metal. The gap frequency in NbN films is as-large-as 1440 GHz. Therefore, we have developed a process to fabricate small area (down to 0.13 sq microns), high current density, NbN/MgO/NbN tunnel junctions.

  8. Oxide_Oxide Ceramic Matrix Composite (CMC) Exhaust Mixer Development in the NASA Environmentally Responsible Aviation (ERA) Project

    NASA Technical Reports Server (NTRS)

    Kiser, James D.; Bansal, Narottam P.; Szelagowski, J.; Sokhey, J.; Heffernan, T.; Clegg, J.; Pierluissi, A.; Riedell, J.; Atmur, S.; Wyen, T.; hide

    2015-01-01

    Rolls-Royce North American Technologies, Inc. (LibertyWorksLW) began considering the development of CMC exhaust forced mixers in 2008, as a means of obtaining reduced weight and hotter operating temperature capability, while minimizing shape distortion during operation, which would improve mixing efficiency and reduce fuel burn. Increased component durability, enhanced ability to fabricate complex-shaped components, and engine noise reduction are other potential advantages of CMC mixers (compared to metallic mixers). In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project. ERA subtasks, including those focused on CMC components, were formulated with the goal of maturing technology from proof of concept validation (TRL 3) to a systemsubsystem or prototype demonstration in a relevant environment (TRL 6). In April 2010, the NASA Glenn Research Center (GRC) and LibertyWorks jointly initiated a CMC Exhaust System Validation Program within the ERA Project, teaming on CMC exhaust mixer development for subsonic jet engines capable of operating with increased performance. Our initial focus was on designing, fabricating, and characterizing the thrust and acoustic performance of a roughly quarter-scale 16-lobe oxide oxide CMC mixer and tail cone along with a conventional low bypass exhaust nozzle. Support Services, LLC (Allendale, MI) and ATK COI Ceramics, Inc. (COIC, in San Diego, CA) supported the design of a subscale nozzle assembly that consisted of an oxide oxide CMC mixer and center body, with each component mounted on a metallic attachment ring. That design was based upon the operating conditions a mixer would experience in a turbofan engine. Validation of the aerodynamic and acoustic performance of the subscale mixer via testing and the achievement of TRL 4 encouraged the NASALWCOIC team to move to the next phase where a full scale CMC mixer sized for a RR

  9. Terahertz Radiation Heterodyne Detector Using Two-Dimensional Electron Gas in a GaN Heterostructure

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Gill, John J.; Mehdi, Imran; Crawford, Timothy J.; Sergeev, Andrei V.; Mitin, Vladimir V.

    2012-01-01

    High-resolution submillimeter/terahertz spectroscopy is important for studying atmospheric and interstellar molecular gaseous species. It typically uses heterodyne receivers where an unknown (weak) signal is mixed with a strong signal from the local oscillator (LO) operating at a slightly different frequency. The non-linear mixer devices for this frequency range are unique and are not off-the-shelf commercial products. Three types of THz mixers are commonly used: Schottky diode, superconducting hot-electron bolometer (HEB), and superconductor-insulation-superconductor (SIS) junction. A HEB mixer based on the two-dimensional electron gas (2DEG) formed at the interface of two slightly dissimilar semiconductors was developed. This mixer can operate at temperatures between 100 and 300 K, and thus can be used with just passive radiative cooling available even on small spacecraft.

  10. Drug residues recovered in feed after various feedlot mixer truck cleanout procedures.

    PubMed

    Van Donkersgoed, Joyce; Sit, Dan; Gibbons, Nicole; Ramogida, Caterina; Hendrick, Steve

    2010-01-01

    A study was conducted to determine the effectiveness of two methods of equipment cleanout, sequencing or flushing, for reducing drug carryover in feedlot mixer trucks. Feed samples were collected from total mixed rations before and after various feed mixer equipment cleanout procedures. Medicated rations contained either 11 ppm of tylosin or 166 or 331 ppm of chlortetracycline. There were no differences between sequencing and flushing or between flushing with dry barley and flushing with barley silage in the median proportion of drug recovered in the next ration. A larger drug reduction was achieved using flush material at a volume of 10 versus 5% of the mixer capacity and mixing the flush material for 3 versus 4 min. Regardless of the drug or prescription concentrations in the total mixed rations or the equipment cleanout procedure used, concentrations of chlortetracycline and tylosin recovered were very low.

  11. Development of hot-electron THz bolometric mixers using MgB2 thin films

    NASA Astrophysics Data System (ADS)

    Cunnane, Daniel; Kawamura, Jonathan; Karasik, Boris S.; Wolak, Matthaeus A.; Xi, X. X.

    2014-07-01

    Terahertz high-resolution spectroscopy of interstellar molecular clouds greatly relies on hot-electron superconducting bolometric (HEB) mixers. Current state-of-the-art receivers use mixer devices made from ultrathin (~ 3-5 nm) films of NbN with critical temperature ~ 9-11 K. Such mixers have been deployed on a number of groundbased, suborbital, and orbital platforms including the HIFI instrument on the Hershel Space Observatory. Despite its good sensitivity and well-established fabrication process, the NbN HEB mixer suffers from the narrow intermediate frequency (IF) bandwidth ~ 2-3 GHz and is limited to operation at liquid Helium temperature. As the heterodyne receivers are now trending towards "high THz" frequencies, the need in a larger IF bandwidth becomes more pressing since the same velocity resolution for a Doppler shifted line at 5 THz requires a 5-times greater IF bandwidth than at 1 THz. Our work is focusing on the realization of practical HEB mixers using ultrathin (10-20 nm) MgB2 films. They are prepared using a Hybrid Physical-Chemical Vapor Deposition (HPCVD) process yielding ultrathin films with critical temperature ~ 37-39 K. The expectation is that the combination of small thickness, high acoustic phonon transparency at the interface with the substrate, and very short electron-phonon relaxation time may lead to IF bandwidth ~ 10 GHz or even higher. SiC continues to be the most favorable substrate for MgB2 growth and as a result, a study has been conducted on the transparency of SiC at THz frequencies. FTIR measurements show that semi-insulating SiC substrates are at least as transparent as Si up to 2.5 THz. Currently films are passivated using a thin (10 nm) SiO2 layer which is deposited ex-situ via RF magnetron sputtering. Micron-sized spiral antenna-coupled HEB mixers have been fabricated using MgB2 films as thin as 10 nm. Fabrication was done using contact UV lithography and Ar Ion milling, with E-beam evaporated Au films deposited for the

  12. Systematic Evaluation of the "Forests in Schools" (SIS) Project.

    ERIC Educational Resources Information Center

    School Research Newsletter, 1985

    1985-01-01

    The purpose of an inquiry was to study the feasibility, content, mediation, and results of the Swedish "Forests in Schools" (SIS) project, an example of a link between schools and working life (the latter represented by forest enterprise in general). It also sought to describe and, if possible, explain the effects of the activities…

  13. Periodic density modulation for quasi-phase-matching of optical frequency conversion is inefficient under shallow focusing and constant ambient pressure.

    PubMed

    Hadas, Itai; Bahabad, Alon

    2016-09-01

    The two main mechanisms of a periodic density modulation relevant to nonlinear optical conversion in a gas medium are spatial modulations of the index of refraction and of the number of emitters. For a one-dimensional model neglecting focusing and using a constant ambient pressure, it is shown theoretically and demonstrated numerically that the effects of these two mechanisms during frequency conversion cancel each other exactly. Under the considered conditions, this makes density modulation inefficient for quasi-phase-matching an optical frequency conversion process. This result is particularly relevant for high-order harmonic generation.

  14. Optical signal splitting and chirping device modeling

    NASA Astrophysics Data System (ADS)

    Vinogradova, Irina L.; Andrianova, Anna V.; Meshkov, Ivan K.; Sultanov, Albert Kh.; Abdrakhmanova, Guzel I.; Grakhova, Elizaveta P.; Ishmyarov, Arsen A.; Yantilina, Liliya Z.; Kutlieva, Gulnaz R.

    2017-04-01

    This article examines the devices for optical signal splitting and chirping device modeling. Models with splitting and switching functions are taken into consideration. The described device for optical signal splitting and chirping represents interferential splitter with profiled mixer which provides allocation of correspondent spectral component from ultra wide band frequency diapason, and signal phase shift for aerial array (AA) directive diagram control. This paper proposes modeling for two types of devices for optical signal splitting and chirping: the interference-type optical signal splitting and chirping device and the long-distance-type optical signal splitting and chirping device.

  15. Analog CMOS design for optical coherence tomography signal detection and processing.

    PubMed

    Xu, Wei; Mathine, David L; Barton, Jennifer K

    2008-02-01

    A CMOS circuit was designed and fabricated for optical coherence tomography (OCT) signal detection and processing. The circuit includes a photoreceiver, differential gain stage and lock-in amplifier based demodulator. The photoreceiver consists of a CMOS photodetector and low noise differential transimpedance amplifier which converts the optical interference signal into a voltage. The differential gain stage further amplifies the signal. The in-phase and quadrature channels of the lock-in amplifier each include an analog mixer and switched-capacitor low-pass filter with an external mixer reference signal. The interferogram envelope and phase can be extracted with this configuration, enabling Doppler OCT measurements. A sensitivity of -80 dB is achieved with faithful reproduction of the interferometric signal envelope. A sample image of finger tip is presented.

  16. SisLeish: A multi-country standardized information system to monitor the status of Leishmaniasis in the Americas.

    PubMed

    Maia-Elkhoury, Ana N S; O B Valadas, Samantha Y; Puppim-Buzanovsky, Lia; Rocha, Felipe; Sanchez-Vazquez, Manuel J

    2017-09-01

    In the Americas, leishmaniasis is endemic in 18 countries, and from 2001 through 2015, 17 countries reported 843,931 cases of cutaneous and mucocutaneous leishmaniasis, and 12 countries reported 52,176 cases of visceral leishmaniasis. A Regional Information System (SisLeish) was created in order to provide knowledge of the distribution and tendency of this disease to analyze and monitor the leishmaniasis status. This article analyses the performance and progress of SisLeish from 2012-2015. The performance of SisLeish was evaluated by country adhesion, data completeness and delay in entering the data, and also by the SWOT technique. Furthermore, we outlined the structure and modus operandi of the system and indicators utilized. In 2012, only 18% of the countries entered the data in SisLeish before the deadline, where 66.7% and 50% of the countries with autochthonous CL/ML and VL reported their cases to the system, respectively. Whereas in 2015, 59% of the countries reached the deadline, where 94.4% and 58.3% of the countries reported their CL/ML and VL data, respectively. Regarding data completeness, there was great progress for different variables since its launch, such as gender, which had an approximately 100% improvement from 2012 to 2015. The SWOT analysis of SisLeish showed 12 strengths, 11 opportunities, seven weaknesses and six threats. From 2012-2015 there has been an improvement in the adhesion, quality and data completeness, showing the effort of the majority of the countries to enhance their national database. The SWOT analysis demonstrated that strengths and opportunities exceed weaknesses and threats; however, it highlighted the system frailties and challenges that need to be addressed. Furthermore, it has stimulated several National Programs to advance their surveillance system. Therefore, SisLeish has become an essential tool to prioritize areas, assist in decision-making processes, and to guide surveillance and control actions.

  17. A Short Version of SIS (Support Intensity Scale): The Utility of the Application of Artificial Adaptive Systems

    ERIC Educational Resources Information Center

    Gomiero, Tiziano; Croce, Luigi; Grossi, Enzo; Luc, De Vreese; Buscema, Massimo; Mantesso, Ulrico; De Bastiani, Elisa

    2011-01-01

    The aim of this paper is to present a shortened version of the SIS (support intensity scale) obtained by the application of mathematical models and instruments, adopting special algorithms based on the most recent developments in artificial adaptive systems. All the variables of SIS applied to 1,052 subjects with ID (intellectual disabilities)…

  18. Mechanical Mixer for Rudder/Braking Wedge

    NASA Technical Reports Server (NTRS)

    Grimm, D.

    1985-01-01

    Right and left rudder panels moved separately. Mechanical mixer enables panels of two-panel rudder to rotate in same direction for steering or in opposite directions for dynamic braking. Steering and braking inputs separate so any combination of steering and braking motions executed simultaneously. Developed for aerodynamic braking of Space Shuttle orbiter, steering/braking drive train and rudder arrangement used for similar purposes on aircraft, thereby reducing sizes of thrust reversers.

  19. Concurrent validity and sensitivity to change of Direct Behavior Rating Single-Item Scales (DBR-SIS) within an elementary sample.

    PubMed

    Smith, Rhonda L; Eklund, Katie; Kilgus, Stephen P

    2018-03-01

    The purpose of this study was to evaluate the concurrent validity, sensitivity to change, and teacher acceptability of Direct Behavior Rating single-item scales (DBR-SIS), a brief progress monitoring measure designed to assess student behavioral change in response to intervention. Twenty-four elementary teacher-student dyads implemented a daily report card intervention to promote positive student behavior during prespecified classroom activities. During both baseline and intervention, teachers completed DBR-SIS ratings of 2 target behaviors (i.e., Academic Engagement, Disruptive Behavior) whereas research assistants collected systematic direct observation (SDO) data in relation to the same behaviors. Five change metrics (i.e., absolute change, percent of change from baseline, improvement rate difference, Tau-U, and standardized mean difference; Gresham, 2005) were calculated for both DBR-SIS and SDO data, yielding estimates of the change in student behavior in response to intervention. Mean DBR-SIS scores were predominantly moderately to highly correlated with SDO data within both baseline and intervention, demonstrating evidence of the former's concurrent validity. DBR-SIS change metrics were also significantly correlated with SDO change metrics for both Disruptive Behavior and Academic Engagement, yielding evidence of the former's sensitivity to change. In addition, teacher Usage Rating Profile-Assessment (URP-A) ratings indicated they found DBR-SIS to be acceptable and usable. Implications for practice, study limitations, and areas of future research are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. A three-dimensional turbulent compressible flow model for ejector and fluted mixers

    NASA Technical Reports Server (NTRS)

    Rushmore, W. L.; Zelazny, S. W.

    1978-01-01

    A three dimensional finite element computer code was developed to analyze ejector and axisymmetric fluted mixer systems whose flow fields are not significantly influenced by streamwise diffusion effects. A two equation turbulence model was used to make comparisons between theory and data for various flow fields which are components of the ejector system, i.e., (1) turbulent boundary layer in a duct; (2) rectangular nozzle (free jet); (3) axisymmetric nozzle (free jet); (4) hypermixing nozzle (free jet); and (5) plane wall jet. Likewise, comparisons of the code with analytical results and/or other numerical solutions were made for components of the axisymmetric fluted mixer system. These included: (1) developing pipe flow; (2) developing flow in an annular pipe; (3) developing flow in an axisymmetric pipe with conical center body and no fluting and (4) developing fluted pipe flow. Finally, two demonstration cases are presented which show the code's ability to analyze both the ejector and axisymmetric fluted mixers.

  1. High linearity current communicating passive mixer employing a simple resistor bias

    NASA Astrophysics Data System (ADS)

    Rongjiang, Liu; Guiliang, Guo; Yuepeng, Yan

    2013-03-01

    A high linearity current communicating passive mixer including the mixing cell and transimpedance amplifier (TIA) is introduced. It employs the resistor in the TIA to reduce the source voltage and the gate voltage of the mixing cell. The optimum linearity and the maximum symmetric switching operation are obtained at the same time. The mixer is implemented in a 0.25 μm CMOS process. The test shows that it achieves an input third-order intercept point of 13.32 dBm, conversion gain of 5.52 dB, and a single sideband noise figure of 20 dB.

  2. 1990 MTT-S International Microwave Symposium and Exhibition and Microwave and Millimeter-Wave Monolithic IC Symposium, Dallas, TX, May 7-10, 1990, Proceedings

    NASA Astrophysics Data System (ADS)

    McQuiddy, David N., Jr.; Sokolov, Vladimir

    1990-12-01

    The present conference discusses microwave filters, lightwave technology for microwave antennas, planar and quasi-planar guides, mixers and VCOs, cavity filters, discontinuity and coupling effects, control circuits, power dividers and phase shifters, microwave ICs, biological effects and medical applications, CAD and modeling for MMICs, directional couplers, MMIC design trends, microwave packaging and manufacturing, monolithic ICs, and solid-state devices and circuits. Also discussed are microwave and mm-wave superconducting technology, MICs for communication systems, the merging of optical and microwave technologies, microwave power transistors, ferrite devices, network measurements, advanced transmission-line structures, FET devices and circuits, field theory of IC discontinuities, active quasi-optical techniques, phased-array techniques and circuits, nonlinear CAD, sub-mm wave devices, and high power devices.

  3. Advanced Technologies For Heterodyne Radio Astronomy Instrumentation - Part1 By A. Pavolotsky, And Advanced Technologies For Heterodyne Radio Astronomy Instrumentation - Part2 By V. Desmaris

    NASA Astrophysics Data System (ADS)

    Pavolotsky, Alexey

    2018-01-01

    Modern and future heterodyne radio astronomy instrumentation critically depends on availability of advanced fabrication technologies and components. In Part1 of the Poster, we present the thin film fabrication process for SIS mixer receivers, utilizing either AlOx, or AlN barrier superconducting tunnel junctions developed and supported by GARD. The summary of the process design rules is presented. It is well known that performance of waveguide mixer components critically depends on accuracy of their geometrical dimensions. At GARD, all critical mechanical parts are 3D-mapped with a sub-um accuracy. Further progress of heterodyne instrumentation requires new efficient and compact sources of LO signal. We present SIS-based frequency multiplier, which could become a new option for LO source. Future radio astronomy THz receivers will need waveguide components, which fabricating due to their tiny dimensions is not feasible by traditional mechanical machining. We present the alternative micromachining technique for fabricating waveguide component for up 5 THz band and probably beyond.

  4. An inductorless active mixer using stacked nMOS/pMOS configuration and LO shaping technique

    NASA Astrophysics Data System (ADS)

    Guo, Benqing; Chen, Jun; Wang, Xuebing; Chen, Hongpeng

    2018-04-01

    In this paper, a CMOS active down-conversion mixer is presented for wideband applications. Specifically, a LO generation chain is suggested to convert AC LO signal to shaped trapezoid burst, which reduces the sinusoidal LO power level requirement by the mixer. The current-reuse technique by stacked nMOS/pMOS architecture is used to save the power consumption of the circuit. Moreover, this complementary configuration is also employed to compensate second-order nonlinearity of the circuit. Implemented in a 0.18-μm CMOS process, post-simulations show that, driven by only ‑10 dBm sinusoidal LO signal, the proposed inductorless mixer provides a maximal conversion gain of 15.7 dB and a noise figure (NF) of 9.1-12 dB across RF input frequency range 0.5-1.6 GHz. The IIP3 and IP1dB of 3.5 dBm and ‑4.8 dBm are obtained, respectively. The mixer core only consumes 3.6 mW from a 1.8-V supply.

  5. 433 micron laser heterodyne observations of galactic CO from Mauna Kea

    NASA Technical Reports Server (NTRS)

    Buhl, D.; Chin, G.; Koepf, G. A.; Fetterman, H. R.; Peck, D. D.; Clifton, B. J.; Tannenwald, P. E.; Goldsmith, P. F.; Erickson, N. R.; Mcavoy, N.

    1981-01-01

    A submillimeter heterodyne radiometer, developed for astronomical applications, uses an optically pumped laser local oscillator and a quasi-optical Schottky diode mixer. The resultant telescope-mounted system, which has a noise temperature less than 4000 K (double sideband) and high frequency and spatial resolution, has been used to detect the J = 6 to 5 rotational transition of carbon monoxide at 434 micrometers in the Orion molecular clouds. The measurements, when compared with previous millimeter-wave data, indicate that the broad carbon monoxide emission feature is produced by an optically thin gas whose temperature exceeds 180 K.

  6. Design of an Efficient Turbulent Micro-Mixer for Protein Folding Experiments

    NASA Astrophysics Data System (ADS)

    Inguva, Venkatesh; Perot, Blair

    2015-11-01

    Protein folding studies require the development of micro-mixers that require less sample, mix at faster rates, and still provide a high signal to noise ratio. Chaotic to marginally turbulent micro-mixers are promising candidates for this application. In this study, various turbulence and unsteadiness generation concepts are explored that avoid cavitation. The mixing enhancements include flow turning regions, flow splitters, and vortex shedding. The relative effectiveness of these different approaches for rapid micro-mixing is discussed. Simulations found that flow turning regions provided the best mixing profile. Experimental validation of the optimal design is verified through laser confocal microscopy experiments. This work is support by the National Science Foundation.

  7. Influence of melt mixer on injection molding of thermoset elastomers

    NASA Astrophysics Data System (ADS)

    Rochman, Arif; Zahra, Keith

    2016-10-01

    One of the drawbacks in injection molding is that the plasticizing screw is short such that polymers having high concentrations of additives, such as thermoset elastomers, might not mix homogeneously within the short period of time during the plasticizing stage. In this study, various melt mixers inside the nozzle chamber, together forming a mixing nozzle, were developed. Three different materials were investigated, namely nitrile butadiene rubber (NBR), ethylene propylene-diene monomer (EPDM) and fluorocarbon (FKM). The use of these melt mixers resulted in better homogeneity and properties of the molded parts despite a curing time reduction of 10 s. This was due to the increase in mixing and shearing introduced a higher rate of crosslinking formation in the molded parts.

  8. Wide-bandwidth electron bolometric mixers - A 2DEG prototype and potential for low-noise THz receivers

    NASA Technical Reports Server (NTRS)

    Yang, Jian-Xun; Agahi, Farid; Dai, Dong; Musante, Charles F.; Grammer, Wes; Lau, Kei M.; Yngvesson, K. S.

    1993-01-01

    This paper presents a new type of electron bolometric ('hot electron') mixer. We have demonstrated a 3 order-of-magnitude improvement in the bandwidth compared with previously known types of electron bolometric mixers, by using the two-dimensional electron gas (2DEG) medium at the heterointerface between AlGaAs and GaAs. We have tested both in-house MOCVD-grown material and MBE material, with similar results. The conversion loss (Lc) at 94 GHz is presently 18 dB for a mixer operating at 20 K, and calculations indicate that Lc can be decreased to about 10 dB in future devices. Calculated and measured curves of Lc versus P(LO), and I(DC), respectively, agree well. We argue that there are several different configurations of electron bolometric mixers, which will all show wide bandwidth, and that these devices are likely to become important as low-noise THz receivers in the future.

  9. SisLeish: A multi-country standardized information system to monitor the status of Leishmaniasis in the Americas

    PubMed Central

    Rocha, Felipe

    2017-01-01

    Background In the Americas, leishmaniasis is endemic in 18 countries, and from 2001 through 2015, 17 countries reported 843,931 cases of cutaneous and mucocutaneous leishmaniasis, and 12 countries reported 52,176 cases of visceral leishmaniasis. A Regional Information System (SisLeish) was created in order to provide knowledge of the distribution and tendency of this disease to analyze and monitor the leishmaniasis status. This article analyses the performance and progress of SisLeish from 2012–2015. Methodology The performance of SisLeish was evaluated by country adhesion, data completeness and delay in entering the data, and also by the SWOT technique. Furthermore, we outlined the structure and modus operandi of the system and indicators utilized. Results In 2012, only 18% of the countries entered the data in SisLeish before the deadline, where 66.7% and 50% of the countries with autochthonous CL/ML and VL reported their cases to the system, respectively. Whereas in 2015, 59% of the countries reached the deadline, where 94.4% and 58.3% of the countries reported their CL/ML and VL data, respectively. Regarding data completeness, there was great progress for different variables since its launch, such as gender, which had an approximately 100% improvement from 2012 to 2015. The SWOT analysis of SisLeish showed 12 strengths, 11 opportunities, seven weaknesses and six threats. Conclusions From 2012–2015 there has been an improvement in the adhesion, quality and data completeness, showing the effort of the majority of the countries to enhance their national database. The SWOT analysis demonstrated that strengths and opportunities exceed weaknesses and threats; however, it highlighted the system frailties and challenges that need to be addressed. Furthermore, it has stimulated several National Programs to advance their surveillance system. Therefore, SisLeish has become an essential tool to prioritize areas, assist in decision-making processes, and to guide

  10. A Low Power 2.4 GHz CMOS Mixer Using Forward Body Bias Technique for Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Yin, C. J.; Murad, S. A. Z.; Harun, A.; Ramli, M. M.; Zulkifli, T. Z. A.; Karim, J.

    2018-03-01

    Wireless sensor network (WSN) is a highly-demanded application since the evolution of wireless generation which is often used in recent communication technology. A radio frequency (RF) transceiver in WSN should have a low power consumption to support long operating times of mobile devices. A down-conversion mixer is responsible for frequency translation in a receiver. By operating a down-conversion mixer at a low supply voltage, the power consumed by WSN receiver can be greatly reduced. This paper presents a development of low power CMOS mixer using forward body bias technique for wireless sensor network. The proposed mixer is implemented using CMOS 0.13 μm Silterra technology. The forward body bias technique is adopted to obtain low power consumption. The simulation results indicate that a low power consumption of 0.91 mW is achieved at 1.6 V supply voltage. Moreover, the conversion gain (CG) of 21.83 dB, the noise figure (NF) of 16.51 dB and the input-referred third-order intercept point (IIP3) of 8.0 dB at 2.4 GHz are obtained. The proposed mixer is suitable for wireless sensor network.

  11. THz frequency receiver instrumentation for Herschel's heterodyne instrument for far infrared (HIFI)

    NASA Astrophysics Data System (ADS)

    Pearson, John C.; Mehdi, Imran; Schlecht, Erich; Maiwald, Frank; Maestrini, Alain; Gill, John J.; Martin, Suzanne C.; Pukala, Dave; Ward, J.; Kawamura, Jonathan; McGrath, William R.; Hatch, William; Harding, Dennis G.; LeDuc, Henry G.; Stern, Jeffry A.; Bumble, Bruce; Samoska, Lorene A.; Gaier, Todd C.; Ferber, Robert; Miller, David; Karpov, Alexandre; Zmuidzinas, Jonas; Phillips, Thomas G.; Erickson, Neal R.; Swift, Jerry; Chung, Yun; Lai, Richard; Wang, Huei

    2003-03-01

    The Heterodyne Instrument for Far Infrared (HIFI) on ESA's Herschel Space Observatory is comprised of five SIS receiver channels covering 480-1250 GHz and two HEB receiver channels covering 1410-1910 GHz. Two fixed tuned local oscillator sub-bands are derived from a common synthesizer to provide the front-end frequency coverage for each channel. The local oscillator unti will be passively cooled while the focal plane unit is cooled by superfluid helium and cold helium vapors. HIFI employs W-band GaAs amplifiers, InP HEMT low noise IF amplifiers, fixed tuned broadband planar diode multipliers, and novel material systems in the SIS mixtures. The National Aeronautics and Space Administration's Jet Propulsion Laboratory is managing the development of the highest frequency (1119-1250 GHz) SIS mixers, the highest frequency (1650-1910 GHz) HEB mixers, local oscillators for the three highest frequency receivers as well as W-band power amplifiers, varactor diode devices for all high frequency multipliers and InP HEMT components for all the receiver channels intermediate frequency amplifiers. The NASA developed components represent a significant advancement in the available performance. The current state of the art for each of these devices is presented along with a programmatic view of the development effort.

  12. 41. JL photographer, summer 1978, view of chemical mixer from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. JL photographer, summer 1978, view of chemical mixer from atop chemical spray nozzels. - Division Avenue Pumping Station & Filtration Plant, West 45th Street and Division Avenue, Cleveland, Cuyahoga County, OH

  13. Cooperative SIS epidemics can lead to abrupt outbreaks

    NASA Astrophysics Data System (ADS)

    Ghanbarnejad, Fakhteh; Chen, Li; Cai, Weiran; Grassberger, Peter

    2015-03-01

    In this paper, we study spreading of two cooperative SIS epidemics in mean field approximations and also within an agent based framework. Therefore we investigate dynamics on different topologies like Erdos-Renyi networks and regular lattices. We show that cooperativity of two diseases can lead to strongly first order outbreaks, while the dynamics still might present some scaling laws typical for second order phase transitions. We argue how topological network features might be related to this interesting hybrid behaviors.

  14. A "twisted" microfluidic mixer suitable for a wide range of flow rate applications.

    PubMed

    Sivashankar, Shilpa; Agambayev, Sumeyra; Mashraei, Yousof; Li, Er Qiang; Thoroddsen, Sigurdur T; Salama, Khaled Nabil

    2016-05-01

    This paper proposes a new "twisted" 3D microfluidic mixer fabricated by a laser writing/microfabrication technique. Effective and efficient mixing using the twisted micromixers can be obtained by combining two general chaotic mixing mechanisms: splitting/recombining and chaotic advection. The lamination of mixer units provides the splitting and recombination mechanism when the quadrant of circles is arranged in a two-layered serial arrangement of mixing units. The overall 3D path of the microchannel introduces the advection. An experimental investigation using chemical solutions revealed that these novel 3D passive microfluidic mixers were stable and could be operated at a wide range of flow rates. This micromixer finds application in the manipulation of tiny volumes of liquids that are crucial in diagnostics. The mixing performance was evaluated by dye visualization, and using a pH test that determined the chemical reaction of the solutions. A comparison of the tornado-mixer with this twisted micromixer was made to evaluate the efficiency of mixing. The efficiency of mixing was calculated within the channel by acquiring intensities using ImageJ software. Results suggested that efficient mixing can be obtained when more than 3 units were consecutively placed. The geometry of the device, which has a length of 30 mm, enables the device to be integrated with micro total analysis systems and other lab-on-chip devices.

  15. Characterization of NbN films and tunnel junctions

    NASA Technical Reports Server (NTRS)

    Stern, J. A.; Leduc, H. G.

    1991-01-01

    Properties of NbN films and NbN/MgO/NbN tunnel junctions are discussed. NbN junctions are being developed for use in high-frequency, SIS quasiparticle mixers. To properly design mixer circuits, junction and film properties need to be characterized. The specific capacitance of NbN/MgO/NbN junctions has been measured as a function of the product of the normal-state resistance and the junction area (RnA), and it is found to vary by more than a factor of two (35-85 fF/sq microns) over the range of RnA measured (1000-50 ohm sq microns). This variation is important because the specific capacitance determines the RC speed of the tunnel junction at a given RnA value. The magnetic penetration depth of NbN films deposited under different conditions is also measured. The magnetic penetration depth affects the design of microstrip line used in RF tuning circuits. Control of the magnetic penetration depth is necessary to fabricate reproducible tuning circuits. Additionally, the critical current uniformity for arrays of 100 junctions has been measured. Junction uniformity will affect the design of focal-plane arrays of SIS mixers. Finally, the relevance of these measurements to the design of Josephson electronics is discussed.

  16. Detection of Possible Quasi-periodic Oscillations in the Long-term Optical Light Curve of the BL Lac Object OJ 287

    NASA Astrophysics Data System (ADS)

    Bhatta, G.; Zola, S.; Stawarz, Ł.; Ostrowski, M.; Winiarski, M.; Ogłoza, W.; Dróżdż, M.; Siwak, M.; Liakos, A.; Kozieł-Wierzbowska, D.; Gazeas, K.; Debski, B.; Kundera, T.; Stachowski, G.; Paliya, V. S.

    2016-11-01

    The detection of periodicity in the broadband non-thermal emission of blazars has so far been proven to be elusive. However, there are a number of scenarios that could lead to quasi-periodic variations in blazar light curves. For example, an orbital or thermal/viscous period of accreting matter around central supermassive black holes could, in principle, be imprinted in the multi-wavelength emission of small-scale blazar jets, carrying such crucial information about plasma conditions within the jet launching regions. In this paper, we present the results of our time series analysis of the ˜9.2 yr long, and exceptionally well-sampled, optical light curve of the BL Lac object OJ 287. The study primarily used the data from our own observations performed at the Mt. Suhora and Kraków Observatories in Poland, and at the Athens Observatory in Greece. Additionally, SMARTS observations were used to fill some of the gaps in the data. The Lomb-Scargle periodogram and the weighted wavelet Z-transform methods were employed to search for possible quasi-periodic oscillations in the resulting optical light curve of the source. Both methods consistently yielded a possible quasi-periodic signal around the periods of ˜400 and ˜800 days, the former with a significance (over the underlying colored noise) of ≥slant 99 % . A number of likely explanations for this are discussed, with preference given to a modulation of the jet production efficiency by highly magnetized accretion disks. This supports previous findings and the interpretation reported recently in the literature for OJ 287 and other blazar sources.

  17. A unified lense-thirring precession model for optical and X-ray quasi-periodic oscillations in black hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veledina, Alexandra; Poutanen, Juri; Ingram, Adam, E-mail: alexandra.veledina@oulu.fi, E-mail: juri.poutanen@oulu.fi

    2013-12-01

    Recent observations of accreting black holes reveal the presence of quasi-periodic oscillations (QPO) in the optical power density spectra. The corresponding oscillation periods match those found in X-rays, implying a common origin. Among the numerous suggested X-ray QPO mechanisms, some may also work in the optical. However, their relevance to the broadband—optical through X-ray—spectral properties have not been investigated. For the first time, we discuss the QPO mechanism in the context of the self-consistent spectral model. We propose that the QPOs are produced by Lense-Thirring precession of the hot accretion flow, whose outer parts radiate in optical wavelengths. At themore » same time, its innermost parts are emitting X-rays, which explains the observed connection of QPO periods. We predict that the X-ray and optical QPOs should be either in phase or shifted by half a period, depending on the observer position. We investigate the QPO harmonic content and find that the variability amplitudes at the fundamental frequency are larger in the optical, while the X-rays are expected to have strong harmonics. We then discuss the QPO spectral dependence and compare the expectations to the existing data.« less

  18. Quantum bright solitons in a quasi-one-dimensional optical lattice

    NASA Astrophysics Data System (ADS)

    Barbiero, Luca; Salasnich, Luca

    2014-06-01

    We study a quasi-one-dimensional attractive Bose gas confined in an optical lattice with a superimposed harmonic potential by analyzing the one-dimensional Bose-Hubbard Hamiltonian of the system. Starting from the three-dimensional many-body quantum Hamiltonian, we derive strong inequalities involving the transverse degrees of freedom under which the one-dimensional Bose-Hubbard Hamiltonian can be safely used. To have a reliable description of the one-dimensional ground state, which we call a quantum bright soliton, we use the density-matrix-renormalization-group (DMRG) technique. By comparing DMRG results with mean-field (MF) ones, we find that beyond-mean-field effects become relevant by increasing the attraction between bosons or by decreasing the frequency of the harmonic confinement. In particular, we find that, contrary to the MF predictions based on the discrete nonlinear Schrödinger equation, average density profiles of quantum bright solitons are not shape-invariant. We also use the time-evolving-block-decimation method to investigate the dynamical properties of bright solitons when the frequency of the harmonic potential is suddenly increased. This quantum quench induces a breathing mode whose period crucially depends on the final strength of the superimposed harmonic confinement.

  19. Subsonic Jet Noise Reduced With Improved Internal Exhaust Gas Mixers

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Aircraft noise pollution is becoming a major environmental concern for the world community. The Federal Aviation Administration (FAA) is responding to this concern by imposing more stringent noise restrictions for aircraft certification then ever before to keep the U.S. industry competitive with the rest of the world. At the NASA Lewis Research Center, attempts are underway to develop noise-reduction technology for newer engines and for retrofitting existing engines so that they are as quiet as (or quieter than) required. Lewis conducted acoustic and Laser Doppler Velocimetry (LDV) tests using Pratt & Whitney's Internal Exhaust Gas Mixers (IEGM). The IEGM's mix the core flow with the fan flow prior to their common exhaust. All tests were conducted in Lewis' Aero-Acoustic Propulsion Laboratory--a semihemispheric dome open to the ambient atmosphere. This was the first time Laser Doppler Velocimetry was used in such a facility at Lewis. Jet exhaust velocity and turbulence and the internal velocity fields were detailed. Far-field acoustics were also measured. Pratt & Whitney provided 1/7th scale model test hardware (a 12-lobe mixer, a 20-lobe mixer, and a splitter) for 1.7 bypass ratio engines, and NASA provided the research engineers, test facility, and test time. The Pratt & Whitney JT8D-200 engine power conditions were used for all tests.

  20. An Integrated 520-600 GHz Sub-Harmonic Mixer and Tripler Combination Based on GaAs MMIC Membrane Planar Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.

    2011-01-01

    We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW

  1. An Integrated 520-600 GHz Sub-Harmonic Mixer and Tripler Combination Based on GaAs MMIC Membrane Planar Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.

    2010-01-01

    We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW.

  2. Theory and Simulation of Gain-Guided Noncollinear Modes in Chirped Quasi-Phase-Matched Optical Parametric Amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charbonneau-Lefort, Mathieu; Afeyan, Bedros; Fejer, Martin

    Chirped quasi-phase-matched (QPM) gratings offer essentially constant gain over wide bandwidths, making them promising candidates for short-pulse optical parametric amplifiers. However, experiments have shown that high-gain non-collinear processes exist in spite of the dephasing caused by the non-uniformity of the QPM grating and compete with the desired collinear broadband gain of the amplifier. In this paper, these non-collinear gain-guided modes are investigated numerically and analytically in a model that includes longitudinal non-uniformity of the phase-matching profile, lateral localization of the pump beam and non-collinear propagation of the interacting waves.

  3. FRONT (SOUTH) ELEVATION, MIXER RUINS (CENTER) WITH STACKS (LEFT) AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FRONT (SOUTH) ELEVATION, MIXER RUINS (CENTER) WITH STACKS (LEFT) AND POWER HOUSE (RIGHT). - Tennessee Coal & Iron Company, Ensley Works, Open Hearth Furnace (Ruins), West of Ensley commercial & residential districts, Birmingham, Jefferson County, AL

  4. FRONT (SOUTH) ELEVATION, MIXER RUINS (CENTER) WITH STACKS (LEFT) AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FRONT (SOUTH) ELEVATION, MIXER RUINS (CENTER) WITH STACKS (LEFT) AND POWER HOUSE (RIGHT - Tennessee Coal & Iron Company, Ensley Works, Open Hearth Furnace (Ruins), West of Ensley commercial & residential districts, Birmingham, Jefferson County, AL

  5. Energy Efficient Engine exhaust mixer model technology report addendum; phase 3 test program

    NASA Technical Reports Server (NTRS)

    Larkin, M. J.; Blatt, J. R.

    1984-01-01

    The Phase 3 exhaust mixer test program was conducted to explore the trends established during previous Phases 1 and 2. Combinations of mixer design parameters were tested. Phase 3 testing showed that the best performance achievable within tailpipe length and diameter constraints is 2.55 percent better than an optimized separate flow base line. A reduced penetration design achieved about the same overall performance level at a substantially lower level of excess pressure loss but with a small reduction in mixing. To improve reliability of the data, the hot and cold flow thrust coefficient analysis used in Phases 1 and 2 was augmented by calculating percent mixing from traverse data. Relative change in percent mixing between configurations was determined from thrust and flow coefficient increments. The calculation procedure developed was found to be a useful tool in assessing mixer performance. Detailed flow field data were obtained to facilitate calibration of computer codes.

  6. Optimal Elevation and Configuration of Hanford's Double-Shell Tank Waste Mixer Pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Yasuo; Yokuda, Satoru T.; Majumder, Catherine A.

    The objective of this study was to compare the mixing performance of the Lawrence pump, which has injection nozzles at the top, with an alternative pump that has injection nozzles at the bottom, and to determine the optimal elevation for the alternative pump. Sixteen cases were evaluated: two sludge thicknesses at eight levels. A two-step evaluation approach was used: Step 1 to evaluate all 16 cases with the non-rotating mixer pump model and Step 2 to further evaluate four of those cases with the more realistic rotating mixer pump model. The TEMPEST code was used.

  7. A user oriented computer program for the analysis of microwave mixers, and a study of the effects of the series inductance and diode capacitance on the performance of some simple mixers

    NASA Technical Reports Server (NTRS)

    Siegel, P. H.; Kerr, A. R.

    1979-01-01

    A user oriented computer program for analyzing microwave and millimeter wave mixers with a single Schottky barrier diode of known I-V and C-V characteristics is described. The program first performs a nonlinear analysis to determine the diode conductance and capacitance waveforms produced by the local oscillator. A small signal linear analysis is then used to find the conversion loss, port impedances, and input noise temperature of the mixer. Thermal noise from the series resistance of the diode and shot noise from the periodically pumped current in the diode conductance are considered. The effects of the series inductance and diode capacitance on the performance of some simple mixer circuits using a conventional Schottky diode, a Schottky diode in which there is no capacitance variation, and a Mott diode are studied. It is shown that the parametric effects of the voltage dependent capacitance of a conventional Schottky diode may be either detrimental or beneficial depending on the diode and circuit parameters.

  8. Partially transformed, anchorage-independent human diploid fibroblasts result from overexpression of the c-sis oncogene: Mitogenic activity of an apparent monomeric platelet-derived growth factor 2 species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, C.W.; Brondyk, W.H.; Burgess, J.A.

    1988-05-01

    A human c-sis cDNA in an expression vector was introduced into human diploid fibroblasts by transfection or electroporation. Fibroblast clones showing an aberrant, densely packed colony morphology were isolated and found to overexpress a 3.6-kilobase sis mRNA species and associated immunoprecipitable platelet-derived growth factor (PDGF) 2 proteins. Parallel analyses in cell clones of sis mRNA expression and colony formation in agar indicated that, above a threshold, a linear, positive correlation existed between sis overexpression and acquired anchorage independence. The sis-overexpressing cells formed transient, regressing tumor nodules when injected into nude mice, consistent with the finite life span which they retained.more » Protein products generated from the transfected c-sis construct in two overexpressing clones were immunoprecipitated with anti-human PDGF antibodies. One clone contained an apparent PDGF dimer of 21 kilodaltons; the second clone contained only on apparent PDGF monomer of 12 kilodaltons, which was shown to account for all of the mitogenic activity present in the cells, essentially all of which was concentrated in the membrane fraction. The results demonstrate a clear link between sis overexpression and acquisition of a partially transformed, anchorage-independent phenotype, and when combined with previous observations of sis overexpression in human tumors, clearly implicate sis overexpression as a genetic mechanism which contributes to human cell transformation.« less

  9. Review of mixer design for low voltage - low power applications

    NASA Astrophysics Data System (ADS)

    Nurulain, D.; Musa, F. A. S.; Isa, M. Mohamad; Ahmad, N.; Kasjoo, S. R.

    2017-09-01

    A mixer is used in almost all radio frequency (RF) or microwave systems for frequency translation. Nowadays, the increase market demand encouraged the industry to deliver circuit designs to create proficient and convenient equipment with very low power (LP) consumption and low voltage (LV) supply in both digital and analogue circuits. This paper focused on different Complementary Metal Oxide Semiconductor (CMOS) design topologies for LV and LP mixer design. Floating Gate Metal Oxide Semiconductor (FGMOS) is an alternative technology to replace CMOS due to their high ability for LV and LP applications. FGMOS only required a few transistors per gate and can have a shift in threshold voltage (VTH) to increase the LP and LV performances as compared to CMOS, which makes an attractive option to replace CMOS.

  10. Shot-noise in resistive-diode mixers and the attenuator noise model

    NASA Technical Reports Server (NTRS)

    Kerr, A. R.

    1979-01-01

    The representation of a pumped exponential diode, operating as a mixer, by an equivalent lossy network, is reexamined. It is shown that the model is correct provided the network has ports for all sideband frequencies at which (real) power flow can occur between the diode and its embedding. The temperature of the equivalent network is eta/2 times the physical temperature of the diode. The model is valid only if the series resistance and nonlinear capacitance of the diode are negligible. Expressions are derived for the input and output noise temperature and the noise-temperature ratio of ideal mixers. Some common beliefs concerning noise-figure and noise-temperature ratio are shown to be incorrect.

  11. Modulation of intracellular protein degradation by SSB1-SIS1 chaperon system in yeast S. cerevisiae.

    PubMed

    Ohba, M

    1997-06-09

    In prokaryotes, DnaK-DnaJ chaperon is involved in the protein degradation catalyzed by proteases La and ClpA/B complex as shown in E. coli. To extend this into eukaryotic cells, we examined the effects of hsp70 genes, SSA1 and SSB1, and DnaJ genes, SIS1 and YDJ1, on the growth of proteasome subunit mutants of the yeast S. cerevisiae. The results identified SSB1 and SIS1 as a pair of chaperon genes specifically involved in efficient protein turnover in the yeast, whose overexpression suppressed the growth defects caused by the proteasome mutations. Moreover, a single amino acid substitution in the putative peptide-binding site of SSB1 protein profoundly enhanced the suppression activity, indicating that the activity is mediated by the peptide-binding activity of this chaperon. Thus SSB1, with its partner DnaJ, SIS1, modulates the efficiency of protein turnover through its chaperon activity.

  12. Mixing monoclonal antibody formulations using bottom-mounted mixers: impact of mechanism and design on drug product quality.

    PubMed

    Gikanga, Benson; Chen, Yufei; Stauch, Oliver B; Maa, Yuh-Fun

    2015-01-01

    Using bottom-mounted mixers, particularly those that are magnetically driven, is becoming increasingly common during the mixing process in pharmaceutical and biotechnology manufacturing because of their associated low risk of contamination, ease of use, and ability to accommodate low minimum mixing volumes. Despite these benefits, the impact of bottom-mounted mixers on biologic drug product is not yet fully understood and is scarcely reported. This study evaluated four bottom-mounted mixers to assess their impact on monoclonal antibody formulations. Changes in product quality (size variants, particles, and turbidity) and impact on process performance (sterile filtration) were evaluated after mixing. The results suggested that mixers that are designed to function with no contact between the impeller and the drive unit are the most favorable and gentle to monoclonal antibody molecules. Designs with contact or a narrow clearance tended to shear and grind the protein and resulted in high particle count in the liquid, which would subsequently foul a filter membrane during sterile filtration using a 0.22 μm pore size filter. Despite particle formation, increases in turbidity of the protein solution and protein aggregation/fragmentation were not detected. Further particle analysis indicated particles in the range of 0.2-2 μm are responsible for filter fouling. A small-scale screening model was developed using two types of magnetic stir bars mimicking the presence or absence of contact between the impeller and drive unit in the bottom-mounted mixers. The model is capable of differentiating the sensitivity of monoclonal antibody formulations to bottom-mounted mixers with a small sample size. This study fills an important gap in understanding a critical bioprocess unit operation. Mixing is an important unit operation in drug product manufacturing for compounding (dilution, pooling, homogenization, etc.). The current trend in adopting disposable bottom-mounted mixers has

  13. Novel Solution Process for Fabricating Ultra-Thin-Film Absorber Layers in Fe 2SiS 4 and Fe 2GeS 4 Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orefuwa, Samuel A.; Lai, Cheng-Yu; Dobson, Kevin D.

    2014-05-12

    Fe 2SiS 4 and Fe 2GeS 4 crystalline materials posses direct bandgaps of ~1.55 and ~1.4 eV respectively and an absorption coefficient larger than 10^5 cm–1; their theoretical potential as solar photovoltaic absorbers has been demonstrated. However, no solar devices that employ either Fe 2SiS 4 or Fe 2GeS 4 have been reported to date. In the presented work, nanoprecursors to Fe 2SiS 4 and Fe 2GeS 4 have been fabricated and employed to build ultra-thin-film layers via spray coating and rod coating methods. Temperature-dependent X-Ray diffraction analyses of nanoprecursors coatings show an unprecedented low temperature for forming crystalline Femore » 2SiS 4 and Fe 2GeS 4. Fabricating of ultra-thin-film photovoltaic devices utilizing Fe 2SiS 4 and Fe 2GeS 4 as solar absorber material is presented.« less

  14. Photoelectric-enhanced radiation therapy with quasi-monochromatic computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jost, Gregor; Mensing, Tristan; Golfier, Sven

    2009-06-15

    Photoelectric-enhanced radiation therapy is a bimodal therapy, consisting of the administration of highly radiation-absorbing substances into the tumor area and localized regional irradiation with orthovoltage x-rays. Irradiation can be performed by a modified computed tomography (CT) unit equipped with an additional x-ray optical module which converts the polychromatic, fan-shaped CT beam into a monochromatized and focused beam for energy-tuned photoelectric-enhanced radiotherapy. A dedicated x-ray optical module designed for spatial collimation, focusing, and monochromatization was mounted at the exit of the x-ray tube of a clinical CT unit. Spectrally resolved measurements of the resulting beam were performed using an energy-dispersive detectionmore » system calibrated by synchrotron radiation. The spatial photon fluence was determined by film dosimetry. Depth-dose measurements were performed and compared to the polychromatic CT and a therapeutic 6 MV beam. The spatial dose distribution in phantoms using a rotating radiation source (quasi-monochromatic CT and 6 MV, respectively) was investigated by gel dosimetry. The photoelectric dose enhancement for an iodine fraction of 1% in tissue was calculated and verified experimentally. The x-ray optical module selectively filters the energy of the tungsten K{alpha} emission line with an FWHM of 5 keV. The relative photon fluence distribution demonstrates the focusing characteristic of the x-ray optical module. A beam width of about 3 mm was determined at the isocenter of the CT gantry. The depth-dose measurements resulted in a half-depth value of approximately 36 mm for the CT beams (quasi-monochromatic, polychromatic) compared to 154 mm for the 6 MV beam. The rotation of the radiation source leads to a steep dose gradient at the center of rotation; the gel dosimetry yields an entrance-to-peak dose ratio of 1:10.8 for the quasi-monochromatic CT and 1:37.3 for a 6 MV beam of the same size. The photoelectric dose

  15. QUASI-PERIODIC OSCILLATIONS OF {approx}15 MINUTES IN THE OPTICAL LIGHT CURVE OF THE BL LAC S5 0716+714

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Bindu; Gupta, Alok C.; Joshi, U. C.

    Over the course of 3 hr on 2008 December 27, we obtained optical (R band) observations of the blazar S5 0716+714 at a very fast cadence of 10 s. Using several different techniques, we find fluctuations with an approximately 15 minute quasi-period to be present in the first portion of these data at a >3{sigma} confidence level. This is the fastest quasi-periodic oscillation that has been claimed to be observed in any blazar at any wavelength. While these data are insufficient to strongly constrain models for such fluctuations, the presence of such a short timescale when the source is notmore » in a very low state seems to favor the action of turbulence behind a shock in the blazar's relativistic jet.« less

  16. Le modèle stochastique SIS pour une épidémie dans un environnement aléatoire.

    PubMed

    Bacaër, Nicolas

    2016-10-01

    The stochastic SIS epidemic model in a random environment. In a random environment that is a two-state continuous-time Markov chain, the mean time to extinction of the stochastic SIS epidemic model grows in the supercritical case exponentially with respect to the population size if the two states are favorable, and like a power law if one state is favorable while the other is unfavorable.

  17. Gen 2.0 Mixer/Ejector Nozzle Test at LSAF June 1995 to July 1996

    NASA Technical Reports Server (NTRS)

    Arney, L. D.; Sandquist, D. L.; Forsyth, D. W.; Lidstone, G. L.; Long-Davis, Mary Jo (Technical Monitor)

    2005-01-01

    Testing of the HSCT Generation 2.0 nozzle model hardware was conducted at the Boeing Low Speed Aeroacoustic Facility, LSAF. Concurrent measurements of noise and thrust were made at critical takeoff design conditions for a variety of mixer/ejector model hardware. Design variables such as suppressor area ratio, mixer area ratio, liner type and thickness, ejector length, lobe penetration, and mixer chute shape were tested. Parallel testing was conducted at G.E.'s Cell 41 acoustic free jet facility to augment the LSAF test. The results from the Gen 2.0 testing are being used to help shape the current nozzle baseline configuration and guide the efforts in the upcoming Generation 2.5 and 3.0 nozzle tests. The Gen 2.0 results have been included in the total airplane system studies conducted at MDC and Boeing to provide updated noise and thrust performance estimates.

  18. An accurate automated technique for quasi-optics measurement of the microwave diagnostics for fusion plasma

    NASA Astrophysics Data System (ADS)

    Hu, Jianqiang; Liu, Ahdi; Zhou, Chu; Zhang, Xiaohui; Wang, Mingyuan; Zhang, Jin; Feng, Xi; Li, Hong; Xie, Jinlin; Liu, Wandong; Yu, Changxuan

    2017-08-01

    A new integrated technique for fast and accurate measurement of the quasi-optics, especially for the microwave/millimeter wave diagnostic systems of fusion plasma, has been developed. Using the LabVIEW-based comprehensive scanning system, we can realize not only automatic but also fast and accurate measurement, which will help to eliminate the effects of temperature drift and standing wave/multi-reflection. With the Matlab-based asymmetric two-dimensional Gaussian fitting method, all the desired parameters of the microwave beam can be obtained. This technique can be used in the design and testing of microwave diagnostic systems such as reflectometers and the electron cyclotron emission imaging diagnostic systems of the Experimental Advanced Superconducting Tokamak.

  19. Structural, Optical, and Photocatalytic Properties of Quasi-One-Dimensional Nanocrystalline ZnO, ZnOC:nC Composites, and C-doped ZnO

    NASA Astrophysics Data System (ADS)

    Shalaeva, E. V.; Gyrdasova, O. I.; Krasilnikov, V. N.; Melkozerova, M. A.; Baklanova, I. V.; Buldakova, L. Yu.

    Various thermolysis rotes of zinc glicolate complexes are considered for the synthesis of quasi-one-dimensional nanostructured aggregates ZnO and Zn-O-C used as photocatalysts. Structural features of quasi-one-dimensional aggregates Zn-O-C and ZnO are investigated in detail. Transmission electron microscopy, Raman spectroscopy, and electron paramagnetic resonance spectroscopy methods demonstrate that the aggregates Zn-O-C have either composite structure (ZnO crystallites in amorphous carbon matrix) or a C-doped ZnO single-phase structure depending on heat treatment conditions, and that all the aggregates exhibit as a rule a tubular morphology, a nanocrystalline structure with a high specific surface area, and a high concentration of singly charged oxygen vacancies. The mechanism of the nanocrystalline structure formation is discussed and the effect of thermolysis condition on the formation of the textured structure of aggregates is investigated. The results of examination of the photocatalytic and optical absorption properties of the synthesized aggregates are presented. The photocatalytic activity for the hydroquinone oxidation reaction under ultraviolet and visible light increases in the series: the reference ZnO powder, quasi-one-dimensional ZnO, quasi-one-dimensional aggregates C-doped ZnO, and this tendency correlates with the reduction of the optical gap width. As a result of our studies, we have arrived at an important conclusion that thermal treatment of ZnO:nC composites allows a C-doped ZnO with high catalytic activity. This increasing photoactivity of C-doped ZnO aggregates is attributed to the optimal specific surface area and electron-energy spectrum restructuring to be produced owing to the presence of singly charged oxygen vacancies and carbon dissolved in the ZnO lattice.

  20. Characterization of Viscoelastic Materials Through an Active Mixer by Direct-Ink Writing

    NASA Astrophysics Data System (ADS)

    Drake, Eric

    The goal of this thesis is two-fold: First, to determine mixing effectiveness of an active mixer attachment to a three-dimensional (3D) printer by characterizing actively-mixed, three-dimensionally printed silicone elastomers. Second, to understand mechanical properties of a printed lattice structure with varying geometry and composition. Ober et al defines mixing effectiveness as a measureable quantity characterized by two key variables: (i) a dimensionless impeller parameter (O ) that depends on mixer geometry as well as Peclet number (Pe) and (ii) a coefficient of variation (COV) that describes the mixer effectiveness based upon image intensity. The first objective utilizes tungsten tracer particles distributed throughout a batch of Dow Corning SE1700 (two parts silicone) - ink "A". Ink "B" is made from pure SE1700. Using the in-site active mixer, both ink "A" and "B" coalesce to form a hybrid ink just before extrusion. Two samples of varying mixer speeds and composition ratios are printed and analyzed by microcomputed tomography (MicroCT). A continuous stirred tank reactor (CSTR) model is applied to better understand mixing behavior. Results are then compared with computer models to verify the hypothesis. Data suggests good mixing for the sample with higher impeller speed. A Radial Distrubtion Function (RDF) macro is used to provide further qualitative analysis of mixing efficiency. The second objective of this thesis utilized three-dimensionally printed samples of varying geometry and composition to ascertain mechanical properties. Samples were printed using SE1700 provided by Lawrence Livermore National Laboratory with a face-centered tetragonal (FCT) structure. Hardness testing is conducted using a Shore OO durometer guided by a computer-controlled, three-axis translation stage to provide precise movements. Data is collected across an 'x-y' plane of the specimen. To explain the data, a simply supported beam model is applied to a single unit cell which yields

  1. Usefulness of a rotation-revolution mixer for mixing powder-liquid reline material.

    PubMed

    Yamaga, Yoshio; Kanatani, Mitsugu; Nomura, Shuichi

    2015-01-01

    The purpose of this study was to evaluate the distribution of bubbles, degree of mixing, flowability and mechanical strength of powder-liquid reline material by manually and with a rotation-revolution (planetary) mixer, and to determine the usefulness of a rotation-revolution mixer for this application. Powder-liquid reline material (Mild Rebaron, GC, Tokyo, Japan) was mixed with a powder to liquid ratio of 1:0.62 according to the manufacturer's instruction. Two methods were used to mix it: mixed by manually ("manual-mixing") and automatically with a rotation-revolution mixer (Super Rakuneru Fine, GC, Tokyo, Japan; "automatic-mixing"). Disc-shaped specimens, 30 mm in diameter and 1.0mm in thickness, were used to observe the distribution of bubbles in at 10× magnifications. Flowability tests were carried out according to the JIS T6521 for denture base hard reline materials. A three point bending test was carried out by a universal testing machine. Elastic modulus and flexural stress at the proportional limit were calculated. A median of 4 bubbles and inhomogeneous were observed in manual-mixed specimens. However, no bubbles and homogeneous were observed in automatic-mixed specimens. Flowability was within the JIS range in all mixing conditions and did not differ significantly across conditions. The elastic modulus was the same for manual-mixed and automatic-mixed specimens. On the other hand, the flexural stress at the proportional limit differed significantly between manual-mixed and automatic-mixed specimens. The results confirm that rotation-revolution mixer is useful for mixing powder-liquid reline material. Automatic-mixing may be recommended for clinical practice. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  2. Soft Mixer Assignment in a Hierarchical Generative Model of Natural Scene Statistics

    PubMed Central

    Schwartz, Odelia; Sejnowski, Terrence J.; Dayan, Peter

    2010-01-01

    Gaussian scale mixture models offer a top-down description of signal generation that captures key bottom-up statistical characteristics of filter responses to images. However, the pattern of dependence among the filters for this class of models is prespecified. We propose a novel extension to the gaussian scale mixture model that learns the pattern of dependence from observed inputs and thereby induces a hierarchical representation of these inputs. Specifically, we propose that inputs are generated by gaussian variables (modeling local filter structure), multiplied by a mixer variable that is assigned probabilistically to each input from a set of possible mixers. We demonstrate inference of both components of the generative model, for synthesized data and for different classes of natural images, such as a generic ensemble and faces. For natural images, the mixer variable assignments show invariances resembling those of complex cells in visual cortex; the statistics of the gaussian components of the model are in accord with the outputs of divisive normalization models. We also show how our model helps interrelate a wide range of models of image statistics and cortical processing. PMID:16999575

  3. A study of System Interface Sets (SIS) for the host, target and integration environments of the Space Station Program (SSP)

    NASA Technical Reports Server (NTRS)

    Mckay, Charles; Auty, David; Rogers, Kathy

    1987-01-01

    System interface sets (SIS) for large, complex, non-stop, distributed systems are examined. The SIS of the Space Station Program (SSP) was selected as the focus of this study because an appropriate virtual interface specification of the SIS is believed to have the most potential to free the project from four life cycle tyrannies which are rooted in a dependance on either a proprietary or particular instance of: operating systems, data management systems, communications systems, and instruction set architectures. The static perspective of the common Ada programming support environment interface set (CAIS) and the portable common execution environment (PCEE) activities are discussed. Also, the dynamic perspective of the PCEE is addressed.

  4. A “twisted” microfluidic mixer suitable for a wide range of flow rate applications

    PubMed Central

    Sivashankar, Shilpa; Agambayev, Sumeyra; Mashraei, Yousof; Li, Er Qiang; Thoroddsen, Sigurdur T.; Salama, Khaled Nabil

    2016-01-01

    This paper proposes a new “twisted” 3D microfluidic mixer fabricated by a laser writing/microfabrication technique. Effective and efficient mixing using the twisted micromixers can be obtained by combining two general chaotic mixing mechanisms: splitting/recombining and chaotic advection. The lamination of mixer units provides the splitting and recombination mechanism when the quadrant of circles is arranged in a two-layered serial arrangement of mixing units. The overall 3D path of the microchannel introduces the advection. An experimental investigation using chemical solutions revealed that these novel 3D passive microfluidic mixers were stable and could be operated at a wide range of flow rates. This micromixer finds application in the manipulation of tiny volumes of liquids that are crucial in diagnostics. The mixing performance was evaluated by dye visualization, and using a pH test that determined the chemical reaction of the solutions. A comparison of the tornado-mixer with this twisted micromixer was made to evaluate the efficiency of mixing. The efficiency of mixing was calculated within the channel by acquiring intensities using ImageJ software. Results suggested that efficient mixing can be obtained when more than 3 units were consecutively placed. The geometry of the device, which has a length of 30 mm, enables the device to be integrated with micro total analysis systems and other lab-on-chip devices. PMID:27453767

  5. Analytical connection between thresholds and immunization strategies of SIS model in random networks

    NASA Astrophysics Data System (ADS)

    Zhou, Ming-Yang; Xiong, Wen-Man; Liao, Hao; Wang, Tong; Wei, Zong-Wen; Fu, Zhong-Qian

    2018-05-01

    Devising effective strategies for hindering the propagation of viruses and protecting the population against epidemics is critical for public security and health. Despite a number of studies based on the susceptible-infected-susceptible (SIS) model devoted to this topic, we still lack a general framework to compare different immunization strategies in completely random networks. Here, we address this problem by suggesting a novel method based on heterogeneous mean-field theory for the SIS model. Our method builds the relationship between the thresholds and different immunization strategies in completely random networks. Besides, we provide an analytical argument that the targeted large-degree strategy achieves the best performance in random networks with arbitrary degree distribution. Moreover, the experimental results demonstrate the effectiveness of the proposed method in both artificial and real-world networks.

  6. Diode-pumped quasi-three-level CW Nd:CLNGG and Nd:CNGG lasers.

    PubMed

    He, Kunna; Wei, Zhiyi; Li, Dehua; Zhang, Zhiguo; Zhang, Huaijin; Wang, Jiyang; Gao, Chunqing

    2009-10-12

    We have demonstrated what is to our knowledge the first quasi-three-level CW Nd:CLNGG laser with simple linear resonator. When the pump power was 18.2 W, a maximum output power of 1.63 W was obtained at the dual-wavelength of 935 nm and 928 nm. The optical-to-optical conversion efficiency was 9.0% and the slope efficiency was 11.5%. Lasing characteristics of a quasi-three-level CW Nd:CNGG laser were also investigated. A maximum output power of 1.87 W was obtained at the single-wavelength of 935 nm with 15.2 W pump power, corresponding to an optical-to-optical conversion efficiency of 12.3% and a slope efficiency of 15.6%.

  7. Photonic quasi-crystal terahertz lasers

    PubMed Central

    Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles

    2014-01-01

    Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of ‘defects’, which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1–0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum. PMID:25523102

  8. Photonic quasi-crystal terahertz lasers

    NASA Astrophysics Data System (ADS)

    Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles

    2014-12-01

    Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of ‘defects’, which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1-0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum.

  9. Photonic quasi-crystal terahertz lasers.

    PubMed

    Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles

    2014-12-19

    Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of 'defects', which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1-0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum.

  10. 16. VIEW OF THE CONCRETE MIXER THAT WAS USED AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF THE CONCRETE MIXER THAT WAS USED AT THE MERCER MUSEUM AND ON THE INDIAN HOUSE TOWER. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  11. Towards a versatile active wavelength converter for all-optical networks based on quasi-phase matched intra-cavity difference-frequency generation.

    PubMed

    Torregrosa, Adrián J; Maestre, Haroldo; Capmany, Juan

    2013-11-18

    The availability of reconfigurable all-optical wavelength converters for an efficient and flexible use of optical resources in WDM (wavelength division multiplexing) networks is still lacking at present. We propose and report preliminary results on a versatile active technique for multiple and tunable wavelength conversions in the 1500-1700 nm spectral region. The technique is based on combining broadband quasi-phase matched intra-cavity parametric single-pass difference-frequency generation close to degeneracy in a diode-pumped tunable laser. A periodically poled stoichiometric lithium tantalate crystal is used as the nonlinear medium, with a parametric pump wave generated in a continuous-wave self-injection locked Cr3+:LiCAF tunable laser operating at around 800 nm.

  12. Submillimeter heterodyne detection of interstellar carbon monoxide at 434 micrometers

    NASA Technical Reports Server (NTRS)

    Fetterman, H. R.; Clifton, B. J.; Peck, D. D.; Tannenwald, P. E.; Koepf, G. A.; Goldsmith, P. F.; Erickson, N. R.; Buhl, D.; Mcavoy, N.

    1981-01-01

    Laser heterodyne observations of submillimeter emissions from carbon monoxide in the Orion molecular cloud are reported. High frequency and spatial resolution observations were made at the NASA Infrared Telescope Facility on Mauna Kea by the use of an optically pumped laser local oscillator and quasi-optical Schottky diode mixer for heterodyne detection of the J = 6 - 5 rotational transition of CO at 434 microns. Spectral analysis of the 434-micron emission indicates that the emitting gas is optically thin and is at a temperature above 180 K. Results thus demonstrate the potential contributions of ground-based high-resolution submillimeter astronomy to the study of active regions in interstellar molecular clouds.

  13. Effect of mixing time and speed on experimental baking and dough testing with a 200g pin-mixer

    USDA-ARS?s Scientific Manuscript database

    Under mixing or over mixing the dough results in varied experimental loaf volumes. Bread preparation requires a trained baker to evaluate dough development and determine stop points of mixer. Instrumentation and electronic control of the dough mixer would allow for automatic mixing. This study us...

  14. Radiation protection design for the Super-FRS and SIS100 at the international FAIR facility

    NASA Astrophysics Data System (ADS)

    Kozlova, Ekaterina; Sokolov, Alexey; Radon, Torsten; Lang, Rupert; Conrad, Inna; Fehrenbacher, Georg; Weick, Helmut; Winkler, Martin

    2017-09-01

    The new accelerator SIS100 and the Super-FRS will be built at the international Facility for Antiprotons and Ion Research FAIR. The synchrotron SIS100 is a core part of the FAIR facility which serves for acceleration of ions like Uranium up to 2.7 GeV/u with intensities of 3x1011 particles per second or protons up to 30 GeV with intensities of 5x1012 particles per second. The Super-FRS is a superconducting fragment separator, it will be able to separate all kinds of nuclear projectile fragments of primary heavy ion beams including Uranium with energies up to 1.5 GeV/u and intensities up to 3x1011 particles per second. During operation activation of several components, especially the production target and the beam catchers will take place. For handling of highly activated components it is foreseen to have a hot cell with connected storage place. All calculations for the optimisation of the shielding design of the SIS100, the Super-FRS and the hot cell were performed using the Monte Carlo code FLUKA, results are presented.

  15. Frequency-Domain Analysis of Diffusion-Cooled Hot-Electron Bolometer Mixers

    NASA Technical Reports Server (NTRS)

    Skalare, A.; McGrath, W. R.; Bumble, B.; LeDuc, H. G.

    1998-01-01

    A new theoretical model is introduced to describe heterodyne mixer conversion efficiency and noise (from thermal fluctuation effects) in diffusion-cooled superconducting hot-electron bolometers. The model takes into account the non-uniform internal electron temperature distribution generated by Wiedemann-Franz heat conduction, and accepts for input an arbitrary (analytical or experimental) superconducting resistance-versus- temperature curve. A non-linear large-signal solution is solved iteratively to calculate the temperature distribution, and a linear frequency-domain small-signal formulation is used to calculate conversion efficiency and noise. In the small-signal solution the device is discretized into segments, and matrix algebra is used to relate the heating modulation in the segments to temperature and resistance modulations. Matrix expressions are derived that allow single-sideband mixer conversion efficiency and coupled noise power to be directly calculated. The model accounts for self-heating and electrothermal feedback from the surrounding bias circuit.

  16. Multiple frequency optical mixer and demultiplexer and apparatus for remote sensing

    NASA Technical Reports Server (NTRS)

    Chen, Jeffrey R. (Inventor)

    2010-01-01

    A pulsed laser system includes a modulator module configured to provide pulsed electrical signals and a plurality of solid-state seed sources coupled to the modulator module and configured to operate, responsive to the pulsed electrical signals, in a pulse mode. Each of the plurality of solid-state seed sources is tuned to a different frequency channel separated from any adjacent frequency channel by a frequency offset. The pulsed laser system also includes a combiner that combines outputs from each of the solid state seed sources into a single optical path and an optical doubler and demultiplexer coupled to the single optical path and providing each doubled seed frequency on a separate output path.

  17. Quasi-light storage for optical data packets.

    PubMed

    Schneider, Thomas; Preußler, Stefan

    2014-02-06

    Today's telecommunication is based on optical packets which transmit the information in optical fiber networks around the world. Currently, the processing of the signals is done in the electrical domain. Direct storage in the optical domain would avoid the transfer of the packets to the electrical and back to the optical domain in every network node and, therefore, increase the speed and possibly reduce the energy consumption of telecommunications. However, light consists of photons which propagate with the speed of light in vacuum. Thus, the storage of light is a big challenge. There exist some methods to slow down the speed of the light, or to store it in excitations of a medium. However, these methods cannot be used for the storage of optical data packets used in telecommunications networks. Here we show how the time-frequency-coherence, which holds for every signal and therefore for optical packets as well, can be exploited to build an optical memory. We will review the background and show in detail and through examples, how a frequency comb can be used for the copying of an optical packet which enters the memory. One of these time domain copies is then extracted from the memory by a time domain switch. We will show this method for intensity as well as for phase modulated signals.

  18. A 547 GHz SIS Receiver Employing a Submicron Nb Junction with an Integrated Matching Circuit

    NASA Technical Reports Server (NTRS)

    Febvre, P.; McGrath, W.; Leduc, H.; Batelaan, P.; Frerking, M.; Hernichel, J.; Bumble, B.

    1993-01-01

    The most sensitive heterodyne receivers used for millimeter wave and submillimeter wave radioastronomy employ superconductor-insulator-superconductor (SIS) tunnel junctions as the nonlinear mixing element.

  19. SIS and SIR epidemic models under virtual dispersal

    PubMed Central

    Bichara, Derdei; Kang, Yun; Castillo-Chavez, Carlos; Horan, Richard; Perrings, Charles

    2015-01-01

    We develop a multi-group epidemic framework via virtual dispersal where the risk of infection is a function of the residence time and local environmental risk. This novel approach eliminates the need to define and measure contact rates that are used in the traditional multi-group epidemic models with heterogeneous mixing. We apply this approach to a general n-patch SIS model whose basic reproduction number R0 is computed as a function of a patch residence-times matrix ℙ. Our analysis implies that the resulting n-patch SIS model has robust dynamics when patches are strongly connected: there is a unique globally stable endemic equilibrium when R0 > 1 while the disease free equilibrium is globally stable when R0 ≤ 1. Our further analysis indicates that the dispersal behavior described by the residence-times matrix ℙ has profound effects on the disease dynamics at the single patch level with consequences that proper dispersal behavior along with the local environmental risk can either promote or eliminate the endemic in particular patches. Our work highlights the impact of residence times matrix if the patches are not strongly connected. Our framework can be generalized in other endemic and disease outbreak models. As an illustration, we apply our framework to a two-patch SIR single outbreak epidemic model where the process of disease invasion is connected to the final epidemic size relationship. We also explore the impact of disease prevalence driven decision using a phenomenological modeling approach in order to contrast the role of constant versus state dependent ℙ on disease dynamics. PMID:26489419

  20. Quasi-interferometric scheme improved by fiber Bragg grating written on macrostructure defect in silica multimode optical fiber operating in a few-mode regime

    NASA Astrophysics Data System (ADS)

    Evtushenko, Alexander S.; Faskhutdinov, Lenar M.; Kafarova, Anastasia M.; Kuznetzov, Artem A.; Minaeva, Alina Yu.; Sevruk, Nikita L.; Nureev, Ilnur I.; Vasilets, Alexander A.; Andreev, Vladimir A.; Morozov, Oleg G.; Burdin, Vladimir A.; Bourdine, Anton V.

    2017-04-01

    This work presents results of experimental approbation of earlier on proposed modified fiber optic stress sensor based on a few-mode effects occurring during laser-excited optical signal propagation over silica multimode optical fiber (MMF). Modification is concerned with a passage to quasi-interferometric scheme realized by two multimode Y-couplers with equalized arm lengths improved by fiber Bragg grating (FBG) written on preliminary formed precision macrostructure defects in silica multimode graded-index optical fibers and special offset launching conditions providing laser-based excitation of higher-order modes. The "arms" of quasi-interferometer are two equalized lengths of MMF Cat. OM2 with great central dip of refractive index profile and strong pulse splitting due to high differential mode delay (DMD). We tested FBGs with Bragg wavelength both 1310 nm and 1550 nm written over tapers or up-tapers preliminary formed in short pieces of MMF Cat. OM2+/OM3 and further jointed to the end of one of the arms before output Y-coupler. Researches were focused on comparison analysis of pulse responses under changing of selected excited mode mixing and power diffusion processes due to stress distributed action to sensor fiber depending. Here we considered FBGs not only as particular wavelength reflector during spectral response measurement but also as local periodic microstructure defect which strongly effects on few-mode signal components mixing process also improved by combination with macro-defect like taper or up-taper that should provide response variation. Some results pulse response measurements produced for different scheme configuration and their comparison analysis are represented.

  1. 88. VIEW OF THE CONCRETE MIXER THAT WAS USED AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    88. VIEW OF THE CONCRETE MIXER THAT WAS USED AT THE MERCER MUSEUM AND ON THE INDIAN HOUSE TOWER. SAME VIEW AS PA-107-16. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  2. 7 CFR 58.228 - Dump hoppers, screens, mixers and conveyors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT... DAIRY PRODUCTS 1 General Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Equipment and Utensils § 58.228 Dump hoppers, screens, mixers and conveyors. The product contact...

  3. Quasi-homogeneous partial coherent source modeling of multimode optical fiber output using the elementary source method

    NASA Astrophysics Data System (ADS)

    Fathy, Alaa; Sabry, Yasser M.; Khalil, Diaa A.

    2017-10-01

    Multimode fibers (MMF) have many applications in illumination, spectroscopy, sensing and even in optical communication systems. In this work, we present a model for the MMF output field assuming the fiber end as a quasi-homogenous source. The fiber end is modeled by a group of partially coherent elementary sources, spatially shifted and uncorrelated with each other. The elementary source distribution is derived from the far field intensity measurement, while the weighting function of the sources is derived from the fiber end intensity measurement. The model is compared with practical measurements for fibers with different core/cladding diameters at different propagation distances and for different input excitations: laser, white light and LED. The obtained results show normalized root mean square error less than 8% in the intensity profile in most cases, even when the fiber end surface is not perfectly cleaved. Also, the comparison with the Gaussian-Schell model results shows a better agreement with the measurement. In addition, the complex degree of coherence, derived from the model results, is compared with the theoretical predictions of the modified Van Zernike equation showing very good agreement, which strongly supports the assumption that the large core MMF could be considered as a quasi-homogenous source.

  4. Conversion Gain in MM-Wave Quasiparticle Heterodyne Mixers,

    DTIC Science & Technology

    1981-01-01

    superconductor-insulating oxide -superconductor SIS (Josephson) tunnel junc- tions [4-141. Due to the singularity in density of states of quasiparticles in the...superconductors on two sides of the oxide barrier, there is a sudden onset of quasiparticle tunneling current at bias voltage near the full...Phillips, and D. P. Woody, ’Low noise 115 GHz mixing in supercon- ducting oxide barrier tunnel junctions,’ App. Phys. Lett., vol. 34, pp. 347-349, March

  5. VERIFICATION TESTING OF HIGH-RATE MECHANICAL INDUCTION MIXERS FOR CHEMICAL DISINFECTANTS

    EPA Science Inventory

    This paper describes the results of verification testing of mechanical induction mixers for dispersion of chemical disinfectants in wet-weather flow (WWF) conducted under the U.S. Environmental Protection Agency's Environmental Technology Verification (ETV) WWF Pilot Program. Th...

  6. All NbN tunnel junction fabrication

    NASA Technical Reports Server (NTRS)

    Leduc, H. G.; Khanna, S. K.; Stern, J. A.

    1987-01-01

    The development of SIS tunnel junctions based on NbN for mixer applications in the submillimeter range is reported. The unique technological challenges inherent in the development of all refractory-compound superconductor-based tunnel junctions are highlighted. Current deposition and fabrication techniques are discussed, and the current status of all-NbN tunnel junctions is reported.

  7. TU-AB-303-11: Predict Parotids Deformation Applying SIS Epidemiological Model in H&N Adaptive RT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maffei, N; Guidi, G; University of Bologna, Bologna, Bologna

    2015-06-15

    Purpose: The aim is to investigate the use of epidemiological models to predict morphological variations in patients undergoing radiation therapy (RT). The susceptible-infected-susceptible (SIS) deterministic model was applied to simulate warping within a focused region of interest (ROI). Hypothesis is to consider each voxel like a single subject of the whole sample and to treat displacement vector fields like an infection. Methods: Using Raystation hybrid deformation algorithms and automatic re-contouring based on mesh grid, we post-processed 360 MVCT images of 12 H&N patients treated with Tomotherapy. Study focused on parotid glands, identified by literature and previous analysis, as ROI moremore » susceptible to warping in H&N region. Susceptible (S) and infectious (I) cases were identified in voxels with inter-fraction movement respectively under and over a set threshold. IronPython scripting allowed to export positions and displacement data of surface voxels for every fraction. A MATLAB homemade toolbox was developed to model the SIS. Results: SIS model was validated simulating organ motion on QUASAR phantom. Applying model in patients, within a [0–1cm] range, a single voxel movement of 0.4cm was selected as displacement threshold. SIS indexes were evaluated by MATLAB simulations. Dynamic time warping algorithm was used to assess matching between model and parotids behavior days of treatments. The best fit of the model was obtained with contact rate of 7.89±0.94 and recovery rate of 2.36±0.21. Conclusion: SIS model can follow daily structures evolutions, making possible to compare warping conditions and highlighting challenges due to abnormal variation and set-up errors. By epidemiology approach, organ motion could be assessed and predicted not in terms of average of the whole ROI, but in a voxel-by-voxel deterministic trend. Identifying anatomical region subjected to variations, would be possible to focus clinic controls within a cohort of pre

  8. Full-scale altitude engine test of a turbofan exhaust-gas-forced mixer to reduce thrust specific fuel consumption

    NASA Technical Reports Server (NTRS)

    Cullom, R. R.; Johnson, R. L.

    1977-01-01

    The specific fuel consumption of a low-bypass-ratio, confluent-flow, turbofan engine was measured with and without a mixer installed. Tests were conducted for flight Mach numbers from 0.3 to 1.4 and altitudes from 10,670 to 14,630 meters (35,000 to 48,000 ft) for core-stream-to-fan-stream temperature ratios of 2.0 and 2.5 and mixing-length-to-diameter ratios of 0.95 and 1.74. For these test conditions, the reduction in specific fuel consumption varied from 2.5 percent to 4.0 percent. Pressure loss measurements as well as temperature and pressure surveys at the mixer inlet, the mixer exit, and the nozzle inlet were made.

  9. Turbofan forced mixer-nozzle internal flowfield. Volume 3: A computer code for 3-D mixing in axisymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Kreskovsky, J. P.; Briley, W. R.; Mcdonald, H.

    1982-01-01

    A finite difference method is developed for making detailed predictions of three dimensional subsonic turbulent flow in turbofan lobe mixers. The governing equations are solved by a forward-marching solution procedure which corrects an inviscid potential flow solution for viscous and thermal effects, secondary flows, total pressure distortion and losses, internal flow blockage and pressure drop. Test calculations for a turbulent coaxial jet flow verify that the turbulence model performs satisfactorily for this relatively simple flow. Lobe mixer flows are presented for two geometries typical of current mixer design. These calculations included both hot and cold flow conditions, and both matched and mismatched Mach number and total pressure in the fan and turbine streams.

  10. TEX-SIS FOLLOW-UP: Student Follow-up Management Information System. Procedures Manual.

    ERIC Educational Resources Information Center

    Tarrant County Junior Coll. District, Ft. Worth, TX.

    Project FOLLOW-UP was conducted to develop, test, and validate a statewide management information system for follow-up of Texas public junior and community college students. The results of this project was a student information system (TEX-SIS) consisting of seven subsystems: (1) Student's Educational Intent, (2) Nonreturning Student Follow-up,…

  11. A User's Guide for the Differential Reduced Ejector/Mixer Analysis "DREA" Program. 1.0

    NASA Technical Reports Server (NTRS)

    DeChant, Lawrence J.; Nadell, Shari-Beth

    1999-01-01

    A system of analytical and numerical two-dimensional mixer/ejector nozzle models that require minimal empirical input has been developed and programmed for use in conceptual and preliminary design. This report contains a user's guide describing the operation of the computer code, DREA (Differential Reduced Ejector/mixer Analysis), that contains these mathematical models. This program is currently being adopted by the Propulsion Systems Analysis Office at the NASA Glenn Research Center. A brief summary of the DREA method is provided, followed by detailed descriptions of the program input and output files. Sample cases demonstrating the application of the program are presented.

  12. Applying Hanford Tank Mixing Data to Define Pulse Jet Mixer Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Beric E.; Bamberger, Judith A.; Recknagle, Kurtis P.

    Pulse jet mixed (PJM) process vessels are being developed for storing, blending, and chemical processing of nuclear waste slurries at the Waste Treatment and Immobilization Plant (WTP) to be built at Hanford, Washington. These waste slurries exhibit variable process feed characteristics including Newtonian to non-Newtonian rheologies over a range of solids loadings. Waste feed to the WTP from the Hanford Tank Farms will be accomplished via the Waste Feed Delivery (WFD) system which includes million-gallon underground storage double-shell tanks (DSTs) with dual-opposed jet mixer pumps. Experience using WFD type jet mixer pumps to mobilize actual Hanford waste in DSTs maymore » be used to establish design threshold criteria of interest to pulse jet mixed process vessel operation. This paper describes a method to evaluate the pulse jet mixed vessel capability to process waste based on information obtained during mobilizing and suspending waste by the WFD system jet mixer pumps in a DST. Calculations of jet velocity and wall shear stress in a specific pulse jet mixed process vessel were performed using a commercial computational fluid dynamics (CFD) code. The CFD-modelled process vessel consists of a 4.9-m- (16-ft-) diameter tank with a 2:1 semi-elliptical head, a single, 10-cm (4-in.) downward facing 60-degree conical nozzle, and a 0.61-m (24-in.) inside diameter PJM. The PJM is located at 70% of the vessel radius with the nozzle stand-off-distance 14 cm (6 in.) above the vessel head. The CFD modeled fluid velocity and wall shear stress can be used to estimate vessel waste-processing performance by comparison to available actual WFD system process data. Test data from the operation of jet mixer pumps in the 23-m (75-ft) diameter DSTs have demonstrated mobilization, solid particles in a sediment matrix were moved from their initial location, and suspension, mobilized solid particles were moved to a higher elevation in the vessel than their initial location, of waste

  13. FDC Mentor-Mentee Mixer Breaks the Ice Between Investigators and Trainees | Poster

    Cancer.gov

    The Frederick Diversity Committee’s mentor-mentee mixer gave research trainees, senior investigators, scientists, and administrative staff a chance to meet and mingle over refreshments and games following the Spring Research Festival.

  14. Two-dimensional microsphere quasi-crystal: fabrication and properties

    NASA Astrophysics Data System (ADS)

    Noginova, Natalia E.; Venkateswarlu, Putcha; Kukhtarev, Nickolai V.; Sarkisov, Sergey S.; Noginov, Mikhail A.; Caulfield, H. John; Curley, Michael J.

    1996-11-01

    2D quasi-crystals were fabricated from polystyrene microspheres and characterized for their structural, diffraction, and non-linear optics properties. The quasi- crystals were produced with the method based on Langmuir- Blodgett thin film technique. Illuminating the crystal with the laser beam, we observed the diffraction pattern in the direction of the beam propagation and in the direction of the back scattering, similar to the x-ray Laue pattern observed in regular crystals with hexagonal structure. The absorption spectrum of the quasi-crystal demonstrated two series of regular maxima and minima, with the spacing inversely proportional to the microspheres diameter. Illumination of the dye-doped microspheres crystal with Q- switched radiation of Nd:YAG laser showed the enhancement of non-linear properties, in particular, second harmonic generation.

  15. Design of Interactively Time-Pulsed Microfluidic Mixers in Microchips using Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Fu, Lung-Ming; Tsai, Chien-Hsiung

    2007-01-01

    In this paper, we propose a novel technique in which driving voltages are applied interactively to the respective inlet fluid flows of three configurations of a microfluidic device, namely T-shaped, double-T-shaped, and double-cross-shaped configurations, to induce electroosmotic flow (EOF) velocity variations in such a way as to develop a rapid mixing effect in the microchannel. In these configurations a microfluidic mixer apply only one electrokinetic driving force, which drives the sample fluids and simultaneously produces a periodic switching frequency. It requires no other external driving force to induce perturbations to the flow field. The effects of the main applied electric field, the interactive frequency, and the pullback electric field on the mixing performance are thoroughly examined numerically. The optimal interactive frequency range for a given set of micromixer parameters is identified for each type of control mode. The numerical results confirm that micromixers operating at an optimal interactive frequency are capable of delivering a significantly enhanced mixing performance. Furthermore, it is shown that the optimal interactive frequency depends upon the magnitude of the main applied electric field. The interactively pulsed mixers developed in this study have a strong potential for use in lab-on-a-chip systems. They involve a simpler fabrication process than either passive or active on-chip mixers and require less human intervention in operation than their bulky external counterparts.

  16. Freeform étendue-preserving optics for light and color mixing

    NASA Astrophysics Data System (ADS)

    Sorgato, Simone; Mohedano, Rubén.; Chaves, Julio; Cvetkovic, Aleksandra; Hernández, Maikel; Benítez, Pablo; Miñano, Juan C.; Thienpont, Hugo; Duerr, Fabian

    2015-09-01

    Today's SSL illumination market shows a clear trend towards high flux packages with higher efficiency and higher CRI, realized by means of multiple color chips and phosphors. Such light sources require the optics to provide both near- and far-field color mixing. This design problem is particularly challenging for collimated luminaries, since traditional diffusers cannot be employed without enlarging the exit aperture and reducing brightness (so increasing étendue). Furthermore, diffusers compromise the light output ratio (efficiency) of the lamps to which they are applied. A solution, based on Köhler integration, consisting of a spherical cap comprising spherical microlenses on both its interior and exterior sides was presented in 2012. When placed on top of an inhomogeneous multichip Lambertian LED, this so-called Shell-Mixer creates a homogeneous (both spatially and angularly) virtual source, also Lambertian, where the images of the chips merge. The virtual source is located at the same position with essentially the same size of the original source. The diameter of this optics was 3 times that of the chip-array footprint. In this work, we present a new version of the Shell-Mixer, based on the Edge Ray Principle, where neither the overall shape of the cap nor the surfaces of the lenses are constrained to spheres or rotational Cartesian ovals. This new Shell- Mixer is freeform, only twice as large as the original chip-array and equals the original model in terms of brightness, color uniformity and efficiency.

  17. An inverted micro-mixer based on a magnetically-actuated cilium made of Fe doped PDMS

    NASA Astrophysics Data System (ADS)

    Liu, Fengli; Zhang, Jun; Alici, Gursel; Yan, Sheng; Mutlu, Rahim; Li, Weihua; Yan, Tianhong

    2016-09-01

    In this paper, we report a new micromixer based on a flexible artificial cilium activated by an external magnetic field. The cilium is fabricated from Polydimethylsiloxane doped with Fe microparticles. The fabrication method is based on the standard sacrificial layer technology. The cilium was built on a glass slide, and then was bonded on the top of the micro-mixer chamber in a microfluidic chip. This fabrication process for the miniaturized active mixers is simple and cost effective. An electromagnetic system was used to drive the cilium and induce strong convective flows of the fluid in the chamber. In the presence of an alternating magnetic field, the cilium applied a corresponding alternating force on the surrounding fluids. The performance of the electromagnetically activated cilium was quantified and optimized in order to obtain maximum mixing performance. In addition, the mixing performance of the cilium in a circular micro-chamber was compared with pure diffusion. Up to 80% of a 60 ul liquid in the chamber can be fully mixed after 2 min using a cilium mixer under a magnetic flux density of 22 mT in contrast to the 20 min which were needed to obtain the same mixing percentage under pure diffusion. Furthermore, for a mixing degree of 80%, the mixing speed for the cilia micromixer proposed in this study was 9 times faster than that of the diffusion-based micro-mixers reported in the literature.

  18. Optical reflectance of solution processed quasi-superlattice ZnO and Al-doped ZnO (AZO) channel materials

    NASA Astrophysics Data System (ADS)

    Buckley, Darragh; McCormack, Robert; O'Dwyer, Colm

    2017-04-01

    The angle-resolved reflectance of high crystalline quality, c-axis oriented ZnO and AZO single and periodic quasi-superlattice (QSL) spin-coated TFT channels materials are presented. The data is analysed using an adapted model to accurately determine the spectral region for optical thickness and corresponding reflectance. The optical thickness agrees very well with measured thickness of 1-20 layered QSL thin films determined by transmission electron microscopy if the reflectance from lowest interference order is used. Directional reflectance for single layers or homogeneous QSLs of ZnO and AZO channel materials exhibit a consistent degree of anti-reflection characteristics from 30 to 60° (~10-12% reflection) for thickness ranging from ~40 nm to 500 nm. The reflectance of AZO single layer thin films is  <10% from 30 to 75° at 514.5 nm, and  <6% at 632.8 nm from 30-60°. The data show that ZnO and AZO with granular or periodic substructure behave optically as dispersive, continuous thin films of similar thickness, and angle-resolved spectral mapping provides a design rule for transparency or refractive index determination as a function of film thickness, substructure (dispersion) and viewing angle.

  19. Synthesis and Raman spectroscopy of a layered SiS2 phase at high pressures

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Jiang, Shu-Qing; Goncharov, Alexander F.; Gorelli, Federico A.; Chen, Xiao-Jia; Plašienka, Dušan; MartoÅák, Roman; Tosatti, Erio; Santoro, Mario

    2018-01-01

    Dichalcogenides are known to exhibit layered solid phases, at ambient and high pressures, where 2D layers of chemically bonded formula units are held together by van der Waals forces. These materials are of great interest for solid-state sciences and technology, along with other 2D systems such as graphene and phosphorene. SiS2 is an archetypal model system of the most fundamental interest within this ensemble. Recently, high pressure (GPa) phases with Si in octahedral coordination by S have been theoretically predicted and also experimentally found to occur in this compound. At variance with stishovite in SiO2, which is a 3D network of SiO6 octahedra, the phases with octahedral coordination in SiS2 are 2D layered. Very importantly, this type of semiconducting material was theoretically predicted to exhibit continuous bandgap closing with pressure to a poor metallic state at tens of GPa. We synthesized layered SiS2 with octahedral coordination in a diamond anvil cell at 7.5-9 GPa, by laser heating together elemental S and Si at 1300-1700 K. Indeed, Raman spectroscopy up to 64.4 GPa is compatible with continuous bandgap closing in this material with the onset of either weak metallicity or of a narrow bandgap semiconductor state with a large density of defect-induced, intra-gap energy levels, at about 57 GPa. Importantly, our investigation adds up to the fundamental knowledge of layered dichalcogenides.

  20. Quasi-distributed and wavelength selective addressing of optical micro-resonators based on long period fiber gratings.

    PubMed

    Farnesi, D; Chiavaioli, F; Baldini, F; Righini, G C; Soria, S; Trono, C; Conti, G Nunzi

    2015-08-10

    A novel all-in-fiber method for coupling light to high-Q silica whispering gallery mode (WGM) optical micro-resonators is presented, which is based on a pair of long period fiber gratings (LPGs) written in the same silica fiber, along with a thick fiber taper (15-18 μm in waist) in between the LPGs. The proposed coupling structure is robust and can be replicated many times along the same fiber simply cascading LPGs with different bands. Typical Q-factors of the order of 10(8) and total coupling efficiency up to 60% were measured collecting the resonances of microspheres or microbubbles at the fiber end. This approach uniquely allows quasi-distributed and wavelength selective addressing of different micro-resonators along the same fiber.

  1. Experimental Investigation of a Broadband High-Temperature Superconducting Terahertz Mixer Operating at Temperatures Between 40 and 77 K

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Du, Jia; Zhang, Ting; Jay Guo, Y.; Foley, Cathy P.

    2017-11-01

    This paper presents a systematic investigation of a broadband thin-film antenna-coupled high-temperature superconducting (HTS) terahertz (THz) harmonic mixer at relatively high operating temperature from 40 to 77 K. The mixer device chip was fabricated using the CSIRO established step-edge YBa2Cu3O7-x (YBCO) Josephson junction technology, packaged in a well-designed module and cooled in a temperature adjustable cryocooler. Detailed experimental characterizations were carried out for the broadband HTS mixer at both the 200 and 600 GHz bands in harmonic mixing mode. The DC current-voltage characteristics (IVCs), bias current condition, local oscillator (LO) power requirement, frequency response, as well as conversion efficiency under different bath temperatures were thoroughly investigated for demonstrating the frequency down-conversion performance.

  2. Evidence for an Optical Low-frequency Quasi-periodic Oscillation in the Kepler Light Curve of an Active Galaxy

    NASA Astrophysics Data System (ADS)

    Smith, Krista Lynne; Mushotzky, Richard F.; Boyd, Patricia T.; Wagoner, Robert V.

    2018-06-01

    We report evidence for a quasi-periodic oscillation (QPO) in the optical light curve of KIC 9650712, a narrow-line Seyfert 1 galaxy in the original Kepler field. After the development and application of a pipeline for Kepler data specific to active galactic nuclei (AGNs), one of our sample of 21 AGNs selected by infrared photometry and X-ray flux demonstrates a peak in the power spectrum at log ν = ‑6.58 Hz, corresponding to a temporal period of t = 44 days. We note that although the power spectrum is well fit by a model consisting of a Lorentzian and a single power law, alternative continuum models cannot be ruled out. From optical spectroscopy, we measure the black hole mass of this AGN as log (M BH/M ⊙) = 8.17. We find that this frequency lies along a correlation between low-frequency QPOs and black hole mass from stellar and intermediate mass black holes to AGNs, similar to the known correlation in high-frequency QPOs.

  3. Effect of structural transformation of C+-ion implanted PMMA into quasi-continuous carbonaceous layer on its optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Sagheer, Riffat

    2018-02-01

    The samples of Polymethylmethacrylate (PMMA) have been implanted with 500 keV C+-ions at different ion fluences ranging from 9.3 × 1013 to 8.4 × 1014 ions/cm2. The structural modifications are examined by Fourier Transform Infrared and Raman spectral studies. For the investigation of optical, electrical and surface morphological properties of implanted samples UV-Visible spectrometer, four probe apparatus and optical microscope have been employed. The FTIR spectra confirmed the cleavage of chemicals bonds as a consequence of polymer chain scission, whereas, Raman studies revealed the transformation of PMMA structure into quasi-continuous amorphous carbon with increasing ion fluences. A continuous reduction has been observed in the optical band gap of PMMA from 3.16 to 1.42 eV. Moreover, the refractive index, extinction coefficient and electrical conductivity of implanted PMMA are found to be an increasing function of the ion fluence. The micrographic images revealed the signatures of ion-induced defects like cracking, dehydrogenation, stress and swelling on the surface of PMMA. These implanted samples have a potential to be used in the field of optical communications and thin plastic flexible electronics.

  4. A mixed SIR-SIS model to contain a virus spreading through networks with two degrees

    NASA Astrophysics Data System (ADS)

    Essouifi, Mohamed; Achahbar, Abdelfattah

    Due to the fact that the “nodes” and “links” of real networks are heterogeneous, to model computer viruses prevalence throughout the Internet, we borrow the idea of the reduced scale free network which was introduced recently. The purpose of this paper is to extend the previous deterministic two subchains of Susceptible-Infected-Susceptible (SIS) model into a mixed Susceptible-Infected-Recovered and Susceptible-Infected-Susceptible (SIR-SIS) model to contain the computer virus spreading over networks with two degrees. Moreover, we develop its stochastic counterpart. Due to the high protection and security taken for hubs class, we suggest to treat it by using SIR epidemic model rather than the SIS one. The analytical study reveals that the proposed model admits a stable viral equilibrium. Thus, it is shown numerically that the mean dynamic behavior of the stochastic model is in agreement with the deterministic one. Unlike the infection densities i2 and i which both tend to a viral equilibrium for both approaches as in the previous study, i1 tends to the virus-free equilibrium. Furthermore, since a proportion of infectives are recovered, the global infection density i is minimized. Therefore, the permanent presence of viruses in the network due to the lower-degree nodes class. Many suggestions are put forward for containing viruses propagation and minimizing their damages.

  5. QUASI-PERIODICITIES AT YEAR-LIKE TIMESCALES IN BLAZARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandrinelli, A.; Treves, A.; Covino, S.

    2016-03-15

    We searched for quasi-periodicities on year-like timescales in the light curves of six blazars in the optical—near-infrared bands and we made a comparison with the high energy emission. We obtained optical/NIR light curves from Rapid Eye Mounting photometry plus archival Small and Moderate Aperture Research Telescope System data and we accessed the Fermi light curves for the γ-ray data. The periodograms often show strong peaks in the optical and γ-ray bands, which in some cases may be inter-related. The significance of the revealed peaks is then discussed, taking into account that the noise is frequency dependent. Quasi-periodicities on a year-likemore » timescale appear to occur often in blazars. No straightforward model describing these possible periodicities is yet available, but some plausible interpretations for the physical mechanisms causing periodic variabilities of these sources are examined.« less

  6. Assessment of the Higher Education Needs of Snohomish, Island, and Skagit Counties (SIS)

    ERIC Educational Resources Information Center

    Washington Higher Education Coordinating Board, 2006

    2006-01-01

    This report contains the Higher Education Coordinating Board's (HECB) assessment of the higher education needs in Snohomish, Skagit, and Island (SIS) Counties, and its recommendations to the legislature regarding those needs. The report contains two sections. Section I provides: (1) Primary conclusions and related considerations derived from the…

  7. 670-GHz Down- and Up-Converting HEMT-Based Mixers

    NASA Technical Reports Server (NTRS)

    Schlecht, Enrich T.; Chattopadhyay, Goutam; Lin, Robert H.; Sin, Seth; Deal, William; Rodriquez, Bryan; Bayuk, Brian; Leong, Kevin; Mei, Gerry

    2012-01-01

    A large category of scientific investigation takes advantage of the interactions of signals in the frequency range from 300 to 1,000 GHz and higher. This includes astronomy and atmospheric science, where spectral observations in this frequency range give information about molecular abundances, pressures, and temperatures of small-sized molecules such as water. Additionally, there is a minimum in the atmospheric absorption at around 670 GHz that makes this frequency useful for terrestrial imaging, radar, and possibly communications purposes. This is because 670 GHz is a good compromise for imaging and radar applications between spatial resolution (for a given antenna size) that favors higher frequencies, and atmospheric losses that favor lower frequencies. A similar trade-off applies to communications link budgets: higher frequencies allow smaller antennas, but incur a higher loss. All of these applications usually require converting the RF (radio frequency) signal at 670 GHz to a lower IF (intermediate frequency) for processing. Further, transmitting for communication and radar generally requires up-conversion from IF to the RF. The current state-of-the-art device for performing the frequency conversion is based on Schottky diode mixers for both up and down conversion in this frequency range for room-temperature operation. Devices that can operate at room temperature are generally required for terrestrial, military, and planetary applications that cannot tolerate the mass, bulk, and power consumption of cryogenic cooling. The technology has recently advanced to the point that amplifiers in the region up to nearly 1,000 GHz are feasible. Almost all of these have been based on indium phosphide pseudomorphic high-electron mobility transistors (pHEMTs), in the form of monolithic microwave integrated circuits (MMICs). Since the processing of HEMT amplifiers is quite differ en t from that of Schottky diodes, use of Schottky mixers requires separate MMICs for the mixers

  8. Modeling and Optimization of a High-Tc Hot-Electron Superconducting Mixer for Terahertz Applicaitons

    NASA Technical Reports Server (NTRS)

    Karasik, B. S.; McGrath, W. R.; Gaidis, M. C.; Burns, M. J.; Kleinsasser, A. W.; Delin, K. A.; Vasquez, R. P.

    1996-01-01

    The development of a YBa(sub 2)Cu(sub 3)O(sub 7-(kronecker delta))(YBCO) hot-electron bolometer (HEB) quasioptical mixer for a 2.5 heterodyne receiver is discussed. The modeled device is a submicron bridge made from a 10 nm thick film on a high thermal conductance substrate. The mixer performance expected for this device is analyzed in the framework of a two-temperature model which includes heating both of the electrons and the lattice. Also, the contribution of heat diffusion from the film through the substrate and from the film to the normal metal contacts is evaluated....a single sideband temperature of less than 2000k is predicted.

  9. Unstable Resonator Optical Parametric Oscillator Based on Quasi-Phase-Matched RbTiOAsO(4).

    PubMed

    Hansson, G; Karlsson, H; Laurell, F

    2001-10-20

    We demonstrate improved signal and idler-beam quality of a 3-mm-aperture quasi-phase-matched RbTiOAsO(4) optical parametric oscillator through use of a confocal unstable resonator as compared with a plane-parallel resonator. Both oscillators were singly resonant, and the periodically poled RbTiOAsO(4) crystal generated a signal at 1.56 mum and an idler at 3.33 mum when pumped at 1.064 mum. We compared the beam quality produced by the 1.2-magnification confocal unstable resonator with the beam quality produced by the plane-parallel resonator by measuring the signal and the idler beam M(2) value. We also investigated the effect of pump-beam intensity distribution by comparing the result of a Gaussian and a top-hat intensity profile pump beam. We generated a signal beam of M(2) approximately 7 and an idler beam of M(2) approximately 2.5 through use of an unstable resonator and a Gaussian intensity profile pump beam. This corresponds to an increase of a factor of approximately 2 in beam quality for the signal and a factor of 3 for the idler, compared with the beam quality of the plane-parallel resonator optical parametric oscillator.

  10. Design and development of a 600-720 GHz receiver for ALMA Band 9

    NASA Astrophysics Data System (ADS)

    Baryshev, A. M.; Hesper, R.; Mena, F. P.; Jackson, B. D.; Adema, J.; Schaeffer, H.; Barkhof, J.; Wild, W.; Candotti, M.; Lodewijk, C.; Loudkov, D.; Zijlstra, T.; Noroozian, 0.; Klapwijk, T. M.

    2006-05-01

    This paper describes the design and development of the ALMA Band 9 receiver cartridges. The ALMA project is a collaboration between Europe, North America, and Japan to build an aperture synthesis telescope consisting of at least 64 12-m antennas located at 5000 m altitude in Chile. In its full configuration, ALMA will observe in 10 frequency bands between 30 and 950 GHz, and will provide astronomers with unprecedented sensitivity and spatial resolution at millimetre and sub-millimetre wavelengths. Band 9, covering 600-720 GHz, is the highest frequency band in the baseline ALMA project, and will thus offer the telescope's highest spatial resolutions. The ALMA Band 9 cartridge is a compact unit containing the core of a 600-720 GHz heterodyne receiver front-end that can be easily inserted into and removed from the ALMA cryostat. In particular, its core technologies include low-noise, broadband SIS mixers; an electronically-tunable solid-state local oscillator; and low-noise cryogenic IF amplifiers. These components are built into a rigid opto-mechanical structure that includes a compact optical assembly mounted on the cartridge's 4 K stage that combines the astronomical and local oscillator signals and focuses them into two SIS mixers. In this report we present the noise measurement with an emphasis on the extreme large IF bandwidth (4-12 GHz). IF-gain slope, receiver linearity/saturation, receiver beam pattern and cross polarization level measurements will be presented and compared with expectations. The receiver phase and amplitude stability measurements will be presented and the system aspects related to interferometer will be discussed. Finally, a detailed measurement of LO noise contribution will be presented. This measurement was done by comparing receiver noise measured with internal ALMA LO (multipliers power amplifiers combination) to receiver noise measured by means of Gunn diode, followed by a x2x3 multiplier.

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT PERFORMANCE OF INDUCTION MIXERS FOR DISINFECTION OF WET WEATHER FLOWS, GAS MASTRRR SERIES 32 SUBMERSIBLE CHEMICAL INDUCTION MIXERS

    EPA Science Inventory

    The Wet-Weather Flow Technologies Pilot of the EPA's Environmental Technology Verification (ETV) Program under a partnership with NSF International has verified the performance of the GAS MASTRRR Series 32 Submersible Chemical Induction Mixers used for disinfection of wet-weather...

  12. Quasi-optic millimeter-wave device application of liquid crystal material by using porous PMMA matrix

    NASA Astrophysics Data System (ADS)

    Nose, T.; Watanabe, Y.; Kon, A.; Ito, R.; Honma, M.

    2018-02-01

    Recently, millimeter-waves (MMWs) have become indispensable for application in next-generation high-speed wireless communication i.e., 5G, in addition to conventional applications such as in automobile collision avoidance radars and airport security inspection systems. Some manageable devices to control MMW propagation will be necessary with the development of this new technology field. We believe that liquid crystal (LC) devices are one of the major candidates for such applications because it is known that LC materials are excellent electro-optic materials. However, as the wavelength of MMWs is extremely longer than the optics region, extremely thick LC layers are necessary if we choose the quasioptic approach to attain LC MMW control devices. Therefore, we adopt a PDLC structure to attain the extremely thick LC layers by using porous (polymethyl methacrylate) PMMA materials, which can be easily obtained using a solvent consisting of a mixture of ethanol/water and a little heating. In this work, we focus on Fresnel lens, which is an important quasi-optic device for MMW application, to introduce a tunable property by using LC materials. Here, we adopt the thin film deposition method to obtain a porous PMMA matrix with the aim of obtaining final composite structure based on the Fresnel substrate. First, the fundamental material properties of porous PMMA are investigated to control the microscopic porous structure. Then, the LC-MMW Fresnel lens substrate is prepared using a 3D printer, and the fundamental MMW focusing properties of the prototype composite Fresnel structure are investigated.

  13. A Planar Microfluidic Mixer Based on Logarithmic Spirals

    PubMed Central

    Scherr, Thomas; Quitadamo, Christian; Tesvich, Preston; Park, Daniel Sang-Won; Tiersch, Terrence; Hayes, Daniel; Choi, Jin-Woo; Nandakumar, Krishnaswamy

    2013-01-01

    A passive, planar micromixer design based on logarithmic spirals is presented. The device was fabricated using polydimethylsiloxane soft photolithography techniques, and mixing performance was characterized via numerical simulation and fluorescent microscopy. Mixing efficiency initially declined as Reynolds number increased, and this trend continued until a Reynolds number of 15 where a minimum was reached at 53%. Mixing efficiency then began to increase reaching a maximum mixing efficiency of 86% at Re = 67. Three-dimensional simulations of fluid mixing in this design were compared to other planar geometries such as the Archimedes spiral and Meandering-S mixers. The implementation of logarithmic curvature offers several unique advantages that enhance mixing, namely a variable cross-sectional area and a logarithmically varying radius of curvature that creates 3-D Dean vortices. These flow phenomena were observed in simulations with multilayered fluid folding and validated with confocal microscopy. This design provides improved mixing performance over a broader range of Reynolds numbers than other reported planar mixers, all while avoiding external force fields, more complicated fabrication processes, and the introduction of flow obstructions or cavities that may unintentionally affect sensitive or particulate-containing samples. Due to the planar design requiring only single-step lithographic features, this compact geometry could be easily implemented into existing micro-total analysis systems requiring effective rapid mixing. PMID:23956497

  14. A planar microfluidic mixer based on logarithmic spirals

    NASA Astrophysics Data System (ADS)

    Scherr, Thomas; Quitadamo, Christian; Tesvich, Preston; Sang-Won Park, Daniel; Tiersch, Terrence; Hayes, Daniel; Choi, Jin-Woo; Nandakumar, Krishnaswamy; Monroe, W. Todd

    2012-05-01

    A passive, planar micromixer design based on logarithmic spirals is presented. The device was fabricated using polydimethylsiloxane soft photolithography techniques, and mixing performance was characterized via numerical simulation and fluorescent microscopy. Mixing efficiency initially declined as the Reynolds number increased, and this trend continued until a Reynolds number of 15 where a minimum was reached at 53%. Mixing efficiency then began to increase reaching a maximum mixing efficiency of 86% at Re = 67. Three-dimensional (3D) simulations of fluid mixing in this design were compared to other planar geometries such as the Archimedes spiral and Meandering-S mixers. The implementation of logarithmic curvature offers several unique advantages that enhance mixing, namely a variable cross-sectional area and a logarithmically varying radius of curvature that creates 3D Dean vortices. These flow phenomena were observed in simulations with multilayered fluid folding and validated with confocal microscopy. This design provides improved mixing performance over a broader range of Reynolds numbers than other reported planar mixers, all while avoiding external force fields, more complicated fabrication processes and the introduction of flow obstructions or cavities that may unintentionally affect sensitive or particulate-containing samples. Due to the planar design requiring only single-step lithographic features, this compact geometry could be easily implemented into existing micro-total analysis systems requiring effective rapid mixing.

  15. Quasi-optical frequency selective surface with phase compensation structure correcting the beam distortion.

    PubMed

    Yao, Xiayuan; Liang, Bingyuan; Bai, Ming

    2017-09-18

    In space-borne quasi-optical feed system, frequency selective surface (FSS) should meet both electrical properties and mechanical requirements. In the paper, we design and fabricate three FSSs to achieve these goals. We present a novel FFS with phase compensation structure correcting the beam distortion. The phase compensation structure consists of short-ended circular waveguide array, inspired by the idea of reflect array antenna. The first FSS meets the need of electrical performance, however, which is too weak to pass the mechanical test. The second one overcomes the former problem, but brings the aberration in reflection beam, due to the discontinuity of the reflection phase. The third one with phase compensation structure meets all the demands. The insertion phase of the unit cell compensates 119 and 183 GHz two reflection bands, reconfigures the field distributions on the cross section of beam waist simultaneously. What' more, this FSS extends the functionality of the original FSS. To some extent, the FSS with phase compensation structure shares the ellipsoidal reflector's pressure to adjust the beam.

  16. VERIFICATION TESTING OF HIGH-RATE MECHANICAL INDUCTION MIXERS FOR CHEMICAL DISINFECTANTS, Oregon

    EPA Science Inventory

    This paper describes the results of verification testing of mechanical induction mixers for dispersion of chemical disinfectants in wet-weather flow (WWF) conducted under the U.S. Environmental Protection Agency's Environmental Technology Verification (ETV) WWF Pilot Program. Th...

  17. A novel in-plane passive microfluidic mixer with modified Tesla structures.

    PubMed

    Hong, Chien-Chong; Choi, Jin-Woo; Ahn, Chong H

    2004-04-01

    An innovative in-plane passive micromixer using modified Tesla structures, which are used as passive valves, has been designed, simulated, fabricated and successfully characterized in this paper. Simulation and experimental results of the developed novel micromixer have shown excellent mixing performance over a wide range of flow conditions in the micro scale. The micromixer realized in this work has achieved even better mixing performance at a higher flow rate, and its pressure drop is less than 10 KPa at the flow rate of 100 microl min(-1). This micromixer shows characteristics similar to Taylor dispersion, with contributions from both diffusion and convection. The mixer has a diffusion domain region at low flow rate, but it moves to a convection domain region at high flow rate. Due to the simple in-plane structure of the novel micromixer explored in this work, the mixer can be easily realized and integrated with on-chip microfluidic devices and micro total analysis systems (micro-TAS).

  18. Creating a "SIS-A" Annual Review Protocol to Determine the Need for Reassessment

    ERIC Educational Resources Information Center

    Thompson, James R.; Shogren, Karrie A.; Seo, Hyojeong; Wehmeyer, Michael L.; Lang, Kyle M.

    2016-01-01

    The Supports Intensity Scale-Adult Version ("SIS-A") has been widely adopted throughout North America and the world since its publication a little over a decade ago. Many organizations and jurisdictions operate under regulations that require an annual assessment of people who receive services and supports that are financed through public…

  19. Updating and improving methodology for prioritizing highway project locations on the strategic intermodal system (SIS).

    DOT National Transportation Integrated Search

    2016-04-01

    The Florida Department of Transportation (FDOT) District One developed the Congestion Management Process : (CMP) system to prioritize low-cost, near-term highway improvements on the Strategic Intermodal System (SIS). : The existing CMP system is desi...

  20. Noise and Bandwidth Measurements of Diffusion-Cooled Nb Hot-Electron Bolometer Mixers at Frequencies Above the Superconductive Energy Gap

    NASA Technical Reports Server (NTRS)

    Wyss, R. A.; Karasik, B. S.; McGrath, W. R.; Bumble, B.; LeDuc, H.

    1999-01-01

    Diffusion-cooled Nb hot-electron bolometer (HEB) mixers have the potential to simultaneously achieve high intermediate frequency (IF) bandwidths and low mixer noise temperatures for operation at THz frequencies (above the superconductive gap energy). We have measured the IF signal bandwidth at 630 GHz of Nb devices with lengths L = 0.3, 0.2, and 0.1 micrometer in a quasioptical mixer configuration employing twin-slot antennas. The 3-dB EF bandwidth increased from 1.2 GHz for the 0.3 gm long device to 9.2 GHz for the 0.1 gm long device. These results demonstrate the expected 1/L squared dependence of the IF bandwidth at submillimeter wave frequencies for the first time, as well as the largest EF bandwidth obtained to date. For the 0.1 gm device, which had the largest bandwidth, the double sideband (DSB) noise temperature of the receiver was 320-470 K at 630 GHz with an absorbed LO power of 35 nW, estimated using the isothermal method. A version of this mixer with the antenna length scaled for operation at 2.5 THz has also been tested. A DSB receiver noise temperature of 1800 plus or minus 100 K was achieved, which is about 1,000 K lower than our previously reported results. These results demonstrate that large EF bandwidth and low-noise operation of a diffusion-cooled HEB mixer is possible at THz frequencies with the same device geometry.

  1. A stochastic SIS epidemic model with vaccination

    NASA Astrophysics Data System (ADS)

    Cao, Boqiang; Shan, Meijing; Zhang, Qimin; Wang, Weiming

    2017-11-01

    In this paper, we investigate the basic features of an SIS type infectious disease model with varying population size and vaccinations in presence of environment noise. By applying the Markov semigroup theory, we propose a stochastic reproduction number R0s which can be seen as a threshold parameter to utilize in identifying the stochastic extinction and persistence: If R0s < 1, under some mild extra conditions, there exists a disease-free absorbing set for the stochastic epidemic model, which implies that disease dies out with probability one; while if R0s > 1, under some mild extra conditions, the SDE model has an endemic stationary distribution which results in the stochastic persistence of the infectious disease. The most interesting finding is that large environmental noise can suppress the outbreak of the disease.

  2. Effect of temperature on the shape of spatial quasi-periodic oscillations of the refractive index of alkali atoms in an optically dense medium with a closed excitation contour of Δ type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barantsev, K A; Litvinov, A N

    2014-10-31

    A theory of a closed excitation contour (Δ system) of a three-level atom in an optically dense medium is constructed with allowance for temperature. The spatial quasi-periodic oscillations of the refractive index in the system under study are shown to damp with increasing temperature. The range of temperatures at which these oscillations are most pronounced is found. (quantum optics)

  3. Preliminary Experimental Investigation of Quasi Achromat scheme at Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yipeng; Shang, Hairong

    Next generation storage rings require weaker dipolemagnets and stronger quadrupole focusing to achieve very low emittance. To suppress the geometric and chromatic optics aberrations introduced by the strong sextupoles, achromat and quasi achromat schemes are applied in the lattice design to improve the beam dynamics performance. In this paper, some preliminary experimental investigation of the quasi achromat scheme at the Advanced Photon Source (APS) are presented. Three different operation lattices are compared on their beam dynamics performance. Although none of these operation lattices achieve ideal quasi achromat condition, they have certain relevant features. It is observed that fewer resonances aremore » present in the nominal operation lattice which is most close to quasi achromat required conditions.« less

  4. Acoustic and Laser Doppler Anemometer Results for Confluent, 22-Lobed, and Unique-Lobed Mixer Exhaust Systems for Subsonic Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Martens, S.; Shin, H.; Majjigi, R. K.; Krejsa, Gene (Technical Monitor)

    2002-01-01

    The objective of this task was to develop a design methodology and noise reduction concepts for high bypass exhaust systems which could be applied to both existing production and new advanced engine designs. Special emphasis was given to engine cycles with bypass ratios in the range of 4:1 to 7:1, where jet mixing noise was a primary noise source at full power takeoff conditions. The goal of this effort was to develop the design methodology for mixed-flow exhaust systems and other novel noise reduction concepts that would yield 3 EPNdB noise reduction relative to 1992 baseline technology. Two multi-lobed mixers, a 22-lobed axisymmetric and a 21-lobed with a unique lobe, were designed. These mixers along with a confluent mixer were tested with several fan nozzles of different lengths with and without acoustic treatment in GEAE's Cell 41 under the current subtask (Subtask C). In addition to the acoustic and LDA tests for the model mixer exhaust systems, a semi-empirical noise prediction method for mixer exhaust system is developed. Effort was also made to implement flowfield data for noise prediction by utilizing MGB code. In general, this study established an aero and acoustic diagnostic database to calibrate and refine current aero and acoustic prediction tools.

  5. TEX-SIS FOLLOW-UP: Student Follow-up Management Information System. Data Processing Manual.

    ERIC Educational Resources Information Center

    Tarrant County Junior Coll. District, Ft. Worth, TX.

    Project FOLLOW-UP was conducted to develop, test, and validate a statewide management information system for follow-up of Texas public junior and community college students. The result of this project was a student information system (TEX-SIS) consisting of seven subsystems: (1) Student's Educational Intent, (2) Nonreturning Student Follow-up, (3)…

  6. TEX-SIS Occ/Tec Non-Returning Student Follow-Up, Volume 1, Number 1.

    ERIC Educational Resources Information Center

    Gose, Frank

    In 1981, selected data about nonreturning occupational/technical students were collected at Yavapai College using the TEX-SIS follow-up system, which was developed by the Texas Education Agency and Texas Coordinating Board for Universities and Colleges. A sample of 449 students was selected from the approximately 900 students who had enrolled in…

  7. Modeling emulsification processes in rotary-disk mixers

    NASA Astrophysics Data System (ADS)

    Laponov, S. V.; Shulaev, N. S.; Ivanov, S. P.; Bondar', K. E.; Suleimanov, D. F.

    2017-10-01

    This article presents the experimental studies results of emulsification processes in liquid-liquid systems in rotary-disk mixers, allowing regulating the distribution of dispersed particles by changing the process conditions and the ratio of the dispersed phase. It is shown that with the increase of mixer’s revolutions per minute (RPM), both the size of dispersed particles and the deviation of dispersed particles sizes from the average decrease. The increase of the dispersed particles part results in the increase of particles average sizes at the current energy consumption. Discovered relationships can be used in the design of industrial equipment and laboratory research.

  8. Influence of Geometry and Flow Variations on NO Formation in the Quick Mixer of a Staged Combustor

    NASA Technical Reports Server (NTRS)

    Hatch, M. S.; Sowa, W. A.; Samuelsen, G. S.; Holdeman, J. D.

    1995-01-01

    Staged combustion, such as Rich-Burn/Quick-Mix/Lean-Burn (RQL), is a viable strategy to meet nitric oxide (NO) emission goals for both stationary and propulsion gas turbine engines. A critical element of the design is the quick mixer section where the potential for NO production is high. While numerical calculations of the quick mixer under reacting conditions have been conducted, the hostile environment and lack of appropriate diagnostics have, to date, precluded experimental probing of the reacting case. As an alternative to understanding the effect of geometry and flow variations on the production of NO in the quick mixer, the present paper presents (1) a series of non-reacting parametric studies, and (2) a computational method to extrapolate the results of the non-reacting experiments to reacting conditions. The results show that the rate of NO production is highest in the immediate vicinity of the injection plane. For a given momentum flux ratio between the jets and mainstream, the most effective mixing geometry is that which mixes effectively in both (1) the plane of injection, and (2) the wall regions downstream of the plan of injection. The tailoring of the mixing is key to minimize the NO formed. As a result, the best overall mixer with respect to the minimization of NO production may depend on the system specific characteristics of the particular application.

  9. Simulation study on beam loss in the alpha bucket regime during SIS-100 proton operation

    NASA Astrophysics Data System (ADS)

    Sorge, S.

    2018-02-01

    Crossing the transition energy γt in synchrotrons for high intensity proton beams requires well tuned jump schemes and is usually accompanied by longitudinal emittance growth. In order to avoid γt crossing during proton operation in the projected SIS-100 synchrotron special high-γt lattice settings have been developed, in order to keep γt above the beam extraction energy. A further advantage of this scheme is the formation of alpha buckets which naturally lead to short proton bunches, required for the foreseen production and storage of antiprotons for the FAIR facility. Special attention is turned on the imperfections of the superconducting SIS-100 magnets because together with the high-γt lattice settings, they could potentially lead to enhanced beam loss. The aim of the present work is to estimate the beam loss by means of particle tracking simulations.

  10. Split-Waveguide Mounts For Submillimeter-Wave Multipliers And Harmonic Mixers

    NASA Technical Reports Server (NTRS)

    Raisanen, Antti; Choudhury, Debabani; Dengler, Robert J.; Oswald, John E.; Siegel, Peter H.

    1996-01-01

    Novel variation of split-waveguide mount for millimeter-and submillimeter-wavelength frequency multipliers and harmonic mixers developed. Designed to offer wide range of available matching impedances, while maintaining relatively simple fabrication sequence. Wide tuning range achieved with separate series and parallel elements, consisting of two pairs of noncontacting sliding backshorts, at fundamental and harmonic frequencies. Advantages include ease of fabrication, reliability, and tunability.

  11. Numerical study of fluid motion in bioreactor with two mixers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheleva, I., E-mail: izheleva@uni-ruse.bg; Lecheva, A., E-mail: alecheva@uni-ruse.bg

    2015-10-28

    Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.

  12. Systematizing Web Search through a Meta-Cognitive, Systems-Based, Information Structuring Model (McSIS)

    ERIC Educational Resources Information Center

    Abuhamdieh, Ayman H.; Harder, Joseph T.

    2015-01-01

    This paper proposes a meta-cognitive, systems-based, information structuring model (McSIS) to systematize online information search behavior based on literature review of information-seeking models. The General Systems Theory's (GST) prepositions serve as its framework. Factors influencing information-seekers, such as the individual learning…

  13. Instrument for measuring dispersional distortions in optical fibers and cables

    NASA Astrophysics Data System (ADS)

    Alishev, Y. V.; Maryenko, A. A.; Smirnov, Y. V.; Uryadov, V. N.; Sinkevich, V. I.

    1985-03-01

    An instrument was developed and built for measuring the dispersional distortions in optical fibers and cables on the basis of pulse widening. The instrument consists of a laser as a light source, a master oscillator, an optical transmitter, an optical shunt with mode mixer, an optical receiver, a fiber length measuring device, a smoothly adjustable delay line, and a stroboscopic oscillograph. The optical transmitter contains a semiconductor laser with GaAs-GaAlAs diheterostructure and modulator with pulse generating avalanche-breakdown transistors. The optical receiver contains a germanium photodiode with internal amplification and photoreceiver amplifier with microwave bipolar germanium transistors. Matching of the instrument to the tested fiber line is done by passing radiation into the latter from an auxiliary small He-Ne laser through a directional coupler.

  14. 30 GHz monolithic balanced mixers using an ion-implanted FET-compatible 3-inch GaAs wafer process technology

    NASA Technical Reports Server (NTRS)

    Bauhahn, P.; Contolatis, A.; Sokolov, V.; Chao, C.

    1986-01-01

    An all ion-implanted Schottky barrier mixer diode which has a cutoff frequency greater than 1000 GHz has been developed. This new device is planar and FET-compatible and employs a projection lithography 3-inch wafer process. A Ka-band monolithic balanced mixer based on this device has been designed, fabricated and tested. A conversion loss of 8 dB has been measured with a LO drive of 10 dBm at 30 GHz.

  15. Quasi-elastic nuclear scattering at high energies

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.

    1992-01-01

    The quasi-elastic scattering of two nuclei is considered in the high-energy optical model. Energy loss and momentum transfer spectra for projectile ions are evaluated in terms of an inelastic multiple-scattering series corresponding to multiple knockout of target nucleons. The leading-order correction to the coherent projectile approximation is evaluated. Calculations are compared with experiments.

  16. A novel microfluidic mixer based on dual-hydrodynamic focusing for interrogating the kinetics of DNA-protein interaction.

    PubMed

    Li, Ying; Xu, Fei; Liu, Chao; Xu, Youzhi; Feng, Xiaojun; Liu, Bi-Feng

    2013-08-21

    Kinetic measurement of biomacromolecular interaction plays a significant role in revealing the underlying mechanisms of cellular activities. Due to the small diffusion coefficient of biomacromolecules, it is difficult to resolve the rapid kinetic process with traditional analytical methods such as stopped-flow or laminar mixers. Here, we demonstrated a unique continuous-flow laminar mixer based on microfluidic dual-hydrodynamic focusing to characterize the kinetics of DNA-protein interactions. The time window of this mixer for kinetics observation could cover from sub-milliseconds to seconds, which made it possible to capture the folding process with a wide dynamic range. Moreover, the sample consumption was remarkably reduced to <0.55 μL min⁻¹, over 1000-fold saving in comparison to those reported previously. We further interrogated the interaction kinetics of G-quadruplex and the single-stranded DNA binding protein, indicating that this novel micromixer would be a useful approach for analyzing the interaction kinetics of biomacromolecules.

  17. Electromagnetic Scattering by Fully Ordered and Quasi-Random Rigid Particulate Samples

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Mackowski, Daniel W.

    2016-01-01

    In this paper we have analyzed circumstances under which a rigid particulate sample can behave optically as a true discrete random medium consisting of particles randomly moving relative to each other during measurement. To this end, we applied the numerically exact superposition T-matrix method to model far-field scattering characteristics of fully ordered and quasi-randomly arranged rigid multiparticle groups in fixed and random orientations. We have shown that, in and of itself, averaging optical observables over movements of a rigid sample as a whole is insufficient unless it is combined with a quasi-random arrangement of the constituent particles in the sample. Otherwise, certain scattering effects typical of discrete random media (including some manifestations of coherent backscattering) may not be accurately replicated.

  18. Study of a quasi-microscope design for planetary landers

    NASA Technical Reports Server (NTRS)

    Giat, O.; Brown, E. B.

    1973-01-01

    The Viking Lander fascimile camera, in its present form, provides for a minimum object distance of 1.9 meters, at which distance its resolution of 0.0007 radian provides an object resolution of 1.33 millimeters. It was deemed desirable, especially for follow-on Viking missions, to provide means for examing Martian terrain at resolutions considerably higher than that now provided. This led to the concept of quasi-microscope, an attachment to be used in conjunction with the fascimile camera to convert it to a low power microscope. The results are reported of an investigation to consider alternate optical configurations for the quasi-microscope and to develop optical designs for the selected system or systems. Initial requirements included consideration of object resolutions in the range of 2 to 50 micrometers, an available field of view of the order of 500 pixels, and no significant modifications to the fascimile camera.

  19. Fabrication of High-T(sub c) Hot-Electron Bolometric Mixers for Terahertz Applications

    NASA Technical Reports Server (NTRS)

    Burns, M. J.; Kleinsasser, A. W.; Delin, K. A.; Vasquez, R. P.; Karasik, B. S.; McGrath, W. R.; Gaidis, M. C.

    1996-01-01

    Superocnducting hot-electron bolometers (HEB) represent a promising candidate for heterodyne mixing at frequencies exceeding 1 THz. Nb HEB mixers offer performance competitive with tunnel junctions without the frequency limit imposed by the superconducting energy gap.

  20. Analysis of a High-Tc Hot-Electron Superconducting Mixer for Terahertz Applications

    NASA Technical Reports Server (NTRS)

    Karasik, B. S.; McGrath, W. R.; Gaidis, M. C.

    1996-01-01

    The prospects of a YBa2Cu3O7(delta)(YBCO) hot-electron bolometer (HEB) mixer for a THz heterodyne receiver is discussed. The modeled device is a submicron bridge made from a 10 nm thick film on a high thermal conductance substrate.

  1. CanSIS Regional Soils Data in Vector Format

    NASA Technical Reports Server (NTRS)

    Monette, Bryan; Knapp, David; Hall, Forrest G. (Editor)

    2000-01-01

    This data set is the original vector data set received from Canada Soil Information System (CanSIS). The data include the provinces of Saskatchewan and Manitoba. Attribute tables provide the various soil data for the polygons; there is one attribute table for Saskatchewan and one for Manitoba. The data are stored in ARC/INFO export format files. Based on agreements made with Agriculture Canada, these data are available only to individuals and groups that have an official relationship with the BOREAS project. These data are not included on the BOReal Ecosystem-Atmosphere Study (BOREAS) CD-ROM set. A raster version of this data set titled 'BOREAS Regional Soils Data in Raster Format and AEAC Projection' is publicly available and is included on the BOREAS CD-ROM set.

  2. Effect of Installation of Mixer/Ejector Nozzles on the Core Flow Exhaust of High-Bypass-Ratio Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Harrington, Douglas E.

    1998-01-01

    The aerospace industry is currently investigating the effect of installing mixer/ejector nozzles on the core flow exhaust of high-bypass-ratio turbofan engines. This effort includes both full-scale engine tests at sea level conditions and subscale tests in static test facilities. Subscale model tests are to be conducted prior to full-scale testing. With this approach, model results can be analyzed and compared with analytical predications. Problem areas can then be identified and design changes made and verified in subscale prior to committing to any final design configurations for engine ground tests. One of the subscale model test programs for the integrated mixer/ejector development was a joint test conducted by the NASA Lewis Research Center and Pratt & Whitney Aircraft. This test was conducted to study various mixer/ejector nozzle configurations installed on the core flow exhaust of advanced, high-bypass-ratio turbofan engines for subsonic, commercial applications. The mixer/ejector concept involves the introduction of largescale, low-loss, streamwise vortices that entrain large amounts of secondary air and rapidly mix it with the primary stream. This results in increased ejector pumping relative to conventional ejectors and in more complete mixing within the ejector shroud. The latter improves thrust performance through the efficient energy exchange between the primary and secondary streams. This experimental program was completed in April 1997 in Lewis' CE-22 static test facility. Variables tested included the nozzle area ratio (A9/A8), which ranged from 1.6 to 3.0. This ratio was varied by increasing or decreasing the nozzle throat area, A8. Primary nozzles tested included both lobed mixers and conical primaries. These configurations were tested with and without an outer shroud, and the shroud position was varied by inserting spacers in it. In addition, data were acquired with and without secondary flow.

  3. The High AV Quasar Survey: Reddened Quasi-Stellar Objects Selected from Optical/Near-Infrared Photometry—II

    NASA Astrophysics Data System (ADS)

    Krogager, J.-K.; Geier, S.; Fynbo, J. P. U.; Venemans, B. P.; Ledoux, C.; Møller, P.; Noterdaeme, P.; Vestergaard, M.; Kangas, T.; Pursimo, T.; Saturni, F. G.; Smirnova, O.

    2015-03-01

    Quasi-stellar objects (QSOs) whose spectral energy distributions (SEDs) are reddened by dust either in their host galaxies or in intervening absorber galaxies are to a large degree missed by optical color selection criteria like the ones used by the Sloan Digital Sky Survey (SDSS). To overcome this bias against red QSOs, we employ a combined optical and near-infrared (near-IR) color selection. In this paper, we present a spectroscopic follow-up campaign of a sample of red candidate QSOs which were selected from the SDSS and the UKIRT Infrared Deep Sky Survey (UKIDSS). The spectroscopic data and SDSS/UKIDSS photometry are supplemented by mid-infrared photometry from the Wide-field Infrared Survey Explorer. In our sample of 159 candidates, 154 (97%) are confirmed to be QSOs. We use a statistical algorithm to identify sightlines with plausible intervening absorption systems and identify nine such cases assuming dust in the absorber similar to Large Magellanic Cloud sightlines. We find absorption systems toward 30 QSOs, 2 of which are consistent with the best-fit absorber redshift from the statistical modeling. Furthermore, we observe a broad range in SED properties of the QSOs as probed by the rest-frame 2 μm flux. We find QSOs with a strong excess as well as QSOs with a large deficit at rest-frame 2 μm relative to a QSO template. Potential solutions to these discrepancies are discussed. Overall, our study demonstrates the high efficiency of the optical/near-IR selection of red QSOs.

  4. A 16 element quasi-optical FET oscillator power combining array with external injection locking

    NASA Astrophysics Data System (ADS)

    Birkeland, Joel; Itoh, Tatsuo

    1992-03-01

    The authors present analysis, design and experimental results of a 16 element planar oscillator array for quasi-optical power combining. Each element in the array consists of a single FET oscillator with an input port for injection of the locking signal, and an output port which is connected to a patch radiator. The array is synchronized using a 16-way power dividing network which distributes the locking signal to the oscillating elements. The array is constructed using a two-sided microstrip configuration, with the oscillators and feed network on one side of a ground plane, and the patch radiators on the opposite side. An effective radiated power (ERP) of 28.2 W CW with an isotropic conversion gain of 9.9 dB was measured at 6 GHz. For an injected power of 10.3 dBm, a locking range of 453 MHz at a center frequency of 6.015 GHz was obtained; a bandwidth of 7.5 percent. Because of the simple nature of the individual oscillator elements, this approach is well suited to MMIC implementation.

  5. Aeroacoustic Characteristics of a Rectangular Multi-Element Supersonic Jet Mixer-Ejector Nozzle

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Taghavi, Ray

    1996-01-01

    This paper provides a unique, detailed evaluation of the acoustics and aerodynamics of a rectangular multi-element supersonic jet mixer-ejector noise suppressor. The performance of such mixer-ejectors is important in aircraft engine application for noise suppression and thrust augmentation. In contrast to most prior experimental studies on ejectors that reported either aerodynamic or acoustic data, our work documents both types of data. We present information on the mixing, pumping, ejector wall pressure distribution, thrust augmentation and noise suppression characteristics of four simple, multi-element, jet mixer-ejector configurations. The four configurations included the effect of ejector area ratio (AR = ejector area/primary jet area) and the effect of non-parallel ejector walls. We also studied in detail the configuration that produced the best noise suppression characteristics. Our results show that ejector configurations that produced the maximum maximum pumping (entrained flow per secondary inlet area) also exhibited the lowest wall pressures in the inlet region, and the maximum thrust augmentation. When cases having the same total mass flow were compared, we found that noise suppression trends corresponded with those for pumping. Surprisingly, the mixing (quantified by the peak Mach number, and flow uniformity) at the ejector exit exhibited no relationship to the noise suppression at moderate primary jet fully expanded Mach numbers (Mj is less than 1.4). However, the noise suppression dependence on the mixing was apparent at higher Mj. The above observations are justified by noting that the mixing at the ejector exit is ot a strong factor in determining the radiated noise when noise produced internal to the ejector dominates the noise field outside the ejector.

  6. 3D-printed conductive static mixers enable all-vanadium redox flow battery using slurry electrodes

    NASA Astrophysics Data System (ADS)

    Percin, Korcan; Rommerskirchen, Alexandra; Sengpiel, Robert; Gendel, Youri; Wessling, Matthias

    2018-03-01

    State-of-the-art all-vanadium redox flow batteries employ porous carbonaceous materials as electrodes. The battery cells possess non-scalable fixed electrodes inserted into a cell stack. In contrast, a conductive particle network dispersed in the electrolyte, known as slurry electrode, may be beneficial for a scalable redox flow battery. In this work, slurry electrodes are successfully introduced to an all-vanadium redox flow battery. Activated carbon and graphite powder particles are dispersed up to 20 wt% in the vanadium electrolyte and charge-discharge behavior is inspected via polarization studies. Graphite powder slurry is superior over activated carbon with a polarization behavior closer to the standard graphite felt electrodes. 3D-printed conductive static mixers introduced to the slurry channel improve the charge transfer via intensified slurry mixing and increased surface area. Consequently, a significant increase in the coulombic efficiency up to 95% and energy efficiency up to 65% is obtained. Our results show that slurry electrodes supported by conductive static mixers can be competitive to state-of-the-art electrodes yielding an additional degree of freedom in battery design. Research into carbon properties (particle size, internal surface area, pore size distribution) tailored to the electrolyte system and optimization of the mixer geometry may yield even better battery properties.

  7. Communication: Symmetrical quasi-classical analysis of linear optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Provazza, Justin; Coker, David F.

    2018-05-01

    The symmetrical quasi-classical approach for propagation of a many degree of freedom density matrix is explored in the context of computing linear spectra. Calculations on a simple two state model for which exact results are available suggest that the approach gives a qualitative description of peak positions, relative amplitudes, and line broadening. Short time details in the computed dipole autocorrelation function result in exaggerated tails in the spectrum.

  8. Cell surface retention sequence binding protein-1 interacts with the v-sis gene product and platelet-derived growth factor beta-type receptor in simian sarcoma virus-transformed cells.

    PubMed

    Boensch, C; Huang, S S; Connolly, D T; Huang, J S

    1999-04-09

    The cell surface retention sequence (CRS) binding protein-1 (CRSBP-1) is a newly identified membrane glycoprotein which is hypothesized to be responsible for cell surface retention of the oncogene v-sis and c-sis gene products and other secretory proteins containing CRSs. In simian sarcoma virus-transformed NIH 3T3 cells (SSV-NIH 3T3 cells), a fraction of CRSBP-1 was demonstrated at the cell surface and underwent internalization/recycling as revealed by cell surface 125I labeling and its resistance/sensitivity to trypsin digestion. However, the majority of CRSBP-1 was localized in intracellular compartments as evidenced by the resistance of most of the 35S-metabolically labeled CRSBP-1 to trypsin digestion, and by indirect immunofluorescent staining. CRSBP-1 appeared to form complexes with proteolytically processed forms (generated at and/or after the trans-Golgi network) of the v-sis gene product and with a approximately 140-kDa proteolytically cleaved form of the platelet-derived growth factor (PDGF) beta-type receptor, as demonstrated by metabolic labeling and co-immunoprecipitation. CRSBP-1, like the v-sis gene product and PDGF beta-type receptor, underwent rapid turnover which was blocked in the presence of 100 microM suramin. In normal and other transformed NIH 3T3 cells, CRSBP-1 was relatively stable and did not undergo rapid turnover and internalization/recycling at the cell surface. These results suggest that in SSV-NIH 3T3 cells, CRSBP-1 interacts with and forms ternary and binary complexes with the newly synthesized v-sis gene product and PDGF beta-type receptor at the trans-Golgi network and that the stable binary (CRSBP-1.v-sis gene product) complex is transported to the cell surface where it presents the v-sis gene product to unoccupied PDGF beta-type receptors during internalization/recycling.

  9. SIS epidemiological model for adaptive RT: Forecasting the parotid glands shrinkage during tomotherapy treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maffei, Nicola; Guidi, Gabriele, E-mail: guidi.gab

    Purpose: A susceptible-infected-susceptible (SIS) epidemic model was applied to radiation therapy (RT) treatments to predict morphological variations in head and neck (H&N) anatomy. Methods: 360 daily MVCT images of 12 H&N patients treated by tomotherapy were analyzed in this retrospective study. Deformable image registration (DIR) algorithms, mesh grids, and structure recontouring, implemented in the RayStation treatment planning system (TPS), were applied to assess the daily organ warping. The parotid’s warping was evaluated using the epidemiological approach considering each vertex as a single subject and its deformed vector field (DVF) as an infection. Dedicated IronPython scripts were developed to export dailymore » coordinates and displacements of the region of interest (ROI) from the TPS. MATLAB tools were implemented to simulate the SIS modeling. Finally, the fully trained model was applied to a new patient. Results: A QUASAR phantom was used to validate the model. The patients’ validation was obtained setting 0.4 cm of vertex displacement as threshold and splitting susceptible (S) and infectious (I) cases. The correlation between the epidemiological model and the parotids’ trend for further optimization of alpha and beta was carried out by Euclidean and dynamic time warping (DTW) distances. The best fit with experimental conditions across all patients (Euclidean distance of 4.09 ± 1.12 and DTW distance of 2.39 ± 0.66) was obtained setting the contact rate at 7.55 ± 0.69 and the recovery rate at 2.45 ± 0.26; birth rate was disregarded in this constant population. Conclusions: Combining an epidemiological model with adaptive RT (ART), the authors’ novel approach could support image-guided radiation therapy (IGRT) to validate daily setup and to forecast anatomical variations. The SIS-ART model developed could support clinical decisions in order to optimize timing of replanning achieving personalized treatments.« less

  10. Adaptation and Psychometric Properties of the Spanish Version of the Supports Intensity Scale (SIS)

    ERIC Educational Resources Information Center

    Verdugo, Miguel-Angel; Arias, Benito; Ibanez, Alba; Schalock, Robert L.

    2010-01-01

    The Supports Intensity Scale (SIS) is used to determine the profile and intensity of the supports needed by a person to participate successfully in major life activities. With its publication into 13 languages, a need has arisen to document its reliability and validity across language and cultural groups. Here we explain the adaptation and the…

  11. A millimeter wave Josephson mixer employing a high-T(c) GdBaCuO point contact

    NASA Technical Reports Server (NTRS)

    Olsson, H. K.; Claeson, T.; Eriksson, S.; Johansson, L.-G.; Mcgrath, W. R.

    1987-01-01

    A Josephson effect heterodyne mixer for the millimeter wave band was investigated employing high-T(c) GdBaCuO point contacts. Mixer performance was in qualitative agreement with theory. A mixing response was observed up to 55 K, the highest operating temperature achieved for such a device to date. The voltage separation of RF-induced steps gave a value of h/2e = 2.08 x 10 to the -15th V s, which is in excellent agreement with the value expected for Cooper pairs. In addition, the temperature dependence of the I(0)R product was found to agree with Bardeen-Cooper-Schrieffer theory in the weak coupling limit.

  12. How Noniridescent Colors Are Generated by Quasi-ordered Structures of Bird Feathers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar

    2012-03-26

    We investigate the mechanism of structural coloration by quasi-ordered nanostructures in bird feather barbs. Small-angle X-ray scattering (SAXS) data reveal the structures are isotropic and have short-range order on length scales comparable to optical wavelengths. We perform angle-resolved reflection and scattering spectrometry to fully characterize the colors under directional and omni-directional illumination of white light. Under directional lighting, the colors change with the angle between the directions of illumination and observation. The angular dispersion of the primary peaks in the scattering/reflection spectra can be well explained by constructive interference of light that is scattered only once in the quasi-ordered structures.more » Using the Fourier power spectra of structure from the SAXS data we calculate optical scattering spectra and explain why the light scattering peak is the highest in the backscattering direction. Under omni-directional lighting, colors from the quasi-ordered structures are invariant with the viewing angle. The non-iridescent coloration results from the isotropic nature of structures instead of strong backscattering.« less

  13. Conversion gain and noise of niobium superconducting hot-electron-mixers

    NASA Technical Reports Server (NTRS)

    Ekstrom, Hans; Karasik, Boris S.; Kollberg, Erik L.; Yngvesson, Sigfrid

    1995-01-01

    A study has been done of microwave mixing at 20 GHz using the nonlinear (power dependent) resistance of thin niobium strips in the resistive state. Our experiments give evidence that electron-heating is the main cause of the nonlinear phenomenon. Also a detailed phenomenological theory for the determination of conversion properties is presented. This theory is capable of predicting the frequency-conversion loss rather accurately for arbitrary bias by examining the I-V-characteristic. Knowing the electron temperature relaxation time, and using parameters derived from the I-V-characteristic also allows us to predict the -3 dB IF bandwidth. Experimental results are in excellent agreement with the theoretical predictions. The requirements on the mode of operation and on the film parameters for minimizing the conversion loss (and even achieving conversion gain) are discussed in some detail. Our measurements demonstrate an intrinsic conversion loss as low as 1 dB. The maximum IF frequency defined for -3 dB drop in conversion gain, is about 80 MHz. Noise measurements indicate a device output noise temperature of about 50 K and SSB mixer noise temperature below 250 K. This type of mixer is considered very promising for use in low-noise heterodyne receivers at THz frequencies.

  14. High-speed electro-optic switch based on nonlinear polymer-clad waveguide incorporated with quasi-in-plane coplanar waveguide electrodes

    NASA Astrophysics Data System (ADS)

    Jiang, Ming-Hui; Wang, Xi-Bin; Xu, Qiang; Li, Ming; Niu, Dong-Hai; Sun, Xiao-Qiang; Wang, Fei; Li, Zhi-Yong; Zhang, Da-Ming

    2018-01-01

    Nonlinear optical (NLO) polymer is a promising material for active waveguide devices that can provide large bandwidth and high-speed response time. However, the performance of the active devices is not only related to the waveguide materials, but also related to the waveguide and electrode structures. In this paper, a high-speed Mach-Zehnder interferometer (MZI) type of electro-optic (EO) switch based on NLO polymer-clad waveguide was fabricated. The quasi-in-plane coplanar waveguide electrodes were also introduced to enhance the poling and modulating efficiency. The characteristic parameters of the waveguide and electrode were carefully designed and simulated. The switches were fabricated by the conventional micro-fabrication process. Under 1550-nm operating wavelength, a typical fabricated switch showed a low insertion loss of 10.2 dB, and the switching rise time and fall time were 55.58 and 57.98 ns, respectively. The proposed waveguide and electrode structures could be developed into other active EO devices and also used as the component in the polymer-based large-scale photonic integrated circuit.

  15. Optical chaos and hybrid WDM/TDM based large capacity quasi-distributed sensing network with real-time fiber fault monitoring.

    PubMed

    Luo, Yiyang; Xia, Li; Xu, Zhilin; Yu, Can; Sun, Qizhen; Li, Wei; Huang, Di; Liu, Deming

    2015-02-09

    An optical chaos and hybrid wavelength division multiplexing/time division multiplexing (WDM/TDM) based large capacity quasi-distributed sensing network with real-time fiber fault monitoring is proposed. Chirped fiber Bragg grating (CFBG) intensity demodulation is adopted to improve the dynamic range of the measurements. Compared with the traditional sensing interrogation methods in time, radio frequency and optical wavelength domains, the measurand sensing and the precise locating of the proposed sensing network can be simultaneously interrogated by the relative amplitude change (RAC) and the time delay of the correlation peak in the cross-correlation spectrum. Assisted with the WDM/TDM technology, hundreds of sensing units could be potentially multiplexed in the multiple sensing fiber lines. Based on the proof-of-concept experiment for axial strain measurement with three sensing fiber lines, the strain sensitivity up to 0.14% RAC/με and the precise locating of the sensors are achieved. Significantly, real-time fiber fault monitoring in the three sensing fiber lines is also implemented with a spatial resolution of 2.8 cm.

  16. Terahertz Heterodyne Receiver with an Electron-Heating Mixer and a Heterodyne Based on the Quantum-Cascade Laser

    NASA Astrophysics Data System (ADS)

    Seliverstov, S. V.; Anfertyev, V. A.; Tretyakov, I. V.; Ozheredov, I. A.; Solyankin, P. M.; Revin, L. S.; Vaks, V. L.; Rusova, A. A.; Goltsman, G. N.; Shkurinov, A. P.

    2017-12-01

    We study characteristics of the laboratory prototype of a terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser. The results obtained demonstrate the possibility to use this receiver as a basis for creation of a high-sensitivity terahertz spectrometer, which can be used in many basic and practical applications. A significant advantage of this receiver will be the possibility of placing the mixer and heterodyne in the same cryostat, which will reduce the device dimensions considerably. The obtained experimental results are analyzed, and methods of optimizing the parameters of the receiver are proposed.

  17. High-Precision Distribution of Highly Stable Optical Pulse Trains with 8.8 × 10−19 instability

    PubMed Central

    Ning, B.; Zhang, S. Y.; Hou, D.; Wu, J. T.; Li, Z. B.; Zhao, J. Y.

    2014-01-01

    The high-precision distribution of optical pulse trains via fibre links has had a considerable impact in many fields. In most published work, the accuracy is still fundamentally limited by unavoidable noise sources, such as thermal and shot noise from conventional photodiodes and thermal noise from mixers. Here, we demonstrate a new high-precision timing distribution system that uses a highly precise phase detector to obviously reduce the effect of these limitations. Instead of using photodiodes and microwave mixers, we use several fibre Sagnac-loop-based optical-microwave phase detectors (OM-PDs) to achieve optical-electrical conversion and phase measurements, thereby suppressing the sources of noise and achieving ultra-high accuracy. The results of a distribution experiment using a 10-km fibre link indicate that our system exhibits a residual instability of 2.0 × 10−15 at1 s and8.8 × 10−19 at 40,000 s and an integrated timing jitter as low as 3.8 fs in a bandwidth of 1 Hz to 100 kHz. This low instability and timing jitter make it possible for our system to be used in the distribution of optical-clock signals or in applications that require extremely accurate frequency/time synchronisation. PMID:24870442

  18. Laguerre-Gaussian quasi-modal q-plates from nanostructured glasses

    NASA Astrophysics Data System (ADS)

    Rafayelyan, Mushegh; Gertus, Titas; Brasselet, Etienne

    2017-06-01

    A quasi-modal version of the recently introduced Laguerre-Gaussian modal q-plates [Rafayelyan and Brasselet, Opt. Lett. 42, 1966-1969 (2017)] is proposed and implemented using femtosecond direct laser writing of space-variant nanogratings in the bulk of silica glass. The corresponding design consists of linear azimuthal modulation of the optical axis orientation and polynomial radial modulation of the retardance profile. Experimental demonstration is made for Laguerre-Gaussian modes with azimuthal indices l =(1, 2, 3) and radial index p = 0. Such quasi-modal q-plates overcome previous limitations regarding the robustness of modality against the handedness of the incident circular polarization state.

  19. Noise Temperature and IF Bandwidth of a 530 GHz Heterodyne Receiver Employing a Diffusion-Cooled Superconducting Hot-Electron Mixer

    NASA Technical Reports Server (NTRS)

    Skalare, A.; McGrath, W. R.; Bumble, B.; LeDuc, H. G.; Burke, P. J.; Verheijen, A. A.; Prober, D. E.

    1995-01-01

    We report on the first heterodyne measurements with a diffusion-cooled hot-electron bolometer mixer in the submillimeter wave band, using a waveguide mixer cooled to 2.2 K. The best receiver noise temperature at a local oscillator frequency of 533 GHz and an intermediate frequency of 1.4 GHz was 650 K (double sideband). The 3 dB IF roll-off frequency was around 1.7 to 1.9 GHz, with a weak dependence on the device bias conditions.

  20. Colorectal tissue engineering: A comparative study between porcine small intestinal submucosa (SIS) and chitosan hydrogel patches.

    PubMed

    Denost, Quentin; Adam, Jean-Philippe; Pontallier, Arnaud; Montembault, Alexandra; Bareille, Reine; Siadous, Robin; Delmond, Samantha; Rullier, Eric; David, Laurent; Bordenave, Laurence

    2015-12-01

    Tissue engineering may provide new operative tools for colorectal surgery in elective indications. The aim of this study was to define a suitable bioscaffold for colorectal tissue engineering. We compared 2 bioscaffolds with in vitro and in vivo experiments: porcine small intestinal submucosa (SIS) versus chitosan hydrogel matrix. We assessed nontoxicity of the scaffold in vitro by using human adipose-derived stem cells (hADSC). In vivo, a 1 × 2-cm colonic wall defect was created in 16 rabbits. Animals were divided randomly into 2 groups according to the graft used, SIS or chitosan hydrogel. Graft area was explanted at 4 and 8 weeks. The end points of in vivo experiments were technical feasibility, behavior of the scaffold, in situ putative inflammatory effect, and the quality of tissue regeneration, in particular smooth muscle layer regeneration. In vitro, hADSC attachment and proliferation occurred on both scaffolds without a substantial difference. After proliferation, hADSCs kept their mesenchymal stem cell characteristics. In vivo, one animal died in each group. Eight weeks after implantation, the chitosan scaffold allowed better wound healing compared with the SIS scaffold, with more effective control of inflammatory activity and an integral regeneration of the colonic wall including the smooth muscle cell layer. The outcomes of in vitro experiments did not differ greatly between the 2 groups. Macroscopic and histologic findings, however, revealed better wound healing of the colonic wall in the chitosan group suggesting that the chitosan hydrogel could serve as a better scaffold for colorectal tissue engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Effect of zeta potential on the performance of a ring-type electroosmotic mixer.

    PubMed

    Kim, T A; Koo, K H; Kim, Y J

    2009-12-01

    In order to achieve faster mixing, a new type of electrokinetic mixer with a T-type channel is introduced. The proposed mixer takes two fluids from different inlets and combines them into a single channel. The fluids then enter a mixing chamber with different inner and outer radii. Four microelectrodes are positioned on the outer wall of the mixing chamber. The electric potentials on the four microelectrodes are sinusoidal with respect to time and have various maximum voltages, zeta potentials and frequency values. The working fluid is water and each inlet has a different initial concentration values. The incompressible Navier-Stokes equation is solved in the channel, with a slip boundary condition on the inner and outer walls of the mixing chamber. The convection-diffusion equation is used to describe the concentration of the dissolved substances in the fluid. The pressure, concentration and flow fields in the channel are calculated and the results are graphically depicted for various flow and electric conditions.

  2. Quasi-microscope concept for planetary missions.

    PubMed

    Huck, F O; Arvidson, R E; Burcher, E E; Giat, O; Wall, S D

    1977-09-01

    Viking lander cameras have returned stereo and multispectral views of the Martian surface with a resolution that approaches 2 mm/lp in the near field. A two-orders-of-magnitude increase in resolution could be obtained for collected surface samples by augmenting these cameras with auxiliary optics that would neither impose special camera design requirements nor limit the cameras field of view of the terrain. Quasi-microscope images would provide valuable data on the physical and chemical characteristics of planetary regoliths.

  3. Extinction and persistence of a stochastic nonlinear SIS epidemic model with jumps

    NASA Astrophysics Data System (ADS)

    Ge, Qing; Ji, Guilin; Xu, Jiabo; Fan, Xiaolin

    2016-11-01

    In this paper, Brownian motion and L e ´ vy jumps are introduced to a SIS type epidemic model with nonlinear incidence rate. The dynamical behavior of the considered model is investigated. In order to reveal the extinction and permanence of the disease, two threshold values R˜0 ,R¯0 are showed. We find that if R˜0 < 1, the disease may die out, and when R¯0 > 1, the disease may be persistent. Finally, the numerical simulations are presented to illustrate our mathematical results.

  4. Transforming Mesoscopic (Bio)materials with Holographic Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Grier, David

    2004-03-01

    An optical tweezer uses the forces exerted by a strongly focused beam of light to trap and move objects ranging in size from tens of nanometers to tens of micrometers. Since their introduction in 1986, optical tweezers have become a mainstay of research in biology, physical chemistry, and soft condensed matter physics. This talk highlights recent advances made possible by new classes of optical traps created with computer-designed holograms, a technique we call holographic optical trapping. Holographic optical tweezers can trap hundreds of mesoscopic objects simultaneously and move them independently in three dimensions. Arrays of optical traps can be used to continuously sort heterogeneous samples into selected fractions, a process we call optical fractionation. The same holograms can transform optical traps into optical scalpels and scissors that photochemically transform mesoscopic samples with exquisite spatial resolution. They also can impose arbitrary phase profiles onto the trapping beams, thereby creating optical vortices and related optical machines capable of actuating MEMS devices and driving mesoscale pumps and mixers. These new applications for laser light promise to take optical tweezers out of the laboratory and into real-world applications including manufacturing, diagnostics, and even consumer products. The unprecedented access to the mesoscopic world provided by holographic optical tweezers also offers revolutionary new opportunities for fundamental and applied research.

  5. Combined Numerical/Analytical Perturbation Solutions of the Navier-Stokes Equations for Aerodynamic Ejector/Mixer Nozzle Flows

    NASA Technical Reports Server (NTRS)

    DeChant, Lawrence Justin

    1998-01-01

    In spite of rapid advances in both scalar and parallel computational tools, the large number of variables involved in both design and inverse problems make the use of sophisticated fluid flow models impractical, With this restriction, it is concluded that an important family of methods for mathematical/computational development are reduced or approximate fluid flow models. In this study a combined perturbation/numerical modeling methodology is developed which provides a rigorously derived family of solutions. The mathematical model is computationally more efficient than classical boundary layer but provides important two-dimensional information not available using quasi-1-d approaches. An additional strength of the current methodology is its ability to locally predict static pressure fields in a manner analogous to more sophisticated parabolized Navier Stokes (PNS) formulations. To resolve singular behavior, the model utilizes classical analytical solution techniques. Hence, analytical methods have been combined with efficient numerical methods to yield an efficient hybrid fluid flow model. In particular, the main objective of this research has been to develop a system of analytical and numerical ejector/mixer nozzle models, which require minimal empirical input. A computer code, DREA Differential Reduced Ejector/mixer Analysis has been developed with the ability to run sufficiently fast so that it may be used either as a subroutine or called by an design optimization routine. Models are of direct use to the High Speed Civil Transport Program (a joint government/industry project seeking to develop an economically.viable U.S. commercial supersonic transport vehicle) and are currently being adopted by both NASA and industry. Experimental validation of these models is provided by comparison to results obtained from open literature and Limited Exclusive Right Distribution (LERD) sources, as well as dedicated experiments performed at Texas A&M. These experiments have

  6. Parametric Study of a Mixer/Ejector Nozzle with Mixing Enhancement Devices

    NASA Technical Reports Server (NTRS)

    DalBello, T.; Steffen, C. J., Jr.

    2001-01-01

    A numerical study employing a simplified model of the High Speed Civil Transport mixer/ejector nozzle has been conducted to investigate the effect of tabs (vortex generators) on the mixing process. More complete mixing of the primary and secondary flows within the confined ejector lowers peak exit velocity resulting in reduced jet noise. Tabs were modeled as vortex pairs and inserted into the computational model. The location, size, and number of tabs were varied and its effect on the mixing process is presented here both quantitatively and qualitatively. A baseline case (no tabs) along with six other cases involving two different vortex strengths at three different orientations have been computed and analyzed. The case with the highest vorticity (six vortices representing large tabs) gives the best mixing. It is shown that the influence of the vorticity acts primarily in the forward or middle portions of the duct, significantly alters the flow structure, and promotes some mixing in the lateral direction. Unmixed pockets were found at the top and bottom of the lobe, and more clever placement of tabs improved mixing in the vertical direction. The technique of replacing tabs with vortices shows promise as an efficient tool for quickly optimizing tab placement in lobed mixers.

  7. Quasi-periodic photonic crystal Fabry–Perot optical filter based on Si/SiO2 for visible-laser spectral selectivity

    NASA Astrophysics Data System (ADS)

    Qi, Dong; Wang, Xian; Cheng, Yongzhi; Chen, Fu; Liu, Lei; Gong, Rongzhou

    2018-06-01

    We report on a 1D quasi-periodic photonic crystal Fabry–Perot optical filter Cs(Si/SiO2)3(SiO2/Si)3 for spectral selectivity of visible light and 1.55 µm laser. A material transparency interval of 1.03–2.06 µm makes Si a unique choice of high refractive index material. Owing to the CIE 1931 standard and equal inclination interference, the designed structure can be successfully fabricated with a certain color (brown, khaki, or blue) corresponding to the different Cs physical thickness d and response R(λ). In addition, the peak transmittance T max of the proposed structure can reach as high as 92.56% (Cs  =  20 nm), 90.83% (Cs  =  40 nm), and 88.85% (Cs  =  60 nm) with a relatively narrow full width at half maximum of 4.4, 4.6, and 4.8 nm at 1.55 µm. The as-prepared structure indicates that it is feasible for a photonic crystal Fabry–Perot optical filter to achieve visible-laser (1.55 µm) spectral selectivity.

  8. Examining a participation-focused stroke self-management intervention in a day rehabilitation setting: a quasi-experimental pilot study.

    PubMed

    Lee, Danbi; Fischer, Heidi; Zera, Sarah; Robertson, Rosetta; Hammel, Joy

    2017-12-01

    Background People with stroke often find discharge from rehabilitation distressing because they do not feel prepared to participate in life roles as they want. A self-management approach can facilitate improvement in confidence and ability to manage post-stroke community living and participation after transitioning into the community. Objective To evaluate the feasibility and effectiveness of the Improving Participation After Stroke Self-management program - Rehab version (IPASS-R) in a day rehabilitation setting. Methods We used a mixed-method non-randomized quasi-experimental design. The IPASS-R program is a six-session group-based intervention led by a trained occupational therapist and lay person with stroke. The program uses an efficacy building approach to support aging adults to maintain active participation in home and community activities post-stroke. Primary outcome measures were the Reintegration to Normal Living Index (RNLI), Stroke Impact Scale (SIS), and Participation Strategies Self-Efficacy Scale. Qualitative feedback was collected post-treatment. Results Seventeen participants with stroke (intervention n = 9; control n = 8) were enrolled across two sites. Non-parametric effect sizes calculated using the Wilcoxon Signed-Rank test revealed larger effects on RNLI and SIS outcomes in the intervention group. The Mann-Whitney U test showed significant differences between the two groups' changes in scores on perceived recovery and strength. Conclusions The result shows that IPASS-R has the potential to be integrated into a day rehabilitation setting with a positive impact on community integration and perceived recovery outcomes. Future study is needed to investigate the IPASS-R with a larger sample size and more rigorous study design.

  9. A quasi-crisis

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Mei; Wang, Wen-Xiu; Chen, He-Sheng; Zhang, Kai; Jiang, Yu-Mei; Wang, Xu-Ming; He, Da-Ren

    2002-03-01

    A system concatenated by two area-preserving maps may be addressed as "quasi- dissipative," since such a system can display dissipative behaviors^1. This is due to noninvertibility induced by discontinuity in the system function. In such a system, the image set of the discontinuous border forms a chaotic quasi-attractor. At a critical control parameter value the quasi-attractor suddenly vanishes. The chaotic iterations escape, via a leaking hole, to an emergent period-8 elliptic island. The hole is the intersection of the chaotic quasi-attractor and the period-8 island. The chaotic quasi-attractor thus changes to chaotic quasi-transients. The scaling behavior that drives the quasi-crisis has been investigated numerically. It reads: ∝ (p-p_c)^-ν , where is defined as the averaged length of quasi-transients. The scaling exponent ν=1.66 ± 0.04. The critical parameter value equals p_c=-1.0069799. ^1 J. Wang et al., Phys.Rev.E, 64(2001)026202.

  10. Analysis on a diffusive SIS epidemic model with logistic source

    NASA Astrophysics Data System (ADS)

    Li, Bo; Li, Huicong; Tong, Yachun

    2017-08-01

    In this paper, we are concerned with an SIS epidemic reaction-diffusion model with logistic source in spatially heterogeneous environment. We first discuss some basic properties of the parabolic system, including the uniform upper bound of solutions and global stability of the endemic equilibrium when spatial environment is homogeneous. Our primary focus is to determine the asymptotic profile of endemic equilibria (when exist) if the diffusion (migration) rate of the susceptible or infected population is small or large. Combined with the results of Li et al. (J Differ Equ 262:885-913, 2017) where the case of linear source is studied, our analysis suggests that varying total population enhances persistence of infectious disease.

  11. Biosensing enhancement of dengue virus using microballoon mixers on centrifugal microfluidic platforms.

    PubMed

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Harun, Sulaiman Wadi; Djordjevic, Ivan; Hosseini, Samira; Rothan, Hussin A; Yusof, Rohana; Madou, Marc J

    2015-05-15

    Dengue is the current leading cause of death among children in several Latin American and Asian countries. Due to poverty in areas where the disease is prevalent and the high cost of conventional diagnostic systems, low cost devices are needed to reduce the burden caused by dengue infection. Centrifugal microfluidic platforms are an alternative solution to reduce costs and increase the availability of a rapid diagnostic system. The rate of chemical reactions in such devices often depends on the efficiency of the mixing techniques employed in their microfluidic networks. This paper introduces a micromixer that operates by the expansion and contraction of a microballoon to produce a consistent periodical 3D reciprocating flow. We established that microballoons reduced mixing time of 12 μl liquids from 170 min, for diffusional mixing, to less than 23 s. We have also tested the effect of the microballoon mixers on the detection of the dengue virus. The results indicate that employing a microballoon mixer enhances the detection sensitivity of the dengue virus by nearly one order of magnitude compared to the conventional ELISA method. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Influence of pressure driven secondary flows on the behavior of turbofan forced mixers

    NASA Technical Reports Server (NTRS)

    Anderson, B.; Povinelli, L.; Gerstenmaier, W.

    1980-01-01

    A finite difference procedure was developed to analyze the three dimensional subsonic turbulent flows in turbofan forced mixer nozzles. The method is based on a decomposition of the velocity field into primary and secondary flow components which are determined by solution of the equations governing primary momentum, secondary vorticity, thermal energy, and continuity. Experimentally, a strong secondary flow pattern was identified which is associated with the radial inflow and outflow characteristics of the core and fan streams and forms a very strong vortex system aligned with the radial interface between the core and fan regions. A procedure was developed to generate a similar generic secondary flow pattern in terms of two constants representing the average radial outflow or inflow in the core and fan streams as a percentage of the local streamwise velocity. This description of the initial secondary flow gave excellent agreement with experimental data. By identifying the nature of large scale secondary flow structure and associating it with characteristic mixer nozzle behavior, it is felt that the cause and effect relationship between lobe design and nozzle performance can be understood.

  13. Microfluidic active mixers employing ultra-high aspect-ratio rare-earth magnetic nano-composite polymer artificial cilia

    NASA Astrophysics Data System (ADS)

    Rahbar, Mona; Shannon, Lesley; Gray, Bonnie L.

    2014-02-01

    We present a new micromixer based on highly magnetic, flexible, high aspect-ratio, artificial cilia that are fabricated as individual micromixer elements or in arrays for improved mixing performance. These new cilia enable high efficiency, fast mixing in a microchamber, and are controlled by small electromagnetic fields. The artificial cilia are fabricated using a new micromolding process for nano-composite polymers. Cilia fibers with aspect-ratios as high as 8:0.13 demonstrate the fabrication technique's capability in creating ultra-high aspect-ratio microstructures. Cilia, which are realized in polydimethylsiloxane doped with rare-earth magnetic powder, are magnetized to produce permanent magnetic structures with bidirectional deflection capabilities, making them highly suitable as mixers controlled by electromagnetic fields. Due to the high magnetization level of the polarized nano-composite polymer, we are able to use miniature electromagnets providing relatively small magnetic fields of 1.1 to 7 mT to actuate the cilia microstructures over a very wide motion range. Mixing performances of a single cilium, as well as different arrays of multiple cilia ranging from 2 to 8 per reaction chamber, are characterized and compared with passive diffusion mixing performance. The mixer cilia are actuated at different amplitudes and frequencies to optimize mixing performance. We demonstrate that more than 85% of the total volume of the reaction chamber is fully mixed after 3.5 min using a single cilium mixer at 7 mT compared with only 20% of the total volume mixed with passive diffusion. The time to achieve over 85% mixing is further reduced to 70 s using an array of eight cilia microstructures. The novel microfabrication technique and use of rare-earth permanently-magnetizable nano-composite polymers in mixer applications has not been reported elsewhere by other researchers. We further demonstrate improved mixing over other cilia micromixers as enabled by the high aspect

  14. Fuels planning: science synthesis and integration; environmental consequences fact sheet 11: Smoke Impact Spreadsheet (SIS) model

    Treesearch

    Trent Wickman; Ann Acheson

    2005-01-01

    The Smoke Impact Spreadsheet (SIS) is a simple-to-use planning model for calculating particulate matter (PM) emissions and concentrations downwind of wildland fires. This fact sheet identifies the intended users and uses, required inputs, what the model does and does not do, and tells the user how to obtain the model.

  15. Extraordinary Effects in Quasi-Periodic Gold Nanocavities: Enhanced Transmission and Polarization Control of Cavity Modes.

    PubMed

    Dhama, Rakesh; Caligiuri, Vincenzo; Petti, Lucia; Rashed, Alireza R; Rippa, Massimo; Lento, Raffaella; Termine, Roberto; Caglayan, Humeyra; De Luca, Antonio

    2018-01-23

    Plasmonic quasi-periodic structures are well-known to exhibit several surprising phenomena with respect to their periodic counterparts, due to their long-range order and higher rotational symmetry. Thanks to their specific geometrical arrangement, plasmonic quasi-crystals offer unique possibilities in tailoring the coupling and propagation of surface plasmons through their lattice, a scenario in which a plethora of fascinating phenomena can take place. In this paper we investigate the extraordinary transmission phenomenon occurring in specifically patterned Thue-Morse nanocavities, demonstrating noticeable enhanced transmission, directly revealed by near-field optical experiments, performed by means of a scanning near-field optical microscope (SNOM). SNOM further provides an intuitive picture of confined plasmon modes inside the nanocavities and confirms that localization of plasmon modes is based on size and depth of nanocavities, while cross talk between close cavities via propagating plasmons holds the polarization response of patterned quasi-crystals. Our performed numerical simulations are in good agreement with the experimental results. Thus, the control on cavity size and incident polarization can be used to alter the intensity and spatial properties of confined cavity modes in such structures, which can be exploited in order to design a plasmonic device with customized optical properties and desired functionalities, to be used for several applications in quantum plasmonics.

  16. HYBRID SILICON-ON-SAPPHIRE/SCALED CMOS INTERFERENCE MITIGATION FRONT END BASED ON SIMULTANEOUS NOISE CANCELLATION, ACTIVE-INTERFERENCE CANCELLATION AND N-PATH-MIXER FILTERING

    DTIC Science & Technology

    2017-04-01

    INTERFERENCE-CANCELLATION AND N-PATH-MIXER FILTERING Harish Krishnaswamy, Negar Reiskarimian, and Linxiao Zhang Columbia University APRIL 2017 Final...INTERFERENCE-CANCELLATION AND N- PATH-MIXER FILTERING 5a. CONTRACT NUMBER FA8650-14-1-7414 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61101E/62716E 6...techniques for developing interference mitigation technology (IMT) enabling frequency-agile, reconfigurable filter -less receivers. Wideband noise

  17. Complex modeling of technological processes in pneumatic mixers for production of dry construction mixtures

    NASA Astrophysics Data System (ADS)

    Orekhova, T. N.; Nosov, O. A.; Prokopenko, V. S.; Kachaev, A. E.

    2018-03-01

    The improvement of the design of the pneumatic mixers aimed at the possibility of obtaining homogeneous disperse systems, while the resource and energy saving issues play an important role in the conditions of enterprises that use this type of equipment in their technological chain, is described in the article.

  18. Nb/Al-AlOx/Nb Edge Junctions for Distributed Mixers

    NASA Astrophysics Data System (ADS)

    Amos, R. S.; Lichtenberger, A. W.; Tong, C. E.; Blundell, R.; Pan, S.-K.; Kerr, A. R.

    We have fabricated high quality Nb/Al-oxide/Al/Nb edge junctions using a Nb/SiO/sub 2/ bi-layer film as the base electrode, suitable for use as traveling wave mixers. An edge is cut in the bi-layer with an ion gun at a 45 degree angle using a photoresist mask. The wafer is then cleaned in-situ with a physical ion gun clean followed by the deposition of a thin Al (a1) film, which is then thermally oxidized, an optional second Al (a2) layer, and a Nb counter electrode. It was found that devices with an a2 layer resulted in superior electrical characteristics, though proximity effects increased strongly with a2 thickness. The counter electrode is defined with an SF/sub 6/+N/sub 2/ reactive ion etch, using the Al barrier layer as an etch stop. The Al barrier layer is then either removed with an Al wet etch to isolate the individual devices, or the devices are separated with an anodization process. Various ion gun cleaning conditions have been examined; in addition, both wet and plasma etch bi-layer edge surface pre-treatments were investigated. It was found that edge junctions with large widths (i.e., those more suitable for traveling wave mixers) typically benefited more from such treatments. Initial receiver results at 260 GHz have yielded a DSB noise temperature of 60 K.

  19. 100-GHz Phase Switch/Mixer Containing a Slot-Line Transition

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Wells, Mary; Dawson, Douglas

    2009-01-01

    A circuit that can function as a phase switch, frequency mixer, or frequency multiplier operates over a broad frequency range in the vicinity of 100 GHz. Among the most notable features of this circuit is a grounded uniplanar transition (in effect, a balun) between a slot line and one of two coplanar waveguides (CPWs). The design of this circuit is well suited to integration of the circuit into a microwave monolithic integrated circuit (MMIC) package. One CPW is located at the input end and one at the output end of the top side of a substrate on which the circuit is fabricated (see Figure 1). The input CPW feeds the input signal to antiparallel flip-chip Schottky diodes connected to the edges of the slot line. Phase switching is effected by the combination of (1) the abrupt transition from the input CPW to the slot line and (2) CPW ground tuning effected by switching of the bias on the diodes. Grounding of the slot metal to the bottom metal gives rise to a frequency cutoff in the slot. This cutoff is valuable for separating different frequency components when the circuit is used as a mixer or multiplier. Proceeding along the slot line toward the output end, one encounters the aforementioned transition, which couples the slot line to the output CPW. Impedance tuning of the transition is accomplished by use of a high-impedance section immediately before the transition.

  20. The fastest spreader in SIS epidemics on networks

    NASA Astrophysics Data System (ADS)

    He, Zhidong; Van Mieghem, Piet

    2018-05-01

    Identifying the fastest spreaders in epidemics on a network helps to ensure an efficient spreading. By ranking the average spreading time for different spreaders, we show that the fastest spreader may change with the effective infection rate of a SIS epidemic process, which means that the time-dependent influence of a node is usually strongly coupled to the dynamic process and the underlying network. With increasing effective infection rate, we illustrate that the fastest spreader changes from the node with the largest degree to the node with the shortest flooding time. (The flooding time is the minimum time needed to reach all other nodes if the process is reduced to a flooding process.) Furthermore, by taking the local topology around the spreader and the average flooding time into account, we propose the spreading efficiency as a metric to quantify the efficiency of a spreader and identify the fastest spreader, which is adaptive to different infection rates in general networks.

  1. The spreading time in SIS epidemics on networks

    NASA Astrophysics Data System (ADS)

    He, Zhidong; Van Mieghem, Piet

    2018-03-01

    In a Susceptible-Infected-Susceptible (SIS) process, we investigate the spreading time Tm, which is the time when the number of infected nodes in the metastable state is first reached, starting from the outbreak of the epidemics. We observe that the spreading time Tm resembles a lognormal-like distribution, though with different deep tails, both for the Markovian and the non-Markovian infection process, which implies that the spreading time can be very long with a relatively high probability. In addition, we show that a stronger virus, with a higher effective infection rate τ or an earlier timing of the infection attempts, does not always lead to a shorter average spreading time E [Tm ] . We numerically demonstrate that the average spreading time E [Tm ] in the complete graph and the star graph scales logarithmically as a function of the network size N for a fixed fraction of infected nodes in the metastable state.

  2. In vivo time-gated diffuse correlation spectroscopy at quasi-null source-detector separation.

    PubMed

    Pagliazzi, M; Sekar, S Konugolu Venkata; Di Sieno, L; Colombo, L; Durduran, T; Contini, D; Torricelli, A; Pifferi, A; Mora, A Dalla

    2018-06-01

    We demonstrate time domain diffuse correlation spectroscopy at quasi-null source-detector separation by using a fast time-gated single-photon avalanche diode without the need of time-tagging electronics. This approach allows for increased photon collection, simplified real-time instrumentation, and reduced probe dimensions. Depth discriminating, quasi-null distance measurement of blood flow in a human subject is presented. We envision the miniaturization and integration of matrices of optical sensors of increased spatial resolution and the enhancement of the contrast of local blood flow changes.

  3. Using lead chalcogenide nanocrystals as spin mixers: a perspective on near-infrared-to-visible upconversion.

    PubMed

    Nienhaus, Lea; Wu, Mengfei; Bulović, Vladimir; Baldo, Marc A; Bawendi, Moungi G

    2018-03-01

    The process of upconversion leads to emission of photons higher in energy than the incident photons. Near-infrared-to-visible upconversion, in particular, shows promise in sub-bandgap sensitization of silicon and other optoelectronic materials, resulting in potential applications ranging from photovoltaics that exceed the Shockley-Queisser limit to infrared imaging. A feasible mechanism for near-infrared-to-visible upconversion is triplet-triplet annihilation (TTA) sensitized by colloidal nanocrystals (NCs). Here, the long lifetime of spin-triplet excitons in the organic materials that undergo TTA makes upconversion possible under incoherent excitation at relatively low photon fluxes. Since this process relies on optically inactive triplet states, semiconductor NCs are utilized as efficient spin mixers, absorbing the incident light and sensitizing the triplet states of the TTA material. The state-of-the-art system uses rubrene with a triplet energy of 1.14 eV as the TTA medium, and thus allows upconversion of light with photon energies above ∼1.1 eV. In this perspective, we review the field of lead sulfide (PbS) NC-sensitized near-infrared-to-visible upconversion, discuss solution-based upconversion, and highlight progress made on solid-state upconversion devices.

  4. Optical Pattern Recognition With Self-Amplification

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1994-01-01

    In optical pattern recognition system with self-amplification, no reference beam used in addressing mode. Polarization of laser beam and orientation of photorefractive crystal chosen to maximize photorefractive effect. Intensity of recognition signal is orders of magnitude greater than other optical correlators. Apparatus regarded as real-time or quasi-real-time optical pattern recognizer with memory and reprogrammability.

  5. Structure-dependent localized surface plasmon resonance characteristics and surface enhanced Raman scattering performances of quasi-periodic nanoarrays: Measurements and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Zhou, Jun, E-mail: zhoujun@nbu.edu.cn; Rippa, Massimo

    A set of periodic and quasi-periodic Au nanoarrays with different morphologies have been fabricated by using electron beam lithography technique, and their optical properties have been examined experimentally and analyzed theoretically by scanning near-field optical microscope and finite element method, respectively. Results present that the localized surface plasmon resonance of the as-prepared Au nanoarrays exhibit the structure-depended characteristics. Comparing with the periodic nanoarrays, the quasi-periodic ones demonstrate stronger electric field enhancement, especially for Thue-Morse nanoarray. Meanwhile, the surface enhanced Raman scattering (SERS) spectra of 4-mercaptobenzoic acid molecular labeled nanoarrays show that the quasi-periodic nanoarrays exhibit distinct SERS enhancement, for example,more » a higher enhancement factor of ∼10{sup 7} is obtained for the Thue-Morse nanoarray consisted of square pillars of 100 nm size. Therefore, it is significant to optimally design and fabricate the chip-scale quasi-periodic nanoarrays with high localized electric field enhancement for SERS applications in biosensing field.« less

  6. Optical beam forming techniques for phased array antennas

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao; Chandler, C.

    1993-01-01

    Conventional phased array antennas using waveguide or coax for signal distribution are impractical for large scale implementation on satellites or spacecraft because they exhibit prohibitively large system size, heavy weight, high attenuation loss, limited bandwidth, sensitivity to electromagnetic interference (EMI) temperature drifts and phase instability. However, optical beam forming systems are smaller, lighter, and more flexible. Three optical beam forming techniques are identified as applicable to large spaceborne phased array antennas. They are (1) the optical fiber replacement of conventional RF phased array distribution and control components, (2) spatial beam forming, and (3) optical beam splitting with integrated quasi-optical components. The optical fiber replacement and the spatial beam forming approaches were pursued by many organizations. Two new optical beam forming architectures are presented. Both architectures involve monolithic integration of the antenna radiating elements with quasi-optical grid detector arrays. The advantages of the grid detector array in the optical process are the higher power handling capability and the dynamic range. One architecture involves a modified version of the original spatial beam forming approach. The basic difference is the spatial light modulator (SLM) device for controlling the aperture field distribution. The original liquid crystal light valve SLM is replaced by an optical shuffling SLM, which was demonstrated for the 'smart pixel' technology. The advantages are the capability of generating the agile beams of a phased array antenna and to provide simultaneous transmit and receive functions. The second architecture considered is the optical beam splitting approach. This architecture involves an alternative amplitude control for each antenna element with an optical beam power divider comprised of mirrors and beam splitters. It also implements the quasi-optical grid phase shifter for phase control and grid

  7. A Novel Split-Waveguide Mount Design For MM and SubMM wave frequency multipliers and Harmonic Mixers

    NASA Technical Reports Server (NTRS)

    Raisanen, Anti V.; Choudhury, Debabani; Dengler, Robert J.; Oswald, John E.; Siegel, Peter H.

    1993-01-01

    A novel split-waveguide mount for millimeter and submillimeter wave frequency multipliers and harmonic mixers is presented. It consists of only two pieces, block halves, which are mirror images of each other.

  8. An Improved Solution for Integrated Array Optics in Quasi-Optical mm and Submm Receivers: the Hybrid Antenna

    NASA Technical Reports Server (NTRS)

    Buttgenbach, Thomas H.

    1993-01-01

    The hybrid antenna discussed here is defined as a dielectric lens-antenna as a special case of an extended hemi-spherical dielectric lens that is operated in the diffraction limited regime. It is a modified version of the planar antenna on a lens scheme developed by Rutledge. The dielectric lens-antenna is fed by a planar-structure antenna, which is mounted on the flat side of the dielectric lens-antenna using it as a substrate, and the combination is termed a hybrid antenna. Beam pattern and aperture efficiency measurements were made at millimeter and submillimeter wavelengths as a function of extension of the hemi- spherical lens and different lens sizes. An optimum extension distance is found experimentally and numerically for which excellent beam patterns and simultaneously high aperture efficiencies can be achieved. At 115 GHz the aperture efficiency was measured to be (76 4 +/- 6) % for a diffraction limited beam with sidelobes below -17 dB. Results of a single hybrid antenna with an integrated Superconductor-Insulator-Superconductor (SIS) detector and a broad-band matching structure at submillimeter wavelengths are presented. The hybrid antenna is diffraction limited, space efficient in an array due to its high aperture efficiency, and is easily mass produced, thus being well suited for focal plane heterodyne receiver arrays.

  9. Giant optical activity in quasi-2D planar nanostructures

    NASA Astrophysics Data System (ADS)

    Kuwata-Gonokami, Makoto; Saito, Nobuyoshi; Ino, Yusuke; Konishi, Kuniaki; Kauranen, Martti; Jefimovs, Konstantins; Vallius, Tuomas; Turunen, Jari; Svirko, Yuri P.

    2006-01-01

    Planar chirality can lead to interesting polarization effects whose interpretation has invoked possible violation of reciprocity and time reversality. We show that a quasi-two-dimensional array consisting of gold nanoparticles with no symmetry plane and having sub-wavelength periodicity and thickness exhibits giant specific rotation (~10 4 °/mm) at normal incidence. The rotation is the same for light incident on the front and back sides of the sample. Such reciprocity manifests three-dimensionality of the structure arising from the asymmetry of light-plasmon coupling at the air-metal and substrate-metal interfaces of the structure. The structures thus enable nanoscale polarization control but violate no symmetry principle.

  10. Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks.

    PubMed

    Arabaci, Murat; Djordjevic, Ivan B; Saunders, Ross; Marcoccia, Roberto M

    2010-02-01

    In order to achieve high-speed transmission over optical transport networks (OTNs) and maximize its throughput, we propose using a rate-adaptive polarization-multiplexed coded multilevel modulation with coherent detection based on component non-binary quasi-cyclic (QC) LDPC codes. Compared to prior-art bit-interleaved LDPC-coded modulation (BI-LDPC-CM) scheme, the proposed non-binary LDPC-coded modulation (NB-LDPC-CM) scheme not only reduces latency due to symbol- instead of bit-level processing but also provides either impressive reduction in computational complexity or striking improvements in coding gain depending on the constellation size. As the paper presents, compared to its prior-art binary counterpart, the proposed NB-LDPC-CM scheme addresses the needs of future OTNs, which are achieving the target BER performance and providing maximum possible throughput both over the entire lifetime of the OTN, better.

  11. Mechanism of Properties of Noble ZnS-SiO2 Protection Layer for Phase Change Optical Disk Media

    NASA Astrophysics Data System (ADS)

    Tsu, David V.; Ohta, Takeo

    2006-08-01

    A ZnS-SiO2 composite dielectric is widely used in the optical stack designs of rewritable optical recording media as an index-matching medium and as a protection layer for the high-index chalcogenide (compound with sixth group element of S, Se, Te) phase change material used in these media. The addition of Si and O to ZnS is primarily intended to stabilize against crystalline grain growth of ZnS with high numbers of direct overwriting cycles. In this study, we carry out infrared (IR) spectroscopy to clarify the role of Si in this stabilization process. IR spectroscopy is performed on sputter as-deposited and annealed ZnS-SiO2 dielectric protection layers. We find that Si exists not in the SiO2 oxide phase but as [SiS4-nOn] tetrahedrons. Moreover, zinc and sulfur do not exist as ZnS, but in highly chemically disordered ZnS:O crystallites. The highly directional and rigid covalent bonds in the [SiS4-nOn] tetrahedrons are key to establishing thermal stability against the coalescence of ZnS. The importance of the Si-S bond also extends into a more thorough understanding of the low thermal conductivity of the ZnS-SiO2 material. The consideration of elastic implications allows us to predict an average phonon velocity less than 50% compared to that in SiO2. With this, we predict a thermal conductivity of 0.0067 W cm-1 K-1 for this material, which is in complete agreement with measured values.

  12. Generation of microfluidic flow using an optically assembled and magnetically driven microrotor

    NASA Astrophysics Data System (ADS)

    Köhler, J.; Ghadiri, R.; Ksouri, S. I.; Guo, Q.; Gurevich, E. L.; Ostendorf, A.

    2014-12-01

    The key components in microfluidic systems are micropumps, valves and mixers. Depending on the chosen technology, the realization of these microsystems often requires rotational and translational control of subcomponents. The manufacturing of such active components as well as the driving principle are still challenging tasks. A promising all-optical approach could be the combination of laser direct writing and actuation based on optical forces. However, when higher actuation velocities are required, optical driving might be too slow. Hence, a novel approach based on optical assembling of microfluidic structures and subsequent magnetic actuation is proposed. By applying the optical assembly of microspherical building blocks as the manufacturing method and magnetic actuation, a microrotor was successfully fabricated and tested within a microfluidic channel. The resulting fluid flow was characterized by introducing an optically levitated measuring probe particle. Finally, a freely moving tracer particle visualizes the generated flow. The tracer particle analysis shows average velocities of 0.4-0.5 µm s-1 achieved with the presented technology.

  13. A 1.5 THz hot-electron bolometer mixer operated by a planar diode based local oscillator

    NASA Technical Reports Server (NTRS)

    Tong, C. Y. E.; Meledin, D.; Blundell, R.; Erickson, N.; Mehdi, I.; Goltsman, G.

    2003-01-01

    We have developed a 1.5 THz superconducting NbN Hot-Electron Bolometer mixer. It is oprated by an all-solid-state Local Oscillator comprising of a cascade of 4 planar doublers following an MMIC based W-band power amplifier.

  14. QUASI-STAR JETS AS UNIDENTIFIED GAMMA-RAY SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czerny, Bozena; Sikora, Marek; Janiuk, Agnieszka

    2012-08-10

    Gamma-ray catalogs contain a considerable amount of unidentified sources. Many of these are located out of the Galactic plane and therefore may have extragalactic origin. Here we assume that the formation of massive black holes in galactic nuclei proceeds through a quasi-star stage and consider the possibility of jet production by such objects. Those jets would be the sources of collimated synchrotron and Compton emission, extending from radio to gamma rays. The expected lifetimes of quasi-stars are of the order of million of years while the jet luminosities, somewhat smaller than that of quasar jets, are sufficient to account formore » the unidentified gamma-ray sources. The jet emission dominates over the thermal emission of a quasi-star in all energy bands, except when the jet is not directed toward an observer. The predicted synchrotron emission peaks in the IR band, with the flux close to the limits of the available IR all sky surveys. The ratio of the gamma-ray flux to the IR flux is found to be very large ({approx}60), much larger than in BL Lac objects but reached by some radio-loud quasars. On the other hand, radio-loud quasars show broad emission lines while no such lines are expected from quasi-stars. Therefore, the differentiation between various scenarios accounting for the unidentified gamma-ray sources will be possible at the basis of the photometry and spectroscopy of the IR/optical counterparts.« less

  15. Quasi-kernel polynomials and convergence results for quasi-minimal residual iterations

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.

    1992-01-01

    Recently, Freund and Nachtigal have proposed a novel polynominal-based iteration, the quasi-minimal residual algorithm (QMR), for solving general nonsingular non-Hermitian linear systems. Motivated by the QMR method, we have introduced the general concept of quasi-kernel polynomials, and we have shown that the QMR algorithm is based on a particular instance of quasi-kernel polynomials. In this paper, we continue our study of quasi-kernel polynomials. In particular, we derive bounds for the norms of quasi-kernel polynomials. These results are then applied to obtain convergence theorems both for the QMR method and for a transpose-free variant of QMR, the TFQMR algorithm.

  16. General interference law for nonstationary, separable optical fields.

    PubMed

    Manea, Vladimir

    2009-09-01

    An approach to the theory of partial coherence for nonstationary optical fields is presented. Starting with a spectral representation, a favorable decomposition of the optical signals is discussed that supports a natural extension of the mathematical formalism. The coherence functions are redefined, but still as temporal correlation functions, allowing the obtaining of a more general form of the interference law for partially coherent optical signals. The general theory is applied in some relevant particular cases of nonstationary interference, namely, with quasi-monochromatic beams of different frequencies and with phase-modulated quasi-monochromatic beams of similar frequency spectra. All the results of the general treatment are reducible to the ones given in the literature for the case of stationary interference.

  17. Design rules for quasi-linear nonlinear optical structures

    NASA Astrophysics Data System (ADS)

    Lytel, Richard; Mossman, Sean M.; Kuzyk, Mark G.

    2015-09-01

    The maximization of the intrinsic optical nonlinearities of quantum structures for ultrafast applications requires a spectrum scaling as the square of the energy eigenstate number or faster. This is a necessary condition for an intrinsic response approaching the fundamental limits. A second condition is a design generating eigenstates whose ground and lowest excited state probability densities are spatially separated to produce large differences in dipole moments while maintaining a reasonable spatial overlap to produce large off-diagonal transition moments. A structure whose design meets both conditions will necessarily have large first or second hyperpolarizabilities. These two conditions are fundamental heuristics for the design of any nonlinear optical structure.

  18. On the optical properties of carbon nanotubes. Part I. A general formula for the dynamical optical conductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasmussen, Morten Grud, E-mail: morteng@math.aau.dk; Ricaud, Benjamin, E-mail: benjamin.ricaud@epfl.ch; Savoie, Baptiste, E-mail: baptiste.savoie@gmail.com

    2016-02-15

    This paper is the first one in a series of two articles in which we revisit the optical properties of single-walled carbon nanotubes (SWNTs). Produced by rolling up a graphene sheet, SWNTs owe their intriguing properties to their cylindrical quasi-one-dimensional (quasi-1D) structure (the ratio length/radius is experimentally of order of 10{sup 3}). We model SWNT by circular cylinders of small diameters on the surface of which the conduction electron gas is confined by the electric field generated by the fixed carbon ions. The pair-interaction potential considered is the 3D Coulomb potential restricted to the cylinder. To reflect the quasi-1D structure,more » we introduce a 1D effective many-body Hamiltonian which is the starting-point of our analysis. To investigate the optical properties, we consider a perturbation by a uniform time-dependent electric field modeling an incident light beam along the longitudinal direction. By using Kubo’s method, we derive within the linear response theory an asymptotic expansion in the low-temperature regime for the dynamical optical conductivity at fixed density of particles. The leading term only involves the eigenvalues and associated eigenfunctions of the (unperturbed) 1D effective many-body Hamiltonian and allows us to account for the sharp peaks observed in the optical absorption spectrum of SWNT.« less

  19. Ultra-High Throughput Synthesis of Nanoparticles with Homogeneous Size Distribution Using a Coaxial Turbulent Jet Mixer

    PubMed Central

    2015-01-01

    High-throughput production of nanoparticles (NPs) with controlled quality is critical for their clinical translation into effective nanomedicines for diagnostics and therapeutics. Here we report a simple and versatile coaxial turbulent jet mixer that can synthesize a variety of NPs at high throughput up to 3 kg/d, while maintaining the advantages of homogeneity, reproducibility, and tunability that are normally accessible only in specialized microscale mixing devices. The device fabrication does not require specialized machining and is easy to operate. As one example, we show reproducible, high-throughput formulation of siRNA-polyelectrolyte polyplex NPs that exhibit effective gene knockdown but exhibit significant dependence on batch size when formulated using conventional methods. The coaxial turbulent jet mixer can accelerate the development of nanomedicines by providing a robust and versatile platform for preparation of NPs at throughputs suitable for in vivo studies, clinical trials, and industrial-scale production. PMID:24824296

  20. Switchable genetic oscillator operating in quasi-stable mode

    PubMed Central

    Strelkowa, Natalja; Barahona, Mauricio

    2010-01-01

    Ring topologies of repressing genes have qualitatively different long-term dynamics if the number of genes is odd (they oscillate) or even (they exhibit bistability). However, these attractors may not fully explain the observed behaviour in transient and stochastic environments such as the cell. We show here that even repressilators possess quasi-stable, travelling wave periodic solutions that are reachable, long-lived and robust to parameter changes. These solutions underlie the sustained oscillations observed in even rings in the stochastic regime, even if these circuits are expected to behave as switches. The existence of such solutions can also be exploited for control purposes: operation of the system around the quasi-stable orbit allows us to turn on and off the oscillations reliably and on demand. We illustrate these ideas with a simple protocol based on optical interference that can induce oscillations robustly both in the stochastic and deterministic regimes. PMID:20097721

  1. Optimization of end-pumped, actively Q-switched quasi-III-level lasers.

    PubMed

    Jabczynski, Jan K; Gorajek, Lukasz; Kwiatkowski, Jacek; Kaskow, Mateusz; Zendzian, Waldemar

    2011-08-15

    The new model of end-pumped quasi-III-level laser considering transient pumping processes, ground-state-depletion and up-conversion effects was developed. The model consists of two parts: pumping stage and Q-switched part, which can be separated in a case of active Q-switching regime. For pumping stage the semi-analytical model was developed, enabling the calculations for final occupation of upper laser level for given pump power and duration, spatial profile of pump beam, length and dopant level of gain medium. For quasi-stationary inversion, the optimization procedure of Q-switching regime based on Lagrange multiplier technique was developed. The new approach for optimization of CW regime of quasi-three-level lasers was developed to optimize the Q-switched lasers operating with high repetition rates. Both methods of optimizations enable calculation of optimal absorbance of gain medium and output losses for given pump rate. © 2011 Optical Society of America

  2. Optical testing and verification methods for the James Webb Space Telescope Integrated Science Instrument Module element

    NASA Astrophysics Data System (ADS)

    Antonille, Scott R.; Miskey, Cherie L.; Ohl, Raymond G.; Rohrbach, Scott O.; Aronstein, David L.; Bartoszyk, Andrew E.; Bowers, Charles W.; Cofie, Emmanuel; Collins, Nicholas R.; Comber, Brian J.; Eichhorn, William L.; Glasse, Alistair C.; Gracey, Renee; Hartig, George F.; Howard, Joseph M.; Kelly, Douglas M.; Kimble, Randy A.; Kirk, Jeffrey R.; Kubalak, David A.; Landsman, Wayne B.; Lindler, Don J.; Malumuth, Eliot M.; Maszkiewicz, Michael; Rieke, Marcia J.; Rowlands, Neil; Sabatke, Derek S.; Smith, Corbett T.; Smith, J. Scott; Sullivan, Joseph F.; Telfer, Randal C.; Te Plate, Maurice; Vila, M. Begoña.; Warner, Gerry D.; Wright, David; Wright, Raymond H.; Zhou, Julia; Zielinski, Thomas P.

    2016-09-01

    NASA's James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM), that contains four science instruments (SI) and the Fine Guidance Sensor (FGS). The SIs are mounted to a composite metering structure. The SIs and FGS were integrated to the ISIM structure and optically tested at NASA's Goddard Space Flight Center using the Optical Telescope Element SIMulator (OSIM). OSIM is a full-field, cryogenic JWST telescope simulator. SI performance, including alignment and wavefront error, was evaluated using OSIM. We describe test and analysis methods for optical performance verification of the ISIM Element, with an emphasis on the processes used to plan and execute the test. The complexity of ISIM and OSIM drove us to develop a software tool for test planning that allows for configuration control of observations, implementation of associated scripts, and management of hardware and software limits and constraints, as well as tools for rapid data evaluation, and flexible re-planning in response to the unexpected. As examples of our test and analysis approach, we discuss how factors such as the ground test thermal environment are compensated in alignment. We describe how these innovative methods for test planning and execution and post-test analysis were instrumental in the verification program for the ISIM element, with enough information to allow the reader to consider these innovations and lessons learned in this successful effort in their future testing for other programs.

  3. Hydrodynamics of CNT dispersion in high shear dispersion mixers

    NASA Astrophysics Data System (ADS)

    Park, Young Min; Lee, Dong Hyun; Hwang, Wook Ryol; Lee, Sang Bok; Jung, Seung-Il

    2014-11-01

    In this work, we investigate the carbon nanotube (CNT) fragmentation mechanism and dispersion in high shear homogenizers as a plausible dispersion technique, correlating with device geometries and processing conditions, for mass production of CNT-aluminum composites for automobile industries. A CNT dispersion model has been established in a turbulent flow regime and an experimental method in characterizing the critical yield stress of CNT flocs are presented. Considering CNT dispersion in ethanol as a model system, we tested two different geometries of high shear mixers — blade-stirrer type and rotor-stator type homogenizers — and reported the particle size distributions in time and the comparison has been made with the modeling approach and partly with the computational results.

  4. Quasi-optical theory of relativistic surface-wave oscillators with one-dimensional and two-dimensional periodic planar structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, N. S.; Zaslavsky, V. Yu.; Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950

    2013-11-15

    Within the framework of a quasi-optical approach, we develop 2D and 3D self-consistent theory of relativistic surface-wave oscillators. Presenting the radiation field as a sum of two counter-propagating wavebeams coupled on a shallow corrugated surface, we describe formation of an evanescent slow wave. Dispersion characteristics of the evanescent wave following from this method are in good compliance with those found from the direct cst simulations. Considering excitation of the slow wave by a sheet electron beam, we simulate linear and nonlinear stages of interaction, which allows us to determine oscillation threshold conditions, electron efficiency, and output coupling. The transition frommore » the model of surface-wave oscillator operating in the π-mode regime to the canonical model of relativistic backward wave oscillator is considered. We also described a modified scheme of planar relativistic surface-wave oscillators exploiting two-dimensional periodic gratings. Additional transverse propagating waves emerging on these gratings synchronize the emission from a wide sheet rectilinear electron beam allowing realization of a Cherenkov millimeter-wave oscillators with subgigawatt output power level.« less

  5. Altitude engine test of a turbofan exhaust gas mixer to conserve fuel

    NASA Technical Reports Server (NTRS)

    Cullom, R. R.; Johnsen, R. L.

    1977-01-01

    A comparison of the specific fuel consumption was made with and without an internal mixer installed in a low bypass ratio, confluent flow turbofan engine. Tests were conducted at several Mach numbers and altitudes for core to fan stream total temperature ratios of 2.0 and 2.5 and mixing lengths of L/D = 0.95 and 1.74. For these test conditions, the specific fuel consumption improvement varied from 2.5 to 4.0 percent.

  6. SisPorto 4.0 - computer analysis following the 2015 FIGO Guidelines for intrapartum fetal monitoring.

    PubMed

    Ayres-de-Campos, Diogo; Rei, Mariana; Nunes, Inês; Sousa, Paulo; Bernardes, João

    2017-01-01

    SisPorto 4.0 is the most recent version of a program for the computer analysis of cardiotocographic (CTG) signals and ST events, which has been adapted to the 2015 International Federation of Gynaecology and Obstetrics (FIGO) guidelines for intrapartum foetal monitoring. This paper provides a detailed description of the analysis performed by the system, including the signal-processing algorithms involved in identification of basic CTG features and the resulting real-time alerts.

  7. Improving the Efficiency of 3-D Hydrogeological Mixers: Dilution Enhancement Via Coupled Engineering-Induced Transient Flows and Spatial Heterogeneity

    NASA Astrophysics Data System (ADS)

    Di Dato, Mariaines; de Barros, Felipe P. J.; Fiori, Aldo; Bellin, Alberto

    2018-03-01

    Natural attenuation and in situ oxidation are commonly considered as low-cost alternatives to ex situ remediation. The efficiency of such remediation techniques is hindered by difficulties in obtaining good dilution and mixing of the contaminant, in particular if the plume deformation is physically constrained by an array of wells, which serves as a containment system. In that case, dilution may be enhanced by inducing an engineered sequence of injections and extractions from such pumping system, which also works as a hydraulic barrier. This way, the aquifer acts as a natural mixer, in a manner similar to the industrialized engineered mixers. Improving the efficiency of hydrogeological mixers is a challenging task, owing to the need to use a 3-D setup while relieving the computational burden. Analytical solutions, though approximated, are a suitable and efficient tool to seek the optimum solution among all possible flow configurations. Here we develop a novel physically based model to demonstrate how the combined spatiotemporal fluctuations of the water fluxes control solute trajectories and residence time distributions and therefore, the effectiveness of contaminant plume dilution and mixing. Our results show how external forcing configurations are capable of inducing distinct time-varying groundwater flow patterns which will yield different solute dilution rates.

  8. Modeling and optimization of actively Q-switched Nd-doped quasi-three-level laser

    NASA Astrophysics Data System (ADS)

    Yan, Renpeng; Yu, Xin; Li, Xudong; Chen, Deying; Gao, Jing

    2013-09-01

    The energy transfer upconversion and the ground state absorption are considered in solving the rate equations for an active Q-switched quasi-three-level laser. The dependence of output pulse characters on the laser parameters is investigated by solving the rate equations. The influence of the energy transfer upconversion on the pulsed laser performance is illustrated and discussed. By this model, the optimal parameters could be achieved for arbitrary quasi-three-level Q-switched lasers. An acousto-optical Q-switched Nd:YAG 946 nm laser is constructed and the reliability of the theoretical model is demonstrated.

  9. A quasi-intermittency

    NASA Astrophysics Data System (ADS)

    He, Da-Ren; Wang, Xu-Ming; Wang, Ying-Mei; Wang, Wen-Xiu; Chen, He-Sheng

    2002-03-01

    A kind of discontinuous and noninvertible area-preserving maps can display behaviors as a dissipative one, so it may be addressed as a "quasi-dissipative system"^1. In a quasi-dissipative system the disappearance of some elliptic periodic orbits and the elliptic islands around them via a collision with the discontinuous border of the system function can be observed. A chaotic quasi-attractor dominates behavior of the system after the disappearance of the elliptic periodic orbit and a sequence of transition elliptic periodic orbits. When the chaotic quasi-attractor just appears, the chaotic time sequence shows a random intersperse between laminar and turbulence phases. All these are very similar to the properties of type V intermittency happened in a dissipative system. So, we may call the phenomenon as a "type V quasi-intermittency". However, there can be only some remnants of the last disappeared transition elliptic island instead of its "ghost", therefore type V quasi-intermittency does not obey the characteristic scaling laws of type V intermittency. ^1 J. Wang et al., Phys.Rev.E, 64(2001)026202.

  10. An efficient way of high-contrast, quasi-3D cellular imaging: off-axis illumination.

    PubMed

    Hostounský, Zdenĕk; Pelc, Radek

    2006-07-31

    An imaging system enabling a convenient visualisation of cells and other small objects is presented. It represents an adaptation of the optical microscope condenser, accommodating a built-in edge (relief) diaphragm brought close to the condenser iris diaphragm and enabling high-contrast pseudo-relief (quasi-3D) imaging. The device broadens the family of available apparatus based on the off-axis (or anaxial, asymmetric, inclined, oblique, schlieren-type, sideband) illumination. The simplicity of the design makes the condenser a user-friendly, dedicated device delivering high-contrast quasi-3D images of phase objects. Those are nearly invisible under the ordinary (axial) illumination. The phase contrast microscopy commonly used in visualisation of phase objects does not deliver the quasi-3D effect and introduces a disturbing 'halo' effect around the edges. The performance of the device presented here is demonstrated on living cells and tissue replicas. High-contrast quasi-3D images of cell-free preparations of biological origin (paper fibres and microcrystals) are shown as well.

  11. Quasi-Bessel beams from asymmetric and astigmatic illumination sources.

    PubMed

    Müller, Angelina; Wapler, Matthias C; Schwarz, Ulrich T; Reisacher, Markus; Holc, Katarzyna; Ambacher, Oliver; Wallrabe, Ulrike

    2016-07-25

    We study the spatial intensity distribution and the self-reconstruction of quasi-Bessel beams produced from refractive axicon lenses with edge emitting laser diodes as asymmetric and astigmatic illumination sources. Comparing these to a symmetric mono-mode fiber source, we find that the asymmetry results in a transition of a quasi-Bessel beam into a bow-tie shaped pattern and eventually to a line shaped profile at a larger distance along the optical axis. Furthermore, we analytically estimate and discuss the effects of astigmatism, substrate modes and non-perfect axicons. We find a good agreement between experiment, simulation and analytic considerations. Results include the derivation of a maximal axicon angle related to astigmatism of the illuminating beam, impact of laser diode beam profile imperfections like substrate modes and a longitudinal oscillation of the core intensity and radius caused by a rounded axicon tip.

  12. PARC Analysis of the NASA/GE 2D NRA Mixer/Ejector Nozzle

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.

    1999-01-01

    Interest in developing a new generation supersonic transport has increased in the past several years. Current projections indicate this aircraft would cruise at approximately Mach 2.4, have a range of 5000 nautical miles and carry at least 250 passengers. A large market for such an aircraft will exist in the next century due to a predicted doubling of the demand for long range air transportation by the end of the century and the growing influence of the Pacific Rim nations. Such a proposed aircraft could more than halve the flying time from Los Angeles to Tokyo. However, before a new economically feasible supersonic transport can be built, many key technologies must be developed. Among these technologies is noise suppression. Propulsion systems for a supersonic transport using current technology would exceed acceptable noise levels. All new aircraft must satisfy FAR 36 Stage III noise regulations. The largest area of concern is the noise generated during takeoff. A concerted effort under NASA's High Speed Research (HSR) program has begun to address the problem of noise suppression. One of the most promising concepts being studied in the area of noise suppression is the mixer/ejector nozzle. This study analyzes a typical noise suppressing mixer ejector nozzle at take off conditions, using a Full Navier-Stokes (FNS) computational fluid dynamics (CFD) code.

  13. The Study of 0.34 THz Monolithically Integrated Fourth Subharmonic Mixer Using Planar Schottky Barrier Diode

    NASA Astrophysics Data System (ADS)

    Tong, Xiaodong; Li, Qian; An, Ning; Wang, Wenjie; Deng, Xiaodong; Zhang, Liang; Liu, Haitao; Zeng, Jianping; Li, Zhiqiang; Tang, Hailing; Xiong, Yong-Zhong

    2015-11-01

    A planar Schottky barrier diode with the designed Schottky contact area of approximately 3 μm2 is developed on gallium arsenide (GaAs) material. The measurements of the developed planar Schottky barrier diode indicate that the zero-biased junction capacitance Cj0 is 11.0 fF, the parasitic series resistance RS is 3.0 Ω, and the cut off frequency fT is 4.8 THz. A monolithically integrated fourth subharmonic mixer with this diode operating at the radio frequency (RF) signal frequency of 0.34 THz with the chip area of 0.6 mm2 is implemented. The intermediate frequency (IF) bandwidth is from DC to 40 GHz. The local oscillator (LO) bandwidth is 37 GHz from 60 to 97 GHz. The RF bandwidth is determined by the bandwidth of the on chip antenna, which is 28 GHz from 322 to 350 GHz. The measurements of the mixer demonstrated a conversion loss of approximately 51 dB.

  14. Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection.

    PubMed

    Cao, Hui; Zhou, Yicang; Ma, Zhien

    2013-01-01

    A discrete SIS epidemic model with the bilinear incidence depending on the new infection is formulated and studied. The condition for the global stability of the disease free equilibrium is obtained. The existence of the endemic equilibrium and its stability are investigated. More attention is paid to the existence of the saddle-node bifurcation, the flip bifurcation, and the Hopf bifurcation. Sufficient conditions for those bifurcations have been obtained. Numerical simulations are conducted to demonstrate our theoretical results and the complexity of the model.

  15. MULTIWAVELENGTH EVIDENCE FOR QUASI-PERIODIC MODULATION IN THE GAMMA-RAY BLAZAR PG 1553+113

    DOE PAGES

    Ackerman, M.

    2015-11-10

    We report for the first time a γ-ray and multiwavelength nearly-periodic oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope (LAT) we have discovered an apparent quasi-periodicity in the γ-ray flux (E > 100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance of the 2.18±0.08 year-period γ-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the OVRO, Tuorla, KAIT, and CSS monitoring programs and Swift UVOT. The optical cycle appearing in ~ 10 years of data has a similar period, while the 15 GHz oscillationmore » is less regular than seen in the other bands. Further long-term multi-wavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity.« less

  16. Holographic optical tweezers for object manipulations at an air-liquid surface.

    PubMed

    Jesacher, Alexander; Fürhapter, Severin; Maurer, Christian; Bernet, Stefan; Ritsch-Marte, Monika

    2006-06-26

    We investigate holographic optical tweezers manipulating micro-beads at a suspended air-liquid interface. Axial confinement of the particles in the two-dimensional interface is maintained by the interplay between surface tension and gravity. Therefore, optical trapping of the micro-beads is possible even with a long distance air objective. Efficient micro-circulation of the liquid can be induced by fast rotating beads, driven by the orbital angular momentum transfer of incident Laguerre-Gaussian (doughnut) laser modes. Our setup allows various ways of creating a tailored dynamic flow of particles and liquid within the surface. We demonstrate examples of surface manipulations like efficient vortex pumps and mixers, interactive particle flow steering by arrays of vortex pumps, the feasibility of achieving a "clocked" traffic of micro beads, and size-selective guiding of beads along optical "conveyor belts".

  17. Turbofan forced mixer-nozzle internal flowfield. Volume 2: Computational fluid dynamic predictions

    NASA Technical Reports Server (NTRS)

    Werle, M. J.; Vasta, V. N.

    1982-01-01

    A general program was conducted to develop and assess a computational method for predicting the flow properties in a turbofan forced mixed duct. The detail assessment of the resulting computer code is presented. It was found that the code provided excellent predictions of the kinematics of the mixing process throughout the entire length of the mixer nozzle. The thermal mixing process between the hot core and cold fan flows was found to be well represented in the low speed portion of the flowfield.

  18. Dodecagonal photonic quasi-crystal fiber with high birefringence.

    PubMed

    Cai, Weicheng; Liu, Exian; Feng, Bo; Xiao, Wei; Liu, Hongfei; Wang, Ziming; Wang, Shuo; Liang, Taiyuan; Liu, Jianqiang; Liu, Jianjun

    2016-10-01

    A photonic quasi-crystal fiber (PQF) with high birefringence is proposed. A dodecagonal Stampfli quasi-periodic lattice of air holes constitutes the cladding of the PQF. The PQF maintains the properties of high birefringence and single-mode operation regime in a wide wavelength range from 1.2 to 2.0 μm by optimizing the size of the air holes around the core of the PQF. A birefringence with 3.86×10-2 can be obtained at 1.31 and 1.55 μm optical telecommunication windows. The birefringence is of the order of 10-2, which is two orders of magnitude larger than that of the conventional polarization-maintaining fibers and hardly affected by the incident wavelength. The proposed PQF also maintains a high nonlinear coefficient and low confinement loss. Our structure and simulation results are expected to provide a valuable reference and basic data to relative fabrication and experiments.

  19. Silicon Carbide Mixers Demonstrated to Improve the Interference Immunity of Radio-Based Aircraft Avionics

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1998-01-01

    Concern over the interference of stray radiofrequency (RF) emissions with key aircraft avionics is evident during takeoff and landing of every commercial flight when the flight attendant requests that all portable electronics be switched off. The operation of key radio-based avionics (such as glide-slope and localizer approach instruments) depends on the ability of front-end RF receivers to detect and amplify desired information signals while rejecting interference from undesired RF sources both inside and outside the aircraft. Incidents where key navigation and approach avionics malfunction because of RF interference clearly represent an increasing threat to flight safety as the radio spectrum becomes more crowded. In an initial feasibility experiment, the U.S. Army Research Laboratory and the NASA Lewis Research Center recently demonstrated the strategic use of silicon carbide (SiC) semiconductor components to significantly reduce the susceptibility of an RF receiver circuit to undesired RF interference. A pair of silicon carbide mixer diodes successfully reduced RF interference (intermodulation distortion) in a prototype receiver circuit by a factor of 10 (20 dB) in comparison to a pair of commercial silicon-based mixer diodes.

  20. High-Q/V Monolithic Diamond Microdisks Fabricated with Quasi-isotropic Etching.

    PubMed

    Khanaliloo, Behzad; Mitchell, Matthew; Hryciw, Aaron C; Barclay, Paul E

    2015-08-12

    Optical microcavities enhance light-matter interactions and are essential for many experiments in solid state quantum optics, optomechanics, and nonlinear optics. Single crystal diamond microcavities are particularly sought after for applications involving diamond quantum emitters, such as nitrogen vacancy centers, and for experiments that benefit from diamond's excellent optical and mechanical properties. Light-matter coupling rates in experiments involving microcavities typically scale with Q/V, where Q and V are the microcavity quality-factor and mode-volume, respectively. Here we demonstrate that microdisk whispering gallery mode cavities with high Q/V can be fabricated directly from bulk single crystal diamond. By using a quasi-isotropic oxygen plasma to etch along diamond crystal planes and undercut passivated diamond structures, we create monolithic diamond microdisks. Fiber taper based measurements show that these devices support TE- and TM-like optical modes with Q > 1.1 × 10(5) and V < 11(λ/n) (3) at a wavelength of 1.5 μm.