Science.gov

Sample records for quasicrystalline al-based alloys

  1. Ancient Metal Mirror Alloy Revisited: Quasicrystalline Nanoparticles Observed

    NASA Astrophysics Data System (ADS)

    Sekhar, J. A.; Mantri, A. S.; Yamjala, S.; Saha, Sabyasachi; Balamuralikrishnan, R.; Rao, P. Rama

    2015-12-01

    This article presents, for the first time, evidence of nanocrystalline structure, through direct transmission electron microscopy (TEM) observations, in a Cu-32 wt.% Sn alloy that has been made by an age-old, uniquely crafted casting process. This alloy has been used as a metal mirror for centuries. The TEM images also reveal five-sided projections of nano-particles. The convergent beam nano-diffraction patterns obtained from the nano-particles point to the nano-phase being quasicrystalline, a feature that has never before been reported for a copper alloy, although there have been reports of the presence of icosahedral `clusters' within large unit cell intermetallic phases. This observation has been substantiated by x-ray diffraction, wherein the observed peaks could be indexed to an icosahedral quasi-crystalline phase. The mirror alloy casting has been valued for its high hardness and high reflectance properties, both of which result from its unique internal microstructure that include nano-grains as well as quasi-crystallinity. We further postulate that this microstructure is a consequence of the raw materials used and the manufacturing process, including the choice of mold material. While the alloy consists primarily of copper and tin, impurity elements such as zinc, iron, sulfur, aluminum and nickel are also present, in individual amounts not exceeding one wt.%. It is believed that these trace impurities could have influenced the microstructure and, consequently, the properties of the metal mirror alloy.

  2. Surface alloys as interfacial layers between quasicrystalline and periodic materials

    NASA Astrophysics Data System (ADS)

    Duguet, T.; Ledieu, J.; Dubois, J. M.; Fournée, V.

    2008-08-01

    Low adhesion with normal metals is an intrinsic property of many quasicrystalline surfaces. Although this property could be useful to develop low friction or non-stick coatings, it is also responsible for the poor adhesion of quasicrystalline coatings on metal substrates. Here we investigate the possibility of using complex metallic surface alloys as interface layers to enhance the adhesion between quasicrystals and simple metal substrates. We first review some examples where such complex phases are formed as an overlayer. Then we study the formation of such surface alloys in a controlled way by annealing a thin film deposited on a quasicrystalline substrate. We demonstrate that a coherent buffer layer consisting of the γ-Al4Cu9 approximant can be grown between pure Al and the i-Al-Cu-Fe quasicrystal. The interfacial relationships between the different layers are defined by [111]_{\\mathrm {Al}}\\parallel [110]_{\\mathrm {Al_4Cu_9}}\\parallel [5\\mathrm {f}]_{i\\mbox {-}\\mathrm {Al\\mbox {--}Cu \\mbox {--}Fe}} .

  3. Alloy with metallic glass and quasi-crystalline properties

    DOEpatents

    Xing, Li-Qian; Hufnagel, Todd C.; Ramesh, Kaliat T.

    2004-02-17

    An alloy is described that is capable of forming a metallic glass at moderate cooling rates and exhibits large plastic flow at ambient temperature. Preferably, the alloy has a composition of (Zr, Hf).sub.a Ta.sub.b Ti.sub.c Cu.sub.d Ni.sub.e Al.sub.f, where the composition ranges (in atomic percent) are 45.ltoreq.a.ltoreq.70, 3.ltoreq.b.ltoreq.7.5, 0.ltoreq.c.ltoreq.4, 3.ltoreq.b+c.ltoreq.10, 10.ltoreq.d.ltoreq.30, 0.ltoreq.e.ltoreq.20, 10.ltoreq.d+e.ltoreq.35, and 5.ltoreq.f.ltoreq.15. The alloy may be cast into a bulk solid with disordered atomic-scale structure, i.e., a metallic glass, by a variety of techniques including copper mold die casting and planar flow casting. The as-cast amorphous solid has good ductility while retaining all of the characteristic features of known metallic glasses, including a distinct glass transition, a supercooled liquid region, and an absence of long-range atomic order. The alloy may be used to form a composite structure including quasi-crystals embedded in an amorphous matrix. Such a composite quasi-crystalline structure has much higher mechanical strength than a crystalline structure.

  4. Fabric cutting application of FeAl-based alloys

    SciTech Connect

    Sikka, V.K.; Blue, C.A.; Sklad, S.P.; Deevi, S.C.; Shih, H.R.

    1998-11-01

    Four intermetallic-based alloys were evaluated for cutting blade applications. These alloys included Fe{sub 3}Al-based (FAS-II and FA-129), FeAl-based (PM-60), and Ni{sub 3}Al-based (IC-50). These alloys were of interest because of their much higher work-hardening rates than the conventionally used carbon and stainless steels. The FeAl-based PM-60 alloy was of further interest because of its hardening possibility through retention of vacancies. The vacancy retention treatment is much simpler than the heat treatments used for hardening of steel blades. Blades of four intermetallic alloys and commercially used M2 tool steel blades were evaluated under identical conditions to cut two-ply heavy paper. Comparative results under identical conditions revealed that the FeAl-based alloy PM-60 outperformed the other intermetallic alloys and was equal to or somewhat better than the commercially used M2 tool steel.

  5. Effects in Mg-Zn-based alloys strengthened by quasicrystalline phase

    NASA Astrophysics Data System (ADS)

    Vlček, M.; Čížek, J.; Lukáč, F.; Melikhova, O.; Hruška, P.; Procházka, I.; Vlach, M.; Stulíková, I.; Smola, B.; Jäger, A.

    2016-01-01

    Magnesium Mg-based alloys are promising lightweight structural materials for automotive, aerospace and biomedical applications. Recently Mg-Zn-Y system attracted a great attention due to a stable icosahedral phase (I-phase) with quasicrystalline structure which is formed in these alloys. Positron lifetime spectroscopy and in situ synchrotron X-ray diffraction were used to study thermal stability of I-phase and precipitation effects in Mg-Zn-Y and Mg- Zn-Al alloys. All alloys containing quasicrystalline I-phase exhibit misfit defects characterized by positron lifetime of ∼ 300 ps. These defects are associated with the interfaces between I- phase particles and Mg matrix. The quasicrystalline I-phase particles were found to be stable up to temperatures as high as ∼ 370°C. The W-phase is more stable and melts at ∼ 420°C. Concentration of defects associated with I-phase decreases after annealing at temperatures above ∼ 300°C.

  6. Surface Reactivity of Quasicrystalline Materials

    NASA Astrophysics Data System (ADS)

    Jenks, Cynthia J.

    1997-03-01

    A fundamental knowledge and understanding of the reactivity of quasicrystalline materials is of great interest because of certain practical properties these materials possess, namely low coefficients of friction and oxidation resistance. A recent "hierarchical cluster" model proposed by Janot(C. Janot Phys. Rev. B 56 (1996) 181.) predicts that quasicrystal surfaces should be intrinsically inert and rough, and is useful in explaining their interesting properties. Surface structure and preparation may play a role in the applicability of this model. In this talk, we examine these factors and present experimental measurements of the surface reactivity of some Al-based quasicrystalline materials under ultra-high vacuum conditions (less than 2 x 10-10 Torr). To gain an understanding of what properties are unique to quasicrystals, we make comparisons with the surface reactivity of crystalline alloys of similar composition and pure, crystalline aluminum. note number.

  7. Synthesis of porous Cu from Al-Cu-Co decagonal quasicrystalline alloys

    NASA Astrophysics Data System (ADS)

    Kalai Vani, V.; Kwon, O. J.; Hong, S. M.; Fleury, E.

    2011-07-01

    The formation of a porous Cu structure from cast Al-Cu-Co decagonal quasicrystalline alloys has been studied using a selective corrosion technique. Two alkaline solutions were selected based on the electrochemical properties of the constituent elements. Selective corrosion of Al and Co was achieved by chemical immersion of the cast Al-Cu-Co alloy in both 5 M NaOH and 0.5 M Na2CO3 solutions; values for BET surface-to-weight ratio of up to 30 m2/g could be reached. Microstructural analyses indicated that the architecture of the resulting porous structures was composed of a needle-type phase, remaining from the decagonal phase, in addition to Cu and Cu-Co phases.

  8. Weldability of Fe3Al based iron aluminide alloys

    NASA Astrophysics Data System (ADS)

    Zacharia, T.; Maziasz, P. J.; David, S. A.; McKamey, C. G.

    An investigation was carried out to determine the weldability of Fe3Al type alloys. Sigmajig tests of a commercial heat of FA-129 alloy indicate that hot-cracking may not be a problem for this alloy. Additionally, several new Fe3Al based iron aluminides were evaluated for weldability. The preliminary results are encouraging and suggest that some of these alloys have comparable or better weldability than FA-129 based iron-aluminides. For the first time, successful welds, without hot or cold cracking, were made on 13 mm (0.5 in.) thick plates from a commercial heat of FA-129 using the proper choice of welding conditions and parameters.

  9. Melting and casting of FeAl-based cast alloy

    SciTech Connect

    Sikka, V.K.; Wilkening, D.; Liebetrau, J.; Mackey, B.

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  10. Electron-ion plasma modification of Al-based alloys

    NASA Astrophysics Data System (ADS)

    Ivanov, Yurii; Rygina, Mariya; Petrikova, Elizaveta; Krysina, Olga; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina

    2016-01-01

    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN-AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film-substrate system were estimated by numerical simulation in a wide range of electron energy densities (5-30 J/cm2) and pulse durations (50-200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young's modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu-Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN-AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ˜14 GPa.

  11. Ductile-phase toughening and fatigue crack growth in Nb{sub 3}Al base alloys

    SciTech Connect

    Gnanamoorthy, R.; Hanada, S.; Kamata, K.

    1996-03-15

    Niobium aluminide (Nb{sub 3}Al) base intermetallic compounds exhibit good high-temperature strength and creep properties and potential for applications above 1,200 C provided their inadequately low room-temperature ductility, fracture toughness and fatigue crack growth behavior are improved. Addition of tantalum to Nb{sub 3}Al base materials improves the high-temperature strength significantly and seems to be a potential alloying element. In the present study, room temperature fracture toughness and fatigue crack growth behavior of tantalum alloyed Nb{sub 3}Al base alloy prepared by ingot metallurgy are investigated.

  12. Formation of the icosahedral quasicrystalline phase in a rapidly solidified Al{sub 52}Cu{sub 25.5}Fe{sub 12.5}Si{sub 1} alloy

    SciTech Connect

    Wang Yan; Zhang Zhonghua . E-mail: zh_zhang@sdu.edu.cn; Geng Haoran; Yang Zhongxi

    2006-04-15

    In the present work, the effect of wheel speed (quenching rate) on the formation of the quasicrystalline phase in a rapidly solidified Al{sub 52}Cu{sub 25.5}Fe{sub 12.5}Si{sub 1} alloy has been investigated using X-ray diffraction (XRD), differential thermal analysis (DTA), differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). The results show that rapid solidification has no effect on the phase constitution of the Al{sub 52}Cu{sub 25.5}Fe{sub 12.5}Si{sub 1} alloy. The addition of Si decreases the stability of the quasicrystalline phase in the conventionally cast Al{sub 52}Cu{sub 25.5}Fe{sub 12.5}Si{sub 1} alloy. The thermal stability of the quasicrystalline phase in the melt-spun alloy depends upon the quenching rate. Moderate-rate rapid solidification can improve the thermal stability of the quasicrystalline phase in the melt-spun alloy. Higher quenching rate instigates the transformation of the quasicrystalline phase into the cubic approximant phase and decreases the stability of the quasicrystalline phase. Furthermore, the transformation temperature decreases with increasing Si addition into the Al{sub (62-x)}Cu{sub 25.5}Fe{sub 12.5}Si{sub x}.

  13. Ni3Al-based alloys for die and tool application

    DOEpatents

    Liu, Chain T.; Bloom, Everett E.

    2001-01-01

    A novel Ni.sub.3 Al-based alloy exhibits strengths and hardness in excess of the standard base alloy IC-221M at temperatures of up to about 1000.degree. C. The alloy is useful in tool and die applications requiring such temperatures, and for structural elements in engineering systems exposed to such temperatures.

  14. DSC sample preparation for Al-based alloys

    SciTech Connect

    Starink, M.J.; Hobson, A.J.; Gregson, P.J.

    1996-06-01

    Differential Scanning Calorimetry (DSC) is a useful technique for the study of phase transformations and has been widely applied to study precipitation in aluminium alloys. In the present work the effect of sample preparation during DSC heating of a monolithic 8090 (Al-Cu-Mg-Li-Zr) alloy and an 8090 MMC is investigated. The 8090 alloy system seems especially suited for such a study since the main precipitation reactions which occur in this alloy (GPB-zone, {delta}{prime}(Al{sub 3}Li) and S{prime}(Al{sub 2}CuMg) formation) cover a wide range of different types of precipitation reactions. DSC experiments were performed with a Shimadzu DSC-50 employing a nitrogen gas flow using a heating rate of 10 C/min. DSC curves were corrected for the baseline of the DSC and for heat capacity of the alloys following a procedure outlined elsewhere. Hence, the presented DSC curves represent heat flows due to reactions only.

  15. Investigations of the Electronic Properties and Surface Structures of Aluminium-Rich Quasicrystalline Alloys

    SciTech Connect

    Jason A. Barrow

    2003-08-05

    equations. Transport behavior is described in terms of charge carriers and the mean-free time between carrier collisions. It is concluded that the mean-free time is much longer in the periodic direction than in the aperiodic direction. This difference produces the observed anisotropy in thermal transport. The third study presented a detailed analysis of the reversible, sputter-induced phase transformation which occurs on the 5-fold surface of an icosahedral Al-Cu-Fe quasicrystal. Reflection high-energy electron diffraction (RHEED), x-ray photoemission spectroscopy (XPS), and ultra-violet photoemission spectroscopy (UPS) data were collected as a function of annealing temperature and were used to probe surface structure, surface composition, and electronic structure, respectively. The composition and structure of the sputtered surface are consistent with a transformation to the {beta}-Al-Cu-Fe cubic structure, and shows a sharp metallic cut-off in the spectral intensity of the electronic structure at the Fermi edge. Upon annealing the surface reverts to a quasicrystalline composition and structure. This transformation has been correlated with a reduction in the spectral intensity of the electronic structure at the Fermi level. This data clearly demonstrates that the observed reduction is intrinsic to a quasicrystalline surface. It is concluded that this is due to the opening of a pseudo-gap in the electronic density of states as the surface reverts from {beta}-Al-Cu-Fe to quasicrystalline.

  16. Plasma sprayed ceramic thermal barrier coating for NiAl-based intermetallic alloys

    NASA Technical Reports Server (NTRS)

    Miller, Robert A. (Inventor); Doychak, Joseph (Inventor)

    1994-01-01

    A thermal barrier coating system consists of two layers of a zirconia-yttria ceramic. The first layer is applied by low pressure plasma spraying. The second layer is applied by conventional atmospheric pressure plasma spraying. This facilitates the attachment of a durable thermally insulating ceramic coating directly to the surface of a highly oxidation resistant NiAl-based intermetallic alloy after the alloy has been preoxidized to promote the formation of a desirable Al2O3 scale.

  17. Progress in the Modeling of NiAl-Based Alloys Using the BFS Method

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, John; Garg, Anita

    1997-01-01

    The BFS method has been applied to the study of NiAl-based materials to assess the effect of alloying additions on structure. Ternary, quaternary and even pent-alloys based on Ni-rich NiAl with additions of Ti, Cr and Cu were studied. Two approaches were used, Monte Carlo simulations to determine ground state structures and analytical calculations of high symmetry configurations which give physical insight into preferred bonding. Site occupancy energetics for ternary and the more complicated case of quaternary additions were determined, and solubility limits and precipitate formation with corresponding information concerning structure and lattice parameter were also 'observed' computationally. The method was also applied to determine the composition of alloy surfaces and interfaces. Overall, the results demonstrate that the BFS method for alloys is a powerful tool for alloy design and with its simplicity and obvious advantages can be used to complement any experimental alloy design program.

  18. Development and commercialization status of Fe{sub 3}Al-based intermetallic alloys

    SciTech Connect

    Sikka, V.K.; Viswanathan, S.; McKamey, C.G.

    1993-06-01

    The Fe{sub 3}Al-based intermetallic alloys offer unique benefits of excellent oxidation and sulfidation resistance, limited by poor room-temperature (RT) ductility and low high-temperature strength. Recent understanding of environmental effects on RT ductility of these alloys has led to progress toward taking commercial advantage of Fe{sub 3}Al-based materials. Cause of low ductility appears to be related to hydrogen formed from reaction with moisture. The environmental effect has been reduced in these intermetallic alloys by two methods. The first deals with producing a more hydrogen-resistant microstructure through thermomechanical processing, and the second dealed with compositional modification. The alloys showing reduced environmental effect have been melted and processed by many different methods. Laboratory and commercial heats have been characterized. Tests have been conducted in both air and controlled environments to quantify environmental effects on these properties. These materials were also tested for aqueous corrosion and resistance to stress corrosion cracking. Oxidation and sulfidation data were generated and effects of minor alloying elements on were also investigated. Several applications have been identified for the newly developed iron aluminides. Commercialization status of these alloys is described.

  19. Structure and magnetism of quasicrystalline and crystalline Al1-xMnx alloys

    NASA Astrophysics Data System (ADS)

    Youngquist, S. E.; Miceli, P. F.; Wiesler, D. G.; Zabel, H.; Fraser, H. L.

    1986-08-01

    We have performed x-ray structural studies of quenched and annealed Al1-xMnx alloys in the range of 0.14<=x<=0.20. The quenched samples exhibit a coexistence of Al with an icosahedral phase, the latter having a maximum volume fraction at x=0.20. Magnetic susceptibility measurements for x=0.14 and 0.20 show a dramatically enhanced magnetic moment in the icosahedral phase (p=0.747 and 1.27, respectively) as compared to the annealed samples (p=0 and 0.617, respectively). The increase of magnetic moment per Mn ion with increasing Mn concentration indicates a range of stoichiometries and microstructures over which the icosahedral phase can exist.

  20. Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs

    SciTech Connect

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

    1995-08-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10, and iron = 83.71. The cast ingots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot- worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  1. The observations of faulted dipoles in deformed TiAl-based alloys

    SciTech Connect

    Gao, Y.; Zhu, J.; Cai, Q.G.

    1995-08-01

    The deformation structure of polycrystalline TiAl-based alloys after uniaxial compression at temperature range from 77K to 1073K has been examined using transmission electron microscopy. It was observed that a large number of faulted dipoles are commonly present in deformation structure of the alloys compressed at low temperature 77K and room temperature. The nature of the faulted dipoles has been determined to be intrinsic stacking fault lying on {l_brace}111{r_brace} plane, bounded by 1/6 {l_brace}112] partial dislocations. A possible mechanism for the formation of the faulted dipoles was suggested. The results of the statistic observation shows that faulted dipoles in deformed Ti-48Al and Ti-(47-48)Al-X (X = V, Cr, Mn) alloys are less than those in single phase Ti-52Al alloy, and the number of the faulted dipoles decreases with increasing deformation temperature. The effect of the faulted dipoles on plastic deformation of the alloy was discussed.

  2. Mechanical behavior and phase stability of NiAl-based shape memory alloys

    SciTech Connect

    George, E.P.; Liu, C.T.; Horton, J.A.; Kunsmann, H.; King, T.; Kao, M.

    1993-12-31

    NiAl-based shape memory alloys (SMAs) can be made ductile by alloying with 100--300 wppm B and 14--20 at.% Fe. The addition of Fe has the undesirable effect that it lowers the temperature (A{sub p}) of the martensite {yields} austenite phase transformation. Fortunately, however, A can be raised by lowering the ``equivalent`` amount of Al in the alloy. In this way a high A{sub p} temperature of {approximately}190 C has been obtained without sacrificing ductility. Furthermore, a recoverable strain of 0.7% has been obtained in a Ni-Al-Fe alloy with A{sub p} temperature of {approximately}140 C. Iron additions do not suppress the aging-induced embrittlement that occurs in NiAl alloys at 300--500 C as a result of Ni{sub 5}Al{sub 3} precipitation. Manganese additions (up to 10 at.%) have the effect of lowering A{sub p}, degrading hot workability, and decreasing room-temperature ductility.

  3. Use of Ni{sub 3}Al-based alloys for walking-beam furnaces

    SciTech Connect

    Sikka, V.K.; Dailey, R.E.

    1996-02-01

    This report summarizes the joint work performed by the Oak Ridge National Laboratory (ORNL) and Rapid Technologies, Inc. (the CRADA partner) to determine the potential of Ni{sub 3}Al-based alloys for use in gas-fired walking-beam furnace components. The report identifies tasks to be performed as part of the CRADA and the organization responsible for each task. The work required under each task was completed and is described. The CRADA accomplished the primary goal of utilizing cast Ni{sub 3}Al-based alloy as rails and other components for walking-beam furnaces manufactured by Rapid Technologies. Rapid Technologies, a small business, is implementing on a commercial basis a highly energy efficient rapid-heating technology for use in the metal manufacturing industry. The rapid heating process allows energy savings of up to 95%. Although goals of all of the tasks of this CRADA were met, there is still a need for a material to work in the rapid heating furnaces at temperatures in the range of 1,350 to 1,400 C. Future effort should be focused in fulfilling this need.

  4. Deformation behavior of NiAl-based alloys containing iron, cobalt, and hafnium

    NASA Technical Reports Server (NTRS)

    Pank, D. R.; Koss, D. A.; Nathal, M. V.

    1989-01-01

    The effects of alloying additions on the mechanical properties of the B2 intermetallic NiAl have been investigated in both the melt-spun ribbon and consolidated, bulk form. The study is based on a matrix of NiAl-based alloys with up to 20 at. pct Co and Fe additions and with reduced Al levels in the range of 30-40 at. pct. Characterization of the melt-spun ribbon by optical and scanning electron microscopy indicates a range of microstructures, including single-phase beta, gamma-prime necklace phase surrounding either martensitic or beta grains, and a mixture of equiaxed martensitic and gamma-prime grains. Bend ductility is present in melt-spun and annealed ribbons exhibiting the gamma-prime necklace structure and in a single-phase beta material containing 20 at. pct Fe. The analysis of compressive flow behavior on consolidated, bulk specimens indicates that the single-phase beta alloys exhibit a continuous decrease in yield stress with increasing temperature and profuse microcracking at grain boundaries. In contrast, multiphase (gamma-prime + either martensite or beta) alloys tend to display a peak in flow stress between 600 and 800 K, with little or no signs of microcracking. In general, heat treatments which convert the martensitic grains to beta + gamma-prime result in improved strength at temperatures above 600 K and better resistance to crack initiation.

  5. Kinetics of Static Strain Aging in Polycrystalline NiAl-based Alloys

    NASA Technical Reports Server (NTRS)

    Weaver, M. L.; Kaufman, M. J.; Noebe, R. D.

    1996-01-01

    The kinetics of yield point return have been studied in two NiAl-based alloys as a function of aging time at temperatures between 300 and 700 K. The results indicate that the upper yield stress increment, Delta sigma(sub u) (i.e., stress difference between the upper yield point and the final flow stress achieved during prestraining), in conventional purity (CP-NiAl) and in high purity carbon-doped (NiAl-C) material first increased with a t(exp 2/3) relationship before reaching a plateau. This behavior suggests that a Cottrell locking mechanism is the cause for yield points in NiAl. In addition, positive y-axis intercepts were observed in plots of Delta sigma(sub u) versus t(exp 2/3) suggesting the operation of a Snoek mechanism. Analysis according to the Cottrell Bilby model of atmosphere formation around dislocations yields an activation energy for yield point return in the range 70 to 76 kJ/mol which is comparable to the activation energy for diffusion of interstitial impurities in bcc metals. It is, thus, concluded that the kinetics of static strain aging in NiAl are controlled by the locking of dislocations by Cottrell atmospheres of carbon atoms around dislocations.

  6. Corrosion Performance Based on the Microstructural Array of Al-Based Monotectic Alloys in a NaCl Solution

    NASA Astrophysics Data System (ADS)

    Osório, Wislei R.; Freitas, Emmanuelle S.; Garcia, Amauri

    2014-01-01

    The aim of this study is to compare the electrochemical behavior of three monotectic Al-based alloys (Al-Pb, Al-Bi, and Al-In) in a 0.5 M NaCl solution at room temperature. Two distinct microstructure arrays were experimentally obtained for each Al monotectic alloy by using a water-cooled unidirectional solidification system. Results of electrochemical impedance spectroscopy (EIS) plots, potentiodynamic polarization curves, and impedance parameters obtained by an equivalent circuit analysis are discussed. It was found that the Al-Pb alloy has lower corrosion current density, higher polarization resistance, lower relative weight, and cost than the corresponding values of Al-Bi and Al-In alloys. It is also shown that the electrochemical behavior of the three alloys examined are intimately correlated with the scale of the corresponding microstructure, with smaller droplets and spacings (i.e., cell and interphase spacings) being associated with a decrease in the corrosion resistance.

  7. Structure and hot hardness of RuAl-based alloys produced by reactive sintering using hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Povarova, K. B.; Morozov, A. E.; Padalko, A. G.; Drozdov, A. A.

    2008-04-01

    The structure and hot hardness (at temperatures up to 1100°C) of RuAl-based powder alloys with 1 3 at % Ni, Mo, Re, or Ru are studied. The alloys are produced by the reactive sintering of cold-compacted bars and subsequent threefold isostatic pressing with intermediate annealing at 1500°C performed after the first hot isostatic pressing. The samples have a residual pore content of 1 2.5 vol % and are characterized by a micrononuniform distribution of base and alloying elements. The alloys with refractory metals, such as Re, Mo, or Ru, are found to have the maximum hardness at all temperatures under study. At low temperatures, the effect is more substantial; the hardness of the Re-containing alloys exceeds that of the other alloys by a factor of 1.3 3.6. The increase in the hardness related to solid-solution alloying becomes more substantial owing to the microinhomogeneity of the sintered powder alloys and weakens because of microporosity. Recommendations that allow the uniformity of the distribution of the base and alloying elements to be increased are given.

  8. Effect of Y2O3 content on the oxidation behavior of Fe-Cr-Al-based ODS alloys

    NASA Astrophysics Data System (ADS)

    Ul-Hamid, Anwar

    2003-02-01

    A study was conducted to investigate the cyclic oxidation behavior of two oxide dispersion strengthened (ODS) Fe-Cr-Al based alloys containing 0.17 wt.% and 0.7 wt.% Y2O3. The alloys were oxidized in air for 100 h at 1200°C based on a 24 h cycle period. X-ray diffraction (XRD) and analytical transmission electron microscopy (TEM) were used to characterize the structure, morphology, and composition of the oxide scales. Both alloys formed highly adherent and continuous layers of α-Al2O3 exhibiting a morphology indicative of inward scale growth. The role of Y2O3 was to promote adherence by segregating to the grain boundaries within the oxide. Concurrently, Y2O3 generated micro-porosity resulting in a scale of comparatively higher thickness in the alloy with 0.7 wt.% Y2O3.

  9. Processing and operating experience of Ni{sub 3}Al-based intermetallic alloy IC-221M

    SciTech Connect

    Sikka, V.K.; Santella, M.L.; Orth, J.E.

    1997-05-01

    The cast Ni{sub 3}Al-based intermetallic alloy IC-221M is the most advanced in its commercial applications. This paper presents progress made for this alloy in the areas of: (1) composition optimization; (2) melting process development; (3) casting process; (4) mechanical properties; (5) welding process, weld repairs, and thermal aging response; and (6) applications. This paper also reviews the operating experience with several of the components. The projection for future growth in the applications of nickel aluminide is also discussed.

  10. Oxide Dispersion Strengthened Fe(sub 3)Al-Based Alloy Tubes: Application Specific Development for the Power Generation Industry

    SciTech Connect

    Kad, B.K.

    1999-07-01

    A detailed and comprehensive research and development methodology is being prescribed to produce Oxide Dispersion Strengthened (ODS)-Fe3Al thin walled tubes, using powder extrusion methodologies, for eventual use at operating temperatures of up to 1100C in the power generation industry. A particular 'in service application' anomaly of Fe3Al-based alloys is that the environmental resistance is maintained up to 1200C, well beyond where such alloys retain sufficient mechanical strength. Grain boundary creep processes at such high temperatures are anticipated to be the dominant failure mechanism.

  11. High temperature x-ray and calorimetric studies of phase transformations in quasicrystalline Ti{endash}Zr{endash}Ni alloys

    SciTech Connect

    Stroud, R.M.; Kelton, K.F.; Misture, S.T.

    1997-02-01

    We present the first high temperature x-ray diffraction (HTXRD) studies of {ital in situ} quasicrystal-crystal and crystal-crystal transformations in Ti{endash}Zr{endash}Ni alloys. Together with differential scanning calorimetry studies, these x-ray measurements indicate three separate paths for the Ti{endash}Zr{endash}Ni quasicrystal-crystal transformation: single exothermic, single endothermic, or multiple endothermic. The mode of transformation depends on the alloy composition and the level of environmental oxygen. The crystalline products include the Ti{sub 2}Ni, MgZn{sub 2} Laves, {alpha}{endash}(Ti,Zr) and {beta}{endash}(Ti,Zr) phases. In the absence of oxygen, the endothermic transformation of the quasicrystal demonstrates that it is the lowest free energy (stable) phase at the Ti{sub 53}Zr{sub 27}Ni{sub 20} composition. Oxygen stabilizes the Ti{sub 2}Ni phase, eliminating both the quasicrystal and the MgZn{sub 2} Laves phase, at partial pressures as low as a few hundred ppm. {copyright} {ital 1997 Materials Research Society.}

  12. New type of Al-based decagonal quasicrystal in Al60Cr20Fe10Si10 alloy

    NASA Astrophysics Data System (ADS)

    He, Zhanbing; Ma, Haikun; Li, Hua; Li, Xingzhong; Ma, Xiuliang

    2016-03-01

    A new kind of decagonal quasicrystal (DQC) with a periodicity of 1.23 nm was observed in the as-cast quaternary Al60Cr20Fe10Si10 alloy. The intensity distribution of some spots in the selected-area electron diffraction pattern along the tenfold zone axis was found to be different from other Al-based DQCs. High-angle annular dark-field scanning transmission electron microscopy was adopted to reveal the structural features at an atomic level. Both the tenfold symmetry and symmetry-broken decagonal (D) clusters of 1.91 nm in diameter were found, but with structural characteristics different from the corresponding D clusters in the other Al-based DQCs. The neighboring D clusters are connected by sharing one edge rather than covering, suggesting the tiling model is better than the covering model for structural description.

  13. New type of Al-based decagonal quasicrystal in Al60Cr20Fe10Si10 alloy

    PubMed Central

    He, Zhanbing; Ma, Haikun; Li, Hua; Li, Xingzhong; Ma, Xiuliang

    2016-01-01

    A new kind of decagonal quasicrystal (DQC) with a periodicity of 1.23 nm was observed in the as-cast quaternary Al60Cr20Fe10Si10 alloy. The intensity distribution of some spots in the selected-area electron diffraction pattern along the tenfold zone axis was found to be different from other Al-based DQCs. High-angle annular dark-field scanning transmission electron microscopy was adopted to reveal the structural features at an atomic level. Both the tenfold symmetry and symmetry-broken decagonal (D) clusters of 1.91 nm in diameter were found, but with structural characteristics different from the corresponding D clusters in the other Al-based DQCs. The neighboring D clusters are connected by sharing one edge rather than covering, suggesting the tiling model is better than the covering model for structural description. PMID:26928759

  14. Modelling current-induced magnetization switching in Heusler alloy Co2FeAl-based spin-valve nanopillar

    NASA Astrophysics Data System (ADS)

    Huang, H. B.; Ma, X. Q.; Liu, Z. H.; Zhao, C. P.; Chen, L. Q.

    2014-04-01

    We investigated the current-induced magnetization switching in a Heusler alloy Co2FeAl-based spin-valve nanopillar by using micromagnetic simulations. We demonstrated that the elimination of the intermediate state is originally resulted from the decease of effective magnetic anisotropy constant. The magnetization switching can be achieved at a small current density of 1.0 × 104 A/cm2 by increasing the demagnetization factors of x and y axes. Based on our simulation, we found magnetic anisotropy and demagnetization energies have different contributions to the magnetization switching.

  15. Effect of extrusion temperature on the microstructure of a powder metallurgy TiAl-based alloy

    SciTech Connect

    Hsiung, L.M.; Nieh, T.G.; Clemens, D.R.

    1997-01-15

    In order to balance low temperature ductility, fracture toughness and high temperature properties of {gamma}-TiAl aluminide alloys, recent developments of the alloys have focused on refining the {gamma}/{alpha}{sub 2} full lamellar (FL) microstructure through advanced processing such as powder metallurgy (P/M). Resulted from a refined FL microstructure (both smaller lamellar grain size and thinner lamellar interface spacing) in the P/M fabricated titanium aluminide alloys, the mechanical properties of the alloys have been demonstrated to be superior to those of the aluminide alloys fabricated by conventional ingot metallurgy (I/M). However, since the microstructure of rapidly-solidified aluminide powder used in P/M process is not in an equilibrium state, the microstructures of P/M aluminide alloys are expected to be sensitive to the processing history. Accordingly, the optimization of microstructure-property of a P/M alloy through an appropriate P/M process control becomes an important issue. The purpose of this investigation is therefore aiming at understanding the effect of extrusion temperature on the microstructure of a P/M titanium aluminide alloy.

  16. Experimental and theoretical analyses on the ultrasonic cavitation processing of Al-based alloys and nanocomposites

    NASA Astrophysics Data System (ADS)

    Jia, Shian

    Strong evidence is showing that microstructure and mechanical properties of a casting component can be significantly improved if nanoparticles are used as reinforcement to form metal-matrix-nano-composite (MMNC). In this paper, 6061/A356 nanocomposite castings are fabricated using the ultrasonic stirring technology (UST). The 6061/A356 alloy and Al2O3/SiC nanoparticles are used as the matrix alloy and the reinforcement, respectively. Nanoparticles are injected into the molten metal and dispersed by ultrasonic cavitation and acoustic streaming. The applied UST parameters in the current experiments are used to validate a recently developed multiphase Computational Fluid Dynamics (CFD) model, which is used to model the nanoparticle dispersion during UST processing. The CFD model accounts for turbulent fluid flow, heat transfer and the complex interaction between the molten alloy and nanoparticles using the ANSYS Fluent Dense Discrete Phase Model (DDPM). The modeling study includes the effects of ultrasonic probe location and the initial location where the nanoparticles are injected into the molten alloy. The microstructure, mechanical behavior and mechanical properties of the nanocomposite castings have been also investigated in detail. The current experimental results show that the tensile strength and elongation of the as-cast nanocomposite samples (6061/A356 alloy reinforced by Al2O 3 or SiC nanoparticles) are improved. The addition of the Al2O 3 or SiC nanoparticles in 6061/A356 alloy matrix changes the fracture mechanism from brittle dominated to ductile dominated.

  17. Ni.sub.3 Al-based intermetallic alloys having improved strength above 850.degree. C.

    DOEpatents

    Liu, Chain T.

    2000-01-01

    Intermetallic alloys composed essentially of: 15.5% to 17.0% Al, 3.5% to 5.5% Mo, 4% to 8% Cr, 0.04% to 0.2% Zr, 0.04% to 1.5% B, balance Ni, are characterized by melting points above 1200.degree. C. and superior strengths at temperatures above 1000.degree. C.

  18. Oxide scales formed on Fe-Cr-Al-based model alloys exposed to oxygen containing molten lead

    NASA Astrophysics Data System (ADS)

    Weisenburger, A.; Jianu, A.; Doyle, S.; Bruns, M.; Fetzer, R.; Heinzel, A.; DelGiacco, M.; An, W.; Müller, G.

    2013-06-01

    Based on the state of the art oxide maps concerning oxidation behavior of Fe-Cr-Al model alloys at 800 and 1000 °C in oxygen atmosphere, ten compositions, belonging to this alloy system, were designed in order to tap the borders of the alumina stability domain, during their exposure to oxygen (10-6 wt.%) containing lead, at 400, 500 and 600 °C. Eight alloys, Fe-6Cr-6Al, Fe-8Cr-6Al, Fe-10Cr-5Al, Fe-14Cr-4Al, Fe-16Cr-4Al, Fe-6Cr-8Al, Fe-10Cr-7Al and Fe-12Cr-5Al, were found to be protected against corrosion in oxygen containing lead, either by a duplex layer (Fe3O4 + (Fe1-x-yCrxAly)3O4) or by (Fe1-x-yCrxAly)3O4, depending on the temperature at which they were exposed. Two alloys namely Fe-12Cr-7Al and Fe-16Cr-6Al were found to form transient aluminas, κ-Al2O3 (at 400 and 500 °C) and θ-Al2O3 (at 600 °C), as protective oxide scale against corrosion in oxygen containing lead. An oxide map illustrating the stability domain of alumina, grown on Fe-Cr-Al alloys when exposed to molten, oxygen containing lead, was drawn. The map includes also additional points, extracted from literature and corresponding to alumina forming alloys, when exposed to HLMs, which fit very well with our findings. Chromium and aluminium contents of 12.5-17 wt.% and 6-7.5 wt.%, respectively, are high enough to obtain thin, stable and protective alumina scales on Fe-Cr-Al-based alloys exposed to oxygen containing lead at 400, 500 and 600 °C. For the temperature range and exposure times used during the current evaluation, the growth rate of the alumina scale was low. No area with detached scale was observed and no trace of α-Al2O3 was detected.

  19. The Mechanisms of Dispersion Strengthening and Fracture in Al-based XD (TM) Alloys

    NASA Technical Reports Server (NTRS)

    Aiken, R. M., Jr.

    1990-01-01

    The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength, and the fracture toughness of metal matrix composites of both pure aluminum and Al(4 percent)Cu(1.5 percent)Mg with 0 to 15 vol percent TiB2 were examined. Higher TiB2 volume fractions increased the tensile yield strength both at room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. The fracture toughness of the Al(4 percent)Cu(1.5 percent)Mg alloys decreased rapidly with TiB2 additions of 0 to 5 vol percent and more slowly with TiB2 additions of 5 to 15 vol percent. Fracture toughness appears to be independent of TiB2 particle size. The isothermal-aging response of the precipitation strengthened Al(4 percent)Cu(1.5 percent)Mg alloys was not altered by the presence of TiB2.

  20. Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs

    SciTech Connect

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

    1995-05-01

    This report deals with the welding procedure development and weldment properties of an Fe-16 at. % Al alloy known as FAPY. The welding procedure development was carried out on 12-, 25-, and 51-mm (0.5-, 1-, and 2-in.) -thick plates of the alloy in the as-cast condition. The welds were prepared by using the gas tungsten arc process and filler wire of composition matching the base-metal composition. The preheat temperatures varied from room temperature to 350{degrees}C, and the postweld heat treatment (PWHT) was limited only for 1 h at 750{degrees}C. The welds were characterized by microstructural. analysis and microhardness data. The weldment specimens were machined for Charpy-impact, tensile, and creep properties. The tensile and creep properties of the weldment specimens were essentially the same as that of the base metal. The Charpy-impact properties of the weldment specimens improved with the PWHT and were somewhat lower than previously developed data on the wrought material. Additional work is required on welding of thicker sections, development of PWHT temperatures as a function of section thickness, and mechanical properties.

  1. Composite material reinforced with atomized quasicrystalline particles and method of making same

    DOEpatents

    Biner, S.B.; Sordelet, D.J.; Lograsso, B.K.; Anderson, I.E.

    1998-12-22

    A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quasicrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked composite exhibits substantially improved yield strength, tensile strength, Young`s modulus (stiffness). 3 figs.

  2. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    SciTech Connect

    Kalay, Yunus Eren

    2009-01-01

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 {micro}m with a Peclet number of ~0.2, JH and TMK deviate from

  3. Quasicrystalline structures and uses thereof

    SciTech Connect

    Steinhardt, Paul J; Chaikin, Paul Michael; Man, Weining

    2013-12-03

    This invention relates generally to the field of quasicrystalline structures. In preferred embodiments, the stopgap structure is more spherically symmetric than periodic structures facilitating the formation of stopgaps in nearly all directions because of higher rotational symmetries. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for pre-selected range of wavelengths propagating in multiple directions.

  4. Quasicrystalline structures and uses thereof

    DOEpatents

    Steinhardt, Paul Joseph; Chaikin, Paul Michael; Man, Weining

    2011-11-22

    This invention relates generally to the field of quasicrystalline structures. In preferred embodiments, the stopgap structure is more spherically symmetric than periodic structures facilitating the formation of stopgaps in nearly all directions because of higher rotational symmetries. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for a pre-selected range of wavelengths propagating in multiple directions.

  5. Stability domain of alumina thermally grown on Fe-Cr-Al-based model alloys and modified surface layers exposed to oxygen-containing molten Pb

    NASA Astrophysics Data System (ADS)

    Jianu, A.; Fetzer, R.; Weisenburger, A.; Doyle, S.; Bruns, M.; Heinzel, A.; Hosemann, P.; Mueller, G.

    2016-03-01

    The paper gives experimental results concerning the morphology, composition, structure and thickness of the oxide scales grown on Fe-Cr-Al-based bulk alloys during exposure to oxygen-containing molten lead. The results are discussed and compared with former results obtained on Al-containing surface layers, modified by melting with intense pulsed electron beam and exposed to similar conditions. The present and previous results provide the alumina stability domain and also the criterion of the Al/Cr ratio for the formation of a highly protective alumina layer on the surface of Fe-Cr-Al-based alloys and on modified surface layers exposed to molten lead with 10-6 wt.% oxygen at 400-600 °C. The protective oxide scales, grown on alumina-forming Fe-Cr-Al alloys under the given experimental conditions, were transient aluminas, namely, kappa-Al2O3 and theta-Al2O3.

  6. Investigation of Portevin-Le Chatelier effect in 5456 Al-based alloy using digital image correlation

    NASA Astrophysics Data System (ADS)

    Cheng, Teng; Xu, Xiaohai; Cai, Yulong; Fu, Shihua; Gao, Yue; Su, Yong; Zhang, Yong; Zhang, Qingchuan

    2015-02-01

    A variety of experimental methods have been proposed for Portevin-Le Chatelier (PLC) effect. They mainly focused on the in-plane deformation. In order to achieve the high-accuracy measurement, three-dimensional digital image correlation (3D-DIC) was employed in this work to investigate the PLC effect in 5456 Al-based alloy. The temporal and spatial evolutions of deformation in the full field of specimen surface were observed. The large deformation of localized necking was determined experimentally. The distributions of out-of-plane displacement over the loading procedure were also obtained. Furthermore, a comparison of measurement accuracy between two-dimensional digital image correlation (2D-DIC) and 3D-DIC was also performed. Due to the theoretical restriction, the measurement accuracy of 2D-DIC decreases with the increase of deformation. A maximum discrepancy of about 20% with 3D-DIC was observed in this work. Therefore, 3D-DIC is actually more essential for the high-accuracy investigation of PLC effect.

  7. Assembly of quasicrystalline photonic heterostructures

    DOEpatents

    Grier, David G.; Roichman, Yael; Man, Weining; Chaikin, Paul Michael; Steinhardt, Paul Joseph

    2013-03-12

    A method and system for assembling a quasicrystalline heterostructure. A plurality of particles is provided with desirable predetermined character. The particles are suspended in a medium, and holographic optical traps are used to position the particles in a way to achieve an arrangement which provides a desired property.

  8. Assembly of quasicrystalline photonic heterostructures

    DOEpatents

    Grier, David G.; Roichman, Yael; Man, Weining; Chaikin, Paul Michael; Steinhardt, Paul Joseph

    2011-07-19

    A method and system for assembling a quasicrystalline heterostructure. A plurality of particles is provided with desirable predetermined character. The particles are suspended in a medium, and holographic optical traps are used to position the particles in a way to achieve an arrangement which provides a desired property.

  9. Oxide-Dispersion-Strengthened Fe3Al-Based Alloy Tubes: Application-Specific Development for the Power Generation Industry

    SciTech Connect

    Kad, BK

    2001-07-20

    A detailed and comprehensive research and development methodology is being prescribed to produce Oxide Dispersion Strengthened (ODS)-Fe{sub 3}Al thin walled tubes, using powder extrusion methodologies, for eventual use at operating temperatures of up to 1100 C in the power generation industry. A particular ''in service application'' anomaly of Fe{sub 3}Al-based alloys is that the environmental resistance is maintained up to 1200 C, well beyond where such alloys retain sufficient mechanical strength. Grain boundary creep processes at such high temperatures are anticipated to be the dominant failure mechanism. Thus, the challenges of this program are manifold: (1) to produce thin walled ODS-Fe{sub 3}Al tubes, employing powder extrusion methodologies, with (2) adequate increased strength for service at operating temperatures, and (3) to mitigate creep failures by enhancing the as-processed grain size in ODS-Fe{sub 3}Al tubes. Our research progress till date has resulted in the successful batch production of typically 8 Ft. lengths of 1-3/8 inch diameter, 1/8 inch wall thickness, ODS-Fe{sub 3}Al tubes via a proprietary single step extrusion consolidation process. The process parameters for such consolidation methodologies have been prescribed and evaluated as being routinely reproducible. Such processing parameters (i.e., extrusion ratios, temperature, can design etc.) were particularly guided by the need to effect post-extrusion recrystallization and grain growth at a sufficiently low temperature, while still meeting the creep requirement at service temperatures. Static recrystallization studies show that elongated grains (with their long axis parallel to the extrusion axis), typically 200-2000 {micro}m in diameter, and several millimeters long can be obtained routinely, at 1200 C. The growth kinetics are affected by the interstitial impurity content in the powder batches. For example complete recrystallization, across the tube wall thickness, is observed for clean

  10. Microstructure and wear behavior of quasicrystalline thermal sprayed

    SciTech Connect

    Sordelet, D.J.; Krotz, P.D.; Daniel, R.L.; Smith, M.F.

    1994-12-31

    An Al-Cu-Fe alloy coating which forms a quasicrystalline phase is a potential candidate for replacing electro-deposited chromium on various components in the Space Shuttle Main Engine. Coatings were deposited by air and vacuum plasma spraying and by high-velocity oxygen-fuel spraying. Finer starting powders tended to lose Al during spraying, which affected the phase equilibrium of the coatings. Coatings which retained the starting powder composition were richer in the desired quasicrystalline phase. Ball-on-disk wear tests between 440 C stainless steel ball and the Al-Cu-Fe coatings were performed. Coefficients of friction ranged from 0.60 to 1.2 for the different coatings.

  11. Quasicrystalline structures and uses thereof

    DOEpatents

    Steinhardt, Paul Joseph; Chaikin, Paul Michael; Man, Weining

    2013-08-13

    This invention relates generally to devices constructed from quasicrystalline heterostructures. In preferred embodiments, two or more dielectric materials are arranged in a two- or three-dimensional space in a lattice pattern having at least a five-fold symmetry axis and not a six-fold symmetry axis, such that the quasicrystalline heterostructure exhibits an energy band structure in the space, the band structure having corresponding symmetry, which symmetry is forbidden in crystals, and which band structure comprises a complete band gap. The constructed devices are adapted for manipulating, controlling, modulating, trapping, reflecting and otherwise directing waves including electromagnetic, sound, spin, and surface waves, for a pre-selected range of wavelengths propagating within or through the heterostructure in multiple directions.

  12. The effect of grain refinement on the room-temperature ductility of as-cast Fe{sub 3}Al-based alloys

    SciTech Connect

    Viswanathan, S.; Andleigh, V.K.; McKamey, C.G.

    1995-08-01

    Fe{sub 3}Al-based alloys exhibit poor room-temperature ductility in the as-cast condition. In this study, the effect of grain refinement of the as-cast alloy on room-temperature ductility was investigated. Small melts of Fe-28 at. % Al-5 at. % Cr were inoculated with various alloying additions and cast into a 50- x 30- x 30-mm graphite mold. The resulting ingots were examined metallographically for evidence of grain refinement, and three-point bend tests were conducted on samples to assess the effect on room-temperature ductility. Ductility was assumed to correlate with the strain corresponding to the maximum stress obtained in the bend test. The results showed that titanium was extremely effective in grain refinement, although it severely embrittled the alloy in contents exceeding 1%. Boron additions strengthened the alloy significantly, while carbon additions reduced both the strength and ductility. The best ductility was found in an alloy containing titanium, boron, and carbon. In order to verify the results of the grain refinement study, vacuum-induction melts of selected compositions were prepared and cast into a larger 25- x 150- x 100-mm graphite mold. Tensile specimens were machined from the ingots, and specimens were tested at room temperature. The results of the tensile tests agreed with the results of the grain refinement study; in addition, the addition of molybdenum was found to significantly increase room-temperature tensile ductility over that of the base alloy.

  13. Composite material reinforced with atomized quasicrystalline particles and method of making same

    DOEpatents

    Biner, Suleyman B.; Sordelet, Daniel J.; Lograsso, Barbara K.; Anderson, Iver E.

    1998-12-22

    A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quaiscrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked compositehibits substantially improved yield strength, tensile strength, Young's modulus (stiffness).

  14. Physical, mechanical, and tribological properties of quasicrystalline Al-Cu-Fe coatings prepared by plasma spraying

    NASA Astrophysics Data System (ADS)

    Lepeshev, A. A.; Rozhkova, E. A.; Karpov, I. V.; Ushakov, A. V.; Fedorov, L. Yu.

    2013-12-01

    The physical, mechanical, and tribological properties of quasicrystalline coatings based on the Al65Cu23Fe12 alloy prepared by plasma spraying have been investigated. The specific features of the phase formation due to the competitive interactions of the icosahedral ψ and cubic β phases have been elucidated. A correlation between the microhardness and the content of the icosahedral phase in the coating has been determined. The decisive role of the quasicrystalline phase in the formation of high tribological characteristics of the coatings has been revealed and tested.

  15. Modelling current-induced magnetization switching in Heusler alloy Co{sub 2}FeAl-based spin-valve nanopillar

    SciTech Connect

    Huang, H. B.; Ma, X. Q.; Liu, Z. H.; Zhao, C. P.; Chen, L. Q.

    2014-04-07

    We investigated the current-induced magnetization switching in a Heusler alloy Co{sub 2}FeAl-based spin-valve nanopillar by using micromagnetic simulations. We demonstrated that the elimination of the intermediate state is originally resulted from the decease of effective magnetic anisotropy constant. The magnetization switching can be achieved at a small current density of 1.0 × 10{sup 4} A/cm{sup 2} by increasing the demagnetization factors of x and y axes. Based on our simulation, we found magnetic anisotropy and demagnetization energies have different contributions to the magnetization switching.

  16. Three-Dimensional Phase-Field Simulation and Experimental Validation of β-Mg17Al12 Phase Precipitation in Mg-Al-Based Alloys

    NASA Astrophysics Data System (ADS)

    Han, Guomin; Han, Zhiqiang; Luo, Alan A.; Liu, Baicheng

    2015-02-01

    A three-dimensional (3D) phase-field model has been developed to simulate the formation of lath-shaped β-Mg17Al12 phase during hcp→bcc transformation in Mg-Al-based alloys. The model considers the synergistic effects of the elastic strain energy associated with the lattice rearrangements that accompany the phase transformation, and the interface anisotropy (both in interfacial energy and interface mobility coefficient). By using the proposed model, the essential features of 3D morphology of the β phase precipitate have been successfully predicted and experimentally validated using high-resolution transmission electron microscopy and atomic force microscopy. Furthermore, the spatial distribution of anisotropic elastic interaction field around a pre-existing β precipitate has been quantitatively determined using 3D phase-field simulation, and the effects of the anisotropic elastic interaction energy on subsequent nucleation of β phase near a pre-existing precipitate have been revealed. The results suggest that the anisotropic elastic interaction energy can promote the formation of new nucleus near the lozenge ends of the pre-existing precipitate, as explicitly substantiated by the experimental observations. The influence of different combinations of interface anisotropy and elastic strain energy on the thickness of β phase precipitate has been elucidated. The correlation between microstructural design during precipitation and the alloy-strengthening mechanisms has also been discussed in terms of dislocation motion. Based on these results, possible strategies for strengthening Mg-Al-based alloys are proposed for magnesium alloy development and microstructural design.

  17. Scanning electron microscopy and transmission electron microscopy study of hot-deformed gamma-TiAl-based alloy microstructure.

    PubMed

    Chrapoński, J; Rodak, K

    2006-09-01

    The aim of this work was to assess the changes in the microstructure of hot-deformed specimens made of alloys containing 46-50 at.% Al, 2 at.% Cr and 2 at.% Nb (and alloying additions such as carbon and boron) with the aid of scanning electron microscopy and transmission electron microscopy techniques. After homogenization and heat treatment performed in order to make diverse lamellae thickness, the specimens were compressed at 1000 degrees C. Transmission electron microscopy examinations of specimens after the compression test revealed the presence of heavily deformed areas with a high density of dislocation. Deformation twins were also observed. Dynamically recrystallized grains were revealed. For alloys no. 2 and no. 3, the recovery and recrystallization processes were more extensive than for alloy no. 1.

  18. Spin Transfer Torque Switching and Perpendicular Magnetic Anisotropy in Full Heusler Alloy Co2FeAl-BASED Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Sukegawa, H.; Wen, Z. C.; Kasai, S.; Inomata, K.; Mitani, S.

    2014-12-01

    Some of Co-based full Heusler alloys have remarkable properties in spintronics, that is, high spin polarization of conduction electrons and low magnetic damping. Owing to these properties, magnetic tunnel junctions (MTJs) using Co-based full Heusler alloys are potentially of particular importance for spintronic application such as magnetoresistive random access memories (MRAMs). Recently, we have first demonstrated spin transfer torque (STT) switching and perpendicular magnetic anisotropy (PMA), which are required for developing high-density MRAMs, in full-Heusler Co2FeAl alloy-based MTJs. In this review, the main results of the experimental demonstrations are shown with referring to related issues, and the prospect of MTJs using Heusler alloys is also discussed.

  19. Effects of composition and heat treatment at 1150{degrees}C on creep-rupture properties of Fe{sub 3}Al-based alloys

    SciTech Connect

    McKamey, C.G.; Maziasz, P.J.; Marrero-Santos, Y.

    1995-08-01

    The effects of composition and heat treatment at 1150{degrees}C on the creep-rupture properties of Fe3Al-based alloys were studied. Tests of alloy FA-180 (Fe-28Al-5Cr-0.5Nb-0.8Mo-0.025Zr-0.05C-0.005B, at.%) with this heat treatment were performed in air using various test temperatures and stresses in order to obtain creep activation energies and constants. An activation energy for creep of approximately 150 kcal/mole was determined, a value which is approximately twice that obtained earlier for the binary alloy heat treated at 750{degrees}C. Tests were also conducted on alloys containing various combinations of Cr, Mo, Nb, Zr, C, and B in order to better understand the effect of composition on the improved creep resistance with heat treating at 1150{degrees}C. The results suggest an interaction of Mo with Zr and Nb to produce increased creep life.

  20. Effects of composition and heat treatment at 1150{degrees}C on creep-rupture properties of Fe{sub 3}Al-based alloys

    SciTech Connect

    McKamey, C.G.; Maziasz, P.J.; Marrero-Santos, Y.

    1995-12-01

    The effects of composition and heat treatment at 1150{degrees}C on the creep-rupture properties of Fe{sub 3}Al-based alloys were studied. Tests of alloy FA-180 (Fe-28Al-5Cr-0.5Nb-0.8Mo-0.025Zr-0.05C-0.005B, at.%) with this heat treatment were performed in air using various test temperatures and stresses in order to obtain creep activation energies and constants. An activation energy for creep of approximately 150 kcal/mole was determined, value which is approximately twice that obtained earlier for the binary alloy heat treated at 750{degrees}C. Tests were also conducted on alloys containing various combinations of Cr, Mo, Nb, Zr, C, and B in order to better understand the effect of composition on the improved creep resistance with heat treating at 1150{degrees}C. The results suggest an interaction of Mo with Zr and Nb to produce increased creep life.

  1. Quasicrystalline tilings with nematic colloidal platelets

    PubMed Central

    Dontabhaktuni, Jayasri; Ravnik, Miha; Žumer, Slobodan

    2014-01-01

    Complex nematic fluids have the remarkable capability for self-assembling regular colloidal structures of various symmetries and dimensionality according to their micromolecular orientational order. Colloidal chains, clusters, and crystals were demonstrated recently, exhibiting soft-matter functionalities of robust binding, spontaneous chiral symmetry breaking, entanglement, shape-driven and topological driven assembly, and even memory imprinting. However, no quasicrystalline structures were found. Here, we show with numerical modeling that quasicrystalline colloidal lattices can be achieved in the form of original Penrose P1 tiling by using pentagonal colloidal platelets in layers of nematic liquid crystals. The tilings are energetically stabilized with binding energies up to 2500 kBT for micrometer-sized platelets and further allow for hierarchical substitution tiling, i.e., hierarchical pentagulation. Quasicrystalline structures are constructed bottom-up by assembling the boat, rhombus, and star maximum density clusters, thus avoiding other (nonquasicrystalline) stable or metastable configurations of platelets. Central to our design of the quasicrystalline tilings is the symmetry breaking imposed by the platelet shape and the surface anchoring conditions at the colloidal platelets, which are misaligning and asymmetric over two perpendicular mirror planes. Finally, the design of the quasicrystalline tilings as platelets in nematic liquid crystals is inherently capable of a continuous variety of length scales of the tiling, ranging over three orders of magnitude in the typical length (from to ), which could allow for the design of quasicrystalline photonics at multiple frequency ranges. PMID:24550269

  2. Effect of the method of introduction of Y2O3 into NiAl-based powder alloys on their structure: I. Agitation in a ball mill

    NASA Astrophysics Data System (ADS)

    Povarova, K. B.; Vershinina, T. N.; Skachkov, O. A.; Drozdov, A. A.; Morozov, A. E.; Pozharov, S. V.

    2012-09-01

    The effect of the sintering temperature (1100-1400°C) of NiAl alloy samples with oxide Y2O3 produced by hydrostatic pressing on their structure and phase composition and the distribution of oxide particles in a NiAl-based intermetallic matrix alloyed with ˜0.5 at % Fe is considered. It is found that dispersed oxide particles in the compact material prepared from a mixture of oxide Y2O3 powder and a NiAl alloy (produced by calcium hydride reduction of a mixture of nickel and aluminum oxides) powder in a standard ball mill are nonuniformly distributed in the volume. The morphology of oxides changes during sintering: sintered samples contain rounded particles, which differ strongly from the clearly faceted angular particles of oxide Y2O3 added to a mixture (they represent conglomerates of single crystals). In the sintered samples, large aggregates of oxides are revealed along grain boundaries. Mass transfer is possible at the NiAl/Y2O3 interface in the system: it leads to partial substitution of aluminum and/or iron atoms for yttrium atoms in the Y2O3 lattice and to the formation of submicroscopic particles of (Fe,Al)5Y3O12-type oxides.

  3. The mechanisms of dispersion strengthening and fracture in Al-based XD(tm) alloys, part 1

    NASA Technical Reports Server (NTRS)

    Aikin, R. M., Jr.

    1990-01-01

    The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength; the fracture toughness; and the fatigue crack growth rate of metal matrix composites of Al-4(pct)Cu-1.5(pct)Mg with TiB2 were examined. The influence of reinforcement volume fraction was also examined for pure aluminum with TiB2. Higher TiB2 volume fractions increased the tensile yield strength at both room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. Interparticle spacing appears to be the factor that controls the strength of these alloys, with the exact nature of the dependence relying on the nature of dislocation slip in the matrix (planar vs. diffuse). The isothermal aging response of the precipitation strengthened Al-4(pct)Cu-1.5(pct)Mg alloys was not accelerated by the presence of TiB2. Cold work prior to artificial aging created additional geometrically necessary dislocations which serve as heterogeneous nucleation sites leading to accelerated aging, a finer precipitate size, and an increase in the strength of the alloy.

  4. Microstructure characterization and room temperature deformation of a rapidly solidified NiAl-based eutectic alloy containing trace Dy

    NASA Astrophysics Data System (ADS)

    Li, Hutian; Guo, Jianting; Huai, Kaiwen; Ye, Hengqiang

    2006-04-01

    The microstructure and room temperature compressive deformation behavior of a rapidly solidified NiAl-Cr(Mo)-Dy eutectic alloy fabricated by water-cooled copper mold method were studied by a combination of SEM, EDS and compressive tests. The morphology stability after hot isostatic pressing (HIP) treatment was evaluated. Rapid solidification resulted in a shift in the coupled zone for the eutectic growth towards the Cr(Mo) phase, indicating a hypoeutectic composition, hence increasing the volume fraction of primary dendritic NiAl. Meanwhile, significantly refined microstructure and lamellar/rod-like Cr(Mo) transition were observed due to trace rare earth (RE) element Dy addition and rapid solidification effects. Compared with the results in literature [H.E. Cline, J.L. Walter, Metall. Trans. 1(1970)2907-2917; P. Ferrandini, W.W. Batista, R. Caram, J. Alloys Comp. 381(2004)91-98], an interesting phenomenon, viz., NiAl halos around the primary Cr(Mo) dendrites in solidified NiAl-Cr(Mo) hypereutectic alloy, was not observed in this study. This difference was interpreted in terms of their different reciprocal nucleation ability. In addition, it was proposed that the localized destabilization of morphology after HIP treatment is closely related to the presence of primary NiAl dendrites. The improved mechanical properties can be attributed to the synergistic effects of rapid solidification and Dy addition, which included refined microstructure, suppression of the crack development along eutectic grain boundaries, enhancement of density of geometrically necessary dislocations located at NiAl/Cr(Mo) interfaces and the Cr solubility extension in NiAl.

  5. Method of making quasicrystal alloy powder, protective coatings and articles

    DOEpatents

    Shield, Jeffrey E.; Goldman, Alan I.; Anderson, Iver E.; Ellis, Timothy W.; McCallum, R. William; Sordelet, Daniel J.

    1995-07-18

    A method of making quasicrystalline alloy particulates wherein an alloy is superheated and the melt is atomized to form generally spherical alloy particulates free of mechanical fracture and exhibiting a predominantly quasicrystalline in the atomized condition structure. The particulates can be plasma sprayed to form a coating or consolidated to form an article of manufacture.

  6. Method of making quasicrystal alloy powder, protective coatings and articles

    DOEpatents

    Shield, J.E.; Goldman, A.I.; Anderson, I.E.; Ellis, T.W.; McCallum, R.W.; Sordelet, D.J.

    1995-07-18

    A method of making quasicrystalline alloy particulates is disclosed wherein an alloy is superheated and the melt is atomized to form generally spherical alloy particulates free of mechanical fracture and exhibiting a predominantly quasicrystalline in the atomized condition structure. The particulates can be plasma sprayed to form a coating or consolidated to form an article of manufacture. 3 figs.

  7. Concept of Quasicrystalline Metal Alloys Becoming Clearer.

    ERIC Educational Resources Information Center

    Rawis, Rebecca L.

    1986-01-01

    Reports results of a public opinion survey aimed at measuring the general public's understanding of scientific concepts, and acceptance of scientific paradigms. Assessment and analysis by science and society experts is provided. (JM)

  8. Interdiffusion behavior of Pt-modified γ-Ni + γ'-Ni3Al alloys coupled to Ni-Al-based alloys

    NASA Astrophysics Data System (ADS)

    Hayashi, Shigenari; Wang, Wen; Sordelet, Daniel J.; Gleeson, Brian

    2005-07-01

    The effect of platinum addition on the interdiffusion behavior of γ-Ni + γ'-Ni3Al alloys was studied by using diffusion couples comprised of a Ni-Al-Pt alloy mated to a Ni-Al, Ni-Al-Cr, or Ni-based commercial alloy. The commercial alloys studied were CMSX-4 and CMSX-10. Diffusion annealing was at 1150 °C for up to 100 hours. An Al-enriched γ'-layer often formed in the interdiffusion zone of a given couple during diffusion annealing due to the uphill diffusion of Al. This uphill diffusion was ascribed to Pt addition decreasing the chemical activity of aluminum in the γ + γ' alloys. For a given diffusion couple end member, the thickening kinetics of the γ' layer that formed increased with increasing Pt content in the Ni-Al-Pt γ + γ' alloy. The γ'-layer thickening kinetics in diffusion couples with Cr showed less of a dependence on Pt concentration. Inference of a negative effect of Pt and positive effect of Cr on the Al diffusion in this system enabled explanation of the observed interdiffusion behaviors. There was no or minimal formation of detrimental topologically close-packed (TCP) phases in the interdiffusion zone of the couples with CMSX-4 or CMSX-10. An overlay Pt-modified γ + γ' coating on CMSX-4 showed excellent oxidation resistance when exposed to air for 1000 hours at 1150 °C. Moreover, the Al content in the coating was maintained at a relatively high level due to Al replenishment from the CMSX-4 substrate.

  9. Effect of Post-weld Heat Treatment on Microstructure and Mechanical Properties of Laser Beam Welded TiAl-based Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Ventzke, Volker; Staron, Peter; Schell, Norbert; Kashaev, Nikolai; Huber, Norbert

    2014-01-01

    Post-weld heat treatment is carried out on the laser beam welded γ-TiAl-based alloy Ti-48Al-1Cr-1.5Nb-1Mn-0.2Si-0.5B (at. pct). The macro/microstructure and mechanical properties of both as-welded and heat-treated specimens are investigated by radiography, SEM, and tensile tests. Moreover, high energy synchrotron X-ray diffraction is performed to measure the residual stresses and evaluate the microstructure evolution. It is found that the residual stresses are distributed in a three-peak shape in the region of the weld zone and heat-affected zone of the as-welded specimen due to the microstructural transformation and heat softening. The residual stresses are largely relieved after the heat treatment. The heat-treated specimens have a near fully lamellar microstructure and show balanced mechanical properties of strength and ductility. The diffraction shows that the phase transformation from α 2 to γ takes place under tensile load at 1023 K (750 °C), and the grain size and lamellar spacing are refined in the weld zone. Finally, the fracture mechanisms are found to be controlled by the local stress concentration-induced strain misfit between α 2 and γ phases in the near γ grains and delamination and debonding in the lamellae. Boride ribbons of 5 μm in the near fully lamellar microstructure are found not to be detrimental to the tensile properties.

  10. Quasicrystalline particulate reinforced aluminum composite

    SciTech Connect

    Anderson, I.E.; Biner, S.B.; Sordelet, D.J.; Unal, O.

    1997-07-01

    Particulate reinforced aluminum and aluminum alloy composites are rapidly emerging as new commercial materials for aerospace, automotive, electronic packaging and other high performance applications. However, their low processing ductility and difficulty in recyclability have been the key concern. In this study, two composite systems having the same aluminum alloy matrix, one reinforced with quasicrystals and the other reinforced with the conventional SiC reinforcements were produced with identical processing routes. Their processing characteristics and tensile mechanical properties were compared.

  11. Quasicrystalline Beam Formation in RF Photoinjectors

    SciTech Connect

    Rosenzweig, J. B.; Dunning, M. P.; Hemsing, Erik; Marcus, G.; Marinelli, Agostino; Musumeci, Pietro; Pham, A.; Ferrario, M.

    2009-01-22

    The recent observation of coherent optical transition radiation at the LCLS has raised serious questions concerning the present model of beam dynamics in RF photoinjectors. We present here an analysis of what we term quasicrystalline beam formation. In this scenario, the low longitudinal temperature, in combination with strong acceleration and temporal rearrangement due to bending, allows the longitudinal beam dimension to become more regular, on the microscopic scale of optical wavelengths, than expected from equilibrium statistical properties. This beam distribution then may then display a strong degree of coherence in its optical transition radiation output. We discuss further experimental investigations of this phenomenon.

  12. Vacuum tribological behaviour of self lubricant quasicrystalline composite coatings

    NASA Astrophysics Data System (ADS)

    Garcí de Blas, F. J.; Román, A.; de Miguel, C.; Longo, F.; Muelas, R.; Agüero, A.

    2003-09-01

    High temperature resistant self-lubricant coatings are needed in space vehicles for components that operate at high temperatures and/or under vacuum. Thick composite lubricant coatings containing quasicrystalline alloys (QC) as the hard phase for wear resistance, have been deposited by thermal spray. The coatings also comprise lubricating materials (silver and BaF2-CaF2 eutectic) and NiCr as the tough component. This paper describes the vacuum tribological properties of TH103, a coating belonging to this family, with excellent microstructural quality. The coating was deposited by HVOF and tested under vacuum on a pin-on-disc tribometer. Different loads, linear speeds and pin materials were studied. The pin scars and disc wear tracks were characterized by EDS-SEM. A minimum mean steady friction coefficient of 0.32 was obtained employing a X-750 Ni superalloy pin in vacuum conditions under 10 N load and 15 cm/s linear speed, showing moderate wear of the disc and low wear of the pin.

  13. Structural aspects of the fivefold quasicrystalline Al-Cu-Fe surface from STM and dynamical LEED Studies

    SciTech Connect

    Cai, T.; Shi, F.; Shen, Z.; Gierer, M.; Goldman, A.I.; Kramer, M.J.; Jenks, C.J.; Lograsso, T.A.; Delaney, D.W.; Thiel, P.A.; Van, M.A.

    2001-04-15

    We investigate the atomic structure of the fivefold surface of an icosahedral Al-Cu-Fe alloy, using scanning tunneling microscopy (STM) imaging and a special dynamical low energy-electron diffraction (LEED) method. STM indicates that the step heights adopt (primarily) two values in the ratio of tau, but the spatial distribution of these two values does not follow a Fibonacci sequence, thus breaking the ideal bulk-like quasicrystalline layer stacking order perpendicular to the surface. The appearance of screw dislocations in the STM images is another indication of imperfect quasicrystallinity. On the other hand, the LEED analysis, which was successfully applied to Al-Pd-Mn in a previous study, is equally successful for Al-Cu-Fe. Similar structural features are found for both materials, in particular for interlayer relaxations and surface terminations. Although there is no structural periodicity, there are clear atomic planes in the bulk of the quasicrystal, some of which can be grouped in recurring patterns. The surface tends to form between these grouped layers in both alloys. For Al-Cu-Fe, the step heights measured by STM are consistent with the thicknesses of the grouped layers favored in LEED. These results suggest that the fivefold Al-Cu-Fe surface exhibits a quasicrystalline layering structure, but with stacking defects.

  14. Periodically distributed objects with quasicrystalline diffraction pattern

    SciTech Connect

    Wolny, Janusz Strzalka, Radoslaw; Kuczera, Pawel

    2015-03-30

    It is possible to construct fully periodically distributed objects with a diffraction pattern identical to the one obtained for quasicrystals. These objects are probability distributions of distances obtained in the statistical approach to aperiodic structures distributed periodically. The diffraction patterns have been derived by using a two-mode Fourier transform—a very powerful method not used in classical crystallography. It is shown that if scaling is present in the structure, this two-mode Fourier transform can be reduced to a regular Fourier transform with appropriately rescaled scattering vectors and added phases. Detailed case studies for model sets 1D Fibonacci chain and 2D Penrose tiling are discussed. Finally, it is shown that crystalline, quasicrystalline, and approximant structures can be treated in the same way.

  15. Quasicrystallinity expressed in two-dimensional coordination networks.

    PubMed

    Urgel, José I; Écija, David; Lyu, Guoqing; Zhang, Ran; Palma, Carlos-Andres; Auwärter, Willi; Lin, Nian; Barth, Johannes V

    2016-07-01

    The recognition of quasicrystals, which exhibit long-range order but lack translational symmetry, represented both the introduction of a new class of materials and a transformative breakthrough in crystallography. Concomitant with the exploration of quasicrystallinity, metal-organic architectures emerged as promising and versatile systems with significant application potential. Their building principles have been studied extensively and become manifest in a multitude of intricate amorphous and crystalline phases. To date, however, indications for quasicrystalline order have been elusive in metal-organic coordination networks (MOCNs). Here we employ rare-earth-directed assembly to construct a two-dimensional tiling with quasicrystalline characteristics at a well-defined gold substrate. By careful stoichiometry control over europium centres and functional linkers, we produced a porous network, including the simultaneous expression of four-fold, five-fold and six-fold vertices. The pertaining features were directly inspected by scanning tunnelling microscopy, and the molecule-europium reticulation was recognized as square-triangle tessellation with dodecagonal symmetry. Our findings introduce quasicrystallinity in surface-confined MOCNs with a nanoporous structure and anticipate functionalities that arise from quasicrystalline ordering of the coordinative spheres. PMID:27325091

  16. Microstructure Evolution in Al-Cu-Fe Quasicrystalline Thin Films

    NASA Astrophysics Data System (ADS)

    Widjaja, Edy; Marks, Laurence

    2003-03-01

    Transmission Electron Microscopy (TEM) was performed to study the microstructure evolution in Al-Cu-Fe quasicrystalline thin films. Thin films were grown by magnetron sputtering on sodium chloride crystals which were subsequently dissolved in water to acquire free-standing films. Nanocrystalline films were found in the as-deposited sample. When annealed at 400oC the films changed to metastable crystalline phases that transformed into icosahedral phases upon further annealing at 500oC. TEM imaging combined with electron diffraction revealed various features associated with the phase evolution in the crystalline-quasicrystalline phase transformation. Some grains in the film functioned as sacrificial grains allowing others to grow into icosahedral phases. Elements near the boundary of the sacrificial grains diffused to form the icosahedral phases, resulting in fragments in the center of the grain. The oxide layer of the film was amorphous aluminum oxide that exhibited poor adhesion to the quasicrystalline films.

  17. Fabrication of ten-fold photonic quasicrystalline structures

    SciTech Connect

    Sun, XiaoHong Wu, YuLong; Liu, Wen; Liu, Wei; Han, Juan; Jiang, Lei

    2015-05-15

    Compared to periodic crystals, quasicrystals have higher point group symmetry and are more favorable in achieving complete band-gaps. In this report, a top-cut prism interferometer is designed to fabricate ten-fold photonic quasicrystalline structures. By optimizing the exposing conditions and material characteristics, appropriate quasicrystals have been obtained in the SU8 photoresist films. Atomic Force Microscopy and laser diffraction are used to characterize the fabricated structures. The measurement results show the consistence between the theoretical design and experiments. This will provide guidance for the large-area and fast production of ten-fold quasicrystalline structures with high quality.

  18. Effect of the method of introduction of Y2O3 into NiAl-based powder alloys on their structure: II. Mechanical activation

    NASA Astrophysics Data System (ADS)

    Skachkov, O. A.; Povarova, K. B.; Drozdov, A. A.; Morozov, A. E.; Pozharov, S. V.

    2012-09-01

    Effect of mechanical activation of NiAl powders produced by calcium hydride reduction in an attritor and a ball mill on the specific surface, the oxygen concentration, the strain hardening, and the coherent domain size (CDS) of the powders is studied. It is found that the powder specific surface milled in the attritor for 10-15 h is larger by a factor of 1.7-1.8 and the oxygen concentration in a powder is lower by a factor of 1.35 as compared to the its milling in the ball mill for 150 h. The powders milled in the attritor for 15 h have the level of microstresses higher by a factor of ˜2.4 and the CDS smaller by a factor of 2 as compared to the powder treated in the ball mill for 150 h. When milling a powder in the attritor, the milling time decreases by a factor of 10 and the degree of powder refinement increases, which improves the technological characteristics of the powders. As a result of the combination (in one operation) of mechanical activation of an NiAl intermetallic matrix powder in the attritor and the introduction of dispersed particles of a refractory oxide Y2O3 powder, the produced composite alloy has a density close to the theoretical one and has no aggregates of dispersed oxide particles at grain boundary junctions. Submicro- and nanosized oxide particles are homogenously distributed in the intermetallic matrix volume, which is characterized by a homogeneous distribution of nickel and aluminum.

  19. Broadband multiple responses of surface modes in quasicrystalline plasmonic structure

    PubMed Central

    Yuan, Haiming; Jiang, Xiangqian; Huang, Feng; Sun, Xiudong

    2016-01-01

    We numerically study the multiple excitation of surface modes in 2D photonic quasicrystal/metal/substrate structure. An improved rigorous coupled wave analysis method that can handle the quasicrystalline structure is presented. The quasicrystalline lattice, which refers to Penrose tiling in this paper, is generated by the cut-and-project method. The normal incidence spectrum presents a broadband multiple responses property. We find that the phase matching condition determines the excitation frequency for a given incident angle, while the depth of the reflection valley depends on the incident polarization. The modes will split into several sub-modes at oblique incidence, which give rise to the appearance of more responses on the spectrum. PMID:27492782

  20. Broadband multiple responses of surface modes in quasicrystalline plasmonic structure.

    PubMed

    Yuan, Haiming; Jiang, Xiangqian; Huang, Feng; Sun, Xiudong

    2016-01-01

    We numerically study the multiple excitation of surface modes in 2D photonic quasicrystal/metal/substrate structure. An improved rigorous coupled wave analysis method that can handle the quasicrystalline structure is presented. The quasicrystalline lattice, which refers to Penrose tiling in this paper, is generated by the cut-and-project method. The normal incidence spectrum presents a broadband multiple responses property. We find that the phase matching condition determines the excitation frequency for a given incident angle, while the depth of the reflection valley depends on the incident polarization. The modes will split into several sub-modes at oblique incidence, which give rise to the appearance of more responses on the spectrum. PMID:27492782

  1. Visible diffraction from quasi-crystalline arrays of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Butler, Timothy P.; Butt, Haider; Wilkinson, Timothy D.; Amaratunga, Gehan A. J.

    2015-08-01

    Large area arrays of vertically-aligned carbon nanotubes (VACNTs) are patterned in a quasi-crystalline Penrose tile arrangement through electron beam lithography definition of Ni catalyst dots and subsequent nanotube growth by plasma-enhanced chemical vapour deposition. When illuminated with a 532 nm laser beam high-quality and remarkable diffraction patterns are seen. The diffraction is well matched to theoretical calculations which assume apertures to be present at the location of the VACNTs for transmitted light. The results show that VACNTs act as diffractive elements in reflection and can be used as spatially phased arrays for producing tailored diffraction patterns.

  2. NiAl-based approach for rocket combustion chambers

    NASA Technical Reports Server (NTRS)

    Nathal, Michael V. (Inventor); Gayda, John (Inventor); Noebe, Ronald D. (Inventor)

    2005-01-01

    A multi-layered component, such as a rocket engine combustion chamber, includes NiAl or NiAl-based alloy as a structural layer on the hot side of the component. A second structural layer is formed of material selected from Ni-based superalloys, Co-based alloys, Fe-based alloys, Cu, and Cu-based alloys. The second material is more ductile than the NiAl and imparts increased toughness to the component. The second material is selected to enhance one or more predetermined physical properties of the component. Additional structural layers may be included with the additional material(s) being selected for their impact on physical properties of the component.

  3. Covalent bonds and their crucial effects on pseudogap formation in α-Al(Mn,Re)Si icosahedral quasicrystalline approximant

    NASA Astrophysics Data System (ADS)

    Kirihara, K.; Nagata, T.; Kimura, K.; Kato, K.; Takata, M.; Nishibori, E.; Sakata, M.

    2003-07-01

    X-ray charge densities of Al-based icosahedral quasicrystalline approximant crystals α-AlReSi, α-AlMnSi, and Al12Re were observed by a combination of the maximum entropy method with the Rietveld method. We successfully obtained the clear images of interatomic covalent bonds between Al and transition metals (Mn, Re) and those in the Al (or Si) icosahedron in Mackay icosahedral clusters of both α-AlReSi and α-AlMnSi approximant crystals. The bonding nature of the three kinds of glue atom sites connecting Mackay icosahedral clusters was also clarified. This covalent bonding nature should strongly relate with the enhancement of the electron density-of-states pseudogap near the Fermi level. In addition, the interatomic covalent bonds of α-AlReSi are stronger than those of α-AlMnSi. This fact leads to the low effective carrier density of α-AlReSi in comparison with that of α-AlMnSi. Unlike the covalent bonding nature of an icosahedron in α-AlReSi and α-AlMnSi crystals, the Al icosahedron with an Re center atom exhibits no Al-Al interatomic covalent bonds in the Al12Re crystal. The tendency for metallic-covalent bonding conversion in the Al icosahedron, which is related to the atom site occupancy of the icosahedral cluster center, is also strongly supported.

  4. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO3 Fe3Al, Co3Al, and Ni3Al based intermetallic phases

    NASA Astrophysics Data System (ADS)

    Samolyuk, G. D.; Újfalussy, B.; Stocks, G. M.

    2014-11-01

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co, and Ti within the AlNi-based matrix phase. In this paper, we report the results of first-principles calculations of the site preference of ternary alloying additions in DO3 Fe3Al, Co3Al, and Ni3Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which correspond to experimental situation, Ti and Fe are found to occupy the α sites, while Co and Ni prefer the γ sites of the DO3 lattice. An important finding is that the magnetic moments of transition metals in Fe3Al and Co3Al are ordered ferromagnetically, whereas the Ni3Al were found to be nonmagnetic unless the Fe or Co is added as a ternary element.

  5. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO3 Fe3Al, Co3Al, and Ni3Al based intermetallic phases

    DOE PAGES

    Samolyuk, G. D.; Újfalussy, B.; Stocks, G. M.

    2014-11-07

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co and Ti within the AlNi-based matrix phase. In our paper we report the results of first-principles calculations of the site preference of ternarymore » alloying additions in DO3 Fe3Al, Co3Al and Ni3Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which corresponds to experimental situation, Ti and Fe are found to occupy the sites, while Co and Ni prefer the sites of the DO3 lattice. Finally, an important finding is that the magnetic moments of transition metals in Fe3Al and Co3Al are ordered ferromagnetically, whereas the Ni3Al were found to be nonmagnetic unless the Fe or Co are added as a ternary element.« less

  6. Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles

    PubMed Central

    Namin, Farhad A.; Yuwen, Yu A.; Liu, Liu; Panaretos, Anastasios H.; Werner, Douglas H.; Mayer, Theresa S.

    2016-01-01

    In this paper, the scattering properties of two-dimensional quasicrystalline plasmonic lattices are investigated. We combine a newly developed synthesis technique, which allows for accurate fabrication of spherical nanoparticles, with a recently published variation of generalized multiparticle Mie theory to develop the first quantitative model for plasmonic nano-spherical arrays based on quasicrystalline morphologies. In particular, we study the scattering properties of Penrose and Ammann- Beenker gold spherical nanoparticle array lattices. We demonstrate that by using quasicrystalline lattices, one can obtain multi-band or broadband plasmonic resonances which are not possible in periodic structures. Unlike previously published works, our technique provides quantitative results which show excellent agreement with experimental measurements. PMID:26911709

  7. Characterization of a quasicrystalline phase in codispersions of phosphatidylethanolamine and glucocerebroside.

    PubMed

    Feng, Ying; Rainteau, Dominique; Chachaty, Claude; Yu, Zhi-Wu; Wolf, Claude; Quinn, Peter J

    2004-04-01

    Synchrotron x-ray diffraction, differential scanning calorimetry, and electron spin resonance spectroscopy have been employed to characterize a quasicrystalline phase formed in aqueous dispersions of binary mixtures of glucocerebroside and palmitoyloleoylphosphatidylethanolamine. Small- and wide-angle x-ray scattering intensity patterns were recorded during temperature scans between 20 degrees and 90 degrees C from mixtures of composition 2, 5, 10, 20, 30, and 40 mol glucocerebroside per 100 mol phospholipid. The quasicrystalline phase was characterized by a broad lamellar d-spacing of 6.06 nm at 40 degrees C and a broad wide-angle x-ray scattering band centered at approximately 0.438 nm, close to the gel phase centered at approximately 0.425 nm and distinct from a broad peak centered at 0.457 nm observed for a liquid-crystal phase at 80 degrees C. The quasicrystalline phase coexisted with gel and fluid phase of the pure phospholipid. An analysis of the small-angle x-ray scattering intensity profiles indicated a stoichiometry of one glucosphingolipid per two phospholipid molecules in the complex. Structural transitions monitored in cooling scans by synchrotron x-ray diffraction indicated that a cubic phase transforms initially into a lamellar gel. Thermal studies showed that the gel phase subsequently relaxes into the quasicrystalline phase in an exothermic transition. Electron spin resonance spectroscopy using spin labels located at positions 7, 12, and 16 carbons of phospholipid hydrocarbon chains indicated that order and motional constraints at the 7 and 12 positions were indistinguishable between gel and quasicrystalline phases but there was a significant decrease in order and increase in rate of motion at the 16 position on transformation to the quasicrystalline phase. The results are interpreted as an arrangement of polar groups of the complex in a crystalline array and a quasicrystalline packing of the hydrocarbon chains predicated by packing problems in the

  8. Frictional Properties of Single Crystalline and Quasicrystalline Surfaces

    NASA Astrophysics Data System (ADS)

    Gellman, Andrew

    2000-03-01

    The use of ultra-high vacuum surface science methods has been aplied to the problem of studying friction between single srystalline and quasicrystalline metal surfaces. A experimental apparatus has been developed that combines the ability to perform surface preparation and analysis with the ability to make measurements of macroscopic friction forces between surfaces in sliding contact. This UHV chamber allows simultaneous preparation and characterization of two sample surfaces. These are usually single crystalline samples of the same metal and can be either perfectly clean or modified by adsorbed species such as atoms or molecules. Once prepared these two surfaces can be brought into contact under an applied normal load (Fn = 0.001 0.1 N) and sheared relative to one another at constant velocity (vs = 1 100 mm/s). Both normal and shear forces are measured simultaneously enabling one to determine a coefficient of friction. This unique apparatus has been used to study a number of problems in tribology. Adsorbed species on metal surfaces serve as a lubricants and prevent direct metal-metal contact. We have addressed the issue of surface coverage effects on interfacial friction. Surfaces have been prepared with adsorbed species ranging continuously in coverage from zero monolayers to many ( 100) monolayers. These experiments have been performed with pairs of both Ni(100) and Cu(111) surfaces. The interesting observation has been that adsorbed layers of atoms have little or no influence on friction coefficients between the two surfaces at coverages below one monolayer. Adsorbed molecules such as ethanol or trifluoroethanol are more interesting in this regard. They also have little influence on friction when adsorbed at coverages of < 1 monolayer, however, once the coverage exceeds 1 monolayer the coefficient of friction drops substantially. Friction reaches its limit at coverages of 5 10 monolayer. It is quite interesting to note that these metal single crystal surface

  9. Interpolating Hamiltonians for a stochastic-web map with quasicrystalline symmetry.

    PubMed

    Lowenstein, J. H.

    1992-07-01

    A systematic Hamiltonian approximation scheme is developed for a stochastic-web map with fivefold quasicrystalline symmetry. Interpolating Hamiltonians are calculated up to tenth order in the control parameter a. The higher order Hamiltonians are used to provide bounds for closed invariant curves of the map, and to investigate the structural evolution of map's phase portrait for a

  10. Structure, stability, and electronic properties of the i -AlPdMn quasicrystalline surface

    NASA Astrophysics Data System (ADS)

    Krajčí, M.; Hafner, J.

    2005-02-01

    The structure, stability, and electronic properties of a fivefold surface of an icosahedral (i) Al-Pd-Mn alloy have been investigated using ab initio density-functional methods. Structural models for a series of rational approximants to the quasicrystalline structure of bulk i -AlPdMn have been constructed using the cut-and-projection technique with triacontahedral acceptance domains in the six-dimensional hyperspace according to the Katz-Gratias-Boudard model. This leads to a real-space structure describable in terms of interpenetrating Mackay and Bergman clusters. A fivefold surface has been prepared by cleaving the bulk structure along a plane perpendicular to a fivefold axis. The position of the cleavage plane has been chosen such as to produce a surface layer with a high atomic density. The atomic structure of these surfaces can be described by a P1 tiling by pentagons, thin rhombi, pentagonal stars, and a “boat”—in terms of a cut-and-projection model the decagonal acceptance domain of the P1 tiling corresponds to the maximal cross section of the triacontahedra defining the three-dimensional quasicrystal. The vertices of the P1 tiling are occupied by Pd atoms surrounded by pentagonal motifs of Al atoms. For the ab initio calculations we have prepared slab models of the surface based on the 3/2 and 2/1 approximants and containing up to 357 atoms in the computational cell. The analysis of the surface charge density shows flat minima at the vertices of the P1 tiling and strong charge depletion in some of the pentagonal tiles (“surface vacancies”). Both observations are in agreement with scanning tunneling microscopy studies of these surfaces. Structural relaxations have been performed only for the 2/1 models with up to 205 atoms/cell. The calculations demonstrate that the skeleton of the P1 tiling fixed by the transition-metal atoms represents a stable surface termination, but considerable rearrangement of the Al atoms and large relaxations of the

  11. Crystalline and quasicrystalline allotropes of Pb formed on the fivefold surface of icosahedral Ag-In-Yb

    SciTech Connect

    Sharma, H. R. Smerdon, J. A.; Nugent, P. J.; Ribeiro, A.; McGrath, R.; McLeod, I.; Dhanak, V. R.; Shimoda, M.; Tsai, A. P.

    2014-05-07

    Crystalline and quasicrystalline allotropes of Pb are formed by evaporation on the fivefold surface of the icosahedral (i) Ag-In-Yb quasicrystal under ultra-high vacuum. Lead grows in three dimensional quasicrystalline order and subsequently forms fivefold-twinned islands with the fcc(111) surface orientation atop of the quasicrystalline Pb. The islands exhibit specific heights (magic heights), possibly due to the confinement of electrons in the islands. We also study the adsorption behavior of C{sub 60} on the two allotropes of Pb. Scanning tunneling microcopy reveals that a high corrugation of the quasicrystalline Pb limits the diffusion of the C{sub 60} molecules and thus produces a disordered film, similar to adsorption behavior of the same molecules on the clean substrate surface. However, the sticking coefficient of C{sub 60} molecules atop the Pb islands approaches zero, regardless of the overall C{sub 60} coverage.

  12. Fabrication of photonic quasicrystalline structures in the sub-micrometer scale

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Sun, XiaoHong; Li, WenYang; Liu, Wei; Jiang, Lei; Han, Juan

    2016-05-01

    Compared to periodic crystals, photonic quasicrystals (PQC) have higher point group symmetry and are more favorable in achieving complete band-gaps. In this report, a top-cut prism interferometer is designed to fabricate ten-fold photonic quasicrystalline structures in the sub-micro scale. Based on the difference of production conditions, a variety of quasicrystals have been obtained in the SU8 photoresist films. Scanning Probe Microscopy and laser diffraction are used to characterize the produced structures. The corresponding theoretical analysis is also provided to compare with the experimental results. This will provide guidance for the large-area and fast production of ten-fold quasicrystalline structures with high quality.

  13. Nature-inspired optimization of quasicrystalline arrays and all-dielectric optical filters and metamaterials

    NASA Astrophysics Data System (ADS)

    Namin, Frank Farhad A.

    Quasicrystalline solids were first observed in nature in 1980s. Their lattice geometry is devoid of translational symmetry; however it possesses long-range order as well as certain orders of rotational symmetry forbidden by translational symmetry. Mathematically, such lattices are related to aperiodic tilings. Since their discovery there has been great interest in utilizing aperiodic geometries for a wide variety of electromagnetic (EM) and optical applications. The first thrust of this dissertation addresses applications of quasicrystalline geometries for wideband antenna arrays and plasmonic nano-spherical arrays. The first application considered is the design of suitable antenna arrays for micro-UAV (unmanned aerial vehicle) swarms based on perturbation of certain types of aperiodic tilings. Due to safety reasons and to avoid possible collision between micro-UAVs it is desirable to keep the minimum separation distance between the elements several wavelengths. As a result typical periodic planar arrays are not suitable, since for periodic arrays increasing the minimum element spacing beyond one wavelength will lead to the appearance of grating lobes in the radiation pattern. It will be shown that using this method antenna arrays with very wide bandwidths and low sidelobe levels can be designed. It will also be shown that in conjunction with a phase compensation method these arrays show a large degree of versatility to positional noise. Next aperiodic aggregates of gold nano-spheres are studied. Since traditional unit cell approaches cannot be used for aperiodic geometries, we start be developing new analytical tools for aperiodic arrays. A modified version of generalized Mie theory (GMT) is developed which defines scattering coefficients for aperiodic spherical arrays. Next two specific properties of quasicrystalline gold nano-spherical arrays are considered. The optical response of these arrays can be explained in terms of the grating response of the array

  14. Alloy

    NASA Astrophysics Data System (ADS)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2014-07-01

    The Mg98.5Gd1Zn0.5 alloy produced by a powder metallurgy route was studied and compared with the same alloy produced by extrusion of ingots. Atomized powders were cold compacted and extruded at 623 K and 673 K (350 °C and 400 °C). The microstructure of extruded materials was characterized by α-Mg grains, and Mg3Gd and 14H-LPSO particles located at grain boundaries. Grain size decreased from 6.8 μm in the extruded ingot, down to 1.6 μm for powders extruded at 623 K (350 °C). Grain refinement resulted in an increase in mechanical properties at room and high temperatures. Moreover, at high temperatures the PM alloy showed superplasticity at high strain rates, with elongations to failure up to 700 pct.

  15. Development of ductile Fe{sub 3}Al-based aluminides

    SciTech Connect

    McKamey, C.G.; Sikka, V.K.; Goodwin, G.M.

    1993-07-01

    Iron aluminides based on Fe{sub 3}Al are of interest because of their excellent oxidation and corrosion resistance, especially in sulfur-bearing atmospheres. Work at ORNL has centered on developing Fe{sub 3}Al-based alloys with improved ambient temperature ductilities and increased strengths at temperatures of 600--700C. Ambient temperature brittleness in this system is not ``inherent,`` but is caused by atomic hydrogen which is produced by an environmental reaction between aluminum in the alloy and water vapor in the atmosphere. Great strides have been made in understanding this embrittlement Phenomenon, and the production of alloys with room temperature ductilities of over 10% and tensile yield strengths at 600C of as high as 500 MPa is now possible through modifications in alloy composition and control of thermomechanical processing techniques. Creep rupture lifes of over 200 h at 593C (1100{degrees}F) and 207 MPa (30 ksi) can also be produced through control of alloy composition and microstructure. This paper summarizes our present efforts to improve the tensile and creep rupture properties and gives the status of efforts to commercialize Fe{sub 3}Al-based alloy compositions.

  16. Optimal width of quasicrystalline slabs of dielectric cylinders to microwave radiation transmission contrast

    NASA Astrophysics Data System (ADS)

    Andueza, Ángel; Wang, Kang; Pérez-Conde, Jesús; Sevilla, Joaquín

    2016-08-01

    Light confinement induced by resonant states in aperiodic photonic structures is interesting for many applications. A particular case of these resonances can be found in 2D quasicrystalline arrangements of dielectric cylinders. These systems present a rather isotropic band gap as well as isolated in-gap photonic states (as a result of spatially localized resonances). These states are built by high symmetry polygonal clusters that can be regarded as photonic molecules. In this paper, we study the transmission properties of a slab of glass cylinders arranged in approximants of the decagonal quasicrystalline structure. In particular, we investigate the influence of the slab width in the transmission contrast between the states and the gap. The study is both experimental and numerical in the microwave regime. We find that the best transmission contrast is found for a width of around three times the radiation wavelength. The transmission in the band gap region is mediated by the resonances of the photonic molecules. If the samples are thin enough, they become transparent except around a resonance of the photonic molecule which reflects the incoming light.

  17. Quasicrystalline Approach to Prediting the Spinel-Nepheline Liquidus: Application to Nuclear Waste Glass Processing

    SciTech Connect

    Jantzen, Carol

    2005-10-10

    The crystal-melt equilibria in complex fifteen component melts are modeled based on quasicrystalline concepts. A pseudobinary phase diagram between acmite (which melts incongruently to a transition metal ferrite spinel) and nepheline is defined. The pseudobinary lies within the Al{sub 2}O{sub 3}-Fe{sub 2}O{sub 3}-Na{sub 2}O-SiO{sub 2} quaternary system that defines the crystallization of basalt glass melts. The pseudobinary provides the partitioning of species between the melt and the primary liquidus phases. The medium range order of the melt and the melt-crystal exchange equilibria are defined based on a constrained mathematical treatment that considers the crystallochemical coordination of the elemental species in acmite and nepheline. The liquidus phases that form are shown to be governed by the melt polymerization and the octahedral site preference energies. This quasicrystalline liquidus model has been used to prevent unwanted crystallization in the world's largest high level waste (HLW) melter for the past three years while allowing >10 wt% higher waste loadings to be processed.

  18. Ordering and growth of rare gas films (Xe, Kr, Ar, and Ne) on the pseudo-ten-fold quasicrystalline approximant Al₁₃Co₄(100) surface.

    PubMed

    Petucci, J; Karimi, M; Huang, Y-T; Curtarolo, S; Diehl, R D

    2014-03-01

    Adsorption of the rare gases Kr, Ar, and Ne on the complex alloy surface Al₁₃Co₄(100) was studied using grand canonical Monte Carlo (GCMC) computer simulations. This surface is an approximant to the ten-fold decagonal Al-Ni-Co quasicrystalline surface, on which rare gas adsorption was studied previously. Comparison of adsorption results on the periodic Al₁₃Co₄(100) surface with those of the quasiperiodic Al-Ni-Co surface indicates some similarities, such as layer-by-layer growth, and some dissimilarities, such as the formation of Archimedes tiling phases (Mikhael et al 2008 Nature 454 501, Shechtman et al 1984 Phys. Rev. Lett. 53 1951, Macia 2006 Rep. Prog. Phys. 69 397, Schmiedeberg et al 2010 Eur. Phys. J. E 32 25-34, Kromer et al 2012 Phys. Rev. Lett. 108 218301, Schmiedeberg and Stark 2008 Phys. Rev. Lett. 101 218302). The conditions under which Archimedes tiling phases (ATP) emerge on Al₁₃Co₄(100) are examined and their presence is related to the gas-gas and gas-surface interaction parameters. PMID:24521558

  19. Ordering and growth of rare gas films (Xe, Kr, Ar, and Ne) on the pseudo-ten-fold quasicrystalline approximant Al₁₃Co₄(100) surface.

    PubMed

    Petucci, J; Karimi, M; Huang, Y-T; Curtarolo, S; Diehl, R D

    2014-03-01

    Adsorption of the rare gases Kr, Ar, and Ne on the complex alloy surface Al₁₃Co₄(100) was studied using grand canonical Monte Carlo (GCMC) computer simulations. This surface is an approximant to the ten-fold decagonal Al-Ni-Co quasicrystalline surface, on which rare gas adsorption was studied previously. Comparison of adsorption results on the periodic Al₁₃Co₄(100) surface with those of the quasiperiodic Al-Ni-Co surface indicates some similarities, such as layer-by-layer growth, and some dissimilarities, such as the formation of Archimedes tiling phases (Mikhael et al 2008 Nature 454 501, Shechtman et al 1984 Phys. Rev. Lett. 53 1951, Macia 2006 Rep. Prog. Phys. 69 397, Schmiedeberg et al 2010 Eur. Phys. J. E 32 25-34, Kromer et al 2012 Phys. Rev. Lett. 108 218301, Schmiedeberg and Stark 2008 Phys. Rev. Lett. 101 218302). The conditions under which Archimedes tiling phases (ATP) emerge on Al₁₃Co₄(100) are examined and their presence is related to the gas-gas and gas-surface interaction parameters.

  20. Investigation of the thermal diffusion during the formation of a quasicrystalline phase in thin Al-Pd-Re films

    SciTech Connect

    Seregin, A. Yu. Makhotkin, I. A.; Yakunin, S. N.; Erko, A. I.; Tereshchenko, E. Yu.; Shaitura, D. S.; Chikina, E. A.; Tsetlin, M. B.; Mikheeva, M. N.; Ol'shanskii, E. D.

    2011-05-15

    The layer mixing during the formation of the Al{sub 70}Pd{sub 20}Re{sub 10} icosahedral quasicrystalline phase in thin (55 nm) Al-Pd-Re layered film systems subjected to vacuum annealing has been studied. It is shown that a combined layer of Pd and Al atoms (with the Al{sub 3}Pd{sub 2} phase dominating) is formed in the first stage (at 350 Degree-Sign C), while the rhenium layer remains invariable. In the second annealing stage (at 450 Degree-Sign C), the {beta} Prime -AlPd phase is formed and the Re layer is diffused. In the third stage (700 Degree-Sign C), Pd and Re atoms are uniformly distributed throughout the film with the formation of a quasicrystalline phase.

  1. Total-energy calculations for crystalline approximants of quasicrystalline structures: Occupation of the centers of the icosahedral units

    NASA Astrophysics Data System (ADS)

    Sikka, S. K.; Sharma, Surinder M.; Chidambaram, R.

    1993-02-01

    Motivated by recent positron-annihilation experiments on quasicrystalline materials, we have investigated whether the centers of packing units [of Mackay's icosahedron for the Al-Mn system and cuboctahedron for the Mg-Zn (Al) system] are empty or filled. Our pseudopotential-based total-energy calculations suggest that the centers are occupied, in agreement with experimental positron-annihilation results. Possible reasons for discrepancies with the diffraction results are discussed.

  2. An Ultrasonic Study of Hydrogen Motion in a Ti-Zr-Ni Quasicrystalline Material

    NASA Astrophysics Data System (ADS)

    Hightower, J. E.; Foster, K.; Leisure, R. G.; Kim, J. Y.; Kelton, K. F.

    2000-09-01

    Previous ultrasonic attenuation measurements^1 for a Ti-Zr-Ni quasicrystalline material have been extended to cover a temperature range up to 425K. The samples were charged to a hydrogen to metal ratio of 0.79 for the quasicrystal and 0.20 for the related crystalline approximant. Hydrogen motion within these materials causes a peak in the ultrasonic loss as a function of temperature. The present higher temperature measurements complement the previous data and give a more reliable determination of the parameters of the hydrogen motion. The results suggest that the hydrogen motion is about an order of magnitude faster in the quasicrystal than in the approximant. The current measurements cannot determine whether this is due to basic differences between the two materials or to hydrogen concentration dependence. The research at Colorado State University was supported by NSF Grant No. DMR-0070808. The work at Washington University was supported by NSF Grant No. DMR-9705202. ^1K. Foster, R. G. Leisure, J. B. Shaklee, J. Y. Kim, and K. F. Kelton, Phys. Rev. B 61, 241 (2000).

  3. Beyond entropy: magnetic forces induce formation of quasicrystalline structure in binary nanocrystal superlattices.

    PubMed

    Yang, Zhijie; Wei, Jingjing; Bonville, Pierre; Pileni, Marie-Paule

    2015-04-01

    Here, it is shown that binary superlattices of Co/Ag nanocrystals with the same size, surface coating, differing by their type of crystallinity are governed by Co-Co magnetic interactions. By using 9 nm amorphous-phase Co nanocrystals and 4 nm polycrystalline Ag nanocrystals at 25 °C, triangle-shaped NaCl-type binary nanocrystal superlattices are produced driven by the entropic force, maximizing the packing density. By contrast, using ferromagnetic 9 nm single domain (hcp) Co nanocrystals instead of amorphous-phase Co, dodecagonal quasicrystalline order is obtained, together with less-packed phases such as the CoAg13 (NaZn13-type), CoAg (AuCu-type), and CoAg3 (AuCu3-type) structures. On increasing temperature to 65 °C, 9 nm hcp Co nanocrystals become superparamagnetic, and the system yields the CoAg3 (AuCu3-type) and CoAg2 (AlB2-type) structures, as observed with 9 nm amorphous Co nanocrystals. Furthermore, by decreasing the Co nanocrystal size from 9 to 7 nm, stable AlB2-type binary nanocrystal superlattices are produced, which remain independent of the crystallinity of Co nanocrystals with the superparamagnetic state. PMID:25785302

  4. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO{sub 3} Fe{sub 3}Al, Co{sub 3}Al, and Ni{sub 3}Al based intermetallic phases

    SciTech Connect

    Samolyuk, G. D.; Stocks, G. M.; Újfalussy, B.

    2014-11-07

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co, and Ti within the AlNi-based matrix phase. In this paper, we report the results of first-principles calculations of the site preference of ternary alloying additions in DO{sub 3} Fe{sub 3}Al, Co{sub 3}Al, and Ni{sub 3}Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which correspond to experimental situation, Ti and Fe are found to occupy the α sites, while Co and Ni prefer the γ sites of the DO{sub 3} lattice. An important finding is that the magnetic moments of transition metals in Fe{sub 3}Al and Co{sub 3}Al are ordered ferromagnetically, whereas the Ni{sub 3}Al were found to be nonmagnetic unless the Fe or Co is added as a ternary element.

  5. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO3 Fe3Al, Co3Al, and Ni3Al based intermetallic phases

    SciTech Connect

    Samolyuk, G. D.; Újfalussy, B.; Stocks, G. M.

    2014-11-07

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co and Ti within the AlNi-based matrix phase. In our paper we report the results of first-principles calculations of the site preference of ternary alloying additions in DO3 Fe3Al, Co3Al and Ni3Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which corresponds to experimental situation, Ti and Fe are found to occupy the sites, while Co and Ni prefer the sites of the DO3 lattice. Finally, an important finding is that the magnetic moments of transition metals in Fe3Al and Co3Al are ordered ferromagnetically, whereas the Ni3Al were found to be nonmagnetic unless the Fe or Co are added as a ternary element.

  6. Precipitates in a quasicrystal-strengthened Al–Mn–Be–Cu alloy

    SciTech Connect

    Zupanič, Franc; Wang, Di; Gspan, Cristian; Bončina, Tonica

    2015-08-15

    In this work, an Al–Mn–Be–Cu alloy was studied containing a primary and eutectic icosahedral quasicrystalline phase in the as-cast microstructure. Special attention was given to a transmission electron microscopy investigation of precipitates formed within the aluminium solid solution (Al{sub ss}) at different temperatures. At 200 °C, only binary Al–Cu precipitates (θ′) were formed. At 300 °C, icosahedral quasicrystalline (IQC) precipitates prevailed with a crystallographic orientation relationship with the Al{sub ss.} The rods of the T-phase (Al{sub 20}Mn{sub 3}Cu{sub 2}) which were precipitated above 400 °C, also had a specific orientation relationship with the Al{sub ss}. The primary and eutectic IQC microstructural constituent started to transform rapidly to the T-phase and Be{sub 4}Al(Mn,Cu) at 500 °C. - Highlights: • In a quasicrystal-strengthened Al-alloy several types of precipitates can form. • At 200 °C, only binary Al–Cu precipitates formed (Al{sub 2}Cu-θ′). • The icosahedral quasicrystalline (IQC) precipitates prevailed at 300 °C. • T-phase (Al{sub 20}Mn{sub 3}Cu{sub 2}) precipitated at temperatures above 400 °C. • The precipitation of different phases did not have a strong effect on hardness.

  7. Quasicrystal-Crystal Transformation in Zn-Mg-Rare-Earth Alloys

    NASA Astrophysics Data System (ADS)

    Abe, Eiji; Tsai, An Pang

    1999-07-01

    We report a reversible phase transformation between the icosahedral Zn-Mg-rare-earth(RE) quasicrystal and the hexagonal crystal being not composed of any giant icosahedral atomic cluster. This clearly shows that the large atomic cluster is not an essential atomic configuration for quasicrystal formation. A structural unit of the Zn-Mg-RE icosahedral quasicrystal is suggested to be not an icosahedral atomic cluster such as the Mackay or Bergman type which have been successfully used for the structural description of the Al-based icosahedral quasicrystalline phases.

  8. Spark plasma sintering of Al-Si-Cu-Fe quasi-crystalline powder

    NASA Astrophysics Data System (ADS)

    Fleury, E.; Lee, J. H.; Kim, S. H.; Kim, W. T.; Kim, J. S.; Kim, D. H.

    2003-03-01

    This article presents the results of a study on the microstructure and mechanical properties of Al-Si-Cu-Fe specimens produced by the spark plasma sintering (SPS) technique. The microstructure of the starting powder and bulk specimens was analyzed by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The formation of the icosahedral and decagonal quasi-crystalline phases in the as-gas-atomized powders is described for the first time. It is then shown that these metastable phases transformed into the 1/1 cubicapproximant phase upon heating at about 600°C. Second, the effects of SPS process parameters such as the temperature and time have been investigated. Owing to the generation of a spark discharge neighboring powder particles, dense cylindrical samples were obtained after a short sintering time of 30 minutes at the temperature of 650°C. The highest values of the Vickers microhardness, about 8.9 GPa, were obtained when the powders were sintered in the temperature range of 600°C to 650°C for a holding time of 30 minutes, while the fracture toughness was found to be inversely proportional to the sintering temperature. However, at the sintering temperature of 650°C, the fracture toughness increased from about 1.40 to 1.52 MPa √m as the holding time increased from 10 to 60 minutes. As compared to cast specimens, the enhanced mechanical properties are explained by the refined microstructure resulting from the low temperature and short sintering time applied during SPS processing

  9. Dual-phase glassy/nanoscale icosahedral phase materials in Cu–Zr–Ti–Pd system alloys

    SciTech Connect

    Louzguine-Luzgin, Dmitri V.; Churyumov, A.Yu.

    2014-10-15

    The present work is devoted to an investigation of the formation kinetics, stability and homogeneity area of the nanoscale icosahedral phase formed on heating in the dual-phase glassy/quasicrystalline phase Cu–Zr–Ti–Pd alloys. The data obtained indicate that the Cu–Zr–Ti–Pd icosahedral phase is not a Cu-rich part of the compositional homogeneity area of the Zr–Cu–Pd one. Moreover, Ti, as well as Pd, is found to be an important element stabilizing quasicrystalline phase in the Cu–Zr–Ti–Pd alloys. The formation criteria for Cu- and Zr/Hf-based icosahedral phases are discussed based on the quasilattice constant to average atomic diameter ratio. Deviation from a certain ratio leads to destabilization of the icosahedral phase. By using the isothermal calorimetry traces transformation kinetics above and below the glass-transition region was analyzed. Some difference in the transformation kinetics above and below the glass-transition region allows us to suggest that possible structure changes occur upon glass-transition. - Highlights: • Formation kinetics, stability and homogeneity area of nanoscale icosahedral phase • Cu–Zr–Ti–Pd icosahedral phase is not a Cu-rich part of Zr–Cu–Pd one. • Ti, as well as Pd, is an important element stabilizing quasicrystalline phase. • Difference in transformation kinetics above and below glass-transition region.

  10. Direct observations of local electronic states in an Al-based quasicrystal by STEM-EELS.

    PubMed

    Seki, Takehito; Abe, Eiji

    2014-11-01

    Most quasicrystals (QCs) reveal pseudogaps in their density of states around Fermi level, and hence the stability of QCs have been discussed in terms of energetic gains in electron systems. In fact, many QCs have been discovered by tuning valence electron density based on Hume-Rothery rule. Therefore, understanding electronic structures in QCs may provide an important clue for their stabilization mechanism. Generally, it has been frequently discussed based on an interaction between Fermi surface and Brillouin zone boundary within the framework of nearly free electron model, which is believed to be an underlying physics of a Hume-Rothery's empirical criteria. However the hybridization effect also stabilize electron system, particularly in Al-transition metal system, in which a lot of quasicrystalline phases were discovered. Therefore, the electronic structures of QCs have not yet been fully understood, whereas their atomic structures have been studied well in terms of configuration entropy by scanning transmission electron microscopy (STEM) [1]. In the present work, we investigate local electronic states in Al-based QCs using electron energy loss spectroscopy (EELS) combined with STEM, by which EELS spectra with sub-Å probe and atomic structure can be obtained simultaneously. We report STEM-EELS results on AlCuIr decagonal phases [2].jmicro;63/suppl_1/i17-a/DFU069F1F1DFU069F1Fig. 1.Core-loss edges obtained from cluster-centers and cluster-edges. Al L1 (left) Ir O23, Ir N67 (center) and Cu L23 (right). Principal components analysis clearly shows up the atomic-site dependence of plasmon loss spectra in a two-dimensional map. Qualitatively, there seems to be certain correlations between the plasmon peaks and the core-loss edges, Al L1, Ir O23, Ir N67 and Cu L23, all of which reveal different behaviors at the cluster centers and the edges (Fig. 1). All results indicate the cluster centers have metallic states and the cluster edges have covalent states in comparison

  11. Advanced ordered intermetallic alloy deployment

    SciTech Connect

    Liu, C.T.; Maziasz, P.J.; Easton, D.S.

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  12. Rapid-solidification processing and powder metallurgy of al alloys. Final technical report, 15 April 1982-15 April 1985

    SciTech Connect

    Fraser, H.L.

    1986-10-29

    Regarding work on the development of microstructure during rapid solidification, three areas were addressed. The first of these involved a determination of the mechanism of formation of the so-called zones A and B in hypereutectic Al-transition metal alloys. The second area of work involving the development of microstructure concerns submerged phase transformations. In a study of Al-Be hypereutectic alloys, it was determined that solidification proceeded by a set of phase transformations that may be described by a monotectic reaction. The third area of study concerning microstructural development involves quasi-crystalline Al alloys. In fact, work done in this program has concentrated on the potentially beneficial aspects of quasi-crystalline phases in the microstructure of Al alloys. Work on the consolidation of particulate was concentrated on the use of conventional techniques (.e. extrusion) and novel processes (i.e. dynamic compaction). An estimate of the mechanical properties of rapidly solidified Al alloys was obtained. As explained above, the effect of extrusion is to cause decomposition of the rapidly solidified microstructure. A comparison was made, using the alloy Al-8Fe-2Mo, between the tensile properties of the decomposed microstructure (.e. extruded) and subscale test specimens produced by laser surface melting, consisting entirely of zone A.

  13. Modeling multi-layer effects in passive microwave remote sensing of dry snow using Dense Media Radiative Transfer Theory (DMRT) based on quasicrystalline approximation

    USGS Publications Warehouse

    Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.

    2008-01-01

    The Dense Media Radiative Transfer theory (DMRT) of Quasicrystalline Approximation of Mie scattering by sticky particles is used to study the multiple scattering effects in layered snow in microwave remote sensing. Results are illustrated for various snow profile characteristics. Polarization differences and frequency dependences of multilayer snow model are significantly different from that of the single-layer snow model. Comparisons are also made with CLPX data using snow parameters as given by the VIC model. ?? 2007 IEEE.

  14. Devitrification of Mechanically Alloyed Zr-Ti-Nb-Cu-Ni-Al Glassy Powders Studied by Time-Resolved X-ray Diffraction

    SciTech Connect

    Scudino, S.; Sordelet, D.J.; Eckert, J.

    2009-04-13

    The crystallization of mechanically alloyed Zr{sub 67}Ti{sub 6.14}Nb{sub 1.92}Cu{sub 10.67}Ni{sub 8.52}Al{sub 5.75} glassy powder is investigated by time-resolved X-ray diffraction. The powder displays a multi-step crystallization behavior characterized by the formation of a metastable nanoscale quasicrystalline phase during the first stage of the crystallization process. At higher temperatures, coinciding with the second crystallization event, the amorphous-to-quasicrystalline transformation is followed by the precipitation of the tetragonal Zr{sub 2}Cu phase (space group I4/mmm) and the tetragonal Zr{sub 2}Ni phase (space group I4/mcm). The transformations are gradual and the quasicrystals and the subsequent phases coexist over a temperature interval of about 25K.

  15. Electronic structure in the Al-Mn alloy crystalline analog of quasicrystals

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takeo

    1989-07-01

    Electronic structure in crystalline α-(Al114Mn24) is calculated by the linear muffin-tin orbital-atomic-sphere approximation method with the local-density-functional theory. The density of states consists of a set of spiky peaks. The electronic structure is discussed for quasicrystalline Al-Mn alloy from the viewpoint of the stability and the role of the vacant center of the Mackay icosahedron. The stability is actually owing to the pseudogap of the Mn 3d band and the deep s,p-bonding bands of the Al glue atoms.

  16. Computational study of low-friction quasicrystalline coatings via simulations of thin film growth of hydrocarbons and rare gases

    NASA Astrophysics Data System (ADS)

    Setyawan, Wahyu

    Quasicrystalline compounds (QC) have been shown to have lower friction compared to other structures of the same constituents. The abscence of structural interlocking when two QC surfaces slide against one another yields the low friction. To use QC as low-friction coatings in combustion engines where hydrocarbon-based oil lubricant is commonly used, knowledge of how a film of lubricant forms on the coating is required. Any adsorbed films having non-quasicrystalline structure will reduce the self-lubricity of the coatings. In this manuscript, we report the results of simulations on thin films growth of selected hydrocarbons and rare gases on a decagonal Al73Ni10Co17 quasicrystal (d-AlNiCo). Grand canonical Monte Carlo method is used to perform the simulations. We develop a set of classical interatomic many-body potentials which are based on the embedded-atom method to study the adsorption processes for hydrocarbons. Methane, propane, hexane, octane, and benzene are simulated and show complete wetting and layered films. Methane monolayer forms a pentagonal order commensurate with the d-AlNiCo. Propane forms disordered monolayer. Hexane and octane adsorb in a close-packed manner consistent with their bulk structure. The results of hexane and octane are expected to represent those of longer alkanes which constitute typical lubricants. Benzene monolayer has pentagonal order at low temperatures which transforms into triangular lattice at high temperatures. The effects of size mismatch and relative strength of the competing interactions (adsorbate-substrate and between adsorbates) on the film growth and structure are systematically studied using rare gases with Lennard-Jones pair potentials. It is found that the relative strength of the interactions determines the growth mode, while the structure of the film is affected mostly by the size mismatch between adsorbate and substrate's characteristic length. On d-AlNiCo, xenon monolayer undergoes a first-order structural

  17. Cost-Effective TiAl based Materials

    NASA Technical Reports Server (NTRS)

    Moxson, V. S.; Sun, Fusheng; Draper, Susan L.; Froes, F. H.; Duz, V.

    2003-01-01

    Because of their inherent low ductility, TiAl-based materials are difficult to fabricate, especially thin gage titanium gamma aluminide (TiAl) sheet and foil. In this paper, an innovative powder metallurgy approach for producing cost-effective thin gage TiAl sheets (with 356 mm long and 235 mm wide, and a thickness of 0.74, 1.09, 1.55, and 2.34 mm, respectively) is presented. The microstructures and tensile properties at room and elevated temperatures of the thin gage TiAl are studied. Results show that these TiAl sheets have a relatively homogenous chemistry, uniform microstructure, and acceptable mechanical properties. This work demonstrates a cost-effective method for producing both flat products (sheet/foil) and complex chunky parts of TiAl for various advanced applications including aerospace and automotive industries.

  18. Fabrication and mechanical properties of Fe sub 3 Al-based iron aluminides

    SciTech Connect

    Sikka, V.K.; McKamey, C.G.; Howell, C.R.; Baldwin, R.H.

    1990-03-01

    Iron aluminides based on Fe{sub 3}Al are ordered intermetallic alloys that offer good oxidation resistance, excellent sulfidation resistance, and lower material cost than many stainless steels. These materials also conserve strategic elements such as chromium and have a lower density than stainless steels. However, limited ductility at ambient temperature and a sharp drop in strength have been major deterrents to their acceptance for structural applications. This report presents results on iron aluminides with room-temperature elongations of 15 to 20%. Ductility values were improved by a combination of thermomechanical processing and heat-treatment control. This method of ductility improvement has been demonstrated for a range of compositions. Melting, casting, and processing of 7-kg (15-lb) heats produced at the Oak Ridge National Laboratory (ORNL) and 70-kg (150-lb) commercial heats are described. Vacuum melting and other refining processes such as electroslag remelting are recommended for commercial heats. The Fe{sub 3}Al-based iron aluminides are hot workable by forging or extruding at temperatures in the range of 850 to 1100{degree}C. rolling at 800{degree}C is recommended with a final 50% reduction at 650{degree}C. Tensile and creep properties of 7- and 70-kg (15- and 150-lb) heats are presented. The presence of impurities such as manganese an silicon played an important role in reducing the ductility of commercially melted heats. 7 refs., 60 figs., 12 tabs.

  19. Solidification studies of nanocrystalline and quasicrystalline materials from the undercooled state

    NASA Astrophysics Data System (ADS)

    Croat, Thomas Kevin

    2001-07-01

    Nanocrystallization occurring during metallic glass devitrification is studied in Zr-Al-Ni-Cu bulk metallic glasses (BMGs) and Al-RE-TM (RE = rare-earth, TM = transition metal) metallic glasses. The importance of transient nucleation in BMG devitrification was established by a direct transmission electron microscopy (TEM) measurement of the grain density in two-stage annealed samples. TEM examination of low temperature annealed BMGs also suggest that amorphous phase separation is occurring prior to crystallization. Nanocrystallization of rapidly quenched Al-RE-Ni glasses was preceded by the compositional segregation of the initially homogeneous glass into Al-rich and solute-rich regions (mainly nickel-enriched) on a ≈50--100 nm length scale, suggesting amorphous phase separation. This pre-existing compositional modulation on a nanometer scale leads naturally to the development of nanocrystals. The average rare earth radius (rRE) in Al-RE-Ni alloys was altered by co-substitution of chemically similar rare earth elements. In glasses with smaller r RE, nucleation of alpha-Al occurred preferentially near the boundaries of the phase-separated regions. However, phase separation did not universally lead to alpha-Al nanocrystallization; glasses with larger rRE crystallized to metastable intermetallic phases with a 50--100 nm grain size. Kinetic analysis of the alpha-Al crystallization was performed using isothermal DSC, yielding abnormally low Avrami exponents (n = 1.0--1.5); these values were found to be consistent with the observed transformation using a model that considers the overlapping diffusion fields of the alpha-Al grains during growth within the phase separated region. Containerless solidification experiments on Ti-based quasicrystal-forming alloys have been performed using various techniques, including drop-tube solidification, electromagnetic levitation (EML) and electrostatic levitation (ESL). In Ti-Fe-Si-O, the alpha-1/1 quasicrystal approximant phase is

  20. Quasi-ordered C60 molecular films grown on the pseudo-ten-fold (1 0 0) surface of the Al13Co4 quasicrystalline approximant.

    PubMed

    Fournée, V; Gaudry, É; Ledieu, J; de Weerd, M-C; Diehl, R D

    2016-09-01

    The growth of C60 films on the pseudo-ten-fold (1 0 0) surface of the orthorhombic Al13Co4 quasicrystalline approximant was studied experimentally by scanning tunneling microscopy, low-energy electron diffraction and photoemission spectroscopy. The (1 0 0) surface terminates at bulk-planes presenting local atomic configurations with five-fold symmetry-similar to quasicrystalline surfaces. While the films deposited at room temperature were found disordered, high-temperature growth (up to 693 K) led to quasi-ordered molecular films templated on the substrate rectangular unit mesh. The most probable adsorption sites and geometries were investigated by density functional theory (DFT) calculations. A large range of adsorption energies was determined, influenced by both symmetry and size matching at the molecule-substrate interface. The quasi-ordered structure of the film can be explained by C60 adsorption at the strongest adsorption sites which are too far apart compared to the distance minimizing the intermolecular interactions, resulting in some disorder in the film structure at a local scale. Valence band photoemission indicates a broadening of the molecular orbitals resulting from hybridization between the substrate and overlayer electronic states. Dosing the film at temperature above 693 K led to molecular damage and formation of carbide thin films possessing no azimuthal order with respect to the substrate. PMID:27365317

  1. Quasi-ordered C60 molecular films grown on the pseudo-ten-fold (1 0 0) surface of the Al13Co4 quasicrystalline approximant

    NASA Astrophysics Data System (ADS)

    Fournée, V.; Gaudry, É.; Ledieu, J.; de Weerd, M.-C.; Diehl, R. D.

    2016-09-01

    The growth of C60 films on the pseudo-ten-fold (1 0 0) surface of the orthorhombic Al13Co4 quasicrystalline approximant was studied experimentally by scanning tunneling microscopy, low-energy electron diffraction and photoemission spectroscopy. The (1 0 0) surface terminates at bulk-planes presenting local atomic configurations with five-fold symmetry—similar to quasicrystalline surfaces. While the films deposited at room temperature were found disordered, high-temperature growth (up to 693 K) led to quasi-ordered molecular films templated on the substrate rectangular unit mesh. The most probable adsorption sites and geometries were investigated by density functional theory (DFT) calculations. A large range of adsorption energies was determined, influenced by both symmetry and size matching at the molecule-substrate interface. The quasi-ordered structure of the film can be explained by C60 adsorption at the strongest adsorption sites which are too far apart compared to the distance minimizing the intermolecular interactions, resulting in some disorder in the film structure at a local scale. Valence band photoemission indicates a broadening of the molecular orbitals resulting from hybridization between the substrate and overlayer electronic states. Dosing the film at temperature above 693 K led to molecular damage and formation of carbide thin films possessing no azimuthal order with respect to the substrate.

  2. Processing and Mechanical Properties of NiAl-Based In-Situ Composites. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Johnson, David Ray

    1994-01-01

    In-situ composites based on the NiAl-Cr eutectic system were successfully produced by containerless processing and evaluated. The NiAl-Cr alloys had a fibrous microstructure while the NiAl-(Cr,Mo) alloys containing 1 at. percent or more molybdenum exhibited a lamellar structure. The NiAl-28Cr-6Mo eutectic displays promising high temperature strength while still maintaining a reasonable room temperature fracture toughness when compared to other NiAl-based materials. The Laves phase NiAlTa was used to strengthen NiAl and very promising creep strengths were found for the directionally solidified NiAl-NiAlTa eutectic. The eutectic composition was found to be near NiAl-15.5Ta (at. percent) and well aligned microstructures were produced at this composition. An off-eutectic composition of NiAl-14.5Ta was also processed, consisting of NiAl dendrites surrounded by aligned eutectic regions. The room temperature toughness of these two phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa. Polyphase in-situ composites were generated by directional solidification of ternary eutectics. The systems investigated were the Ni-Al-Ta-X (X=Cr, Mo, or V) alloys. Ternary eutectics were found in each of these systems and both the eutectic composition and temperature were determined. Of these ternary eutectics, the one in the NiAl-Ta-Cr system was found to be the most promising. The fracture toughness of the NiAl-(Cr,Al)NiTa-Cr eutectic was intermediate between those of the NiAl-NiAlTa eutectic and the NiAl-Cr eutectic. The creep strength of this ternary eutectic was similar to or greater than that of the NiAl-Cr eutectic.

  3. Low-aluminum-content iron-aluminum alloys

    SciTech Connect

    Sikka, V.K.; Baldwin, R.H.; Howell, C.R.

    1993-07-01

    The low room-temperature ductility Fe{sub 3}Al-based alloys is associated with their environmental embrittlement. Reducing the aluminum level from 29 to 16 at % has been found to be an effective method in essentially eliminating the environmental-embrittlement effect and increasing the room-temperature ductility value to over 25%. This paper will present data on alloy compositions, melting, casting and processing methods, and mechanical properties. Plans for future work on these alloys will also be described.

  4. Correlation between medium-range order structure and glass-forming ability for Al-based metallic glasses

    SciTech Connect

    Wu, N. C.; Yan, M.; Zuo, L.; Wang, J. Q.

    2014-01-28

    To clarify the correlation of medium-range order (MRO) structure with glass forming ability (GFA) of Al-based metallic glasses, Al{sub 86}Ni{sub 14-a}Y{sub a} (a = 2∼9 at. %) metallic glasses were analyzed by x-ray diffraction in detail and further verified by synchrotron high-energy x-ray diffraction. The prepeak that reflects the MRO structural evolution was found to be much sensitive to alloy composition. We have proposed an icosahedral supercluster MRO structure model in Al-TM (transition metal)-RE (rare earth metal) system, which consists of 12 RE(TM)-centered clusters on the vertex of icosahedral supercluster, one RE(TM)-centered clusters in the center, and TM(RE) atoms located at RE(TM)-centered cluster tetrahedral interstices in the icosahedral supercluster. It was indicated that the MRO structural stability mainly depends on the interaction of efficient dense packing and electrochemical potential equalization principle. The Al{sub 86}Ni{sub 9}Y(La){sub 5} alloys present good GFA due to the combination of the two structural factors.

  5. Correlation between medium-range order structure and glass-forming ability for Al-based metallic glasses

    NASA Astrophysics Data System (ADS)

    Wu, N. C.; Yan, M.; Zuo, L.; Wang, J. Q.

    2014-01-01

    To clarify the correlation of medium-range order (MRO) structure with glass forming ability (GFA) of Al-based metallic glasses, Al86Ni14-aYa (a = 2˜9 at. %) metallic glasses were analyzed by x-ray diffraction in detail and further verified by synchrotron high-energy x-ray diffraction. The prepeak that reflects the MRO structural evolution was found to be much sensitive to alloy composition. We have proposed an icosahedral supercluster MRO structure model in Al-TM (transition metal)-RE (rare earth metal) system, which consists of 12 RE(TM)-centered clusters on the vertex of icosahedral supercluster, one RE(TM)-centered clusters in the center, and TM(RE) atoms located at RE(TM)-centered cluster tetrahedral interstices in the icosahedral supercluster. It was indicated that the MRO structural stability mainly depends on the interaction of efficient dense packing and electrochemical potential equalization principle. The Al86Ni9Y(La)5 alloys present good GFA due to the combination of the two structural factors.

  6. Development and Characterization of Carbon Nanotubes (CNTs) and Silicon Carbide (SiC) Reinforced Al-based Nanocomposites

    NASA Astrophysics Data System (ADS)

    Gujba, Kachalla Abdullahi

    Composites are engineered materials developed from constituent materials; matrix and reinforcements, to attain synergistic behavior at the micro and macroscopic level which are different from the individual materials. The high specific strength, low weight, excellent chemical resistance and fatigue endurance makes these composites superior than other materials despite anisotropic behaviors. Metal matrix composites (MMCs) have excellent physical and mechanical properties and alumium (Al) alloy composites have gained considerable interest and are used in multiple industries including: aerospace, structural and automotive. The aim of this research work is to develop an advanced Al-based nanocomposites reinforced with Carbon nanotubes (CNTs) and silicon carbide particulates (SiCp) nanophases using mechanical alloying and advanced consolidation procedure (Non-conventional) i.e. Spark Plasma Sintering (SPS) using two types of aluminum alloys (Al-7Si-0.3mg and Al-12Si-0.3Mg). Different concentrations of SiCp and CNTs were added and ball milled for different milling periods under controlled atmosphere to study the effect of milling time and the distribution of the second phases. Characterization techniques were used to investigate the morphology of the as received monolithic and milled powder using Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive Spectroscopy (EDS), X-Ray Mapping, X-Ray Diffraction (XRD) and Particle Size Analyses (PSA). The results revealed that the addition of high concentrations of SiCp and CNTs in both alloys aided in refining the structure of the resulting powder further as the reinforcement particles acted like a grinding agent. Good distribution of reinforcing particles was observed from SEM and no compositional fluctuations were observed from the EDS. Some degree of agglomerations was observed despite the ethyl alcohol sonication effect of the CNTs before ball milling. From the XRD; continuous reduction in crystallite size and

  7. Microstructure modelling of industrial alloys

    NASA Astrophysics Data System (ADS)

    Herlach, Dieter M.; Gandin, Charles-André; Garcia-Escorial, Asuncion; Henein, Hani; Grün, Gerd-Ulrich; Schneider, Marc; Guédou, Jean-Yves; Kieft, René; Grellier, André

    2005-10-01

    Solidification of alloys is a complex phenomenon arising in many modern experimental techniques and industrial technologies involving casting and surface processing. Deep undercooling of alloys below equilibrium liquidus temperature results in rapid solidification, yielding materials with improved mechanical, magnetic and electrical properties. This MAP project is focusing on the long-term perspective for industrial materials such as Ni- and Al-based alloys. Ni-based multicomponent superalloys are the basis material for the production of, for example, turbine blades; Al-based alloys are highly important for the aerospace and automotive industries. More than 90% of all metallic materials are now produced from the liquid state. So far, efforts have been directed towards optimising the industrial production routes in the casting and foundry industry by computer-assisted modelling and simulation of solidification under different conditions. The goal has been to reduce the time- and energy-consuming treatment of the cast material in order to produce a material with the desired properties.

  8. Alloy materials

    DOEpatents

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  9. NiAl alloys for structural uses

    NASA Technical Reports Server (NTRS)

    Koss, D. A.

    1991-01-01

    Alloys based on the intermetallic compound NiAl are of technological interest as high temperature structural alloys. These alloys possess a relatively low density, high melting temperature, good thermal conductivity, and (usually) good oxidation resistance. However, NiAl and NiAl-base alloys suffer from poor fracture resistance at low temperatures as well as inadequate creep strength at elevated temperatures. This research program explored macroalloying additions to NiAl-base alloys in order to identify possible alloying and processing routes which promote both low temperature fracture toughness and high temperature strength. Initial results from the study examined the additions of Fe, Co, and Hf on the microstructure, deformation, and fracture resistance of NiAl-based alloys. Of significance were the observations that the presence of the gamma-prime phase, based on Ni3Al, could enhance the fracture resistance if the gamma-prime were present as a continuous grain boundary film or 'necklace'; and the Ni-35Al-20Fe alloy was ductile in ribbon form despite a microstructure consisting solely of the B2 beta phase based on NiAl. The ductility inherent in the Ni-35Al-20Fe alloy was explored further in subsequent studies. Those results confirm the presence of ductility in the Ni-35Al-20Fe alloy after rapid cooling from 750 - 1000 C. However exposure at 550 C caused embrittlement; this was associated with an age-hardening reaction caused by the formation of Fe-rich precipitates. In contrast, to the Ni-35Al-20Fe alloy, exploratory research indicated that compositions in the range of Ni-35Al-12Fe retain the ordered B2 structure of NiAl, are ductile, and do not age-harden or embrittle after thermal exposure. Thus, our recent efforts have focused on the behavior of the Ni-35Al-12Fe alloy. A second parallel effort initiated in this program was to use an alternate processing technique, mechanical alloying, to improve the properties of NiAl-alloys. Mechanical alloying in the

  10. An Introduction to the BFS Method and Its Use to Model Binary NiAl Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, J.; Amador, C.

    1998-01-01

    We introduce the Bozzolo-Ferrante-Smith (BFS) method for alloys as a computationally efficient tool for aiding in the process of alloy design. An intuitive description of the BFS method is provided, followed by a formal discussion of its implementation. The method is applied to the study of the defect structure of NiAl binary alloys. The groundwork is laid for a detailed progression to higher order NiAl-based alloys linking theoretical calculations and computer simulations based on the BFS method and experimental work validating each step of the alloy design process.

  11. Synthesis of nanocrystalline (Co, Ni)Al2O4 spinel powder by mechanical milling of quasicrystalline materials.

    PubMed

    Yadav, T P; Mukhopadhyay, N K; Tiwari, R S; Srivastava, O N

    2007-02-01

    In the present study, attempts have been made to synthesize the nano-crystalline (Co, Ni)Al2O4 spinel powders by ball milling and subsequent annealing. An alloy of Al70Co15Ni15, exhibiting the formation of a complex intermetallic compound known as decagonal quasicrystal is selected as the starting material for mechanical milling. It is interesting to note that this alloy is close to the stoichiometry of aluminum and transition metal atoms required to form the aluminate spinel. The milling was carried out in an attritor mill at 400 rpm for 40 hours with ball to powder ratio of 20 : 1 in hexane medium. Subsequent to this annealing was performed in an air ambience for 10, 20, and 40 h at 600 degrees C in side the furnace in order to oxidize the decagonal phase and finally to form the spinel structure. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the formation of nano-sized decagonal phase after milling and then (Co, Ni)Al2O4 spinel type phase after annealing. The XRD studies reveal the lattice parameter to be 8.075 angstroms and the lattice strain as 0.6%. The XRD and TEM explorations of spinel phase indicate the average grain size to be approximately 40 nm.

  12. NiAl-base composite containing high volume fraction of AlN for advanced engines

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan (Inventor); Whittenbeger, John D. (Inventor); Lowell, Carl F. (Inventor)

    1994-01-01

    A particulate reinforced NiAl-AlN composite alloy has a NiAl matrix and greater than about 13 volume percent fine particles of AlN within the matrix. The particles preferably have a diameter from about 15 nanometers to about 50 nanometers. The particulate reinforced NiAl-AlN composite alloy may be prepared by cryomilling prealloyed NiAl in liquid nitrogen using grinding media having a diameter of from about 2 to 6 mm at an impeller speed of from about 450 RPM to about 800 RPM. The cryomilling may be done for a duration of from about 4 hours to about 20 hours to obtain a cryomilled powder. The cryomilled powder may be consolidated to form the particulate reinforced NiAl-AlN composite alloy. The particulate reinforced alloy can further include a toughening alloy. The toughening alloy may include NiCrAlY, FeCrAlY, and FeAl.

  13. Structural, Electronic, Magnetic and Optical Properties of Ni,Ti/Al-based Heusler Alloys: A First-Principles Approach

    NASA Astrophysics Data System (ADS)

    Adebambo, Paul O.; Adetunji, Bamidele I.; Olowofela, Joseph A.; Oguntuase, James A.; Adebayo, Gboyega A.

    2016-05-01

    In this article, we constructed formal Lagrangian of Phi-4 equation, and then via this formal Lagrangian, we found adjoint equation. We investigated if the Lie point symmetries of the equation satisfy invariance condition or not. Then we used conservation theorem to find conservation laws of Phi-4 equation. Finally, the exact solutions of the equation were obtained through the (G'/G, 1/G)-expansion method.

  14. The effects of layers in dry snow on its passive microwave emissions using dense media radiative transfer theory based on the quasicrystalline approximation (QCA/DMRT)

    USGS Publications Warehouse

    Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.

    2008-01-01

    A model for the microwave emissions of multilayer dry snowpacks, based on dense media radiative transfer (DMRT) theory with the quasicrystalline approximation (QCA), provides more accurate results when compared to emissions determined by a homogeneous snowpack and other scattering models. The DMRT model accounts for adhesive aggregate effects, which leads to dense media Mie scattering by using a sticky particle model. With the multilayer model, we examined both the frequency and polarization dependence of brightness temperatures (Tb's) from representative snowpacks and compared them to results from a single-layer model and found that the multilayer model predicts higher polarization differences, twice as much, and weaker frequency dependence. We also studied the temporal evolution of Tb from multilayer snowpacks. The difference between Tb's at 18.7 and 36.5 GHz can be S K lower than the single-layer model prediction in this paper. By using the snowpack observations from the Cold Land Processes Field Experiment as input for both multi- and single-layer models, it shows that the multilayer Tb's are in better agreement with the data than the single-layer model. With one set of physical parameters, the multilayer QCA/DMRT model matched all four channels of Tb observations simultaneously, whereas the single-layer model could only reproduce vertically polarized Tb's. Also, the polarization difference and frequency dependence were accurately matched by the multilayer model using the same set of physical parameters. Hence, algorithms for the retrieval of snowpack depth or water equivalent should be based on multilayer scattering models to achieve greater accuracy. ?? 2008 IEEE.

  15. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1963-02-26

    A brazing alloy which, in the molten state, is characterized by excellent wettability and flowability, said alloy being capable of forming a corrosion resistant brazed joint wherein at least one component of said joint is graphite and the other component is a corrosion resistant refractory metal, said alloy consisting essentially of 20 to 50 per cent by weight of gold, 20 to 50 per cent by weight of nickel, and 15 to 45 per cent by weight of molybdenum. (AEC)

  16. VANADIUM ALLOYS

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  17. Arsenate uptake by Al nanoclusters and other Al-based sorbents during water treatment.

    PubMed

    Mertens, Jasmin; Rose, Jérôme; Wehrli, Bernhard; Furrer, Gerhard

    2016-01-01

    In many parts of the world, arsenic from geogenic and anthropogenic sources deteriorates the quality of drinking water resources. Effective methods of arsenic removal include adsorption and coagulation with iron- and aluminum-based materials, of which polyaluminum chloride is widely employed as coagulant in water treatment due to its low cost and high efficiency. We compared the arsenic uptake capacity and the arsenic bonding sites of different Al-based sorbents, including Al nanoclusters, polyaluminum chloride, polyaluminum granulate, and gibbsite. Extended X-ray absorption fine structure (EXAFS) spectroscopy revealed that As(V) forms bidentate-binuclear complexes in interaction with all Al-based removal agents. The octahedral configuration of nanoclusters and the distribution of sorption sites remain the same in all types of removal agents consisting of nano-scale Al oxyhydroxide particles. The obtained distances for As(V)-O and As(V)-Al agreed with previously published data and were found to be 1.69 ± 0.02 Å and 3.17-3.21 Å, respectively. Our study suggests that As(V) binds to Al nanoclusters as strongly as to Al oxide surfaces. The As sorption capacity of Al nanoclusters was found to be very similar to that of Al clusters in a polyaluminum chloride. The most efficient Al-based sorbents for arsenic removal were Al nanoclusters, followed by polyaluminum granulate. PMID:26613179

  18. Measurement of the density of liquid aluminum-319 alloy by an x-ray attenuation technique

    SciTech Connect

    Smith, P.M.; Gallegos, G.F.

    1994-11-01

    This study was made for assisting in casting simulations. A relatively simple apparatus was constructed for measuring the density of Al-based alloys in the solid and liquid states up to 900 C. One of the more important physical properties of a casting alloy, solidification shrinkage, was measured for a commercial Al alloy (Al-319). It was found that while the thermal expansion of Al-319 in both solid and liquid phases is similar to that of pure Al, the density of the liquid alloy is lower than estimated by averaging the atomic volumes of the pure liquid components. The densities were measured by x-ray attenuation.

  19. URANIUM ALLOYS

    DOEpatents

    Seybolt, A.U.

    1958-04-15

    Uranium alloys containing from 0.1 to 10% by weight, but preferably at least 5%, of either zirconium, niobium, or molybdenum exhibit highly desirable nuclear and structural properties which may be improved by heating the alloy to about 900 d C for an extended period of time and then rapidly quenching it.

  20. ZIRCONIUM ALLOY

    DOEpatents

    Wilhelm, H.A.; Ames, D.P.

    1959-02-01

    A binary zirconiuin--antimony alloy is presented which is corrosion resistant and hard containing from 0.07% to 1.6% by weight of Sb. The alloys have good corrosion resistance and are useful in building equipment for the chemical industry.

  1. Nonswelling alloy

    DOEpatents

    Harkness, S.D.

    1975-12-23

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses.

  2. Al-based metal matrix composites reinforced with nanocrystalline Al-Ti-Ni particles

    NASA Astrophysics Data System (ADS)

    Scudino, S.; Ali, F.; Surreddi, K. B.; Prashanth, K. G.; Sakaliyska, M.; Eckert, J.

    2010-07-01

    Al-based metal matrix composites containing different volume fractions of nanocrystalline Al70Ti20Ni10 reinforcing particles have been produced by powder metallurgy and the effect of the volume fraction of reinforcement on the mechanical properties of the composites has been studied. Room temperature compression tests reveal a considerable improvement of the mechanical properties as compared to pure Aluminum. The compressive strength increases from 155 MPa for pure Al to about 200 and 240 MPa for the samples with 20 and 40 vol.% of reinforcement, respectively, while retaining appreciable plastic deformation with a fracture strain ranging between 43 and 28 %.

  3. PLUTONIUM ALLOYS

    DOEpatents

    Chynoweth, W.

    1959-06-16

    The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

  4. NiAl-Base Composite Containing High Volume Fraction of AIN Particulate for Advanced Engines

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Whittenberger, J. D.; Lowell, C. E.; Garg, A.

    1995-01-01

    Cryomilling of prealloyed NiAl containing 53 at. % AJ was carried out to achieve high nitrogen levels. The consolidation of cryomilled powder by extrusion or hot pressing/ hot isostatic pressing resulted in a fully dense NiAl-base composite containing 30 vol. % of inhomogeneously distributed, nanosized AIN particulate. The NiAl-30AIN composite exhibited the highest compression yield strengths at all temperatures between 300 and 1300 K as compared with other compositions of NiAl-AIN composite. The NiAl-30AIN specimens tested under compressive creep loading between 1300 and 1500 K also exhibited the highest creep resistance with very little surface oxidation indicating also their superior elevated temperature oxidation resistance. In the high stress exponent regime, the strength is proportional to the square root of the AIN content and in the low stress exponent regime, the influence of AIN content on strength appears to be less dramatic. The specific creep strength of this material at 1300 K is superior to a first generation Ni-base single crystal superalloy. The improvements in elevated temperature creep strength and oxidation resistance have been achieved without sacrificing the room temperature fracture toughness of the NiAl-base material. Based on its attractive combination of properties, the NiAl-30AIN composite is a potential candidate for advanced engine applications,

  5. Mechanical alloying and high pressure processing of a TiAl-V intermetallic alloy.

    PubMed

    Dymek, S; Wróbel, M; Witczak, Z; Blicharski, M

    2010-03-01

    An alloy with a chemical composition of Ti-45Al-5V (at.%) was synthesized by mechanical alloying in a Szegvari-type attritor from elemental powders of high purity. Before compaction, the powders were characterized by X-ray diffraction and scanning as well as transmission electron microscopy. The compaction of powders was carried out by hot isostatic pressing and hot isostatic extrusion. The resulting material was subjected to microstructural and mechanical characterization. The microstructure investigated by transmission and scanning electron microscopy supplemented by X-ray diffraction revealed that the bulk material was composed of a mixture of TiAl- and Ti(3)Al-based phases, however, the typical lamellar microstructure for such alloys was not observed. The materials exhibited exceptionally high yield strength together with satisfactory ductility and fracture toughness. The high strength was unequivocally due to grain refinement and the presence of oxide dispersoid. PMID:20500422

  6. Direct synthesis of nanoporous carbon nitride fibers using Al-based porous coordination polymers (Al-PCPs).

    PubMed

    Hu, Ming; Reboul, Julien; Furukawa, Shuhei; Radhakrishnan, Logudurai; Zhang, Yuanjian; Srinivasu, Pavuluri; Iwai, Hideo; Wang, Hongjing; Nemoto, Yoshihiro; Suzuki, Norihiro; Kitagawa, Susumu; Yamauchi, Yusuke

    2011-07-28

    We report a new synthetic route for preparation of nanoporous carbon nitride fibers with graphitic carbon nitride polymers, by calcination of Al-based porous coordination polymers (Al-PCPs) with dicyandiamide (DCDA) under a nitrogen atmosphere.

  7. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1962-02-20

    A brazing alloy is described which, in the molten state, is characterized by excellent wettability and flowability and is capable of forming a corrosion-resistant brazed joint. At least one component of said joint is graphite and the other component is a corrosion-resistant refractory metal. The brazing alloy consists essentially of 40 to 90 wt % of gold, 5 to 35 wt% of nickel, and 1 to 45 wt% of tantalum. (AEC)

  8. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  9. Recent advances in alloy design of Ni{sub 3}Al alloys for structural use

    SciTech Connect

    Liu, C.T.; George, E.P.

    1996-12-31

    This is a comprehensive review of recent advances in R&D of Ni{sub 3}Al-based alloys for structural use at elevated temperatures in hostile environments. Recent studies indicate that polycrystalline Ni{sub 3}Al is intrinsically quite ductile at ambient temperatures, and its poor tensile ductility and brittle grain-boundary fracture are caused mainly by moisture-induced hydrogen embrittlement when the aluminide is tested in moisture- or hydrogen-containing environments. Tensile ductility is improved by alloying with substitutional and interstitial elements. Among these additives, B is most effective in suppressing environmental embrittlement and enhancing grain-boundary cohesion, resulting in a dramatic increase of tensile ductility at room temperature. Both B-doped and B-free Ni{sub 3}Al alloys exhibit brittle intergranular fracture and low ductility at intermediate temperatures (300-850 C) because of oxygen-induced embrittlement in oxidizing environments. Cr is found to be most effective in alleviating elevated-temperature embrittlement. Parallel efforts on alloy development using physical metallurgy principles have led to development of several Ni{sub 3}Al alloys for industrial use. The unique properties of these alloys are briefly discussed. 56 refs, 15 figs, 3 tabs.

  10. Hardness of Al-based quasicrystals evaluated via cluster-plus-glue-atom model

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Luo, Lingjie; Qiang, Jianbing; Wang, Yingmin; Dong, Chuang

    2014-05-01

    In this paper, the hardness of ternary Al-based quasicrystals was assessed through an application of the cluster-plus-glue-atom model. In this model, any structure is decomposed into a first-neighbour strongly bonded cluster part and second-neighbour weakly bonded glue-atom part so that the overall structural information is condensed into a local structural unit [cluster](glue atom)x. For quasicrystals, the averaged local units are formulated as [icosahedron] TM0,1(Transition Metal) and could be visualized as single icosahedron packing. Then, the hardness of quasicrystals was related to the rupture of weak inter-cluster bonds. Typically, theoretical hardness values of 8-9 GPa were obtained using 19 broken inter-cluster bonds, which accounts for about half of all the surface bonds of an icosahedron in the Mackay-type environment. The unit cluster formulas would act as rigid units during deformation and cracking.

  11. Surface Sensing and Optical Behavior of Al-Based Silver Chalcopyrites

    NASA Astrophysics Data System (ADS)

    Pan, Chia-Chi; Ho, Ching-Hwa

    2015-03-01

    We have successfully grown crystals of Al-based silver sulfides AgAlS2 and Ag(In0.2Al0.8)S2 by chemical vapor transport with ICl3 as transport agent. The Al-based silver chalcopyrites AgAlS2 and Ag(In0.2Al0.8)S2 have obvious (112) crystal faces and needle-like morphology. As-grown AgAlS2 and Ag(In0.2Al0.8)S2 are, respectively, transparent and light-yellow under vacuum. When exposed to the atmosphere, the two crystals' surfaces are spontaneously transformed into brownish, oxygen-deficient AgAlO2-2 x and Ag(In0.2Al0.8)O2-2 x , because of reaction of their surfaces with moisture. This surface reaction of AgAlS2 and Ag(In0.2Al0.8)S2 may slow or stop when the samples are kept dry. The chemical reaction between AgAlS2 and water vapor occurs rapidly on exposure to the atmosphere. Addition of a little indium weakened the surface reaction. The band-edge transitions of AgAlS2 and Ag(In0.2Al0.8)S2 crystals were characterized by temperature-dependent thermoreflectance and absorption measurements. Increasing the indium content of Ag-III(Al-In)-S2 chalcopyrite strengthens the III-S bond, preventing substitution of the sulfur atom with oxygen in the reaction of AgAlS2 with moisture.

  12. Tensile and impact properties of iron-aluminum alloys

    SciTech Connect

    Alexander, D.J.; Sikka, V.K.

    1993-12-31

    Tensile and impact tests have been conducted on specimens from a series of five heats of iron-aluminum alloys. These results have been compared to data for the iron aluminide alloy FA-129. The transition temperatures of all of the Fe{sub 3}Al-based alloys were similar, but the simple ternary alloy had a much higher upper-shelf energy. The reduced aluminum alloys [based on Fe-8Al (wt %)] had lower transition temperatures and higher upper-shelf energy levels than the Fe{sub 3}Al-type alloys. The reduced aluminum alloy with yttrium showed excellent tensile properties, with a room temperature total elongation of 40%, and a very high upper-shelf energy level. Despite the high tensile ductility at room temperature, the transition temperature of the yttrium-containing alloy was still about 150 C, compared to approximately 300 C for FA-129. In general, the microstructures were coarse and anisotropic. The fracture processes were dominated by second-phase particles.

  13. Low-aluminum content iron-aluminum alloys

    SciTech Connect

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  14. Thermodynamic analysis of chemical compatibility of several compounds with Fe-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1993-01-01

    Chemical compatibility between Fe-19.8Cr-4.8Al (weight percent), which is the base composition for the commercial superalloy MA956, and several carbides, borides, nitrides, oxides, and silicides was analyzed from thermodynamic considerations. The effect of addition of minor alloying elements, such as Ti, Y, and Y2O3, to the Fe-Cr-Al alloy on chemical compatibility between the alloy and various compounds was also analyzed. Several chemically compatible compounds that can be potential reinforcement materials and/or interface coating materials for Fe-Cr-Al based composites were identified.

  15. Thermo-mechanical processing (TMP) of Ti-48Al-2Nb-2Cr based alloys

    SciTech Connect

    Fuchs, G.E.

    1995-02-01

    The effects of heat treatment and deformation processing on the microstructures and properties of {gamma}-TiAl based alloys produced by ingot metallurgy (I/M) and powder metallurgy (P/M) techniques were examined. The alloy selected for this work is the second generation {gamma}-TiAl based alloy -- Ti-48Al-2Nb-2Cr (at %). Homogenization of I/M samples was performed at a variety of temperatures, followed by hot working by isothermal forging. P/M samples were prepared from gas atomized powders, consolidated by both HIP and extrusion and some of the HIPed material was then hot worked by isothermal forging. The effects of processing, heat treatment and hot working on the microstructures and properties will be discussed.

  16. Single crystal growth of Al-based intermetallic phases being approximants to quasicrystals

    NASA Astrophysics Data System (ADS)

    Gille, Peter; Bauer, Birgitta; Hahne, Michael; Smontara, Ana; Dolinšek, Janez

    2011-03-01

    Decagonal (d) quasicrystals are formed in a number of Al-based ternary systems with d-AlCoNi being the best studied decagonal phase. They are highly anisotropic showing unusual properties of e.g. electric and thermal transport when measured along the periodic or quasiperiodic directions. For a long time, this has been attributed to the lack of periodicity in certain crystallographic orientations. Some neighbouring phases in the Al-Co-Ni system as well as in related ternaries consist of the same type of large icosahedral clusters, but are periodic in all three directions, sometimes with very large unit cells. Therefore, they are called approximants to the decagonal quasicrystals. They allow comparative studies of these phases as to judge whether some unusual properties of quasicrystals arise from the lack of periodicity or from the common atomic arrangements. Additional to decagonal AlCoNi quasicrystals, various approximants (monoclinic Al13(Co,Ni)4, orthorhombic Al13Co4, orthorhombic Al4(Cr,Fe), monoclinic Al13Fe4 and its ternary extensions Al13(Fe,Cr)4 and Al13(Fe,Ni)4) were grown by the Czochralski method as large single crystals as to carry out transport orientation-dependent measurements. It could be found that transport properties show remarkably similar anisotropic features when comparing corresponding crystallographic directions in these phases that can be related to the periodic stacking of layers.

  17. User's manual for the ALS base heating prediction code, volume 2

    NASA Technical Reports Server (NTRS)

    Reardon, John E.; Fulton, Michael S.

    1992-01-01

    The Advanced Launch System (ALS) Base Heating Prediction Code is based on a generalization of first principles in the prediction of plume induced base convective heating and plume radiation. It should be considered to be an approximate method for evaluating trends as a function of configuration variables because the processes being modeled are too complex to allow an accurate generalization. The convective methodology is based upon generalizing trends from four nozzle configurations, so an extension to use the code with strap-on boosters, multiple nozzle sizes, and variations in the propellants and chamber pressure histories cannot be precisely treated. The plume radiation is more amenable to precise computer prediction, but simplified assumptions are required to model the various aspects of the candidate configurations. Perhaps the most difficult area to characterize is the variation of radiation with altitude. The theory in the radiation predictions is described in more detail. This report is intended to familiarize a user with the interface operation and options, to summarize the limitations and restrictions of the code, and to provide information to assist in installing the code.

  18. Effect of Thermo-Mechanical Processing and Heat Treatment on the Tribological Characteristics of Al Based MMC's

    NASA Astrophysics Data System (ADS)

    Keshavamurthy, R.; Madhu Sudhan, J.; Gowda, Narasimhe; Krishna, R. Ananda

    2016-09-01

    This paper reports on effect of forging and Heat Treatment on Tribological characteristics of aluminium alloy-silicon nitride. Cast aluminium alloy and composite were subjected to open die hot forging process. Alloy and its composites were examined to characteristics hardness and wear test under both primary and secondary processing conditions. Effect of heat treatment on hardness and tribological behaviour were also studied. Microstructure shows even spreading of particles in cast & forged conditions. hot forged alloy and composite shows a noticeable improvement in wear resistance and COF compare to their primary counter parts. Heat treatment has a considerable effect on hardness, friction and wear characteristics of composites.

  19. Alloy softening in binary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to Mo, while those elements having an equal number or fewer s+d electrons than Mo failed to produce alloy softening. Alloy softening and hardening can be correlated with the difference in number of s+d electrons of the solute element and Mo.

  20. The shock Hugoniot of the intermetallic alloy Ti-46.5Al-2Nb-2Cr

    SciTech Connect

    Millett, Jeremy; Gray, George T. Rusty III; Bourne, Neil

    2000-09-15

    Plate impact experiments were conducted on a {gamma}-titanium aluminide (TiAl) based ordered intermetallic alloy. Stress measurements were recorded using manganin stress gauges supported on the back of TiAl targets using polymethylmethacrylate windows. The Hugoniot in stress-particle velocity space for this TiAl alloy was deduced using impedance matching techniques. The results in this study are compared to the known Hugoniot data of the common alpha-beta engineering Ti-based alloy Ti-6Al-4V. The results of the current study on the intermetallic alloy TiAl support that TiAl possesses a significantly higher stress for a given particle velocity than the two-phase Ti-6Al-4V alloy. (c) 2000 American Institute of Physics.

  1. Photocatalytic property and structural stability of CuAl-based layered double hydroxides

    SciTech Connect

    Lv, Ming; Liu, Haiqiang

    2015-07-15

    Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) were successfully synthesized by coprecipitation. Powder X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES) and UV–Vis diffuse reflectance spectrum (UV–vis) were used to confirm the formation of as-synthesized solids with good crystal structure. The photocatalytic activity of those LDH materials for CO{sub 2} reduction under visible light was investigated. The experimental results show that CuNiAl-LDHs with narrowest band gap and largest surface areas behave highest efficiency for methanol generation under visible light compared with CuMgAl-LDHs and CuZnAl-LDHs. The CuNiAL-LDH showed high yield for methanol production i.e. 0.210 mmol/g h, which was high efficient. In addition, the influence of the different M{sup 2+} on the structures and stability of the CuMAl-LDHs was also investigated by analyzing the geometric parameters, electronic arrangement, charge populations, hydrogen-bonding, and binding energies by density functional theory (DFT) analysis. The theoretical calculation results show that the chemical stability of LDH materials followed the order of CuMgAl-LDHs>CuZnAl-LDHs>CuNiAl-LDHs, which is just opposite with the photocatalytic activity and band gaps of three materials. - Graphical abstract: The host–guest calculation models and XRD patterns of CuMAl-LDHs: CuMgAl-LDHs (a), CuZnAl-LDHs (b) and CuNiAl-LDHs (c). - Highlights: • Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) has been synthesized. • CuMgNi shows narrower band gap and more excellent textural properties than other LDHs. • The band gap: CuMgAlAl based on result from UV–vis analysis. • CuMgAl shows the highest stability and lowest photocatalytic activity, while CuNiAl just opposite.

  2. Micro-strain Evolution and Toughening Mechanisms in a Trimodal Al-Based Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzheng; Topping, Troy D.; Yang, Hanry; Lavernia, Enrique J.; Schoenung, Julie M.; Nutt, Steven R.

    2015-03-01

    A trimodal metal matrix composite (MMC) based on AA (Al alloy) 5083 (Al-4.4Mg-0.7Mn-0.15Cr wt pct) was synthesized by cryomilling powders followed by compaction of blended powders and ceramic particles using two successive dual mode dynamic forgings. The microstructure consisted of 66.5 vol pct ultrafine grain (UFG) region, 30 vol pct coarse grain (CG) region and 3.5 vol pct reinforcing boron carbide particles. The microstructure imparted high-tensile yield strength (581 MPa) compared to a conventional AA 5083 (242 MPa) and enhanced ductility compared to 100 pct UFG Al MMC. The deformation behavior of the heterogeneous structure and the effects of CG regions on crack propagation were investigated using in situ scanning electron microscopy micro-tensile tests. The micro-strain evolution measured using digital image correlation showed early plastic strain localization in CG regions. Micro-voids due to the strain mismatch at CG/UFG interfaces were responsible for crack initiation. CG region toughening was realized by plasticity-induced crack closure and zone shielding of disconnected micro-cracks. However, these toughening mechanisms did not effectively suppress its brittle behavior. Further optimization of the CG distribution (spacing and morphology) is required to achieve toughness levels required for structural applications.

  3. Through-thickness variations in recrystallization behavior in an Al-based ARB composite sheet

    NASA Astrophysics Data System (ADS)

    Najafzadeh, N.; Quadir, M. Z.; Munroe, P.

    2014-08-01

    A composite sheet of commercially pure aluminum and an Al-0.3 wt.% Sc alloy (in the supersaturated solid solution condition) was produced by accumulative roll bonding at 200°C. The material was then subjected to isothermal annealing at 300°C for 1-30 minutes and cold water quenched. The transverse section was investigated by electron back-scatter diffraction (EBSD) to investigate the variations in microstructure and texture within Al layers through the sheet thickness. A faster spheroidization of the highly elongated lamellar band deformation structures was observed in the surface aluminum layer as compared to the mid- and quarter-thickness layers. In the quarter thickness aluminum layer so-called continuous recrystallization occurred and, thus, the p-fiber rolling texture was retained. Further growth in this layer led to secondary recrystallization of cube orientations. In contrast, in the surface aluminum layers the recrystallization and grain growth texture were relatively random. Intermediate behavior was observed in the mid-thickness aluminum layer.

  4. Surface Segregation in Multicomponent Systems: Modeling of Surface Alloys and Alloy Surfaces

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John; Noebe, Ronald D.; Good, Brian; Honecy, Frank S.; Abel, Phillip

    1999-01-01

    The study of surface segregation, although of great technological importance, has been largely restricted to experimental work due to limitations associated with theoretical methods. However, recent improvements in both first-particle and semi-empirical methods are opening, the doors to an array of new possibilities for surface scientists. We apply one of these techniques, the Bozzolo, Ferrante and Smith (BFS) method for alloys, which is particularly suitable for complex systems, to several aspects of the computational modeling of surfaces and segregation, including alloy surface segregation, structure and composition of alloy surfaces, and the formation of surface alloys. We conclude with the study of complex NiAl-based binary, ternary and quaternary thin films (with Ti, Cr and Cu additions to NiAl). Differences and similarities between bulk and surface compositions are discussed, illustrated by the results of Monte Carlo simulations. For some binary and ternary cases, the theoretical predictions are compared to experimental results, highlighting the accuracy and value of this developing theoretical tool.

  5. Metal alloy identifier

    DOEpatents

    Riley, William D.; Brown, Jr., Robert D.

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  6. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength

    NASA Astrophysics Data System (ADS)

    Zhuo, Long-Chao; Pang, Shu-Jie; Wang, Hui; Zhang, Tao

    2009-06-01

    Based on a new approach for designing glassy alloy compositions, bulk Al-based alloys with good glass-forming ability (GFA) are synthesized. The cast Al86Si0.5Ni4.06Co2.94Y6Sc0.5 rod with a diameter of 1 mm shows almost fully amorphous structure besides about 5% fcc-Al nucleated in the center of the rod. The bulk alloy with high Al concentration exhibits an ultrahigh yield strength of 1.18 GPa and maximum strength of 1.27 GPa as well as an obvious plastic strain of about 2.4% during compressive deformation. This light Al-based alloy with good GFA and mechanical properties is promising as a new high specific strength material with good deformability.

  7. Tensile properties of as-cast iron-aluminide alloys

    SciTech Connect

    Viswanathan, S.: McKamey, C.G.; Maziasz, P.J.; Sikka, V.K.

    1993-07-01

    Room-temperature tensile properties of as-cast Fe{sub 3}Al, Fe{sub 3}Al with chromium, and Fe{sub 3}Al-based FA-129 alloy are investigated. Tensile properties were obtained in the as-cast condition and after homogenization at 700, 900, and 1200{degrees}C. Transmission electron microscopy (TEM) was used to characterize ordered phases, and optical metallography and scanning electron microscopy (SEM) were used to characterize the microstructure and fracture morphology. The results indicate that the low ductility of as-cast Fe{sub 3}Al-based alloys may be related to the relatively large grain size in the cast condition, the low dislocation density in as-cast samples, and the presence of the D0{sub 3} ordered phase. Homogenized samples of FA-129 alloy exhibited almost twice the ductility of the as-cast condition. Microstructural characterization of the homogenized samples and comparison of the as-cast and homogenized microstructures may provide a clue to the poor ductility in the as-cast state.

  8. Reduction in Defect Content in ODS Alloys

    SciTech Connect

    Jones, A.R.; Ritherdon, J.; Prior, D.J.

    2003-04-22

    In order to develop FeCrAl-based ODS alloy tubing with the coarse, high aspect ratio, appropriately oriented grain structures likely to deliver enhanced high temperature (11000C) hoop creep strength compared to conventionally formed ODS alloy tubing, flow forming techniques were explored in a European funded programme. The evolution of microstructure in PM2000 alloy tubing formed by warm flow forming techniques has been the subject of continuing investigation and more detailed study in the current work. The warm flow formed tubes investigated were produced by reverse flow forming using three, 1200 opposed rollers described around a tube preform supported on a driven mandrel. This produced a complex pattern of shape changing deformation, driven from the outer surface of the tube preforms. The grain size and shape together with the pattern of nucleation and growth of secondary recrystallization that developed through the thickness of the tube wall during the subsequent high temperature annealing (13800C) of these warm flow formed samples is described, as are the textures that formed. The unusual pattern and shape of secondary recrystallized grain structures that formed on the outer surfaces of the flow formed tubes closely follows the pattern and pitch of the flow forming rollers. The local texture, grain shape and pattern of misorientation in the surface of warm flow formed tubes that was associated with the development of these outer surface microstructures are described. Parallel studies have continued on the influence of microstructural inhomogeneities on the development of secondary recrystallized grain structures in ODS alloys. As part of this work, a separate variant of PM2000 alloy with additions of 1 wt.% ODS-free Fe powder have been manufactured as extruded bar by Plansee GmbH. The initial recrystallization behavior of the variant has been studied and cross-compared with the recrystallization behavior found in a prototype ODS-Fe3Al alloy, notably where the

  9. Local formation of a Heusler structure in CoFe-Al alloys

    NASA Astrophysics Data System (ADS)

    Wurmehl, S.; Jacobs, P. J.; Kohlhepp, J. T.; Swagten, H. J. M.; Koopmans, B.; Maat, S.; Carey, M. J.; Childress, J. R.

    2011-01-01

    We systematically study the changes in the local atomic environments of Co in CoFe-Al alloys as a function of Al content by means of nuclear magnetic resonance. We find that a Co2FeAl Heusler type structure is formed on a local scale. The observed formation of a highly spin-polarized Heusler compound may explain the improved magnetotransport properties in CoFe-Al based current-perpendicular-to-the-plane spin-valves.

  10. Toxic effects of Al-based coagulants on Brassica chinensis and Raphanus sativus growing in acid and neutral conditions.

    PubMed

    Zhang, Kaisong; Zhou, Qixing

    2005-04-01

    The ecotoxicological effects of aluminum (Al)-based coagulants are of concern because of their wide-ranging applications in wastewater treatment and water purification. As important Al-based coagulants, AlCl(3) and PAC (polyaluminum-chloride) were selected as examples to examine the toxic effects on representative vegetables including the cabbage Brassica chinensis and the radish Raphanus sativus over a range of exposure concentrations in neutral (pH 7.00) and acidic (pH 4.00) conditions, using seed germination and root elongation in the early-growth stage as indicators of toxicity. The results showed that root elongation of the two vegetables was a more sensitive indicator than was seed germination for evaluating the toxicity of Al. As a single influencing factor, H(+) had no significant direct effects on root elongation of Brassica chinensis and Raphanus sativus under the experimental conditions. The toxicity of Al played the main role in inhibiting root elongation and seed germination and was strongly related to changes in pH. There was a markedly positive relationship between the inhibitory rate of root elongation, seed germination, and the concentration of Al at pH 4.00 (p < 0.01). The toxic effect of AlCl(3) on Brassica chinensis was less with a neutral pH than at pH 4.00, but Raphanus sativus was more susceptible to AlCl(3) toxicity at a neutral pH than at pH 4.00. Both Raphanus sativus and Brassica chinensis had a more toxic response to a low concentration (<64 mg . L(-1)) of PAC in a neutral condition than in an acidic condition. Undoubtedly, the Al toxicity caused by Al-based coagulants at a neutral pH is relevant when treatment solids are used in agriculture.

  11. Microstructures and tensile properties of as-cast iron-aluminide alloys

    SciTech Connect

    Viswanathan, S.; McKamey, C.G.; Maziasz, P.J.; Sikka, V.K.

    1994-09-01

    Room-temperature tensile properties of as-cast Fe{sub 3}Al, Fe{sub 3}Al with chromium, and Fe{sub 3}Al-based FA-129 alloy have been investigated. Tensile properties have been obtained in air in the as-cast condition for all three alloys. Samples of FA-129 alloy have also been tested in oxygen and water vapor environments, and after homogenization at 700, 900, and 1200C. Transmission electron microscopy has been used to characterize ordered phases and optical metallography and scanning electron microscopy have been used to characterize the microstructure and fracture morphology. Tensile properties in the as-cast condition exhibited an environmental effect; tensile ductilities in an oxygen atmosphere were greater than those obtained in laboratory air. Homogenized samples of FA-129 alloy exhibited almost twice the ductility of the as-cast condition. Results indicate that the low ductility of as-cast Fe{sub 3}Al-based alloys may be related to the relatively large grain size in the as-cast condition and the presence of the DO{sub 3} ordered phase. Microstructural characterization of the homogenized samples and comparison of the as-cast and homogenized microstructures may provide a clue to the poor ductility in the as-cast condition.

  12. New developments on optimizing properties of high-Zn aluminium cast alloys

    NASA Astrophysics Data System (ADS)

    Krajewski, W. K.; Buras, J.; Krajewski, P. K.; Greer, A. L.; Schumacher, P.; Haberl, K.

    2016-07-01

    Foundry alloys with Al-based matrices have a wide range of uses in today's global economy and there is a high demand for castings of Al alloys, including Al-Zn alloys. In this paper, investigations on the grain refinement of high-Zn aluminium cast alloys are presented. Aluminium alloys with relatively high zinc content have a tendency to be coarse-grained, especially in the case of castings with low cooling rates such as are found in sand moulds. The coarse-grained structure degrades the plasticity, specifically the elongation. Therefore, for aluminium alloys of high (10-30 wt.%) zinc content, inoculation is attractive, aiming to break up the primary dendrites of the a-phase solid solution of zinc in aluminium. Such dendrites are the principal microstructural component in these alloys. On the other hand, a finer grain structure usually reduces the damping (e.g. as measured by attenuation of ultrasound) in these alloys. In the present investigations, a binary sand-cast Al-20 wt.% Zn alloy was inoculated with different additions of AlTi3C0.15 (TiCAl) and ZnTi-based master alloys. The sand-cast samples were subjected to mechanical-property measurements (tensile strength and elongation), image analysis to determine grain size, and measurements of the attenuation of 1 MHz ultrasound. It is found that both of the master alloys used cause significant refinement of the a-AlZn primary dendrites and change their morphology from linear-branched to semi-globular, increase the elongation by about 40%, and decrease the attenuation coefficient by about 25% in comparison with the initial alloy without inoculation.

  13. Melting, Processing, and Properties of Disordered Fe-Al and Fe-Al-C Based Alloys

    NASA Astrophysics Data System (ADS)

    Satya Prasad, V. V.; Khaple, Shivkumar; Baligidad, R. G.

    2014-09-01

    This article presents a part of the research work conducted in our laboratory to develop lightweight steels based on Fe-Al alloys containing 7 wt.% and 9 wt.% aluminum for construction of advanced lightweight ground transportation systems, such as automotive vehicles and heavy-haul truck, and for civil engineering construction, such as bridges, tunnels, and buildings. The melting and casting of sound, porosity-free ingots of Fe-Al-based alloys was accomplished by a newly developed cost-effective technique. The technique consists of using a special flux cover and proprietary charging schedule during air induction melting. These alloys were also produced using a vacuum induction melting (VIM) process for comparison purposes. The effect of aluminum (7 wt.% and 9 wt.%) on melting, processing, and properties of disordered solid solution Fe-Al alloys has been studied in detail. Fe-7 wt.% Al alloy could be produced using air induction melting with a flux cover with the properties comparable to the alloy produced through the VIM route. This material could be further processed through hot and cold working to produce sheets and thin foils. The cold-rolled and annealed sheet exhibited excellent room-temperature ductility. The role of carbon in Fe-7 wt.% Al alloys has also been examined. The results indicate that Fe-Al and Fe-Al-C alloys containing about 7 wt.% Al are potential lightweight steels.

  14. Turbine Blade Alloy

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca

    2001-01-01

    The High Speed Research Airfoil Alloy Program developed a fourth-generation alloy with up to an +85 F increase in creep rupture capability over current production airfoil alloys. Since improved strength is typically obtained when the limits of microstructural stability are exceeded slightly, it is not surprising that this alloy has a tendency to exhibit microstructural instabilities after high temperature exposures. This presentation will discuss recent results obtained on coated fourth-generation alloys for subsonic turbine blade applications under the NASA Ultra-Efficient Engine Technology (UEET) Program. Progress made in reducing microstructural instabilities in these alloys will be presented. In addition, plans will be presented for advanced alloy development and for computational modeling, which will aid future alloy development efforts.

  15. Microstructural evolution and mechanical properties of an Fe-18Ni-16Cr-4Al base alloy during aging at 950°C

    NASA Astrophysics Data System (ADS)

    Wang, Man; Sun, Yong-duo; Feng, Jing-kai; Zhang, Rui-qian; Tang, Rui; Zhou, Zhang-jian

    2016-03-01

    The development of Gen-IV nuclear systems and ultra-supercritical power plants proposes greater demands on structural materials used for key components. An Fe-18Ni-16Cr-4Al (316-base) alumina-forming austenitic steel was developed in our laboratory. Its microstructural evolution and mechanical properties during aging at 950°C were investigated subsequently. Micro-structural changes were characterized by scanning electron microscopy, electron backscatter diffraction, and transmission electron microscopy. Needle-shaped NiAl particles begin to precipitate in austenite after ageing for 10 h, whereas round NiAl particles in ferrite are coarsened during aging. Precipitates of NiAl with different shapes in different matrices result from differences in lattice misfits. The tensile plasticity increases by 32.4% after aging because of the improvement in the percentage of coincidence site lattice grain boundaries, whereas the tensile strength remains relatively high at approximately 790 MPa.

  16. Materials for Advanced Turbine Engines (MATE): Project 3: Design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner, volume 1

    NASA Technical Reports Server (NTRS)

    Henricks, R. J.; Sheffler, K. D.

    1984-01-01

    The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Incoloy MA 956 (FeCrAl base) and Haynes Developmental Alloy (HDA) 8077 (NiCrAl base) were evaluated. Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. Both alloys demonstrated a +167C (300 F) advantage of creep and oxidation resistance with no improvement in thermal fatigue capability compared to a current generation combustor alloy (Hastelloy X). MA956 alloy was selected for further demonstration because it exhibited better manufacturing reproducibility than HDA8077. Additional property tests were conducted on MA956. To accommodate the limited thermal fatigue capability of ODS alloys, two segmented, mechanically attached, low strain ODS combustor design concepts having predicted fatigue lives or = 10,000 engine cycles were identified. One of these was a relatively conventional louvered geometry, while the other involved a transpiration cooled configuration. A series of 10,000 cycle combustor rig tests on subscale MA956 and Hastelloy X combustor components showed no cracking, thereby confirming the beneficial effect of the segmented design on thermal fatigue capability. These tests also confirmed the superior oxidation and thermal distortion resistance of the ODS alloy. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components was designed and constructed.

  17. Separation in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1986-01-01

    Studies of monotectic alloys and alloy analogs reviewed. Report surveys research on liquid/liquid and solid/liquid separation in binary monotectic alloys. Emphasizes separation processes in low gravity, such as in outer space or in free fall in drop towers. Advances in methods of controlling separation in experiments highlighted.

  18. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  19. PLUTONIUM-THORIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  20. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  1. Tensile properties of as-cast iron-aluminide alloys

    SciTech Connect

    Viswanathan, S.; McKamey, C.G.; Maziasz, P.J.

    1995-01-01

    Room-temperature tensile properties of as-cast Fe{sub 3}Al-based FA-129 alloy were investigated. Tensile properties were obtained in the as-cast condition in air, oxygen, and water-vapor environments, and after homogenization at 700, 900, and 1200{degrees}C. Transmission electron microscopy (MM) was used to characterize ordered phases and dislocation structure, and optical metallography and scanning electron microscopy (SEM) were used to characterize the grain microstructure and fracture morphology. Tensile properties in the as-cast condition exhibited an environmental effect; tensile ductilities in oxygen atmosphere were greater than those obtained in laboratory air. Homogenized samples of FA-129 alloy exhibited almost twice the ductility found in the as-cast condition. Microstructural characterization of the homogenized samples and comparison of the as-cast and homogenized microstructures provided clues that helped to explain the poor ductility in the as-cast state.

  2. High strength alloys

    DOEpatents

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  3. High strength alloys

    DOEpatents

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  4. Creep Resistant Zinc Alloy

    SciTech Connect

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  5. Weldability of High Alloys

    SciTech Connect

    Maroef, I

    2003-01-22

    The purpose of this study was to investigate the effect of silicon and iron on the weldability of HAYNES HR-160{reg_sign} alloy. HR-I60 alloy is a solid solution strengthened Ni-Co-Cr-Si alloy. The alloy is designed to resist corrosion in sulfidizing and other aggressive high temperature environments. Silicon is added ({approx}2.75%) to promote the formation of a protective oxide scale in environments with low oxygen activity. HR-160 alloy has found applications in waste incinerators, calciners, pulp and paper recovery boilers, coal gasification systems, and fluidized bed combustion systems. HR-160 alloy has been successfully used in a wide range of welded applications. However, the alloy can be susceptible to solidification cracking under conditions of severe restraint. A previous study by DuPont, et al. [1] showed that silicon promoted solidification cracking in the commercial alloy. In earlier work conducted at Haynes, and also from published work by DuPont et al., it was recognized that silicon segregates to the terminal liquid, creating low melting point liquid films on solidification grain boundaries. Solidification cracking has been encountered when using the alloy as a weld overlay on steel, and when joining HR-160 plate in a thickness greater than19 millimeters (0.75 inches) with matching filler metal. The effect of silicon on the weldability of HR-160 alloy has been well documented, but the effect of iron is not well understood. Prior experience at Haynes has indicated that iron may be detrimental to the solidification cracking resistance of the alloy. Iron does not segregate to the terminal solidification product in nickel-base alloys, as does silicon [2], but iron may have an indirect or interactive influence on weldability. A set of alloys covering a range of silicon and iron contents was prepared and characterized to better understand the welding metallurgy of HR-160 alloy.

  6. Self-forming Al oxide barrier for nanoscale Cu interconnects created by hybrid atomic layer deposition of Cu–Al alloy

    SciTech Connect

    Park, Jae-Hyung; Han, Dong-Suk; Kang, You-Jin; Shin, So-Ra; Park, Jong-Wan

    2014-01-15

    The authors synthesized a Cu–Al alloy by employing alternating atomic layer deposition (ALD) surface reactions using Cu and Al precursors, respectively. By alternating between these two ALD surface chemistries, the authors fabricated ALD Cu–Al alloy. Cu was deposited using bis(1-dimethylamino-2-methyl-2-butoxy) copper as a precursor and H{sub 2} plasma, while Al was deposited using trimethylaluminum as the precursor and H{sub 2} plasma. The Al atomic percent in the Cu–Al alloy films varied from 0 to 15.6 at. %. Transmission electron microscopy revealed that a uniform Al-based interlayer self-formed at the interface after annealing. To evaluate the barrier properties of the Al-based interlayer and adhesion between the Cu–Al alloy film and SiO{sub 2} dielectric, thermal stability and peel-off adhesion tests were performed, respectively. The Al-based interlayer showed similar thermal stability and adhesion to the reference Mn-based interlayer. Our results indicate that Cu–Al alloys formed by alternating ALD are suitable seed layer materials for Cu interconnects.

  7. Alloying of aluminum-beryllium alloys

    NASA Astrophysics Data System (ADS)

    Molchanova, L. V.; Ilyushin, V. N.

    2013-01-01

    The existing phase diagrams of Al-Be- X alloys, where X is an alloying element, are analyzed. Element X is noted to poorly dissolve in both aluminum and beryllium. It is shown that the absence of intermetallic compounds in the Al-Be system affects the phase equilibria in an Al-Be- X system. Possible phase equilibria involving phases based on aluminum, beryllium, and intermetallic compounds are proposed, and the types of strengthening of Al-Be alloys by an addition of a third element are classified.

  8. Extremely small thermal conductivity of the Al-based Mackay-type 1/1 -cubic approximants

    NASA Astrophysics Data System (ADS)

    Takeuchi, Tsunehiro; Nagasako, Naoyuki; Asahi, Ryoji; Mizutani, Uichiro

    2006-08-01

    Thermal conductivity (κ) of the Al-based Mackay-type 1/1 -cubic approximants ( α -phase) was investigated over a wide temperature range from 2Kto300K . Behaviors of κ(T) observed for these 1/1 -cubic approximants were essentially the same with those reported for the corresponding icosahedral quasicrystals; very small magnitude lower than 4.5W/mK , small contribution of electrons, and possession of a local maximum and a local minimum around 30-50K and 100-200K , respectively. By analyzing measured lattice thermal conductivity κlat(T) in terms both of local atomic arrangements and phonon dispersions, we revealed that κlat(T) is greatly reduced by combination of the small group velocity of phonons and the enhanced umklapp process of phonon scattering. Those characteristics are brought about by the large lattice constant and vacancies in the structure.

  9. Oxidation and microstructure evolution of Al-Si coated Ni3Al based single crystal superalloy with high Mo content

    NASA Astrophysics Data System (ADS)

    Tu, Xiaolu; Peng, Hui; Zheng, Lei; Qi, Wenyan; He, Jian; Guo, Hongbo; Gong, Shengkai

    2015-01-01

    A Si modified aluminide (Al-Si) coating was prepared on a Ni3Al based single crystal superalloy with high Mo content by high-activity pack cementation. Cyclic oxidation test at 1150 °C was carried out and the microstructure evolution of the coating was investigated. The results show that the oxidation resistance of the substrate was greatly increased by applying an Al-Si coating. During oxidation, outward diffusion of Mo was effectively blocked due to its high affinity with Si. Besides, a layered structure was formed as a result of the elements inter-diffusion. An obvious degradation of the Al-Si coating was observed after 100 h oxidation. Possible mechanisms related to the oxidation and elements inter-diffusion behaviours were also discussed.

  10. Directional Solidification and Mechanical Properties of NiAl-NiAlTa Alloys

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Chen, X. F.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1995-01-01

    Directional solidification of eutectic alloys is a promising technique for producing in-situ composite materials exhibiting a balance of properties. Consequently, the microstructure, creep strength and fracture toughness of directionally solidified NiAl-NiAlTa alloys were investigated. Directional solidification was performed by containerless processing techniques to minimize alloy contamination. The eutectic composition was found to be NiAl-15.5 at% Ta and well-aligned microstructures were produced at this composition. A near-eutectic alloy of NiAl-14.5Ta was also investigated. Directional solidification of the near-eutectic composition resulted in microstructures consisting of NiAl dendrites surrounded by aligned eutectic regions. The off-eutectic alloy exhibited promising compressive creep strengths compared to other NiAl-based intermetallics, while preliminary testing indicated that the eutectic alloy was competitive with Ni-base single crystal superalloys. The room temperature toughness of these two-phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa.

  11. Interfacial Reaction Between Cu Substrates and Zn-Al Base High-Temperature Pb-Free Solders

    NASA Astrophysics Data System (ADS)

    Takaku, Yoshikazu; Felicia, Lazuardi; Ohnuma, Ikuo; Kainuma, Ryosuke; Ishida, Kiyohito

    2008-03-01

    Chemical reactions between Cu substrates and Zn-Al high-temperature solder alloys, Zn-4Al and Zn-4Al-1Cu (mass%), at temperatures ranging from 420°C to 530°C were experimentally investigated by a scanning electron microscope using backscattered electrons (SEM-BSE) and an electron probe microanalyzer (EPMA). Intermediate phases (IMPs), β(A2) or β'(B2), γ(D82), and ɛ(A3) phases formed and grew during the soldering and aging treatments. The consumption rate of the IMP for Cu substrates is described by the square root of t in both the alloys, while the additional Cu in the molten Zn-Al alloy slightly suppresses the consumption of Cu substrates. The growth of IMPs during soldering treatment is controlled by the volume diffusion of constituent elements, and its activation energy increases in the order of Q ɛ < Q γ < Q β. In view of the aging process, the growth of IMPs is considered to be controlled by the volume diffusion. In particular, the layer thickness of γ rapidly grows over 200°C, although the thickness of the β layer grows very slowly.

  12. Catalyst Alloys Processing

    NASA Astrophysics Data System (ADS)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  13. On the preparation of TiAl alloy by direct reduction of the oxide mixtures in calcium chloride melt

    SciTech Connect

    Prabhat K. Tripathy; Derek J. Fray

    2011-11-01

    In recent years, TiAl-based intermetallic alloys are being increasingly considered for application in areas such as (i) automobile/transport sector (passenger cars, trucks and ships) (ii) aerospace industry (jet engines and High Speed Civil Transport propulsion system) and (iii) industrial gas turbines. These materials offer excellent (i) high temperature properties (at higher than 6000C) (ii) mechanical strength and (iii) resistance to corrosion and as a result have raised renewed interest. The combination of these properties make them possible replacement materials for traditional nickel-based super-alloys, which are nearly as twice as dense (than TiAl based alloys). Since the microstructures of these intermetallic alloys affect, to a significant extent, their ultimate performance, further improvements (by way of alteration/modification of these microstructures), have been the subject matter of intense research investigations. It has now been established that the presence of alloy additives, such as niobium, tantalum, manganese, boron, chromium, silicon, nickel and yttrium etc, in specific quantities, impart marked improvement to the properties, viz. fatigue strength, fracture toughness, oxidation resistance and room temperature ductility, of these alloys. From a number of possible alloy compositions, {gamma}-TiAl and Ti-Al-Nb-Cr have, of late, emerged as two promising engineering alloys/materials. . The conventional fabrication process of these alloys include steps such as melting, forging and heat treatment/annealing of the alloy compositions. However, an electrochemical process offers an attractive proposition to prepare these alloys, directly from the mixture of the respective oxides, in just one step. The experimental approach, in this new process, was, therefore, to try to electrochemically reduce the (mixed) oxide pellet to an alloy phase. The removal of oxygen, from the (mixed) oxide pellet, was effected by polarizing the oxide pellet against a graphite

  14. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  15. Low activation ferritic alloys

    DOEpatents

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  16. Low activation ferritic alloys

    DOEpatents

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  17. PLUTONIUM-ZIRCONIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  18. NICKEL-BASE ALLOY

    DOEpatents

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  19. Final Report for Department of Energy Grant No. DE-FG02-02ER45997, "Alloy Design of Nanoscale Precipitation Strengthened Alloys: Design of a Heat Treatable Aluminum Alloy Useful to 400C"

    SciTech Connect

    Morris E. Fine; Gautam Ghosh; Dieter Isheim; Semyon Vaynman; Keith Knipling; Jefferson Z. Liu

    2006-05-06

    A creep resistant high temperature Al base alloy made by conventional processing procedures is the subject of this research. The Ni-based superalloys have volume fractions of cubic L1{sub 2} phase precipitates near 50%. This is not attainable with Al base alloys and the approach pursued in this research was to add L1{sub 2} structured precipitates to the Al-Ni eutectic alloy, 2.7 at. % Ni-97.3 at. % Al. The eutectic reaction gives platelets of Al{sub 3}Ni (DO{sub 11} structure) in an almost pure Al matrix. The Al{sub 3}Ni platelets give reinforcement strengthening while the L1{sub 2} precipitates strengthen the Al alloy matrix. Based on prior research and the extensive research reported here modified cubic L1{sub 2} Al{sub 3}Zr is a candidate. While cubic Al{sub 3}Zr is metastable, the stable phase is tetragonal, only cubic precipitates were observed after 1600 hrs at 425 C and they hardly coarsened at all with time at this temperature. Also addition of Ti retards the cubic to tetragonal transformation; however, a thermodynamically stable precipitate is desired. A very thorough ab initio computational investigation was done on the stability of L1{sub 2} phases of composition, (Al,X){sub 3}(Zr,Ti) and the possible occurrence of tie lines between a stable L1{sub 2} phase and the Al alloy terminal solid solution. Precipitation of cubic (Al{sub (1-x)}Zn{sub x}){sub 3}Zr in Al was predicted by these computations and subsequently observed by experiment (TEM). To test the combined reinforcement-precipitation concept to obtain a creep resistant Al alloy, Zr and Ti were added to the Al-Ni eutectic alloy. Cubic L1{sub 2} precipitates did form. The first and only Al-Ni-Zr-Ti alloy tested for creep gave a steady state creep rate at 375 C of 8 x 10{sup -9} under 20MPa stress. The goal is to optimize this alloy and add Zn to achieve a thermodynamically stable precipitate.

  20. Study of the {delta}{prime} reversion process in 8090 alloys

    SciTech Connect

    Lambri, O.A.; Perez-Landazabal, J.I.; No, M.L.; San Juan, J.

    1997-09-15

    Al-Li based alloys have been widely studied for their potential applications in the aerospace industry, owing to the fact that they exhibit a higher Young`s modulus and lower density than the conventional Al-based alloys. In this work, the microstructure evolution between room temperature (RT) aging of the as-quenched sample, and the microstructure associated with high temperature treatments in a 8090 alloy has been studied. Thermoelectric-power measurements (TEP), X-rays diffraction (XRD) and Vickers micro hardness test (VMH) were employed in this work in order to know simultaneously the microstructural state and the mechanical behavior. Due to the precision of the TEP measurements, the present study shows clearly the kinetics of the {delta}{prime} reversion process. Therefore, the best reversion treatment in order to reduce the hardness of the as-quenched sample after a solid solution treatment can be accurately determined.

  1. Influence of Si content on microstructure of TiAl alloys

    SciTech Connect

    Hsu, F.Y.; Klaar, H.J.; Wang, G.X.; Dahms, M.

    1996-04-01

    A systematic study of four ternary TiAl-based alloys with constant Ti content of 52.2 at. % and variable Si content ranging from 0.3 to 2.7 at. % (Al in balance) was conducted. The alloys were prepared from elemental powders via a route including powder mixing, precompaction, cold extrusion, and reactive hot-isostatic pressing. All investigated alloys contain the intermetallic compounds {gamma}-TiAl, {alpha}{sub 2}-Ti{sub 3}Al, and {zeta}-Ti{sub 5}(Si,Al){sub 3}. The microstructure can be described as a duplex structure (i.e., lamella {gamma}/{alpha}{sub 2} regions distributed in a {gamma} matrix) containing {zeta} precipitates. With increasing Si content, the number of primary {zeta} precipitates increased and the {gamma} grain size became finer while the lamellar volume fraction decreased slightly.

  2. Alternate alloying for environmental resistance; Proceedings of the Symposium, New Orleans, LA, Mar. 2-6, 1986

    SciTech Connect

    Smolik, G.R.; Banerji, S.K.

    1987-01-01

    Papers are presented on the development of oxidation- and sulfidation-resistant ferritic alloys; the microstructural stability of sulfidation-resistant FeCrAl stainless steels around 500 C; age hardening in Fe-Mn-Al-C austenitic alloys; the oxidation/corrosion behavior of low-Cr Fe-Cr-Ni alloys containing Zr or Nb; the high temperature oxidation/corrosion of iron-based superalloys; and the role of Mo in the Na/sub 2/SO/sub 4/ induced corrosion of superalloys at high temperature. Topics discussed include the effect of variations of Co content on the cyclic oxidation resistance of selected Ni-base superalloys; high temperature oxidation of Fe based alloys; the morphological development of high temperature oxide scales of Fe-Mn-Al base alloys; and the oxidation of an Fe-Mn-Al-C alloy at 1000 C. Consideration is given to the corrosion properties of Fe-Mn-Al alloys; passive films formed on nonmagnetic Cr-Mn-N stainless steels in chloride containing environments; the tubo 25 nickel base superalloy; and the compressive creep behavior of alloys based on B2 FeAl.

  3. Copper-tantalum alloy

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1986-07-15

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  4. Cesium iodide alloys

    DOEpatents

    Kim, H.E.; Moorhead, A.J.

    1992-12-15

    A transparent, strong CsI alloy is described having additions of monovalent iodides. Although the preferred iodide is AgI, RbI and CuI additions also contribute to an improved polycrystalline CsI alloy with outstanding multispectral infrared transmittance properties. 6 figs.

  5. Ductile transplutonium metal alloys

    DOEpatents

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  6. Nickel base coating alloy

    NASA Technical Reports Server (NTRS)

    Barrett, C. A. (Inventor); Lowell, C. E. (Inventor)

    1986-01-01

    Zirconium is added to a Ni-30 Al (beta) intermetallic alloy in the range of 0.05 w/o to 0.25 w/o. This addition is made during melting or by using metal powders. The addition of zirconium improves the cyclic oxidation resistance of the alloys at temperatures above 1100 C.

  7. PLUTONIUM-CERIUM ALLOY

    DOEpatents

    Coffinberry, A.S.

    1959-01-01

    An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.

  8. Neutron Absorbing Alloys

    DOEpatents

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  9. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  10. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  11. Ductile transplutonium metal alloys

    DOEpatents

    Conner, W.V.

    1981-10-09

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  12. The structure-directed effect of Al-based metal–organic frameworks on fabrication of alumina by thermal treatment

    SciTech Connect

    Liu, Dandan; Dai, Fangna; Tang, Zhe; Liu, Yunqi; Liu, Chenguang

    2015-05-15

    Highlights: • We use Al-MOFs as precursor in the fabrication process of mesoporous alumina by thermal treatment. • The obtained mesoporous alumina has dual pore system and five-fold aluminum. • The aluminum building units in the precursor show structure-directed effect on the formation of alumina. - Abstract: In this work, the block-shaped Al-based metal–organic frameworks (Al-MOFs) MIL-53 have been synthesized by hydrothermal method. To detect the correlation between the structure of Al-MOFs and the formation of alumina, the ligands are eliminated by thermal treatment. MIL-53 and the calcination products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption and solid-state {sup 27}Al nuclear magnetic resonance ({sup 27}Al NMR). It was found that after calcination, the block-shaped Al-MOFs precursor turns into high-crystallinity mesoporous alumina nanosheets, and the thermal treatment product γ-alumina possesses a dual pore system and a large surface area (146 m{sup 2}/g), with five-fold aluminum. During the thermal treatment process, the structure of MIL-53 and its secondary building units have structure-directed effect in the formation of alumina.

  13. Co2FeAl based magnetic tunnel junctions with BaO and MgO/BaO barriers

    NASA Astrophysics Data System (ADS)

    Rogge, J.; Hetaba, W.; Schmalhorst, J.; Bouchikhaoui, H.; Stender, P.; Baither, D.; Schmitz, G.; Hütten, A.

    2015-07-01

    We succeed to integrate BaO as a tunneling barrier into Co2FeAl based magnetic tunnel junctions (MTJs). By means of Auger electron spectroscopy it could be proven that the applied annealing temperatures during BaO deposition and afterwards do not cause any diffusion of Ba neither into the lower Heusler compound lead nor into the upper Fe counter electrode. Nevertheless, a negative tunnel magnetoresistance (TMR) ratio of -10% is found for Co2FeAl (24 nm) / BaO (5 nm) / Fe (7 nm) MTJs, which can be attributed to the preparation procedure and can be explained by the formation of Co- and Fe-oxides at the interfaces between the Heusler and the crystalline BaO barrier by comparing with theory. Although an amorphous structure of the BaO barrier seems to be confirmed by high-resolution transmission electron microscopy (TEM), it cannot entirely be ruled out that this is an artifact of TEM sample preparation due to the sensitivity of BaO to moisture. By replacing the BaO tunneling barrier with an MgO/BaO double layer barrier, the electric stability could effectively be increased by a factor of five. The resulting TMR effect is found to be about +20% at room temperature, although a fully antiparallel state has not been realized.

  14. Ultrahigh temperature intermetallic alloys

    SciTech Connect

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  15. Study of the feasibility of producing Al-Ni intermetallic compounds by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Mohammed, Kahtan S.; Naeem, Haider T.; Iskak, Siti Nadira

    2016-08-01

    Mechanical alloying (MA) was employed to synthesize Al-Zn-Mg-Cu alloys of high weight percentage of the nickel component from the elemental powders of constituents via high-energy ball milling. The mixed powders underwent 15 h of milling time at 350 rpm speed and 10: 1 balls/powder weight ratio. The samples were cold-compacted and sintered thereafter. The sintered compacts underwent homogenization treatments at various temperatures conditions and were aged at 120°C for 24 h (T6). The milled powders and heat-treated Al alloy products were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The crystallite sizes and microstrains of the alloyed powder were estimated via measuring the broadening of XRD peaks using the Williamson-Hall equation. The results have revealed that optimum MA time of 15 h has led to the formation of Al-based solid solutions of Zn, Mg, Cu, and Ni. The outcomes showed that the Vickers hardness of the sintered Al-Zn-Mg-Cu compacts of Ni alloys was enhanced following aging at T6 tempering treatments. Higher compression strength of Al-alloys with the addition of 15% nickel was obtained next to the aging treatment.

  16. Evaluation of the Transient Liquid Phase (TLP) Bonding Process for Ti3Al-Based Honeycomb Core Sandwich Structure

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Hoffman, Eric K.

    1998-01-01

    The suitability of using transient liquid phase (TLP) bonding to fabricate honeycomb core sandwich panels with Ti-14Al-21Nb (wt%) titanium aluminide (T3Al) face sheets for high-temperature hypersonic vehicle applications was evaluated. Three titanium alloy honeycomb cores and one Ti3Al alloy honeycomb core were investigated. Edgewise compression (EWC) and flatwise tension (FWT) tests on honeycomb core sandwich specimens and tensile tests of the face sheet material were conducted at temperatures ranging from room temperature to 1500 F. EWC tests indicated that the honeycomb cores and diffusion bonded joints were able to stabilize the face sheets up to and beyond the face sheet compressive yield strength for all temperatures investigated. The specimens with the T3Al honeycomb core produced the highest FWT strengths at temperatures above 1000 F. Tensile tests indicated that TLP processing conditions resulted in decreases in ductility of the Ti-14Al-21Nb face sheets. Microstructural examination showed that the side of the face sheets to which the filler metals had been applied was transformed from equiaxed alpha2 grains to coarse plates of alpha2 with intergranular Beta. Fractographic examination of the tensile specimens showed that this transformed region was dominated by brittle fracture.

  17. THORIUM-SILICON-BERYLLIUM ALLOYS

    DOEpatents

    Foote, F.G.

    1959-02-10

    Th, Si, anol Bt alloys where Be and Si are each present in anmounts between 0.1 and 3.5% by weight and the total weight per cent of the minor alloying elements is between 1.5 and 4.5% are discussed. These ternary alloys show increased hardness and greater resistant to aqueous corrosion than is found in pure Th, Th-Si alloys, or Th-Be alloys.

  18. Microstructure/property relationships in titanium aluminides and alloys; Proceedings of the Symposium, Fall Meeting of the Minerals, Metals, and Materials Society, Detroit, MI, Oct. 7-11, 1990

    SciTech Connect

    Kim, Young-Won; Boyer, R.R. Boeing Commercial Airplane Group, Seattle, WA )

    1991-01-01

    The present symposium on microstructure/property relationships in titanium aluminides and alloys discusses gamma titanium aluminides (ingot metallurgy alloys), gamma titanium aluminides (cast, PM, and XD alloys), alpha-2 titanium aluminides, and structural titanium alloys. Attention is given to phase equilibria in Ti-Al alloys, high-temperature phase stability in the Ti-Al-Ta system, dislocation structure in deformed gamma/alpha-2 titanium aluminides, and the microstructure-property correlation in TiAl-base alloys. Topics addressed include the temperature dependence of the tensile behavior of a gamma titanium aluminide alloy, the plastic flow behavior of a Ti-Al-Nb-Mn alloy at high temperatures, and hydrogen embrittlement in gamma TiAl alloys. Also discussed are microstructure morphology effects on the fracture toughness of a cast near-gamma titanium aluminide alloy, the creep behavior of Ti-24Al-11Nb, the flow behavior of Ti-24Al-11Nb at high strain rates, and the role of hydrogen-assisted cracking in SCC of alpha-beta Ti alloys.

  19. Magnesium silicide intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Li, Gh.; Gill, H. S.; Varin, R. A.

    1993-11-01

    Methods of induction melting an ultra-low-density magnesium silicide (Mg2Si) intermetallic and its alloys and the resulting microstructure and microhardness were studied. The highest quality ingots of Mg2Si alloys were obtained by triple melting in a graphite crucible coated with boron nitride to eliminate reactivity, under overpressure of high-purity argon (1.3 X 105 Pa), at a temperature close to but not exceeding 1105 °C ± 5 °C to avoid excessive evaporation of Mg. After establishing the proper induction-melting conditions, the Mg-Si binary alloys and several Mg2Si alloys macroalloyed with 1 at. pct of Al, Ni, Co, Cu, Ag, Zn, Mn, Cr, and Fe were induction melted and, after solidification, investigated by optical microscopy and quantitative X-ray energy dispersive spectroscopy (EDS). Both the Mg-rich and Si-rich eutectic in the binary alloys exhibited a small but systematic increase in the Si content as the overall composition of the binary alloy moved closer toward the Mg2Si line compound. The Vickers microhardness (VHN) of the as-solidified Mg-rich and Si-rich eutectics in the Mg-Si binary alloys decreased with increasing Mg (decreasing Si) content in the eutectic. This behavior persisted even after annealing for 75 hours at 0.89 pct of the respective eutectic temperature. The Mg-rich eutectic in the Mg2Si + Al, Ni, Co, Cu, Ag, and Zn alloys contained sections exhibiting a different optical contrast and chemical composition than the rest of the eutectic. Some particles dispersed in the Mg2Si matrix were found in the Mg2Si + Cr, Mn, and Fe alloys. The EDS results are presented and discussed and compared with the VHN data.

  20. Ternary alloying effects in polycrystalline {beta}-NiAl

    SciTech Connect

    Cotton, J.D.; Noebe, R.D.; Kaufman, M.J.

    1993-05-01

    Purpose of this paper is to summarize alloying research to date in polycrystalline NiAl and its impact on microstructure and ambient temperature properties. It is divided into the following sections: phase equilibria, solid solution effects and precipitation effects. Alloys that contain a high volume fraction of second phase (e.g. pseudobinary eutectic compositions) are not considered. Rather, the effects of dilute to moderate ternary alloying additions on the structure and properties of {beta}-NiAl are reviewed. It is already well established that stoichiometry is paramount in controlling mechanical properties of the binary compound. Since the addition of a third element is equally important, ternary phase equilibria are reviewed first. Solid solution strengthening is probably the least well understood particularly with respect to the nature of point defects and their contribution to strength. Characterization of these defects and their role in mechanical properties may well hold the key to future development of NiAl-based materials. With regard to second phases, there is limited evidence that the classical precipitation hardening mechanisms for metals are also applicable to NiAl.

  1. Spin-transfer switching in full-Heusler Co2FeAl-based magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Sukegawa, Hiroaki; Wen, Zhenchao; Kondou, Kouta; Kasai, Shinya; Mitani, Seiji; Inomata, Koichiro

    2012-04-01

    We demonstrated spin-transfer magnetization switching using magnetic tunnel junctions (MTJs) with a full-Heusler alloy Co2FeAl (CFA). We prepared CFA (1.5 nm)/MgO/CoFe (4 nm) ("CFA-free") and CFA (30 nm)/MgO/CoFeB (2 nm) ("CFA-reference") MTJs on a Cr(001) layer. The intrinsic critical current density (Jc0) of the CFA-free (CFA-reference) MTJ was 29 MA/cm2 (7.1 MA/cm2). The larger Jc0 of the CFA-free MTJ is attributed to the significant enhancement of the Gilbert damping factor (˜0.04) of the CFA due to the Cr layer. The Jc0 of the CFA-reference is as small as that reported for typical CoFeB/MgO/CoFeB MTJs.

  2. TUNGSTEN BASE ALLOYS

    DOEpatents

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  3. Aging characteristics of the Al-Si-Cu-Mg cast alloy modified with transition metals Zr, V and Ti

    NASA Astrophysics Data System (ADS)

    Czerwinski, F.; Shaha, S. K.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-03-01

    The hypoeutectic Al-7Si-1Cu-0.5Mg base alloy was modified with different contents of Zr, V and Ti. The wedge-shape samples with varying solidification rates during casting were subjected to isochronal aging at temperatures up to 500 °C. Moreover, as-cast and solution treated alloys were subjected to long-term isothermal aging at 150°C. As a reference, the A380 alloy, seen as commercial standard for the automotive application target, was used. The modified alloys exerted different aging characteristics than the A380 grade with higher peak hardness and lower temperature of alloy softening. Besides, the influence of the applied solidification rates on hardness after aging was less pronounced in modified alloys than in the A380 grade. For three combinations of Zr, V and Ti tested with contents of individual elements ranging from 0.14 to 0.47%, no essential differences in aging characteristics were recorded. The results are discussed in terms of the role of chemistry and heat treatment in generating precipitates contributing to the thermal stability of Al based alloys.

  4. Local growth of icosahedral quasicrystalline tilings

    NASA Astrophysics Data System (ADS)

    Hann, Connor T.; Socolar, Joshua E. S.; Steinhardt, Paul J.

    2016-07-01

    Icosahedral quasicrystals (IQCs) with extremely high degrees of translational order have been produced in the laboratory and found in naturally occurring minerals, yet questions remain about how IQCs form. In particular, the fundamental question of how locally determined additions to a growing cluster can lead to the intricate long-range correlations in IQCs remains open. In answer to this question, we have developed an algorithm that is capable of producing a perfectly ordered IQC yet relies exclusively on local rules for sequential, face-to-face addition of tiles to a cluster. When the algorithm is seeded with a special type of cluster containing a defect, we find that growth is forced to infinity with high probability and that the resultant IQC has a vanishing density of defects. The geometric features underlying this algorithm can inform analyses of experimental systems and numerical models that generate highly ordered quasicrystals.

  5. Electroplating on titanium alloy

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1971-01-01

    Activation process forms adherent electrodeposits of copper, nickel, and chromium on titanium alloy. Good adhesion of electroplated deposits is obtained by using acetic-hydrofluoric acid anodic activation process.

  6. Alloy Selection System

    SciTech Connect

    2001-02-01

    Software will Predict Corrosion Rates to Improve Productivity in the Chemical Industry. Many aspects of equipment design and operation are influenced by the choice of the alloys used to fabricate process equipment.

  7. PLUTONIUM-URANIUM ALLOY

    DOEpatents

    Coffinberry, A.S.; Schonfeld, F.W.

    1959-09-01

    Pu-U-Fe and Pu-U-Co alloys suitable for use as fuel elements tn fast breeder reactors are described. The advantages of these alloys are ease of fabrication without microcracks, good corrosion restatance, and good resistance to radiation damage. These advantages are secured by limitation of the zeta phase of plutonium in favor of a tetragonal crystal structure of the U/sub 6/Mn type.

  8. A composite of complex and chemical hydrides yields the first Al-based amidoborane with improved hydrogen storage properties.

    PubMed

    Dovgaliuk, Iurii; Jepsen, Lars H; Safin, Damir A; Łodziana, Zbigniew; Dyadkin, Vadim; Jensen, Torben R; Devillers, Michel; Filinchuk, Yaroslav

    2015-10-01

    The first Al-based amidoborane Na[Al(NH2 BH3 )4 ] was obtained through a mechanochemical treatment of the NaAlH4 -4 AB (AB=NH3 BH3 ) composite releasing 4.5 wt % of pure hydrogen. The same amidoborane was also produced upon heating the composite at 70 °C. The crystal structure of Na[Al(NH2 BH3 )4 ], elucidated from synchrotron X-ray powder diffraction and confirmed by DFT calculations, contains the previously unknown tetrahedral ion [Al(NH2 BH3 )4 ](-) , with every NH2 BH3 (-) ligand coordinated to aluminum through nitrogen atoms. Combination of complex and chemical hydrides in the same compound was possible due to both the lower stability of the AlH bonds compared to the BH ones in borohydride, and due to the strong Lewis acidity of Al(3+) . According to the thermogravimetric analysis-differential scanning calorimetry-mass spectrometry (TGA-DSC-MS) studies, Na[Al(NH2 BH3 )4 ] releases in two steps 9 wt % of pure hydrogen. As a result of this decomposition, which was also supported by volumetric studies, the formation of NaBH4 and amorphous product(s) of the surmised composition AlN4 B3 H(0-3.6) were observed. Furthermore, volumetric experiments have also shown that the final residue can reversibly absorb about 27 % of the released hydrogen at 250 °C and p(H2 )=150 bar. Hydrogen re-absorption does not regenerate neither Na[Al(NH2 BH3 )4 ] nor starting materials, NaAlH4 and AB, but rather occurs within amorphous product(s). Detailed studies of the latter one(s) can open an avenue for a new family of reversible hydrogen storage materials. Finally, the NaAlH4 -4 AB composite might become a starting point towards a new series of aluminum-based tetraamidoboranes with improved hydrogen storage properties such as hydrogen storage density, hydrogen purity, and reversibility. PMID:26306666

  9. A composite of complex and chemical hydrides yields the first Al-based amidoborane with improved hydrogen storage properties.

    PubMed

    Dovgaliuk, Iurii; Jepsen, Lars H; Safin, Damir A; Łodziana, Zbigniew; Dyadkin, Vadim; Jensen, Torben R; Devillers, Michel; Filinchuk, Yaroslav

    2015-10-01

    The first Al-based amidoborane Na[Al(NH2 BH3 )4 ] was obtained through a mechanochemical treatment of the NaAlH4 -4 AB (AB=NH3 BH3 ) composite releasing 4.5 wt % of pure hydrogen. The same amidoborane was also produced upon heating the composite at 70 °C. The crystal structure of Na[Al(NH2 BH3 )4 ], elucidated from synchrotron X-ray powder diffraction and confirmed by DFT calculations, contains the previously unknown tetrahedral ion [Al(NH2 BH3 )4 ](-) , with every NH2 BH3 (-) ligand coordinated to aluminum through nitrogen atoms. Combination of complex and chemical hydrides in the same compound was possible due to both the lower stability of the AlH bonds compared to the BH ones in borohydride, and due to the strong Lewis acidity of Al(3+) . According to the thermogravimetric analysis-differential scanning calorimetry-mass spectrometry (TGA-DSC-MS) studies, Na[Al(NH2 BH3 )4 ] releases in two steps 9 wt % of pure hydrogen. As a result of this decomposition, which was also supported by volumetric studies, the formation of NaBH4 and amorphous product(s) of the surmised composition AlN4 B3 H(0-3.6) were observed. Furthermore, volumetric experiments have also shown that the final residue can reversibly absorb about 27 % of the released hydrogen at 250 °C and p(H2 )=150 bar. Hydrogen re-absorption does not regenerate neither Na[Al(NH2 BH3 )4 ] nor starting materials, NaAlH4 and AB, but rather occurs within amorphous product(s). Detailed studies of the latter one(s) can open an avenue for a new family of reversible hydrogen storage materials. Finally, the NaAlH4 -4 AB composite might become a starting point towards a new series of aluminum-based tetraamidoboranes with improved hydrogen storage properties such as hydrogen storage density, hydrogen purity, and reversibility.

  10. Disk Alloy Development

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Gayda, John; Telesman, Jack

    2001-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA HSR/EPM disk program to have extended durability at 1150 to 1250 "Fin large disks. Scaled-up disks of this alloy were produced at the conclusion of this program to demonstrate these properties in realistic disk shapes. The objective of the UEET disk program was to assess the mechanical properties of these ME3 disks as functions of temperature, in order to estimate the maximum temperature capabilities of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor / Turbine Disk program were sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. Additional sub-scale disks and blanks were processed and tested to explore the effects of several processing variations on mechanical properties. Scaled-up disks of an advanced regional disk alloy, Alloy 10, were used to evaluate dual microstructure heat treatments. This allowed demonstration of an improved balance of properties in disks with higher strength and fatigue resistance in the bores and higher creep and dwell fatigue crack growth resistance in the rims. Results indicate the baseline ME3 alloy and process has 1300 to 1350 O F temperature capabilities, dependent on detailed disk and engine design property requirements. Chemistry and process enhancements show promise for further increasing temperature capabilities.

  11. Carbon Nanostructures Grown on Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Čaplovičová, Mária; Čaplovič, Ľubomír; Búc, Dalibor; Vinduška, Peter; Janík, Ján

    2010-11-01

    The morphology and nanostructure of carbon nanotubes (CNTs), synthesized directly on Fe-Cr-Al-based alloy substrate using an alcohol catalytic chemical vapour deposition method (ACCVD), were examined by transmission electron microscopy (TEM). The grown CNTs were entangled with chain-like, bamboo-like, and necklace-like morphologies. The CNT morphology was affected by the elemental composition of catalysts and local instability of deposition process. Straight and bended CNTs with bamboo-like nanostructure grew mainly on γ-Fe and Fe3C particles. The synthesis of necklace-like nanostructures was influenced by silicon oxide, and growth of chain-like nanostructures was supported by a catalysts consisting of Fe, Si, oxygen and trace of Cr. Most of nanotubes grew according to base growth mechanism.

  12. FY-13 FCRD Milestone M3FT-13OR0202311 Weldability of ORNL Accident Tolerant Fuel Cladding Model Alloys For Thin Walled Tubes

    SciTech Connect

    Field, Kevin G; Gussev, Maxim N; Yamamoto, Yukinori

    2013-07-01

    Ferritic FeCrAl-based alloys show increased oxidation resistance for accident tolerant applications as fuel cladding. This study focuses on investigating the weldability of three model FeCrAl alloys with varying alloy compositions using laser-welding techniques. A detailed study of the mechanical properties of bead-on-plate welds was used to determine the quality of welds as a function of alloy composition. Laser welding resulted in defect free welds devoid of cracking or inclusions. Initial results indicate a reduction in the yield strength of weldments compared to the base material due to distinct changes in the microstructure within the fusion zone. Although a loss of yield strength was observed, there was no significant difference in the magnitude of the tensile property changes with varying Cr or Al content. Also, there was no evidence of embrittlement; the material in the fusion zones demonstrated ductile behavior with high local ductility.

  13. Correlation between diffusion barriers and alloying energy in binary alloys.

    PubMed

    Vej-Hansen, Ulrik Grønbjerg; Rossmeisl, Jan; Stephens, Ifan E L; Schiøtz, Jakob

    2016-01-28

    In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells. Using density functional theory calculations, we show that there is a correlation between the alloying energy of an alloy, and the diffusion barriers of the minority component. Alloys with a negative alloying energy may show improved long term stability, despite the fact that there is typically a greater thermodynamic driving force towards dissolution of the solute metal over alloying. In addition to Pt, we find that this trend also appears to hold for alloys based on Al and Pd. PMID:26750475

  14. Progress on Numerical Modeling of the Dispersion of Ceramic Nanoparticles During Ultrasonic Processing and Solidification of Al-Based Nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Daojie; Nastac, Laurentiu

    2016-08-01

    In present study, 6061- and A356-based nano-composites are fabricated by using the ultrasonic stirring technology (UST) in a coreless induction furnace. SiC nanoparticles are used as the reinforcement. Nanoparticles are added into the molten metal and then dispersed by ultrasonic cavitation and acoustic streaming assisted by electromagnetic stirring. The applied UST parameters in the current experiments are used to validate a recently developed magneto-hydro-dynamics (MHD) model, which is capable of modeling the cavitation and nanoparticle dispersion during UST processing. The MHD model accounts for turbulent fluid flow, heat transfer and solidification, and electromagnetic field, as well as the complex interaction between the nanoparticles and both the molten and solidified alloys by using ANSYS Maxwell and ANSYS Fluent. Molecular dynamics (MD) simulations are conducted to analyze the complex interactions between the nanoparticle and the liquid/solid interface. The current modeling results demonstrate that a strong flow can disperse the nanoparticles relatively well during molten metal and solidification processes. MD simulation results prove that ultrafine particles (10 nm) will be engulfed by the solidification front instead of being pushed, which is beneficial for nano-dispersion.

  15. Selective aluminum dissolution as a means to observe the microstructure of nanocrystalline intermetallic phases from Al-Fe-Cr-Ti-Ce rapidly solidified alloy.

    PubMed

    Michalcová, Alena; Vojtěch, Dalibor; Novák, Pavel

    2013-02-01

    Rapidly solidified aluminum alloys are promising materials with very fine microstructure. The microscopy observation of these materials is complicated due to overlay of fcc-Al matrix and different intermetallic phases. A possible way to solve this problem is to dissolve the Al matrix. By this process powder formed by single intermetallic phase particles is obtained. In this paper a new aqueous based dissolving agent for Al-based alloy is presented. The influence of oxidation agent (FeCl(3)) concentration on quality of extraction process was studied. PMID:23177792

  16. The effect of TiB2 reinforcement on the mechanical properties of an Al-Cu-Li alloy-based metal-matrix composite

    NASA Technical Reports Server (NTRS)

    Langan, T. J.; Pickens, J. R.

    1991-01-01

    Weldalite 049, an Al-base Cu-Li-Mg-Ag-Zr alloy, achieves 700 MPa tensile strengths in the near-peak-aged temper in virtue of the nucleation of a T(1)-type platelike strengthening precipitate. Attention is presently given to the possibility that the alloy's modulus could be further increased through the addition of high-modulus TiB2 particles, using the 'XD' process, due to TiB2's good wettability with liquid Al. An 8-percent modulus increase is obtained with 4 vol pct TiB2.

  17. The role of microstructure on strength and ductility of hot-extruded mechanically alloyed NiAl

    NASA Astrophysics Data System (ADS)

    Dollar, M.; Dymek, S.; Hwang, S. J.; Nash, P.

    1993-09-01

    Mechanical alloying followed by hot extrusion has been used to produce very fine-grained NiAl-based alloys containing oxide dispersoids. The dispersoids affect the progress of recrystallization during hot extrusion and contribute to the preservation of the <110> deformation fiber texture. The <110> texture enables the activation of <110> <100> and 110 <110> slip systems. The occurrence of <100> and <110> slip dislocations satisfies the von Mises criterion for general plasticity and is postulated to contribute to notable room-temperature compressive ductility of the mechanically alloyed (MA) materials. Another factor likely affecting the compressive ductility is the predominant occurrence of low-angle grain boundaries. The attractive dislocation — dispersoid interactions lead to a ductility trough observed at 800 K in the MA materials. The MA NiAl materials are strong at both ambient and elevated temperatures due to fine grain and the presence of dispersoids and interstitial atoms.

  18. Laser cladding of quasi-crystal-forming Al-Cu-Fe-Bi on an Al-Si alloy substrate

    NASA Astrophysics Data System (ADS)

    Biswas, Krishanu; Chattopadhyay, Kamanio; Galun, Rolf; Mordike, Barry L.

    2005-07-01

    We report here the results of an investigation aimed at producing coatings containing phases closely related to the quasi-crystalline phase with dispersions of soft Bi particles using an Al-Cu-Fe-Bi elemental powder mixture on Al-10.5 at. pct Si substrates. A two-step process of cladding followed by remelting is used to fine-tune the alloying, phase distribution, and microstructure. A powder mix of Al64Cu22.3Fe11.7Bi2 has been used to form the clads. The basic reason for choosing Bi lies in the fact that it is immiscible with each of the constituent elements. Therefore, it is expected that Bi will solidify in the form of dispersoids during the rapid solidification. A detailed microstructural analysis has been carried out by using the backscattered imaging mode in a scanning electron microscope (SEM) and transmission electron microscope (TEM). The microstructural features are described in terms of layers of different phases. Contrary to our expectation, the quasi-crystalline phase could not form on the Al-Si substrate. The bottom of the clad and remelted layers shows the regrowth of aluminum. The formation of phases such as blocky hexagonal Al-Fe-Si and a ternary eutectic (Al + CuAl2 + Si) have been found in this layer. The middle layer shows the formation of long plate-shaped Al13Fe4 along with hexagonal Al-Fe-Si phase growing at the periphery of the former. The formation of metastable Al-Al6Fe eutectic has also been found in this layer. The top layer, in the case of the as-clad track, shows the presence of plate-shaped Al13Fe4 along with a 1/1 cubic rational approximant of a quasi-crystal. The top layer of the remelted track shows the presence of a significant amount of a 1/1 cubic rational approximant. In addition, the as-clad and remelted microstructures show a fine-scale dispersion of Bi particles of different sizes formed during monotectic solidification. The remelting is found to have a strong effect on the size and distribution of Bi particles. The dry

  19. Semiconductor alloys - Structural property engineering

    NASA Technical Reports Server (NTRS)

    Sher, A.; Van Schilfgaarde, M.; Berding, M.; Chen, A.-B.

    1987-01-01

    Semiconductor alloys have been used for years to tune band gaps and average bond lengths to specific applications. Other selection criteria for alloy composition, and a growth technique designed to modify their structural properties, are presently considered. The alloys Zn(1-y)Cd(y)Te and CdSe(y)Te(1-y) are treated as examples.

  20. De-alloyed platinum nanoparticles

    DOEpatents

    Strasser, Peter; Koh, Shirlaine; Mani, Prasanna; Ratndeep, Srivastava

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  1. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  2. Early stages of superplasticity and positron lifetime spectroscopy in an Al-Mg-Cu alloy

    SciTech Connect

    Ayciriex, M.D.; Romero, R.; Somoza, A.

    1996-07-01

    In the present paper, by using positron lifetime technique, a careful study is carried out to analyze the microstructural changes induced on samples of an Al-based commercial alloy (Al-Mg-Cu-Mn-Cr) by superplastic deformation in the early stages of superplastic behavior of the alloy (strain range from 0.2% to 100%). These results are compared with those obtained on specimens only heat treated at the same temperature and for a time equivalent to the elapsed time during each tensile test, in order to evaluate the thermal contribution to the microstructural changes induced during the superplastic deformation process. Moreover, the positron results were linked with the microstructural evolution of the samples followed by means of optical microscopy and Vickers microhardness technique.

  3. High-resolution transmission electron microscopy of grain-refining particles in amorphous aluminum alloys

    SciTech Connect

    Schumacher, P.; Greer, A.L.

    1996-10-01

    The nucleation mechanism of Al-Ti-B grain refiners is studied in an Al-based amorphous alloy. The ability to limit growth of {alpha}-Al in the amorphous alloy permits the microscopical observation of nucleation events on boride particles. Earlier studies of this kind are extended by using high-resolution electron microscopy. This shows that the efficient nucleation {alpha}-Al depends on the TiB{sub 2} particles being coated with a thin layer of Al{sub 3}Ti, which can form only when there is some excess titanium in the melt. The aluminide layer, stabilized by adsorption effects, can be as little as a few monolayers thick, and is coherent with the boride. The nature of this layer, and its importance for the nucleation mechanism are discussed. The fading of the grain refinement action is also considered.

  4. Effects of gas to melt ratio on the microstructure of an Al–10.83Zn–3.39Mg–1.22Cu alloy produced by spray atomization and deposition

    SciTech Connect

    Guo, S.; Ning, Z.L.; Zhang, M.X.; Cao, F.Y.; Sun, J.F.

    2014-01-15

    Various gas to melt ratios (GMR) that govern the cooling rate of spray forming can be achieved through controlling the atomizer form and the atomization pressure. The effect of the GMR on microstructures of an Al–10.83Zn–3.39Mg–1.22Cu alloy produced through spray forming has been studied using electron microscopy. When the GMR is high at 3.5, dendritic structure and quasi-crystalline i-Mg{sub 32}(AlZn){sub 49} particles inherited from the original powders can be observed. Spray forming at medium GMR of 2.3 produces equiaxed α-Al grains and MgZn{sub 2} phase that discontinuously distributes along the grain boundaries and within the grains as small particles. The low GMR of 1.4 corresponds to low cooling rate. Coarse and equiaxed α-Al grains together with eutectic structure consisting of b.c.c.-Mg{sub 32}(AlZn){sub 49} and α-Al phases along the grain boundaries are obtained. - Highlights: • At high GMR, the broken fragments and i-Mg{sub 32}(AlZn){sub 49} quasicrystal are observed. • At medium GMR, microstructure consists of α-Al equiaxed grains and MgZn{sub 2} phase. • At low GMR, the coarsened α-Al grains and bcc-Mg{sub 32}(AlZn){sub 49} eutectic appear.

  5. Surface modification of high temperature iron alloys

    DOEpatents

    Park, Jong-Hee

    1995-01-01

    A method and article of manufacture of a coated iron based alloy. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700.degree. C.-1200.degree. C. to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy.

  6. Surface modification of high temperature iron alloys

    DOEpatents

    Park, J.H.

    1995-06-06

    A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.

  7. Work function of binary alloys

    NASA Astrophysics Data System (ADS)

    Ishii, Ryusuke; Matsumura, Katsunori; Sakai, Akira; Sakata, Toyo

    2001-01-01

    By utilizing the field emission method, we have studied the composition dependence of work function in NiCu and PtRh alloys. In PtRh alloys, we find that the work function falls below the linear interpolation, in agreement with the experimental results on AgAu alloys [Fain and McDavid, Phys. Rev. B 9 (1974) 5099]. On the other hand, the work function of NiCu alloys is found to show little systematic deviation from the linear interpolation. The observed negative deviation in PtRh alloys is not compatible with a simple theoretical prediction based on the electronic density of states.

  8. Alloyed coatings for dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Wermuth, F. R.; Stetson, A. R.

    1971-01-01

    Processing techniques were developed for applying several diffusion barriers to TD-Ni and TD-NiCr. Barrier coated specimens of both substrates were clad with Ni-Cr-Al and Fe-Cr-Al alloys and diffusion annealed in argon. Measurement of the aluminum distribution after annealing showed that, of the readily applicable diffusion barriers, a slurry applied tungsten barrier most effectively inhibited the diffusion of aluminum from the Ni-Cr-Al clad into the TD-alloy substrates. No barrier effectively limited interdiffusion of the Fe-Cr-Al clad with the substrates. A duplex process was then developed for applying Ni-Cr-Al coating compositions to the tungsten barrier coated substrates. A Ni-(16 to 32)Cr-3Si modifier was applied by slurry spraying and firing in vacuum, and was then aluminized by a fusion slurry process. Cyclic oxidation tests at 2300 F resulted in early coating failure due to inadequate edge coverage and areas of coating porosity. EMP analysis showed that oxidation had consumed 70 to 80 percent of the aluminum in the coating in less than 50 hours.

  9. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2000-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  10. Quinary metallic glass alloys

    DOEpatents

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  11. Quinary metallic glass alloys

    DOEpatents

    Lin, Xianghong; Johnson, William L.

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  12. High-transition-temperature shape memory alloy film

    NASA Astrophysics Data System (ADS)

    Johnson, A. David; Martynov, Valery V.; Shahoian, Erik J.

    1995-05-01

    Using conventional magnetron sputtering deposition processes three different types of shape memory alloys (FeNi based, CuAl based and TiNi based) were examined as potential candidates for the production of high temperature SMA thin film. CuAlNi and TiNiHf SMA were successfully deposited on silicon wafers and thin films of 4 - 20 micrometers were produced. After annealing at approximately equals 500 degree(s)C both CuAlNi and TiNiHf films exhibited reversible high temperature martensitic transition. For CuAlNi thin films, annealing itself was found to be inadequate for obtaining transformation intervals corresponding to that of the target. To deal with the problem it is expected that additional quenching after solid solution heat treatment will be necessary. Of the three alloys examined, the most promising candidate for high temperature thin film microactuators is TiNiHf. It was found that by changing the Hf content in the target, the transformation start temperature of thin films can be easily adjusted in a temperature range from 100 degree(s)C to 200 degree(s)C.

  13. Properties- and applications of quasicrystals and complex metallic alloys.

    PubMed

    Dubois, Jean-Marie

    2012-10-21

    This article aims at an account of what is known about the potential for applications of quasicrystals and related compounds, the so-called family of Complex Metallic Alloys (CMAs‡). Attention is focused at aluminium-based CMAs, which comprise a large number of crystalline compounds and quasicrystals made of aluminium alloyed with transition metals (like Fe or Cu) or normal metals like Mg. Depending on composition, the structural complexity varies from a few atoms per unit cell up to thousands of atoms. Quasicrystals appear then as CMAs of ultimate complexity and exhibit a lattice that shows no periodicity anymore in the usual 3-dimensional space. Properties change dramatically with lattice complexity and turn the metal-type behaviour of simple Al-based crystals into a far more complex behaviour, with a fingerprint of semi-conductors that may be exploited in various applications, potential or realised. An account of the ones known to the author is given in the light of the relevant properties, namely light absorption, reduced adhesion and friction, heat insulation, reinforcement of composites for mechanical devices, and few more exotic ones. The role played by the search for applications of quasicrystals in the development of the field is briefly addressed in the concluding section.

  14. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths

    DOE PAGES

    Jiao, Z. B.; Luan, J. H.; Miller, M. K.; Yu, C. Y.; Liu, C. T.

    2016-02-19

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for twomore » interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. Lastly, the co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications.« less

  15. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths.

    PubMed

    Jiao, Z B; Luan, J H; Miller, M K; Yu, C Y; Liu, C T

    2016-02-19

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for two interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. The co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications.

  16. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths

    NASA Astrophysics Data System (ADS)

    Jiao, Z. B.; Luan, J. H.; Miller, M. K.; Yu, C. Y.; Liu, C. T.

    2016-02-01

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for two interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. The co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications.

  17. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths

    PubMed Central

    Jiao, Z. B.; Luan, J. H.; Miller, M. K.; Yu, C. Y.; Liu, C. T.

    2016-01-01

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for two interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. The co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications. PMID:26892834

  18. Development and Processing of Nickel Aluminide-Carbide Alloys

    NASA Technical Reports Server (NTRS)

    Newport, Timothy Scott

    1996-01-01

    With the upper temperature limit of the Ni-based superalloys attained, a new class of materials is required. Intermetallics appear as likely candidates because of their attractive physical properties. With a relatively low density, high thermal conductivity, excellent oxidation resistance, high melting point, and simple crystal structure, nickel aluminide (NiAl) appears to be a potential candidate. However, NiAl is limited in structural applications due to its low room temperature fracture toughness and poor elevated temperature strength. One approach to improving these properties has been through the application of eutectic composites. Researchers have shown that containerless directional solidification of NiAl-based eutectic alloys can provide improvement in both the creep strength and fracture toughness. Although these systems have shown improvements in the mechanical properties, the presence of refractory metals increases the density significantly in some alloys. Lower density systems, such as the carbides, nitrides, and borides, may provide NiAl-based eutectic structure. With little or no information available on these systems, experimental investigation is required. The objective of this research was to locate and develop NiAl-carbide eutectic alloys. Exploratory arc-melts were performed in NiAl-refractory metal-C systems. Refractory metal systems investigated included Co, Cr, Fe, Hf, Mo, Nb, Ta, Ti, W, and Zr. Systems containing carbides with excellent stability (i.e.,HfC, NbC, TaC, TiC, and ZrC) produced large blocky cubic carbides in an NiAl matrix. The carbides appeared to have formed in the liquid state and were randomly distributed throughout the polycrystalline NiAl. The Co, Cr, Fe, Mo, and W systems contained NiAl dendrites with a two-phase interdendritic microconstituent present. Of these systems, the NiAl-Mo-C system had the most promising microstructure for in-situ composites. Three processing techniques were used to evaluate the NiAl-Mo-C system

  19. Dynamic mechanical analyze of superelastic CuMnAl shape memory alloy

    NASA Astrophysics Data System (ADS)

    (Dragoș Ursanu, A. I.; Stanciu, S.; Pricop, B.; Săndulache, F.; Cimpoeșu, N.

    2016-08-01

    A new shape memory alloy was obtain from high purity Cu, Mn and Al elements using a induce furnace. The intelligent material present negative transformation temperatures and an austenite like state at room temperature. The austenite state of CuMnAl shape memory alloy present superelasticity property. Five kilograms ingot was obtain of Cu10Mn10Al alloy. From the base material (melted state) were cut samples with 6 mm thickness using a mechanical saw. After an homogenization heat treatment the samples were hot rolled through four passes with a reduction coefficient of 20%. Experimental lamellas were obtained with 1.5 mm thickness and 90x10 mm length and width. After the hot rolled treatment the materials were heat treated at 800°C for 20 minutes and chilled in water. Four samples, one just laminated and three heat treated by aging, were analyzed with a Netzsch DMA equipment to establish the elastic modulus and the internal friction values of the materials. Metallic materials microstructure was analyzed using a scanning electron microscope Vega Tescan LMH II type. After the aging heat treatment a decrease of internal friction is observed on the entire analyze range which is assigned to formation of Al-based precipitates that block the internal movement of the alloy characteristic phases.

  20. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  1. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  2. Alternate alloying for environmental resistance

    SciTech Connect

    Smolik, G.R.; Banerji, S.K.

    1986-01-01

    The 35 papers contained in this collection detail efforts being made toward achieving environmental resistance of alloys and conserved usage of strategic and critical materials. An in-depth look is taken at the roles played by various alloying elements in providing desired microstructures, properties, and influences upon environmental attack. Also presented are applications and performances of alternate alloys in aqueous and high temperature gaseous and molten salt environments. The book is broken down into five key sections covering: 1) philosophies and status of programs designing alloys for resistance to various environmental and microstructural stability of some of these alloys systems, 2) applications in hot corrosion and sulfidizing environments, 3) applications in oxidizing conditions, 4) corrosion resistance in aqueous environments, and 5) other properties, such as physical and mechanical, which are necessary to evaluate overall alloy performance.

  3. Two phase titanium aluminide alloy

    DOEpatents

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  4. TERNARY ALLOY-CONTAINING PLUTONIUM

    DOEpatents

    Waber, J.T.

    1960-02-23

    Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

  5. Alloy Interface Interdiffusion Modeled

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Garces, Jorge E.; Abel, Phillip B.

    2003-01-01

    With renewed interest in developing nuclear-powered deep space probes, attention will return to improving the metallurgical processing of potential nuclear fuels so that they remain dimensionally stable over the years required for a successful mission. Previous work on fuel alloys at the NASA Glenn Research Center was primarily empirical, with virtually no continuing research. Even when empirical studies are exacting, they often fail to provide enough insight to guide future research efforts. In addition, from a fundamental theoretical standpoint, the actinide metals (which include materials used for nuclear fuels) pose a severe challenge to modern electronic-structure theory. Recent advances in quantum approximate atomistic modeling, coupled with first-principles derivation of needed input parameters, can help researchers develop new alloys for nuclear propulsion.

  6. Amorphous metal alloy and composite

    DOEpatents

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  7. Titanium-tantalum alloy development

    SciTech Connect

    Cotton, J.D.; Bingert, J.F.; Dunn, P.S.; Butt, D.P.; Margevicius, R.W.

    1996-04-01

    Research has been underway at Los Alamos National Laboratory for several years to develop an alloy capable of containing toxic materials in the event of a fire involving a nuclear weapon. Due to their high melting point, good oxidation resistance, and low solubility in molten plutonium, alloys based on the Ti-Ta binary system have been developed for this purpose. The course of the alloy development to-date, along with processing and property data, are presented in this overview.

  8. Duct and cladding alloy

    DOEpatents

    Korenko, Michael K.

    1983-01-01

    An austenitic alloy having good thermal stability and resistance to sodium corrosion at 700.degree. C. consists essentially of 35-45% nickel 7.5-14% chromium 0.8-3.2% molybdenum 0.3-1.0% silicon 0.2-1.0% manganese 0-0.1% zirconium 2.0-3.5% titanium 1.0-2.0% aluminum 0.02-0.1% carbon 0-0.01% boron and the balance iron.

  9. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  10. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  11. Radiation Effects in Refractory Alloys

    NASA Astrophysics Data System (ADS)

    Zinkle, Steven J.; Wiffen, F. W.

    2004-02-01

    In order to achieve the required low reactor mass per unit electrical power for space reactors, refractory alloys are essential due to their high operating temperature capability that in turn enables high thermal conversion efficiencies. One of the key issues associated with refractory alloys is their performance in a neutron irradiation environment. The available radiation effects data are reviewed for alloys based on Mo, W, Re, Nb and Ta. The largest database is associated with Mo alloys, whereas Re, W and Ta alloys have the least available information. Particular attention is focused on Nb-1Zr, which is a proposed cladding and structural material for the reactor in the Jupiter Icy Moons Orbiter (JIMO) project. All of the refractory alloys exhibit qualitatively similar temperature-dependent behavior. At low temperatures up to ~0.3TM, where TM is the melting temperature, the dominant effect of radiation is to produce pronounced radiation hardening and concomitant loss of ductility. The radiation hardening also causes a dramatic decrease in the fracture toughness of the refractory alloys. These low temperature radiation effects occur at relatively low damage levels of ~0.1 displacement per atom, dpa (~2×1024 n/m2, E>0.1 MeV). As a consequence, operation at low temperatures in the presence of neutron irradiation must be avoided for all refractory alloys. At intermediate temperatures (0.3 to 0.6 TM), void swelling and irradiation creep are the dominant effects of irradiation. The amount of volumetric swelling associated with void formation in refractory alloys is generally within engineering design limits (<5%) even for high neutron exposures (>>10 dpa). Very little experimental data exist on irradiation creep of refractory alloys, but data for other body centered cubic alloys suggest that the irradiation creep will produce negligible deformation for near-term space reactor applications.

  12. Directional Solidification of Monotectic Alloys

    NASA Technical Reports Server (NTRS)

    Hellawell, A.

    1983-01-01

    Cooling at certain rates produced fibrous composite structures. Alloy samples melted in alumina or graphite crucibles under argon and then chillcast into 33-mm-diameter rods or sucked directly into 3-mm-bore alumina or silica tubes. Alloying not automatic with immiscible components of different densities and widely different melting points.

  13. Directional Solidification Of Monotectic Alloys

    NASA Technical Reports Server (NTRS)

    Dhindaw, B. K.; Stefanescu, D. M.; Singh, A. K.; Curreri, P. A.

    1990-01-01

    Conditions promoting formation of aligned fibers sought. Report describes experiments in directional solidification of Cu/Pb and Bi/Ga monotectic alloys. Study motivated by need to understand physical mechanism governing formation of rodlike or fiberlike aligned structures in solidifying alloy and to determine process conditions favoring such structures.

  14. Shape memory alloy thaw sensors

    DOEpatents

    Shahinpoor, Mohsen; Martinez, David R.

    1998-01-01

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.

  15. PLUTONIUM-CERIUM-COPPER ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-05-12

    A low melting point plutonium alloy useful as fuel is a homogeneous liquid metal fueled nuclear reactor is described. Vessels of tungsten or tantalum are useful to contain the alloy which consists essentially of from 10 to 30 atomic per cent copper and the balance plutonium and cerium. with the plutontum not in excess of 50 atomic per cent.

  16. Aluminum and its light alloys

    NASA Technical Reports Server (NTRS)

    Merica, Paul D

    1920-01-01

    Report is a summary of research work which has been done here and abroad on the constitution and mechanical properties of the various alloy systems with aluminum. The mechanical properties and compositions of commercial light alloys for casting, forging, or rolling, obtainable in this country are described.

  17. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.

    1981-01-01

    The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.

  18. Equivalent crystal theory of alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1991-01-01

    Equivalent Crystal Theory (ECT) is a new, semi-empirical approach to calculating the energetics of a solid with defects. The theory has successfully reproduced surface energies in metals and semiconductors. The theory of binary alloys to date, both with first-principles and semi-empirical models, has not been very successful in predicting the energetics of alloys. This procedure is used to predict the heats of formation, cohesive energy, and lattice parameter of binary alloys of Cu, Ni, Al, Ag, Au, Pd, and Pt as functions of composition. The procedure accurately reproduces the heats of formation versus composition curves for a variety of binary alloys. The results are then compared with other approaches such as the embedded atom and lattice parameters of alloys from pure metal properties more accurately than Vegard's law is presented.

  19. Mo-Si alloy development

    SciTech Connect

    Liu, C.T.; Heatherly, L.; Wright, J.L.

    1996-06-01

    The objective of this task is to develop new-generation corrosion-resistant Mo-Si intermetallic alloys as hot components in advanced fossil energy conversion and combustion systems. The initial effort is devoted to Mo{sub 5}-Si{sub 3}-base (MSB) alloys containing boron additions. Three MSB alloys based on Mo-10.5Si-1.1B (wt %), weighing 1500 g were prepared by hot pressing of elemental and alloy powders at temperatures to 1600{degrees}C in vacuum. Microporosities and glassy-phase (probably silicate phases) formations are identified as the major concerns for preparation of MSB alloys by powder metallurgy. Suggestions are made to alleviate the problems of material processing.

  20. Wedlable nickel aluminide alloy

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    2002-11-19

    A Ni.sub.3 Al alloy with improved weldability is described. It contains about 6-12 wt % Al, about 6-12 wt % Cr, about 0-3 wt % Mo, about 1.5-6 wt % Zr, about 0-0.02 wt % B and at least one of about 0-0.15 wt % C, about 0-0.20 wt % Si, about 0-0.01 wt % S and about 0-0.30 wt % Fe with the balance being Ni.

  1. Thermomechanical treatment of alloys

    DOEpatents

    Bates, John F.; Brager, Howard R.; Paxton, Michael M.

    1983-01-01

    An article of an alloy of AISI 316 stainless steel is reduced in size to predetermined dimensions by cold working in repeated steps. Before the last reduction step the article is annealed by heating within a temperature range, specifically between 1010.degree. C. and 1038.degree. C. for a time interval between 90 and 60 seconds depending on the actual temperature. By this treatment the swelling under neutron bombardment by epithermal neutrons is reduced while substantial recrystallization does not occur in actual use for a time interval of at least of the order of 5000 hours.

  2. Aluminum alloy and associated anode and battery

    SciTech Connect

    Tarcy, G.P.

    1990-08-21

    This patent describes an aluminum alloy. It comprises: eutectic amounts of at least two alloying elements selected from the group consisting of bismuth, cadmium, scandium, gallium, indium, lead, mercury, thallium, tin, and zinc with the balance being aluminum and the alloying elements being about 0.01 to 3.0 percent by weight of the alloy.

  3. Galvanic cells including cobalt-chromium alloys.

    PubMed

    Gjerdet, N R

    1980-01-01

    Galvanic cells may be created when dentures made of cobalt-chromium alloys are placed on teeth with metallic restorations. The power of such cells was evaluated in an in vitro galvanic using amalgams, gold alloy, and nickel-chromium alloys. The amalgams and one of the nickel-chromium alloys revealed high corrosion currents when placed in contact with cobalt-chromium alloy, the conventional amalgam showing the highest values. The gold alloy and another nickel-chromium alloy exhibited low corrosion currents and they were noble with respect to cobalt-chromium.

  4. Development of powder metallurgy 2XXX series Al alloys for high temperature aircraft structural applications

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.

    1984-01-01

    The objective of the present investigation was to improve the strength and fracture toughness combination of P/M 2124 Al alloys in accordance with NASA program goals for damage tolerance and fatigue resistance. Two (2) P/M compositions based on Al-3.70 Cu-1.85 Mg-0.20 Mn with 0.12 and 0.60 wt. pct. Zr were selected for investigation. The rapid solidification rates produced by atomization were observed to prohibit the precipitation of coarse, primary Al3Zr in both alloys. A major portion of the Zr precipitated as finely distributed, coherent Al3Zr phases during vacuum preheating and solution heat treatment. The proper balance between Cu and Mg contents eliminated undissolved, soluble constituents such as Al2CuMg and Al2Cu during atomization. The resultant extruded microstructures produced a unique combination of strength and fracture toughness. An increase in the volume fraction of coherent Al3Zr, unlike incoherent Al20Cu2Mn3 dispersoids, strengthened the P/M Al base alloy either directly by dislocation-precipitate interactions, indirectly by a retardation of recrystallization, or a combination of both mechanisms. Furthermore, coherent Al3Zr does not appear to degrade toughness to the extent that incoherent Al20Cu2Mn3 does. Consequently, the addition of 0.60 wt. pct. Zr to the base alloy, incorporated with a 774K (935 F) solution heat treatment temperature, produces an alloy which exceeds all tensile property and fracture toughness goals for damage tolerant and fatigue resistant applications in the naturally aged condition.

  5. Fatigue of die cast zinc alloys

    SciTech Connect

    Schrems, K.K.; Dogan, O.N.; Goodwin, F.E.

    2006-04-01

    The rotating bending fatigue limit of die cast zinc alloy 2, alloy 3, alloy 5, AcuZinc 5, and ZA-8 were determined as a part of an on-going program by ILZRO into the mechanical properties of die cast zinc. The stress-life (S-N) curves of alloys 3, 5, AcuZinc 5, and ZA-8 were determined previously. This presentation reports the results of the S-N curve for Alloy 2 and the calculated fatigue limits for all five alloys. During the previous stress-life testing, the samples were stopped at 10 million cycles and the fatigue limit for alloy 3, alloy 5, and AcuZinc 5 appeared to be higher and the fatigue limit for ZA-8 appeared to be lower than the values reported in the literature. This was further investigated in alloy 5 and ZA-8 by testing continuous cast bulk alloy 5 and ZA-8.

  6. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

  7. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800.degree. C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800.degree. C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700.degree. C. at a low cost

  8. High performance alloy electroforming

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Winkelman, D. M.

    1989-01-01

    Electroformed copper and nickel are used in structural applications for advanced propellant combustion chambers. An improved process has been developed by Bell Aerospace Textron, Inc. wherein electroformed nickel-manganese alloy has demonstrated superior mechanical and thermal stability when compared to previously reported deposits from known nickel plating processes. Solution chemistry and parametric operating procedures are now established and material property data is established for deposition of thick, large complex shapes such as the Space Shuttle Main Engine. The critical operating variables are those governing the ratio of codeposited nickel and manganese. The deposition uniformity which in turn affects the manganese concentration distribution is affected by solution resistance and geometric effects as well as solution agitation. The manganese concentration in the deposit must be between 2000 and 3000 ppm for optimum physical properties to be realized. The study also includes data regarding deposition procedures for achieving excellent bond strength at an interface with copper, nickel-manganese or INCONEL 718. Applications for this electroformed material include fabrication of complex or re-entry shapes which would be difficult or impossible to form from high strength alloys such as INCONEL 718.

  9. Superior Ballistic Impact Resistance Achieved by the Co-Base Alloy Haynes 25

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Noebe, Ronald D.; Revilock, Duane M.

    2003-01-01

    The fan case in a jet engine is required to contain a fan blade in the rare event of a blade loss during operation. Because of its function, the fan case is the largest structural component in high-bypass-ratio turbofan engines used in commercial aircraft. Therefore, the use of lighter and stronger materials would be advantageous in most engines and is practically a necessity in the latest generation of high-bypass engines. Small panels, 7 in. wide by 7 in. long, of a number of metallic alloys were impact tested at room temperature with a 0.50-caliber blunt-nose titanium alloy projectile at the NASA Glenn Research Center (ref. 1). These metallic systems included several high-strength aluminum (Al) alloys, Al-based laminates, aluminum metal matrix composites (Al-MMCs), nickel-base superalloys (Inconel 718 and 625), several titanium (Ti) alloys in different heat treated conditions, 304L stainless steel, a stainless-steel-based laminate, and a high strength steel (Nitronic 60). It was determined that a simple Co-base alloy (Haynes 25) had the best impact resistance on an areal weight basis. Haynes 25 was at least 10 percent better than IMI 550, the best titanium alloy tested to date, and it was far superior to other metals, especially at higher impact velocities (greater than 1100 ft/sec). Because this material could be ideal for fan containment applications in supersonic aircraft as a replacement for titanium, impact tests were also conducted at 371 oC and compared with results from alloys tested at elevated temperature under previous programs (i.e., Inconel 718, Ti-6242, M-152, Timetal 21S, and Aeromet 100). Although cobalt-base alloys are used in some high-temperature engine applications, to our knowledge they are not used in any containment systems. Advantages of cobalt over titanium include lower cost, easier processing, better high-temperature strength, and no fire hazard if tip rub occurs. Future plans include testing of lightweight sandwich panels with Haynes

  10. New Amorphous Silicon Alloy Systems

    NASA Astrophysics Data System (ADS)

    Kapur, Mridula N.

    1990-01-01

    The properties of hydrogenated amorphous silicon (a-Si:H) have been modified by alloying with Al, Ga and S respectively. The Al and Ga alloys are in effect quaternary alloys as they were fabricated in a carbon-rich discharge. The alloys were prepared by the plasma assisted chemical vapor deposition (PACVD) method. This method has several advantages, the major one being the relatively low defect densities of the resulting materials. The PACVD system used to grow the alloy films was designed and constructed in the laboratory. It was first tested with known (a-Si:H and a-Si:As:H) materials. Thus, it was established that device quality alloy films could be grown with the home-made PACVD setup. The chemical composition of the alloys was characterized by secondary ion mass spectrometry (SIMS), and electron probe microanalysis (EPMA). The homogeneous nature of hydrogen distribution in the alloys was established by SIMS depth profile analysis. A quantitative analysis of the bulk elemental content was carried out by EPMA. The analysis indicated that the alloying element was incorporated in the films more efficiently at low input gas concentrations than at the higher concentrations. A topological model was proposed to explain the observed behavior. The optical energy gap of the alloys could be varied in the 0.90 to 1.92 eV range. The Al and Ga alloys were low band gap materials, whereas alloying with S had the effect of widening the energy gap. It was observed that although the Si-Al and Si-Ga alloys contained significant amounts of C and H, the magnitude of the energy gap was determined by the metallic component. The various trends in optical properties could be related to the binding characteristics of the respective alloy systems. A quantitative explanation of the results was provided by White's tight binding model. The dark conductivity-temperature dependence of the alloys was examined. A linear dependence was observed for the Al and Ga systems. Electronic conduction in

  11. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.

    1980-01-01

    The feasibility of using metal alloys as thermal energy storage media was investigated. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases were determined. A new method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation. The method and apparatus are discussed and the experimental results are presented for aluminum and two aluminum-eutectic alloys. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide was identified as a promising containment material and surface-coated iron alloys were also evaluated. System considerations that are pertinent if alloy eutectics are used as thermal energy storage media are discussed. Potential applications to solar receivers and industrial furnaces are illustrated schematically.

  12. Dendritic Alloy Solidification Experiment (DASE)

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; Karma, A.; Steinbach, I.; deGroh, H. C., III

    2001-01-01

    A space experiment, and supporting ground-based research, is proposed to study the microstructural evolution in free dendritic growth from a supercooled melt of the transparent model alloy succinonitrile-acetone (SCN-ACE). The research is relevant to equiaxed solidification of metal alloy castings. The microgravity experiment will establish a benchmark for testing of equiaxed dendritic growth theories, scaling laws, and models in the presence of purely diffusive, coupled heat and solute transport, without the complicating influences of melt convection. The specific objectives are to: determine the selection of the dendrite tip operating state, i.e. the growth velocity and tip radius, for free dendritic growth of succinonitrile-acetone alloys; determine the growth morphology and sidebranching behavior for freely grown alloy dendrites; determine the effects of the thermal/solutal interactions in the growth of an assemblage of equiaxed alloy crystals; determine the effects of melt convection on the free growth of alloy dendrites; measure the surface tension anisotropy strength of succinon itrile -acetone alloys establish a theoretical and modeling framework for the experiments. Microgravity experiments on equiaxed dendritic growth of alloy dendrites have not been performed in the past. The proposed experiment builds on the Isothermal Dendritic Growth Experiment (IDGE) of Glicksman and coworkers, which focused on the steady growth of a single crystal from pure supercooled melts (succinonitrile and pivalic acid). It also extends the Equiaxed Dendritic Solidification Experiment (EDSE) of the present investigators, which is concerned with the interactions and transients arising in the growth of an assemblage of equiaxed crystals (succinonitrile). However, these experiments with pure substances are not able to address the issues related to coupled heat and solute transport in growth of alloy dendrites.

  13. Mechanically Alloyed High Entropy Composite

    NASA Astrophysics Data System (ADS)

    Popescu, G.; Adrian, M. M.; Csaki, I.; Popescu, C. A.; Mitrică, D.; Vasile, S.; Carcea, I.

    2016-08-01

    In the last years high entropy alloys have been investigated due to their high hardness, high temperature stability and unusual properties that make these alloys to have significant interest. In comparison with traditional alloys that are based on two or three major elements, this new generation alloys consists at least of 5 principal elements, with the concentration between 5 and 35 at.%. The present paper reports synthesis of high entropy alloys (HEA) and high entropy composites (HEC) synthesized by mechanical alloying (MA). The equiatomic AlCrFeNiMn matrix was used for creating the HEA matrix, starting from elemental powders and as reinforcing material for composites was used pure graphite. The mechanical alloying process was carried out at different duration, in a high energy planetary ball mill, under argon atmosphere. The elemental powders alloying began after '5 hours of milling and was complete after 40 hours. The mechanical alloyed matrix and composite was pressed and heat treated under argon protection. The elemental powers were investigated for physical - technological properties, and by X-ray diffraction and scanning electron microscopy. Phase pressing operation was realized with a hydraulic press and the applied pressure was progressive. The sintering process was carried out at 850°C for 2 h. The X-ray diffraction revealed that the MA process resulted in solid solutions formation and also revealed body- centred cubic (BCC) and face-centred cubic (FCC) structures with average grain size around 40 nm. In addition, nanoscale particles were highlighted by scanning electron microscopy, as well as the homogeneity of the chemical composition of the matrix and composite that was confirmed by EDX microanalysis. It was noted that HEA matrix and HEA composites were processed with a high degree of compaction and with a quite large capacity of mixed powder densification (around 70%).

  14. Grain Refinement of a gamma-TiAl Alloy Through Isothermal Forging and Heat Treatment

    SciTech Connect

    Heshmati-Manesh, S.; Bahmanpour, H.

    2010-03-11

    Effect of initial massive type structure of a gamma-TiAl based alloy on its hot deformed and stabilized microstructure was investigated. A gamma alloy with composition of Ti-47Al-12Nb-0.5Si was subjected to rapid quenching from alpha phase field. The quenched sample was deformed at high temperature. Further post deformation heat treatment was conducted to stabilize the as-deformed structure. It was shown that Nb and Si have important roles in grain refinement of the final product. Presence of niobium in the alloy made the diffusion controlled eutectoid reaction sluggish and assisted the formation of massive type gamma phase (gamma{sub m}) by rapid cooling from alpha phase field. Silicon addition assisted the microstructural refinement by forming hard and finely dispersed titanium silicide particles. These particles act as preferred sites for dynamic recrystallization during hot deformation. Massive gamma phase tends to deform uniformly and decompose to equilibrium phases after final heat treatment and results in a very fine grained microstructure.

  15. Mechanical alloying of biocompatible Co-28Cr-6Mo alloy.

    PubMed

    Sánchez-De Jesús, F; Bolarín-Miró, A M; Torres-Villaseñor, G; Cortés-Escobedo, C A; Betancourt-Cantera, J A

    2010-07-01

    We report on an alternative route for the synthesis of crystalline Co-28Cr-6Mo alloy, which could be used for surgical implants. Co, Cr and Mo elemental powders, mixed in an adequate weight relation according to ISO Standard 58342-4 (ISO, 1996), were used for the mechanical alloying (MA) of nano-structured Co-alloy. The process was carried out at room temperature in a shaker mixer mill using hardened steel balls and vials as milling media, with a 1:8 ball:powder weight ratio. Crystalline structure characterization of milled powders was carried out by X-ray diffraction in order to analyze the phase transformations as a function of milling time. The aim of this work was to evaluate the alloying mechanism involved in the mechanical alloying of Co-28Cr-6Mo alloy. The evolution of the phase transformations with milling time is reported for each mixture. Results showed that the resultant alloy is a Co-alpha solid solution, successfully obtained by mechanical alloying after a total of 10 h of milling time: first Cr and Mo are mechanically prealloyed for 7 h, and then Co is mixed in for 3 h. In addition, different methods of premixing were studied. The particle size of the powders is reduced with increasing milling time, reaching about 5 mum at 10 h; a longer time promotes the formation of aggregates. The morphology and crystal structure of milled powders as a function of milling time were analyzed by scanning electron microscopy and XR diffraction. PMID:20364362

  16. Microstructure and Thermal Conductivity of the As-Cast and Annealed Al-Cu-Mg-Si Alloys in the Temperature Range from 25°C to 400° C

    NASA Astrophysics Data System (ADS)

    Zhang, Cong; Du, Yong; Liu, Shuhong; Liu, Shaojun; Jie, Wanqi; Sundman, Bosse

    2015-11-01

    Four Al-based Al-Cu-Mg-Si alloy ingots were prepared by electrical resistance furnace. Microstructures and phase identification of the alloys were investigated by using electron probe microanalysis and X-ray diffraction techniques, respectively. The temperature dependences of thermal diffusivity and thermal conductivity of the as-cast and annealed alloys were investigated within the temperature range from 25°C to 400° C, and the estimated thermal conductivity was correlated with the microstructure and (Al) matrix phase compositions of the alloys. According to the results, the thermal conductivity of Al-Cu-Mg-Si alloys increased with temperature. The formation of precipitates, which consumes solute elements in the (Al) phase, contributes to the improvement in thermal diffusivity and thermal conductivity of annealed Al-Cu-Mg-Si alloys. The complex interconnection precipitates with a lower thermal conductivity than (Al) phase may affect the continuity of the matrix phase in microstructure and decreasing the thermal conductivity of the alloys significantly.

  17. High strength ferritic alloy

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high-strength ferritic alloy useful for fast reactor duct and cladding applications where an iron base contains from about 9% to about 13% by weight chromium, from about 4% to about 8% by weight molybdenum, from about 0.2% to about 0.8% by weight niobium, from about 0.1% to about 0.3% by weight vanadium, from about 0.2% to about 0.8% by weight silicon, from about 0.2% to about 0.8% by weight manganese, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight sulfur, a maximum of about 0.02% by weight phosphorous, and from about 0.04% to about 0.12% by weight carbon.

  18. High-Temperature Oxidation-Resistant and Low Coefficient of Thermal Expansion NiAl-Base Bond Coat Developed for a Turbine Blade Application

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Many critical gas turbine engine components are currently made from Ni-base superalloys that are coated with a thermal barrier coating (TBC). The TBC consists of a ZrO2-based top coat and a bond coat that is used to enhance the bonding between the superalloy substrate and the top coat. MCrAlY alloys (CoCrAlY and NiCrAlY) are currently used as bond coats and are chosen for their very good oxidation resistance. TBC life is frequently limited by the oxidation resistance of the bond coat, along with a thermal expansion mismatch between the metallic bond coat and the ceramic top coat. The aim of this investigation at the NASA Glenn Research Center was to develop a new longer life, higher temperature bond coat by improving both the oxidation resistance and the thermal expansion characteristics of the bond coat. Nickel aluminide (NiAl) has excellent high-temperature oxidation resistance and can sustain a protective Al2O3 scale to longer times and higher temperatures in comparison to MCrAlY alloys. Cryomilling of NiAl results in aluminum nitride (AlN) formation that reduces the coefficient of thermal expansion (CTE) of the alloy and enhances creep strength. Thus, additions of cryomilled NiAl-AlN to CoCrAlY were examined as a potential bond coat. In this work, the composite alloy was investigated as a stand-alone substrate to demonstrate its feasibility prior to actual use as a coating. About 85 percent of prealloyed NiAl and 15 percent of standard commercial CoCrAlY alloys were mixed and cryomilled in an attritor with stainless steel balls used as grinding media. The milling was carried out in the presence of liquid nitrogen. The milled powder was consolidated by hot extrusion or by hot isostatic pressing. From the consolidated material, oxidation coupons, four-point bend, CTE, and tensile specimens were machined. The CTE measurements were made between room temperature and 1000 C in an argon atmosphere. It is shown that the CTE of the NiAl-AlN-CoCrAlY composite bond coat

  19. Electromagnetic Casting of Copper Alloys

    NASA Astrophysics Data System (ADS)

    Tyler, D. E.; Lewis, B. G.; Renschen, P. D.

    1985-09-01

    Electromagnetic (EMC) casting technology has been successfully developed for copper base alloys. This casting technique eliminates the mold related defects normally encountered in direct chill (DC) mold casting, and provides castings with greatly improved hot workability.

  20. Magnesium Alloys and their Applications

    NASA Astrophysics Data System (ADS)

    Kainer, Karl U.

    1999-04-01

    In the recent years there has been a dramatic increase in research activity and also applications of magnesium alloys. The driving force is the growing demand by the automobile industry resulting from the pressure to reduce weight and hence to reduce the fuel consumption. The U.S. car industry incorporates the largest amount of magnesium at the present time. In Europe, Volkswagen had a history of using magnesium in the VW Beetle. Volkswagen, in common with other major car producers has initiated a major research and development programme for advanced magnesium materials. The main emphasis of this book is in the field of general physical metallurgy and alloy development refelcting the need to provide a wider range of alloys both casting and wrought alloys to meet the increasing demands of industry. Other topics are nevertheless well represented such as casting, recycling, joining, corrosion, and surface treatment.

  1. Tritium Production from Palladium Alloys

    SciTech Connect

    Claytor, T.N.; Schwab, M.J.; Thoma, D.J.; Teter, D.F.; Tuggle, D.G.

    1998-04-19

    A number of palladium alloys have been loaded with deuterium or hydrogen under low energy bombardment in a system that allows the continuous measurement of tritium. Long run times (up to 200 h) result in an integration of the tritium and this, coupled with the high intrinsic sensitivity of the system ({approximately}0.1 nCi/l), enables the significance of the tritium measurement to be many sigma (>10). We will show the difference in tritium generation rates between batches of palladium alloys (Rh, Co, Cu, Cr, Ni, Be, B, Li, Hf, Hg and Fe) of various concentrations to illustrate that tritium generation rate is dependent on alloy type as well as within a specific alloy, dependent on concentration.

  2. Technical Seminar "Shape Memory Alloys"

    NASA Video Gallery

    Shape memory alloys are a unique group of materials that remember their original shape and return to that shape after being strained. How could the aerospace, automotive, and energy exploration ind...

  3. Manufacturing of High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Jablonski, Paul D.; Licavoli, Joseph J.; Gao, Michael C.; Hawk, Jeffrey A.

    2015-07-01

    High entropy alloys (HEAs) have generated interest in recent years due to their unique positioning within the alloy world. By incorporating a number of elements in high proportion they have high configurational entropy, and thus they hold the promise of interesting and useful properties such as enhanced strength and phase stability. The present study investigates the microstructure of two single-phase face-centered cubic (FCC) HEAs, CoCrFeNi and CoCrFeNiMn, with special attention given to melting, homogenization and thermo-mechanical processing. Large-scale ingots were made by vacuum induction melting to avoid the extrinsic factors inherent in small-scale laboratory button samples. A computationally based homogenization heat treatment was applied to both alloys in order to eliminate segregation due to normal ingot solidification. The alloys fabricated well, with typical thermo-mechanical processing parameters being employed.

  4. Casting Characteristics of Aluminum Die Casting Alloys

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  5. Castable hot corrosion resistant alloy

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A. (Inventor); Holt, William H. (Inventor)

    1988-01-01

    Some 10 wt percent nickel is added to an Fe-base alloy which has a ferrite microstructure to improve the high temperature castability and crack resistance while about 0.2 wt percent zirconium is added for improved high temperatur cyclic oxidation and corrosion resistance. The basic material is a high temperature FeCrAl heater alloy, and the addition provides a material suitable for burner rig nozzles.

  6. Shape memory alloy thaw sensors

    DOEpatents

    Shahinpoor, M.; Martinez, D.R.

    1998-04-07

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states. 16 figs.

  7. Superplastic forming of alloy 718

    SciTech Connect

    Smith, G.D.; Flower, H.L. )

    1994-04-01

    Inconel Alloy 718 (UNS N07718) is now available in a fine-grained, controlled composition modification that can be super-plastically formed. The new superplastic forming (SPF) capability allows the manufacture of large, complex, and detailed parts, which improves integrity by reducing the need for joining. Furthermore, it allows designers to fabricate components having higher strength, fatigue resistance, and temperature capability than parts made of aluminum or titanium alloys.

  8. Co{sub 2}FeAl based magnetic tunnel junctions with BaO and MgO/BaO barriers

    SciTech Connect

    Rogge, J.; Schmalhorst, J.; Hütten, A.; Hetaba, W.

    2015-07-15

    We succeed to integrate BaO as a tunneling barrier into Co{sub 2}FeAl based magnetic tunnel junctions (MTJs). By means of Auger electron spectroscopy it could be proven that the applied annealing temperatures during BaO deposition and afterwards do not cause any diffusion of Ba neither into the lower Heusler compound lead nor into the upper Fe counter electrode. Nevertheless, a negative tunnel magnetoresistance (TMR) ratio of -10% is found for Co{sub 2}FeAl (24 nm) / BaO (5 nm) / Fe (7 nm) MTJs, which can be attributed to the preparation procedure and can be explained by the formation of Co- and Fe-oxides at the interfaces between the Heusler and the crystalline BaO barrier by comparing with theory. Although an amorphous structure of the BaO barrier seems to be confirmed by high-resolution transmission electron microscopy (TEM), it cannot entirely be ruled out that this is an artifact of TEM sample preparation due to the sensitivity of BaO to moisture. By replacing the BaO tunneling barrier with an MgO/BaO double layer barrier, the electric stability could effectively be increased by a factor of five. The resulting TMR effect is found to be about +20% at room temperature, although a fully antiparallel state has not been realized.

  9. Effect of a ductility layer on the tensile strength of TiAl-based multilayer composite sheets prepared by EB-PVD

    SciTech Connect

    Zhang, Rubing; Zhang, Yaoyao; Liu, Qiang; Chen, Guiqing; Zhang, Deming

    2014-09-15

    TiAl/Nb and TiAl/NiCoCrAl laminate composite sheets with a thickness of 0.4–0.6 mm and dimensions of 150 mm × 100 mm were successfully fabricated by electron beam physical vapor deposition. The microstructures of the sheets were examined, and their mechanical properties were compared with those of TiAl monolithic sheet produced by electron beam physical vapor deposition. Tensile testing was performed at room temperature and 750 °C, and the fracture surfaces were examined by scanning electron microscopy. Among the three microlaminate sheets, the TiAl/NiCoCrAl micro-laminate sheet had the best comprehensive properties at room temperature, and the TiAl/Nb micro-laminate sheet showed the ideal high-temperature strength and plasticity at 750 °C. The result was discussed in terms of metal strengthening mechanism. - Highlights: • TiAl-based multilayer foils was fabricated successfully by using EB-PVD method; • The tensile properties and micro-fracture morphologies of the sheet were investigated; • The deformation behavior of the multilayer foils was discussed.

  10. Structural and dynamical properties of liquid Al-Au alloys

    NASA Astrophysics Data System (ADS)

    Peng, H. L.; Voigtmann, Th.; Kolland, G.; Kobatake, H.; Brillo, J.

    2015-11-01

    We investigate temperature- and composition-dependent structural and dynamical properties of Al-Au melts. Experiments are performed to obtain accurate density and viscosity data. The system shows a strong negative excess volume, similar to other Al-based binary alloys. We develop a molecular-dynamics (MD) model of the melt based on the embedded-atom method (EAM), gauged against the available experimental liquid-state data. A rescaling of previous EAM potentials for solid-state Au and Al improves the quantitative agreement with experimental data in the melt. In the MD simulation, the admixture of Au to Al can be interpreted as causing a local compression of the less dense Al system, driven by less soft Au-Au interactions. This local compression provides a microscopic mechanism explaining the strong negative excess volume of the melt. We further discuss the concentration dependence of self- and interdiffusion and viscosity in the MD model. Al atoms are more mobile than Au, and their increased mobility is linked to a lower viscosity of the melt.

  11. Ni{sub 3}Al aluminide alloys

    SciTech Connect

    Liu, C.T.

    1993-10-01

    This paper provides a brief review of the recent progress in research and development of Ni{sub 3}Al and its alloys. Emphasis has been placed on understanding low ductility and brittle fracture of Ni{sub 3}Al alloys at ambient and elevated temperatures. Recent studies have resulted in identifying both intrinsic and extrinsic factors governing the fracture behavior of Ni{sub 3}Al alloys. Parallel efforts on alloy design using physical metallurgy principles have led to properties for structural use. Industrial interest in these alloys is high, and examples of industrial involvement in processing and utilization of these alloys are briefly mentioned.

  12. Choosing An Alloy For Automotive Stirling Engines

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1988-01-01

    Report describes study of chemical compositions and microstructures of alloys for automotive Stirling engines. Engines offer advantages of high efficiency, low pollution, low noise, and ability to use variety of fuels. Twenty alloys evaluated for resistance to corrosion permeation by hydrogen, and high temperature. Iron-based alloys considered primary candidates because of low cost. Nickel-based alloys second choice in case suitable iron-based alloy could not be found. Cobalt-based alloy included for comparison but not candidate, because it is expensive strategic material.

  13. Precipitation Sequence of a SiC Particle Reinforced Al-Mg-Si Alloy Composite

    NASA Astrophysics Data System (ADS)

    Shen, Rujuan; Wang, Yihan; Guo, Baisong; Song, Min

    2016-10-01

    In this study, the precipitation sequence of a 5 vol.% SiC particles reinforced Al-1.12 wt.%Mg-0.77 wt.%Si alloy composite fabricated by traditional powder metallurgy method was investigated by transmission electron microscopy and hardness measurements. The results indicated that the addition of SiC reinforcements not only suppresses the initial aging stage but also influences the subsequent precipitates. The precipitation sequence of the composite aged at 175 °C can be described as: Guinier-Preston (G.P.) zone → β″ → β' → B', which was confirmed by high-resolution transmission electron microscopy. This work might provide the guidance for the design and fabrication of hardenable automobile body sheet by Al-based composites with enhanced mechanical properties.

  14. Precursor phenomenon of martensitic transformation in Au-49.5at%Cd alloy

    SciTech Connect

    Ohba, Takuya; Shapiro, S.M.; Aoki, Shingo; Otsuka, Kazuhiro

    1994-12-31

    Phonon softening was observed in the parent phase of a AuCd alloy which t=forms from the {beta}{sub 2}(B2) parent to {zeta}{sub 2}{prime} (trigonal) martensitic. Since Cd strongly absorbs neutrons, the isotope {sup 114}Cd was used in preparing the single crystal for the measurements. The [{zeta}{zeta}0]TA{sub 2} phonon branch was measured and found to be anomalously low. A minimum is present at {zeta} = 0.35 which softens with decreasing temperature towards Ms. The results are consistent with the model proposed by Ohba et al. based upon a crystallographic study of the {zeta}{sub 2}{prime} phase.

  15. Mechanical properties and structural evolution during deformation of fine grain magnesium and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Yang, Qi

    deformation behavior (R ˜ 1.0) at elevated temperatures in sharp contrast with its room temperature behavior, i.e. textural effects are minimized. For Al-based alloy containing low Mg (Al-3wt% Mg-1.3wt% Zn-1wt% Cu-0.5wt% Sc-0.2wt% Zr), the effects of different thermomechanical treatments on recrystallization, superplastic response, and age-hardening response are investigated. This alloy produces tensile elongations over 400% at a strain rate of 10-3 s-1 and 500--525°C. During superplastic deformation, dynamic recrystallization and strain-induced grain growth occur to cause a bimodal microstructure to transform into a uniform structure with a stable grain size. Room temperature yield strength of this new alloy is 235MPa, considerably higher than conventional Al-Mg alloys containing higher levels of Mg.

  16. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites.

    PubMed

    Wang, Z; Georgarakis, K; Nakayama, K S; Li, Y; Tsarkov, A A; Xie, G; Dudina, D; Louzguine-Luzgin, D V; Yavari, A R

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  17. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites.

    PubMed

    Wang, Z; Georgarakis, K; Nakayama, K S; Li, Y; Tsarkov, A A; Xie, G; Dudina, D; Louzguine-Luzgin, D V; Yavari, A R

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  18. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    PubMed Central

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  19. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-04-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  20. MATE (Materials for Advanced Turbine Engines) Program, Project 3. Volume 2: Design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner

    NASA Technical Reports Server (NTRS)

    Bose, S.; Sheffler, K. D.

    1988-01-01

    The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Two yttria (Y2O3) dispersion strengthened alloys were evaluated; Incoloy MA956 and Haynes Development Alloy (HDA) 8077 (NiCrAl base). Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. MA956 was selected as the final alloy based on manufacturing reproducibility for evaluation as a burner liner. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components and using a louvered configuration was designed and constructed. The louvered configuration was chosen because of field experience and compatibility with the bill of material PW2037 design. The simulated flight cycle for the ground based engine tests consisted of 4.5 min idle, 1.5 min takeoff and intermediate conditions in a PW2037 engine with average uncorrected combustor exit temperature of 1527 C. Post test evaluation consisting of visual observations and fluorescent penetrant inspections was conducted after 500 cycles of testing. No loss of integrity in the burner liner was shown.

  1. MATE (Materials for Advanced Turbine Engines) Program, Project 3. Volume 2: Design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner. Final report

    SciTech Connect

    Bose, S.; Sheffler, K.D.

    1988-02-01

    The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Two yttria (Y2O3) dispersion strengthened alloys were evaluated; Incoloy MA956 and Haynes Development Alloy (HDA) 8077 (NiCrAl base). Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. MA956 was selected as the final alloy based on manufacturing reproducibility for evaluation as a burner liner. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components and using a louvered configuration was designed and constructed. The louvered configuration was chosen because of field experience and compatibility with the bill of material PW2037 design. The simulated flight cycle for the ground based engine tests consisted of 4.5 min idle, 1.5 min takeoff and intermediate conditions in a PW2037 engine with average uncorrected combustor exit temperature of 1527 C. Post test evaluation consisting of visual observations and fluorescent penetrant inspections was conducted after 500 cycles of testing. No loss of integrity in the burner liner was shown.

  2. Alloy 602 CA -- A new alloy for the furnace industry

    SciTech Connect

    Brill, U.; Agarwal, D.C.

    1995-12-31

    Improving the economics of heat treatment facilities is often a question of raising the service temperature, which itself rests on the temperature capability of the alloys used. With the newly-developed alloy 602CA introduced to the market in 1992, there is now a nickel-base alloy available which provides sufficient high temperature strength and corrosion resistance up to 1,200 C, without any, special requirements on manufacturing and processing. Because of the excellent mechanical properties and corrosion resistance of this alloy it was possible to substitute uncooled all-metal furnace rolls for water-cooled asbestos rolls, in a continuous annealing furnace operating at up to 1,200 C. These rolls have now been in service for up to two years without any technical problems, and have proved themselves as a more economic and less environmentally dangerous, solution, This paper describes the mechanical properties and corrosion behavior of the new alloy, and gives some calculations on economic efficiency.

  3. Imprinting bulk amorphous alloy at room temperature

    PubMed Central

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  4. Imprinting bulk amorphous alloy at room temperature.

    PubMed

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T; Lograsso, Thomas A; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  5. Imprinting bulk amorphous alloy at room temperature

    NASA Astrophysics Data System (ADS)

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  6. Imprinting bulk amorphous alloy at room temperature

    SciTech Connect

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  7. High strength forgeable tantalum base alloy

    NASA Technical Reports Server (NTRS)

    Buckman, R. W., Jr.

    1975-01-01

    Increasing tungsten content of tantalum base alloy to 12-15% level will improve high temperature creep properties of existing tantalum base alloys while retaining their excellent fabrication and welding characteristics.

  8. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of hafnium, tantalum, tungsten, rhenium, osmium, iridium, and platinum on hardness of molybdenum. Special emphasis was placed on alloy softening in these binary molybdenum alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to molybdenum, while those elements having an equal number or fewer s+d electrons that molybdenum failed to produce alloy softening. Alloy softening and alloy hardening can be correlated with the difference in number of s+d electrons of the solute element and molybdenum.

  9. Effect of solution properties, competing ligands, and complexing metal on sorption of tetracyclines on Al-based drinking water treatment residuals.

    PubMed

    Punamiya, Pravin; Sarkar, Dibyendu; Rakshit, Sudipta; Datta, Rupali

    2015-05-01

    In the current batch study, we investigated the effect of solution properties, competing ligands (phosphate (P(V)) and sulfate), and complexing metal (calcium (Ca(2+))) on tetracycline (TTC) and oxytetracycline (OTC) sorption by Al-based drinking water treatment residuals (Al-WTR). The sorption behavior for both TTC and OTC on Al-WTR was pH dependent. The sorption in absence of competing ligands and complexing metal increased with increasing pH up to circum-neutral pH and then decreased at higher pH. The presence of P(V) when added simultaneously had a significant negative effect (p < 0.001) on the sorption of TTC and OTC adsorbed by Al-WTR at higher TTC/OTC:P ratios. However, when P(V) was added after the equilibration of TTC and OTC by Al-WTR, the effect was minimal and insignificant (p > 0.1). The presence of sulfate had a minimal/negligible effect on the sorption of TCs by Al-WTR. A significant negative effect (p < 0.001) on the adsorption of TCs by Al-WTR was observed in the pH range below 5 and at higher TCs:Ca(2+) ratios, probably due to TCs-Ca(2+) complex formation. Fourier transform infrared (FTIR) analysis indicated the possibility of inner-sphere-type bonding by the functional groups of OTC/TTC on Al-WTR surface. Results from the batch sorption study indicate high affinity of Al-WTR for TCs in the pH range 4-8 (majorly encountered pH in the environment) in the presence of competing ligands and complexing metal. PMID:25647490

  10. Effect of solution properties, competing ligands, and complexing metal on sorption of tetracyclines on Al-based drinking water treatment residuals.

    PubMed

    Punamiya, Pravin; Sarkar, Dibyendu; Rakshit, Sudipta; Datta, Rupali

    2015-05-01

    In the current batch study, we investigated the effect of solution properties, competing ligands (phosphate (P(V)) and sulfate), and complexing metal (calcium (Ca(2+))) on tetracycline (TTC) and oxytetracycline (OTC) sorption by Al-based drinking water treatment residuals (Al-WTR). The sorption behavior for both TTC and OTC on Al-WTR was pH dependent. The sorption in absence of competing ligands and complexing metal increased with increasing pH up to circum-neutral pH and then decreased at higher pH. The presence of P(V) when added simultaneously had a significant negative effect (p < 0.001) on the sorption of TTC and OTC adsorbed by Al-WTR at higher TTC/OTC:P ratios. However, when P(V) was added after the equilibration of TTC and OTC by Al-WTR, the effect was minimal and insignificant (p > 0.1). The presence of sulfate had a minimal/negligible effect on the sorption of TCs by Al-WTR. A significant negative effect (p < 0.001) on the adsorption of TCs by Al-WTR was observed in the pH range below 5 and at higher TCs:Ca(2+) ratios, probably due to TCs-Ca(2+) complex formation. Fourier transform infrared (FTIR) analysis indicated the possibility of inner-sphere-type bonding by the functional groups of OTC/TTC on Al-WTR surface. Results from the batch sorption study indicate high affinity of Al-WTR for TCs in the pH range 4-8 (majorly encountered pH in the environment) in the presence of competing ligands and complexing metal.

  11. Superconducting compounds and alloys research

    NASA Technical Reports Server (NTRS)

    Otto, G.

    1975-01-01

    Resistivity measurements as a function of temperature were performed on alloys of the binary material system In sub(1-x) Bi sub x for x varying between 0 and 1. It was found that for all single-phase alloys (the pure elements, alpha-In, and the three intermetallic compounds) at temperatures sufficiently above the Debye-temperature, the resistivity p can be expressed as p = a sub o T(n), where a sub o and n are composition-dependent constants. The same exponential relationship can also be applied for the sub-system In-In2Bi, when the two phases are in compositional equilibrium. Superconductivity measurements on single and two-phase alloys can be explained with respect to the phase diagram. There occur three superconducting phases (alpha-In, In2Bi, and In5Bi3) with different transition temperatures in the alloying system. The magnitude of the transition temperatures for the various intermetallic phases of In-Bi is such that the disappearance or occurrence of a phase in two component alloys can be demonstrated easily by means of superconductivity measurements.

  12. Oxidation of low cobalt alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1982-01-01

    Four high temperature alloys: U-700, Mar M-247, Waspaloy and PM/HIP U-700 were modified with various cobalt levels ranging from 0 percent to their nominal commercial levels. The alloys were then tested in cyclic oxidation in static air at temperatures ranging from 1000 to 1150 C at times from 500 to 100 1 hour cycles. Specific weight change with time and X-ray diffraction analyses of the oxidized samples were used to evaluate the alloys. The alloys tend to be either Al2O3/aluminate spinel or Cr2O3/chromite spinel formers depending on the Cr/Al ratio in the alloy. Waspaloy with a ratio of 15:1 is a strong Cr2O3 former while this U-700 with a ratio of 3.33:1 tends to form mostly Cr2O3 while Mar M-247 with a ratio of 1.53:1 is a strong Al2O3 former. The best cyclic oxidation resistance is associated with the Al2O3 formers. The cobalt levels appear to have little effect on the oxidation resistance of the Al2O3/aluminate spinel formers while any tendency to form Cr2O3 is accelerated with increased cobalt levels and leads to increased oxidation attack.

  13. HEAT TREATED U-Nb ALLOYS

    DOEpatents

    McGeary, R.K.; Justusson, W.M.

    1959-11-24

    A fuel element for a nuclear reactor is described comprising an alloy containing uranium and from 7 to 20 wt.% niobium, the alloy being substantially in the gamma phase and having been produced by working an ingot of the alloy into the desired shape, homogenizing it by annealing it at a temperature in the gamma phase field, and quenching it to retain the gamma phase structure of the alloy.

  14. Nickel aluminide alloys with improved weldability

    DOEpatents

    Santella, Michael L.; Goodwin, Gene M.

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys.

  15. Nickel aluminide alloys with improved weldability

    DOEpatents

    Santella, M.L.; Goodwin, G.M.

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys. 5 figs.

  16. New Theoretical Technique for Alloy Design

    NASA Technical Reports Server (NTRS)

    Ferrante, John

    2005-01-01

    During the last 2 years, there has been a breakthrough in alloy design at the NASA Lewis Research Center. A new semi-empirical theoretical technique for alloys, the BFS Theory (Bozzolo, Ferrante, and Smith), has been used to design alloys on a computer. BFS was used, along with Monte Carlo techniques, to predict the phases of ternary alloys of NiAl with Ti or Cr additions. High concentrations of each additive were used to demonstrate the resulting structures.

  17. Self-disintegrating Raney metal alloys

    DOEpatents

    Oden, Laurance L.; Russell, James H.

    1979-01-01

    A method of preparing a Raney metal alloy which is capable of self-disintegrating when contacted with water vapor. The self-disintegrating property is imparted to the alloy by incorporating into the alloy from 0.4 to 0.8 weight percent carbon. The alloy is useful in forming powder which can be converted to a Raney metal catalyst with increased surface area and catalytic activity.

  18. Caldron For High-Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Geringer, Henry J.

    1989-01-01

    Induction-heated caldron melts high-temperature alloys. Prevents sort of contamination of melts occurring during arc melting in ceramic crucibles. Liquefies 200 grams of solid metal components of alloy like niobium aluminum and makes alloy homogeneous in less than 3 minutes. Plugged sleeve constitutes main body of caldron. Coolant flows through sleeve to prevent it from melting. Mandrel-wound induction coils adjusted to tune source of power. Also serves as mold for casting alloys into such shapes as bars.

  19. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  20. ALLOY FOR USE IN NUCLEAR FISSION

    DOEpatents

    Spedding, F.A.; Wilhelm, H.A.

    1958-03-11

    This patent relates to an alloy composition capable of functioning as a solid homogeneous reactor fuel. The alloy consists of a beryllium moderator, together with at least 0.7% of U/sup 235/, and up to 50% thorium to give increased workability to the alloy.

  1. High strength uranium-tungsten alloy process

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  2. High strength uranium-tungsten alloys

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  3. METHOD OF DISSOLVING REFRACTORY ALLOYS

    DOEpatents

    Helton, D.M.; Savolainen, J.K.

    1963-04-23

    This patent relates to the dissolution of alloys of uranium with zirconium, thorium, molybdenum, or niobium. The alloy is contacted with an anhydrous solution of mercuric chloride in a low-molecular-weight monohydric alcohol to produce a mercury-containing alcohol slurry. The slurry is then converted to an aqueous system by adding water and driving off the alcohol. The resulting aqueous slurry is electrolyzed in the presence of a mercury cathode to remove the mercury and produce a uranium-bearing aqueous solution. This process is useful for dissolving irradiated nuclear reactor fuels for radiochemical reprocessing by solvent extraction. In addition, zirconium-alloy cladding is selectively removed from uranium dioxide fuel compacts by this means. (AEC)

  4. Solidification morphologies in monotectic alloys

    NASA Astrophysics Data System (ADS)

    Wang, F.; Choudhury, A.; Nestler, B.

    2012-01-01

    We model the Fe-Sn system by using a higher order polynomial to describe the free energy of the liquid, and study three different aspects in morphological evolution in the monotectic alloy. Firstly, phase separation, in which case the liquid decomposes into two, is investigated inside of the spinodal decomposition region. Secondly, we study the core-shell morphology in the Fe-Sn alloy, which arises by spinodal decomposition in 2D. Finally, stable lamellar and unstable droplet morphologies in directional solidication are investigated.

  5. Method for calculating alloy energetics

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John; Smith, John R.

    1992-01-01

    A semiempirical method for the computation of alloy energies is introduced. It is based on the equivalent-crystal theory of defect-formation energies in elemental solids. The method is both simple and accurate. Heats of formation as a function of composition are computed for some binary alloys of Cu, Ni, Al, Ag, Pd, Pt, and Au using the heats of solution in the dilute limit as experimental input. The separation of heats into strain and chemical components helps in understanding the energetics. In addition, lattice-parameter contractions seen in solid solutions of Ag and Au are accurately predicted. Good agreement with experiment is obtained in all cases.

  6. Moving Dislocations in Disordered Alloys.

    SciTech Connect

    Marian, J; Caro, A

    2006-11-18

    Using atomistic simulations of dislocation motion in Ni and Ni-Au alloys we report a detailed study of the mobility function as a function of stress, temperature and alloy composition. We analyze the results in terms of analytic models of phonon radiation and their selection rules for phonon excitation. We find a remarkable agreement between the location of the cusps in the {sigma}-v relation and the velocity of waves propagating in the direction of dislocation motion. We identify and characterize three regimes of dissipation whose boundaries are essentially determined by the direction of motion of the dislocation, rather than by its screw or edge character.

  7. High strength, tough alloy steel

    DOEpatents

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  8. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    DOEpatents

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  9. Alloy 718 for Oilfield Applications

    NASA Astrophysics Data System (ADS)

    deBarbadillo, John J.; Mannan, Sarwan K.

    2012-02-01

    Alloy 718 (UNS N07718) was developed for use in aircraft gas turbine engines, but its unique combination of room-temperature strength and aqueous corrosion resistance made it a candidate for oilfield fasteners, valves, drill tools, and completion equipment. As well environments became more severe, stress corrosion and hydrogen embrittlement failures in production equipment drove the evolution of the composition and microstructure that distinguish today's oilfield-grade 718 from aerospace grades. This paper reviews the development of the grade and its applications and describes some of its unique characteristics, testing, and manufacturing methods as well as newer alloys designed for high-pressure high-temperature (HPHT) conditions.

  10. Imparting passivity to vapor deposited magnesium alloys

    NASA Astrophysics Data System (ADS)

    Wolfe, Ryan C.

    Magnesium has the lowest density of all structural metals. Utilization of low density materials is advantageous from a design standpoint, because lower weight translates into improved performance of engineered products (i.e., notebook computers are more portable, vehicles achieve better gas mileage, and aircraft can carry more payload). Despite their low density and high strength to weight ratio, however, the widespread implementation of magnesium alloys is currently hindered by their relatively poor corrosion resistance. The objective of this research dissertation is to develop a scientific basis for the creation of a corrosion resistant magnesium alloy. The corrosion resistance of magnesium alloys is affected by several interrelated factors. Among these are alloying, microstructure, impurities, galvanic corrosion effects, and service conditions, among others. Alloying and modification of the microstructure are primary approaches to controlling corrosion. Furthermore, nonequilibrium alloying of magnesium via physical vapor deposition allows for the formation of single-phase magnesium alloys with supersaturated concentrations of passivity-enhancing elements. The microstructure and surface morphology is also modifiable during physical vapor deposition through the variation of evaporation power, pressure, temperature, ion bombardment, and the source-to-substrate distance. Aluminum, titanium, yttrium, and zirconium were initially chosen as candidates likely to impart passivity on vapor deposited magnesium alloys. Prior to this research, alloys of this type have never before been produced, much less studied. All of these metals were observed to afford some degree of corrosion resistance to magnesium. Due to the especially promising results from nonequilibrium alloying of magnesium with yttrium and titanium, the ternary magnesium-yttrium-titanium system was investigated in depth. While all of the alloys are lustrous, surface morphology is observed under the scanning

  11. Imparting passivity to vapor deposited magnesium alloys

    NASA Astrophysics Data System (ADS)

    Wolfe, Ryan C.

    Magnesium has the lowest density of all structural metals. Utilization of low density materials is advantageous from a design standpoint, because lower weight translates into improved performance of engineered products (i.e., notebook computers are more portable, vehicles achieve better gas mileage, and aircraft can carry more payload). Despite their low density and high strength to weight ratio, however, the widespread implementation of magnesium alloys is currently hindered by their relatively poor corrosion resistance. The objective of this research dissertation is to develop a scientific basis for the creation of a corrosion resistant magnesium alloy. The corrosion resistance of magnesium alloys is affected by several interrelated factors. Among these are alloying, microstructure, impurities, galvanic corrosion effects, and service conditions, among others. Alloying and modification of the microstructure are primary approaches to controlling corrosion. Furthermore, nonequilibrium alloying of magnesium via physical vapor deposition allows for the formation of single-phase magnesium alloys with supersaturated concentrations of passivity-enhancing elements. The microstructure and surface morphology is also modifiable during physical vapor deposition through the variation of evaporation power, pressure, temperature, ion bombardment, and the source-to-substrate distance. Aluminum, titanium, yttrium, and zirconium were initially chosen as candidates likely to impart passivity on vapor deposited magnesium alloys. Prior to this research, alloys of this type have never before been produced, much less studied. All of these metals were observed to afford some degree of corrosion resistance to magnesium. Due to the especially promising results from nonequilibrium alloying of magnesium with yttrium and titanium, the ternary magnesium-yttrium-titanium system was investigated in depth. While all of the alloys are lustrous, surface morphology is observed under the scanning

  12. Alloy softening in binary iron solid solutions

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1976-01-01

    An investigation was conducted to determine softening and hardening behavior in 19 binary iron-alloy systems. Microhardness tests were conducted at four temperatures in the range 77 to 411 K. Alloy softening was exhibited by 17 of the 19 alloy systems. Alloy softening observed in 15 of the alloy systems was attributed to an intrinsic mechanism, believed to be lowering of the Peierls (lattice friction) stress. Softening and hardening rates could be correlated with the atomic radius ratio of solute to iron. Softening observed in two other systems was attributed to an extrinsic mechanism, believed to be associated with scavenging of interstitial impurities.

  13. Phase transformation of Mg-Fe alloys

    SciTech Connect

    Yoneda, Yasuhiro; Abe, Hiroshi; Ohshima, Takeshi; Uchida, Hirohisa

    2010-05-15

    An Mg-Fe alloy system prepared through mechanical alloying (MA) was structurally analyzed. MA can produce single-phase bcc alloys using Mg concentrations up to about 15 mol %. Use of conventional average structure analysis and x-ray pair-distribution function method enabled the long-range and short-range order structures of the Mg-Fe alloys to be bridged. The substituted Mg atoms were randomly arranged in the low-Mg composition but started to have an order structure. The partially ordered Mg-Fe alloy undergoes an austenitic (cubic) to martensitic (orthorhombic) phase change, as increasing Mg composition.

  14. Liquid metal ion source and alloy

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Behrens, Robert G.; Szklarz, Eugene G.; Storms, Edmund K.; Santandrea, Robert P.; Swanson, Lynwood W.

    1988-10-04

    A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.

  15. Stress corrosion of high strength aluminum alloys.

    NASA Technical Reports Server (NTRS)

    Cocks, F. H.; Brummer, S. B.

    1972-01-01

    An investigation has been carried out to examine the relationship of the observed chemical and mechanical properties of Al-Cu and Al-Zn-Mg alloys to the stress corrosion mechanisms which dominate in each case. Two high purity alloys and analogous commercial alloys were selected. Fundamental differences between the behavior of Al-Cu and of Al-Zn-Mg alloys were observed. These differences in the corrosion behavior of the two types of alloys are augmented by substantial differences in their mechanical behavior. The relative cleavage energy of the grain boundaries is of particular importance.

  16. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    DOEpatents

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  17. Protective claddings for high strength chromium alloys

    NASA Technical Reports Server (NTRS)

    Collins, J. F.

    1971-01-01

    The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).

  18. Alloy softening in binary iron solid solutions

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1976-01-01

    An experimental study was conducted to determine whether alloy softening in Fe alloys is dependent on electron concentration and to provide a direct comparison of alloy softening and hardening in several binary Fe alloy systems having the same processing history. Alloy additions to Fe included the elements in the Periods 4-6 and the Groups IV-VIII with the exception of technetium. A total of 19 alloy systems was investigated, and hardness testing was the primary means of evaluation. Testing was carried out at four temperatures over a homologous temperature range of 0.043-0.227 times the absolute melting temperature of unalloyed Fe. Major conclusions are that the atomic radius ratio of solute-to-Fe is the key factor in controlling low-temperature hardness of the binary Fe alloys and that alloy softening rates at 77 K and alloy hardening rates at 411 K are correlated with this atomic radius ratio for 15 of the binary alloy systems. Mechanisms of alloy softening and hardening are proposed.

  19. Environmental fatigue in aluminum-lithium alloys

    SciTech Connect

    Piascik, R.S.

    1992-07-01

    Aluminum-lithium alloys exhibit similar environmental fatigue crack growth characteristics compared to conventional 2000 series alloys and are more resistant to environmental fatigue compared to 7000 series alloys. The superior fatigue crack growth behavior of Al-Li alloys 2090, 2091, 8090, and 8091 is due to crack closure caused by tortuous crack path morphology and crack surface corrosion products. At high R and reduced closure, chemical environment effects are pronounced resulting in accelerated near threshold da/dN. The beneficial effects of crack closure are minimized for small cracks resulting in rapid growth rates. Limited data suggest that the 'chemically small crack' effect, observed in other alloy system, is not pronounced in Al-Li alloys. Modeling of environmental fatigue in Al-Li-Cu alloys related accelerated fatigue crack growth in moist air and salt water to hydrogen embrittlement.

  20. Passive Corrosion Behavior of Alloy 22

    SciTech Connect

    Rebak, R B; Payer, J H

    2006-01-10

    Alloy 22 (N06022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nanometers per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  1. Passive Corrosion Behavior of Alloy 22

    SciTech Connect

    R.B. Rebak; J.H. Payer

    2006-01-20

    Alloy 22 (NO6022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nano-meters per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  2. Introduction to hydrogen in alloys

    SciTech Connect

    Westlake, D.G.

    1980-01-01

    Substitutional alloys, both those that form hydrides and those that do not, are discussed, but with more emphasis on the former than the latter. This overview includes the following closely related subjects: (1) the significant effects of substitutional solutes on the pressure-composition-temperature (PCT) equilibria of metal-hydrogen systems, (2) the changes in thermodynamic properties resulting from differences in atom size and from modifications of electronic structure, (3) attractive and repulsive interactions between H and solute atoms and the effects of such interactions on the pressure dependent solubility for H, (4) H trapping in alloys of Group V metals and its effect on the terminal solubility for H (TSH), (5) some other mechanisms invoked to explain the enhancement (due to alloying) of the (TSH) in Group V metals, and (6) H-impurity complexes in alloys of the metals Ni, Co, and Fe. Some results showing that an enhanced TSH may ameliorate the resistance of a metal to hydrogen embrittlement are presented.

  3. Gold color in dental alloys.

    PubMed

    Cameron, T

    1997-01-01

    This article will help the dental laboratory with alloy selection by exploring how the relationship among color, ductility and strength applies to gold and how color can be quantified. Because higher quality materials translate into higher profits, upselling to the dentist and patient is also discussed.

  4. Recent developments in light alloys

    NASA Technical Reports Server (NTRS)

    Woodward, R W

    1920-01-01

    This report is intended to cover the progress that has been made in both the manufacture and utility of light alloys in the United States since the first part of 1919. Duralumin is extensively discussed both as to manufacture and durability.

  5. Enhancing glass-forming ability via frustration of nano-clustering in alloys with a high solvent content

    PubMed Central

    Li, H. X.; Gao, J. E.; Wu, Y.; Jiao, Z. B.; Ma, D.; Stoica, A. D.; Wang, X. L.; Ren, Y.; Miller, M. K.; Lu, Z. P.

    2013-01-01

    The glass-forming ability (GFA) of alloys with a high-solvent content such as soft magnetic Fe-based and Al-based alloys is usually limited due to strong formation of the solvent-based solid solution phase. Herein, we report that the GFA of soft magnetic Fe-based alloys (with >70 at.% Fe to ensure large saturation magnetization) could be dramatically improved by doping with only 0.3 at.% Cu which has a positive enthalpy of mixing with Fe. It was found that an appropriate Cu addition could enhance the liquid phase stability and crystallization resistance by destabilizing the α-Fe nano-clusters due to the necessity to redistribute the Cu atoms. However, excessive Cu doping would stimulate nucleation of the α-Fe nano-clusters due to the repulsive nature between the Fe and Cu atoms, thus deteriorating the GFA. Our findings provide new insights into understanding of glass formation in general. PMID:23760427

  6. PERFORMANCE IMPROVEMENT OF CREEP-RESISTANT FERRITIC STEEL WELDMENTS THROUGH THERMO-MECHANICAL TREATMENT AND ALLOY DESIGN

    SciTech Connect

    Yamamoto, Yukinori; Babu, Prof. Sudarsanam Suresh; Shassere, Benjamin; Yu, Xinghua

    2016-01-01

    Two different approaches have been proposed for improvement of cross-weld creep properties of the high temperature ferrous structural materials for fossil-fired energy applications. The traditional creep strength-enhanced ferritic (CSEF) steel weldments suffer from Type IV failures which occur at the fine-grained heat affected zone (FGHAZ). In order to minimize the premature failure at FGHAZ in the existing CSEF steels, such as modified 9Cr-1Mo ferritic-martensitic steels (Grade 91), a thermo-mechanical treatment consisting of aus-forging/rolling and subsequent aus-aging is proposed which promotes the formation of stable MX carbonitrides prior to martensitic transformation. Such MX remains undissolved during welding process, even in FGHAZ, which successfully improves the cross-weld creep properties. Another approach is to develop a new fully ferrtic, creep-resistant FeCrAl alloy which is essentially free from Type IV failure issues. Fe-30Cr-3Al base alloys with minor alloying additions were developed which achieved a combination of good oxidation/corrosion resistance and improved tensile and creep performance comparable or superior to Grade 92 steel.

  7. Structural Properties of Mismatched Alloys

    NASA Astrophysics Data System (ADS)

    Mousseau, Normand

    The problem of understanding the local structure of disordered alloys has been around for a long time. In this thesis, I look more specifically at the effect of size-mismatch disorder in binary alloys under many forms: metallic and semiconductor alloys, bulk and surfaces, two and three dimensional systems. I have studied the limitations of a central-force model (CFM) and an embedded-atom potential (EAM) in describing the local structure of binary metallic alloys composed of Ag, Au, Cu, Ni, Pd, or Pt. Although an analytical model developed using the CFM explains qualitatively well the experimental and numerical results, in many cases, it is important to add electronic density effects through a more sophisticated potential like EAM in order to agree quantitatively with experiment. I have also looked at amorphous and crystalline silicon-germanium alloys. It turns out that the effect of size-mismatch is the same on a crystalline and an amorphous lattice. In the latter case, it can be seen as a perturbation of the much larger disorder due to the amorphisation process. However, the analytical predictions differ, for both the crystalline and amorphous alloys, from the experimental results. If one is to believe the data, there is only one possible explanation for this inconsistency: large amounts of hydrogen are present in the samples used for the measurements. Since the data analysis of EXAFS results is not always straightforward, I have proposed some experiments that could shed light on this problem. One of these experiments would be to look at the (111) surface of a Si-Ge alloy with a scanning tunneling microscope. I also present in this thesis the theoretical predictions for the height distribution at the surface as well as some more general structural information about the relaxation in the network as one goes away from the surface. Finally, I have studied the effect of size -mismatch in a purely two dimensional lattice, looking for mismatch-driven phase transitions

  8. Using Amorphous Phases in the Design of Structural Alloys

    NASA Astrophysics Data System (ADS)

    Schwarz, R. B.; Nash, P.

    1989-01-01

    The recent discovery that amorphous alloy powders can be prepared by mechanically alloying a mixture of pure crystalline intermetallics is opening new windows to the synthesis of engineering materials. Amorphous powders synthesized by mechanical alloying may find application in the design of structural alloys, high thermal conductivity alloys, and metal-matrix composites.

  9. Method of producing superplastic alloys and superplastic alloys produced by the method

    NASA Technical Reports Server (NTRS)

    Troeger, Lillianne P. (Inventor); Starke, Jr., Edgar A. (Inventor); Crooks, Roy (Inventor)

    2002-01-01

    A method for producing new superplastic alloys by inducing in an alloy the formation of precipitates having a sufficient size and homogeneous distribution that a sufficiently refined grain structure to produce superplasticity is obtained after subsequent PSN processing. An age-hardenable alloy having at least one dispersoid phase is selected for processing. The alloy is solution heat-treated and cooled to form a supersaturated solid solution. The alloy is plastically deformed sufficiently to form a high-energy defect structure useful for the subsequent heterogeneous nucleation of precipitates. The alloy is then aged, preferably by a multi-stage low and high temperature process, and precipitates are formed at the defect sites. The alloy then is subjected to a PSN process comprising plastically deforming the alloy to provide sufficient strain energy in the alloy to ensure recrystallization, and statically recrystallizing the alloy. A grain structure exhibiting new, fine, equiaxed and uniform grains is produced in the alloy. An exemplary 6xxx alloy of the type capable of being produced by the present invention, and which is useful for aerospace, automotive and other applications, is disclosed and claimed. The process is also suitable for processing any age-hardenable aluminum or other alloy.

  10. Nickel-base alloys combat corrosion

    SciTech Connect

    Agarwal, D.C.; Herda, W.

    1995-06-01

    The modern chemical process industry must increase production efficiency to remain competitive. Manufacturers typically meet this challenge by utilizing higher temperatures and pressures, and more-corrosive catalysts. At the same time, the industry has to solve the technical and commercial problems resulting from rigid environmental regulations. To overcome these obstacles, new alloys having higher levels of corrosion resistance have been developed. These materials are based on increased understanding of the physical metallurgy of nickel-base alloys, especially the role of alloying elements. Results of many studies have led to innovations in nickel-chromium-molybdenum alloys containing both high and low amounts of nickel. Higher molybdenum and chromium contents, together with nitrogen additions, have opened up an entirely new class of alloys having unique properties. In addition, a new chromium-base, fully wrought super stainless steel shows excellent promise in solving many corrosion problems. These newer alloys have the ability to combat uniform corrosion, localized corrosion, and stress-corrosion cracking in the harsh halogenic environment of the chemical process industry. This article briefly lists some of the major highlights and corrosion data on recent nickel-chromium-molybdenum and nickel-molybdenum alloys, and the development of a chromium-base, wrought super-austenitic alloy known as Nicrofer 3033 (Alloy 33). Some comparisons with existing alloys are presented, along with a few commercial applications.

  11. Alignment of the TiAl/Ti{sub 3}Al lamellar microstructure in TiAl alloys by growth from a seed material

    SciTech Connect

    Johnson, D.R.; Masuda, Y.; Inui, H.; Yamaguchi, M.

    1997-06-01

    By using an appropriately oriented seed from the TiAl-Si system, the TiAl/Ti{sub 3}Al lamellar microstructure was aligned parallel to the growth direction in a number of directionally solidified TiAl-based alloys. The seed composition was kept constant at Ti-43Al-3Si (at.%) and the composition of the master ingots was varied for alloys in the TiAl-Si, TiAl-Nb-Si, and Ti-Al systems. The lamellar microstructure could be aligned for alloys containing up to approximately 47 at.% (Al + Si) in each of these systems. For the composition of seed material, Ti-43Al-3Si, where alpha is the primary solidification phase, the original orientation of the lamellar microstructure was maintained after heating to and cooling from the single-phase alpha region making seeding of the alpha phase possible. When this silicon containing seed was used, the nucleation of the primary beta phase in master alloys of Ti-(47 {minus} x)Al-xSi(x = 0 to 1 at.%) could be suppressed resulting in the nucleation and growth of only the alpha phase with an orientation determined by the seed crystal. After steady state conditions were reached, single PST crystals with an aligned lamellar microstructure could be grown at growth rates as high as 40 mm/h.

  12. The influence of chromium on structure and mechanical properties of B2 nickel aluminide alloys. Ph.D. Thesis - Florida Univ., 1991 Final Report

    NASA Technical Reports Server (NTRS)

    Cotton, James Dean

    1992-01-01

    Major obstacles to the use of NiAl-based alloys and composites are low ductility and toughness. These shortcomings result in part from a lack of sufficient slip systems to accommodate plastic deformation of polycrystalline material (von Mises Criterion). It has been reported that minor additions of chromium to polycrystalline NiAl cause the predominant slip system to shift from the usual. If true, then a major step toward increasing ductility in this compound may be realized. The purpose of the present study was to verify this phenomenon, characterize it with respect to chromium level and Ni to Al ratio, and correlate any change in slip system with microstructure and mechanical properties. Compression and tensile specimens were prepared from alloys containing 0 to 5 percent chromium and 45 to 55 percent aluminum. Following about one percent strain, transmission electron microscopy foils were produced and the slip systems determined using the g x b = 0 invisibility criterion. Contrary to previous results, chromium was found to have no effect on the preferred slip system of any of the alloys studied. Possible reasons for the inconsistency of the current results with previous work are considered. Composition-structure-property relationships are discerned for the alloys, and good correlation are demonstrated in terms of conventional strengthening models for metallic systems.

  13. Alloy substantially free of dendrites and method of forming the same

    DOEpatents

    de Figueredo, Anacleto M.; Apelian, Diran; Findon, Matt M.; Saddock, Nicholas

    2009-04-07

    Described herein are alloys substantially free of dendrites. A method includes forming an alloy substantially free of dendrites. A superheated alloy is cooled to form a nucleated alloy. The temperature of the nucleated alloy is controlled to prevent the nuclei from melting. The nucleated alloy is mixed to distribute the nuclei throughout the alloy. The nucleated alloy is cooled with nuclei distributed throughout.

  14. Status of Testing and Characterization of CMS Alloy 617 and Alloy 230

    SciTech Connect

    Ren, Weiju; Santella, Michael L; Battiste, Rick; Terry, Totemeier; Denis, Clark

    2006-08-01

    Status and progress in testing and characterizing CMS Alloy 617 and Alloy 230 tasks in FY06 at ORNL and INL are described. ORNL research has focused on CMS Alloy 617 development and creep and tensile properties of both alloys. In addition to refurbishing facilities to conduct tests, a significant amount of creep and tensile data on Alloy 230, worth several years of research funds and time, has been located and collected from private enterprise. INL research has focused on the creep-fatigue behavior of standard chemistry Alloy 617 base metal and fusion weldments. Creep-fatigue tests have been performed in air, vacuum, and purified Ar environments at 800 and 1000 C. Initial characterization and high-temperature joining work has also been performed on Alloy 230 and CCA Alloy 617 in preparation for creep-fatigue testing.

  15. Micro-Structures of Hard Coatings Deposited on Titanium Alloys by Laser Alloying Technique

    NASA Astrophysics Data System (ADS)

    Li, Wei; Yu, Huijun; Chen, Chuanzhong; Wang, Diangang; Weng, Fei

    2013-02-01

    This work is based on micro-structural performance of the Ti-B4C-C laser alloying coatings on Ti-6Al-4V titanium alloy. The test results indicated that laser alloying of the Ti-B4C-C pre-placed powders on the Ti-6Al-4V alloy substrate can form the ceramics reinforced hard alloying coatings, which increased the micro-hardness and wear resistance of substrate. The test result also indicated that the TiB phase was produced in alloying coating, which corresponded to its (101) crystal plane. In addition, yttria has a refining effect on micro-structures of the laser alloying coating, and its refinement mechanism was analyzed. This research provided essential experimental and theoretical basis to promote the applications of the laser alloying technique in manufacturing and repairing of the aerospace parts.

  16. First principles theory of disordered alloys and alloy phase stability

    SciTech Connect

    Stocks, G.M.; Nicholson, D.M.C.; Shelton, W.A.

    1993-06-05

    These lecture notes review the LDA-KKR-CPA method for treating the electronic structure and energetics of random alloys and the MF-CF and GPM theories of ordering and phase stability built on the LDA- KKR-CPA description of the disordered phase. Section 2 lays out the basic LDA-KKR-CPA theory of random alloys and some applications. Section 3 reviews the progress made in understanding specific ordering phenomena in binary solid solutions base on the MF-CF and GPM theories of ordering and phase stability. Examples are Fermi surface nesting, band filling, off diagonal randomness, charge transfer, size difference or local strain fluctuations, magnetic effects; in each case, an attempt is made to link the ordering and the underlying electronic structure of the disordered phase. Section 4 reviews calculations of electronic structure of {beta}-phase Ni{sub c}Al{sub 1-c} alloys using a version of the LDA-KKR-CPA codes generalized to complex lattices.

  17. Corrosion behavior and fatigue of alloy 625, alloy 33 and alloy 31 under conditions of decouplers in automotive exhaust systems

    SciTech Connect

    Agarwal, D.C.; Kloewer, J.; Koehler, M.; Kolb-Telieps, A.

    1998-12-31

    The alloys 625, 31, 33 and in some tests the newly developed alloy 626Si have been investigated with respect to their mechanical properties and their corrosion resistance against alkali salts containing chlorides at temperatures of 550 C, 65O C, 7OO C and 750 C. Concerning strength in the sensitized condition, all alloys are suitable as decoupler materials. The mechanical properties of alloys 625, 626Si and probably 31 indicate adequate manufacturing possibilities of bellows. All alloys investigated suffer accelerated corrosion in the presence of alkali salt containing chlorides at temperatures ranging from 550 C to 750 C. At 750 C alloy 626Si shows the lowest corrosion rate. At 75O C, 7OO C and 650 C no difference between the solution annealed and the sensitized specimens was found. At 55O C, however, the corrosion rate of the alloys 625 and 33 increased significantly, when the material was sensitized prior to corrosion testing. Alloy 31 does not suffer significant corrosion attack at 55O C both in the solution annealed and in the sensitized condition, thus making it a potential cost effective alternative to the more expensive alloy 625 for decoupler applications.

  18. Copper and nickel adherently electroplated on titanium alloy

    NASA Technical Reports Server (NTRS)

    Brown, E. E.

    1967-01-01

    Anodic treatment of titanium alloy enables electroplating of tightly adherent coatings of copper and nickel on the alloy. The alloy is treated in a solution of hydrofluoric and acetic acids, followed by the electroplating process.

  19. Wetting behavior of alternative solder alloys

    SciTech Connect

    Hosking, F.M.; Vianco, P.T.; Hernandez, C.L.; Rejent, J.A.

    1993-07-01

    Recent economic and environmental issues have stimulated interest in solder alloys other than the traditional Sn-Pb eutectic or near eutectic composition. Preliminary evaluations suggest that several of these alloys approach the baseline properties (wetting, mechanical, thermal, and electrical) of the Sn-Pb solders. Final alloy acceptance will require major revisions to existing industrial and military soldering specifications. Bulk alloy and solder joint properties are consequently being investigated to validate their producibility and reliability. The work reported in this paper examines the wetting behavior of several of the more promising commercial alloys on copper substrates. Solder wettability was determined by the meniscometer and wetting balance techniques. The wetting results suggest that several of the alternative solders would satisfy pretinning and surface mount soldering applications. Their use on plated through hole technology might be more difficult since the alloys generally did not spread or flow as well as the 60Sn-40Pb solder.

  20. Annealing behavior of high permeability amorphous alloys

    SciTech Connect

    Rabenberg, L.

    1980-06-01

    Effects of low temperature annealing on the magnetic properties of the amorphous alloy Co/sub 71/ /sub 4/Fe/sub 4/ /sub 6/Si/sub 9/ /sub 6/B/sub 14/ /sub 4/ were investigated. Annealing this alloy below 400/sup 0/C results in magnetic hardening; annealing above 400/sup 0/C but below the crystallization temperature results in magnetic softening. Above the crystallization temperature the alloy hardens drastically and irreversibly. Conventional and high resolution transmission electron microscopy were used to show that the magnetic property changes at low temperatures occur while the alloy is truly amorphous. By imaging the magnetic microstructures, Lorentz electron microscopy has been able to detect the presence of microscopic inhomogeneities in this alloy. The low temperature annealing behavior of this alloy has been explained in terms of atomic pair ordering in the presence of the internal molecular field. Lorentz electron microscopy has been used to confirm this explanation.

  1. Nickel aluminide alloy suitable for structural applications

    DOEpatents

    Liu, Chain T.

    1998-01-01

    Alloys for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1.+-.0.8%)Al--(1.0.+-.0.8%)Mo--(0.7.+-.0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques.

  2. Nickel aluminide alloy suitable for structural applications

    DOEpatents

    Liu, C.T.

    1998-03-10

    Alloys are disclosed for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1{+-}0.8%)Al--(1.0{+-}0.8%)Mo--(0.7 + 0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques. 4 figs.

  3. [Biocompatibility of precious metal dental alloys].

    PubMed

    Reuling, N; Pohl-Reuling, B; Keil, M

    1991-03-01

    The local toxicity of three dental gold alloys was examined by help of intramuscular implantation tests in rabbits. For each alloy implantation periods of 1, 2, 4, 8, and 12 weeks were used. The local tissue reactions (foreign body reactions) were judged and graded by use of quantitative histomorphometry. Furthermore specific cellular parameters were examined with semiquantitative histopathologic methods to get an toxicity index for each material. The local tissue reactions caused by the implanted dental alloys were judged in relation to those, caused by biological inert materials (titanium, aluminum-oxide-ceramics) respectively materials with well-known toxic potential (polyvinyl-chloride with toxic aids), after intramuscular implantation in the same animals. Significant differences were found in the tissue reactions caused by the dental gold alloys; an gold alloy with lower noble metal content elicited stronger tissue reactions than both gold alloys with high noble metal content did. PMID:1872036

  4. Biocorrosion study of titanium-nickel alloys.

    PubMed

    Chern Lin, J H; Lo, S J; Ju, C P

    1996-02-01

    The present study provides results of the corrosion behaviour in Hank's physiological solution and some other properties of three Ti-Ni alloys with 18, 25 and 28.4 wt% Ni, respectively. Results indicate that alpha-titanium and Ti2Ni were the two major phases in all three Ti-Ni alloys. The relative amount of the Ti2Ni phase increased with additional Ni content. Hardness of the Ti-Ni alloys also increased with added nickel content, ranging from 310 to 390 VHN, similar to the hardness of enamel. Melting temperatures of the Ti-Ni alloys were all lower than that of pure titanium by least 600 degrees C. The three Ti-Ni alloys behaved almost identically when potentiodynamically polarized in Hank's solution at 37 degrees C. The critical anodic current densities of the alloys were nearly 30 microA/cm2 and the breakdown potentials were all above 1100 mV (SCE).

  5. A lightweight shape-memory magnesium alloy

    NASA Astrophysics Data System (ADS)

    Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Koike, Junichi

    2016-07-01

    Shape-memory alloys (SMAs), which display shape recovery upon heating, as well as superelasticity, offer many technological advantages in various applications. Those distinctive behaviors have been observed in many polycrystalline alloy systems such as nickel titantium (TiNi)–, copper-, iron-, nickel-, cobalt-, and Ti-based alloys but not in lightweight alloys such as magnesium (Mg) and aluminum alloys. Here we present a Mg SMA showing superelasticity of 4.4% at –150°C and shape recovery upon heating. The shape-memory properties are caused by reversible martensitic transformation. This Mg alloy includes lightweight scandium, and its density is about 2 grams per cubic centimeter, which is one-third less than that of practical TiNi SMAs. This finding raises the potential for development and application of lightweight SMAs across a number of industries.

  6. Directionally solidified eutectic alloy gamma-beta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1977-01-01

    A pseudobinary eutectic alloy composition was determined by a previously developed bleed-out technique. The directionally solidified eutectic alloy with a composition of Ni-37.4Fe-10.0Cr-9.6Al (in wt%) had tensile strengths decreasing from 1,090 MPa at room temperature to 54 MPa at 1,100 C. The low density, excellent microstructural stability, and oxidation resistance of the alloy during thermal cycling suggest that it might have applicability as a gas turbine vane alloy while its relatively low high temperature strength precludes its use as a blade alloy. A zirconium addition increased the 750 C strength, and a tungsten addition was ineffective. The gamma=beta eutectic alloys appeared to obey a normal freezing relation.

  7. Alloy Effects on the Gas Nitriding Process

    NASA Astrophysics Data System (ADS)

    Yang, M.; Sisson, R. D.

    2014-12-01

    Alloy elements, such as Al, Cr, V, and Mo, have been used to improve the nitriding performance of steels. In the present work, plain carbon steel AISI 1045 and alloy steel AISI 4140 were selected to compare the nitriding effects of the alloying elements in AISI 4140. Fundamental analysis is carried out by using the "Lehrer-like" diagrams (alloy specific Lehrer diagram and nitriding potential versus nitrogen concentration diagram) and the compound layer growth model to simulate the gas nitriding process. With this method, the fundamental understanding for the alloy effect based on the thermodynamics and kinetics becomes possible. This new method paves the way for the development of new alloy for nitriding.

  8. A lightweight shape-memory magnesium alloy.

    PubMed

    Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Koike, Junichi

    2016-07-22

    Shape-memory alloys (SMAs), which display shape recovery upon heating, as well as superelasticity, offer many technological advantages in various applications. Those distinctive behaviors have been observed in many polycrystalline alloy systems such as nickel titantium (TiNi)-, copper-, iron-, nickel-, cobalt-, and Ti-based alloys but not in lightweight alloys such as magnesium (Mg) and aluminum alloys. Here we present a Mg SMA showing superelasticity of 4.4% at -150°C and shape recovery upon heating. The shape-memory properties are caused by reversible martensitic transformation. This Mg alloy includes lightweight scandium, and its density is about 2 grams per cubic centimeter, which is one-third less than that of practical TiNi SMAs. This finding raises the potential for development and application of lightweight SMAs across a number of industries. PMID:27463668

  9. A lightweight shape-memory magnesium alloy

    NASA Astrophysics Data System (ADS)

    Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Koike, Junichi

    2016-07-01

    Shape-memory alloys (SMAs), which display shape recovery upon heating, as well as superelasticity, offer many technological advantages in various applications. Those distinctive behaviors have been observed in many polycrystalline alloy systems such as nickel titantium (TiNi)-, copper-, iron-, nickel-, cobalt-, and Ti-based alloys but not in lightweight alloys such as magnesium (Mg) and aluminum alloys. Here we present a Mg SMA showing superelasticity of 4.4% at -150°C and shape recovery upon heating. The shape-memory properties are caused by reversible martensitic transformation. This Mg alloy includes lightweight scandium, and its density is about 2 grams per cubic centimeter, which is one-third less than that of practical TiNi SMAs. This finding raises the potential for development and application of lightweight SMAs across a number of industries.

  10. Digital Alloy Absorber for Photodetectors

    NASA Technical Reports Server (NTRS)

    Hill, Cory J. (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2016-01-01

    In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.

  11. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.

    1980-01-01

    Heats of transformation of eutectic alloys were measured for many binary and ternary systems by differential scanning calorimetry and thermal analysis. Only the relatively cheap and plentiful elements Mg, Al, Si, P, Ca, Cu, Zn were considered. A method for measuring volume change during transformation was developed using x-ray absorption in a confined sample. Thermal expansion coefficients of both solid and liquid states of aluminum and of its eutectics with copper and with silicon also were determined. Preliminary evaluation of containment materials lead to the selection of silicon carbide as the initial material for study. Possible applications of alloy PCMs for heat storage in conventional and solar central power stations, small solar receivers and industrial furnace operations are under consideration.

  12. The oxidation and corrosion of ODS alloys

    NASA Technical Reports Server (NTRS)

    Lowell, Carl E.; Barrett, Charles A.

    1990-01-01

    The oxidation and hot corrosion of high temperature oxide dispersion strengthened (ODS) alloys are reviewed. The environmental resistance of such alloys are classified by oxide growth rate, oxide volatility, oxide spalling, and hot corrosion limitations. Also discussed are environmentally resistant coatings for ODS materials. It is concluded that ODS NiCrAl and FeCrAl alloys are highly oxidation and corrosion resistant and can probably be used uncoated.

  13. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  14. Advanced powder metallurgy aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  15. Alloy nanoparticle synthesis using ionizing radiation

    DOEpatents

    Nenoff, Tina M.; Powers, Dana A.; Zhang, Zhenyuan

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  16. High toughness-high strength iron alloy

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R. (Inventor)

    1980-01-01

    An iron alloy is provided which exhibits strength and toughness characteristics at cryogenic temperatures. The alloy consists essentially of about 10 to 16 percent by weight nickel, about 0.1 to 1.0 percent by weight aluminum, and 0 to about 3 percent by weight copper, with the balance being essentially iron. The iron alloy is produced by a process which includes cold rolling at room temperature and subsequent heat treatment.

  17. Properties and microstructures for dual alloy combinations of three superalloys with alloy 901

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1985-01-01

    Dual alloy combinations have potential for use in aircraft engine components such as turbine disks where a wide range of stress and temperature regimes exists during operation. Such alloy combinations may directly result in the conservation of elements which are costly or not available domestically. Preferably, a uniform heat treatment yielding good properties for both alloys should be used. Dual alloy combinations of iron rich Alloy 901 with nickel base superalloys Rene 95, Astroloy, or MERL 76 were not isostatically pressed from prealloyed powders. Individual alloys, alloy mixtures, and layered alloy combinations were given the heat treatments specified for their use in turbine disks or appropriate for Alloy 901. Selected specimens were overaged for 1500 hr at 650 C. Metallographic examinations revealed the absence of phases not originally present in either alloy of a combination. Mechanical tests showed adequate properties in combinations of Rene 95 or Astroloy with Alloy 901 when given the Alloy 901 heat treatment. Combinations with MERL 76 had better properties when given the MERL 76 heat treatment. The results indicate that these combinations are promising candidates for use in turbine disks.

  18. UNS N10629: A new Ni-28%Mo alloy

    SciTech Connect

    Agarwal, D.C. ); Heubner, U.; Kohler, M.; Herda, W. )

    1994-10-01

    Early published work about alloys in the nickel-molybdenum system (namely, alloys B [UNS N10001] and B-2 [UNS N10665]) is reviewed. Results of several recent studies to prevent thermomechanical cracking during fabrication of components and stress corrosion cracking during service for alloy B-2 are presented. Data for a new alloy, UNS N10629, which has better alloy composition control than alloy B-2, also are given.

  19. Chrome alloy welding fume study.

    PubMed

    Vorpahl, K W; Jordan, P T; Mathews, E J

    1976-10-01

    Breathing zone samples obtained at a production arc welding operation employing approximately 90 welders demonstrated excessive exposure to chromium from the welding of high chromium alloy steel. Breathing zone samples were collected inside welding helmets. Methods considered for reducing employee exposure included local exhaust ventilation and the use of air-supplied helmets. Air-supplied helmets were chosen as best suited for the production scheme and suitable devices were subsequently developed that reduced breathing zone contaminant levels well below applicable standards.

  20. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, J.J.; Honnell, R.E.; Gibbs, W.S.

    1991-12-03

    Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions are disclosed. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms. 3 figures.

  1. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.; Gibbs, W. Scott

    1991-01-01

    Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.

  2. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.; Gibbs, W. Scott

    1990-01-01

    Compositions of matter consisting of matrix matrials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.

  3. Surface alloying of silicon into aluminum substrate.

    SciTech Connect

    Xu, Z.

    1998-10-28

    Aluminum alloys that are easily castable tend to have lower silicon content and hence lower wear resistance. The use of laser surface alloying to improve the surface wear resistance of 319 and 320 aluminum alloys was examined. A silicon layer was painted onto the surface to be treated. A high power pulsed Nd:YAG laser with fiberoptic beam delivery was used to carry out the laser surface treatment to enhance the silicon content. Process parameters were varied to minimize the surface roughness from overlap of the laser beam treatment. The surface-alloyed layer was characterized and the silicon content was determined.

  4. Development and evaluation of advanced austenitic alloys

    SciTech Connect

    Swindeman, R.W.; Maziasz, P.J.; King, J.F.; Bolling, E.

    1990-01-01

    Research was performed on advanced austenitic alloys for tubing in heat recovery systems. Evaluations addressed the need to optimize strength, fabricability, and surface protection for specific environments and temperatures. Alloys studied included advanced lean austenitic stainless steels and higher chromium alloys to 760{degree}C, nickel-chromium-iron aluminides at temperature to 760{degree}C, and Ni--Cr alloys with capability for service to 1000{degree}C. Coordinated research was performed at a number of universities and industrial research facilities. Evaluation of the lean stainless steels focused on MC-forming alloys and a family of modified 316 stainless steels. Work nearing completion revealed that many of the alloy design criteria for the lean stainless steels could be met. With the judicious selection of thermal-mechanical processing, data indicated that high strength and ductility could be achieved in both base metal and weldments. Fabrication requirements needed to produce optimum performance called for high solution treating temperatures and small levels of cold or warm work. Evaluations of high chromium stainless steels and modifications of alloy 800H were encouraging, and good properties were observed for temperatures to 760{degree}C. Work on the alloys and claddings for service to 1000{degree}C was begun on two commercial alloys of nearest in PBFC hot gas cleanup systems. 20 refs., 3 figs., 2 tabs.

  5. Moly and moly alloys - properties and applications

    SciTech Connect

    Boehling, H.; Burman, R.

    1984-01-01

    Molybdenum is the most readily available, lowest cost and widely used refractory metal which has seen diverse ambient and high temperature service to 3000/sup 0/F and even higher temperatures. The most prominent application for molybdenum remains that of alloy additions to irons and steels of wide variety; as well as to heat and corrosion resistant alloys, magnetic alloys, and many high temp-high strength alloys that can tolerate less refined ferro-moly or molybdic oxide alloy additions. However, most heat and corrosion resistant alloys and virtually all present day superalloys that are vacuum melted require the extreme purity of metallic molybdenum powder or one of the powder metallurgy (P/M) consolidated forms, such as pellets, corrugates, or briquettes. Molybdenum as an alloy addition generally imparts improved hardenability to steels, good toughness at low temperatures, enhanced strength and toughness at elevated temperatures, better abrasion resistance, or improved chemical corrosion resistance; and it is a common alloy to most of the so-called superalloys for similar product property improvements. The properties and uses of molybdenum and molybdenum alloys are discussed.

  6. Interfacial adsorption in ternary alloys

    SciTech Connect

    Huang, C.; Cruz, M.O. de la; Voorhees, P.W.

    1999-11-26

    Interfaces of A-B-C ternary alloys decomposed into two and three phases are studied. The effect of the gradient energy coefficients {bar {kappa}}{sub II}, I = A, B, C, on the interface composition profiles of ternary alloys is examined. The adsorption of component C in ternary alloys is obtained numerically by finding steady-state solutions of the nonlinear Cahn-Hilliard equations and by solving the two Euler-Lagrange equations resulting from minimizing the interfacial energy, and analytically near the critical point. It is found that the solutions from both numerical methods are identical for a two-phase system. In symmetric ternary systems (equal interaction energy between each pair of components) with a minority component C, the gradient energy coefficient of C, {bar {kappa}}{sub CC}, can have a very strong influence on the degree of adsorption. In the {alpha} and {beta} two-phase regions, where {alpha} and {beta} are the phases rich in the majority components A and B, respectively, as {bar {kappa}}{sub CC} increases, the adsorption of the minority component C in the {alpha} and {beta} interfaces decreases. Near a critical point, however, the degree of adsorption of minority component C is independent of the gradient energy coefficient.

  7. Pack cementation coatings for alloys

    SciTech Connect

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A.

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  8. Alloy NASA-HR-1

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Mitchell, Michael

    2005-01-01

    NASA-HR-1 is a high-strength Fe-Ni-base superalloy that resists high-pressure hydrogen environment embrittlement (HEE), oxidation, and corrosion. Originally derived from JBK-75, NASA-HR-1 has exceptional HEE resistance that can be attributed to its gamma-matrix and eta-free (Ni3Ti) grain boundaries. The chemistry was formulated using a design approach capable of accounting for the simultaneous effects of several alloy additions. This approach included: (1) Systematically modifying gamma-matrix compositions based on JBK-75; (2) Increasing gamma (Ni3(Al,Ti)) volume fraction and adding gamma-matrix strengthening elements to obtain higher strength; and (3) Obtaining precipitate-free grain boundaries. The most outstanding attribute of NASA-HR-1 is its ability to resist HEE while showing much improved strength. NASA-HR-1 has approximately 25% higher yield strength than JXK-75 and exhibits tensile elongation of more than 20% with no ductility loss in a hydrogen environment at 5 ksi, an achievement unparalleled by any other commercially available alloy. Its Cr and Ni contents provide exceptional resistance to environments that promote oxidation and corrosion. Microstructural stability was maintained by improved solid solubility of the gamma-matrix, along with the addition of alloying elements to retard eta (Ni3Ti) precipitation. NASA-HR-1 represents a new system that greatly extends the compositional ranges of existing HEE-resistant Fe-Ni-base superalloys.

  9. Transient oxidation of multiphase Ni-Cr base alloys

    SciTech Connect

    Baran, G.; Meraner, M.; Farrell, P.

    1988-06-01

    Four commercially available Ni-Cr-based alloys used with porcelain enamels were studied. Major alloying elements were Al, Be, Si, B, Nb, and Mo. All alloys were multiphase. During heat treatments simulating enameling conditions, phase changes occurred in most alloys and were detected using hardness testing, differential thermal analysis (DTA), and microscopy. Oxidation of these alloys at 1000/degrees/C for 10 min produced an oxide layer consisting principally of chromium oxide, but the oxide morphology varied with each alloy depending on the alloy microstructure. Controlling alloy microstructure while keeping the overall composition unchanged may be a means of preventing wrinkled poorly adherent scales from forming.

  10. Irradiation-assisted stress corrosion cracking in HTH Alloy X-750 and Alloy 625

    SciTech Connect

    Bajaj, R.; Mills, W.J.; Lebo, M.R.; Hyatt, B.Z.; Burke, M.G.

    1995-12-31

    In-reactor testing of bolt-loaded compact tension specimens was performed in 360 C water to determine the irradiation-assisted stress corrosion cracking (IASCC) behavior of HTH Alloy X-750 and direct-aged Alloy 625. New data confirm previous results showing that high irradiation levels reduce SCC resistance in Alloy X-750. Heat-to-heat variability correlates with boron content, with low boron heats showing improved IASCC properties. Alloy 625 is resistant to IASCC, as no cracking was observed in any Alloy 625 specimens. Microstructural, microchemical and deformation studies were performed to characterize the mechanisms responsible for IASCC in Alloy X-750 and the lack of an effect in Alloy 625. The mechanisms under investigation are: boron transmutation effects, radiation-induced changes in microstructure and deformation characteristics, and radiation-induced segregation. Irradiation of Alloy X-750 caused significant strengthening and ductility loss that was associated with the formation of cavities and dislocation loops. High irradiation levels did not cause significant segregation of alloying or trace elements in Alloy X-750. Irradiation of Alloy 625 resulted in the formation of small dislocation loops and a fine body-centered-orthorhombic phase. The strengthening due to the loops and precipitates was apparently offset by a partial dissolution of {gamma}{double_prime} precipitates, as Alloy 625 showed no irradiation-induced strengthening or ductility loss. In the nonirradiated condition, an IASCC susceptible HTH heat containing 28 ppm B showed grain boundary segregation of boron, whereas a nonsusceptible HTH heat containing 2 ppm B and Alloy 625 with 20 ppm B did not show significant boron segregation. Transmutation of boron to helium at grain boundaries, coupled with matrix strengthening, is believed to be responsible for IASCC in Alloy X-750, and the absence of these two effects results in the superior IASCC resistance displayed by Alloy 625.

  11. Nonstochastic magnetic reversal in artificial quasicrystalline spin ice

    SciTech Connect

    Farmer, B.; Bhat, V. S.; Woods, J.; Teipel, E.; Smith, N.; De Long, L. E.; Sklenar, J.; Ketterson, J. B.; Hastings, J. T.

    2014-05-07

    We have measured the isothermal DC magnetization of Penrose P2 tilings (P2T) composed of wire segments of permalloy thin film. Micromagnetic simulations reproduce the coercive fields and “knee anomalies” observed in experimental data and show magnetic shape anisotropy constrains segments to be single-domain (Ising spins) at low fields, similar to artificial spin ice (ASI). Mirror symmetry controls the initial reversal of individual segments oriented parallel to the applied field, followed by complex switching of multiple adjacent segments (“avalanches”) of various orientations such that closed magnetization loops (“vortices”) are favored. Ferromagnetic P2T differ from previously studied ASI systems due to their aperiodic translational symmetry and numerous inequivalent pattern vertices, which drive nonstochastic switching of segment polarizations.

  12. Formation of highly corrosion resistant stainless steel surface alloys for marine environments by laser surface alloying

    SciTech Connect

    Sridhar, K.; Deshmukh, M.B.; Khanna, A.S.; Wissenbach, K.

    1998-12-31

    Austenitic stainless steels (SS) such as UNS S30403 are being used for numerous industrial applications due to their goad mechanical properties and weldability. However in aggressive marine environments such as seawater, they suffer from localized corrosion. Even though newly developed highly alloyed SS`s possess very high pitting resistance, they are susceptible to the formation of secondary phases. In the present study, a laser surface alloying technique was employed for the formation of highly alloyed austenitic stainless steel surfaces on conventional 304 SS substrate. Microstructural characterization by optical and SEM revealed finer cells of austenitic phase in the laser alloyed zones with molybdenum contents in the range of 3 to 15 wt%. The pitting corrosion resistance of the surface alloys were ascertained by immersion and potentiodynamic polarization tests and the repassivation behavior by cyclic polarization tests. Also the influence of microstructural features on pitting behavior of highly alloyed and laser surface alloyed steels is studied.

  13. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    DOEpatents

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  14. Role of alloying elements in adhesive transfer and friction of copper-base alloys

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted in a vacuum with binary-copper alloy riders sliding against a conventional bearing-steel surface with normal residual oxides present. The binary alloys contained 1 atomic percent of various alloying elements. Auger spectroscopy analysis was used to monitor the adhesive transfer of the copper alloys to the bearing-steel surface. A relation was found to exist between adhesive transfer and the reaction potential and free energy of formation of the alloying element in the copper. The more chemically active the element and the more stable its oxide, the greater was the adhesive transfer and wear of the copper alloy. Transfer occurred in all the alloys except copper-gold after relatively few (25) passes across the steel surface.

  15. Materials data handbook: Aluminum alloy 2219

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum 2219 alloy is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  16. Progress in High-Entropy Alloys

    SciTech Connect

    Gao, Michael C

    2013-12-01

    Strictly speaking, high-entropy alloys (HEAs) refer to single-phase, solid-solution alloys with multiprincipal elements in an equal or a near-equal molar ratio whose configurational entropy is tremendously high. This special topic was organized to reflect the focus and diversity of HEA research topics in the community.

  17. Lead alloys: past, present and future

    NASA Astrophysics Data System (ADS)

    Bagshaw, N. E.

    The most critical non-active component in the lead/acid battery is the grid or substrate. A review of the work on grids and grid alloys in the period 1960-1993 has been carried out by the Advanced Lead-Acid Battery Consortium and, in this paper, the results are analyzed in relation to the effort expended on different alloy systems. Lead-antimony alloys and the effects on them of additions of arsenic, tin, and grain-refining elements (selenium, sulfur, copper), together with lead-calcium alloys and the effect on them of tin additions, have received the greatest attention in the past. Proposals are made for future studies. Possible evolutionary developments include the addition of silver and higher amounts of tin to lead-calcium alloys, more detailed investigations of lead-strontium and lead-lithium alloys containing tin and/or silver, and further work on very-low-antimony alloys. More speculative projects are very rapidly cooled alloys, the use of aluminium as grids or spines, plastic/lead-coated copper negative grids, corrosion-resistant coatings of lead compounds on the grids and, finally, a substrate for a bipolar plate that is based on conductive inorganic compounds.

  18. Castable nickel aluminide alloys for structural applications

    DOEpatents

    Liu, Chain T.

    1992-01-01

    The specification discloses nickel aluminide alloys which include as a component from about 0.5 to about 4 at. % of one or more of the elements selected from the group consisting of molybdenum or niobium to substantially improve the mechanical properties of the alloys in the cast condition.

  19. Castable nickel aluminide alloys for structural applications

    DOEpatents

    Liu, C.T.

    1992-04-28

    The specification discloses nickel aluminide alloys which include as a component from about 0.5 to about 4 at. % of one or more of the elements selected from the group consisting of molybdenum or niobium to substantially improve the mechanical properties of the alloys in the cast condition. 4 figs.

  20. Weldable aluminum alloy has improved mechanical properties

    NASA Technical Reports Server (NTRS)

    Westerlund, R. W.

    1966-01-01

    Weldable aluminum alloy has good resistance to stress-corrosion cracking, shows unchanged strength and formability after storage at room temperature, and can be pre-aged, stretched, and aged. Since toxic fumes of cadmium oxide are evolved when the new alloy is welded, adequate ventilation must be provided.

  1. Heat storage in alloy transformations. Final report

    SciTech Connect

    Birchenall, C E; Gueceri, S I; Farkas, D; Labdon, M B; Nagaswami, N; Pregger, B

    1981-03-01

    A study conducted to determine the feasibility of using metal alloys as thermal energy storage media is described. The study had the following major elements: (1) the identification of congruently transforming alloys and thermochemical property measurements, (2) the development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients, (3) the development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase-change materials, and (4) the identification of materials that could be used to contain the metal alloys. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases have been determined. A new method employing x-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data that are obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase-change media. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide has been identified as a promising containment material and surface-coated iron alloys were considered.

  2. Heats of formation of bcc binary alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John; Smith, John R.

    1991-01-01

    The method of Bozzolo, Ferrante and Smith is applied for the calculation of alloy energies for bcc elements. The heat of formation of several alloys is computed with the help of the Connolly-Williams method within the tetrahedron approximation. The dependence of the results on the choice of different sets of ordered structures is discussed.

  3. Machining of uranium and uranium alloys

    SciTech Connect

    Morris, T.O.

    1981-12-14

    Uranium and uranium alloys can be readily machined by conventional methods in the standard machine shop when proper safety and operating techniques are used. Material properties that affect machining processes and recommended machining parameters are discussed. Safety procedures and precautions necessary in machining uranium and uranium alloys are also covered. 30 figures.

  4. Tantalum modified ferritic iron base alloys

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.; Blankenship, C. P. (Inventor)

    1977-01-01

    Strong ferritic alloys of the Fe-CR-Al type containing 0.4% to 2% tantalum were developed. These alloys have improved fabricability without sacrificing high temperature strength and oxidation resistance in the 800 C (1475 F) to 1040 C (1900 F) range.

  5. Study of stress corrosion in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Brummer, S. B.

    1967-01-01

    Mechanism of the stress corrosion cracking of high-strength aluminum alloys was investigated using electrochemical, mechanical, and electron microscopic techniques. The feasibility of detecting stress corrosion damage in fabricated aluminum alloy parts by nondestructive testing was investigated using ultrasonic surface waves and eddy currents.

  6. CONTROL ROD ALLOY CONTAINING NOBLE METAL ADDITIONS

    DOEpatents

    Anderson, W.K.; Ray, W.E.

    1960-05-01

    Silver-base alloys suitable for use in the fabrication of control rods for neutronic reactors are given. The alloy consists of from 0.5 wt.% to about 1.5 wt.% of a noble metal of platinum, ruthenium, rhodium, osmium, or palladium, up to 10 wt.% of cadmium, from 2 to 20 wt.% indium, the balance being silver.

  7. ALLOY FOR FUEL OF NEUTRONIC REACTORS

    DOEpatents

    Bloomster, C.H.; Katayama, Y.B.

    1963-04-23

    This patent deals with an aluminum alloy suitable as nuclear fuel and consisting mainly of from 1 to 10 wt% of plutonium, from 2 to 3.5 wt% of nickel, the balance being aluminum. The alloy may also contain from 0.9 to 1.1 wt% of silicon and up to 0.7% of iron. (AEC)

  8. METHOD AND ALLOY FOR BONDING TO ZIRCONIUM

    DOEpatents

    McCuaig, F.D.; Misch, R.D.

    1960-04-19

    A brazing alloy can be used for bonding zirconium and its alloys to other metals, ceramics, and cermets, and consists of 6 to 9 wt.% Ni, 6 to 9 wn~.% Cr, Mo, or W, 0 to 7.5 wt.% Fe, and the balance Zr.

  9. Alloys of clathrate allotropes for rechargeable batteries

    SciTech Connect

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  10. Pressure-composition-isotherms of palladium alloys

    SciTech Connect

    Flanagan, T.B.

    1996-11-01

    About one year ago a summary report was submitted covering the previous three years of the contract. This earlier report should be consulted as a useful survey and evaluation of the research carried out by the authors. Because of difficulties during the current contract period arising from the anomalous nature of the melt-spun alloys received from LANL, it is not possible to contribute much beyond that given in last year's summary with regard to the overall picture of the behavior of Pd-rich alloys towards hydrogen and its isotopes. In this contract year deuterium was employed instead of hydrogen and instead of using cycled alloys, the alloys employed for each isotherm measurement were in their virgin condition. Because of the anomalous behavior of the melt-spun alloys, it was not feasible or worthwhile in some cases, e.g., when the alloy behaved anomalously, to carry out all of the originally proposed work. Nonetheless considering these obstacles, some useful data were obtained. For example, the obtaining of deuterium isotherms for the Pd-Rh alloys down to {minus}40 C using internally oxidized melt-spun alloys may prove to be useful.

  11. Imprinting bulk amorphous alloy at room temperature

    DOE PAGES

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  12. Bonding titanium to Rene 41 alloy

    NASA Technical Reports Server (NTRS)

    Scott, R. W.

    1972-01-01

    Pair of intermediate materials joined by electron beam welding method welds titanium to Rene 41 alloy. Bond is necessary for combining into one structure high strength-to-density ratio titanium fan blades and temperature resistant nickel-base alloy turbine-buckets in VTOL aircraft lift-fan rotor.

  13. Pd-Co dental casting ferromagnetic alloys.

    PubMed

    Kinouchi, Y; Ushita, T; Tsutsui, H; Yoshida, Y; Sasaki, H; Miyazaki, T

    1981-01-01

    Three kinds of Pd-Co alloys have been newly developed. Their magnetic and physical properties and corrosion resistances have been examined. As a result, it was found that they are available as the dental casting ferromagnetic alloy which can be used in combination with Sm-Co magnets, overcoming such problems as non-castability and brittleness.

  14. TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM

    DOEpatents

    Foote, F.G.

    1960-08-01

    Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.

  15. Plasma deposition of amorphous metal alloys

    DOEpatents

    Hays, A.K.

    1979-07-18

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  16. Superconductivity in zirconium-rhodium alloys

    NASA Technical Reports Server (NTRS)

    Zegler, S. T.

    1969-01-01

    Metallographic studies and transition temperature measurements were made with isothermally annealed and water-quenched zirconium-rhodium alloys. The results clarify both the solid-state phase relations at the Zr-rich end of the Zr-Rh alloy system and the influence upon the superconducting transition temperature of structure and composition.

  17. Recent advances and developments in refractory alloys

    SciTech Connect

    Nieh, T.G.; Wadsworth, J.

    1993-11-01

    Refractory metal alloys based on Mo, W, Re, Ta, and Nb (Cb) find applications in a wide range of aerospace applications because of their high melting points and high-temperature strength. This paper, presents recent progress in understanding and applications of these alloys. Recent studies to improve the oxidation and mechanical behavior of refractory metal alloys, and particularly Nb alloys, are also discussed. Some Re structures, for extremely high temperature applications (> 2000C), made by CVD and P/M processes, are also illustrated. Interesting work on the development of new W alloys (W-HfC-X) and the characterization of some commercial refractory metals, e.g., K-doped W, TZM, and Nb-1%Zr, continues. Finally, recent developments in high temperature composites reinforced with refractory metal filaments, and refractory metal-based intermetallics, e.g., Nb{sub 3}Al, Nb{sub 2}Be{sub 17}, and MoSi{sub 2}, are briefly described.

  18. Enthalpies of a binary alloy during solidification

    NASA Technical Reports Server (NTRS)

    Poirier, D. R.; Nandapurkar, P.

    1988-01-01

    The purpose of the paper is to present a method of calculating the enthalpy of a dendritic alloy during solidification. The enthalpies of the dendritic solid and interdendritic liquid of alloys of the Pb-Sn system are evaluated, but the method could be applied to other binaries, as well. The enthalpies are consistent with a recent evaluation of the thermodynamics of Pb-Sn alloys and with the redistribution of solute in the same during dendritic solidification. Because of the heat of mixing in Pb-Sn alloys, the interdendritic liquid of hypoeutectic alloys (Pb-rich) of less than 50 wt pct Sn has enthalpies that increase as temperature decreases during solidification.

  19. A Study of Tungsten-Technetium Alloys

    NASA Technical Reports Server (NTRS)

    Maltz, J. W.

    1965-01-01

    Technetium is a sister element to rhenium and has many properties that are similar to rhenium. It is predicted that technetium will have about the same effects on tungsten as rhenium in regard to increase in workability, lowered ductile to brittle transition temperature, and improved ductility. The objectives of the current work are to recover technetium from fission product wastes at Hanford Atomic Products Operation and reduce to purified metal; prepare W-Tc alloys containing up to 50 atomic% Tc; fabricate the alloy ingots to sheet stock, assessing the effect of technetium on workability; and perform metallurgical and mechanical properties evaluation of the fabricated alloys. Previous reports have described the separation and purification of 800 g of technetium metal powder, melting of technetium and W-Tc alloys, and some initial observation of the alloy material.

  20. Development of chromium-tungsten alloys

    SciTech Connect

    Dogan, Omer N.; Alman, David E.; Hawk, Jeffrey A.

    2004-03-01

    Cr alloys containing 0-30 weight % W were investigated for their high temperature strength and oxidation resistance. These experimental alloys are intended for use in elevated temperature applications. Alloys were melted in a water-cooled, copper-hearth arc furnace. Microstructure of the alloys was studied using X-ray diffraction, scanning electron microscopy, and light microscopy. Meyer and Vickers hardness tests were utilized for measuring room temperature strength. A hot hardness tester with a spherical ruby indenter was used to study the strength of these materials between 800ºC and 1200ºC. A parabolic relationship was observed between load and indent size at all temperatures. On the other hand, decrease in hardness of the alloys with temperature was linear up to 1200ºC.

  1. [Use of titanium alloys for medical instruments].

    PubMed

    Feofilov, R N; Chirkov, V K; Levin, M V

    1977-01-01

    On the ground of an analysis into properties of titanium and its alloys the fields of their possible utilization for making various medical instruments are proposed. Because of their insufficient hardness and wear-resistance the titanium alloys cannot be recommended for making medical instruments with thin cutting edges. For the reasons of their insufficient strength, low wear-resistance and substandard modulus of elasticity, it is inexpedient to use titanium alloys in making many types of clamping medical instruments. Nor is it advisable to employ titanium alloys in handles of the instruments, for this may lead to a contact corrosion of their working parts. The use of titanium alloys is recommended for making bone-joining members, retracting medical instruments, of the spatula and speculum types, some kinds of non-magnetic pincers and ultrasonic medical instruments.

  2. Modelling Thermodynamics of Alloys for Fusion Application

    SciTech Connect

    Caro, A; Sadigh, B; Turchi, P A; Caro, M; Lopasso, E; Crowson, D

    2006-01-26

    This research has two main objectives: (1) On one side is the development of computational tools to evaluate alloy properties, using the information contained in thermodynamic functions to improve the ability of classic potentials to account for complex alloy behavior. (2) On the other hand, to apply the tools so developed to predict properties of alloys under irradiation. Atomistic simulations of alloys at the empirical level face the challenge of correctly modeling basic thermodynamic properties. In this work we develop a methodology to generalize many-body classic potentials to incorporate complex formation energy curves. Application to Fe-Cr allows us to predict the implications of the ab initio results of formation energy on the phase diagram of this alloy.

  3. The interaction of hydrogen with metal alloys

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Montano, J. W.

    1991-01-01

    Hydrogen diffusion coefficients were measured for several alloys, and these were determined to be about the same at 25 C for all alloys investigated. The relation of structure, both metallurgical and crystallographic, to the observed hydrogen distribution on charging was investigated, as well as the role of hydride formation in the hydrogen resistance of metal alloys. An attempt was made to correlate the structures and compositions of metal alloys as well as other parameters with the ratios of their notched tensile strengths in hydrogen to that in helium, R(H2/He), which are believed to represent a measure of their hydrogen resistance. Evidence supports the belief that hydrogen permeability and hydrogen resistance are increased by smaller grain sizes for a given alloy composition.

  4. Twinning-mediated formability in Mg alloys

    PubMed Central

    Suh, Byeong-Chan; Kim, Jae H.; Hwang, Ji Hyun; Shim, Myeong-Shik; Kim, Nack J.

    2016-01-01

    Mg alloys are promising candidates for automotive applications due to their low density and high specific strength. However, their widespread applications have not been realized mainly because of poor formability at room temperature, arising from limited number of active deformation systems and strong basal texture. It has been recently shown that Mg-Zn-Ca alloys have excellent stretch formability, which has been ascribed to their weak basal texture. However, the distribution of basal poles is orthotropic, which might result in anisotropy during deformation and have adverse effect on formability. Here, we show that tension twinning is mainly responsible for enhanced formability of Mg-Zn-Ca alloys. We found that tension twinning is quite active during both uniaxial deformation and biaxial deformation of Mg-Zn-Ca alloy even under the stress conditions unfavourable for the formation of tensile twins. Our results provide new insights into the development of Mg alloys having high formability. PMID:26926655

  5. Nickel alloys in the oral environment.

    PubMed

    Wataha, John C; Drury, Jeanie L; Chung, Whasun O

    2013-07-01

    The use of nickel casting alloys for long-term restorations in dentistry has long been controversial. A 'tug-of-war' between economic, engineering and biological considerations is central to this controversy; nickel-casting alloys have low costs and favorable physical properties, but are corrosion-prone in the oral environment. Clinicians and researchers have questioned the safety of nickel-containing dental alloys because several nickel compounds are known to cause adverse biological effects in vivo and in vitro in contexts outside of dentistry. The debate revolves around the extent to which corrosion products from oral restorations cause intraoral or systemic biological problems. Current evidence suggests that nickel alloys may be used successfully and safely in dentistry if clinical risks are taken into account. However, these alloys may cause significant clinical problems, primarily allergenic and inflammatory, if the risks are ignored.

  6. Comparison of Three Primary Surface Recuperator Alloys

    SciTech Connect

    Matthews, Wendy; More, Karren Leslie; Walker, Larry R

    2010-01-01

    Extensive work performed by Capstone Turbine Corporation, Oak Ridge National Laboratory, and various others has shown that the traditional primary surface recuperator alloy, type 347 stainless steel, is unsuitable for applications above 650 C ({approx}1200 F). Numerous studies have shown that the presence of water vapor greatly accelerates the oxidation rate of type 347 stainless steel at temperatures above 650 C ({approx}1200 F). Water vapor is present as a product of combustion in the microturbine exhaust, making it necessary to find replacement alloys for type 347 stainless steel that will meet the long life requirements of microturbine primary surface recuperators. It has been well established over the past few years that alloys with higher chromium and nickel contents than type 347 stainless steel have much greater oxidation resistance in the microturbine environment. One such alloy that has replaced type 347 stainless steel in primary surface recuperators is Haynes Alloy HR-120 (Haynes and HR-120 are trademarks of Haynes International, Inc.), a solid-solution-strengthened alloy with nominally 33 wt % Fe, 37 wt % Ni and 25 wt % Cr. Unfortunately, while HR-120 is significantly more oxidation resistant in the microturbine environment, it is also a much more expensive alloy. In the interest of cost reduction, other candidate primary surface recuperator alloys are being investigated as possible alternatives to type 347 stainless steel. An initial rainbow recuperator test has been performed at Capstone to compare the oxidation resistance of type 347 stainless steel, HR-120, and the Allegheny Ludlum austenitic alloy AL 20-25+Nb (AL 20-25+Nb is a trademark of ATI Properties, Inc. and is licensed to Allegheny Ludlum Corporation). Evaluation of surface oxide scale formation and associated alloy depletion and other compositional changes has been carried out at Oak Ridge National Laboratory. The results of this initial rainbow test will be presented and discussed in this

  7. Braze alloy spreading on steel

    NASA Technical Reports Server (NTRS)

    Siewert, T. A.; Heine, R. W.; Lagally, M. G.

    1978-01-01

    Scanning electron microscopy (SEM) and Auger electron microscopy (AEM) were employed to observe elemental surface decomposition resulting from the brazing of a copper-treated steel. Two types of steel were used for the study, stainless steel (treated with a eutectic silver-copper alloy), and low-carbon steel (treated with pure copper). Attention is given to oxygen partial pressure during the processes; a low enough pressure (8 x 10 to the -5th torr) was found to totally inhibit the spreading of the filler material at a fixed heating cycle. With both types of steel, copper treatment enhanced even spreading at a decreased temperature.

  8. Annealing studies of amorphous alloys

    SciTech Connect

    Wiley, J.D.; Perepezko, J.H.; Nordman, J.E.

    1983-04-01

    Amorphous films of the alloys Ni-Nb, Ni-Mo, Mo-Si, and W-Si were sputter deposited on single-crystal semiconductor substrates. One-hour crystallization temperatures of the films were determined to within +-25/sup 0/C by annealing and x-ray diffraction measurements. Interdiffusion between Au or Cu overlayers and the amorphous films were studied by annealing combined with Auger Electron Spectroscopy (AES) profiling, and by Rutherford Backscatter (RBS) analysis. Supplementary measurements used to study structural relaxation and crystallization included resistivity as a function of temperature; DTA and DSC; and electron microscopy.

  9. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration.

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    Determination of the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. A modified microhardness test unit permitted hardness determinations at homologous temperatures ranging from 0.02 to 0.15, where alloy softening normally occurs in bcc alloys. Results showed that alloy softening was produced by those elements having an excess of s + d electrons compared to Mo while those elements having an equal number or fewer s + d electrons than Mo failed to produce alloy softening. The magnitude of the softening and the amount of solute element at the hardness minimum diminished rapidly with increasing test temperature. At solute concentrations where alloy softening was observed, the temperature sensitivity of hardness was lowered. For solute elements having an excess of s + d electrons or fewer s + d electrons than Mo, alloy softening and alloy hardening can be correlated with the difference in number of s + d electrons of the solute element and Mo.

  10. Elastic moduli of nanocrystalline binary Al alloys with Fe, Co, Ti, Mg and Pb alloying elements

    NASA Astrophysics Data System (ADS)

    Babicheva, Rita I.; Bachurin, Dmitry V.; Dmitriev, Sergey V.; Zhang, Ying; Kok, Shaw Wei; Bai, Lichun; Zhou, Kun

    2016-05-01

    The paper studies the elastic moduli of nanocrystalline (NC) Al and NC binary Al-X alloys (X is Fe, Co, Ti, Mg or Pb) by using molecular dynamics simulations. X atoms in the alloys are either segregated to grain boundaries (GBs) or distributed randomly as in disordered solid solution. At 0 K, the rigidity of the alloys increases with decrease in atomic radii of the alloying elements. An addition of Fe, Co or Ti to the NC Al leads to increase in the Young's E and shear μ moduli, while an alloying with Pb decreases them. The elastic moduli of the alloys depend on a distribution of the alloying elements. The alloys with the random distribution of Fe or Ti demonstrate larger E and μ than those for the corresponding alloys with GB segregations, while the rigidity of the Al-Co alloy is higher for the case of the GB segregations. The moduli E and μ for polycrystalline aggregates of Al and Al-X alloys with randomly distributed X atoms are estimated based on the elastic constants of corresponding single-crystals according to the Voigt-Reuss-Hill approximation, which neglects the contribution of GBs to the rigidity. The results show that GBs in NC materials noticeably reduce their rigidity. Furthermore, the temperature dependence of μ for the NC Al-X alloys is analyzed. Only the Al-Co alloy with GB segregations shows the decrease in μ to the lowest extent in the temperature range of 0-600 K in comparison with the NC pure Al.

  11. Environmentally Assisted Cracking of Nickel Alloys - A Review

    SciTech Connect

    Rebak, R

    2004-07-12

    Nickel can dissolve a large amount of alloying elements while still maintaining its austenitic structure. That is, nickel based alloys can be tailored for specific applications. The family of nickel alloys is large, from high temperature alloys (HTA) to corrosion resistant alloys (CRA). In general, CRA are less susceptible to environmentally assisted cracking (EAC) than stainless steels. The environments where nickel alloys suffer EAC are limited and generally avoidable by design. These environments include wet hydrofluoric acid and hot concentrated alkalis. Not all nickel alloys are equally susceptible to cracking in these environments. For example, commercially pure nickel is less susceptible to EAC in hot concentrated alkalis than nickel alloyed with chromium (Cr) and molybdenum (Mo). The susceptibility of nickel alloys to EAC is discussed by family of alloys.

  12. Development of Metallic Sensory Alloys

    NASA Technical Reports Server (NTRS)

    Wallace Terryl A.; Newman, John A.; Horne, Michael R.; Messick, Peter L.

    2010-01-01

    Existing nondestructive evaluation (NDE) technologies are inherently limited by the physical response of the structural material being inspected and are therefore not generally effective at the identification of small discontinuities, making the detection of incipient damage extremely difficult. One innovative solution to this problem is to enhance or complement the NDE signature of structural materials to dramatically improve the ability of existing NDE tools to detect damage. To address this need, a multifunctional metallic material has been developed that can be used in structural applications. The material is processed to contain second phase sensory particles that significantly improve the NDE response, enhancing the ability of conventional NDE techniques to detect incipient damage both during and after flight. Ferromagnetic shape-memory alloys (FSMAs) are an ideal material for these sensory particles as they undergo a uniform and repeatable change in both magnetic properties and crystallographic structure (martensitic transformation) when subjected to strain and/or temperature changes which can be detected using conventional NDE techniques. In this study, the use of a ferromagnetic shape memory alloy (FSMA) as the sensory particles was investigated.

  13. The effect of alloy composition on the mechanism of stress corrosion cracking of titanium alloys in aqueous environments

    NASA Technical Reports Server (NTRS)

    Boyd, J. D.; Williams, D. N.; Wood, R. A.; Jaffee, R. I.

    1972-01-01

    The effects of alloy composition on the aqueous stress corrosion of titanium alloys were studied with emphasis on determining the interrelations among composition, phase structure, and deformation and fracture properties of the alpha phase in alpha-beta alloys. Accomplishments summarized include the effects of alloy composition on susceptibility, and metallurgical mechanisms of stress-corrosion cracking.

  14. Alloys based on NiAl for high temperature applications

    NASA Technical Reports Server (NTRS)

    Vedula, K. M.; Pathare, V.; Aslanidis, I.; Titran, R. H.

    1984-01-01

    The NiAl alloys for potential high temperature applications were studied. Alloys were prepared by powder metallurgy techniques. Flow stress values at slow strain rates and high temperatures were measured. Some ternary alloying additions (Hf, Ta and Nb) were identified. The mechanism of strengthening in alloys containing these additions appears to be a form of particle dislocation interaction. The effects of grain size and stoichiometry in binary alloys are also presented.

  15. Impurity control and corrosion resistance of magnesium-aluminum alloy

    SciTech Connect

    Liu, M.; Song, GuangLing

    2013-01-01

    The corrosion resistance of magnesium alloys is very sensitive to the contents of impurity elements such as iron. In this study, a series of diecast AXJ530 magnesium alloy samples were prepared with additions of Mn and Fe. Through a comprehensive phase diagram calculation and corrosion evaluation, the mechanisms for the tolerance limit of Fe in magnesium alloy are discussed. This adds a new dimension to control the alloying impurity in terms of alloying composition design and casting conditions.

  16. Indium Helps Strengthen Al/Cu/Li Alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B.; Starke, Edgar A., Jr.

    1992-01-01

    Experiments on Al/Cu/Li alloys focus specifically on strengthening effects of minor additions of In and Cd. Indium-bearing alloy combines low density with ability to achieve high strength through heat treatment alone. Tensile tests on peak-aged specimens indicated that alloy achieved yield strength approximately 15 percent higher than baseline alloy. Alloy highly suitable for processing to produce parts of nearly net shape, with particular applications in aircraft and aerospace vehicles.

  17. Effect of neutron irradiation on vanadium alloys

    SciTech Connect

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600/sup 0/C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520/sup 0/C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys.

  18. Structural alloys for high field superconducting magnets

    SciTech Connect

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4/sup 0/K and by rate effects associated with adiabatic heating during the tests. 46 refs.

  19. Development of platinum-modified gamma-nickel+gamma-nickel-aluminum-based alloys for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Heidloff, Andrew James

    Nickel-base superalloys have been used extensively in high-temperature applications where strength and structural stability are required, most notably in aero gas turbine engines. To increase the efficiency of such engines, a continuous increase in superalloy operating temperatures has been observed. As temperatures continue to increase, multiple aspects of alloy stability become increasingly important. In that regard, the high-temperature performance of superalloys can be generally discussed from two important standpoints, surface stability and structural stability. Historically, structural stability has been the primary concern to alloy designers, such that superalloys that may be exposed to high-temperature applications exceeding 1100°C typically utilize a coating for environmental protection. However, the use of coatings introduces potential deficiencies. For instance, aluminide coatings can lead to extensive instabilities when in contact with newer generation superalloys. Also, a few niche applications exist where the use of a coating is impractical. In such cases, the alloys require both environmental resistance and high-temperature strength. The primary goal of this study was to develop novel heat-treatable gamma-Ni+gamma'-Ni 3Al-based alloys having excellent resistance to both high-temperature oxidation and creep. The alloys were developed in a systematic manner using multiple alloying additions, including Pt and Ir, i.e., platinum group metals (PGMs). The microstructures and environmental and thermal stabilities of the alloys studied were fully characterized through a series of experiments, including: oxidation (both isothermal and cyclic); hot corrosion (both Type I and Type II); microstructure analysis (including lattice misfit); and phase equilibria calculations with partitioning coefficient analysis. Pt modification was found to significantly affect the lattice misfit of an alloy by expanding the gamma' lattice parameter through its Ni sublattice site

  20. Development of oxide dispersion strengthened turbine blade alloy by mechanical alloying

    NASA Technical Reports Server (NTRS)

    Merrick, H. F.; Curwick, L. R. R.; Kim, Y. G.

    1977-01-01

    There were three nickel-base alloys containing up to 18 wt. % of refractory metal examined initially for oxide dispersion strengthening. To provide greater processing freedom, however, a leaner alloy was finally selected. This base alloy, alloy D, contained 0.05C/15Cr / 2Mo/4W/2Ta/4.5Al/2.Ti/015Zr/0.01-B/Bal. Ni. Following alloy selection, the effect of extrusion, heat treatment, and oxide volume fraction and size on microstructure and properties were examined. The optimum structure was achieved in zone annealed alloy D which contained 2.5 vol. % of 35 mm Y2O3 and which was extruded 16:1 at 1038 C.

  1. Surface modification of Ti alloy by electro-explosive alloying and electron-beam treatment

    NASA Astrophysics Data System (ADS)

    Gromov, Victor; Kobzareva, Tatiana; Ivanov, Yuryi; Budovskikh, Evgeniy; Baschenko, Lyudmila

    2016-01-01

    By methods of modern physical metallurgy the analysis of structure phase states of titanium alloy VT6 is carried out after electric explosion alloying with boron carbide and subsequent irradiation by pulsed electron beam. The formation of an electro-explosive alloying zone of a thickness up to 50 µm, having a gradient structure, characterized by decrease in the concentration of carbon and boron with increasing distance to the treatable surface has been revealed. Subsequent electron-beam treatment of alloying zone leads to smoothing of the alloying area surface and is accompanied by the multilayer structure formation at the depth of 30 µm with alternating layers with different alloying degrees having the structure of submicro - and nanoscale level.

  2. Antibacterial biodegradable Mg-Ag alloys.

    PubMed

    Tie, D; Feyerabend, F; Müller, W D; Schade, R; Liefeith, K; Kainer, K U; Willumeit, R

    2013-06-16

    The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solution (T4) and aging (T6) heat treatment. The metallurgical analysis and phase identification showed that all alloys contained Mg4Ag as the dominant β phase. After heat treatment, the mechanical properties of all Mg-Ag alloys were significantly improved and the corrosion rate was also significantly reduced, due to presence of silver. Mg(OH)₂ and MgO present the main magnesium corrosion products, while AgCl was found as the corresponding primary silver corrosion product. Immersion tests, under cell culture conditions, demonstrated that the silver content did not significantly shift the pH and magnesium ion release. In vitro tests, with both primary osteoblasts and cell lines (MG63, RAW 264.7), revealed that Mg-Ag alloys show negligible cytotoxicity and sound cytocompatibility. Antibacterial assays, performed in a dynamic bioreactor system, proved that the alloys reduce the viability of two common pathogenic bacteria, Staphylococcus aureus (DSMZ 20231) and Staphylococcus epidermidis (DSMZ 3269), and the results showed that the killing rate of the alloys against tested bacteria exceeded 90%. In summary, biodegradable Mg-Ag alloys are cytocompatible materials with adjustable mechanical and corrosion properties and show promising antibacterial activity, which indicates their potential as antibacterial biodegradable implant materials.

  3. Sacrificial anode stability and polarization potential variation in a ternary Al-xZn-xMg alloy in a seawater-marine environment

    NASA Astrophysics Data System (ADS)

    Muazu, Abubakar; Aliyu, Yaro Shehu; Abdulwahab, Malik; Idowu Popoola, Abimbola Patricia

    2016-06-01

    In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarized potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the Al-6%Zn-1%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic Al2Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.

  4. Predicting the Effect of Pouring Temperature on the Crystallite Density, Remelting, and Crystal Growth Kinetics in the Solidification of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Ferguson, J. B.; Tabandeh-Khorshid, Meysam; Mantas, John C.; Rohatgi, Pradeep K.; Cho, Kyu; Kim, Chang-Soo

    2014-08-01

    In the present work, we developed an analytical model to describe the effect of pouring temperature on the crystallite density, remelting, growth kinetics, and the resultant final grain size for aluminum (Al)-based alloys synthesized using gravity casting. The model predicts that there are three regimes of pouring temperature/grain size-related behavior: (i) at low superheats, grain size is small and relatively constant; (ii) at intermediate levels of superheat, there appears to be a transitional behavior where grain size increases in a rapid, non-linear fashion; and (iii) at high superheats, grain size increases linearly with increasing temperature. This general pattern is expected to be shifted upward as distance from the bottom of the casting increases, which is likely a result of the slower cooling rates and/or longer solidification times with increasing distance from the bottom of the casting. To validate the model, a set of experiments has been conducted using Al-Cu and Al-Si alloys ( i.e., Al-3.0 wt pct Cu, Al-4.5 wt pct Cu, and Al-A356.2 alloys), and the experimental measurements showed consistent results with theoretical predictions.

  5. New alloys to conserve critical elements

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1978-01-01

    Based on availability of domestic reserves, chromium is one of the most critical elements within the U.S. metal industry. New alloys having reduced chromium contents which offer potential as substitutes for higher chromium containing alloys currently in use are being investigated. This paper focuses primarily on modified Type 304 stainless steels having one-third less chromium, but maintaining comparable oxidation and corrosion properties to that of type 304 stainless steel, the largest single use of chromium. Substitutes for chromium in these modified Type 304 stainless steel alloys include silicon and aluminum plus molybdenum.

  6. Gas-Alloy Interactions at Elevated Temperatures

    SciTech Connect

    Arroyave, Raymundo; Gao, Michael

    2012-11-07

    The understanding of the stability of metals and alloys against oxidation and other detrimental reactions, to the catalysis of important chemical reactions and the minimization of defects associated with processing and synthesis have one thing in common: At the most fundamental level, all these scientific/engineering problems involve interactions between metals and alloys (in the solid or liquid state) and gaseous atmospheres at elevated temperatures. In this special issue, we have collected a series of articles that illustrate the application of different theoretical, computational, and experimental techniques to investigate gas-alloy interactions.

  7. Beta titanium: a new orthodontic alloy.

    PubMed

    Burstone, C J; Goldberg, A J

    1980-02-01

    Historically, few alloys have been used in the fabrication of orthodontic appliances. This article reviews the gold-based, stainless steel, chrome-cobalt-nickel, and nitinol alloys, as well as beta titanium, a new material for orthodontics. Mechanical properties and manipulative characteristics are summarized to develop a basis for the selection of the proper alloy for a given clinical situation. The beta titanium wire has a unique balance of low stiffness, high springback, formability, and weldability which indicates its use in a wide range of clinical applications. A number of such applications are described. PMID:6928342

  8. Stress corrosion cracking of titanium alloys

    NASA Technical Reports Server (NTRS)

    Statler, G. R.; Spretnak, J. W.; Beck, F. H.; Fontana, M. G.

    1974-01-01

    The effect of hydrogen on the properties of metals, including titanium and its alloys, was investigated. The basic theories of stress corrosion of titanium alloys are reviewed along with the literature concerned with the effect of absorbed hydrogen on the mechanical properties of metals. Finally, the basic modes of metal fracture and their importance to this study is considered. The experimental work was designed to determine the effects of hydrogen concentration on the critical strain at which plastic instability along pure shear directions occurs. The materials used were titanium alloys Ti-8Al-lMo-lV and Ti-5Al-2.5Sn.

  9. Thermodynamics and Structure of Plutonium Alloys

    SciTech Connect

    Allen, P G; Turchi, P A; Gallegos, G F

    2004-01-30

    The goal of this project was to investigate the chemical and structural effects of gallium and impurity elements, iron and nickel, on the phase behavior and crystallography of Pu-Ga alloys. This was done utilizing a theoretical chemical approach to predict binary and ternary alloy energetics, phase stability, and transformations. The modeling results were validated with experimental data derived from the synthesis of selected alloys and advanced characterization tools. The ultimate goal of this work was to develop a robust predictive capability for studying the thermodynamics and the structure-properties relationships in complex materials of high relevance to the Laboratory and DOE mission.

  10. Graded coatings for metallic implant alloys

    SciTech Connect

    Saiz, Eduardo; Tomsia, Antoni P.; Fujino, Shigeru; Gomez-Vega, Jose M.

    2002-08-01

    Graded glass and glass-hydroxyapatite coatings on Ti-based and Co-Cr alloys have been prepared using a simple enameling technique. The composition of the glasses has been tailored to match the thermal expansion of the alloys. By controlling the firing time, and temperature, it has been possible to control the reactivity between the glass and the alloy and to fabricate coatings (25 to 150 mu m thick) with excellent adhesion to the substrate, resistant to corrosion and able to precipitate hydroxyapatite during in vitro tests in simulated body fluid.

  11. Quantitative analytical electron microscopy of multiphase alloys.

    PubMed

    Prybylowski, J; Ballinger, R; Elliott, C

    1989-02-01

    In this paper, we present a technique for analysis of composition gradients, using an analytical electron microscope, within the primary phase of a two-phase alloy for the case where the second-phase particle size is similar to the size of the irradiated volume. If the composition difference between the two phases is large, the detected compositional fluctuations associated with varying phase fractions may mask any underlying composition gradient of the primary phase. The analysis technique was used to determine grain boundary chromium concentration gradients in a nickel-base superalloy, alloy X-750. The technique may also be of use in other alloy systems. PMID:2709131

  12. Comparison of Lost Foam Casting of AM60B Alloy and A356 Alloy

    SciTech Connect

    Han, Qingyou; Dinwiddie, Ralph Barton; Sklad, Philip S; Currie, Kenneth; Vondra, Fred; Abdelrahman, Mohamed; Walford, Graham; Nolan, Dennis J; Nedkova, Teodora

    2007-01-01

    The article describes the research activities at Oak Ridge National Laboratory and Tennessee Technological University on lost foam casting of magnesium alloys. The work was focused on castings of simple geometries such as plate castings and window castings in order to compare the difference in castability between magnesium alloys and aluminum alloy using the lost foam casting process. Significant differences between lost foam aluminum casting and lost foam magnesium casting have been observed.

  13. Method for homogenizing alloys susceptible to the formation of carbide stringers and alloys prepared thereby

    DOEpatents

    Braski, David N.; Leitnaker, James M.

    1980-01-01

    A novel fabrication procedure prevents or eliminates the reprecipitation of segregated metal carbides such as stringers in Ti-modified Hastelloy N and stainless steels to provide a novel alloy having carbides uniformly dispersed throughout the matrix. The fabrication procedure is applicable to other alloys prone to the formation of carbide stringers. The process comprises first annealing the alloy at a temperature above the single phase temperature for sufficient time to completely dissolve carbides and then annealing the single phase alloy for an additional time to prevent the formation of carbide stringers upon subsequent aging or thermomechanical treatment.

  14. Hot deformation mechanisms of a solution-treated Al-Li-Cu-Mg-Zr alloy

    SciTech Connect

    Avramovic-Cingara, G.; Perovic, D.D.; McQueen, H.J.

    1996-11-01

    Solution-treated 8090 and 8091 Al-based alloys were subjected to hot torsion testing in the temperature range of 300 C through 500 C at strain rates of 0.1 to 5 s{sup {minus}1}, up to an equivalent strain of 4. The flow stresses for alloys 8090 (8091) were found to depend on strain rate through a sinh function with exponent 3.98 (2.37) and on temperature through an Arrhenius behavior with activation energy of about 287 (282) kJ/mol. Studies using transmission electron microscopy (TEM) have been performed with the aim of understanding the difference in deformation mechanisms at 500 C, 400 C, and 300 C. During hot processing, the mechanism of dynamic recovery is operative. The change in average subgrain size (d) with the conditions of deformation, i.e., Zener-Hollomon parameter and steady-state flow stress ({sigma}), was quantitatively characterized. Heat treatment at 550 C induced the precipitation of Al{sub 3}Zr particles which are resistant to dislocation shear. Furthermore, electron microscopic analyses have revealed a large number of helical dislocations, prismatic loops, and some Orowan loop formation after deformation at 500 C and 400 C. The density of these defects depends on the temperature of deformation and strain rate. At 300 C, dynamic precipitation of T{sub 2} (Al{sub 6}CuLi{sub 3}) and T{sub 1} (Al{sub 2}CuLi) phases strongly affected hot deformation behavior. In all cases, the microstructural analyses were consistent with a dual-slope description of the mechanical behavior during hot deformation.

  15. Hot deformation mechanisms of a solution-treated Al-Li-Cu-Mg-Zr alloy

    NASA Astrophysics Data System (ADS)

    Avramovic-Cingara, G.; Perovic, D. D.; McQueen, H. J.

    1996-11-01

    Solution-treated 8090 and 8091 Al-based alloys were subjected to hot torsion testing in the temperature range of 300 °C through 500 °C at strain rates of 0.1 to 5 s-1, up to an equivalent strain of 4. The flow stresses for alloys 8090 (8091) were found to depend on strain rate through a sinh function with exponent 3.98 (2.37) and on temperature through an Arrhenius behavior with activation energy of about 287 (282) kJ/mol. Studies using transmission electron microscopy (TEM) have been performed with the aim of understanding the difference in deformation mechanisms at 500 °C, 400 °C, and 300 °C. During hot processing, the mechanism of dynamic recovery is operative. The change in average subgrain size ( d) with the conditions of deformation, i.e., Zener-Hollomon parameter and steady-state flow stress ( σ s ), was quantitatively characterized. Heat treatment at 550 °C induced the precipitation of Al3Zr particles which are resistant to dislocation shear. Furthermore, electron microscopic analyses have revealed a large number of helical dislocations, prismatic loops, and some Orowan loop formation after deformation at 500 °C and 400 °C. The density of these defects depends on the temperature of deformation and strain rate. At 300 °C, dynamic precipitation of T2 (Al6CuLi3) and T1 (Al2CuLI) phases strongly affected hot deformation behavior. In all cases, the microstructural analyses were consistent with a dual-slope description of the mechanical behavior during hot deformation.

  16. Composite growth in hypermonotectic alloys

    NASA Astrophysics Data System (ADS)

    Grugel, R. N.

    1991-06-01

    The feasibility of solidifying uniformly aligned composites from alloys of hypermonotectic composition was investigated through the use of organic analogues and a directional solidification temperature gradient stage. Previously demonstrated macrostructurally detrimental effects due to coalescence and/or preferential wetting (or lack of) by the excess LII phase have been taken advantage of by the inclusion of constrained fibers aligned parallel to the growth direction. Upon passing through the miscibility gap, L II droplets are shown to attach and grow along the fibers prior to the monotectic reaction, resulting in a uniform composite. The results of different fiber materials in combination with “wetting” and “nonwetting” miscibility gap systems are presented and discussed in reference to processing in a microgravity environment.

  17. Silver-hafnium braze alloy

    DOEpatents

    Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.

    2003-12-16

    A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.

  18. Shape memory alloy consortium (SMAC)

    NASA Astrophysics Data System (ADS)

    Jacot, A. Dean

    1999-07-01

    The application of smart structures to helicopter rotors has received widespread study in recent years. This is one of the major thrusts of the Shape Memory Alloy Consortium (SMAC) program. SMAC includes 3 companies and 4 Universities in a cost sharing consortium funded under DARPA Smart Materials and Structures program. This paper describes the objective of the SMAC effort, and its relationship to a previous DARPA smart structure rotorcraft program from which it originated. The SMAC program includes NiTinol fatigue/characterization studies, SMA actuator development, and ferromagnetic SMA material development. The paper summarizes the SMAC effort, and includes background and details on Boeing's development of a SMA torsional actuator for rotorcraft applications. SMA actuation is used to retwist the rotorcraft blade in flight, and result in a significant payload increase for either helicopters or tiltrotors. This paper is also augmented by several other papers in this conference with specific results from other SMAC consortium members.

  19. Incology alloy 908 data handbook

    SciTech Connect

    Toma, L.S.; Steeves, M.M.; Reed, R.P.

    1994-03-01

    This handbook is a compilation of all available properties of Incoloy alloy 908 as of March, 1994. Data included in this paper cover mechanical, elastic, thermal and magnetic characteristics. The mechanical properties include tensile, fracture toughness, fatigue, and stress-rupture for both the base metal and related weld filler metals. Elastic properties listed are Young`s, shear and bulk moduli and Poisson`s ratio. Thermal expansion, thermal conductivity and specific heat and magnetization are also reported. Data presented are summarized in the main body and presented in detail in the supplements. Areas of ongoing research are briefly described, and topics for future research are suggested. The data have been compiled to assist in the design of large-scale superconducting magnets for fusion reactors.

  20. Corrosion performance of structural alloys.

    SciTech Connect

    Natesan, K.

    1999-07-15

    Component reliability and long-term trouble-free performance of structural materials are essential in power-generating and gasification processes that utilize coal as a feedstock. During combustion and conversion of coal, the environments encompass a wide range of oxygen partial pressures, from excess-air conditions in conventional boilers to air-deficient conditions in 10W-NO{sub x} and gasification systems. Apart from the environmental aspects of the effluent from coal combustion and conversion, one concern from the systems standpoint is the aggressiveness of the gaseous/deposit environment toward structural components such as waterwall tubes, steam superheaters, syngas coolers, and hot-gas filters. The corrosion tests in the program described in this paper address the individual and combined effects of oxygen, sulfur, and chlorine on the corrosion response of several ASME-coded and noncoded structural alloys that were exposed to air-deficient and excess-air environments typical of coal-combustion and gasification processes. Data in this paper address the effects of preoxidation on the subsequent corrosion performance of structural materials such as 9Cr-1Mo ferritic steel, Type 347 austenitic stainless steel, Alloys 800, 825, 625, 214, Hastelloy X, and iron aluminide when exposed at 650 C to various mixed-gas environments with and without HCI. Results are presented for scaling kinetics, microstructural characteristics of corrosion products, detailed evaluations of near-surface regions of the exposed specimens, gains in our mechanistic understanding of the roles of S and Cl in the corrosion process, and the effect of preoxidation on subsequent corrosion.

  1. Phase transformations in ternary monotectic aluminum alloys

    NASA Astrophysics Data System (ADS)

    Gröbner, Joachim; Schmid-Fetzer, Rainer

    2005-09-01

    Monotectic aluminum alloys are of interest for the development of new alloys for technological applications such as self-lubricating bearings. In contrast to the well-known binary phase diagrams, many of the ternary systems are not well established. Moreover, in a ternary monotectic alloy one may encounter the four-phase equilibrium L‧+L″+solid1+solid2, whereas in a binary system only a three-phase equilibrium L‧+L″+solid1 is possible. This opens a window for generating entirely new monotectic microstructures. The basis for such developments is the knowledge of the ternary phase diagrams and the conditions under which such four-phase reactions or different extensions of the binary monotectic reactions may form. This work presents a systematic classification of monotectic ternary aluminum alloys, illustrated by real systems. The study employs thermodynamic calculations of the ternary phase diagrams.

  2. Synthesis of alloys with controlled phase structure

    DOEpatents

    Guthrie, S.E.; Thomas, G.J.; Bauer, W.; Yang, N.Y.C.

    1999-04-20

    A method is described for preparing controlled phase alloys useful for engineering and hydrogen storage applications. This novel method avoids melting the constituents by employing vapor transport, in a hydrogen atmosphere, of an active metal constituent, having a high vapor pressure at temperatures {approx_equal}300 C and its subsequent condensation on and reaction with the other constituent (substrate) of an alloy thereby forming a controlled phase alloy and preferably a single phase alloy. It is preferred that the substrate material be a metal powder such that diffusion of the active metal constituent, preferably magnesium, and reaction therewith can be completed within a reasonable time and at temperatures {approx_equal}300 C thereby avoiding undesirable effects such as sintering, local compositional inhomogeneities, segregation, and formation of unwanted second phases such as intermetallic compounds. 4 figs.

  3. LOST FOAM CASTING OF MAGNESIUM ALLOYS

    SciTech Connect

    Han, Qingyou; Dinwiddie, Ralph Barton; Sklad, Philip S; Currie, Kenneth; Abdelrahman, Mohamed; Vondra, Fred; Walford, Graham; Nolan, Dennis J

    2007-01-01

    The lost foam casting process has been successfully used for making aluminum and cast iron thin walled castings of complex geometries. Little work has been carried out on cast magnesium alloys using the lost foam process. The article describes the research activities at Oak Ridge National Laboratory and Tennessee Technological University on lost foam casting of magnesium alloys. The work was focused on castings of simple geometries such as plate castings and window castings. The plate castings were designed to investigate the mold filling characteristics of magnesium and aluminum alloys using an infrared camera. The pate castings were then characterized for porosity distribution. The window castings were made to test the castability of the alloys under lost foam conditions. Significant differences between lost foam aluminum casting and lost foam magnesium casting have been observed.

  4. Printability of alloys for additive manufacturing.

    PubMed

    Mukherjee, T; Zuback, J S; De, A; DebRoy, T

    2016-01-01

    Although additive manufacturing (AM), or three dimensional (3D) printing, provides significant advantages over existing manufacturing techniques, metallic parts produced by AM are susceptible to distortion, lack of fusion defects and compositional changes. Here we show that the printability, or the ability of an alloy to avoid these defects, can be examined by developing and testing appropriate theories. A theoretical scaling analysis is used to test vulnerability of various alloys to thermal distortion. A theoretical kinetic model is used to examine predisposition of different alloys to AM induced compositional changes. A well-tested numerical heat transfer and fluid flow model is used to compare susceptibilities of various alloys to lack of fusion defects. These results are tested and validated with independent experimental data. The findings presented in this paper are aimed at achieving distortion free, compositionally sound and well bonded metallic parts.

  5. Aluminum-lithium alloys in helicopters

    SciTech Connect

    Smith, A.F.

    1997-10-01

    Aluminium-lithium alloys are widely applied on the EH101 helicopter, designed and built jointly by GKN Westland Helicopters of England and Agusta S.p.A. of Italy. With the exception of the powder metallurgy alloy AA 5091, all the current commercially available aluminum-lithium alloys are produced by direct-chill casting, and require a precipitation-aging heat treatment to achieve the required properties. In aluminum-lithium alloys containing greater than 1.3% (by weight) of lithium, the intermetallic phase {delta}{prime}-Al{sub 3}Li precipitates upon natural or artificial aging, but the associated strengthening effect is insufficient to meet the medium or high strength levels usually required (the damage tolerant temper in AA 8090 is an exception).

  6. Alloy solution hardening with solute pairs

    DOEpatents

    Mitchell, John W.

    1976-08-24

    Solution hardened alloys are formed by using at least two solutes which form associated solute pairs in the solvent metal lattice. Copper containing equal atomic percentages of aluminum and palladium is an example.

  7. NASA-427: A New Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  8. Printability of alloys for additive manufacturing

    PubMed Central

    Mukherjee, T.; Zuback, J. S.; De, A.; DebRoy, T.

    2016-01-01

    Although additive manufacturing (AM), or three dimensional (3D) printing, provides significant advantages over existing manufacturing techniques, metallic parts produced by AM are susceptible to distortion, lack of fusion defects and compositional changes. Here we show that the printability, or the ability of an alloy to avoid these defects, can be examined by developing and testing appropriate theories. A theoretical scaling analysis is used to test vulnerability of various alloys to thermal distortion. A theoretical kinetic model is used to examine predisposition of different alloys to AM induced compositional changes. A well-tested numerical heat transfer and fluid flow model is used to compare susceptibilities of various alloys to lack of fusion defects. These results are tested and validated with independent experimental data. The findings presented in this paper are aimed at achieving distortion free, compositionally sound and well bonded metallic parts. PMID:26796864

  9. Solid solution lithium alloy cermet anodes

    DOEpatents

    Richardson, Thomas J.

    2013-07-09

    A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.

  10. Modeling wear of cast Ti alloys

    PubMed Central

    Chan, Kwai S.; Koike, Marie; Okabe, Toru

    2007-01-01

    The wear behavior of Ti-based alloys was analyzed by considering the elastic–plastic fracture of individual alloys in response to the relevant contact stress field. Using the contact stresses as the process driving force, wear was computed as the wear rate or volume loss as a function of hardness and tensile ductility for Ti-based cast alloys containing an α, α+β or β microstructure with or without the intermetallic precipitates. Model predictions indicated that wear of Ti alloys increases with increasing hardness but with decreasing fracture toughness or tensile ductility. The theoretical results are compared with experimental data to elucidate the roles of microstructure in wear and contrasted against those in grindability. PMID:17224314

  11. Printability of alloys for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Mukherjee, T.; Zuback, J. S.; de, A.; Debroy, T.

    2016-01-01

    Although additive manufacturing (AM), or three dimensional (3D) printing, provides significant advantages over existing manufacturing techniques, metallic parts produced by AM are susceptible to distortion, lack of fusion defects and compositional changes. Here we show that the printability, or the ability of an alloy to avoid these defects, can be examined by developing and testing appropriate theories. A theoretical scaling analysis is used to test vulnerability of various alloys to thermal distortion. A theoretical kinetic model is used to examine predisposition of different alloys to AM induced compositional changes. A well-tested numerical heat transfer and fluid flow model is used to compare susceptibilities of various alloys to lack of fusion defects. These results are tested and validated with independent experimental data. The findings presented in this paper are aimed at achieving distortion free, compositionally sound and well bonded metallic parts.

  12. Environmental embrittlement in ordered intermetallic alloys

    SciTech Connect

    Liu, C.T.; Stoloff, N.S.

    1992-12-31

    Ordered intermetallics based on aluminides and silicides possess many promising properties for elevated-temperature applications; however, poor fracture resistance and limited fabricability restrict their use as engineering material. Recent studies have shown that environmental embrittlement is a major cause of low ductility and brittle fracture in many ordered intermetallic alloys. There are two types of environmental embrittlement observed in intermetallic alloys. One is hydrogen-induced embrittlement occurring at ambient temperatures in air. The other is oxygen-induced embrittlement in oxidizing atmospheres at elevated temperatures. In most cases, the embrittlements are due to a dynamic effect involving generation and penetration of embrittling agents (i.e., hydrogen or oxygen ) during testing. Diffusion of embrittling agents plays a dominant role in fracture of these intermetallic alloys. This chapter summarizes recent progress in understanding and reducing environmental embrittlement in these alloys.

  13. Printability of alloys for additive manufacturing.

    PubMed

    Mukherjee, T; Zuback, J S; De, A; DebRoy, T

    2016-01-01

    Although additive manufacturing (AM), or three dimensional (3D) printing, provides significant advantages over existing manufacturing techniques, metallic parts produced by AM are susceptible to distortion, lack of fusion defects and compositional changes. Here we show that the printability, or the ability of an alloy to avoid these defects, can be examined by developing and testing appropriate theories. A theoretical scaling analysis is used to test vulnerability of various alloys to thermal distortion. A theoretical kinetic model is used to examine predisposition of different alloys to AM induced compositional changes. A well-tested numerical heat transfer and fluid flow model is used to compare susceptibilities of various alloys to lack of fusion defects. These results are tested and validated with independent experimental data. The findings presented in this paper are aimed at achieving distortion free, compositionally sound and well bonded metallic parts. PMID:26796864

  14. Environmental Studies on Titanium Aluminide Alloys

    NASA Technical Reports Server (NTRS)

    Brindley, William J.; Bartolotta, Paul A.; Smialek, James L.; Brady, Michael P.

    2005-01-01

    Titanium aluminides are attractive alternatives to superalloys in moderate temperature applications (600 to 850 C) by virtue of their high strength-to-density ratio (high specific strength). These alloys are also more ductile than competing intermetallic systems. However, most Ti-based alloys tend to degrade through interstitial embrittlement and rapid oxidation during exposure to elevated temperatures. Therefore, their environmental behavior must be thoroughly investigated before they can be developed further. The goals of titanium aluminide environmental studies at the NASA Lewis Research Center are twofold: characterize the degradation mechanisms for advanced structural alloys and determine what means are available to minimize degradation. The studies to date have covered the alpha 2 (Ti3Al), orthorhombic (Ti2AlNb), and gamma (TiAl) classes of alloys.

  15. Stress-corrosion cracking of titanium alloys.

    NASA Technical Reports Server (NTRS)

    Blackburn, M. J.; Feeney, J. A.; Beck, T. R.

    1973-01-01

    In the light of research material published up to May 1970, the current understanding of the experimental variables involved in the stress-corrosion cracking (SCC) behavior of titanium and its alloys is reviewed. Following a brief summary of the metallurgy and electrochemistry of titanium alloys, the mechanical, electrochemical, and metallurgical parameters influencing SCC behavior are explored with emphasis on crack growth kinetics. Macro- and microfeatures of fractures are examined, and it is shown that many transgranular SCC failures exhibit morphological and crystallographic features similar to mechanical cleavage failures. Current SCC models are reviewed with respect to their ability to explain the observed SCC behavior of titanium and its alloys. Possible methods for eliminating or minimizing stress corrosion hazards in titanium or titanium alloy components are described.

  16. Room temperature creep in metals and alloys

    SciTech Connect

    Deibler, Lisa Anne

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  17. Alloy design with oxide dispersoids and precipitates

    NASA Technical Reports Server (NTRS)

    Tien, J. K.

    1977-01-01

    The mechanical behavior of particle-strengthened alloys is reviewed. On the basis of this knowledge, it is concluded that second-phase particles, coherent or incoherent, can enhance the flow strength, creep resistance, and stress-rupture life of alloys. Unfortunately, particles are usually not beneficial alloy-design elements if enhanced uniaxial ductility, plane-strain ductility, stress-rupture ductility, and toughness are called for. Such properties as fatigue-crack propagation resistance appear to require, for example, both high strength and high ductility, a situation which can come to pass only when the perennial conflict between strength and ductility is resolved in particle-strengthened systems in particular and in any other material system in general. Wherever possible, the role of coherent and incoherent particles in alloy design is distinguished.

  18. Electrodeposited gels prepared from protein alloys

    PubMed Central

    Lin, Yinan; Wang, Siran; Chen, Ying; Wang, Qianrui; Burke, Kelly A; Spedden, Elise M; Staii, Cristian; Weiss, Anthony S; Kaplan, David L

    2015-01-01

    Aim Silk-tropoelastin alloys, composed of recombinant human tropoelastin and regenerated Bombyx mori silk fibroin, are an emerging, versatile class of biomaterials endowed with tunable combinations of physical and biological properties. Electrodeposition of these alloys provides a programmable means to assemble functional gels with both spatial and temporal controllability. Materials & methods Tropoelastin-modified silk was prepared by enzymatic coupling between tyrosine residues. Hydrogel coatings were electrodeposited using two wire electrodes. Results & discussion Mechanical characterization and in vitro cell culture revealed enhanced adhesive capability and cellular response of these alloy gels as compared with electrogelled silk alone. Conclusion These electro-depositable silk-tropoelastin alloys constitute a suitable coating material for nanoparticle-based drug carriers and offer a novel opportunity for on-demand encapsulation/release of nanomedicine. PMID:25816881

  19. Printability of alloys for additive manufacturing

    DOE PAGES

    Mukherjee, T.; Zuback, J. S.; De, A.; DebRoy, T.

    2016-01-22

    Although additive manufacturing (AM), or three dimensional (3D) printing, provides significant advantages over existing manufacturing techniques, metallic parts produced by AM are susceptible to distortion, lack of fusion defects and compositional changes. Here we show that the printability, or the ability of an alloy to avoid these defects, can be examined by developing and testing appropriate theories. A theoretical scaling analysis is used to test vulnerability of various alloys to thermal distortion. A theoretical kinetic model is used to examine predisposition of different alloys to AM induced compositional changes. A well-tested numerical heat transfer and fluid flow model is usedmore » to compare susceptibilities of various alloys to lack of fusion defects. These results are tested and validated with independent experimental data. Here, the findings presented in this paper are aimed at achieving distortion free, compositionally sound and well bonded metallic parts.« less

  20. Phases in lanthanum-nickel-aluminum alloys

    SciTech Connect

    Mosley, W.C.

    1992-01-01

    Lanthanum-nickel-aluminum (LANA) alloys will be used to pump, store and separate hydrogen isotopes in the Replacement Tritium Facility (RTF). The aluminum content (y) of the primary LaNi{sub 5}-phase is controlled to produce the desired pressure-temperature behavior for adsorption and desorption of hydrogen. However, secondary phases cause decreased capacity and some may cause undesirable retention of tritium. Twenty-three alloys purchased from Ergenics, Inc. for development of RTF processes have been characterized by scanning electron microscopy (SEM) and by electron microprobe analysis (EMPA) to determine the distributions and compositions of constituent phases. This memorandum reports the results of these characterization studies. Knowledge of the structural characteristics of these alloys is a useful first step in selecting materials for specific process development tests and in interpreting results of those tests. Once this information is coupled with data on hydrogen plateau pressures, retention and capacity, secondary phase limits for RTF alloys can be specified.