Reformulation of quasi-linear theory.
NASA Technical Reports Server (NTRS)
Kaufman, A. N.
1972-01-01
Standard plasma quasi-linear theory is reformulated on the basis of a classical quantum derivation proceeding from the Vlasov equation and dealing only with frequency, wavenumber, and velocity. The wave amplitudes are assumed to be weakly time-dependent, and no distinction is made between growing and decaying waves. The proposed method leads to no negative diffusivity of 'fake' diffusion. By appropraite treatment of nonresonant interaction, expressions are obtained for wave energy and momentum.
Quasilinear Theory of Laser-Plasma Interactions.
NASA Astrophysics Data System (ADS)
Neil, Alastair John
The interaction of a high intensity laser beam with a plasma is generally susceptible to the filamentation instability due to nonuniformities in the laser profile. In ponderomotive filamentation high intensity spots in the beam expell plasma by ponderomotive force, lowering the local density, causing even more light to be focused into the already high intensity region. The result--the beam is broken up into a filamentary structure. Several optical smoothing techniques have been proposed to eliminate this problem. In the Random Phase Plates (RPS) approach, the beam is split into a very fine scale, time-stationary interference pattern. The irregularities in this pattern are small enough that thermal diffusion is then responsible for smoothing the illumination. In the Induced Spatial Incoherence (ISI) approach the beam is broken up into a larger scale but non-time-stationary interference pattern. In this dissertation we propose that the photons in an ISI beam resonantly interact with the sound waves in the wake of the beam. Such a resonant interaction induces diffusion in the velocity space of the photons. The diffusion will tend to spread the distribution of photons, thus if the diffusion time is much shorter than the e-folding time of the filamentation instability, the instability will be suppressed. Using a wave-kinetic description of laser-plasma interactions we have applied quasilinear theory to model the resonant interaction of the photons in an ISI beam with the beam's wake field. We have derived an analytic expression for the transverse diffusion coefficient. The quasilinear hypothesis was tested numerically and shown to yield an underestimate of the diffusion rate. By comparing the quasilinear diffusion rate, gamma_ {D}, with the maximum growth rate for the ponderomotive filamentation of a uniform beam, gamma_{f_{max}} , we have derived a worst case criterion for stability against ponderomotive filamentation: { gamma_{f_{max}} over gamma_ D} ~ .5 { ~ f^5/~ D
Quasi-linear theory via the cumulant expansion approach
NASA Technical Reports Server (NTRS)
Jones, F. C.; Birmingham, T. J.
1974-01-01
The cumulant expansion technique of Kubo was used to derive an intergro-differential equation for f , the average one particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the f equation degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory for this limited class of fluctuations. For more physically realistic fluctuations, however, quasi-linear theory is at best approximate.
Shear dynamo problem: Quasilinear kinematic theory.
Sridhar, S; Subramanian, Kandaswamy
2009-04-01
Large-scale dynamo action due to turbulence in the presence of a linear shear flow is studied. Our treatment is quasilinear and kinematic but is nonperturbative in the shear strength. We derive the integrodifferential equation for the evolution of the mean magnetic field by systematic use of the shearing coordinate transformation and the Galilean invariance of the linear shear flow. For nonhelical turbulence the time evolution of the cross-shear components of the mean field does not depend on any other components excepting themselves. This is valid for any Galilean-invariant velocity field, independent of its dynamics. Hence the shear-current assisted dynamo is essentially absent, although large-scale nonhelical dynamo action is not ruled out.
When is quasi-linear theory exact. [particle acceleration
NASA Technical Reports Server (NTRS)
Jones, F. C.; Birmingham, T. J.
1975-01-01
We use the cumulant expansion technique of Kubo (1962, 1963) to derive an integrodifferential equation for the average one-particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the equation for this function degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory only for this limited class of fluctuations.
Simulation and quasilinear theory of aperiodic ordinary mode instability
Seough, Jungjoon; Yoon, Peter H.; Hwang, Junga; Nariyuki, Yasuhiro
2015-08-15
The purely growing ordinary (O) mode instability driven by excessive parallel temperature anisotropy for high-beta plasmas was first discovered in the 1970s. This instability receives renewed attention because it may be applicable to the solar wind plasma. The electrons in the solar wind feature temperature anisotropies whose upper values are apparently limited by plasma instabilities. The O-mode instability may be important in this regard. Previous studies of O mode instability have been based on linear theory, but the actual solar wind electrons may be in saturated state. The present paper investigates the nonlinear saturation behavior of the O mode instability by means of one-dimensional particle-in-cell simulation and quasilinear theory. It is shown that the quasilinear method accurately reproduces the simulation results.
Electromagnetic hot ion beam instabilities - Quasi-linear theory and simulation
NASA Technical Reports Server (NTRS)
Rogers, B.; Gary, S. P.; Winske, D.
1985-01-01
This paper considers the quasi-linear theory of the right- and left-hand resonant electromagnetic instabilities driven by a hot ion beam streaming parallel to a magnetic field in a homogeneous Vlasov plasma. Using the single-mode approximation, the time evolutions of important parameters are obtained to show that for the range of parameters considered, reduction of the beam speed and formation of temperature anisotropies are the most significant factors in the quasi-linear stabilization process. Combining both instabilities in a quasi-linear study is found to produce a roughly equal mixture of both polarizations and relatively isotropic conditions for tenuous beam densities and low initial beam drift speeds. Computer simulations are used to compare with the quasi-linear results. The simulations justify the single-mode assumption, verify that quasi-linear changes are the means of saturation for the parameter range of concern, and check the nonlinear evolution of the system when both modes are present.
NASA Astrophysics Data System (ADS)
Sarfraz, M.; Yoon, P. H.; Saeed, Sundas; Abbas, G.; Shah, H. A.
2017-01-01
A number of different microinstabilities are known to be responsible for regulating the upper bound of temperature anisotropies in solar wind protons, alpha particles, and electrons. In the present paper, quasilinear kinetic theory is employed to investigate the time variation in electron temperature anisotropies in response to the excitation of parallel electron firehose instability in homogeneous and non-collisional solar wind plasma under the condition of T∥e>T⊥e . By assuming the bi-Maxwellian form of velocity distribution functions, various velocity moments of the particle kinetic equation are taken in order to reduce the theory to macroscopic model in which the wave-particle interaction is incorporated, hence, the macroscopic quasilinear theory. The threshold condition for the parallel electron firehose instability, empirically constructed as a curve in (β∥e,T⊥e/T∥e) phase space, is implicit in the present macroscopic quasilinear calculation. Even though the present calculation excludes the oblique firehose instability, which is known to possess a higher growth rate, the basic methodology may be further extended to include such a mode. Among the findings is that the parallel electron firehose instability dynamically couples the electrons and protons, which implies that this instability may be important for overall solar wind dynamics. The present analysis shows that the macroscopic quasilinear approach may eventually be incorporated in global-kinetic models of the solar wind electrons and ions.
Anomalous energy exchange in the gBL and quasilinear theories
Mynick, H.E.
1992-02-01
The rate of turbulence-induced energy exchange {dot W}{sub o} between species is computed in the framework of the quasilinear and gBL transport theories, and the relationship between these two theories, and the relationship between these two similar theories is thereby elucidated. For both theories, general formal expressions for {dot W}{sub o} are developed, and then applied to the trapped electron mode for illustration. The general expressions for {dot W}{sub o} in the two theories are formally closely related, but can yield predictions of very different magnitude in concrete applications. The fact that quasilinear theory is not valid for saturated steady-state turbulence gives rise to certain peculiarities in its predictions for this normal experimental situation, such as permitting energy to flow from the cooler to the hotter species, even in the limit of thermal equilibrium, where real-space gradients vanish. The gBL theory may be viewed as a modification of quasilinear theory to be valid for steady-state turbulence, keeping extra terms due to the self-consistent back reaction of particles on the fluctuations, which are just such as to eliminate these peculiarities.
Quasilinear theory of general electromagnetic fluctuations in unmagnetized plasmas
Schlickeiser, R. E-mail: yoonp@umd.edu; Yoon, P. H. E-mail: yoonp@umd.edu
2014-09-15
The general quasilinear Fokker-Planck kinetic equation for the plasma particle distribution functions in unmagnetized plasmas is derived, making no restrictions on the frequency of the electromagnetic fluctuations. The derived kinetic particle equation complements our earlier study of the general fluctuation's kinetic equation. For collective plasma eigenmodes and gyrotropic particle distribution functions, the two coupled kinetic equations describe the self-consistent dynamical evolution of the plasma. The limit of weakly damped collective modes correctly reproduces the well-known textbook kinetic particle equation with longitudinal Langmuir and ion-acoustic fluctuations, demonstrating, in particular, the resonant nature of parallel momentum diffusion of particles. In the limit of aperiodic modes, the Fokker-Planck equation contains the nonresonant diffusion of particles in momentum and the parallel and perpendicular momentum drag coefficients. As an application these drag and diffusion coefficients are calculated for extragalactic cosmic ray particles propagating in the unmagnetized intergalactic medium. Whereas for all cosmic rays, the perpendicular momentum diffusion in intergalactic aperiodic fluctuations is negligibly small; cosmic ray protons with energies below 10{sup 5 }GeV are affected by the plasma drag.
Lemons, Don S.
2012-01-15
We develop a Markov process theory of charged particle scattering from stationary, transverse, magnetic waves. We examine approximations that lead to quasilinear theory, in particular the resonant diffusion approximation. We find that, when appropriate, the resonant diffusion approximation simplifies the result of the weak turbulence approximation without significant further restricting the regime of applicability. We also explore a theory generated by expanding drift and diffusion rates in terms of a presumed small correlation time. This small correlation time expansion leads to results valid for relatively small pitch angle and large wave energy density - a regime that may govern pitch angle scattering of high-energy electrons into the geomagnetic loss cone.
NASA Technical Reports Server (NTRS)
Bieber, J. W.; Gray, P. C.; Matthaeus, W. H.
1995-01-01
Parallel and perpendicular diffusion coefficients were computed numerically by following particle orbits in a simulated magnetic field. The simulated field was chosen to have delta B/B(sub o) small, so as to provide a test of quasilinear theory in a regime where the theory should be most accurate. The simulation space is large enough to contain many magnetic field correlation lengths, so that effects of field line random walk can be studied. After presenting results for parallel diffusion, we will focus on two controversial issues relating to perpendicular diffusion: (1) Do quasilinear descriptions of perpendicular diffusion retain any validity for particles whose Larmor radius is smaller than a correlation length? (2) Does field line random walk lead to particle diffusion in the usual sense, or does it produce 'compound' diffusion for which particles spread out proportionally to t(exp 1/4) instead of t(exp 1/2)?
A quasi-linear theory to explain ion acceleration in the distant cometary environment
NASA Technical Reports Server (NTRS)
Sinha, Raji; Gary, S. Peter; Roderick, Norman
1990-01-01
Spacecraft observations at comet Halley as well as computer simulations have shown that pitch angle scattering of newborn cometary ions proceeds at a relatively fast rate, leading to relatively isotropic shell-like velocity distribution functions. Energization processes whereby shell distributions become more Maxwellian and a few ions are accelerated to high energies appear to proceed more slowly. The research on the latter, slower process is described, in which the scattering is assumed to be due to the resonant, growing magnetic fluctuations driven by the non-Maxwellian nature of the ion distribution. An ion shell distribution which is isotropic in the wave frame begins the process and a Fokker-Plank derived from quasilinear plasma theory is used to describe the broadening and energization of the cometary ion distribution.
NASA Technical Reports Server (NTRS)
Smith, M.
1972-01-01
Fluctuations in electron density and temperature coupled through Ohm's law are studied for an ionizable medium. The nonlinear effects are considered in the limit of a third order quasi-linear treatment. Equations are derived for the amplitude of the fluctuation. Conditions under which a steady state can exist in the presence of the fluctuation are examined and effective transport properties are determined. A comparison is made to previously considered second order theory. The effect of third order terms indicates the possibility of fluctuations existing in regions predicted stable by previous analysis.
NASA Technical Reports Server (NTRS)
Smith, J. M.
1972-01-01
Flucturations in electron density and temperature coupled through OHM's Law are studied for MHD power generator and MPD arc thruster applications. The dispersion relation based on linear theory is derived, and the two limiting cases of infinite ionization rate and frozen flow are examined. The nonlinear effects of the frozen flow case are then studied in the quasilinear limit. Equations are derived for the amplitude of the fluctuation and its effect upon Ohm's Law and the electron temperature equation. Conditions under which a steady state can exist in the presence of the fluctuation are examined, and effective transport properties are determined.
NASA Technical Reports Server (NTRS)
Smith, J. M.
1972-01-01
Fluctuations in electron density and temperature coupled through Ohm's law are studied for an ionizable medium. The nonlinear effects are considered in the limit of a third order quasi-linear treatment. Equations are derived for the amplitude of the fluctuation. Conditions under which a steady state can exist in the presence of the fluctuation are examined and effective transport properties are determined. A comparison is made to previously considered second order theory. The effect of third order terms indicates the possibility of fluctuations existing in regions predicted stable by previous analysis.
Quasilinear theory of interchange modes in a closed field line configuration
Kouznetsov, A.; Freidberg, J. P.; Kesner, J.
2007-10-15
Two important issues for any magnetic fusion configuration are the maximum achievable values of {beta} and energy confinement time when ideal magnetohydrodynamic (MHD) modes are excited. It is well known that the excitation of the MHD unstable modes typically can lead to violent restructuring of the plasma profiles. The particle and energy transport associated with these modes normally dominates all other transport mechanisms and can lead to plasma disruptions and a rapid loss of energy. This paper analytically investigates the transport of particle density, energy, and magnetic field due to the ideal MHD interchange mode in a closed-line system using the quasilinear approximation. The transport equations are derived for a static plasma in a hardcore Z-pinch configuration and generalized to an arbitrary axisymmetric toroidal closed poloidal field line configuration. It is shown that violation of the marginal stability criterion leads to rapid quasilinear transport that drives the pressure profile back to its marginal profile and forces the particle density to be inversely proportional to {integral}dl/B. The applicability of the quasilinear approximation is numerically tested for the hardcore Z-pinch magnetic configuration using a full nonlinear code.
Quasi-linear theory and transport theory. [particle acceleration in interplanetary medium
NASA Technical Reports Server (NTRS)
Smith, Charles W.
1992-01-01
The theory of energetic particle scattering by magnetostatic fluctuations is reviewed in so far as it fails to produce the rigidity-independent mean-free-paths observed. Basic aspects of interplanetary magnetic field fluctuations are reviewed with emphasis placed on the existence of dissipation range spectra at high wavenumbers. These spectra are then incorporated into existing theories for resonant magnetostatic scattering and are shown to yield infinite mean-free-paths. Nonresonant scattering in the form of magnetic mirroring is examined and offered as a partial solution to the magnetostatic problem. In the process, mean-free-paths are obtained in good agreement with observations in the interplanetary medium at 1 AU and upstream of planetary bow shocks.
NASA Astrophysics Data System (ADS)
Sarfraz, M.; Saeed, Sundas; Yoon, P. H.; Abbas, G.; Shah, H. A.
2016-10-01
Spacecraft observations made near 1 AU show that both core and halo solar wind electrons exhibit temperature anisotropies that appear to be regulated by marginal electromagnetic electron cyclotron instability condition. In the literature, the threshold conditions of this instability, operative for T⊥>T∥, have been expressed as an inverse correlation between the temperature anisotropy, T⊥/T∥, and parallel beta, β∥, but such a relation was deduced on the basis of linear stability analysis combined with empirical fitting. The present paper, on the other hand, employs macroscopic quasi-linear analysis for core-halo two-component model of the solar wind electrons, in order to follow the self-consistent time history of the core and halo temperature development as well as the dynamics of magnetic field perturbation wave energy. In the present analysis, the inverse correlation for core and halo temperature anisotropy and parallel beta naturally emerges from the solutions of self-consistent theory. The present findings indicate that the macroscopic quasi-linear method may be useful for modeling the dynamics of solar wind electrons.
Lee, Jungpyo; Bonoli, Paul; Wright, John
2011-01-01
The quasilinear diffusion coefficient assuming a constant magnetic field along the electron orbit is widely used to describe electron Landau damping of waves in a tokamak where the magnitude of the magnetic field varies on a flux surface. To understand the impact of violating the constant magnetic field assumption, we introduce the effect of a broad-bandwidth wave spectrum which has been used in the past to validate quasilinear theory for the fast decorrelation process between resonances. By the reevaluation of the diffusion coefficient through the level of the phase integral for the tokamak geometry with the broad-band wave effect included,more » we identify the three acceptable errors for the use of the quasilinear diffusion coefficient.« less
Existence results for quasilinear parabolic hemivariational inequalities
NASA Astrophysics Data System (ADS)
Liu, Zhenhai
This paper is devoted to the periodic problem for quasilinear parabolic hemivariational inequalities at resonance as well as at nonresonance. By use of the theory of multi-valued pseudomonotone operators, the notion of generalized gradient of Clarke and the property of the first eigenfunction, we build a Landesman-Lazer theory in the nonsmooth framework of quasilinear parabolic hemivariational inequalities.
NASA Astrophysics Data System (ADS)
Lyahov, Vladimir; Neshchadim, Vladimir
2015-04-01
Investigation of the stability nonelectroneutral current sheets in the linear approximation [1-4] gives information only on the initial stage of development of perturbations when their amplitudes are small. Within the framework of the quasi-linear theory one can give an answer to the question of how long the initial perturbations can grow and how change the equilibrium state of the plasma current sheet under the reverse effect of these perturbations. We derive a system of nonlinear kinetic equation with self-consistent electromagnetic field in order to study the evolution of the distribution function of the background plasma current sheet in the approximation of low-frequency eigenmodes of instabilities. Evolution equation was obtained for the perturbation of the electromagnetic field and the instability growth rate in the current sheet. Algorithms were tested for solutions of the equations obtained. 1. Lyahov V.V., Neshchadim V.M. Kinetic theory of the current sheath. I. On polarization of an equilibrium current sheath// Advances in Space Research. -2012. -Vol. 50. -P. 318-326. 2. Lyahov V.V., Neshchadim V.M. Kinetic theory of the current sheath. II. Effect of polarization on the stability of a current sheath.// Advances in Space Research.-2013. -Vol. 51. -P. 730-741. 3. Lyahov V.V., Neshchadim V.M. The Effect of Polarization on the Stability of Current Sheaths in Space Plasma // EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, id. EGU2013-1379, 04/2013, Bibliographic Code: 2013EGUGA..15.1379L 4. Lyahov V.V., Neshchadim V.M. About the eguilibrium and stability of nonelectroneutral current sheats // Advances in Space Research.-2014. -Vol. 54. -P. 901-907.
NASA Astrophysics Data System (ADS)
Kwon, Jae-Min; McCune, Douglas; Chang, C. S.
2007-11-01
The Monte-Carlo package NUBEAM for time-dependent modeling of fast ions in a tokamak geometry has been upgraded to simulate the effects of ICRF heating on the fast ions. The RF-wave field data is provided by executing TORIC5 inside TRANSP and passed to NUBEAM. An iterative algorithm has been implemented to match the RF-power absorption value calculated by NUBEAM with the level predicted by TORIC5. The effects of RF-wave fields on the fast ions are modeled by evaluating Monte-Carlo kicks based on the quasi-linear theory. Because of the unique feature of NUBEAM, the so called ``goosing'' which enables an order of magnitude faster calculation, special care needs to be taken in the Monte-Carlo simulation. The modification of the goose algorithm in the presence of RF-wave fields will be presented. Also, the necessary features of NUBEAM for future application to self-consistent coupling with an ICRF full wave code will be discussed.
NASA Astrophysics Data System (ADS)
Ginzburg, N. S.; Kocharovskaya, E. R.
2016-08-01
The use of incoherent broadband pump radiation for improving the electron efficiency in the free-electron lasers (FEL) based on stimulated backscattering is considered. On the basis of a quasilinear approach, it is shown that the efficiency increases in proportion to the width of the pump spectrum. The effect is owing to a broadening of the spectrum of synchronous combination waves and realization of a mechanism of stochastic particle deceleration. The injection of a monochromatic seed signal in a single pass FEL amplifier or the implementation of a selective high-Q resonator in an FEL oscillator makes the high-frequency scattered radiation be monochromatic in spite of an incoherent pumping. In the regime of stochastic particle deceleration, the efficiency only slightly depends on the spread of the beam parameters, which is beneficial for a terahertz FEL powered by intense relativistic electron beams.
Nonperturbative quasilinear approach to the shear dynamo problem
Sridhar, S.; Subramanian, Kandaswamy
2009-12-15
We study large-scale dynamo action due to turbulence in the presence of a linear shear flow. Our treatment is quasilinear and equivalent to the standard 'first-order smoothing approximation'. However it is non perturbative in the shear strength. We first derive an integrodifferential equation for the evolution of the mean magnetic field, by systematic use of the shearing coordinate transformation and the Galilean invariance of the linear shear flow. We show that, for nonhelical turbulence, the time evolution of the cross-shear components of the mean field do not depend on any other components excepting themselves; this is valid for any Galilean-invariant velocity field, independent of its dynamics. Hence, to all orders in the shear parameter, there is no shear-current-type effect for non helical turbulence in a linear shear flow in quasilinear theory in the limit of zero resistivity. We then develop a systematic approximation of the integro-differential equation for the case when the mean magnetic field varies slowly compared to the turbulence correlation time. For nonhelical turbulence, the resulting partial differential equations can again be solved by making a shearing coordinate transformation in Fourier space. The resulting solutions are in the form of shearing waves, labeled by the wave number in the sheared coordinates. These shearing waves can grow at early and intermediate times but are expected to decay in the long time limit.
Nonperturbative quasilinear approach to the shear dynamo problem.
Sridhar, S; Subramanian, Kandaswamy
2009-12-01
We study large-scale dynamo action due to turbulence in the presence of a linear shear flow. Our treatment is quasilinear and equivalent to the standard "first-order smoothing approximation." However it is non perturbative in the shear strength. We first derive an integrodifferential equation for the evolution of the mean magnetic field, by systematic use of the shearing coordinate transformation and the Galilean invariance of the linear shear flow. We show that, for nonhelical turbulence, the time evolution of the cross-shear components of the mean field do not depend on any other components excepting themselves; this is valid for any Galilean-invariant velocity field, independent of its dynamics. Hence, to all orders in the shear parameter, there is no shear-current-type effect for non helical turbulence in a linear shear flow in quasilinear theory in the limit of zero resistivity. We then develop a systematic approximation of the integro-differential equation for the case when the mean magnetic field varies slowly compared to the turbulence correlation time. For nonhelical turbulence, the resulting partial differential equations can again be solved by making a shearing coordinate transformation in Fourier space. The resulting solutions are in the form of shearing waves, labeled by the wave number in the sheared coordinates. These shearing waves can grow at early and intermediate times but are expected to decay in the long time limit.
Quasilinear saturation of the aperiodic ordinary mode streaming instability
Stockem Novo, A. Schlickeiser, R.; Yoon, P. H.; Lazar, M.; Poedts, S.; Seough, J.
2015-09-15
In collisionless plasmas, only kinetic instabilities and fluctuations are effective in reducing the free energy and scatter plasma particles, preventing an increase of their anisotropy. Solar energetic outflows into the interplanetary plasma give rise to important thermal anisotropies and counterstreaming motions of plasma shells, and the resulting instabilities are expected to regulate the expansion of the solar wind. The present paper combines quasilinear theory and kinetic particle-in-cell simulations in order to study the weakly nonlinear saturation of the ordinary mode in hot counter-streaming plasmas with a temperature anisotropy as a follow-up of the paper by Seough et al. [Phys. Plasmas 22, 082122 (2015)]. This instability provides a plausible mechanism for the origin of dominating, two-dimensional spectrum of transverse magnetic fluctuations observed in the solar wind. Stimulated by the differential motion of electron counterstreams the O mode instability may convert their free large-scale energy by nonlinear collisionless dissipation on plasma particles.
NASA Astrophysics Data System (ADS)
Kiss, Endre
2004-04-01
The Laplace equation does not contain any entropy production [27]. The entropy production can be illustrated with the Dirichlet Integral Principle and the quasilinear PDE of second order [28,27]. They can show the physical meaning too. The content of the quasilinear PDE leads to the probability density function of the process and the minimum principle of the entropy production [15,16,19,25]. The Maxwell's demon shows the connection between [18,26,21,20,22,23,24] thermodynamics and the theory of information. The negentropy principle of Brillouin [22] gives the important bridge between the thermodynamical problem of dissipation and the gain in information. The entropy compensation at an open stationary state shows the relation between negentropy principle [27] and minimum entropy principle and the connection to minimum information loss.
NASA Technical Reports Server (NTRS)
Tollmien, W.
1949-01-01
The theory of characteristics will be presented generally for quasilinear differential equations of the second order in two variables. This is necessary because of the manifold requirements to be demanded from the theory of characteristics.
NASA Astrophysics Data System (ADS)
Liu, Y.; Li, T.; Zhu, C.; Zhang, R.; Wu, Y.
2015-12-01
Three-dimensional (3-D) electromagnetic (EM) forward modelling and inversion continues to be an important issue for the correct interpretation of EM data.To this end,approximate solutions have been developed that allow the construction of relatively fast forward modelling and inversion schemes.We have developed an improved quasi-linear approximation which is more appropriate in solving the linear equation for greatly shortening calculation time.We achieved this by using green's function properties.Then we introduced the improved quasi-linear approximation to spectral induced polarization (SIP) to tackle the problem of the resolution and the efficiency.The localized quasi-linear (LQL) approximation theory is appropriate for multisource array-type surveys assuming that the normal field is slowly varying within the inhomogeneity domain.However,the normal field of attenuates severely which dose not satisfy the assumption of the LQL approximation.As a consenquence,the imaginary part is not accurate when LQL approximation is adopted for the simulation.The improved quasi-linear approximation provide a new approach with the same resolution of QL approximation and much less calculation time.We have also constructed three-dimensional SIP forward modeling based on improved quasi-linear approximation method.It only takes 0.8s for forward modeling when inhomogeneity domain is divided into 2000 blocks.Beyond that, we have introduced the Cole-Cole model to the algorithm and complete the three-dimensional complex resistivity conjugate gradient inversion with parameter restraint.The model trial results show that this method can obtain good inversion results in physical parameters such as zero frequency resistivity, polarization.The results demonstrate the stability and the efficiency of the improved quasi-linear approximation and the method may be a practical solution for3-D EM forward modelling and inversion of SIP.
Line-broadened quasilinear burst model
Berk, H.L.; Breizman, B.N.; Wong, H.V.; Fitzpatrick, J.
1995-07-01
A quasilinear model is developed to produce realistic self-consistent saturation levels when modes do not overlap, and give self-consistent diffusion and wave evolution when modes do overlap. Both regimes give steady or pulsating behavior in weakly driven systems with classical relaxation and background dissipation present. An avalanche response is demonstrated: wave momentum release caused by the overlap of closely spaced modes can produce mode overlap of more widely spaced modes (a domino effect) or the growth of modes which would be stable in systems unaffected by the closely-spaced modes` diffusion. Detailed analysis and calculations are performed for the bump-on-tail instability, and extension of the method to more general problems is briefly discussed.
Quasi-linear pitch angle and energy diffusion of pickup ions near Comet Halley
NASA Technical Reports Server (NTRS)
Huddleston, D. E.; Johnstone, A. D.; Coates, A. J.; Neubauer, F. M.
1991-01-01
The process of ion pickup in the environment of Halley's comet is studied in order to see if velocity diffusion driven by the observed level of turbulence can explain the observed development of the implanted ion distribution. The theoretical description used is based on a quasi-linear approach and considers the implantation and transport of cometary ions along solar wind flow lines. To make such a study requires some way of extrapolating the measurements on the Giotto trajectory into the upstream region; models for mass loading and turbulence are used. A simplified kinetic equation describing the source, convection, and quasi-linear velocity diffusion of the heavy cometary ions is solved numerically along flow lines parallel to the sun-comet line. Full two-dimensional (pitch angle and velocity) distributions are obtained at positions along the Giotto trajectory, which are compared with measurements. This study finds that quasi-linear theory, with the empirical model for the observed turbulence level, produces the right order of pitch angle diffusion.
NASA Astrophysics Data System (ADS)
Delsole, Timothy; Farrell, Brian F.
1996-07-01
A theory for quasigeostrophic turbulence in baroclinic jets is examined in which interaction between the mean flow and the perturbations is explicitly modeled by the nonnormal operator obtained by linearization about the mean flow, while the eddy-eddy interactions are parameterized by a combination of stochastic excitation and effective dissipation. The quasi-linear equilibrium is the stationary state in dynamical balance between the mean flow forcing and eddy forcing produced by the linear stochastic model. The turbulence model depends on two parameters that specify the magnitude of the effective dissipation and stochastic excitation. The quasi-linear model produces heat fluxes (upgradient), momentum fluxes, and mean zonal winds, which are remarkably consistent with those produced by the nonlinear model over a wide range of parameter values despite energy and enstrophy imbalances associated with the parameterization for eddy-eddy interactions. The quasi-linear equilibrium also appears consistent with most aspects of the energy cycle, with baroclinic adjustment (though the adjustment is accomplished in a fundamentally different manner), and with the negative correlation between transient eddy transport and other transports observed in the atmosphere. The model overestimates the equilibrium eddy kinetic energy in cases in which it achieves correct eddy fluxes and energy balance. Understanding the role of forcing orthogonal functions rationalizes this behavior and provides the basis for addressing the role of transient eddies in climate.
NASA Astrophysics Data System (ADS)
Artemyev, Anton; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Mourenas, Didier; Vasiliev, Alexei
Wave-particle resonant interaction is the main mechanism responsible for electron acceleration and scattering in the radiation belts. There are two approaches describing this interaction - quasi-linear theory describes particle diffusion in momentum space, while nonlinear trapping of particles by high-amplitude waves can describe fast particle acceleration. The diffusion approach is more developed and widely used now. However, many modern observations in the radiation belts suggest the presence of significant population of large amplitude waves which can be responsible for nonlinear wave-particle interaction. We show that such nonlinear wave-particle resonant interaction corresponds to the fast transport of particles in phase space. We show that the general approach for the description of the evolution of the particle velocity distribution based on the Fokker-Plank equation can be modified to consider the process of nonlinear wave-particle interaction, including particle trapping. Such a modification consists in one additional operator describing fast particle jumps in phase space. The proposed approach is illustrated by considering the acceleration of relativistic electrons by strongly oblique whistler waves. We determine the typical variation of electron phase-density due to nonlinear wave-particle interaction and compare this variation with pitch-angle/energy diffusion due to quasi-linear electron scattering. We show that relation between nonlinear and quasi-linear effects is controlled by the distribution of wave-amplitudes. When this distribution has a heavy tail, nonlinear effects can become dominant in the formation of the electron energy distribution. We compare effectiveness of quasi-linear diffusion and nonlinear trapping for conditions typical for Earth radiation belts.
NASA Technical Reports Server (NTRS)
Kaiser, T. B.; Jones, F. C.; Birmingham, T. J.
1972-01-01
The problem of deriving a kinetic equation for the cosmic ray distribution function in a random magnetic field is considered. A model is adopted which is mathematically simple but which contains the essential physics. The perturbation expansion upon which the quasi-linear treatment is based is investigated. The existence of resonant particles causes the breakdown of the adiabatic approximation frequently used in this theory. Resonant particles cause a general secular growth of higher order terms in the expansion which invalidates the entire perturbative approach.
Enhancement of residual stress by electromagnetic fluctuations: A quasi-linear study
NASA Astrophysics Data System (ADS)
Kaang, Helen H.; Jhang, Hogun; Singh, R.; Kim, Juhyung; Kim, S. S.
2016-05-01
A study is conducted on the impact of electromagnetic (EM) fluctuations on residual Reynolds stress in the context of the quasi-linear theory. We employ a fluid formulation describing EM ion temperature gradient turbulence. Analyses show that finite plasma β (=plasma thermal energy/magnetic energy) significantly increases the residual stress, potentially leading to the strong enhancement of flow generation in high β plasmas. We identify that this strong increase of residual stress originates from the reinforcement of radial ⟨ k ∥ ⟩ (=spectrally averaged parallel wavenumber) asymmetry due to the deformation of eigenfunctions near a rational surface.
Classical analog of quasilinear Landau-Zener tunneling.
Kovaleva, Agnessa; Manevitch, Leonid I
2012-01-01
In this paper we develop an analytical framework to study the effect of nonlinearity on irreversible energy transfer in a system of two weakly coupled oscillators with time-dependent parameters, with special attention to an analogy between classical energy transfer and nonadiabatic quantum tunneling. For preciseness, we suppose that a linear oscillator with constant parameters is excited by an initial impulse but a coupled quasilinear oscillator with slowly varying parameters is initially at rest. It is shown that the equations of the slow passage through resonance in this system are identical to quasilinear equations of nonadiabatic Landau-Zener tunneling. Due to revealed equivalence, a recently found analogy between irreversible energy transfer in a classical linear system and conventional linear Landau-Zener tunneling can be extended to quasilinear systems. An explicit analytical solution of the quasilinear problem is found with the help of an iteration procedure, wherein the linear solution is chosen as an initial approximation. Correctness of the constructed approximations is confirmed by numerical simulations. The results presented in this paper, in addition to providing an analytical framework for understanding the transient dynamics of coupled oscillators, suggest an approximate procedure for solving the quasilinear Landau-Zener equations with arbitrary initial conditions over a finite time interval.
Nonlinear damping and quasi-linear modelling.
Elliott, S J; Ghandchi Tehrani, M; Langley, R S
2015-09-28
The mechanism of energy dissipation in mechanical systems is often nonlinear. Even though there may be other forms of nonlinearity in the dynamics, nonlinear damping is the dominant source of nonlinearity in a number of practical systems. The analysis of such systems is simplified by the fact that they show no jump or bifurcation behaviour, and indeed can often be well represented by an equivalent linear system, whose damping parameters depend on the form and amplitude of the excitation, in a 'quasi-linear' model. The diverse sources of nonlinear damping are first reviewed in this paper, before some example systems are analysed, initially for sinusoidal and then for random excitation. For simplicity, it is assumed that the system is stable and that the nonlinear damping force depends on the nth power of the velocity. For sinusoidal excitation, it is shown that the response is often also almost sinusoidal, and methods for calculating the amplitude are described based on the harmonic balance method, which is closely related to the describing function method used in control engineering. For random excitation, several methods of analysis are shown to be equivalent. In general, iterative methods need to be used to calculate the equivalent linear damper, since its value depends on the system's response, which itself depends on the value of the equivalent linear damper. The power dissipation of the equivalent linear damper, for both sinusoidal and random cases, matches that dissipated by the nonlinear damper, providing both a firm theoretical basis for this modelling approach and clear physical insight. Finally, practical examples of nonlinear damping are discussed: in microspeakers, vibration isolation, energy harvesting and the mechanical response of the cochlea.
Transverse quasilinear relaxation in an inhomogeneous magnetic field
NASA Astrophysics Data System (ADS)
Lyutikov, Maxim
1998-08-01
Transverse quasilinear relaxation of the cyclotron Cherenkov instability of an ultrarelativistic beam propagating along a strong, inhomogeneous magnetic field in a pair plasma is considered. We find a quasilinear state in which the kinetic-type instability is saturated by the force arising in the inhomogeneous field due to the conservation of the adiabatic invariant. The resulting wave intensities generally have a non-power-law frequency dependence, but in a broad frequency range can be well approximated by a power law with a spectral index -2. The emergent spectra and fluxes are consistent with the one observed from radio pulsars.
Multibump solutions for quasilinear elliptic equations with critical growth
Liu, Jiaquan; Wang, Zhi-Qiang; Wu, Xian
2013-12-15
The current paper is concerned with constructing multibump solutions for a class of quasilinear Schrödinger equations with critical growth. This extends the classical results of Coti Zelati and Rabinowitz [Commun. Pure Appl. Math. 45, 1217–1269 (1992)] for semilinear equations as well as recent work of Liu, Wang, and Guo [J. Funct. Anal. 262, 4040–4102 (2012)] for quasilinear problems with subcritical growth. The periodicity of the potentials is used to glue ground state solutions to construct multibump bound state solutions.
Quasi-linear wave-particle interactions in the earth's radiation belts
NASA Astrophysics Data System (ADS)
Villalon, Elena; Silevitch, Michel B.; Rothwell, Paul L.; Burke, William J.
1989-11-01
A self-consistent theory on the interaction of magnetospheric particles with ducted electromagnetic cyclotron waves is presented. The main contribution is to calculate the coupling coefficients for the ray equations describing the temporal evolution of the cyclotron instability. These are obtained within the framework of quasi-linear interaction of waves and particles. A set of equations is derived based on the Fokker-Planck theory of pitch angle diffusion, describing the evolution time of the number of particles in the flux tube and the energy density of waves for the interaction of Alfven waves with protons and of whistler waves with electrons. The coupling coefficients are obtained, based on a quasi-linear analysis after averaging over the particle bounce motion. It is found that the equilibrium solutions for particle fluxes and wave amplitudes are stable under small local perturbations. The reflection of the waves in the ionosphere is discussed. A stability analysis around the equilibrium solutions for precipitating particle fluxes and wave intensity indicates that an actively excited ionosphere can cause the development of explosive instabilities.
A quasi-linear control theory analysis of timesharing skills
NASA Technical Reports Server (NTRS)
Agarwal, G. C.; Gottlieb, G. L.
1977-01-01
The compliance of the human ankle joint is measured by applying 0 to 50 Hz band-limited gaussian random torques to the foot of a seated human subject. These torques rotate the foot in a plantar-dorsal direction about a horizontal axis at a medial moleolus of the ankle. The applied torques and the resulting angular rotation of the foot are measured, digitized and recorded for off-line processing. Using such a best-fit, second-order model, the effective moment of inertia of the ankle joint, the angular viscosity and the stiffness are calculated. The ankle joint stiffness is shown to be a linear function of the level of tonic muscle contraction, increasing at a rate of 20 to 40 Nm/rad/Kg.m. of active torque. In terms of the muscle physiology, the more muscle fibers that are active, the greater the muscle stiffness. Joint viscosity also increases with activation. Joint stiffness is also a linear function of the joint angle, increasing at a rate of about 0.7 to 1.1 Nm/rad/deg from plantar flexion to dorsiflexion rotation.
A quasi-linear control theory analysis of timesharing skills
NASA Technical Reports Server (NTRS)
Damos, D.; Wickens, C. D.
1977-01-01
Performance with practice on two dual-task combinations, dual-axis tracking and two discrete information processing tasks, is examined in an effort to identify the presence and development of specific time sharing skills, such as parallel information processing or rapid intertask switching. The generality of time sharing skills also is investigated by examining transfer of these skills between the two qualitatively different task combinations.
Quasilinear saturation of forced current sheet tearing modes
NASA Astrophysics Data System (ADS)
Liewer, Paulett C.; Payne, David G.
1990-10-01
Numerical studies of tearing modes in a nearly singular forced current sheet equilibrium (Liewer and Payne, 1990) show that the modes saturate quasilinearly when the width of the magnetic island formed by the reconnection is on the order of several times the linear mode width which scales as approximately (kS) exp -2/5, where S is the Lundquist number and k is the wavenumber. The modes saturate quasilinearly by flattening the current profile, converting magnetic energy into plasma energy. The longer wavelength modes, which saturate at higher levels, release the most energy. These modes may, nonlinearly, play a role in coronal heating when sharp current sheets form as a result of global magnetic stresses.
Quasilinear saturation of forced current sheet tearing modes
NASA Technical Reports Server (NTRS)
Liewer, Paulett C.; Payne, David G.
1990-01-01
Numerical studies of tearing modes in a nearly singular forced current sheet equilibrium (Liewer and Payne, 1990) show that the modes saturate quasilinearly when the width of the magnetic island formed by the reconnection is on the order of several times the linear mode width which scales as approximately (kS) exp -2/5, where S is the Lundquist number and k is the wavenumber. The modes saturate quasilinearly by flattening the current profile, converting magnetic energy into plasma energy. The longer wavelength modes, which saturate at higher levels, release the most energy. These modes may, nonlinearly, play a role in coronal heating when sharp current sheets form as a result of global magnetic stresses.
Quasi-Linear Algebras and Integrability (the Heisenberg Picture)
NASA Astrophysics Data System (ADS)
Vinet, Luc; Zhedanov, Alexei
2008-02-01
We study Poisson and operator algebras with the ''quasi-linear property'' from the Heisenberg picture point of view. This means that there exists a set of one-parameter groups yielding an explicit expression of dynamical variables (operators) as functions of ''time'' t. We show that many algebras with nonlinear commutation relations such as the Askey-Wilson, q-Dolan-Grady and others satisfy this property. This provides one more (explicit Heisenberg evolution) interpretation of the corresponding integrable systems.
Parameter identification for an abstract Cauchy problem by quasilinearization
NASA Technical Reports Server (NTRS)
Brewer, Dennis W.; Burns, John A.; Cliff, Eugene M.
1989-01-01
A parameter identification problem is considered in the context of a linear abstract Cauchy problem with a parameter-dependent evolution operator. Conditions are investigated under which the gradient of the state with respect to a parameter possesses smoothness properties which lead to local convergence of an estimation algorithm based on quasi-linearization. Numerical results are presented concerning estimation of unknown parameters in delay-differential equations.
Quasilinear Carbon Transport In An Impurity Hole Plasma In LHD
Mikkelsen, David R.; Tanaka, K.; Nunami, M.; Watanabe, T-H.; Sugama, H.; Yoshinuma, M.; Suzuki, Y.; Goto, M.; Morita, S.; Wieland, B.; Yamada, I.; Yashura, R.; Akiyama, T.; Pablant, Novimir A.
2014-04-01
Comprehensive electrostatic gyrokinetic linear stability calculations for ion-scale microinstabilities in an LHD plasma with an ion-ITB and carbon "impurity hole" are used to make quasilinear estimates of particle flux to explore whether microturbulence can explain the observed outward carbon fluxes that flow "up" the impurity density gradient. The ion temperature is not stationary in the ion-ITB phase of the simulated discharge, during which the core carbon density decreases continuously. To fully sample these varying conditions the calculations are carried out at three radial locations and four times. The plasma parameter inputs are based on experimentally measured profiles of electron and ion temperature, as well as electron and carbon density. The spectroscopic line-average ratio of hydrogen and helium densities is used to set the density of these species. Three ion species (H,He,C) and the electrons are treated kinetically, including collisions. Electron instability drive does enhance the growth rate significantly, but the most unstable modes have characteristics of ion temperature gradient (ITG) modes in all cases. As the carbon density gradient is scanned between the measured value and zero, the quasilinear carbon flux is invariably inward when the carbon density profile is hollow, so turbulent transport due to the instabilities considered here does not explain the observed outward flux of impurities in impurity hole plasmas. The stiffness of the quasilinear ion heat flux is found to be 1.7-2.3, which is lower than several estimates in tokamaks.
Positive solutions of quasilinear parabolic systems with nonlinear boundary conditions
NASA Astrophysics Data System (ADS)
Pao, C. V.; Ruan, W. H.
2007-09-01
The aim of this paper is to investigate the existence, uniqueness, and asymptotic behavior of solutions for a coupled system of quasilinear parabolic equations under nonlinear boundary conditions, including a system of quasilinear parabolic and ordinary differential equations. Also investigated is the existence of positive maximal and minimal solutions of the corresponding quasilinear elliptic system as well as the uniqueness of a positive steady-state solution. The elliptic operators in both systems are allowed to be degenerate in the sense that the density-dependent diffusion coefficients Di(ui) may have the property Di(0)=0 for some or all i. Our approach to the problem is by the method of upper and lower solutions and its associated monotone iterations. It is shown that the time-dependent solution converges to the maximal solution for one class of initial functions and it converges to the minimal solution for another class of initial functions; and if the maximal and minimal solutions coincide then the steady-state solution is unique and the time-dependent solution converges to the unique solution. Applications of these results are given to three model problems, including a porous medium type of problem, a heat-transfer problem, and a two-component competition model in ecology. These applications illustrate some very interesting distinctive behavior of the time-dependent solutions between density-independent and density-dependent diffusions.
Global integral gradient bounds for quasilinear equations below or near the natural exponent
NASA Astrophysics Data System (ADS)
Phuc, Nguyen Cong
2014-10-01
We obtain sharp integral potential bounds for gradients of solutions to a wide class of quasilinear elliptic equations with measure data. Our estimates are global over bounded domains that satisfy a mild exterior capacitary density condition. They are obtained in Lorentz spaces whose degrees of integrability lie below or near the natural exponent of the operator involved. As a consequence, nonlinear Calderón-Zygmund type estimates below the natural exponent are also obtained for -superharmonic functions in the whole space ℝ n . This answers a question raised in our earlier work (On Calderón-Zygmund theory for p- and -superharmonic functions, to appear in Calc. Var. Partial Differential Equations, DOI 10.1007/s00526-011-0478-8) and thus greatly improves the result there.
A quasi-linear analysis of the impurity effect on turbulent momentum transport and residual stress
NASA Astrophysics Data System (ADS)
Ko, S. H.; Jhang, Hogun; Singh, R.
2015-08-01
We study the impact of impurities on turbulence driven intrinsic rotation (via residual stress) in the context of the quasi-linear theory. A two-fluid formulation for main and impurity ions is employed to study ion temperature gradient modes in sheared slab geometry modified by the presence of impurities. An effective form of the parallel Reynolds stress is derived in the center of mass frame of a coupled main ion-impurity system. Analyses show that the contents and the radial profile of impurities have a strong influence on the residual stress. In particular, an impurity profile aligned with that of main ions is shown to cause a considerable reduction of the residual stress, which may lead to the reduction of turbulence driven intrinsic rotation.
A quasi-linear analysis of the impurity effect on turbulent momentum transport and residual stress
Ko, S. H. Jhang, Hogun; Singh, R.
2015-08-15
We study the impact of impurities on turbulence driven intrinsic rotation (via residual stress) in the context of the quasi-linear theory. A two-fluid formulation for main and impurity ions is employed to study ion temperature gradient modes in sheared slab geometry modified by the presence of impurities. An effective form of the parallel Reynolds stress is derived in the center of mass frame of a coupled main ion-impurity system. Analyses show that the contents and the radial profile of impurities have a strong influence on the residual stress. In particular, an impurity profile aligned with that of main ions is shown to cause a considerable reduction of the residual stress, which may lead to the reduction of turbulence driven intrinsic rotation.
Wen, Zijuan; Fan, Meng; Asiri, Asim M; Alzahrani, Ebraheem O; El-Dessoky, Mohamed M; Kuang, Yang
2017-04-01
This paper studies the global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with appropriate initial and mixed boundary conditions. Under some practicable regularity criteria on diffusion item and nonlinearity, we establish the local existence and uniqueness of classical solutions based on a contraction mapping. This local solution can be continued for all positive time by employing the methods of energy estimates, Lp-theory, and Schauder estimate of linear parabolic equations. A straightforward application of global existence result of classical solutions to a density-dependent diffusion model of in vitro glioblastoma growth is also presented.
Quasilinear transport approach to equilibration of quark-gluon plasmas
Mrowczynski, Stanislaw; Mueller, Berndt
2010-03-15
We derive the transport equations of quark-gluon plasma in the quasilinear approximation. The equations are either of the Balescu-Lenard or Fokker-Planck form. The plasma's dynamics is assumed to be governed by longitudinal chromoelectric fields. The isotropic plasma, which is stable, and the two-stream system, which is unstable, are considered in detail. A process of equilibration is briefly discussed in both cases. The peaks of the two-stream distribution are shown to rapidly dissolve in time.
Quasilinear description of radiofrequency-induced radial diffusion
NASA Astrophysics Data System (ADS)
Brambilla, M.
2007-03-01
We derive the bounce-averaged quasilinear (QL) operator in axisymmetric toroidal geometry using the standard QL formalism. When specialized to resonant ion cyclotron harmonic interactions, this operator predicts the same radiofrequency-induced radial diffusion as the orbit-averaged operator (Eriksson and Helander 1994 Phys. Plasmas 1 308) obtained using action-angle variables. By assuming the wave field known as a superposition of toroidal and poloidal Fourier modes, the QL diffusion coefficients are written in a form which can be directly evaluated using the output of a spectral full-wave solver of Maxwell equations in toroidal plasmas.
Existence of solution for a generalized quasilinear elliptic problem
NASA Astrophysics Data System (ADS)
Furtado, Marcelo F.; Silva, Edcarlos D.; Silva, Maxwell L.
2017-03-01
It establishes existence and multiplicity of solutions to the elliptic quasilinear Schrödinger equation -div(g2(u ) ∇u ) +g (u ) g'(u ) |∇u| 2 +V (x ) u =h (x ,u ) ,x ∈ℝN ,where g, h, V are suitable smooth functions. The function g is asymptotically linear at infinity and, for each fixed x ∈ℝN , the function h(x, s) behaves like s at the origin and s3 at infinity. In the proofs, we apply variational methods.
Guttenfelder, W.; Kaye, S. M.; Ren, Y.; Solomon, W.; Bell, R. E.; Candy, J.; Gerhardt, S. P.; LeBlanc, B. P.; Yuh, H.
2016-05-11
This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio National Spherical Torus Experiment (NSTX) H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostaticballooning modes are also unstable, which are effective at transporting energy, particles, and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes in a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at a finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. Lastly, as the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.
Guttenfelder, W.; Kaye, S. M.; Ren, Y.; ...
2016-05-11
This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio National Spherical Torus Experiment (NSTX) H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostaticballooning modes are also unstable, which are effective at transporting energy, particles, and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes inmore » a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at a finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. Lastly, as the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.« less
Quasilinear Evidence for the Equilibrium Structure of BeOH
NASA Astrophysics Data System (ADS)
Mascaritolo, Kyle; Merrit, Jermey M.; Heaven, Michael C.
2013-06-01
The hydroxides of Ca, Sr and Ba are known to be linear molecules, while MgOH is quasilinear. High-level ab initio calculations for BeOH predict a bent equilibrium structure with a bond angle of 140.9°, indicating a significant contribution of covalency to the bonding. However, experimental confirmation of the bent structure is lacking. IR and ESR spectra for matrix-isolated BeOH have been interpreted under the assumption of a linear equilibrium structure. Low resolution electronic spectra have been reported for gas phase BeOH and BeOD, but they have not been analyzed. In the present study we have used resonantly enhanced multiphoton ionization, with mass resolved ion detection, and laser induced fluorescence to observe the near UV rovibronic v'-0 bending progression of BeOH and BeOD. Rotationally resolved data have been obtained, which yield rotational constants of the ground and excited states, along with evidence of spin-rotation coupling. Theoretical collaboration with Per Jensen of Bergische Universität Wuppertal revealed the need for the inclusion of large amplitude motion within the Hamiltonian operator to accurately simulate observed spectra. Inclusion of large amplitude motions indicates BeOH/OD is quasilinear in its ground state. A. Antic-Jovanovic, V. Bojovic, D. Pesic, J. Chem. Phys. 211988 (757)
Quasilinear simulations of interplanetary shocks and Earth's bow shock
NASA Astrophysics Data System (ADS)
Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian
2016-04-01
We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.
Positive solutions of quasilinear parabolic systems with Dirichlet boundary condition
NASA Astrophysics Data System (ADS)
Pao, C. V.; Ruan, W. H.
Coupled systems for a class of quasilinear parabolic equations and the corresponding elliptic systems, including systems of parabolic and ordinary differential equations are investigated. The aim of this paper is to show the existence, uniqueness, and asymptotic behavior of time-dependent solutions. Also investigated is the existence of positive maximal and minimal solutions of the corresponding quasilinear elliptic system. The elliptic operators in both systems are allowed to be degenerate in the sense that the density-dependent diffusion coefficients D(u) may have the property D(0)=0 for some or all i=1,…,N, and the boundary condition is u=0. Using the method of upper and lower solutions, we show that a unique global classical time-dependent solution exists and converges to the maximal solution for one class of initial functions and it converges to the minimal solution for another class of initial functions; and if the maximal and minimal solutions coincide then the steady-state solution is unique and the time-dependent solution converges to the unique solution. Applications of these results are given to three model problems, including a scalar polynomial growth problem, a coupled system of polynomial growth problem, and a two component competition model in ecology.
Comparing the line broadened quasilinear model to Vlasov code
NASA Astrophysics Data System (ADS)
Ghantous, K.; Berk, H. L.; Gorelenkov, N. N.
2014-03-01
The Line Broadened Quasilinear (LBQ) model is revisited to study its predicted saturation level as compared with predictions of a Vlasov solver BOT [Lilley et al., Phys. Rev. Lett. 102, 195003 (2009) and M. Lilley, BOT Manual. The parametric dependencies of the model are modified to achieve more accuracy compared to the results of the Vlasov solver both in regards to a mode amplitude's time evolution to a saturated state and its final steady state amplitude in the parameter space of the model's applicability. However, the regions of stability as predicted by LBQ model and BOT are found to significantly differ from each other. The solutions of the BOT simulations are found to have a larger region of instability than the LBQ simulations.
NASA Technical Reports Server (NTRS)
Shandarin, Sergei F.
1992-01-01
In the late seventies, an image of the large-scale structure in the Universe began to emerge as a result of the accumulation of the galaxy redshifts. Most of the galaxies are found to concentrate in large filaments and perhaps sheets leaving most of the volume empty. Similar structures were predicted theoretically in the frame of the adiabatic theory of galaxy formation (Zeldovich) and later in the hot dark matter cosmology. However, both scenarios have been ruled out by the observations. With these scenarios the dynamical part of the scenario was also erroneously rejected by many as well. In this talk, I derive the Zeldovich approximation from the exact dynamic equations and show that it is always better than the standard linear approximation. The advantage of the Zeldovich approximation is the greatest in the quasi-linear regime when delta(sub rms) is less than 1 (delta identical to delta(rho)/rho), but the displacement of the matter is essential. The range of scales in the quasi-linear regime depends upon the slope of the initial spectrum and increases with decreasing n, where n is the exponent, if the initial spectrum is approximated by a simple power law P(k) varies as k(exp n).
Li, Zan; Millan, Robyn M; Hudson, Mary K
2013-01-01
[1]Previous studies on electromagnetic ion cyclotron (EMIC) waves as a possible cause of relativistic electron precipitation (REP) mainly focus on the time evolution of the trapped electron flux. However, directly measured by balloons and many satellites is the precipitating flux as well as its dependence on both time and energy. Therefore, to better understand whether pitch angle scattering by EMIC waves is an important radiation belt electron loss mechanism and whether quasi-linear theory is a sufficient theoretical treatment, we simulate the quasi-linear wave-particle interactions for a range of parameters and generate energy spectra, laying the foundation for modeling specific events that can be compared with balloon and spacecraft observations. We show that the REP energy spectrum has a peaked structure, with a lower cutoff at the minimum resonant energy. The peak moves with time toward higher energies and the spectrum flattens. The precipitating flux, on the other hand, first rapidly increases and then gradually decreases. We also show that increasing wave frequency can lead to the occurrence of a second peak. In both single- and double-peak cases, increasing wave frequency, cold plasma density or decreasing background magnetic field strength lowers the energies of the peak(s) and causes the precipitation to increase at low energies and decrease at high energies at the start of the precipitation. PMID:26167427
NASA Astrophysics Data System (ADS)
Yang, Zhijian; Liu, Zhiming
2017-03-01
The paper investigates the well-posedness and the longtime dynamics of the quasilinear wave equations with structural damping and supercritical nonlinearities: {{u}tt}- Δ u+{{≤ft(- Δ \\right)}α}{{u}t}-\
NASA Astrophysics Data System (ADS)
Gvelesiani, Simon; Lippoth, Friedrich; Walker, Christoph
2015-12-01
We provide sufficient and almost optimal conditions for global existence of classical solutions in parabolic Hölder spaces to quasilinear one-dimensional parabolic problems with dynamical boundary conditions.
Reduced quasilinear models for energetic particles interaction with Alfvenic eigenmodes
NASA Astrophysics Data System (ADS)
Ghantous, Katy
The Line Broadened Quasilinear (LBQ) and the 1.5D reduced models are able to predict the effect of Alfvenic eigenmodes' interaction with energetic particles in burning plasmas. This interaction can result in energetic-particle losses that can damage the first wall, deteriorate the plasma performance, and even prevent ignition. The 1.5D model assumes a broad spectrum of overlapping modes and, based on analytic expressions for the growth and damping rates, calculates the pressure profiles that the energetic particles relax to upon interacting with the modes. 1.5D is validated with DIII-D experiments and predicted neutron losses consistent with observation. The model is employed to predict alpha-particle fusion-product losses in a large-scale operational parameter-space for burning plasmas. The LBQ model captures the interaction both in the regime of isolated modes as well as in the conventional regime of overlapping modes. Rules were established that allow quasilinear equations to replicate the expected steady-state saturation levels of isolated modes. The fitting formula is improved and the model is benchmarked with a Vlasov code, BOT. The saturation levels are accurately predicted and the mode evolution is well-replicated in the case of steady-state evolution where the collisions are high enough that coherent structures do not form. When the collisionality is low, oscillatory behavior can occur. LBQ can also exhibit non-steady behavior, but the onset of oscillations occurs for much higher collisional rates in BOT than in LBQ. For certain parameters of low collisionality, hole-clump creation and frequency chirping can occur which are not captured by the LBQ model. Also, there are cases of non-steady evolution without chirping which is possible for LBQ to study. However the results are inconclusive since the periods and amplitudes of the oscillations in the mode evolution are not well-replicated. If multiple modes exist, they can grow to the point of overlap which
Numerical Tests of the Quasilinear Approximation of Mean-field Electrodynamics
NASA Astrophysics Data System (ADS)
Zsargo, J.; Petrovay, K.
1995-05-01
It is widely known that a sufficient condition for the applicability of quasilinear-type approximations (e.g. the second-order correlation approximation or SOCA) in mean-field electrodynamics is that Utau << min {l, H} where l, H, U and tau are characteristic horizontal and vertical scale lengths, velocity, and time, respectively. A necessary condition for their validity is however not known. In order to check the validity of the quasilinear results in cases where the above condition is not satisfied, as well as to study qualitative and quantitative differences between the quasilinear results and the actual solutions, we numerically solve the MHD induction equation for the kinematical case in a series of simplified "toy" model flows and then compare the results with the corresponding quasilinear solutions. Our model flows are two-dimensional two-component flows with simple (exponential or linear) stratifications. For conceptual clarity, in each model only one independent physical quantity (initial magnetic field, density, or velocity amplitude, respectively) has an inhomogeneous distribution. Solutions are computed for several widely differing values of the l/H horizontal/vertical scale length ratio. In all cases we find that the computed turbulent electromotive force does not differ from the quasilinear value by more than an order-of-unity factor, as long as Utau does not greatly exceed min {l, H}.
Reduced order parameter estimation using quasilinearization and quadratic programming
NASA Astrophysics Data System (ADS)
Siade, Adam J.; Putti, Mario; Yeh, William W.-G.
2012-06-01
The ability of a particular model to accurately predict how a system responds to forcing is predicated on various model parameters that must be appropriately identified. There are many algorithms whose purpose is to solve this inverse problem, which is often computationally intensive. In this study, we propose a new algorithm that significantly reduces the computational burden associated with parameter identification. The algorithm is an extension of the quasilinearization approach where the governing system of differential equations is linearized with respect to the parameters. The resulting inverse problem therefore becomes a linear regression or quadratic programming problem (QP) for minimizing the sum of squared residuals; the solution becomes an update on the parameter set. This process of linearization and regression is repeated until convergence takes place. This algorithm has not received much attention, as the QPs can become quite large, often infeasible for real-world systems. To alleviate this drawback, proper orthogonal decomposition is applied to reduce the size of the linearized model, thereby reducing the computational burden of solving each QP. In fact, this study shows that the snapshots need only be calculated once at the very beginning of the algorithm, after which no further calculations of the reduced-model subspace are required. The proposed algorithm therefore only requires one linearized full-model run per parameter at the first iteration followed by a series of reduced-order QPs. The method is applied to a groundwater model with about 30,000 computation nodes where as many as 15 zones of hydraulic conductivity are estimated.
Idealized Quasi-Linear Convective Storms Crossing Over Coastlines
NASA Astrophysics Data System (ADS)
Lombardo, K.
2015-12-01
As organized coastal convective storms develop over land and move over a coastal ocean, their storm-scale structures, intensity, and associated weather threats evolve. This study aims to identify and quantify the fundamental mechanisms controlling the evolution of coastal quasi-linear convective systems (QLCSs) as they move offshore, as well as characterize the environmental conditions that support a phase space of life cycles. Results from this work will contribute to the improved predictability of these potentially severe warm season storms. The current work uses the Cloud Model 1 (CM1; Bryan and Fritsch 2002) to systematically study the interaction between QLCSs and marine atmospheric boundary layers (MABLs) associated with the coastal ocean in an idealized numerical framework. The initial simulations are run in 2-dimensions, with a 250 m horizontal resolution and a vertical resolution ranging from 100 m in the lowest 3000 m stretched to 250 m at the top of the 20 km domain. All simulations use the Weisman-Klemp analytic sounding as the base-state sounding profile in conjunction with an RKW-type wind profile. To create a numerical environment representative of a coastal region, the western half of the 800 km domain is configured to represent a land surface, while the eastern half represents a water surface. A series of sensitivity experiments are conducted to explore the influence of sea surface temperature and the associated marine atmospheric boundary layer on coastal QLCSs. Sea surface temperature values are selected to represent values observed within the Mid-Atlantic Bight coastal waters during the warm season, ranging from 14oC ('early summer') to 23oC ('late summer'). The numerical MABL is allowed to develop in time through surface heat fluxes. This presentation will discuss preliminary results from the 'early summer' and 'late summer' SST sensitivity experiments. Preliminary simulations indicate that the 'early summer' QLCS moves more quickly than the
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Sibeck, David G.
2013-01-01
The interaction of electrons with coherent chorus waves in the random phase approximation can be described as quasi-linear diffusion for waves with amplitudes below some limit. The limit is calculated for relativistic and non-relativistic electrons. For stronger waves, the friction force should be taken into account.
Panov, E Yu
2013-10-31
The concept of a renormalized entropy solution of the Cauchy problem for an inhomogeneous quasilinear equation of the first order is introduced. Existence and uniqueness theorems are proved, together with a comparison principle. Connections with generalized entropy solutions are investigated. Bibliography: 10 titles.
Cosmic ray diffusion: Report of the Workshop in Cosmic Ray Diffusion Theory
NASA Technical Reports Server (NTRS)
Birmingham, T. J.; Jones, F. C.
1975-01-01
A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory.
Quasilinear model for energetic particle diffusion in radial and velocity space
Waltz, R. E.; Staebler, G. M.; Bass, E. M.
2013-04-15
A quasilinear model for passive energetic particle (EP) turbulent diffusion in radial and velocity space is fitted and tested against nonlinear gyrokinetic tokamak simulations with the GYRO code [J. Candy and R. E. Waltz, Phys. Rev. Lett. 91, 045001 (2003)]. Off diagonal elements of a symmetric positive definite 2 Multiplication-Sign 2 EP diffusion matrix account for fluxes up radial (energy) gradients driven by energy (radial) gradients of the EP velocity space distribution function. The quasilinear ratio kernel of the model is provided by a simple analytic formula for the EP radial and velocity space EP diffusivity relative to radial thermal ion energy diffusivity at each linear mode of the turbulence driven by the thermal plasma. The TGLF [G. M. Staebler, J. E. Kinsey, and R. E. Waltz, Phys. Plasmas 14, 0055909 (2007); ibid. 15, 0055908 (2008)] tokamak transport model provides the linear mode frequency and growth rates to the kernel as well as the nonlinear spectral weight for each mode.
Nodal soliton solutions for generalized quasilinear Schrödinger equations
Deng, Yinbin Peng, Shuangjie; Wang, Jixiu
2014-05-15
This paper is concerned with constructing nodal radial solutions for generalized quasilinear Schrödinger equations in R{sup N} which arise from plasma physics, fluid mechanics, as well as high-power ultashort laser in matter. For any given integer k ⩾ 0, by using a change of variables and minimization argument, we obtain a sign-changing minimizer with k nodes of a minimization problem.
NASA Astrophysics Data System (ADS)
Prokhorov, D. V.; Stepanov, V. D.
2016-08-01
A precise characterization of inequalities in weighted Lebesgue spaces with positive quasilinear integral operators of iterative type on the half-axis is given. All cases of positive integration parameters are treated, including the case of supremum. Applications to the solution of the well-known problem of the boundedness of the Hardy-Littlewood maximal operator in weighted Lorentz Γ-spaces are given. Bibliography: 41 titles.
EVIDENCE OF QUASI-LINEAR SUPER-STRUCTURES IN THE COSMIC MICROWAVE BACKGROUND AND GALAXY DISTRIBUTION
Inoue, Kaiki Taro; Sakai, Nobuyuki; Tomita, Kenji
2010-11-20
Recent measurements of hot and cold spots on the cosmic microwave background (CMB) sky suggest the presence of super-structures on (>100 h {sup -1} Mpc) scales. We develop a new formalism to estimate the expected amplitude of temperature fluctuations due to the integrated Sachs-Wolfe (ISW) effect from prominent quasi-linear structures. Applying the developed tools to the observed ISW signals from voids and clusters in catalogs of galaxies at redshifts z < 1, we find that they indeed imply a presence of quasi-linear super-structures with a comoving radius of 100 {approx} 300 h {sup -1} Mpc and a density contrast |{delta}| {approx} O(0.1). We also find that the observed ISW signals are at odds with the concordant {Lambda} cold dark matter model that predicts Gaussian primordial perturbations at {approx}>3{sigma} level. We confirm that the mean temperature around the CMB cold spot in the southern Galactic hemisphere filtered by a compensating top-hat filter deviates from the mean value at {approx}3{sigma} level, implying that a quasi-linear supervoid or an underdensity region surrounded by a massive wall may reside at low redshifts z < 0.3 and the actual angular size (16{sup 0}-17{sup 0}) may be larger than the apparent size (4{sup 0}-10{sup 0}) discussed in literature. Possible solutions are briefly discussed.
A new symmetric form of the bounce-averaged quasilinear diffusion coefficient in toroidal geometry
NASA Astrophysics Data System (ADS)
Lee, Jungpyo; Smithe, David; Berry, Lee; Jaeger, Erwin; Wright, John; Bonoli, Paul
2016-10-01
Kennel-Engelmann (K-E) quasilinear diffusion coefficients are used in many RF wave codes to couple the Maxwell equation solver with a Fokker-Plank calculation. The diagonal component of the coefficient tensor in the speed direction should be positive in the quasi-linear assumption for the H-theorem. However, in the application to toroidal geometry, the bounce-average of the K-E coefficients does not guarantee positive values for an arbitrary wave spectrum due to the interference between the spectral modes. The negative bounce-averaged diffusion coefficients unexpectedly occur because the K-E coefficient is derived in a cylindrical limit, in which the resonance kernel (gyrofrequency, wave vector and parallel velocity) in the phase integral do not vary along the phase trajectory, while the bounce-average is computed in a toroidal geometry. To guarantee the positiveness, we derive a new form of the diffusion coefficient that keeps the symmetric form between the bounce-integral and the trajectory integral. The new coefficients are implemented in a code for ion cyclotron waves in a tokamak (TORIC). Using the new form, the error of quasilinear diffusion coefficients due to the negative values is reduced significantly, and the toroidal effects are well captured. Work supported by US Department of Energy Contract No. DE-FC02-01ER54648.
On Collocation Schemes for Quasilinear Singularly Perturbed Boundary Value Problems.
1983-02-01
Approvod for public roIIa8 ELECTE0~~~istributiom unlimited MY0618 C= Sponsored by E U. S. Army Research Office and National Science Foundation P . 0. Box...Gauss, Radau and Lobatto-type.) The standard theory for discretization methods for general grids is not applicable unless the maximal stepsize is smaller...solution (y(- (y-,y )T),z) of (1.1) we construct a vector-spline function (py, p .), py- ( p ,pT) which satisfies: Py y a) P . 0) and py + re polynomial
Program for the solution of multipoint boundary value problems of quasilinear differential equations
NASA Technical Reports Server (NTRS)
1973-01-01
Linear equations are solved by a method of superposition of solutions of a sequence of initial value problems. For nonlinear equations and/or boundary conditions, the solution is iterative and in each iteration a problem like the linear case is solved. A simple Taylor series expansion is used for the linearization of both nonlinear equations and nonlinear boundary conditions. The perturbation method of solution is used in preference to quasilinearization because of programming ease, and smaller storage requirements; and experiments indicate that the desired convergence properties exist although no proof or convergence is given.
A general algorithm for control problems with variable parameters and quasi-linear models
NASA Astrophysics Data System (ADS)
Bayón, L.; Grau, J. M.; Ruiz, M. M.; Suárez, P. M.
2015-12-01
This paper presents an algorithm that is able to solve optimal control problems in which the modelling of the system contains variable parameters, with the added complication that, in certain cases, these parameters can lead to control problems governed by quasi-linear equations. Combining the techniques of Pontryagin's Maximum Principle and the shooting method, an algorithm has been developed that is not affected by the values of the parameters, being able to solve conventional problems as well as cases in which the optimal solution is shown to be bang-bang with singular arcs.
Solution of second order quasi-linear boundary value problems by a wavelet method
Zhang, Lei; Zhou, Youhe; Wang, Jizeng
2015-03-10
A wavelet Galerkin method based on expansions of Coiflet-like scaling function bases is applied to solve second order quasi-linear boundary value problems which represent a class of typical nonlinear differential equations. Two types of typical engineering problems are selected as test examples: one is about nonlinear heat conduction and the other is on bending of elastic beams. Numerical results are obtained by the proposed wavelet method. Through comparing to relevant analytical solutions as well as solutions obtained by other methods, we find that the method shows better efficiency and accuracy than several others, and the rate of convergence can even reach orders of 5.8.
NASA Astrophysics Data System (ADS)
Ali, Z. I.; Sango, M.
2016-07-01
In this paper, we investigate a class of stochastic quasilinear parabolic initial boundary value problems with nonstandard growth in the functional setting of generalized Sobolev spaces. The deterministic version of the equation was first introduced and studied by Samokhin in [45] as a generalized model for polytropic filtration. We establish an existence result of weak probabilistic solutions when the forcing terms do not satisfy Lipschitz conditions. Under the Lipschitz property of the forcing terms, we obtain the uniqueness of weak probabilistic solutions. Combining the uniqueness and the famous Yamada-Watanabe result, we prove the existence of a unique strong probabilistic solution of the problem.
The Tricomi problem of a quasi-linear Lavrentiev-Bitsadze mixed type equation
NASA Astrophysics Data System (ADS)
Shuxing, Chen; Zhenguo, Feng
2013-06-01
In this paper, we consider the Tricomi problem of a quasi-linear Lavrentiev-Bitsadze mixed type equation begin{array}{lll}(sgn u_y) {partial ^2 u/partial x^2} + {partial ^2 u/partial y^2}-1=0, whose coefficients depend on the first-order derivative of the unknown function. We prove the existence of solution to this problem by using the hodograph transformation. The method can be applied to study more difficult problems for nonlinear mixed type equations arising in gas dynamics.
Radio emission of magnetars driven by the quasi-linear diffusion
NASA Astrophysics Data System (ADS)
Osmanov, Z.
2014-11-01
In this paper, we study the possibility of generation of electromagnetic waves in the magnetospheres of radio magnetars by means of the quasi-linear diffusion (QLD). Considering the magnetosphere composed of the so-called beam and the plasma components, respectively, we argue that the frozen-in condition will inevitably lead to the generation of the unstable cyclotron modes. These modes, via the QLD, will in turn influence the particle distribution function, leading to certain values of the pitch angles, thus to an efficient synchrotron mechanism, producing radio photons. We show that for three known radio magnetars, the QLD might be a realistic mechanism for producing photons in the radio band.
NASA Astrophysics Data System (ADS)
Gudi, Thirupathi; Nataraj, Neela; Pani, Amiya K.
2008-06-01
In this paper, an hp -local discontinuous Galerkin method is applied to a class of quasilinear elliptic boundary value problems which are of nonmonotone type. On hp -quasiuniform meshes, using the Brouwer fixed point theorem, it is shown that the discrete problem has a solution, and then using Lipschitz continuity of the discrete solution map, uniqueness is also proved. A priori error estimates in broken H^1 norm and L^2 norm which are optimal in h , suboptimal in p are derived. These results are exactly the same as in the case of linear elliptic boundary value problems. Numerical experiments are provided to illustrate the theoretical results.
Control of nonlinear systems represented in quasilinear form. Ph.D. Thesis, 1994 Final Report
NASA Technical Reports Server (NTRS)
Coetsee, Josef A.
1993-01-01
Methods to synthesize controllers for nonlinear systems are developed by exploiting the fact that under mild differentiability conditions, systems of the form: x-dot = f(x) + G(x)u can be represented in quasilinear form, viz: x-dot = A(x)x + B(x)u. Two classes of control methods are investigated. The first is zero-look-ahead control, where the control input depends only on the current values of A(x) and B(x). For this case the control input is computed by continuously solving a matrix Riccati equation as the system progresses along a trajectory. The second is controllers with look-ahead, where the control input depends on the future behavior of A(x) and B(x). These controllers use the similarity between quasilinear systems and linear time varying systems to find approximate solutions to optimal control type problems. The methods that are developed are not guaranteed to be globally stable. However in simulation studies they were found to be useful alternatives for synthesizing control laws for a general class of nonlinear systems.
Zimbardo; Veltri; Pommois
2000-02-01
We studied a magnetic turbulence axisymmetric around the unperturbed magnetic field for cases having different ratios l( ||)/l( perpendicular). We find, in addition to the fact that a higher fluctuation level deltaB/B(0) makes the system more stochastic, that by increasing the ratio l( ||)/l( perpendicular) at fixed deltaB/B(0), the stochasticity increases. It appears that the different transport regimes can be organized in terms of the Kubo number R=(deltaB/B(0))(l( ||)/l( perpendicular)). The simulation results are compared with the two analytical limits, that is the percolative limit and the quasilinear limit. When R<1 weak chaos, closed magnetic surfaces, and anomalous transport regimes are found. When R approximately 1 the diffusion regime is Gaussian, and the quasilinear scaling of the diffusion coefficient D( perpendicular) approximately (deltaB/B(0))(2) is recovered. Finally, for R>1 the percolation scaling of the diffusion coefficient D( perpendicular) approximately (deltaB/B(0))(0.7) is obtained.
A physically-based, quasilinear viscoelasticity model for the dynamic response of polyurea
NASA Astrophysics Data System (ADS)
Clifton, Rodney J.; Wang, Xinjie; Jiao, Tong
2016-08-01
Polyurea, a promising material for damage mitigation in impact scenarios, has been investigated through plane-wave, pressure-shear plate impact (PSPI) experiments to obtain its mechanical response at high pressures and high strain rates. Based on these experimental results, a physically-based, quasi-linear, viscoelasticity model is introduced to capture the observed nonlinear pressure-volume behavior, the strong dependence of shearing resistance on pressure, and the strong relaxation of deviatoric stresses. This model has been implemented in finite element software ABAQUS to simulate the response of polyurea P1000 under the impact conditions of a variety of PSPI experiments. Simulation results agree reasonably well with those of the experiments.
Quasi-linear analysis of the extraordinary electron wave destabilized by runaway electrons
Pokol, G. I.; Kómár, A.; Budai, A.; Stahl, A.; Fülöp, T.
2014-10-15
Runaway electrons with strongly anisotropic distributions present in post-disruption tokamak plasmas can destabilize the extraordinary electron (EXEL) wave. The present work investigates the dynamics of the quasi-linear evolution of the EXEL instability for a range of different plasma parameters using a model runaway distribution function valid for highly relativistic runaway electron beams produced primarily by the avalanche process. Simulations show a rapid pitch-angle scattering of the runaway electrons in the high energy tail on the 100–1000 μs time scale. Due to the wave-particle interaction, a modification to the synchrotron radiation spectrum emitted by the runaway electron population is foreseen, exposing a possible experimental detection method for such an interaction.
Conjugate quasilinear Dirichlet and Neumann problems and a posteriori error bounds
NASA Technical Reports Server (NTRS)
Lavery, J. E.
1976-01-01
Quasilinear Dirichlet and Neumann problems on a rectangle D with boundary D prime are considered. Using these concepts, conjugate problems, that is, a pair of one Dirichlet and one Neumann problem, the minima of the energies of which add to zero, are introduced. From the concept of conjugate problems, two-sided bounds for the energy of the exact solution of any given Dirichlet or Neumann problem are constructed. These two-sided bounds for the energy at the exact solution are in turn used to obtain a posteriori error bounds for the norm of the difference of the approximate and exact solutions of the problem. These bounds do not involve the unknown exact solution and are easily constructed numerically.
Quasi-Linear Vacancy Dynamics Modeling and Circuit Analysis of the Bipolar Memristor
Abraham, Isaac
2014-01-01
The quasi-linear transport equation is investigated for modeling the bipolar memory resistor. The solution accommodates vacancy and circuit level perspectives on memristance. For the first time in literature the component resistors that constitute the contemporary dual variable resistor circuit model are quantified using vacancy parameters and derived from a governing partial differential equation. The model describes known memristor dynamics even as it generates new insight about vacancy migration, bottlenecks to switching speed and elucidates subtle relationships between switching resistance range and device parameters. The model is shown to comply with Chua's generalized equations for the memristor. Independent experimental results are used throughout, to validate the insights obtained from the model. The paper concludes by implementing a memristor-capacitor filter and compares its performance to a reference resistor-capacitor filter to demonstrate that the model is usable for practical circuit analysis. PMID:25390634
Quasi-linear vacancy dynamics modeling and circuit analysis of the bipolar memristor.
Abraham, Isaac
2014-01-01
The quasi-linear transport equation is investigated for modeling the bipolar memory resistor. The solution accommodates vacancy and circuit level perspectives on memristance. For the first time in literature the component resistors that constitute the contemporary dual variable resistor circuit model are quantified using vacancy parameters and derived from a governing partial differential equation. The model describes known memristor dynamics even as it generates new insight about vacancy migration, bottlenecks to switching speed and elucidates subtle relationships between switching resistance range and device parameters. The model is shown to comply with Chua's generalized equations for the memristor. Independent experimental results are used throughout, to validate the insights obtained from the model. The paper concludes by implementing a memristor-capacitor filter and compares its performance to a reference resistor-capacitor filter to demonstrate that the model is usable for practical circuit analysis.
NASA Astrophysics Data System (ADS)
Choi, Y. S.; Huan, Zhongdan; Lui, Roger
2003-11-01
This paper consists of two parts. In the first part, we proved the global existence of weak solutions of a strongly coupled quasilinear parabolic system in Rn using weak compactness method. In the second part, we considered the electrochemistry model studied in Choi and Lui (J. Differential Equations 116 (1995) 306) where the Poisson equation governing the electric potential is replaced by a local electro-neutrality condition. In one space dimension, the equations for the model is of the form considered in the first part of this paper except that the coefficient matrix is discontinuous at places where all the charged ions vanish. We approximate the equations by nicer operators and pass to the limit to obtain global existence of weak solutions. The non-negativity of weak solutions and L2-stability of the steady-state solutions are also shown under additional hypotheses.
Zweck, John; Menyuk, Curtis R
2002-07-15
We study four-wave mixing between pulses in two subchannels of a quasi-linear 40-Gbit/s subchannel-multiplexed system. For a pseudorandom bit string there are resonances in the mean of the ghost pulse energy and in the jitter of the energy in the marks as functions of the subchannel frequency spacing. However, away from these resonances the effect of four-wave mixing decreases as the subchannel spacing increases, permitting propagation over longer distances.
Rax, J.M.
1992-04-01
The dynamics of electrons in two-dimensional, linearly or circularly polarized, ultra-high intensity (above 10{sup 18}W/cm{sup 2}) laser waves, is investigated. The Compton harmonic resonances are identified as the source of various stochastic instabilities. Both Arnold diffusion and resonance overlap are considered. The quasilinear kinetic equation, describing the evolution of the electron distribution function, is derived, and the associated collisionless damping coefficient is calculated. The implications of these new processes are considered and discussed.
Why is the force-velocity relationship in leg press tasks quasi-linear rather than hyperbolic?
Bobbert, Maarten F
2012-06-01
Force-velocity relationships reported in the literature for functional tasks involving a combination of joint rotations tend to be quasi-linear. The purpose of this study was to explain why they are not hyperbolic, like Hill's relationship. For this purpose, a leg press task was simulated with a musculoskeletal model of the human leg, which had stimulation of knee extensor muscles as only independent input. In the task the ankles moved linearly, away from the hips, against an imposed external force that was reduced over contractions from 95 to 5% of the maximum isometric value. Contractions started at 70% of leg length, and force and velocity values were extracted when 80% of leg length was reached. It was shown that the relationship between leg extension velocity and external force was quasi-linear, while the relationship between leg extension velocity and muscle force was hyperbolic. The discrepancy was explained by the fact that segmental dynamics canceled more and more of the muscle force as the external force was further reduced and velocity became higher. External power output peaked when the imposed external force was ∼50% of maximum, while muscle power output peaked when the imposed force was only ∼15% of maximum; in the latter case ∼70% of muscle power was buffered by the leg segments. According to the results of this study, there is no need to appeal to neural mechanisms to explain why, in leg press tasks, the force-velocity relationship is quasi-linear rather than hyperbolic.
Global existence and boundedness in a higher-dimensional quasilinear chemotaxis system
NASA Astrophysics Data System (ADS)
Wang, Yilong; Xiang, Zhaoyin
2015-12-01
This paper deals with the boundedness of global solutions to the quasilinear Keller-Segel system u_t=nabla\\cdotbig(D(u)nabla u-unabla vbig), &quad xinΩ, t>0, v_t=Δ v-uf(v),&quad xinΩ, t>0, nabla u\\cdot ν=0, nabla v\\cdotν=0,&quad xin partialΩ, t>0 in a bounded domain {Ωsubset Rn(n≥ 3)} with smooth boundary, where D( u) is supposed to satisfy D( u) ≥ D 0 u m-1 with some positive constant D 0. It is proved that when {m>2-n+2/2n}, the system possesses global bounded weak solutions for any sufficiently smooth nonnegative initial data. In particular, we improved the recent result by Wang et al. (Z Angew Math Phys, 2015. doi:
NASA Astrophysics Data System (ADS)
Isenberg, P. A.; Vasquez, B. J.
2015-12-01
We have constructed a kinetic model of coronal hole protons heated in the directions perpendicular to the magnetic field according to the turbulent stochastic heating mechanism of Chandran et al. The kinetic heating is modeled by a proton diffusion in v_perp. The protons additionally respond to the coronal hole forces of gravity, charge-separation electric field, and the mirror force as described in our previous kinetic guiding-center models. We have further extended this kinetic model to include wave growth and damping by the anisotropic protons through the quasilinear cyclotron-resonant interaction. We solve the coupled equations for the kinetic proton behavior and for the self-consistent development of ion-cyclotron wave spectra propagating within 60˚ of the magnetic field direction. We seek to obtain a steady-state solution, showing the evolution of the proton distribution and the wave spectra with increasing heliocentric radial position due to the combined effects of heating, resonant scattering coupled to the wave generation, and the kinetic response to the large-scale forces of the inhomogeneous coronal hole. We will report on our results and the implications for the measurements to be made by the Solar Probe Plus mission.
Integrable Magnetic Geodesic Flows on 2-Torus: New Examples via Quasi-Linear System of PDEs
NASA Astrophysics Data System (ADS)
Agapov, S. V.; Bialy, M.; Mironov, A. E.
2017-01-01
For a magnetic geodesic flow on the 2-torus the only known integrable example is that of a flow integrable for all energy levels. It has an integral linear in momenta and corresponds to a one parameter group preserving the Lagrangian function of the magnetic flow. In this paper the problem of integrability on a single energy level is considered. Then, in addition to the example mentioned above, a few other explicit examples with quadratic in momenta integrals can be constructed by means of the Maupertuis' principle. Recently we proved that such an integrability problem can be reduced to a remarkable semi-Hamiltonian system of quasi-linear PDEs and to the question of the existence of smooth periodic solutions for this system. Our main result of the present paper states that any Liouville metric with the zero magnetic field on the 2-torus can be analytically deformed to a Riemannian metric with a small magnetic field so that the magnetic geodesic flow on an energy level is integrable by means of an integral quadratic in momenta.
Building 1D resonance broadened quasilinear (RBQ) code for fast ions Alfvénic relaxations
NASA Astrophysics Data System (ADS)
Gorelenkov, Nikolai; Duarte, Vinicius; Berk, Herbert
2016-10-01
The performance of the burning plasma is limited by the confinement of superalfvenic fusion products, e.g. alpha particles, which are capable of resonating with the Alfvénic eigenmodes (AEs). The effect of AEs on fast ions is evaluated using a resonance line broadened diffusion coefficient. The interaction of fast ions and AEs is captured for cases where there are either isolated or overlapping modes. A new code RBQ1D is being built which constructs diffusion coefficients based on realistic eigenfunctions that are determined by the ideal MHD code NOVA. The wave particle interaction can be reduced to one-dimensional dynamics where for the Alfvénic modes typically the particle kinetic energy is nearly constant. Hence to a good approximation the Quasi-Linear (QL) diffusion equation only contains derivatives in the angular momentum. The diffusion equation is then one dimensional that is efficiently solved simultaneously for all particles with the equation for the evolution of the wave angular momentum. The evolution of fast ion constants of motion is governed by the QL diffusion equations which are adapted to find the ion distribution function.
Quasi-linear analysis of ion Weibel instability in the earth's neutral sheet
NASA Technical Reports Server (NTRS)
Lui, Anthony T. Y.; Yoon, Peter H.; Chang, Chia-Lie
1993-01-01
A quasi-linear analysis of the ion Weibel instability (IWI) for waves with parallel propagation is carried out for parameters appropriate to the earth's neutral sheet during the substorm interval. For ion drift speed reaching sizable fraction of the ion thermal speed, unstable waves grow to a nonlinear regime in a time interval greater than an ion gyroperiod. The saturation level is attained with current density reduced to about 15-28 percent of its preactivity level. The unstable wave amplitude normalized to the initial ambient field is found to be in the range of 0.2-0.8. This is accompanied by ion heating along the magnetic field with the parallel temperature being enhanced by 25-90 percent. Thus, the IWI can provide nonadiabatic heating of ions in current disruptions during substorms. The associated anomalous resistivity is estimated to be about 1 x 10 exp -7 to 1 x 10 exp -6 s, which is about 11 to 12 orders of magnitude above the classical resistivity.
On the theory of the type III burst exciter
NASA Technical Reports Server (NTRS)
Smith, R. A.; Goldstein, M. L.; Papadopoulos, K.
1976-01-01
In situ satellite observations of type III burst exciters at 1 AU show that the beam does not evolve into a plateau in velocity space, contrary to the prediction of quasilinear theory. The observations can be explained by a theory that includes mode coupling effects due to excitation of the parametric oscillating two-stream instability and its saturation by anomalous resistivity. The time evolution of the beam velocity distribution is included in the analysis.
Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source
NASA Astrophysics Data System (ADS)
Liu, Ji; Zheng, Jiashan; Wang, Yifu
2016-04-01
In this paper, we consider the quasilinear chemotaxis-haptotaxis system u_t=nabla\\cdot(D(u)nabla u)-nabla\\cdot(S_1(u)nabla v)-nabla\\cdot(S_2(u)nabla w)+uf(u,w),quad xinΩ, t > 0,v_t=Δ v-v+u,quad xinΩ, t > 0,w_t=-vw,quad xinΩ, t > 0 in a bounded smooth domain {Ωsubset R^n (n≥1)} under zero-flux boundary conditions, where the nonlinearities {D, S_1} and {S_2} are assumed to generalize the prototypes D(u)=CD(u+1)^{m-1}, S_1(u)=C_{S_1}u(u+1)^{q_1-1} quad {and} quad S_2(u)=C_{S_2}u(u+1)^{q_2-1} with {C_D,C_{S_1},C_{S_2} > 0, m,q_1,q_2in R} and {f(u,w)in C^1([0,+infty)×[0,+∞))} fulfills f(u,w)≤ r-buquad {for all} ~u≥ 0quad {and} quad w≥ 0, where {r > 0, b > 0.} Assuming nonnegative initial data {u_0(x)in W^{1,∞}(Ω),v_0(x)in W^{1,∞}(Ω)} and {w_0(x)in C^{2,α}(barΩ)} for some {αin(0,1),} we prove that (i) for {n≤2,} if q_1,q_2\\ < m+2/n-1,} then {(star)} has a unique nonnegative classical solution which is globally bounded, (ii) for {n > 2,} if {max{q_1,q_2} < m+2/n-1} and {m > 2-2/n} or {max{q_1,q_2} < m+2/n-1} and {m≤ 1,} then {(star)} has a unique nonnegative classical solution which is globally bounded.
Quasi-linear modeling of lower hybrid current drive in ITER and DEMO
Cardinali, A. Cesario, R.; Panaccione, L.; Santini, F.; Amicucci, L.; Castaldo, C.; Ceccuzzi, S.; Mirizzi, F.; Tuccillo, A. A.
2015-12-10
First pass absorption of the Lower Hybrid waves in thermonuclear devices like ITER and DEMO is modeled by coupling the ray tracing equations with the quasi-linear evolution of the electron distribution function in 2D velocity space. As usually assumed, the Lower Hybrid Current Drive is not effective in a plasma of a tokamak fusion reactor, owing to the accessibility condition which, depending on the density, restricts the parallel wavenumber to values greater than n{sub ∥crit} and, at the same time, to the high electron temperature that would enhance the wave absorption and then restricts the RF power deposition to the very periphery of the plasma column (near the separatrix). In this work, by extensively using the “ray{sup star}” code, a parametric study of the propagation and absorption of the LH wave as function of the coupled wave spectrum (as its width, and peak value), has been performed very accurately. Such a careful investigation aims at controlling the power deposition layer possibly in the external half radius of the plasma, thus providing a valuable aid to the solution of how to control the plasma current profile in a toroidal magnetic configuration, and how to help the suppression of MHD mode that can develop in the outer part of the plasma. This analysis is useful not only for exploring the possibility of profile control of a pulsed operation reactor as well as the tearing mode stabilization, but also in order to reconsider the feasibility of steady state regime for DEMO.
A synthesis theory for self-oscillating adaptive systems /SOAS/
NASA Technical Reports Server (NTRS)
Horowitz, I.; Smay, J.; Shapiro, A.
1974-01-01
A quantitative synthesis theory is presented for the Self-Oscillating Adaptive System (SOAS), whose nonlinear element has a static, odd character with hard saturation. The synthesis theory is based upon the quasilinear properties of the SOAS to forced inputs, which permits the extension of quantitative linear feedback theory to the SOAS. A reasonable definition of optimum design is shown to be the minimization of the limit cycle frequency. The great advantages of the SOAS is its zero sensitivity to pure gain changes. However, quasilinearity and control of the limit cycle amplitude at the system output, impose additional constraints which partially or completely cancel this advantage, depending on the numerical values of the design parameters. By means of narrow-band filtering, an additional factor is introduced which permits trade-off between filter complexity and limit cycle frequency minimization.
A Novel Numerical Algorithm of Numerov Type for 2D Quasi-linear Elliptic Boundary Value Problems
NASA Astrophysics Data System (ADS)
Mohanty, R. K.; Kumar, Ravindra
2014-11-01
In this article, using three function evaluations, we discuss a nine-point compact scheme of O(Δ y2 + Δ x4) based on Numerov-type discretization for the solution of 2D quasi-linear elliptic equations with given Dirichlet boundary conditions, where Δy > 0 and Δx > 0 are grid sizes in y- and x-directions, respectively. Iterative methods for diffusion-convection equation are discussed in detail. We use block iterative methods to solve the system of algebraic linear and nonlinear difference equations. Comparative results of some physical problems are given to illustrate the usefulness of the proposed method.
NASA Astrophysics Data System (ADS)
Alves, Claudianor O.; da Silva, Ailton R.
2016-11-01
In this work, we study existence, multiplicity, and concentration of positive solutions for the following class of quasilinear problems - Δ Φ u + V ( ɛ x ) ϕ ( |" separators=" u | ) u = f ( u ) in R N ( N ≥ 2 ) , where Φ ( t ) = ∫0 |" separators=" t | ϕ ( s ) s d s is a N-function, ΔΦ is the Φ-Laplacian operator, ɛ is a positive parameter, V : ℝN → ℝ is a continuous function, and f : ℝ → ℝ is a C1-function.
1.5D Quasilinear Model for Alpha Particle-TAE Interaction in ARIES ACT-I
K. Ghantous, N.N. Gorelenkov, C. Kessel, F. Poli
2013-01-30
We study the TAE interaction with alpha particle fusion products in ARIES ACT-I using the 1.5D quasilinear model. 1.5D uses linear analytic expressions for growth and damping rates of TAE modes evaluated using TRANSP pro les to calculates the relaxation of pressure pro les. NOVA- K simulations are conducted to validate the analytic dependancies of the rates, and to normalize their absolute value. The low dimensionality of the model permits calculating loss diagrams in large parameter spaces.
Gerwin, R.
1983-10-01
In the Field-Reversed Theta Pinch (FRC) experiment, the poloidal flux is observed to be lost at a rate several times greater than classical resistivity would allow. Thus, there must be anomalous resistivity at the field null. Assuming that an electromagnetic microinstability of the flute mode type is responsible for this, we derived a general expression for the anomalous resistivity at the field null based upon a quasi-linear model of the microturbulence. This general expression does not depend upon the details of the ion-species model, for example, whether the ions are fluid or kinetic.
NASA Astrophysics Data System (ADS)
Ali, Zakaria Idriss; Sango, Mamadou
2016-06-01
In this paper, we investigate a class of stochastic quasilinear parabolic problems with nonstandard growth in the functional setting of generalized Sobolev spaces. The deterministic version of the equation was first introduced and studied by Samokhin, as a generalized model for polytropic filtration. We establish an existence result of weak probabilistic solutions when the forcing terms do not satisfy Lipschitz conditions. Under Lipschitzity of the nonlinear external forces, f and G, we obtain the uniqueness of the weak probabilistic solutions. Combining the uniqueness and the famous Yamada-Watanabe result we prove the existence of the unique strong probabilistic solution.
NASA Astrophysics Data System (ADS)
Orsolini, Y.; Leovy, C. B.
1993-12-01
A quasi-geostrophic midlatitude beta-plane linear model is here used to study whether the decay with height and meridional circulations of near-steady jets in the tropospheric circulation of Jupiter arise as a means of stabilizing a deep zonal flow that extends into the upper troposphere. The model results obtained are analogous to the stabilizing effect of meridional shear on baroclinic instabilities. In the second part of this work, a quasi-linear model is used to investigate how an initially barotropically unstable flow develops a quasi-steady shear zone in the lower scale heights of the model domain, due to the action of the eddy fluxes.
Kozhevnikova, L M; Mukminov, F Kh
2000-02-28
A quasilinear system of parabolic equations with energy inequality is considered in a cylindrical domain {l_brace}t>0{r_brace}x{omega}. In a broad class of unbounded domains {omega} two geometric characteristics of a domain are identified which determine the rate of convergence to zero as t{yields}{infinity} of the L{sub 2}-norm of a solution. Under additional assumptions on the coefficients of the quasilinear system estimates of the derivatives and uniform estimates of the solution are obtained; they are proved to be best possible in the order of convergence to zero in the case of one semilinear equation.
Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential
Omari, P.; Zanolin, F.
1996-12-31
Let {Omega} be a bounded domain in IR{sup N}, with N {ge} 1, having a smooth boundary {partial_derivative}{Omega}. We denote by A the quasilinear elliptic second order differential operator defined by Au+div(a({vert_bar}{del}{sub u}{vert_bar}{sup 2}){del}{sub u}). We suppose that the function a:[O,+{infinity}{r_arrow}O, +{infinity}] is of class C{sup 1} and satisfies the following ellipticity and growth conditions of Leray-Lions type (cf. e.g. [22]): there are constants {gamma}, {Lambda} > O, K {epsilon} [O,1] and p {epsilon}[1, +{infinity}]such that, for every s > O, {lambda}(K + S){sup p-2} {le} a(s{sup 2}){le}{Lambda} (K+S){sup p-2}({lambda}-1/2) a(s){le}a{prime}(s) s {le}{Gamma} a(s). Hence, we can define, for each s {ge} O, the function A(s) = {integral}{sub O}{sup s} a({xi})d{xi}. Let us consider the Dirichlet problem -Au={mu}(x)g(u) + h(x) in {Omega}, u=O on {partial_derivative}{Omega}, where g: IR {r_arrow} IR is continuous and {mu}, h {epsilon} L{sup {infinity}}({infinity}), with {mu}{sub O} = ess inf{sub {Omega}}{sub {mu}} > O. We also set G(s) = {integral}{sub O}{sup s}g({integral})d{integral}, for all s {epsilon} IR. By a solution of (1.3) we mean a function u {epsilon} W{sub O}{sup 1,p} ({Omega}) {intersection} L{sup {infinity}} ({Omega}) such that {integral}{sub {Omega}} a({vert_bar}{del}{sub u}{vert_bar}{sup 2}){del}{sub u}{del}{sub wdx}= {integral}{sub {Omega}} {mu}g(u)wdx + {integral}{sub {Omega}} hwdx, for every w {epsilon} W{sub O}{sup 1,p}({Omega}), where p is the exponent which appears in (1.1). The aim of this paper is to prove the existence of infinitely many solutions of problem (1.3) when the potential G(s) exhibits an oscillatory behaviour at infinity. 22 refs.
NASA Astrophysics Data System (ADS)
Trenkel, Christian; Wealthy, David
2014-10-01
The possibility of sending the LISA Pathfinder spacecraft through the Sun-Earth saddle point following its nominal mission around L1 has now been studied for a few years. The principal motivation for doing so is to search for anomalous gravity gradients predicted by several alternative theories of gravity. In turn, these have originally been motivated by the dark matter problem, and predict deviations from General Relativity in regions of low acceleration. All signal estimates to date have ignored the presence of the spacecraft mass distribution and its self-gravity, on the basis that the gravitational field due to Sun and Earth is larger than that due to the spacecraft itself, for any realistic saddle point fly-by distances. In this paper, we show that at least for one of the theoretical frameworks, Quasilinear MOdified Newtonian Dynamics (QMOND), the presence of the local mass distribution cannot be ignored. Using simplified representations of the spacecraft mass distribution, we demonstrate that internal self-gravity, in particular internal gravitational gradients, can enhance the QMOND signals by more than 3 orders of magnitude. These preliminary results indicate that the parameter space accessible to LISA Pathfinder may be significantly larger than previously thought. We find further that the details of the matter distribution as well as of the trajectory can affect the expected signal shape, due to the coupling between internal and external gravitational fields and field gradients. We hope that this work will motivate a more comprehensive investigation of the effect, not just in QMOND, but also in the context of other theoretical frameworks.
NASA Astrophysics Data System (ADS)
Danik, Yulia
2016-08-01
This paper is dedicated to the robustness analysis of a stabilizing controller for quasi-linear state dependent coefficients discrete systems. The interval parametric uncertainties in the linear part of the system are investigated. The nonlinear stabilizing regulator proposed for such systems is calculated at the average values of the uncertainty parameters and is used for all realizations of the system. The basic idea is that the existence of only weak nonlinearity in the system allows us to study its robustness based on the robustness of the corresponding unperturbed discrete linear system. The robustness conditions are formulated in the form of linear matrix inequalities. Numerical experiments demonstrating the robustness of the closed-loop system are presented.
Yang, Yongge; Xu, Wei; Yang, Guidong; Jia, Wantao
2016-08-01
The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.
NASA Astrophysics Data System (ADS)
Foroutan, G.; Khalilpour, H.; Moslehi-Fard, M.; Li, B.; Robinson, P. A.
2008-12-01
The effects of plasma inhomogeneities on the propagation of a cloud of hot electrons through a cold background plasma and generation of Langmuir waves are investigated using numerical simulations of the quasilinear equations. It is found that in a plasma with decreasing density the quasilinear relaxation of the electron distribution in velocity space is accelerated and the levels of the generated Langmuir waves are enhanced. The magnitude of the induced emission rate is increased and its maximum value moves to lower velocities. Due to density gradient the height of plateau shows an increase at small distances and a corresponding decrease at large distances. It is also found that in a plasma with decreasing temperature, the relaxation of the beam is retarded, the spectral density of Langmuir waves is broadened, and the height of the plateau decreases below its value in a uniform plasma. In the presence of both density and temperature gradients, at given position, the height and upper boundary of the plateau and the level of Langmuir waves are all increased at small velocities. The spatial expansion of the beam is increased by the plasma inhomogeneities, but its average velocity of propagation decreases. Initially, at a given position, the velocity at the upper boundary of the plateau is smaller in the presence of the density gradient than in the uniform plasma but the reverse is true at longer times. Due to temperature gradient, at large times and small distances, the upper boundary of the plateau is increased above its value in the uniform plasma. Because of fast relaxation, the value of the lower boundary of the plateau in the plasma with decreasing density is always less than its value in the uniform plasma. It is found that the local velocity of the beam decreases when the density gradient is present. The local velocity spread of the beam remains unchanged during the propagation of the beam in the uniform plasma, but increases in the presence of inhomogeneities.
Foroutan, G.; Khalilpour, H.; Moslehi-Fard, M.; Li, B.; Robinson, P. A.
2008-12-15
The effects of plasma inhomogeneities on the propagation of a cloud of hot electrons through a cold background plasma and generation of Langmuir waves are investigated using numerical simulations of the quasilinear equations. It is found that in a plasma with decreasing density the quasilinear relaxation of the electron distribution in velocity space is accelerated and the levels of the generated Langmuir waves are enhanced. The magnitude of the induced emission rate is increased and its maximum value moves to lower velocities. Due to density gradient the height of plateau shows an increase at small distances and a corresponding decrease at large distances. It is also found that in a plasma with decreasing temperature, the relaxation of the beam is retarded, the spectral density of Langmuir waves is broadened, and the height of the plateau decreases below its value in a uniform plasma. In the presence of both density and temperature gradients, at given position, the height and upper boundary of the plateau and the level of Langmuir waves are all increased at small velocities. The spatial expansion of the beam is increased by the plasma inhomogeneities, but its average velocity of propagation decreases. Initially, at a given position, the velocity at the upper boundary of the plateau is smaller in the presence of the density gradient than in the uniform plasma but the reverse is true at longer times. Due to temperature gradient, at large times and small distances, the upper boundary of the plateau is increased above its value in the uniform plasma. Because of fast relaxation, the value of the lower boundary of the plateau in the plasma with decreasing density is always less than its value in the uniform plasma. It is found that the local velocity of the beam decreases when the density gradient is present. The local velocity spread of the beam remains unchanged during the propagation of the beam in the uniform plasma, but increases in the presence of inhomogeneities.
Hydromagnetic waves and cosmic-ray diffusion theory
NASA Technical Reports Server (NTRS)
Lee, M. A.; Voelk, H. J.
1975-01-01
Pitch-angle (and energy) diffusion of cosmic rays in hydromagnetic wave fields is considered. The treatment remains strictly within the quasi-linear approximation. It is shown that the popular assumption of an isotropic power spectrum tensor of magnetic fluctuations requires in this case equal forms and magnitudes of Alfven and magnetosonic wave spectra - a situation which is generally unlikely. The relative contributions to the pitch-angle diffusion coefficient from the cyclotron resonances and Landau resonance due to the different types of waves are evaluated for a typical situation in the solar wind. Since the Landau resonance in this approximation also does not lead to particle reflections, a proper consideration of the nonlinear particle orbits is indeed necessary to overcome the well-known difficulties of quasi-linear scattering theory for cosmic rays near 90 deg pitch angle.
ERIC Educational Resources Information Center
Mohanty, R. K.; Arora, Urvashi
2002-01-01
Three level-implicit finite difference methods of order four are discussed for the numerical solution of the mildly quasi-linear second-order hyperbolic equation A(x, t, u)u[subscript xx] + 2B(x, t, u)u[subscript xt] + C(x, t, u)u[subscript tt] = f(x, t, u, u[subscript x], u[subscript t]), 0 less than x less than 1, t greater than 0 subject to…
NASA Technical Reports Server (NTRS)
Dey, D.
1972-01-01
The effect of a prediction display on the human transfer characteristics is explained with the aid of a quasi-linear model. The prediction display causes an increase of the gain factor and the lead factor, a diminishing of the lag factor and a decrease of the remnant. Altogether, these factors yield a smaller mean square value of the control deviation and a simultaneous decrease of the mean square value of the stick signal.
The electron beam instability and turbulence theories
NASA Technical Reports Server (NTRS)
Dum, C. T.
1990-01-01
Extensions and practical applications of recent observations of electron beam-plasma interactions are investigated for the range of turbulence theories, extending from quasi-linear to strong turbulence theory, which have been developed on the basis of the Langmuir-wave excitation model. Electron foreshock observations have indicated that linear instability theory must encompass the excitation of waves whose frequencies are substantially different from those of the plasma frequency; the point of departure for such extensions should be a quantitative test of existing theories, and particle simulations conducive to such testing are presented. A step-by-step addition of physical considerations is used in such simulation studies to differentiate among nonlinear turbulence effects.
NASA Astrophysics Data System (ADS)
Hütter, Markus; Svendsen, Bob
2013-11-01
An essential part in modeling out-of-equilibrium dynamics is the formulation of irreversible dynamics. In the latter, the major task consists in specifying the relations between thermodynamic forces and fluxes. In the literature, mainly two distinct approaches are used for the specification of force-flux relations. On the one hand, quasi-linear relations are employed, which are based on the physics of transport processes and fluctuation-dissipation theorems (de Groot and Mazur in Non-equilibrium thermodynamics, North Holland, Amsterdam, 1962, Lifshitz and Pitaevskii in Physical kinetics. Volume 10, Landau and Lifshitz series on theoretical physics, Pergamon Press, Oxford, 1981). On the other hand, force-flux relations are also often represented in potential form with the help of a dissipation potential (Šilhavý in The mechanics and thermodynamics of continuous media, Springer, Berlin, 1997). We address the question of how these two approaches are related. The main result of this presentation states that the class of models formulated by quasi-linear relations is larger than what can be described in a potential-based formulation. While the relation between the two methods is shown in general terms, it is demonstrated also with the help of three examples. The finding that quasi-linear force-flux relations are more general than dissipation-based ones also has ramifications for the general equation for non-equilibrium reversible-irreversible coupling (GENERIC: e.g., Grmela and Öttinger in Phys Rev E 56:6620-6632, 6633-6655, 1997, Öttinger in Beyond equilibrium thermodynamics, Wiley Interscience Publishers, Hoboken, 2005). This framework has been formulated and used in two different forms, namely a quasi-linear (Öttinger and Grmela in Phys Rev E 56:6633-6655, 1997, Öttinger in Beyond equilibrium thermodynamics, Wiley Interscience Publishers, Hoboken, 2005) and a dissipation potential-based (Grmela in Adv Chem Eng 39:75-129, 2010, Grmela in J Non-Newton Fluid Mech
NASA Astrophysics Data System (ADS)
Xie, Zhifu; Zhao, Chunshan
We establish the uniqueness and the blow-up rate of the large positive solution of the quasi-linear elliptic problem -Δu=λu-b(x)h(u) in B(x) with boundary condition u=+∞ on ∂B(x), where B(x) is a ball centered at x∈R with radius R, N⩾3, 2⩽p<∞, λ>0 are constants and the weight function b is a positive radially symmetrical function. We only require h(u) to be a locally Lipschitz function with h(u)/u increasing on (0,∞) and h(u)˜u for large u with q>p-1. Our results extend the previous work [Z. Xie, Uniqueness and blow-up rate of large solutions for elliptic equation -Δu=λu-b(x)h(u), J. Differential Equations 247 (2009) 344-363] from case p=2 to case 2⩽p<∞.
A kinetic approach to some quasi-linear laws of macroeconomics
NASA Astrophysics Data System (ADS)
Gligor, M.; Ignat, M.
2002-11-01
Some previous works have presented the data on wealth and income distributions in developed countries and have found that the great majority of population is described by an exponential distribution, which results in idea that the kinetic approach could be adequate to describe this empirical evidence. The aim of our paper is to extend this framework by developing a systematic kinetic approach of the socio-economic systems and to explain how linear laws, modelling correlations between macroeconomic variables, may arise in this context. Firstly we construct the Boltzmann kinetic equation for an idealised system composed by many individuals (workers, officers, business men, etc.), each of them getting a certain income and spending money for their needs. To each individual a certain time variable amount of money is associated this meaning him/her phase space coordinate. In this way the exponential distribution of money in a closed economy is explicitly found. The extension of this result, including states near the equilibrium, give us the possibility to take into account the regular increase of the total amount of money, according to the modern economic theories. The Kubo-Green-Onsager linear response theory leads us to a set of linear equations between some macroeconomic variables. Finally, the validity of such laws is discussed in relation with the time reversal symmetry and is tested empirically using some macroeconomic time series.
A Quasi-Linear Behavioral Model and an Application to Self-Directed Learning
NASA Technical Reports Server (NTRS)
Ponton, Michael K.; Carr, Paul B.
1999-01-01
A model is presented that describes the relationship between one's knowledge of the world and the concomitant personal behaviors that serve as a mechanism to obtain desired outcomes. Integrated within this model are the differing roles that outcomes serve as motivators and as modifiers to one's worldview. The model is dichotomized between general and contextual applications. Because learner self-directedness (a personal characteristic) involves cognition and affection while self-directed learning (a pedagogic process) encompasses conation, behavior and introspection, the model can be dichotomized again in another direction. Presented also are the roles that cognitive motivation theories play in moving an individual through this behavioral model and the roles of wishes, self-efficacy, opportunity and self-influence.
A review of developments in the theory of elasto-plastic flow
NASA Technical Reports Server (NTRS)
Swedlow, J. L.
1973-01-01
The theory of elasto-plastic flow is developed so that it may accommodate features such as work-hardening, anisotropy, plastic compressibility, non-continuous loading including local or global unloading, and others. A complete theory is given in quasi-linear form; as a result, many useful attributes are accessible. Several integral theorems may be written, finite deformations may be incorporated, and efficient methods for solving problems may be developed; these and other aspects are described in some detail. The theory is reduced to special forms for 2-space, and extensive experience in solving such problems is cited.
A Thermodynamic Theory of Solid Viscoelasticity. Part II:; Nonlinear Thermo-viscoelasticity
NASA Technical Reports Server (NTRS)
Freed, Alan D.; Leonov, Arkady I.; Gray, Hugh R. (Technical Monitor)
2002-01-01
This paper, second in the series of three papers, develops a general, nonlinear, non-isothermal, compressible theory for finite rubber viscoelasticity and specifies it in a form convenient for solving problems important to the rubber, tire, automobile, and air-space industries, among others. Based on the quasi-linear approach of non-equilibrium thermodynamics, a general nonlinear theory of differential type has been developed for arbitrary non-isothermal deformations of viscoelastic solids. In this theory, the constitutive equations were presented as the sum of a rubber elastic (equilibrium) and a liquid type viscoelastic (non-equilibrium) terms. These equations have then been simplified using several modeling and simplicity arguments.
NASA Technical Reports Server (NTRS)
Bradley, William; Bird, Ross; Eldred, Dennis; Zook, Jon; Knowles, Gareth
2013-01-01
This work involved developing spacequalifiable switch mode DC/DC power supplies that improve performance with fewer components, and result in elimination of digital components and reduction in magnetics. This design is for missions where systems may be operating under extreme conditions, especially at elevated temperature levels from 200 to 300 degC. Prior art for radiation-tolerant DC/DC converters has been accomplished utilizing classical magnetic-based switch mode converter topologies; however, this requires specific shielding and component de-rating to meet the high-reliability specifications. It requires complex measurement and feedback components, and will not enable automatic re-optimization for larger changes in voltage supply or electrical loading condition. The innovation is a switch mode DC/DC power supply that eliminates the need for processors and most magnetics. It can provide a well-regulated voltage supply with a gain of 1:100 step-up to 8:1 step down, tolerating an up to 30% fluctuation of the voltage supply parameters. The circuit incorporates a ceramic core transformer in a manner that enables it to provide a well-regulated voltage output without use of any processor components or magnetic transformers. The circuit adjusts its internal parameters to re-optimize its performance for changes in supply voltage, environmental conditions, or electrical loading at the output
NASA Astrophysics Data System (ADS)
Foroutan, G.; Robinson, P. A.; Zahed, H.; Li, B.; Cairns, I. H.
2007-12-01
The propagation of a cloud of hot electrons through a plasma and the generation of Langmuir waves are investigated in the presence of an externally applied uniform electric field. Using numerical simulations of the quasilinear equations the evolution of the electron distribution function and the spectral density of Langmuir waves are monitored in coordinate and velocity space. It is found that the Langmuir waves are enhanced in the presence of the electric field and the distribution functions of the beam and Langmuir waves diffuse toward large velocities. The overall self-similar characteristic of the system is preserved in the presence of the electric field. The average beam velocity is no longer constant and increases with time along its trajectory, but the acceleration is much less than that of free streaming particles. The beam number density plateaus in coordinate space and large scale, small amplitude fluctuations develop on the top of this plateau. The level of the fluctuations depends on the strength of the electric field. We also investigated the influence of the external electric field on the evolution of gas-dynamical parameters such as the height of the plateau in the beam distribution function in velocity space, its upper velocity boundary, and the local velocity spread of the beam. Due to the finite quasilinear relaxation time and spatial inhomogeneity of the electron beam, different parts of the beam are in different states of relaxation. In the region of partial relaxation the plateau is specified by both upper and lower velocity boundaries. The upper boundary of plateau increases linearly with the strength of the electric field but the lower boundary is independent of it. Contrary to the free streaming of a beam in an electric field or quasilinear relaxation in the absence of the electric field, the local velocity spread of the beam increases during its propagation. Some of the electrons at the back of the beam are also transferred by the electric
Foroutan, G.; Robinson, P. A.; Zahed, H.; Li, B.; Cairns, I. H.
2007-12-15
The propagation of a cloud of hot electrons through a plasma and the generation of Langmuir waves are investigated in the presence of an externally applied uniform electric field. Using numerical simulations of the quasilinear equations the evolution of the electron distribution function and the spectral density of Langmuir waves are monitored in coordinate and velocity space. It is found that the Langmuir waves are enhanced in the presence of the electric field and the distribution functions of the beam and Langmuir waves diffuse toward large velocities. The overall self-similar characteristic of the system is preserved in the presence of the electric field. The average beam velocity is no longer constant and increases with time along its trajectory, but the acceleration is much less than that of free streaming particles. The beam number density plateaus in coordinate space and large scale, small amplitude fluctuations develop on the top of this plateau. The level of the fluctuations depends on the strength of the electric field. We also investigated the influence of the external electric field on the evolution of gas-dynamical parameters such as the height of the plateau in the beam distribution function in velocity space, its upper velocity boundary, and the local velocity spread of the beam. Due to the finite quasilinear relaxation time and spatial inhomogeneity of the electron beam, different parts of the beam are in different states of relaxation. In the region of partial relaxation the plateau is specified by both upper and lower velocity boundaries. The upper boundary of plateau increases linearly with the strength of the electric field but the lower boundary is independent of it. Contrary to the free streaming of a beam in an electric field or quasilinear relaxation in the absence of the electric field, the local velocity spread of the beam increases during its propagation. Some of the electrons at the back of the beam are also transferred by the electric
NASA Astrophysics Data System (ADS)
Dimitrov, B. G.
2010-02-01
On the base of the distinction between covariant and contravariant metric tensor components, a new (multivariable) cubic algebraic equation for reparametrization invariance of the gravitational Lagrangian has been derived and parametrized with complicated non - elliptic functions, depending on the (elliptic) Weierstrass function and its derivative. This is different from standard algebraic geometry, where only two-dimensional cubic equations are parametrized with elliptic functions and not multivariable ones. Physical applications of the approach have been considered in reference to theories with extra dimensions. The s.c. "length function" l(x) has been introduced and found as a solution of quasilinear differential equations in partial derivatives for two different cases of "compactification + rescaling" and "rescaling + compactification". New physically important relations (inequalities) between the parameters in the action are established, which cannot be derived in the case $l=1$ of the standard gravitational theory, but should be fulfilled also for that case.
On the improper neglect of certain terms in random function theory
NASA Technical Reports Server (NTRS)
Lerche, I.; Parker, E. N.
1973-01-01
This paper presents some exact solutions of problems in random function theory for the purpose of testing the validity of an approximate method known variously in the many different fields of its application as first order smoothing theory, first order cumulant discard, quasilinear theory, or the adiabatic approximation. The hydromagnetic dynamo equations are used here, as particularly appropriate for such an investigation. The calculations show that in one case the exact and approximate solutions agree. In the other case the approximate solution is wrong. Hence, in the absence of a general criterion for validity, a result based on first order smoothing theory is a conjecture rather than a fact. This impacts strongly on much of the recent work on hydromagnetic dynamos.
An approximation theory for the identification of nonlinear distributed parameter systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1990-01-01
An abstract approximation framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of finite dimensional approximating identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato appproximation result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed.
An approximation theory for the identification of nonlinear distributed parameter systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1988-01-01
An abstract approximation framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of finite dimensional approximating identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato approximation result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed.
Kinetic Theory of Instability-Enhanced Collisional Effects
NASA Astrophysics Data System (ADS)
Baalrud, Scott
2009-10-01
A generalization of the Lenard-Balescu collision operator is derived which accounts for the scattering of particles by instability amplified fluctuations that originate from the thermal motion of discrete particles (in contrast to evoking a fluctuation level externally, as is done in quasilinear kinetic theory) [1]. Emphasis is placed on plasmas with convective instabilities. It is shown that an instability-enhanced collective response results which can be the primary mechanism for scattering particles, being orders of magnitude more frequent than conventional Coulomb collisions, even though the fluctuations are in a linear growth phase. The resulting collision operator is shown to obey conservation laws (energy, momentum, and density), Galilean invariance, and the Boltzmann H-theorem. It has the property that Maxwellian is the unique equilibrium distribution function; again in contrast to weak turbulence or quasilinear theories. Instability-enhanced collisional effects can dominate the physics of low-temperature plasmas. For example, this theory has been applied to two outstanding problems: Langmuir's paradox [2] and determining Bohm's criterion for plasmas with multiple ion species. Langmuir's paradox is a measurement of anomalous electron scattering rapidly establishing a Maxwellian distribution in gas discharges with low temperature and pressure. This may be explained by instability-enhanced scattering in the plasma-boundary transition region (presheath) where convective ion-acoustic instabilities are excited. Bohm's criterion for multiple ion species is a single condition that the ion fluid speeds must obey at the sheath edge; but it is insufficient to determine the speed of individual species. It is shown that an instability-enhanced collisional friction, due to streaming instabilities in the presheath, determines this criterion.[4pt] [1] S.D. Baalrud, J.D. Callen, and C.C. Hegna, Phys. Plasmas 15, 092111 (2008).[0pt] [2] S.D. Baalrud, J.D. Callen, and C
Capua, Amir; Saal, Abigael; Karni, Ouri; Eisenstein, Gadi; Reithmaier, Johann Peter; Yvind, Kresten
2012-01-02
We describe direct measurements at a high temporal resolution of the changes experienced by the phase and amplitude of an ultra-short pulse upon propagation through an inhomogenously broadened semiconductor nanostructured optical gain medium. Using a cross frequency-resolved optical gating technique, we analyze 150 fs-wide pulses propagating along an InP based quantum dash optical amplifier in both the quasi-linear and saturated regimes. For very large electrical and optical excitations, a second, trailing peak is generated and enhanced by a unique two-photon-induced amplification process.
Theory and modeling of atmospheric turbulence, part 2
NASA Technical Reports Server (NTRS)
Chen, C. M.
1984-01-01
Two dimensional geostrophic turbulence driven by a random force is investigated. Based on the Liouville equation, which simulates the primitive hydrodynamical equations, a group-kinetic theory of turbulence is developed and the kinetic equation of the scaled singlet distribution is derived. The kinetic equation is transformed into an equation of spectral balance in the equilibrium and non-equilibrium states. Comparison is made between the propagators and the Green's functions in the case of the non-asymptotic quasi-linear equation to prove the equivalence of both kinds of approximations used to describe perturbed trajectories of plasma turbulence. The microdynamical state of fluid turbulence is described by a hydrodynamical system and transformed into a master equation analogous to the Vlasov equation for plasma turbulence. The spectral balance for the velocity fluctuations of individual components shows that the scaled pressure strain correlation and the cascade transfer are two transport functions that play the most important roles.
An Inhomogeneous Quasilinear Hyperbolic System.
1980-11-01
bounded variation and v0(x) has a positive bound, Lemma 2.1 • 1 and h < that 1 +a V r(.,t) + V s(.,t) < Q for t < T (2.7) +G +W K2M 24K1T K2 where Q...that u 0(x) are bounded functions with bounded variation , v 0(x) has a positive lower bound. U(u,v,x,t), V(u,v,x,t) are smooth functions satisfying...t) to denote the weak solution of (0.1) and (0.2). Theorem 4.1. Suppose that u0 (x), v0 (x) are bounded functions with bounded variation and do not
QUASILINEARIZATION, SYSTEM IDENTIFICATION, AND PREDICTION
regime in an effort to improve the quality of the control exerted. A mathematical formulation and computational solution of the problems of system ... identification and the determination of unmeasurable state variables on the basis of observations of a process, two topics of central importance in the
Quasi-linear Dialectica Extraction
NASA Astrophysics Data System (ADS)
Trifonov, Trifon
Gödel's functional interpretation [1] can be used to extract programs from non-constructive proofs. Though correct by construction, the obtained terms can be computationally inefficient. One reason for slow execution is the re-evaluation of equal subterms due to the use of substitution during the extraction process. In the present paper we define a variant of the interpretation, which avoids subterm repetition and achieves an almost linear bound on the size of extracted programs.
String Theory and Gauge Theories
Maldacena, Juan
2009-02-20
We will see how gauge theories, in the limit that the number of colors is large, give string theories. We will discuss some examples of particular gauge theories where the corresponding string theory is known precisely, starting with the case of the maximally supersymmetric theory in four dimensions which corresponds to ten dimensional string theory. We will discuss recent developments in this area.
ERIC Educational Resources Information Center
Golledge, Reginald G.
1996-01-01
Discusses the origin of theories in geography and particularly the development of location theories. Considers the influence of economic theory on agricultural land use, industrial location, and geographic location theories. Explores a set of interrelated activities that show how the marketing process illustrates process theory. (MJP)
ERIC Educational Resources Information Center
Schubert, Leo
1973-01-01
Briefly describes two antagonistic learning theories: the Association Theory proposed by Skinner and the Field or Cognitive Theory supported by Piaget. Suggests the need for consistency in theoretical approach in the teaching of science at the college level. (JR)
Kinetic Theory of Instability-Enhanced Collisional Effects
NASA Astrophysics Data System (ADS)
Baalrud, Scott D.
2009-11-01
A generalization of the Lenard-Balescu collision operator is derived which accounts for the scattering of particles by instability amplified fluctuations that originate from the thermal motion of discrete particles (in contrast to evoking a fluctuation level externally, as is done in quasilinear kinetic theory) [1]. Emphasis is placed on plasmas with convective instabilities. It is shown that an instability-enhanced collective response results which can be the primary mechanism for scattering particles, being orders of magnitude more frequent than conventional Coulomb collisions, even though the fluctuations are in a linear growth phase. The resulting collision operator is shown to obey conservation laws (energy, momentum, and density), Galilean invariance, and the Boltzmann H-theorem. It has the property that Maxwellian is the unique equilibrium distribution function; again in contrast to weak turbulence or quasilinear theories. Instability-enhanced collisional effects can dominate particle scattering and cause strong frictional forces. For example, this theory has been applied to two outstanding problems: Langmuir's paradox [2] and determining Bohm's criterion for plasmas with multiple ion species [3]. Langmuir's paradox is a measurement of anomalous electron scattering rapidly establishing a Maxwellian distribution in gas discharges with low temperature and pressure. This may be explained by instability-enhanced scattering in the plasma-boundary transition region (presheath) where convective ion-acoustic instabilities are excited. Bohm's criterion for multiple ion species is a single condition that the ion fluid speeds must obey at the sheath edge; but it is insufficient to determine the speed of individual species. It is shown that an instability-enhanced collisional friction, due to streaming instabilities in the presheath, determines this criterion.[4pt] [1] S.D. Baalrud, J.D. Callen, and C.C. Hegna, Phys. Plasmas 15, 092111 (2008).[0pt] [2] S.D. Baalrud, J
Numerical methods for one-dimensional reaction-diffusion equations arising in combustion theory
NASA Technical Reports Server (NTRS)
Ramos, J. I.
1987-01-01
A review of numerical methods for one-dimensional reaction-diffusion equations arising in combustion theory is presented. The methods reviewed include explicit, implicit, quasi-linearization, time linearization, operator-splitting, random walk and finite-element techniques and methods of lines. Adaptive and nonadaptive procedures are also reviewed. These techniques are applied first to solve two model problems which have exact traveling wave solutions with which the numerical results can be compared. This comparison is performed in terms of both the wave profile and computed wave speed. It is shown that the computed wave speed is not a good indicator of the accuracy of a particular method. A fourth-order time-linearized, Hermitian compact operator technique is found to be the most accurate method for a variety of time and space sizes.
Casanova, S.; Schlickeiser, R.
2012-02-01
Recently, a new transport theory of cosmic rays in magnetized space plasmas extending the quasilinear approximation to the particle orbit has been developed for the case of an axisymmetric incompressible magnetic turbulence. Here, we generalize the approach to the important physical case of a compressible plasma. As previously obtained in the case of an incompressible plasma, we allow arbitrary gyrophase deviations from the unperturbed spiral orbits in the uniform magnetic field. For the case of quasi-stationary and spatially homogeneous magnetic turbulence we derive, in the small Larmor radius approximation, gyrophase-averaged cosmic-ray Fokker-Planck coefficients. Upper limits for the perpendicular and pitch-angle Fokker-Planck coefficients and for the perpendicular and parallel spatial diffusion coefficients are presented.
ERIC Educational Resources Information Center
Williams, Jeffrey
1994-01-01
Considers the recent flood of anthologies of literary criticism and theory as exemplifications of the confluence of pedagogical concerns, economics of publishing, and other historical factors. Looks specifically at how these anthologies present theory. Cites problems with their formatting theory and proposes alternative ways of organizing theory…
Harris, Tina
2015-04-29
Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.
NASA Astrophysics Data System (ADS)
Jaynes, E. T.; Bretthorst, G. Larry
2003-04-01
Foreword; Preface; Part I. Principles and Elementary Applications: 1. Plausible reasoning; 2. The quantitative rules; 3. Elementary sampling theory; 4. Elementary hypothesis testing; 5. Queer uses for probability theory; 6. Elementary parameter estimation; 7. The central, Gaussian or normal distribution; 8. Sufficiency, ancillarity, and all that; 9. Repetitive experiments, probability and frequency; 10. Physics of 'random experiments'; Part II. Advanced Applications: 11. Discrete prior probabilities, the entropy principle; 12. Ignorance priors and transformation groups; 13. Decision theory: historical background; 14. Simple applications of decision theory; 15. Paradoxes of probability theory; 16. Orthodox methods: historical background; 17. Principles and pathology of orthodox statistics; 18. The Ap distribution and rule of succession; 19. Physical measurements; 20. Model comparison; 21. Outliers and robustness; 22. Introduction to communication theory; References; Appendix A. Other approaches to probability theory; Appendix B. Mathematical formalities and style; Appendix C. Convolutions and cumulants.
On extended analytic theory of 2D ballooning modes in tokamak plasmas
NASA Astrophysics Data System (ADS)
Abdoul, Peshwaz; Dickinson, David; Roach, Colin; Wilson, Howard
2016-10-01
We have extended the leading order ballooning theory which typically yields more unstable isolated mode (IM) that usually sit on the outboard mid-plane, to higher order where less unstable general mode (GM) sits at a different poloidal location. Our analytic theory has revealed that any poloidal shift of the mode with respect to the outboard mid-plane - arising from the effect of profile variations, for example - is always accompanied by an asymmetry of the radial eigenmode structure. Hence, GMs have radial asymmetry. Our theory can have important consequences, especially for calculations that invoke quasilinear theory to model intrinsic rotation arising from Reynolds stress. This is very important in ITER for which external torques are small. In such theories it is the radial asymmetry in the global GM mode which can generate a Reynolds stress that could in principle contribute to the poloidal flow during the low to high (L-H) mode transition in tokamaks. I am also an associate member at the York Plasma Institute, University of York and teaching at the Physics Department, University of Sulaimani, Kurdistan Region, Iraq.
Sanfilippo, Antonio P.
2005-12-27
Graph theory is a branch of discrete combinatorial mathematics that studies the properties of graphs. The theory was pioneered by the Swiss mathematician Leonhard Euler in the 18th century, commenced its formal development during the second half of the 19th century, and has witnessed substantial growth during the last seventy years, with applications in areas as diverse as engineering, computer science, physics, sociology, chemistry and biology. Graph theory has also had a strong impact in computational linguistics by providing the foundations for the theory of features structures that has emerged as one of the most widely used frameworks for the representation of grammar formalisms.
Dufwenberg, Martin
2011-03-01
Game theory is a toolkit for examining situations where decision makers influence each other. I discuss the nature of game-theoretic analysis, the history of game theory, why game theory is useful for understanding human psychology, and why game theory has played a key role in the recent explosion of interest in the field of behavioral economics. WIREs Cogni Sci 2011 2 167-173 DOI: 10.1002/wcs.119 For further resources related to this article, please visit the WIREs website.
NASA Astrophysics Data System (ADS)
Solari, Soren; Smith, Andrew; Minnett, Rupert; Hecht-Nielsen, Robert
2008-06-01
Confabulation Theory [Hecht-Nielsen R. Confabulation theory. Springer-Verlag; 2007] is the first comprehensive theory of human and animal cognition. Here, we briefly describe Confabulation Theory and discuss experimental results that suggest the theory is correct. Simply put, Confabulation Theory proposes that thinking is like moving. In humans, the theory postulates that there are roughly 4000 thalamocortical modules, the “muscles of thought”. Each module performs an internal competition ( confabulation) between its symbols, influenced by inputs delivered via learned axonal associations with symbols in other modules. In each module, this competition is controlled, as in an individual muscle, by a single graded (i.e., analog) thought control signal. The final result of this confabulation process is a single active symbol, the expression of which also results in launching of action commands that trigger and control subsequent movements and/or thought processes. Modules are manipulated in groups under coordinated, event-contingent control, in a similar manner to our 700 muscles. Confabulation Theory hypothesizes that the control of thinking is a direct evolutionary outgrowth of the control of movement. Establishing a complete understanding of Confabulation Theory will require launching and sustaining a massive new phalanx of confabulation neuroscience research.
NASA Astrophysics Data System (ADS)
Changala, P. Bryan; Baraban, Joshua H.
2016-11-01
We present a perturbative method for ab initio calculations of rotational and rovibrational effective Hamiltonians of both rigid and non-rigid molecules. Our approach is based on a curvilinear implementation of second order vibrational Møller-Plesset perturbation theory extended to include rotational effects via a second order contact transformation. Though more expensive, this approach is significantly more accurate than standard second order vibrational perturbation theory for systems that are poorly described to zeroth order by rectilinear normal mode harmonic oscillators. We apply this method to and demonstrate its accuracy on two molecules: Si2C, a quasilinear triatomic with significant bending anharmonicity, and CH3NO2, which contains a completely unhindered methyl rotor. In addition to these two examples, we discuss several key technical aspects of the method, including an efficient implementation of Eckart and quasi-Eckart frame embedding that does not rely on numerical finite differences.
Changala, P Bryan; Baraban, Joshua H
2016-11-07
We present a perturbative method for ab initio calculations of rotational and rovibrational effective Hamiltonians of both rigid and non-rigid molecules. Our approach is based on a curvilinear implementation of second order vibrational Møller-Plesset perturbation theory extended to include rotational effects via a second order contact transformation. Though more expensive, this approach is significantly more accurate than standard second order vibrational perturbation theory for systems that are poorly described to zeroth order by rectilinear normal mode harmonic oscillators. We apply this method to and demonstrate its accuracy on two molecules: Si2C, a quasilinear triatomic with significant bending anharmonicity, and CH3NO2, which contains a completely unhindered methyl rotor. In addition to these two examples, we discuss several key technical aspects of the method, including an efficient implementation of Eckart and quasi-Eckart frame embedding that does not rely on numerical finite differences.
NASA Astrophysics Data System (ADS)
Curtright, Thomas
2002-07-01
New features are described for models with multi-particle area-dependent potentials, in any number of dimensions. The corresponding many-body field theories are investigated for classical configurations. Some explicit solutions are given, and some conjectures are made about chaos in such field theories.
NASA Astrophysics Data System (ADS)
Fang, Chung; Wang, Yongqi; Hutter, Kolumban
2006-12-01
In the present study, the Goodman-Cowin theory is extended to incorporate plastic features to construct an elasto-visco-plastic constitutive model for flowing dry granular materials. A thermodynamic analysis, based on the Müller-Liu entropy principle, is performed to derive the equilibrium expressions of the constitutive variables. Non-equilibrium responses are proposed by use of a quasi-linear theory, in particular a hypoplastic-type relation is introduced to model the internal friction and plastic effects. It is illustrated that the Goodman-Cowin theory can appropriately be extended to include frictional effects into the evolution equation of the volume fraction (i.e. the so-called balance of equilibrated force) and the equilibrium expression of the Cauchy stress tensor. The implemented model is applied to investigate conventional steady isothermal granular flows with incompressible grains, namely simple plane shear, inclined gravity-driven and vertical channel-flows, respectively. Numerical results show that the hypoplastic effect plays a significant role in the behaviour of a flowing granular material. The obtained profiles of the velocity and the volume fraction with hypoplastic features are usually sharper and the shear-thinning effect is more significant than that without such plastic effects. This points at the possible wide applicability of the present model in the fields of granular materials and soil mechanics. In addition, the present paper also provides a framework for a possible extension of the hypoplastic theories which can be further undertaken. Copyright
ERIC Educational Resources Information Center
Koschmann, Timothy; Roschelle, Jeremy; Nardi, Bonnie A.
1998-01-01
Includes three articles that discuss activity theory, based on "Context and Consciousness." Topics include human-computer interaction; computer interfaces; hierarchical structuring; mediation; contradictions and development; failure analysis; and designing educational technology. (LRW)
A Thermodynamic Theory Of Solid Viscoelasticity. Part 1: Linear Viscoelasticity.
NASA Technical Reports Server (NTRS)
Freed, Alan D.; Leonov, Arkady I.
2002-01-01
The present series of three consecutive papers develops a general theory for linear and finite solid viscoelasticity. Because the most important object for nonlinear studies are rubber-like materials, the general approach is specified in a form convenient for solving problems important for many industries that involve rubber-like materials. General linear and nonlinear theories for non-isothermal deformations of viscoelastic solids are developed based on the quasi-linear approach of non-equilibrium thermodynamics. In this, the first paper of the series, we analyze non-isothermal linear viscoelasticity, which is applicable in a range of small strains not only to all synthetic polymers and bio-polymers but also to some non-polymeric materials. Although the linear case seems to be well developed, there still are some reasons to implement a thermodynamic derivation of constitutive equations for solid-like, non-isothermal, linear viscoelasticity. The most important is the thermodynamic modeling of thermo-rheological complexity , i.e. different temperature dependences of relaxation parameters in various parts of relaxation spectrum. A special structure of interaction matrices is established for different physical mechanisms contributed to the normal relaxation modes. This structure seems to be in accord with observations, and creates a simple mathematical framework for both continuum and molecular theories of the thermo-rheological complex relaxation phenomena. Finally, a unified approach is briefly discussed that, in principle, allows combining both the long time (discrete) and short time (continuous) descriptions of relaxation behaviors for polymers in the rubbery and glassy regions.
Effective theories of universal theories
Wells, James D.; Zhang, Zhengkang
2016-01-20
It is well-known but sometimes overlooked that constraints on the oblique parameters (most notably S and T parameters) are generally speaking only applicable to a special class of new physics scenarios known as universal theories. The oblique parameters should not be associated with Wilson coefficients in a particular operator basis in the effective field theory (EFT) framework, unless restrictions have been imposed on the EFT so that it describes universal theories. Here, we work out these restrictions, and present a detailed EFT analysis of universal theories. We find that at the dimension-6 level, universal theories are completely characterized by 16more » parameters. They are conveniently chosen to be: 5 oblique parameters that agree with the commonly-adopted ones, 4 anomalous triple-gauge couplings, 3 rescaling factors for the h3, hff, hV V vertices, 3 parameters for hV V vertices absent in the Standard Model, and 1 four-fermion coupling of order yf2. Furthermore, all these parameters are defined in an unambiguous and basis-independent way, allowing for consistent constraints on the universal theories parameter space from precision electroweak and Higgs data.« less
Effective theories of universal theories
Wells, James D.; Zhang, Zhengkang
2016-01-20
It is well-known but sometimes overlooked that constraints on the oblique parameters (most notably S and T parameters) are generally speaking only applicable to a special class of new physics scenarios known as universal theories. The oblique parameters should not be associated with Wilson coefficients in a particular operator basis in the effective field theory (EFT) framework, unless restrictions have been imposed on the EFT so that it describes universal theories. Here, we work out these restrictions, and present a detailed EFT analysis of universal theories. We find that at the dimension-6 level, universal theories are completely characterized by 16 parameters. They are conveniently chosen to be: 5 oblique parameters that agree with the commonly-adopted ones, 4 anomalous triple-gauge couplings, 3 rescaling factors for the h^{3}, hff, hV V vertices, 3 parameters for hV V vertices absent in the Standard Model, and 1 four-fermion coupling of order yf^{2}. Furthermore, all these parameters are defined in an unambiguous and basis-independent way, allowing for consistent constraints on the universal theories parameter space from precision electroweak and Higgs data.
Conference on Operator Theory, Wavelet Theory and Control Theory
1993-09-30
Bourbaki 662 (1985-1986). [9] Meyer, Y., Ondelettes et operateurs I, Hermann editeurs des sciences et des arts, 1990. [10] Natanson, I. P., Theory of...OPERATOR THEORY , WAVELET THEORY & CONTROL THEORY (U)F 6. AUTHOR(S) 2304/ES Professor Xingde Dai F49620-93-1-0180 7. PERFORMING ORGANIZATION NAME(S) AND...1STRIBUTION IS UNLIMITED UTL 13. ABSTRACT (Maximum 200 words) The conference on Interaction Between Operator Theory , Wavelet Theory and Control Theory
ERIC Educational Resources Information Center
Sferra, Bobbie A.; Paddock, Susan C.
This booklet describes various theoretical aspects of leadership, including the proper exercise of authority, effective delegation, goal setting, exercise of control, assignment of responsibility, performance evaluation, and group process facilitation. It begins by describing the evolution of general theories of leadership from historic concepts…
Das, Animesh; Gieb, Klaus; Krupskaya, Yulia; Demeshko, Serhiy; Dechert, Sebastian; Klingeler, Rüdiger; Kataev, Vladislav; Büchner, Bernd; Müller, Paul; Meyer, Franc
2011-03-16
First members of a new family of heterometallic Mn/Ni complexes [Mn(2)Ni(3)X(2)L(4)(LH)(2)(H(2)O)(2)] (X = Cl: 1; X = Br: 2) with the new ligand 2-{3-(2-hydroxyphenyl)-1H-pyrazol-1-yl}ethanol (H(2)L) have been synthesized, and single crystals obtained from CH(2)Cl(2) solutions have been characterized crystallographically. The molecular structures feature a quasi-linear Mn(III)-Ni(II)-Ni(II)-Ni(II)-Mn(III) core with six-coordinate metal ions, where elongated axes of all the distorted octahedral coordination polyhedra are aligned parallel and are fixed with respect to each other by intramolecular hydrogen bonds. 1 and 2 exhibit quite strong ferromagnetic exchange interactions throughout (J(Mn-Ni) ≈ 40 K (1) or 42 K (2); J(Ni-Ni) ≈ 22 K (1) or 18 K (2)) that lead to an S(tot) = 7 ground state, and a sizable uniaxial magnetoanisotropy with D(mol) values -0.55 K (1) and -0.45 K (2). These values are directly derived also from frequency- and temperature-dependent high-field EPR spectra. Slow relaxation of the magnetization at low temperatures and single-molecule magnet (SMM) behavior are evident from frequency-dependent peaks in the out-of-phase ac susceptibilities and magnetization versus dc field measurements, with significant energy barriers to spin reversal U(eff) = 27 K (1) and 22 K (2). Pronounced quantum tunnelling steps are observed in the hysteresis loops of the temperature- and scan rate-dependent magnetization data, but with the first relaxation step shifted above (1) or below (2) the zero crossing of the magnetic field, despite the very similar molecular structures. The different behavior of 1 and 2 is interpreted in terms of antiferromagnetic (1) or ferromagnetic (2) intermolecular interactions, which are discussed in view of the subtle differences of intermolecular contacts within the crystal lattice.
Theory Survey or Survey Theory?
ERIC Educational Resources Information Center
Dean, Jodi
2010-01-01
Matthew Moore's survey of political theorists in U.S. American colleges and universities is an impressive contribution to political science (Moore 2010). It is the first such survey of political theory as a subfield, the response rate is very high, and the answers to the survey questions provide new information about how political theorists look…
Theory of the J-band: From the Frenkel exciton to charge transfer
NASA Astrophysics Data System (ADS)
Egorov, Vladimir V.
2009-08-01
This review concerns the current status of the theory of formation of the so-called J-band (Jelley, Scheibe, 1936), an abnormally narrow, high-intensity, red-shifted optical absorption band arising from the aggregation of polymethine dyes. Two opposite approaches to explaining the physical nature of the J-band are given special attention. In the first of these, the old one based on Frenkel's statistical exciton model, the specific structure of the dye is considered irrelevant, and the J-band is explained by assuming that the quickly moving Frenkel exciton acts to average out the quasistatic disorder in electronic transition energies of molecules in the linear J-aggregate (Knapp, 1984). In the second approach, on the contrary, the specific structure of the dye (the existence of a quasilinear polymethine chain) is supposed to be very important. This new approach is based on a new theory of charge transfer. The explanation of the J-band here is that an elementary charge transfer along the J-aggregate's chromophore is dynamically pumped by the chaotic reorganization of nuclei in the nearby environment at a resonance between electronic and nuclear movements-when the motion of nuclei being reorganized is only weakly chaotic (Egorov, 2001).
1980-06-25
new experiments at 30 m ( 4 ATA) is appropriate for comparing N2 and He with respect to half times and surfacing ratios. Table 4 demonstrates the...THEORY C4 i t44 4 ’I9 41-*1 ai4 p80 7 10 009 UM"tUBNC*nm N4MDOf 29WS (DT) 6-25-80 The Seventeenth Undersea Medical Society Workshop DECOMPRESSION...Hamilton, Jr., Ph.D. Edward L Beckman, M.D. Hamilton Research Ltd. University of Hawaii 80 Grove Street School of Medicine Tarrytown, New York 10591
A quasilinear formulation of turbulence driven current
McDevitt, C. J.; Tang, Xian-Zhu; Guo, Zehua
2014-02-15
Non-inductive current drive mechanisms, such as the familiar neoclassical bootstrap current correspond to an essential component to the realization of steady state tokamak operation. In this work, we discuss a novel collisionless mechanism through which a mean plasma current may be driven in the presence of microturbulence. In analogy with the traditional neoclassical bootstrap current drive mechanism, in which the collisional equilibrium established between trapped and passing electrons results in the formation of a steady state plasma current, here we show that resonant scattering of electrons by drift wave microturbulence provides an additional means of determining the equilibrium between trapped and passing electrons. The resulting collisionless equilibrium is shown to result in the formation of an equilibrium current whose magnitude is a function of the thermodynamic forces. A mean field formulation is utilized to incorporate the above components into a unified framework through which both collisional as well as collisionless current drive mechanisms may be self-consistently treated. Utilizing a linearized Fokker-Planck collision operator, the plasma current in the presence of both collisions as well as turbulent stresses is computed, allowing for the relative strength of these two mechanisms to be quantified as a function of collisionality and fluctuation amplitude.
Fast Kalman filtering on quasilinear dendritic trees.
Paninski, Liam
2010-04-01
Optimal filtering of noisy voltage signals on dendritic trees is a key problem in computational cellular neuroscience. However, the state variable in this problem-the vector of voltages at every compartment-is very high-dimensional: realistic multicompartmental models often have on the order of N = 10(4) compartments. Standard implementations of the Kalman filter require O(N (3)) time and O(N (2)) space, and are therefore impractical. Here we take advantage of three special features of the dendritic filtering problem to construct an efficient filter: (1) dendritic dynamics are governed by a cable equation on a tree, which may be solved using sparse matrix methods in O(N) time; and current methods for observing dendritic voltage (2) provide low SNR observations and (3) only image a relatively small number of compartments at a time. The idea is to approximate the Kalman equations in terms of a low-rank perturbation of the steady-state (zero-SNR) solution, which may be obtained in O(N) time using methods that exploit the sparse tree structure of dendritic dynamics. The resulting methods give a very good approximation to the exact Kalman solution, but only require O(N) time and space. We illustrate the method with applications to real and simulated dendritic branching structures, and describe how to extend the techniques to incorporate spatially subsampled, temporally filtered, and nonlinearly transformed observations.
A Quasilinear Formulation of Turbulence Driven Current
NASA Astrophysics Data System (ADS)
McDevitt, C. J.; Tang, X. Z.; Guo, Z. H.
2012-10-01
Non-inductive current drive mechanisms such as the familiar bootstrap current correspond to an essential component to the realization of steady state tokamak operation. In this work we discuss a novel collisionless mechanism through which a mean plasma current may be driven in the presence of microturbulence (as seen in [1]). In analogy with the traditional bootstrap current drive mechanism, in which the collisional equilibrium established between trapped and passing particles results in the formation of a steady state plasma current, here we show that velocity space scattering by drift wave microturbulence is capable of modifying the equilibrium between trapped and passing particles leading to the generation of a mean plasma current. In the collisionless limit, this current drive mechanism can in turn be balanced either by turbulence mediated electron-ion momentum exchange or radial electron momentum transport. A mean field formulation is utilized to incorporate the above components into a unified framework through which both collisional as well as collisionless current drive mechanisms may be self-consistently treated. [4pt] [1] W. X. Wang et al., 53rd APS-DPP, Salt Lake City, Utah, 2011
NASA Astrophysics Data System (ADS)
Riyopoulos, Spilios
1996-03-01
A guiding center fluid theory is applied to model steady-state, single mode, high-power magnetron operation. A hub of uniform, prescribed density, feeds the current spokes. The spoke charge follows from the continuity equation and the incompressibility of the guiding center flow. Included are the spoke self-fields (DC and AC), obtained by an expansion around the unperturbed (zero-spoke charge) flow in powers of ν/V1, ν, and V1 being the effective charge density and AC amplitude. The spoke current is obtained as a nonlinear function of the detuning from the synchronous (Buneman-Hartree, BH) voltage Vs; the spoke charge is included in the self-consistent definition of Vs. It is shown that there is a DC voltage region of width ‖V-Vs‖˜V1, where the spoke width is constant and the spoke current is simply proportional to the AC voltage. The magnetron characteristic curves are ``flat'' in that range, and are approximated by a linear expansion around Vs. The derived formulas differ from earlier results [J. F. Hull, in Cross Field Microwave Devices, edited by E. Okress (Academic, New York, 1961), pp. 496-527] in (a) there is no current cutoff at synchronism; the tube operates well below as well above the BH voltage; (b) the characteristics are single valued within the synchronous voltage range; (c) the hub top is not treated as virtual cathode; and (d) the hub density is not equal to the Brillouin density; comparisons with tube measurements show the best agreement for hub density near half the Brillouin density. It is also shown that at low space charge and low power the gain curve is symmetric relative to the voltage (frequency) detuning. While symmetry is broken at high-power/high space charge magnetron operation, the BH voltage remains between the current cutoff voltages.
Anomalous heating of the polar E region by unstable plasma waves. II - Theory
NASA Technical Reports Server (NTRS)
St.-Maurice, J. P.; Schlegel, K.; Banks, P. M.
1981-01-01
It is found that anomalous electron temperatures in the disturbed high-latitude E region can be quantitatively explained in terms of heating by unstable plasma waves. The electron temperatures at 110 km have been measured to be as high as 1500 K instead of the expected value of about 300 K. It is shown that by using quasi-linear theory there is an ample source of heat in the unstable waves and that the measured electron temperature profiles have a shape very similar to what is expected from plasma wave heating by the modified two-stream instability. It is found that there is even more heating going to the ion gas, but that the resulting effect on the ion temperature may be difficult to measure. The best estimate of the wave heating rates leads to the conclusion that wave heating can be as much as 50% of the Joule heating for dc electric field strengths of the order of 45 mV/m or greater.
Decidability of formal theories and hyperincursivity theory
NASA Astrophysics Data System (ADS)
Grappone, Arturo G.
2000-05-01
This paper shows the limits of the Proof Standard Theory (briefly, PST) and gives some ideas of how to build a proof anticipatory theory (briefly, PAT) that has no such limits. Also, this paper considers that Gödel's proof of the undecidability of Principia Mathematica formal theory is not valid for axiomatic theories that use a PAT to build their proofs because the (hyper)incursive functions are self-representable.
Mikhailenko, V. V. Mikhailenko, V. S.; Lee, Hae June
2015-10-15
The developed kinetic theory for the stability of a magnetic-field-aligned (parallel) shear flow with inhomogeneous ion temperature [Mikhailenko et al., Phys. Plasmas 21, 072117 (2014)] predicted that a kinetic instability arises from the coupled reinforcing action of the flow velocity shear and ion temperature gradient in the cases where comparable ion and electron temperatures exist. In the present paper, the nonlinear theory was developed for the instability caused by the combined effects of ion-temperature-gradient and shear-flow (ITG–SF). The level of the electrostatic turbulence is determined for the saturation state of the instability on the basis of the nonlinear dispersion equation, which accounts for a nonlinear scattering of ions by the developed turbulence in a sheared flow. The renormalized quasilinear equation for the ion distribution function, which accounts for the turbulent scattering of ions by ITG–SF driven turbulence, was derived and employed for the estimation of the turbulent ion viscosity, the anomalous ion thermal conductivity, and anomalous ion heating rate at the saturation state of the instability.
REVIEWS OF TOPICAL PROBLEMS: Theory of the J-band: from the Frenkel exciton to charge transfer
NASA Astrophysics Data System (ADS)
Egorov, V. V.; Alfimov, M. V.
2007-10-01
This review concerns the current status of the theory of formation of the so-called J-band (Jelley, Scheibe, 1936), an abnormally narrow, high-intensity, red-shifted optical absorption band arising from the aggregation of polymethine dyes. Two opposite approaches to explaining the physical nature of the J-band are given special attention. In the first of these, the old one based on Frenkel's statistical exciton model, the specific structure of the dye is considered irrelevant, and the J-band is explained by assuming that the quickly moving Frenkel exciton acts to average out the quasistatic disorder in electronic transition energies of molecules in the linear J-aggregate (Knapp, 1984). In the second approach, on the contrary, the specific structure of the dye (the existence of a quasilinear polymethine chain) is supposed to be very important. This new approach is based on a new theory of charge transfer. The explanation of the J-band here is that an elementary charge transfer along the J-aggregate's chromophore is dynamically pumped by the chaotic reorganization of nuclei in the nearby environment at a resonance between electronic and nuclear movements — when the motion of nuclei being reorganized is only weakly chaotic (Egorov, 2001).
Grounded theory, feminist theory, critical theory: toward theoretical triangulation.
Kushner, Kaysi Eastlick; Morrow, Raymond
2003-01-01
Nursing and social science scholars have examined the compatibility between feminist and grounded theory traditions in scientific knowledge generation, concluding that they are complementary, yet not without certain tensions. This line of inquiry is extended to propose a critical feminist grounded theory methodology. The construction of symbolic interactionist, feminist, and critical feminist variants of grounded theory methodology is examined in terms of the presuppositions of each tradition and their interplay as a process of theoretical triangulation.
The Effective Field Theory of Large Scale Structures at two loops
Carrasco, John Joseph M.; Foreman, Simon; Green, Daniel; Senatore, Leonardo E-mail: sfore@stanford.edu E-mail: senatore@stanford.edu
2014-07-01
Large scale structure surveys promise to be the next leading probe of cosmological information. It is therefore crucial to reliably predict their observables. The Effective Field Theory of Large Scale Structures (EFTofLSS) provides a manifestly convergent perturbation theory for the weakly non-linear regime of dark matter, where correlation functions are computed in an expansion of the wavenumber k of a mode over the wavenumber associated with the non-linear scale k{sub NL}. Since most of the information is contained at high wavenumbers, it is necessary to compute higher order corrections to correlation functions. After the one-loop correction to the matter power spectrum, we estimate that the next leading one is the two-loop contribution, which we compute here. At this order in k/k{sub NL}, there is only one counterterm in the EFTofLSS that must be included, though this term contributes both at tree-level and in several one-loop diagrams. We also discuss correlation functions involving the velocity and momentum fields. We find that the EFTofLSS prediction at two loops matches to percent accuracy the non-linear matter power spectrum at redshift zero up to k∼ 0.6 h Mpc{sup −1}, requiring just one unknown coefficient that needs to be fit to observations. Given that Standard Perturbation Theory stops converging at redshift zero at k∼ 0.1 h Mpc{sup −1}, our results demonstrate the possibility of accessing a factor of order 200 more dark matter quasi-linear modes than naively expected. If the remaining observational challenges to accessing these modes can be addressed with similar success, our results show that there is tremendous potential for large scale structure surveys to explore the primordial universe.
Foundations for a theory of gravitation theories
NASA Technical Reports Server (NTRS)
Thorne, K. S.; Lee, D. L.; Lightman, A. P.
1972-01-01
A foundation is laid for future analyses of gravitation theories. This foundation is applicable to any theory formulated in terms of geometric objects defined on a 4-dimensional spacetime manifold. The foundation consists of (1) a glossary of fundamental concepts; (2) a theorem that delineates the overlap between Lagrangian-based theories and metric theories; (3) a conjecture (due to Schiff) that the Weak Equivalence Principle implies the Einstein Equivalence Principle; and (4) a plausibility argument supporting this conjecture for the special case of relativistic, Lagrangian-based theories.
NASA Astrophysics Data System (ADS)
Banks, Tom
2008-09-01
1. Introduction; 2. Quantum theory of free scalar fields; 3. Interacting field theory; 4. Particles of spin one, and gauge invariance; 5. Spin 1/2 particles and Fermi statistics; 6. Massive quantum electrodynamics; 7. Symmetries, Ward identities and Nambu Goldstone bosons; 8. Non-abelian gauge theory; 9. Renormalization and effective field theory; 10. Instantons and solitons; 11. Concluding remarks; Appendices; References; Index.
ERIC Educational Resources Information Center
Apsche, Jack A.
2005-01-01
In his work on the Theory of Modes, Beck (1996) suggested that there were flaws with his cognitive theory. He suggested that though there are shortcomings to his cognitive theory, there were not similar shortcomings to the practice of Cognitive Therapy. The author suggests that if there are shortcomings to cognitive theory the same shortcomings…
Nonrelativistic superstring theories
Kim, Bom Soo
2007-12-15
We construct a supersymmetric version of the critical nonrelativistic bosonic string theory [B. S. Kim, Phys. Rev. D 76, 106007 (2007).] with its manifest global symmetry. We introduce the anticommuting bc conformal field theory (CFT) which is the super partner of the {beta}{gamma} CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of type IIB superstring theory. There is one notable difference: the fermions are nonchiral. We further consider noncritical generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical nonrelativistic string theory and the lightlike linear dilaton theory.
NASA Astrophysics Data System (ADS)
Jovanović, Dejan; Barrett, Clark
The classic method of Nelson and Oppen for combining decision procedures requires the theories to be stably-infinite. Unfortunately, some important theories do not fall into this category (e.g. the theory of bit-vectors). To remedy this problem, previous work introduced the notion of polite theories. Polite theories can be combined with any other theory using an extension of the Nelson-Oppen approach. In this paper we revisit the notion of polite theories, fixing a subtle flaw in the original definition. We give a new combination theorem which specifies the degree to which politeness is preserved when combining polite theories. We also give conditions under which politeness is preserved when instantiating theories by identifying two sorts. These results lead to a more general variant of the theorem for combining multiple polite theories.
Quantum Theory is an Information Theory
NASA Astrophysics Data System (ADS)
D'Ariano, Giacomo M.; Perinotti, Paolo
2016-03-01
In this paper we review the general framework of operational probabilistic theories (OPT), along with the six axioms from which quantum theory can be derived. We argue that the OPT framework along with a relaxed version of five of the axioms, define a general information theory. We close the paper with considerations about the role of the observer in an OPT, and the interpretation of the von Neumann postulate and the Schrödinger-cat paradox.
Teaching Theory X and Theory Y in Organizational Communication
ERIC Educational Resources Information Center
Noland, Carey
2014-01-01
The purpose of the activity described here is to integrate McGregor's Theory X and Theory Y into a group application: design a syllabus that embodies either Theory X or Theory Y tenets. Students should be able to differentiate between Theory X and Theory Y, create a syllabus based on Theory X or Theory Y tenets, evaluate the different syllabi…
Identity theory and personality theory: mutual relevance.
Stryker, Sheldon
2007-12-01
Some personality psychologists have found a structural symbolic interactionist frame and identity theory relevant to their work. This frame and theory, developed in sociology, are first reviewed. Emphasized in the review are a multiple identity conception of self, identities as internalized expectations derived from roles embedded in organized networks of social interaction, and a view of social structures as facilitators in bringing people into networks or constraints in keeping them out, subsequently, attention turns to a discussion of the mutual relevance of structural symbolic interactionism/identity theory and personality theory, looking to extensions of the current literature on these topics.
Generalizability Theory and Classical Test Theory
ERIC Educational Resources Information Center
Brennan, Robert L.
2011-01-01
Broadly conceived, reliability involves quantifying the consistencies and inconsistencies in observed scores. Generalizability theory, or G theory, is particularly well suited to addressing such matters in that it enables an investigator to quantify and distinguish the sources of inconsistencies in observed scores that arise, or could arise, over…
Disengagement theory revisited.
Markson, E W
1975-01-01
Cumming and Henry erected the basic frame for a socio-cultural theory of normal aging in their 1961 book, Growing Old. The basic postulates of this theory are reviewed, and the overall structure of the theory briefly examined. Critical data necessary either to accept or reject disengagement theory are not yet available, although useful information has been gathered since the theory first appeared. Part of the difficulty in amassing "proof" or "disproof" is inherent in the intricate and complex nature of the aging process itself. This orienting paper introduced a set of contributtions by other commentators on disengagement theory.
Horn, Shawn; Lischka, Hans
2015-02-07
This study examines the dependence of the polyradical character of charged quasi-linear n-acenes and two-dimensional periacenes used as models for graphene nanoribbons in comparison to the corresponding neutral compounds. For this purpose, high-level ab initio calculations have been performed using the multireference averaged quadratic coupled cluster theory. Vertical ionization energies and electron affinities have been computed. Systematic tests show that the dependence on chain length of these quantities can be obtained from a consideration of the π system only and that remaining contributions coming from the σ orbitals or extended basis sets remain fairly constant. Using best estimate values, the experimental values for the ionization energy of the acene series can be reproduced within 0.1 eV and the experimental electron affinities within 0.4 V. The analysis of the natural orbital occupations and related unpaired electron densities shows that the ionic species exhibit a significant decrease in polyradical character and thus an increased chemical stability as compared to the neutral state.
Kheirandish, F.; Amooshahi, M.
2008-11-18
Quantum field theory of a damped vibrating string as the simplest dissipative scalar field theory is investigated by introducing a minimal coupling method. The rate of energy flowing between the system and its environment is obtained.
Interpolation and Approximation Theory.
ERIC Educational Resources Information Center
Kaijser, Sten
1991-01-01
Introduced are the basic ideas of interpolation and approximation theory through a combination of theory and exercises written for extramural education at the university level. Topics treated are spline methods, Lagrange interpolation, trigonometric approximation, Fourier series, and polynomial approximation. (MDH)
Stabilizing bottomless action theories
NASA Astrophysics Data System (ADS)
Greensite, J.; Halpern, M. B.
1984-08-01
We show how to construct the euclidean quantum theory corresponding to classical actions which are unbounded from below. Our method preserves the classical limit, the large- N limit, and the perturbative expansion of the unstabilized theories.
Covariant Noncommutative Field Theory
Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.
2008-07-02
The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced.
Constructor theory of probability
2016-01-01
Unitary quantum theory, having no Born Rule, is non-probabilistic. Hence the notorious problem of reconciling it with the unpredictability and appearance of stochasticity in quantum measurements. Generalizing and improving upon the so-called ‘decision-theoretic approach’, I shall recast that problem in the recently proposed constructor theory of information—where quantum theory is represented as one of a class of superinformation theories, which are local, non-probabilistic theories conforming to certain constructor-theoretic conditions. I prove that the unpredictability of measurement outcomes (to which constructor theory gives an exact meaning) necessarily arises in superinformation theories. Then I explain how the appearance of stochasticity in (finitely many) repeated measurements can arise under superinformation theories. And I establish sufficient conditions for a superinformation theory to inform decisions (made under it) as if it were probabilistic, via a Deutsch–Wallace-type argument—thus defining a class of decision-supporting superinformation theories. This broadens the domain of applicability of that argument to cover constructor-theory compliant theories. In addition, in this version some of the argument's assumptions, previously construed as merely decision-theoretic, follow from physical properties expressed by constructor-theoretic principles. PMID:27616914
ERIC Educational Resources Information Center
Peim, Nick
2009-01-01
This paper seeks to re-examine Yrio Engestrom's activity theory as a technology of knowledge designed to enable positive transformations of specific practices. The paper focuses on a key paper where Engestrom defines the nature and present state of activity theory. Beginning with a brief account of the relations between activity theory and…
ERIC Educational Resources Information Center
Pais, Alexandre; Valero, Paola
2014-01-01
What is the place of social theory in mathematics education research, and what is it for? This special issue of "Educational Studies in Mathematics" offers insights on what could be the role of some sociological theories in a field that has historically privileged learning theories coming from psychology and mathematics as the main…
ERIC Educational Resources Information Center
Rajendran, Gnanathusharan; Mitchell, Peter
2007-01-01
This article considers three theories of autism: The Theory of Mind Deficit, Executive Dysfunction and the Weak Central Coherence accounts. It outlines each along with studies relevant to their emergence, their expansion, their limitations and their possible integration. Furthermore, consideration is given to any implication from the theories in…
Quantum Electrodynamics: Theory
Lincoln, Don
2016-03-30
The Standard Model of particle physics is composed of several theories that are added together. The most precise component theory is the theory of quantum electrodynamics or QED. In this video, Fermilab’s Dr. Don Lincoln explains how theoretical QED calculations can be done. This video links to other videos, giving the viewer a deep understanding of the process.
ERIC Educational Resources Information Center
Rudner, Lawrence M.
This paper describes and evaluates the use of decision theory as a tool for classifying examinees based on their item response patterns. Decision theory, developed by A. Wald (1947) and now widely used in engineering, agriculture, and computing, provides a simple model for the analysis of categorical data. Measurement decision theory requires only…
Quantum Electrodynamics: Theory
Lincoln, Don
2016-07-12
The Standard Model of particle physics is composed of several theories that are added together. The most precise component theory is the theory of quantum electrodynamics or QED. In this video, Fermilabâs Dr. Don Lincoln explains how theoretical QED calculations can be done. This video links to other videos, giving the viewer a deep understanding of the process.
Constructor theory of probability.
Marletto, Chiara
2016-08-01
Unitary quantum theory, having no Born Rule, is non-probabilistic. Hence the notorious problem of reconciling it with the unpredictability and appearance of stochasticity in quantum measurements. Generalizing and improving upon the so-called 'decision-theoretic approach', I shall recast that problem in the recently proposed constructor theory of information-where quantum theory is represented as one of a class of superinformation theories, which are local, non-probabilistic theories conforming to certain constructor-theoretic conditions. I prove that the unpredictability of measurement outcomes (to which constructor theory gives an exact meaning) necessarily arises in superinformation theories. Then I explain how the appearance of stochasticity in (finitely many) repeated measurements can arise under superinformation theories. And I establish sufficient conditions for a superinformation theory to inform decisions (made under it) as if it were probabilistic, via a Deutsch-Wallace-type argument-thus defining a class of decision-supporting superinformation theories. This broadens the domain of applicability of that argument to cover constructor-theory compliant theories. In addition, in this version some of the argument's assumptions, previously construed as merely decision-theoretic, follow from physical properties expressed by constructor-theoretic principles.
Reflections on Activity Theory
ERIC Educational Resources Information Center
Bakhurst, David
2009-01-01
It is sometimes suggested that activity theory represents the most important legacy of Soviet philosophy and psychology. But what exactly "is" activity theory? The canonical account in the West is given by Engestrom, who identifies three stages in the theory's development: from Vygotsky's insights, through Leontiev's articulation of the…
La theorie autrement (Theory in Another Light).
ERIC Educational Resources Information Center
Bertocchini, Paola; Costanzo, Edwige
1985-01-01
Outlines a technique using articles from "Le Francais dans le Monde" to teach reading comprehension and theory simultaneously to teachers of French as a second language. Describes a program in Italy using this approach. (MSE)
Family systems theory, attachment theory, and culture.
Rothbaum, Fred; Rosen, Karen; Ujiie, Tatsuo; Uchida, Nobuko
2002-01-01
Family systems theory and attachment theory have important similarities and complementarities. Here we consider two areas in which the theories converge: (a) in family system theorists' description of an overly close, or "enmeshed," mother-child dyad, which attachment theorists conceptualize as the interaction of children's ambivalent attachment and mothers' preoccupied attachment; (b) in family system theorists' description of the "pursuer-distance cycle" of marital conflict, which attachment theorists conceptualize as the interaction of preoccupied and dismissive partners. We briefly review family systems theory evidence, and more extensively review attachment theory evidence, pertaining to these points of convergence. We also review cross-cultural research, which leads us to conclude that the dynamics described in both theories reflect, in part, Western ways of thinking and Western patterns of relatedness. Evidence from Japan suggests that extremely close ties between mother and child are perceived as adaptive, and are more common, and that children experience less adverse effects from such relationships than do children in the West. Moreover, in Japan there is less emphasis on the importance of the exclusive spousal relationship, and less need for the mother and father to find time alone to rekindle romantic, intimate feelings and to resolve conflicts by openly communicating their differences. Thus, the "maladaptive" pattern frequently cited by Western theorists of an extremely close mother-child relationship, an unromantic, conflictual marriage characterized by little verbal communication and a peripheral, distant father, may function very differently in other cultures. While we believe that both theories will be greatly enriched by their integration, we caution against the application of either theory outside the cultures in which they were developed.
Variational Transition State Theory
Truhlar, Donald G.
2016-09-29
This is the final report on a project involving the development and applications of variational transition state theory. This project involved the development of variational transition state theory for gas-phase reactions, including optimized multidimensional tunneling contributions and the application of this theory to gas-phase reactions with a special emphasis on developing reaction rate theory in directions that are important for applications to combustion. The development of variational transition state theory with optimized multidimensional tunneling as a useful computational tool for combustion kinetics involved eight objectives.
Levy, Florence
2007-11-01
The purpose of the present paper was to review psychological theories of autism, and to integrate these theories with neurobiological findings. Cognitive, theory of mind, language and coherence theories were identified, and briefly reviewed. Psychological theories were found not to account for the rigid/repetitive behaviours universally described in autistic subjects, and underlying neurobiological systems were identified. When the developing brain encounters constrained connectivity, it evolves an abnormal organization, the features of which may be best explained by a developmental failure of neural connectivity, where high local connectivity develops in tandem with low long-range connectivity, resulting in constricted repetitive behaviours.
Testing higher-order Lagrangian perturbation theory against numerical simulation. 1: Pancake models
NASA Technical Reports Server (NTRS)
Buchert, T.; Melott, A. L.; Weiss, A. G.
1993-01-01
We present results showing an improvement of the accuracy of perturbation theory as applied to cosmological structure formation for a useful range of quasi-linear scales. The Lagrangian theory of gravitational instability of an Einstein-de Sitter dust cosmogony investigated and solved up to the third order is compared with numerical simulations. In this paper we study the dynamics of pancake models as a first step. In previous work the accuracy of several analytical approximations for the modeling of large-scale structure in the mildly non-linear regime was analyzed in the same way, allowing for direct comparison of the accuracy of various approximations. In particular, the Zel'dovich approximation (hereafter ZA) as a subclass of the first-order Lagrangian perturbation solutions was found to provide an excellent approximation to the density field in the mildly non-linear regime (i.e. up to a linear r.m.s. density contrast of sigma is approximately 2). The performance of ZA in hierarchical clustering models can be greatly improved by truncating the initial power spectrum (smoothing the initial data). We here explore whether this approximation can be further improved with higher-order corrections in the displacement mapping from homogeneity. We study a single pancake model (truncated power-spectrum with power-spectrum with power-index n = -1) using cross-correlation statistics employed in previous work. We found that for all statistical methods used the higher-order corrections improve the results obtained for the first-order solution up to the stage when sigma (linear theory) is approximately 1. While this improvement can be seen for all spatial scales, later stages retain this feature only above a certain scale which is increasing with time. However, third-order is not much improvement over second-order at any stage. The total breakdown of the perturbation approach is observed at the stage, where sigma (linear theory) is approximately 2, which corresponds to the
NASA Technical Reports Server (NTRS)
Owre, Sam; Shankar, Natarajan; Butler, Ricky W. (Technical Monitor)
2001-01-01
The purpose of this task was to provide a mechanism for theory interpretations in a prototype verification system (PVS) so that it is possible to demonstrate the consistency of a theory by exhibiting an interpretation that validates the axioms. The mechanization makes it possible to show that one collection of theories is correctly interpreted by another collection of theories under a user-specified interpretation for the uninterpreted types and constants. A theory instance is generated and imported, while the axiom instances are generated as proof obligations to ensure that the interpretation is valid. Interpretations can be used to show that an implementation is a correct refinement of a specification, that an axiomatically defined specification is consistent, or that a axiomatically defined specification captures its intended models. In addition, the theory parameter mechanism has been extended with a notion of theory as parameter so that a theory instance can be given as an actual parameter to an imported theory. Theory interpretations can thus be used to refine an abstract specification or to demonstrate the consistency of an axiomatic theory. In this report we describe the mechanism in detail. This extension is a part of PVS version 3.0, which will be publicly released in mid-2001.
[Introduction to grounded theory].
Wang, Shou-Yu; Windsor, Carol; Yates, Patsy
2012-02-01
Grounded theory, first developed by Glaser and Strauss in the 1960s, was introduced into nursing education as a distinct research methodology in the 1970s. The theory is grounded in a critique of the dominant contemporary approach to social inquiry, which imposed "enduring" theoretical propositions onto study data. Rather than starting from a set theoretical framework, grounded theory relies on researchers distinguishing meaningful constructs from generated data and then identifying an appropriate theory. Grounded theory is thus particularly useful in investigating complex issues and behaviours not previously addressed and concepts and relationships in particular populations or places that are still undeveloped or weakly connected. Grounded theory data analysis processes include open, axial and selective coding levels. The purpose of this article was to explore the grounded theory research process and provide an initial understanding of this methodology.
Finite elasto-plastic deformation. I - Theory and numerical examples
NASA Technical Reports Server (NTRS)
Osias, J. R.; Swedlow, J. L.
1974-01-01
It is demonstrated that the problem of elasto-plastic finite deformation is governed by a quasi-linear model irrespective of deformation magnitude. This feature follows from the adoption of a rate viewpoint toward finite deformation analysis in an Eulerian reference frame. Objectivity of the formulation is preserved by introduction of a frame-invariant stress rate. Equations for piece-wise linear incremental finite element analysis are developed by application of the Galerkin method to the instantaneously linear governing differential equations of the quasi-linear model. Numerical solution capability has been established for problems of plane strain and plane stress. The accuracy of the numerical analysis is demonstrated by consideration of a number of problems of homogeneous finite deformation admitting comparative analytic solution. It is shown that accurate, objective numerical solutions can be obtained for problems involving dimensional changes of an order of magnitude and rotations of a full radian.
Supersymmetry and String Theory
NASA Astrophysics Data System (ADS)
Dine, Michael
2016-01-01
Preface to the first edition; Preface to the second edition; A note on choice of metric; Text website; Part I. Effective Field Theory: The Standard Model, Supersymmetry, Unification: 1. Before the Standard Model; 2. The Standard Model; 3. Phenomenology of the Standard Model; 4. The Standard Model as an effective field theory; 5. Anomalies, instantons and the strong CP problem; 6. Grand unification; 7. Magnetic monopoles and solitons; 8. Technicolor: a first attempt to explain hierarchies; Part II. Supersymmetry: 9. Supersymmetry; 10. A first look at supersymmetry breaking; 11. The Minimal Supersymmetric Standard Model; 12. Supersymmetric grand unification; 13. Supersymmetric dynamics; 14. Dynamical supersymmetry breaking; 15. Theories with more than four conserved supercharges; 16. More supersymmetric dynamics; 17. An introduction to general relativity; 18. Cosmology; 19. Astroparticle physics and inflation; Part III. String Theory: 20. Introduction; 21. The bosonic string; 22. The superstring; 23. The heterotic string; 24. Effective actions in ten dimensions; 25. Compactification of string theory I. Tori and orbifolds; 26. Compactification of string theory II. Calabi-Yau compactifications; 27. Dynamics of string theory at weak coupling; 28. Beyond weak coupling: non-perturbative string theory; 29. Large and warped extra dimensions; 30. The landscape: a challenge to the naturalness principle; 31. Coda: where are we headed?; Part IV. The Appendices: Appendix A. Two-component spinors; Appendix B. Goldstone's theorem and the pi mesons; Appendix C. Some practice with the path integral in field theory; Appendix D. The beta function in supersymmetric Yang-Mills theory; References; Index.
Dynamics of zonal flows: failure of wave-kinetic theory, and new geometrical optics approximations
NASA Astrophysics Data System (ADS)
Parker, Jeffrey B.
2016-12-01
The self-organisation of turbulence into regular zonal flows can be fruitfully investigated with quasi-linear methods and statistical descriptions. A wave-kinetic equation that assumes asymptotically large-scale zonal flows leads to ultraviolet divergence. From an exact description of quasi-linear dynamics emerges two better geometrical optics approximations. These involve not only the mean flow shear but also the second and third derivative of the mean flow. One approximation takes the form of a new wave-kinetic equation, but is only valid when the zonal flow is quasi-static and wave action is conserved.
Naylor, Ron
2007-03-01
The aim of Galileo's tidal theory was to show that the tides were produced entirely by the earth's motion and thereby to demonstrate the physical truth of Copernicanism. However, in the Dialogue Concerning the Two Chief World Systems Galileo did not explain some of the most significant aspects of the theory completely. As a consequence, the way the theory works has long been disputed. Though there exist a number of interpretations in the literature, the most widely accepted are based on ideas that are not explicitly articulated by Galileo in the Dialogue. This essay attempts to understand the way the theory functions in terms of Galilean physics. It is an interpretation of the theory based solely on Galileo's arguments--and one that reveals it to have had some unrecognized consequences. This interpretation indicates that Galileo's theory would not have worked in the manner he described in the Dialogue.
Children's theories of motivation.
Gurland, Suzanne T; Glowacky, Victoria C
2011-09-01
To investigate children's theories of motivation, we asked 166 children (8-12 years of age) to rate the effect of various motivational strategies on task interest, over the short and long terms, in activities described as appealing or unappealing. Children viewed the rewards strategy as resulting in greatest interest except when implemented over the long term for appealing activities. Individual difference analyses revealed that some children held operant theories of motivation, in which rewards were central, and others held hybrid theories, in which rewards were key, but some allowance was made for interest to be self-sustaining in the absence of inducements. Children's theories predicted their academic self-regulation. Their theories are discussed relative to an expert theory of motivation.
Automated Lattice Perturbation Theory
Monahan, Christopher
2014-11-01
I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.
NASA Technical Reports Server (NTRS)
Ostwald, Wolfgang
1988-01-01
A brief summary of the fundamentals of the Linear theory of flotation is given. The theory by no means contradicts the previous Laminar theory or even the thermodynamics (Wark-Siedler), rather it is a refinement of the known Hardy-Langmuir-Harkin conceptions for the case when there are not two phases and phase boundaries, but rather three phases and corresponding phase boundary edges. The appearance of such three-phase boundaries (ore, water, air) is characteristic for modern flotation methods.
Theory Modeling and Simulation
Shlachter, Jack
2012-08-23
Los Alamos has a long history in theory, modeling and simulation. We focus on multidisciplinary teams that tackle complex problems. Theory, modeling and simulation are tools to solve problems just like an NMR spectrometer, a gas chromatograph or an electron microscope. Problems should be used to define the theoretical tools needed and not the other way around. Best results occur when theory and experiments are working together in a team.
ERIC Educational Resources Information Center
Costley, Kevin C.
2006-01-01
University professors teaching pre-service teachers base much of their philosophies on theories. Students often ask "Why do we have theories?" "What is the purpose of theories?" "If we like a theory, do we have to use all of the theory?" The most frequent controversial issue is how to use a particular theory in a practical way. In the quest for…
Between Theory and Observations
NASA Astrophysics Data System (ADS)
Wepster, Steven
Three great mathematicians dominate the history of lunar theory in the middle of the eighteenth century: Leonhard Euler, Alexis Clairaut, and Jean le Rond d’Alembert. Each of them made a lasting contribution to the theory of celestial mechanics and their results had a broader impact than on lunar theory alone. To name but a few examples, Euler codified the trigonometric functions and pioneered the method of variation of orbital constants; Clairaut solved the arduous problem of the motion of the lunar apogee, thereby dealing a decisive blow to the sceptics of Newton’s law of gravitation; and d’Alembert worked out an accurate theory of precession and nutation.
1976-05-01
A~ —~ on 022 CAMBRIDGE UNIV (ENGLAND) CAVEND ISH LAB —. FIG 20/12 —“1THEORY OF SOLID SURFACES .(U) MAY 76 ~J C INKS ON, P W ANDERSON AF AFOSR...t_ ~ - ~ - ~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~ Grant Number AFOSR 73—2le~9 ~ Theory of Solid Surfaces J.C. INKSON and P.W. ANDERSON Cavendish Laboratory... solid state techniques to the theory of nucleii and neutron stars . On surfaces an important : ew development is described in the theory of catalysis
NASA Astrophysics Data System (ADS)
Chen, Jing-Yuan; Son, Dam Thanh
2017-02-01
We develop an extension of the Landau Fermi liquid theory to systems of interacting fermions with non-trivial Berry curvature. We propose a kinetic equation and a constitutive relation for the electromagnetic current that together encode the linear response of such systems to external electromagnetic perturbations, to leading and next-to-leading orders in the expansion over the frequency and wave number of the perturbations. We analyze the Feynman diagrams in a large class of interacting quantum field theories and show that, after summing up all orders in perturbation theory, the current-current correlator exactly matches with the result obtained from the kinetic theory.
Lincoln, Don
2016-07-12
The Big Bang is the name of the most respected theory of the creation of the universe. Basically, the theory says that the universe was once smaller and denser and has been expending for eons. One common misconception is that the Big Bang theory says something about the instant that set the expansion into motion, however this isnât true. In this video, Fermilabâs Dr. Don Lincoln tells about the Big Bang theory and sketches some speculative ideas about what caused the universe to come into existence.
NASA Technical Reports Server (NTRS)
Baird, J. K.
1986-01-01
The Ostwald-ripening theory is deduced and discussed starting from the fundamental principles such as Ising model concept, Mayer cluster expansion, Langer condensation point theory, Ginzburg-Landau free energy, Stillinger cutoff-pair potential, LSW-theory and MLSW-theory. Mathematical intricacies are reduced to an understanding version. Comparison of selected works, from 1949 to 1984, on solution of diffusion equation with and without sink/sources term(s) is presented. Kahlweit's 1980 work and Marqusee-Ross' 1954 work are more emphasized. Odijk and Lekkerkerker's 1985 work on rodlike macromolecules is introduced in order to simulate interested investigators.
Lincoln, Don
2014-09-30
The Big Bang is the name of the most respected theory of the creation of the universe. Basically, the theory says that the universe was once smaller and denser and has been expending for eons. One common misconception is that the Big Bang theory says something about the instant that set the expansion into motion, however this isn’t true. In this video, Fermilab’s Dr. Don Lincoln tells about the Big Bang theory and sketches some speculative ideas about what caused the universe to come into existence.
A Theory of Imperfection: An Imperfect Theory?
ERIC Educational Resources Information Center
Piel, Ellen R.
1979-01-01
Problems faced by counselor education programs is that of reconciling the split between the traditional academic emphasis on teaching and research and practical experience and personal growth. Contends counselors' failure to recognize the value of theories in counseling may pose some problems for our profession as a whole. (Author)
Trubitsyn, A G
2012-01-01
In attempts to develop a means of life prolongation the humankind has created more than three hundred theories of the aging; each of them offers the original cause of aging. However, none of them has given practical result by now. The majority of the theories have now only historical interest. There are several different theories that are mainly under consideration currently. They are based on reliable, proven evidence: the free radical theory, the protein error theory, the replicative senescence theory, the theory of reparation weakening, the immunological theory, several versions of neuroendocrinal theories, and programmed aging theory. The theory presented here is based on conception that the life as the phenomenon represents many of the interconnected physical and chemical processes propelled by energy of the mitochondrial bioenergetical machine. Gradual degradation of all vital processes is caused by the programmed decrease in level of bioenergetics. This theory unites all existing theories of aging constructed on authentic facts: it is shown, that such fundamental phenomena accompanying aging process as the increase in level of reactive oxygen species (ROS), the decrease in the general level of protein synthesis, the limitation of cellular dividing (Haiflick limit), decrease in efficiency of reparation mechanisms are caused by bioenergetics attenuation. Each of these phenomena in turn generates a number of harmful secondary processes. Any of the theories bases on one of these destructive phenomena or their combination. Hence, each of them describes one of sides of process of the aging initially caused by programmed decrease of level of bioenergetics. This united theory gives the chance to understand the nature of aging clock and explains a phenomenon of increase in longevity at the condition of food restriction. Failures of attempts to develop means from aging are explained by that the manipulations with the separate secondary phenomena of attenuation of
Universality and string theory
NASA Astrophysics Data System (ADS)
Bachlechner, Thomas Christian
The first run at the Large Hadron Collider has deeply challenged conventional notions of naturalness, and CMB polarization experiments are about to open a new window to early universe cosmology. As a compelling candidate for the ultraviolet completion of the standard model, string theory provides a prime opportunity to study both early universe cosmology and particle physics. However, relating low energy observations to ultraviolet physics requires knowledge of the metastable states of string theory through the study of vacua. While it is difficult to directly obtain infrared data from explicit string theory constructions, string theory imposes constraints on low energy physics. The study of ensembles of low energy theories consistent with ultra-violet constraints provides insight on generic features we might expect to occur in string compactifications. In this thesis we present a statistical treatment of vacuum stability and vacuum properties in the context of random supergravity theories motivated by string theory. Early universe cosmology provides another avenue to high energy physics. From the low energy perspective large field inflation is typically considered highly unnatural: the scale relevant for the diameter of flat regions in moduli space is sub-Planckian in regions of perturbative control. To approach this problem, we consider generic Calabi-Yau compactifications of string theory and find that super-Planckian diameters of axion fundamental domains in fact arise generically. We further demonstrate that such super-Planckian flat regions are plausibly consistent with theWeak Gravity Conjecture.
NASA Astrophysics Data System (ADS)
Livens, G. H.
2016-10-01
Preface; 1. The electric field; 2. Dielectric theory; 3. Electric currents; 4. The magnetic field; 5. The dynamics of the magnetic field; 6. Maxwell's electromagnetic theory; 7. Electromagnetic oscillations and waves; 8. The electrodynamics of moving media; Appendix 1. On the mechanism of magnetic induction; Appendix 2. On the mechanism of metallic conduction; Index.
ERIC Educational Resources Information Center
Minter, Robert L.
2011-01-01
This article addresses the myriad of pedagogical and andragogical issues facing university educators in the student learning process. It briefly explores the proliferation of learning theories in an attempt to develop awareness among faculty who teach at the university/college levels that not all theories of learning apply to the adult learner. In…
ERIC Educational Resources Information Center
Shor, Mikhael
2003-01-01
States making game theory relevant and accessible to students is challenging. Describes the primary goal of GameTheory.net is to provide interactive teaching tools. Indicates the site strives to unite educators from economics, political and computer science, and ecology by providing a repository of lecture notes and tests for courses using…
History, Theory, and Education
ERIC Educational Resources Information Center
Rury, John L.
2011-01-01
In this article, the author discusses the question of theory as it may pertain to the history of education, with particular attention to the United States. Historians, like everyone else, have little choice regarding the use of theory; to one extent or another they must. The question is how much and to what end. The author aims to consider the…
Evaluating Conceptual Metaphor Theory
ERIC Educational Resources Information Center
Gibbs, Raymond W., Jr.
2011-01-01
A major revolution in the study of metaphor occurred 30 years ago with the introduction of "conceptual metaphor theory" (CMT). Unlike previous theories of metaphor and metaphorical meaning, CMT proposed that metaphor is not just an aspect of language, but a fundamental part of human thought. Indeed, most metaphorical language arises from…
NASA Astrophysics Data System (ADS)
Maldacena, Juan Martín
D-Branes on Calabi-Yau manifolds / Paul S. Aspinwall -- Lectures on AdS/CFT / Juan M. Maldacena -- Tachyon dynamics in open string theory / Ashoke Sen -- TASI/PITP/ISS lectures on moduli and microphysics / Eva Silverstein -- The duality cascade / Matthew J. Strassler -- Perturbative computations in string field theory / Washington Taylor -- Student seminars -- Student participants -- Lecturers, directors, and local organizing committee.
1981-03-31
measured and appear to be comparable to those predicted by the Vlasov-fluid theory of Seylerl and the finite Larmor radius theory of Freidberg and...C.E. Seyler, "Vlasov-Fluid Stability of a Rigidly Rotating Theta Pinch," Phys. Fluids 22, 2324, (1979). 2. J.P. Freidberg , L.D. Pearlstein
NASA Technical Reports Server (NTRS)
Iesan, D.
1980-01-01
The development of the theory of thermoelasticity, which examines the interactions between the deformation of elastic media and the thermal field, is traced and the fundamental problems of the theory are presented. Results of recent studies on the subject are presented. Emphasis is primarily on media with generalized anisotropy, or isotropy media. Thermomechanical problems and mathematical formulations and resolutions are included.
ERIC Educational Resources Information Center
Roller, Duane H. D.
1981-01-01
Focusing on history of physics, which began about 600 B.C. with the Ionian Greeks and reaching full development within three centuries, suggests that the creation of the concept of the atom is understandable within the context of Greek physical theory; so is the rejection of the atomic theory by the Greek physicists. (Author/SK)
ERIC Educational Resources Information Center
Mislevy, Robert J.
Educational test theory consists of statistical and methodological tools to support inferences about examinees' knowledge, skills, and accomplishments. The evolution of test theory has been shaped by the nature of users' inferences which, until recently, have been framed almost exclusively in terms of trait and behavioral psychology. Progress in…
NASA Astrophysics Data System (ADS)
Zeh, H. D.
1999-04-01
This is a brief reply to S. Goldstein's article "Quantum theory without observers" in Physics Today. It is pointed out that Bohm's pilot wave theory is successful only because it keeps Schrödinger's (exact) wave mechanics unchanged, while the rest of it is observationally meaningless and solely based on classical prejudice.
French Theory's American Adventures
ERIC Educational Resources Information Center
Cusset, Francois
2008-01-01
In this article, the author discusses how it is simply too late to be still speaking about French theory and its role in the intellectual life of the United States today. It seems to many observers that the gap between real-life politics and theory's guerrillas is much too wide already, after 30 years of academic fever, for the two worlds to even…
Towards Extended Vantage Theory
ERIC Educational Resources Information Center
Glaz, Adam
2010-01-01
The applicability of Vantage Theory (VT), a model of (colour) categorization, to linguistic data largely depends on the modifications and adaptations of the model for the purpose. An attempt to do so proposed here, called Extended Vantage Theory (EVT), slightly reformulates the VT conception of vantage by capitalizing on some of the entailments of…
ERIC Educational Resources Information Center
Jaeger, Audrey J.; Dunstan, Stephany; Thornton, Courtney; Rockenbach, Alyssa B.; Gayles, Joy G.; Haley, Karen J.
2013-01-01
When making decisions that impact student learning, college educators often consider previous experiences, precedent, common sense, and advice from colleagues. But how often do they consider theory? At a recent state-level educators' meeting, the authors of this article asked 50 student affairs educators about the use of theory in their practice.…
Catterall, Simon; Hubisz, Jay; Balachandran, Aiyalam; Schechter, Joe
2013-01-05
This final report describes the activities of the high energy theory group at Syracuse University for the period 1 January 2010 through April 30 2013. The research conducted by the group includes lattice gauge theory, non-commutative geometry, phenomenology and mathematical physics.
ERIC Educational Resources Information Center
Mayer, William V.
In this paper the author examines the question of whether evolution is a theory or a dogma. He refutes the contention that there is a monolithic scientific conspiracy to present evolution as dogma and suggests that his own presentation might be more appropriately entitled "Creationism: Theory or Dogma." (PEB)
Theory and Motivational Psychology.
ERIC Educational Resources Information Center
Atkinson, John W.
Motivational psychology and test theory are compared in this discussion, which focuses on distinguishing the effects of motivation and of ability on test performance and educational achievement. Recent theory in achievement motivation considers the motivational significance of future goals as they affect present activities that are instrumental in…
ERIC Educational Resources Information Center
Peller, Lili E.
1996-01-01
Discusses several theories of play advanced before the development of psychoanalysis, including the theories of surplus energy, recreation, and practice. Examines the psychoanalytical view advanced by Freud and others, which focuses on the emotional release of play and its role in discovery and learning. (MDM)
ERIC Educational Resources Information Center
Rexhepi, Jevdet; Torres, Carlos Alberto
2011-01-01
This paper discusses Critical Theory, a model of theorizing in the field of the political sociology of education. We argue for a "reimagined" Critical Theory to herald an empowering, liberatory education that fosters curiosity and critical thinking, and a means for successful bottom-up, top-down political engagement. We present arguments…
Organization Theory as Ideology.
ERIC Educational Resources Information Center
Greenfield, Thomas B.
The theory that organizations are ideological inventions of the human mind is discussed. Organizational science is described as an ideology which is based upon social concepts and experiences. The main justification for organizational theory is that it attempts to answer why we behave as we do in social organizations. Ways in which ideas and…
Administrative Theory in Transition.
ERIC Educational Resources Information Center
Griffiths, Daniel E.
This monograph analyzes transition in educational administrative theory. A brief introductory section describes the theoretical movement, the substance and repercussions of Thomas Greenfield's critique of educational administrative theory in 1974, and emerging qualitative approaches. Seven readings, all written by the volume's author, view…
Jackendoff, Ray
2017-03-01
Formal theories of mental representation have receded from the importance they had in the early days of cognitive science. I argue that such theories are crucial in any mental domain, not just for their own sake, but to guide experimental inquiry, as well as to integrate the domain into the mind as a whole. To illustrate the criteria of adequacy for theories of mental representation, I compare two theoretical approaches to language: classical generative grammar (Chomsky, 1965, 1981, 1995) and the parallel architecture (Jackendoff, 1997, 2002). The grounds for comparison include (a) the internal coherence of the theory across phonology, syntax, and semantics; (b) the relation of language to other mental faculties; (c) the relationship between grammar and lexicon; (d) relevance to theories of language processing; and (e) the possibility of languages with little or no syntax.
NASA Astrophysics Data System (ADS)
Wagner, Richard P.; Norman, M. L.
2006-12-01
A working example of a Basic SkyNode serving theoretical data will be presented. The data is taken from the Simulated Cluster Archive (a set of simulated galaxy clusters, where each cluster was computed using four different physics models). The Theory SkyNode tables contain columns of both computational and observational interest. Examples will be shown of using this theoretical data for comparison to data taken from observational SkyNodes, and vice versa. The relative ease of setting up the Theory SkyNode is of import, as it represents a clear way to present tabular theory data to the Virtual Observatory. Also, the Theory SkyNode provides a prototype for additional "theory catalogs", which wil be created from other simulations. This work is supported by the University of California Office of the President via UCDRD-LLNL award "Scientific Data Management". Travel funding was provided by the US NVO Summer School.
Introduction to string theory and conformal field theory
Belavin, A. A. Tarnopolsky, G. M.
2010-05-15
A concise survey of noncritical string theory and two-dimensional conformal field theory is presented. A detailed derivation of a conformal anomaly and the definition and general properties of conformal field theory are given. Minimal string theory, which is a special version of the theory, is considered. Expressions for the string susceptibility and gravitational dimensions are derived.
Theory of Multiple Intelligences: Is It a Scientific Theory?
ERIC Educational Resources Information Center
Chen, Jie-Qi
2004-01-01
This essay discusses the status of multiple intelligences (MI) theory as a scientific theory by addressing three issues: the empirical evidence Gardner used to establish MI theory, the methodology he employed to validate MI theory, and the purpose or function of MI theory.
NASA Astrophysics Data System (ADS)
Bastin, Ted
2009-07-01
List of participants; Preface; Part I. Introduction: 1. The function of the colloquium - editorial; 2. The conceptual problem of quantum theory from the experimentalist's point of view O. R. Frisch; Part II. Niels Bohr and Complementarity: The Place of the Classical Language: 3. The Copenhagen interpretation C. F. von Weizsäcker; 4. On Bohr's views concerning the quantum theory D. Bohm; Part III. The Measurement Problem: 5. Quantal observation in statistical interpretation H. J. Groenewold; 6. Macroscopic physics, quantum mechanics and quantum theory of measurement G. M. Prosperi; 7. Comment on the Daneri-Loinger-Prosperi quantum theory of measurement Jeffrey Bub; 8. The phenomenology of observation and explanation in quantum theory J. H. M. Whiteman; 9. Measurement theory and complex systems M. A. Garstens; Part IV. New Directions within Quantum Theory: What does the Quantum Theoretical Formalism Really Tell Us?: 10. On the role of hidden variables in the fundamental structure of physics D. Bohm; 11. Beyond what? Discussion: space-time order within existing quantum theory C. W. Kilmister; 12. Definability and measurability in quantum theory Yakir Aharonov and Aage Petersen; 13. The bootstrap idea and the foundations of quantum theory Geoffrey F. Chew; Part V. A Fresh Start?: 14. Angular momentum: an approach to combinatorial space-time Roger Penrose; 15. A note on discreteness, phase space and cohomology theory B. J. Hiley; 16. Cohomology of observations R. H. Atkin; 17. The origin of half-integral spin in a discrete physical space Ted Bastin; Part VI. Philosophical Papers: 18. The unity of physics C. F. von Weizsäcker; 19. A philosophical obstacle to the rise of new theories in microphysics Mario Bunge; 20. The incompleteness of quantum mechanics or the emperor's missing clothes H. R. Post; 21. How does a particle get from A to B?; Ted Bastin; 22. Informational generalization of entropy in physics Jerome Rothstein; 23. Can life explain quantum mechanics? H. H
Field-theory methods in coagulation theory
Lushnikov, A. A.
2011-08-15
Coagulating systems are systems of chaotically moving particles that collide and coalesce, producing daughter particles of mass equal to the sum of the masses involved in the respective collision event. The present article puts forth basic ideas underlying the application of methods of quantum-field theory to the theory of coagulating systems. Instead of the generally accepted treatment based on the use of a standard kinetic equation that describes the time evolution of concentrations of particles consisting of a preset number of identical objects (monomers in the following), one introduces the probability W(Q, t) to find the system in some state Q at an instant t for a specific rate of transitions between various states. Each state Q is characterized by a set of occupation numbers Q = (n{sub 1}, n{sub 2}, ..., n{sub g}, ...), where n{sub g} is the total number of particles containing precisely g monomers. Thereupon, one introduces the generating functional {Psi} for the probability W(Q, t). The time evolution of {Psi} is described by an equation that is similar to the Schroedinger equation for a one-dimensional Bose field. This equation is solved exactly for transition rates proportional to the product of the masses of colliding particles. It is shown that, within a finite time interval, which is independent of the total mass of the entire system, a giant particle of mass about the mass of the entire system may appear in this system. The particle in question is unobservable in the thermodynamic limit, and this explains the well-known paradox of mass-concentration nonconservation in classical kinetic theory. The theory described in the present article is successfully applied in studying the time evolution of random graphs.
NASA Astrophysics Data System (ADS)
Svozil, K.
1995-11-01
Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible “solution of supertasks,” and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvatages for physical applications are discussed: Canlorian “naive” (i.e., nonaxiomatic) set theory, contructivism, and operationalism. In the author's opinion, an attitude of “suspended attention” (a term borrowed from psychoanalysis) seems most promising for progress. Physical and set theoretical entities must be operationalized wherever possible. At the same time, physicists should be open to “bizarre” or “mindboggling” new formalisms, which need not be operationalizable or testable at the lime of their creation, but which may successfully lead to novel fields of phenomenology and technology.
Svozil, K.
1995-11-01
Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible {open_quotes}solution of supertasks,{close_quotes} and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvantages for physical applications are discussed: Cantorian {open_quotes}naive{close_quotes} (i.e., nonaxiomatic) set theory, contructivism, and operationalism. In the author`s opinion, an attitude, of {open_quotes}suspended attention{close_quotes} (a term borrowed from psychoanalysis) seems most promising for progress. Physical and set theoretical entities must be operationalized wherever possible. At the same time, physicists should be open to {open_quotes}bizarre{close_quotes} or {open_quotes}mindboggling{close_quotes} new formalisms, which need not be operationalizable or testable at the time of their creation, but which may successfully lead to novel fields of phenomenology and technology.
1942-05-04
and progresses through .an explosive. Such a theory must explain how the head of the detonation wave initiates· the reaction (and the detonation ... theory of detonation is based on the assumption that the actual value of 9’ is this lower limit Cf1 ! This is tho so-called hypothesis of’ Chapman and...DEVELOP!i!ENT Progress Report on 11 Theory of Detonation Waves 11 to April 1, 1942 by John von Nounr.n Institute for Adv&nccd Study Princeton
NASA Technical Reports Server (NTRS)
Zhang, Zhimin; Tomlinson, John; Martin, Clyde
1994-01-01
In this work, the relationship between splines and the control theory has been analyzed. We show that spline functions can be constructed naturally from the control theory. By establishing a framework based on control theory, we provide a simple and systematic way to construct splines. We have constructed the traditional spline functions including the polynomial splines and the classical exponential spline. We have also discovered some new spline functions such as trigonometric splines and the combination of polynomial, exponential and trigonometric splines. The method proposed in this paper is easy to implement. Some numerical experiments are performed to investigate properties of different spline approximations.
Nonstandard Methods in Lie Theory
ERIC Educational Resources Information Center
Goldbring, Isaac Martin
2009-01-01
In this thesis, we apply model theory to Lie theory and geometric group theory. These applications of model theory come via nonstandard analysis. In Lie theory, we use nonstandard methods to prove two results. First, we give a positive solution to the local form of Hilbert's Fifth Problem, which asks whether every locally euclidean local…
CONSTRUCTION OF EDUCATIONAL THEORY MODELS.
ERIC Educational Resources Information Center
MACCIA, ELIZABETH S.; AND OTHERS
THIS STUDY DELINEATED MODELS WHICH HAVE POTENTIAL USE IN GENERATING EDUCATIONAL THEORY. A THEORY MODELS METHOD WAS FORMULATED. BY SELECTING AND ORDERING CONCEPTS FROM OTHER DISCIPLINES, THE INVESTIGATORS FORMULATED SEVEN THEORY MODELS. THE FINAL STEP OF DEVISING EDUCATIONAL THEORY FROM THE THEORY MODELS WAS PERFORMED ONLY TO THE EXTENT REQUIRED TO…
Drawing Out Theory: Art and the Teaching of Political Theory.
ERIC Educational Resources Information Center
Miller, Char R.
2000-01-01
Discusses how to use art in introductory political theory courses. Provides examples of incorporating art to teach political theory, such as examining Machiavelli's "The Prince" and Michelangelo's "David" to understand Florentine (Florence, Italy) political theory. (CMK)
NASA Technical Reports Server (NTRS)
Jones, R. T. (Compiler)
1979-01-01
A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.
Electromagnetic scattering theory
NASA Technical Reports Server (NTRS)
Bird, J. F.; Farrell, R. A.
1986-01-01
Electromagnetic scattering theory is discussed with emphasis on the general stochastic variational principle (SVP) and its applications. The stochastic version of the Schwinger-type variational principle is presented, and explicit expressions for its integrals are considered. Results are summarized for scalar wave scattering from a classic rough-surface model and for vector wave scattering from a random dielectric-body model. Also considered are the selection of trial functions and the variational improvement of the Kirchhoff short-wave approximation appropriate to large size-parameters. Other applications of vector field theory discussed include a general vision theory and the analysis of hydromagnetism induced by ocean motion across the geomagnetic field. Levitational force-torque in the magnetic suspension of the disturbance compensation system (DISCOS), now deployed in NOVA satellites, is also analyzed using the developed theory.
NASA Astrophysics Data System (ADS)
Kawamoto, Noboru; Kugo, Taichiro
String theories seem to have created a breakthrough in theoretical physics. At long last a unified theory of all the fundamental interactions, including gravity, looks possible. This, according to theorist Stephen Hawking, will mark the end of theoretical physics as we have known it, since we will then have a single consistent theory within which to explain all natural phenomena from elementary particles to galactic superclusters. Strings themselves are extremely tiny entities, smaller than the Planck scale, which form loops whose vibrational harmonics can be used to model all the standard elementary particles. Of course the mathematical complexities of the theory are daunting, and physicists are still at a very early stage in understanding how strings and their theoretical cousins superstrings can be used. This proceedings volume gives an overview of the intense recent work in the field and reports latest developments.
NASA Astrophysics Data System (ADS)
Ferry, James P.; Lo, Darren; Ahearn, Stephen T.; Phillips, Aaron M.
Despite the breadth of modern network theory, it can be difficult to apply its results to the task of uncovering terrorist networks: the most useful network analyses are often low-tech, link-following approaches. In the traditional military domain, detection theory has a long history of finding stealthy targets such as submarines. We demonstrate how the detection theory framework leads to a variety of network analysis questions. Some solutions to these leverage existing theory; others require novel techniques - but in each case the solutions contribute to a principled methodology for solving network detection problems. This endeavor is difficult, and the work here represents only a beginning. However, the required mathematics is interesting, being the synthesis of two fields with little common history.
ERIC Educational Resources Information Center
Gunter, Helen M.
2013-01-01
This article reports on a seminar by the Critical Educational Policy and Leadership Research Interest Group in June 2012. The article reports on the papers and our engagement with the need to use theory to develop descriptions and understandings.
DOE R&D Accomplishments Database
Salam, A.
1956-04-01
Lectures with mathematical analysis are given on Dispersion Theory and Causality and Dispersion Relations for Pion-nucleon Scattering. The appendix includes the S-matrix in terms of Heisenberg Operators. (F. S.)
ERIC Educational Resources Information Center
Werner, Suzanne K.
2003-01-01
Describes a series of activities exploring Leonardo da Vinci's tree theory that are designed to strengthen 8th grade students' data collection and problem solving skills in physical science classes. (KHR)
Friedberg, R; Hohenberg, P C
2014-09-01
Formulations of quantum mechanics (QM) can be characterized as realistic, operationalist, or a combination of the two. In this paper a realistic theory is defined as describing a closed system entirely by means of entities and concepts pertaining to the system. An operationalist theory, on the other hand, requires in addition entities external to the system. A realistic formulation comprises an ontology, the set of (mathematical) entities that describe the system, and assertions, the set of correct statements (predictions) the theory makes about the objects in the ontology. Classical mechanics is the prime example of a realistic physical theory. A straightforward generalization of classical mechanics to QM is hampered by the inconsistency of quantum properties with classical logic, a circumstance that was noted many years ago by Birkhoff and von Neumann. The present realistic formulation of the histories approach originally introduced by Griffiths, which we call 'compatible quantum theory (CQT)', consists of a 'microscopic' part (MIQM), which applies to a closed quantum system of any size, and a 'macroscopic' part (MAQM), which requires the participation of a large (ideally, an infinite) system. The first (MIQM) can be fully formulated based solely on the assumption of a Hilbert space ontology and the noncontextuality of probability values, relying in an essential way on Gleason's theorem and on an application to dynamics due in large part to Nistico. Thus, the present formulation, in contrast to earlier ones, derives the Born probability formulas and the consistency (decoherence) conditions for frameworks. The microscopic theory does not, however, possess a unique corpus of assertions, but rather a multiplicity of contextual truths ('c-truths'), each one associated with a different framework. This circumstance leads us to consider the microscopic theory to be physically indeterminate and therefore incomplete, though logically coherent. The completion of the theory
Predictions from String Theory
NASA Astrophysics Data System (ADS)
Kuflik, Eric
String theory is the leading candidate for an underlying theory of nature, as it provides a framework through which to address critical questions left unanswered by the Standard Model and Supersymmetry. A number of predictions of string constructions can be empirically tested at the Large Hadron Collider (LHC) and dark matter experiments. In this work I aim to make generic predictions of string theory, while combining bottom-up approaches to fill in the gaps in our understanding of string theory to make predictions for current and upcoming experiments. First I study moduli masses and claim that moduli dominated the energy density of the universe prior to big bang nucleosynthesis. We argue that in any string theory with stabilized moduli there will be at least one modulus field whose mass is of order the gravitino mass. Cosmology then generically requires the gravitino mass to be greater than 30 TeV and the early cosmological history of the Universe be non-thermal. We are then led to believe that the best-motivated channel for early LHC discovery is gluino pair-production events decaying into a high multiplicity of third generation quarks. We analyze signals and background at the LHC for 7 TeV center of mass energy for 1 fb -1 integrated luminosity, suggesting a reach for gluinos for masses about 650 GeV. Second, I seek to construct a Grand Unified Theory (GUT) within different branches of string theory. One promising GUT, developed outside of string theory, is Flipped-SU(5), which I show has serious phenomenological difficulties. I demonstrate both that Flipped-SU(5) requires an R-symmetry to solve the mu-problem, and that no R-symmetries exist in F-theory. Thus Flipped-SU(5) cannot serve as a GUT within F-theory. Similarly, I seek to construct a GUT within M-theory. My study is based upon the discrete symmetry proposed by Witten that forbids the mu-term and solves the doublet-triplet splitting problem, but does not address how the symmetry might be broken. I find
Random function theory revisited - Exact solutions versus the first order smoothing conjecture
NASA Technical Reports Server (NTRS)
Lerche, I.; Parker, E. N.
1975-01-01
We remark again that the mathematical conjecture known as first order smoothing or the quasi-linear approximation does not give the correct dependence on correlation length (time) in many cases, although it gives the correct limit as the correlation length (time) goes to zero. In this sense, then, the method is unreliable.
A Probabilistic-Numerical Approximation for an Obstacle Problem Arising in Game Theory
Gruen, Christine
2012-12-15
We investigate a two-player zero-sum stochastic differential game in which one of the players has more information on the game than his opponent. We show how to construct numerical schemes for the value function of this game, which is given by the solution of a quasilinear partial differential equation with obstacle.
Leadership styles and theories.
Giltinane, Charlotte Louise
It is useful for healthcare professionals to be able to identify the leadership styles and theories relevant to their nursing practice. Being adept in recognising these styles enables nurses to develop their skills to become better leaders, as well as improving relationships with colleagues and other leaders, who have previously been challenging to work with. This article explores different leadership styles and theories, and explains how they relate to nursing practice.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
The theory, developed in the nineteenth century, notably by Rudolf Clausius (1822-88) and James Clerk Maxwell (1831-79), that the properties of a gas (temperature, pressure, etc) could be described in terms of the motions (and kinetic energy) of the molecules comprising the gases. The theory has wide implications in astrophysics. In particular, the perfect gas law, which relates the pressure, vol...
NASA Astrophysics Data System (ADS)
Edelman, Alan; Rao, N. Raj
Random matrix theory is now a big subject with applications in many disciplines of science, engineering and finance. This article is a survey specifically oriented towards the needs and interests of a numerical analyst. This survey includes some original material not found anywhere else. We include the important mathematics which is a very modern development, as well as the computational software that is transforming the theory into useful practice.
Ahlén, Olof
2015-12-17
These proceedings from the second Caesar Lattes meeting in Rio de Janeiro 2015 are a brief introduction to how automorphic forms appear in the low energy effective action of maximally supersymmetric string theory. The explicit example of the R{sup 4}-interaction of type IIB string theory in ten dimensions is discussed. Its Fourier expansion is interpreted in terms of perturbative and non-perturbative contributions to the four graviton amplitude.
Reverse engineering quantum field theory
NASA Astrophysics Data System (ADS)
Oeckl, Robert
2012-12-01
An approach to the foundations of quantum theory is advertised that proceeds by "reverse engineering" quantum field theory. As a concrete instance of this approach, the general boundary formulation of quantum theory is outlined.
Theory of hydromagnetic turbulence
NASA Technical Reports Server (NTRS)
Montgomery, D.
1983-01-01
The present state of MHD turbulence theory as a possible solar wind research tool is surveyed. The theory is statistical, and does not make statements about individual events. The ensembles considered typically have individual realizations which differ qualitatively, unlike equilibrium statistical mechanics. Most of the theory deals with highly symmetric situations; most of these symmetries have yet to be tested in the solar wind. The applicability of MHD itself to solar wind parameters is highly questionable; yet it has no competitors, as a potentially comprehensive dynamical description. The purpose of solar wind research require sharper articulation. If they are to understand radial turbulent plasma flows from spheres, laboratory experiments and numerical solution of equations of motion may be cheap alternative to spacecraft. If "real life" information is demanded, multiple spacecraft with variable separation may be necessary to go further. The principal emphasis in the theory so far has been on spectral behavior for spatial covariances in wave number space. There is no respectable theory of these for highly anisotropic situations. A rather slow development of theory acts as a brake on justifiable measurement, at this point.
Theory of heterogeneous viscoelasticity
NASA Astrophysics Data System (ADS)
Schirmacher, Walter; Ruocco, Giancarlo; Mazzone, Valerio
2016-03-01
We review a new theory of viscoelasticity of a glass-forming viscous liquid near and below the glass transition. In our model, we assume that each point in the material has a specific viscosity, which varies randomly in space according to a fluctuating activation free energy. We include a Maxwellian elastic term, and assume that the corresponding shear modulus fluctuates as well with the same distribution as that of the activation barriers. The model is solved in coherent potential approximation, for which a derivation is given. The theory predicts an Arrhenius-type temperature dependence of the viscosity in the vanishing frequency limit, independent of the distribution of the activation barriers. The theory implies that this activation energy is generally different from that of a diffusing particle with the same barrier height distribution. If the distribution of activation barriers is assumed to have the Gaussian form, the finite-frequency version of the theory describes well the typical low-temperature alpha relaxation peak of glasses. Beta relaxation can be included by adding another Gaussian with centre at much lower energies than that is responsible for the alpha relaxation. At high frequencies, our theory reduces to the description of an elastic medium with spatially fluctuating elastic moduli (heterogeneous elasticity theory), which explains the occurrence of the boson peak-related vibrational anomalies of glasses.
Marletto, Chiara
2015-01-01
Neo-Darwinian evolutionary theory explains how the appearance of purposive design in the adaptations of living organisms can have come about without their intentionally being designed. The explanation relies crucially on the possibility of certain physical processes: mainly, gene replication and natural selection. In this paper, I show that for those processes to be possible without the design of biological adaptations being encoded in the laws of physics, those laws must have certain other properties. The theory of what these properties are is not part of evolution theory proper, yet without it the neo-Darwinian theory does not fully achieve its purpose of explaining the appearance of design. To this end, I apply constructor theory's new mode of explanation to express exactly within physics the appearance of design, no-design laws, and the logic of self-reproduction and natural selection. I conclude that self-reproduction, replication and natural selection are possible under no-design laws, the only non-trivial condition being that they allow digital information to be physically instantiated. This has an exact characterization in the constructor theory of information. I also show that under no-design laws an accurate replicator requires the existence of a ‘vehicle’ constituting, together with the replicator, a self-reproducer. PMID:25589566
Marletto, Chiara
2015-03-06
Neo-Darwinian evolutionary theory explains how the appearance of purposive design in the adaptations of living organisms can have come about without their intentionally being designed. The explanation relies crucially on the possibility of certain physical processes: mainly, gene replication and natural selection. In this paper, I show that for those processes to be possible without the design of biological adaptations being encoded in the laws of physics, those laws must have certain other properties. The theory of what these properties are is not part of evolution theory proper, yet without it the neo-Darwinian theory does not fully achieve its purpose of explaining the appearance of design. To this end, I apply constructor theory's new mode of explanation to express exactly within physics the appearance of design, no-design laws, and the logic of self-reproduction and natural selection. I conclude that self-reproduction, replication and natural selection are possible under no-design laws, the only non-trivial condition being that they allow digital information to be physically instantiated. This has an exact characterization in the constructor theory of information. I also show that under no-design laws an accurate replicator requires the existence of a 'vehicle' constituting, together with the replicator, a self-reproducer.
Who Needs Learning Theory Anyway?
ERIC Educational Resources Information Center
Zemke, Ron
2002-01-01
Looks at a variety of learning theories: andragogy, behaviorism, cognitivism, conditions of learning, Gestalt, and social learning. Addresses the difficulty of selecting an appropriate theory for training. (JOW)
Relating theories via renormalization
NASA Astrophysics Data System (ADS)
Kadanoff, Leo P.
2013-02-01
The renormalization method is specifically aimed at connecting theories describing physical processes at different length scales and thereby connecting different theories in the physical sciences. The renormalization method used today is the outgrowth of 150 years of scientific study of thermal physics and phase transitions. Different phases of matter show qualitatively different behaviors separated by abrupt phase transitions. These qualitative differences seem to be present in experimentally observed condensed-matter systems. However, the "extended singularity theorem" in statistical mechanics shows that sharp changes can only occur in infinitely large systems. Abrupt changes from one phase to another are signaled by fluctuations that show correlation over infinitely long distances, and are measured by correlation functions that show algebraic decay as well as various kinds of singularities and infinities in thermodynamic derivatives and in measured system parameters. Renormalization methods were first developed in field theory to get around difficulties caused by apparent divergences at both small and large scales. However, no renormalization gives a fully satisfactory formulation of field theory. The renormalization (semi-)group theory of phase transitions was put together by Kenneth G. Wilson in 1971 based upon ideas of scaling and universality developed earlier in the context of phase transitions and of couplings dependent upon spatial scale coming from field theory. Correlations among regions with fluctuations in their order underlie renormalization ideas. Wilson's theory is the first approach to phase transitions to agree with the extended singularity theorem. Some of the history of the study of these correlations and singularities is recounted, along with the history of renormalization and related concepts of scaling and universality. Applications, particularly to condensed-matter physics and particle physics, are summarized. This note is partially a
Reinventing Grounded Theory: Some Questions about Theory, Ground and Discovery
ERIC Educational Resources Information Center
Thomas, Gary; James, David
2006-01-01
Grounded theory's popularity persists after three decades of broad-ranging critique. In this article three problematic notions are discussed--"theory," "ground" and "discovery"--which linger in the continuing use and development of grounded theory procedures. It is argued that far from providing the epistemic security promised by grounded theory,…
Generalized teleparallel theory
NASA Astrophysics Data System (ADS)
Junior, Ednaldo L. B.; Rodrigues, Manuel E.
2016-07-01
We construct a theory in which the gravitational interaction is described only by torsion, but that generalizes the teleparallel theory still keeping the invariance of local Lorentz transformations in one particular case. We show that our theory falls, in a certain limit of a real parameter, under f(bar{R}) gravity or, in another limit of the same real parameter, under modified f( T) gravity; on interpolating between these two theories it still can fall under several other theories. We explicitly show the equivalence with f(bar{R}) gravity for the cases of a Friedmann-Lemaître-Robertson-Walker flat metric for diagonal tetrads, and a metric with spherical symmetry for diagonal and non-diagonal tetrads. We study four applications, one in the reconstruction of the de Sitter universe cosmological model, for obtaining a static spherically symmetric solution of de Sitter type for a perfect fluid, for evolution of the state parameter ω _{DE}, and for the thermodynamics of the apparent horizon.
Kraepelin and degeneration theory.
Hoff, Paul
2008-06-01
Emil Kraepelin's contribution to the clinical and scientific field of psychiatry is recognized world-wide. In recent years, however, there have been a number of critical remarks on his acceptance of degeneration theory in particular and on his political opinion in general, which was said to have carried "overtones of proto-fascism" by Michael Shepherd [28]. The present paper discusses the theoretical cornerstones of Kraepelinian psychiatry with regard to their relevance for Kraepelin's attitude towards degeneration theory. This theory had gained wide influence not only in scientific, but also in philosophical and political circles in the last decades of the nineteenth century. There is no doubt that Kraepelin, on the one hand, accepted and implemented degeneration theory into the debate on etiology and pathogenesis of mental disorders. On the other hand, it is not appropriate to draw a simple and direct line from early versions of degeneration theory to the crimes of psychiatrists and politicians during the rule of national socialism. What we need, is a differentiated view, since this will be the only scientific one. Much research needs to be done here in the future, and such research will surely have a significant impact not only on the historical field, but also on the continuous debate about psychiatry, neuroscience and neurophilosophy.
Hursthouse, Rosalind
1991-01-01
The sort of ethical theory derived from Aristotle, variously described as virtue ethics, virtue-based ethics, or neo-Aristotelianism, is becoming better known, and is now quite widely recognized as at least a possible rival to deontological and utilitarian theories. With recognition has come criticism, of varying quality. In this article I shall discuss nine separate criticisms that I have frequently encountered, most of which seem to me to betray an inadequate grasp either of the structure of virtue theory or of what would be involved in thinking about a real moral issue in its terms. In the first half I aim particularly to secure an understanding that will reveal that many of these criticisms are simply misplaced, and to articulate what I take to be the major criticism of virtue theory. I reject this criticism, but do not claim that it is necessarily misplaced. In the second half I aim to deepen that understanding and highlight the issues raised by the criticisms by illustrating what the theory looks like when it is applied to a particular issue, in this case, abortion.
NASA Astrophysics Data System (ADS)
Brandt, Bastian B.; Lohmayer, Robert; Wettig, Tilo
2016-11-01
We explore an alternative discretization of continuum SU( N c ) Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer. In this discretization the self-interactions of the gauge field are induced by a path integral over N b auxiliary boson fields, which are coupled linearly to the gauge field. The main progress compared to earlier approaches is that N b can be as small as N c . In the present paper we (i) extend the proof that the continuum limit of the new discretization reproduces Yang-Mills theory in two dimensions from gauge group U( N c ) to SU( N c ), (ii) derive refined bounds on N b for non-integer values, and (iii) perform a perturbative calculation to match the bare parameter of the induced gauge theory to the standard lattice coupling. In follow-up papers we will present numerical evidence in support of the conjecture that the induced gauge theory reproduces Yang-Mills theory also in three and four dimensions, and explore the possibility to integrate out the gauge fields to arrive at a dual formulation of lattice QCD.
Beyond generalized Proca theories
NASA Astrophysics Data System (ADS)
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
2016-09-01
We consider higher-order derivative interactions beyond second-order generalized Proca theories that propagate only the three desired polarizations of a massive vector field besides the two tensor polarizations from gravity. These new interactions follow the similar construction criteria to those arising in the extension of scalar-tensor Horndeski theories to Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories. On the isotropic cosmological background, we show the existence of a constraint with a vanishing Hamiltonian that removes the would-be Ostrogradski ghost. We study the behavior of linear perturbations on top of the isotropic cosmological background in the presence of a matter perfect fluid and find the same number of propagating degrees of freedom as in generalized Proca theories (two tensor polarizations, two transverse vector modes, and two scalar modes). Moreover, we obtain the conditions for the avoidance of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations. We observe key differences in the scalar sound speed, which is mixed with the matter sound speed outside the domain of generalized Proca theories.
Relativistic Chiral Kinetic Theory
NASA Astrophysics Data System (ADS)
Stephanov, Mikhail
2016-12-01
This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi:10.1103/PhysRevLett.113.182302; J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: 10.1103/PhysRevLett.115.021601; M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: 10.1103/PhysRevLett.116.122302].
Deformations of superconformal theories
NASA Astrophysics Data System (ADS)
Córdova, Clay; Dumitrescu, Thomas T.; Intriligator, Kenneth
2016-11-01
We classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in d ≥ 3 dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and non-central charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact that short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformations can be used to derive known and new constraints on moduli-space effective actions.
Mansouri, F.; Suranyi, P; Wijewardhana, L.C.R.
1991-10-01
In the test particle approximation, the scattering amplitude for two-particle scattering in (2+1)-dimensional Chern-Simons-Witten gravity and supergravity was computed and compared to the corresponding metric solutions. The formalism was then extended to the exact gauge theoretic treatment of the two-particle scattering problem and compared to 't Hooft's results from the metric approach. We have studied dynamical symmetry breaking in 2+1 dimensional field theories. We have analyzed strong Extended Technicolor (ETC) models where the ETC coupling is close to a critical value. There are effective scalar fields in each of the theories. We have worked our how such scalar particles can be produced and how they decay. The {phi}{sup 4} field theory was investigated in the Schrodinger representation. The critical behavior was extracted in an arbitrary number of dimensions in second order of a systematic truncation approximation. The correlation exponent agrees with known values within a few percent.
Astronomy and political theory
NASA Astrophysics Data System (ADS)
Campion, Nicholas
2011-06-01
This paper will argue that astronomical models have long been applied to political theory, from the use of the Sun as a symbol of the emperor in Rome to the application of Copernican theory to the needs of absolute monarchy. We will begin with consideration of astral divination (the use of astronomy to ascertain divine intentions) in the ancient Near East. Particular attention will be paid to the use of Newton's discovery that the universe operates according to a single set of laws in order to support concepts of political quality and eighteenth century Natural Rights theory. We will conclude with consideration of arguments that the discovery of the expanding, multi-galaxy universe, stimulated political uncertainty in the 1930s, and that photographs of the Earth from Apollo spacecraft encouraged concepts of the `global village'.
NASA Astrophysics Data System (ADS)
Weisz, Peter; Majumdar, Pushan
2012-03-01
Lattice gauge theory is a formulation of quantum field theory with gauge symmetries on a space-time lattice. This formulation is particularly suitable for describing hadronic phenomena. In this article we review the present status of lattice QCD. We outline some of the computational methods, discuss some phenomenological applications and a variety of non-perturbative topics. The list of references is severely incomplete, the ones we have included are text books or reviews and a few subjectively selected papers. Kronfeld and Quigg (2010) supply a reasonably comprehensive set of QCD references. We apologize for the fact that have not covered many important topics such as QCD at finite density and heavy quark effective theory adequately, and mention some of them only in the last section "In Brief". These topics should be considered in further Scholarpedia articles.
Palenik, Mark C.; Dunlap, Brett I.
2015-07-28
Despite the fundamental importance of electron density in density functional theory, perturbations are still usually dealt with using Hartree-Fock-like orbital equations known as coupled-perturbed Kohn-Sham (CPKS). As an alternative, we develop a perturbation theory that solves for the perturbed density directly, removing the need for CPKS. This replaces CPKS with a true Hohenberg-Kohn density perturbation theory. In CPKS, the perturbed density is found in the basis of products of occupied and virtual orbitals, which becomes ever more over-complete as the size of the orbital basis set increases. In our method, the perturbation to the density is expanded in terms of a series of density basis functions and found directly. It is possible to solve for the density in such a way that it makes the total energy stationary even if the density basis is incomplete.
Theory-Based Stakeholder Evaluation
ERIC Educational Resources Information Center
Hansen, Morten Balle; Vedung, Evert
2010-01-01
This article introduces a new approach to program theory evaluation called theory-based stakeholder evaluation or the TSE model for short. Most theory-based approaches are program theory driven and some are stakeholder oriented as well. Practically, all of the latter fuse the program perceptions of the various stakeholder groups into one unitary…
Play: The Reversal Theory Perspective.
ERIC Educational Resources Information Center
Kerr, J. H.
The intention of this theoretical paper is to present a reversal theory interpretation of play phenomena. Reversal theory, a developing theory in psychology, concerns the complex relationship between experience and motivation. One of the central charactieristics of the theory is that it attempts to understand why so much of human behavior is…
The Four Forces Airpower Theory
2011-05-19
The Four Forces Airpower Theory A Monograph by MAJOR Brian P. O’Neill United States Air Force School of...Brian P. O’Neill Title of Monograph: The Four Forces Airpower Theory Approved by: __________________________________ Monograph Director Gerald S...Abstract THE FOUR FORCES AIRPOWER THEORY by MAJOR Brian P. O’Neill, USAF, 67 pages. This monograph suggests an airpower theory that
Kachru, Shamit; McAllister, Liam; Sundrum, Raman
2007-04-04
We study sequestering, a prerequisite for flavor-blind supersymmetry breaking in several high-scale mediation mechanisms, in compactifications of type IIB string theory. We find that although sequestering is typically absent in unwarped backgrounds, strongly warped compactifications do readily sequester. The AdS/CFT dual description in terms of conformal sequestering plays an important role in our analysis, and we establish how sequestering works both on the gravity side and on the gauge theory side. We pay special attention to subtle compactification effects that can disrupt sequestering. Our result is a step toward realizing an appealing pattern of soft terms in a KKLT compactification.
Balatsky, A.V.; Scalapino, D.; Wilkins, J.; Pines, D.; Bedell, K.; Schrieffer, J.R.; Fisk, Z.
1998-12-01
This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have obtained a description of symmetry of the order parameter and pairing state in high-Tc superconductors. They developed a theory of ferromagnetic instability of Fermi-liquid. They have conducted an experimental investigation of the intermetallic compounds and Zintl-type compound. They investigated the properties of Cu-0 ladders. They have developed the theory of liftshitz tails in superconductors. They have conducted a number of summer workshops.
NASA Astrophysics Data System (ADS)
Jejjala, Vishnumohan
2002-01-01
This Thesis explores aspects of superstring theory on orbifold spaces and applies some of the intuition gleaned from the study of the non-commutative geometry of space-time to understanding the fractional quantum Hall effect. The moduli space of vacua of marginal and relevant deformations of N = 4 super-Yang-Mills gauge theory in four dimensions is interpreted in terms of non-commutative geometry. A formalism for thinking about the algebraic geometry of the moduli space is developed. Within this framework, the representation theory of the algebras studied provides a natural exposition of D-brane fractionation. The non-commutative moduli space of deformations preserving N = 1 supersymmetry is examined in detail through various examples. In string theory, by the AdS/CFT correspondence, deformations of the N = 4 field theory are dual to the near-horizon geometries of D-branes on orbifolds of AdS5 x S 5. The physics of D-branes on the dual AdS backgrounds is explored. Quivers encapsulate the matter content of supersymmetric field theories on the worldvolumes of D-branes at orbifold singularities. New techniques for constructing quivers are presented here. When N is a normal subgroup of a finite group G, the quiver corresponding to fixed points of the orbifold M/G is computed from a G/N action on the quiver corresponding to M/G . These techniques prove useful for constructing non-Abelian quivers and for examining discrete torsion orbifolds. Quivers obtained through our constructions contain interesting low-energy phenomenology. The matter content on a brane at an isolated singularity of the Delta27 orbifold embeds the Standard Model. The symmetries of the quiver require exactly three generations of fields in the particle spectrum. Lepton masses are suppressed relative to quark masses because lepton Yukawa couplings do not appear in the superpotential. Lepton masses are generated through the Kahler potential and are related to the supersymmetry breaking scale. The model
2010-06-24
is typically a non-normal matrix (AA† 6= A†A). For a simple shear flow, we have u = (γ̇y, 0) and A = ( 0 0 γ̇ 0 ) . Since A is nilpotent (A2 = 0), the...dynamo and adopted a random matrix theory approach [13–15]. More recently, tools from large deviation theory and path integration have aided in...of the flow field (∇·u = 0). For turbulent or Lagrangian-chaotic flows, A(t) is a random matrix , having a finite correlation time, which is the
Chris Quigg
2001-08-10
After a short essay on the current state of particle physics, the author reviews the antecedents of the modern picture of the weak and electromagnetic interactions and then undertakes a brief survey of the SU(2){sub L} {circle_times} U(1){sub Y} electroweak theory. The authors reviews the features of electroweak phenomenology at tree level and beyond, presents an introduction to the Higgs boson and the 1-TeV scale, and examines arguments for enlarging the electroweak theory. The author concludes with a brief look at low-scale gravity.
Berry, Ray Alden; Zou, Ling; Zhao, Haihua; Zhang, Hongbin; Peterson, John William; Martineau, Richard Charles; Kadioglu, Samet Yucel; Andrs, David
2016-03-01
This document summarizes the physical models and mathematical formulations used in the RELAP-7 code. In summary, the MOOSE based RELAP-7 code development is an ongoing effort. The MOOSE framework enables rapid development of the RELAP-7 code. The developmental efforts and results demonstrate that the RELAP-7 project is on a path to success. This theory manual documents the main features implemented into the RELAP-7 code. Because the code is an ongoing development effort, this RELAP-7 Theory Manual will evolve with periodic updates to keep it current with the state of the development, implementation, and model additions/revisions.
NASA Astrophysics Data System (ADS)
Bolmatov, Dima; Bastrukov, S.; Lai, P.-Y.; Molodtsova, I.
2014-07-01
A fundamental task of statistical physics is to predict the system's statistical properties and compare them with observable data. We formulate the theory of dipolaron solutions and analyze the screening effects for permanent and field-induced dipolarons. The mathematical treatment of the collective behavior and microscopical morphology of dipolaron solutions are discussed. The presented computations show that the electric field shielding of dipolarons in dielectric nanosolutions is quite different from that of counterionic nano-complexes of Debye-Hückel theory of electrolytes. The limiting case of screening length λ=0 in dipolaron solutions corresponds to Coulomb's law for the potential and field of uniformly charged sphere.
NASA Astrophysics Data System (ADS)
Jejjala, Vishnu; Minic, Djordje; Ng, Y. Jack; Tze, Chia-Hsiung
We propose a string theory of turbulence that explains the Kolmogorov scaling in 3+1 dimensions and the Kraichnan and Kolmogorov scalings in 2+1 dimensions. This string theory of turbulence should be understood in light of the AdS/CFT dictionary. Our argument is crucially based on the use of Migdal's loop variables and the self-consistent solutions of Migdal's loop equations for turbulence. In particular, there is an area law for turbulence in 2+1 dimensions related to the Kraichnan scaling.
Delbruck, C; Raffelhuschen, B
1993-09-01
"The present and expected migration flows in Europe require a detailed analysis of determinants and elements of migration decisions. This survey encompasses a view on classical--labor market and demand side oriented--theories, the more recent human capital approach as well as on migration under asymmetric information. Since these theories so far yield an unsatisfactory basis for description and forecasting of multilateral migration flows, a closer look at empirical methods of migration research is taken. Consequently, a description of possible policy oriented applications of the gravity model and the random utility approach, with their descriptive and normative characteristics, is given." (SUMMARY IN ENG)
NASA Astrophysics Data System (ADS)
Gori, Stefania
2017-01-01
The discovery of the Higgs boson at the Large Hadron Collider marks the culmination of a decades-long hunt for the last ingredient of the Standard Model. At the same time, there are still many puzzles in particle physics, foremost the existence of a relatively light Higgs boson, seemingly without any extra weak scale particles that would stabilize the Higgs mass against quantum corrections, and the existence of Dark Matter. This talk will give an overview of the most interesting theories that address these problems and how to test these theories at the LHC.
Lectures on Matrix Field Theory
NASA Astrophysics Data System (ADS)
Ydri, Badis
The subject of matrix field theory involves matrix models, noncommutative geometry, fuzzy physics and noncommutative field theory and their interplay. In these lectures, a lot of emphasis is placed on the matrix formulation of noncommutative and fuzzy spaces, and on the non-perturbative treatment of the corresponding field theories. In particular, the phase structure of noncommutative $\\phi^4$ theory is treated in great detail, and an introduction to noncommutative gauge theory is given.
When is a theory a theory? A case example.
Alkin, Marvin C
2016-10-15
This discussion comments on the approximately 20years history of writings on the prescriptive theory called Empowerment Evaluation. To do so, involves examining how "Empowerment Evaluation Theory" has been defined at various points of time (particularly 1996 and now in 2015). Defining a theory is different from judging the success of a theory. This latter topic has been addressed elsewhere by Michael Scriven, Michael Patton, and Brad Cousins. I am initially guided by the work of Robin Miller (2010) who has written on the issue of how to judge the success of a theory. In doing so, she provided potential standards for judging the adequacy of theories. My task is not judging the adequacy or success of the Empowerment Evaluation prescriptive theory in practice, but determining how well the theory is delineated. That is, to what extent do the writings qualify as a prescriptive theory.
Attachment Theory and Mindfulness
ERIC Educational Resources Information Center
Snyder, Rose; Shapiro, Shauna; Treleaven, David
2012-01-01
We initiate a dialog between two central areas in the field of psychology today: attachment theory/research and mindfulness studies. The impact of the early mother-infant relationship on child development has been well established in the literature, with attachment theorists having focused on the correlation between a mother's capacity for…
ERIC Educational Resources Information Center
Stewart, Jim; Harte, Victoria; Sambrook, Sally
2011-01-01
Purpose: The aim of the paper is to examine the meaning and value of the notion of theory as a basis for other papers in the special issue which examine facets of theorising HRD. Design/methodology/approach: A small scale and targeted literature review was conducted which focused on writings in the philosophy and sociology of science in order to…
ERIC Educational Resources Information Center
Shevtsova, Maria
1987-01-01
A case is made for the importance of studying literature as part of the second language instructional program. Literary criticism introduces linguistics, anthropology, metaphysics, psychoanalysis, and other areas and theories and ties them into into the study of language and literature. (CB)
ERIC Educational Resources Information Center
Al Shalabi, M. Fadi; Salmani Nodoushan, Mohammad Ali
2009-01-01
In this paper, it is argued, based on evidence from psychological literature, that there are three major approaches to the study of personality, namely (1) situationism, (2) interactionism, and (3) constructivism. It is also noticed that these approaches have resulted in the emergence of three major types of personality theories: (i) type…
ERIC Educational Resources Information Center
Al Shalabi, M. Fadi; Nodoushan, Mohammad Ali Salmani
2009-01-01
In this paper, it is argued, based on evidence from psychological literature, that there are three major approaches to the study of personality, namely (a) situationism, (b) interactionism, and (c) constructivism. It is also noticed that these approached have resulted in the emergence of three major types of personality theories: (1) type…
Variational transition state theory
Truhlar, D.G.
1993-12-01
This research program involves the development of variational transition state theory (VTST) and semiclassical tunneling methods for the calculation of gas-phase reaction rates and selected applications. The applications are selected for their fundamental interest and/or their relevance to combustion.
ERIC Educational Resources Information Center
Bacon, Roger Lee
This dissertation dealt with the preparation, designing, teaching, and evaluation of a course in literary theory. The course examined the following areas of literary study: definition, perception, description, explication, interpretation, and evaluation. It is centered on the following theses: (1) in literary pursuits criticism is teaching and…
ERIC Educational Resources Information Center
Thornberg, Robert
2012-01-01
There is a widespread idea that in grounded theory (GT) research, the researcher has to delay the literature review until the end of the analysis to avoid contamination--a dictum that might turn educational researchers away from GT. Nevertheless, in this article the author (a) problematizes the dictum of delaying a literature review in classic…
Stupakov, G.; /SLAC
2009-06-05
We review recent progress in the following areas of the impedance theory: calculation of impedance of tapers and small angle collimators; optical approximation and parabolic equation for the high-frequency impedance; impedance due to resistive inserts in a perfectly conducting pipe.
ERIC Educational Resources Information Center
Patrick, Amy M.
2010-01-01
This article examines ways in which the fundamentals of both writing studies and sustainability studies overlap and complement each other, ultimately moving toward a theory of writing that not only is sustainable, but that also sustains writing practice across a variety of areas. For example, in order to be sustainable, both writing and…
ERIC Educational Resources Information Center
Cooper, Wesley
2003-01-01
James's moral theory, primarily as set out in "The Moral Philosopher and the Moral Life" (in his "The Will To Believe" (1897)), is presented here as having a two-level structure, an empirical or historical level where progress toward greater moral inclusiveness is central, and a metaphysical or end-of-history level--James's "kingdom of…
Personality Theory and Psychotherapy
ERIC Educational Resources Information Center
Fagan, Joen; And Others
1974-01-01
This group of articles discusses various aspects of Gestalt Therapy including its major contributions, role in psychotherapy, and contributions of Gestalt psychology in general. There is some discussion of the philosophical background of Gestalt therapy along with Gestalt theory of emotion. A case study and an annotated bibliography are included…
ERIC Educational Resources Information Center
Marks, Stephen R.
1974-01-01
Durkheim's theory of anomie is traced and argued to be a major development that followed the publication of "Suicide." Recognition of anomie as a macrosociological problem rendered it insoluble by Durkeheim's practical-humanistic orientation. In this connection his remedial proposals -- occupational, political, education, and…
MFIX documentation theory guide
Syamlal, M.; Rogers, W.; O`Brien, T.J.
1993-12-01
This report describes the MFIX (Multiphase Flow with Interphase exchanges) computer model. MFIX is a general-purpose hydrodynamic model that describes chemical reactions and heat transfer in dense or dilute fluid-solids flows, flows typically occurring in energy conversion and chemical processing reactors. MFIX calculations give detailed information on pressure, temperature, composition, and velocity distributions in the reactors. With such information, the engineer can visualize the conditions in the reactor, conduct parametric studies and what-if experiments, and, thereby, assist in the design process. The MFIX model, developed at the Morgantown Energy Technology Center (METC), has the following capabilities: mass and momentum balance equations for gas and multiple solids phases; a gas phase and two solids phase energy equations; an arbitrary number of species balance equations for each of the phases; granular stress equations based on kinetic theory and frictional flow theory; a user-defined chemistry subroutine; three-dimensional Cartesian or cylindrical coordinate systems; nonuniform mesh size; impermeable and semi-permeable internal surfaces; user-friendly input data file; multiple, single-precision, binary, direct-access, output files that minimize disk storage and accelerate data retrieval; and extensive error reporting. This report, which is Volume 1 of the code documentation, describes the hydrodynamic theory used in the model: the conservation equations, constitutive relations, and the initial and boundary conditions. The literature on the hydrodynamic theory is briefly surveyed, and the bases for the different parts of the model are highlighted.
ERIC Educational Resources Information Center
Gibson, Joan M.; Donigian, Jeremiah
1993-01-01
Notes that theory-based approach to treatment of codependency is missing in fields of chemical dependency and mental health. Presents Bowen family systems therapy as foundation and framework for treatment goals and interventions. Illustrates similarities between characteristics of low levels of differentiation of self and codependency. (Author/NB)
Barnes, Ted {F E }
2010-01-01
In this invited presentation, I review some recent developments in the theory of charmonium that appear likely to be of importance for future experimental studies in this field. The specific areas considered are double charmonium production. LQCD studies of charmonium, recent results for hadron loops, cc{bar} production cross sections at PANDA, charm molecules, and two recent developments, "charmiscelleny".
Barnes, T.
2010-08-05
In this invited presentation I review some recent developments in the theory of charmonium that appear likely to be of importance for future experimental studies in this field. The specific areas considered are double charmonium production, LQCD studies of charmonium, recent results for hadron loops, cc-bar production cross sections at PANDA, charm molecules, and two recent developments, 'charmiscelleny'.
NASA Astrophysics Data System (ADS)
Duff, Michael
2011-03-01
Regular readers of Physics World will recall the July 2008 front cover and article on Garrett Lisi's "theory of everything", in which he lays out in a paper on the arXiv preprint server (arXiv:0711.0770).
Apprentice Machine Theory Outline.
ERIC Educational Resources Information Center
Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.
This volume contains outlines for 16 courses in machine theory that are designed for machine tool apprentices. Addressed in the individual course outlines are the following topics: basic concepts; lathes; milling machines; drills, saws, and shapers; heat treatment and metallurgy; grinders; quality control; hydraulics and pneumatics;…
ERIC Educational Resources Information Center
Christensen, Paula, Ed.
This document contains the following papers on theory from the SITE (Society for Information Technology & Teacher Education) 2002 conference: (1) "The Emerging Ecological Contribution of Online Resources and Tools to K-12 Classrooms" (Therese Laferriere, Robert Bracewell, Alain Breuleux); (2) "Pedagogical Ethnotechnography: A Bifocal Lens To…
Applications of kinetic theory
Gidaspow, D.
1992-01-01
The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. This report presents the author's derivation of analytical solutions useful in understanding the operation of a CFB. The report is in a form of a chapter that reviews the kinetic theory applications.
Heeger, David J
2017-02-21
Most models of sensory processing in the brain have a feedforward architecture in which each stage comprises simple linear filtering operations and nonlinearities. Models of this form have been used to explain a wide range of neurophysiological and psychophysical data, and many recent successes in artificial intelligence (with deep convolutional neural nets) are based on this architecture. However, neocortex is not a feedforward architecture. This paper proposes a first step toward an alternative computational framework in which neural activity in each brain area depends on a combination of feedforward drive (bottom-up from the previous processing stage), feedback drive (top-down context from the next stage), and prior drive (expectation). The relative contributions of feedforward drive, feedback drive, and prior drive are controlled by a handful of state parameters, which I hypothesize correspond to neuromodulators and oscillatory activity. In some states, neural responses are dominated by the feedforward drive and the theory is identical to a conventional feedforward model, thereby preserving all of the desirable features of those models. In other states, the theory is a generative model that constructs a sensory representation from an abstract representation, like memory recall. In still other states, the theory combines prior expectation with sensory input, explores different possible perceptual interpretations of ambiguous sensory inputs, and predicts forward in time. The theory, therefore, offers an empirically testable framework for understanding how the cortex accomplishes inference, exploration, and prediction.
Strengthening Practice With Theory.
ERIC Educational Resources Information Center
Casazza, Martha E.
1998-01-01
Uses case studies of students to outline the theories related to cognitive development and different ways of understanding what knowledge is. Organizes four sets of concepts: (1) the construct of intelligence; (2) different ways of knowing; (3) the nature of constructivism; and (4) the active, strategic process of learning. Contains 19 references.…
ERIC Educational Resources Information Center
Braun, Henry I.; Mislevy, Robert
2005-01-01
Many of us have an intuitive understanding of physics that works surprisingly well to guide everyday action, but we would not attempt to send a rocket to the moon with it. Unfortunately, the authors argue, our policy makers are not as cautious when it comes to basing our school accountability system on intuitive test theory. Intuitive physics…
2011-07-01
sciences and philosophies are based on dubious premises or are in fact pseudosciences. Modern military theory was heavily influenced by empiricism and...determinism. Empiricism is described as a logical process based on pursuing knowledge through observation and experiments. One can make sensible
Dittrich, Peter; di Fenizio, Pietro Speroni
2007-05-01
Complex dynamical reaction networks consisting of many components that interact and produce each other are difficult to understand, especially, when new component types may appear and present component types may vanish completely. Inspired by Fontana and Buss (Bull. Math. Biol., 56, 1-64) we outline a theory to deal with such systems. The theory consists of two parts. The first part introduces the concept of a chemical organisation as a closed and self-maintaining set of components. This concept allows to map a complex (reaction) network to the set of organisations, providing a new view on the system's structure. The second part connects dynamics with the set of organisations, which allows to map a movement of the system in state space to a movement in the set of organisations. The relevancy of our theory is underlined by a theorem that says that given a differential equation describing the chemical dynamics of the network, then every stationary state is an instance of an organisation. For demonstration, the theory is applied to a small model of HIV-immune system interaction by Wodarz and Nowak (Proc. Natl. Acad. USA, 96, 14464-14469) and to a large model of the sugar metabolism of E. Coli by Puchalka and Kierzek (Biophys. J., 86, 1357-1372). In both cases organisations where uncovered, which could be related to functions.
NASA Technical Reports Server (NTRS)
Chiu, Huei-Huang
1989-01-01
A theoretical method is being developed by which the structure of a radiation field can be predicted by a radiation potential theory, similar to a classical potential theory. The introduction of a scalar potential is justified on the grounds that the spectral intensity vector is irrotational. The vector is also solenoidal in the limits of a radiation field in complete radiative equilibrium or in a vacuum. This method provides an exact, elliptic type equation that will upgrade the accuracy and the efficiency of the current CFD programs required for the prediction of radiation and flow fields. A number of interesting results emerge from the present study. First, a steady state radiation field exhibits an optically modulated inverse square law distribution character. Secondly, the unsteady radiation field is structured with two conjugate scalar potentials. Each is governed by a Klein-Gordon equation with a frictional force and a restoring force. This steady potential field structure and the propagation of radiation potentials are consistent with the well known results of classical electromagnetic theory. The extension of the radiation potential theory for spray combustion and hypersonic flow is also recommended.
ERIC Educational Resources Information Center
Spieker, Matthew H.
2016-01-01
Some American high schools include Advanced Placement (AP) Music Theory within their course offerings. Students who pass the AP exam can receive college credit either as a music or humanities credit. An AP class, however, offers music students more than future college credit; it ultimately improves musicianship skills and promotes deeper…
Benchmarking nuclear fission theory
Bertsch, G. F.; Loveland, W.; Nazarewicz, W.; Talou, P.
2015-05-14
We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. Thus, the purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.
ERIC Educational Resources Information Center
Latimer, Colin J.
1983-01-01
Discusses some lesser known examples of atomic phenomena to illustrate to students that the old quantum theory in its simplest (Bohr) form is not an antiquity but can still make an important contribution to understanding such phenomena. Topics include hydrogenic/non-hydrogenic spectra and atoms in strong electric and magnetic fields. (Author/JN)
NASA Technical Reports Server (NTRS)
Pepe, S.; Pepe, W. D.; Strauss, A. M.
1976-01-01
A general theory of orthodontic motion is developed that can be applied to determine the forces necessary to induce a given tooth to move to the predetermined desirable position. It is assumed that the natural (nonorthodontic) forces may be represented by a periodic function and the orthodontic forces may be superimposed upon the natural forces. A simple expression is derived for the applied stress.
Children's Theories of Motivation
ERIC Educational Resources Information Center
Gurland, Suzanne T.; Glowacky, Victoria C.
2011-01-01
To investigate children's theories of motivation, we asked 166 children (8-12 years of age) to rate the effect of various motivational strategies on task interest, over the short and long terms, in activities described as appealing or unappealing. Children viewed the rewards strategy as resulting in greatest interest except when implemented over…
Handicapping Social Exchange Theory.
ERIC Educational Resources Information Center
Mishler, Barbara
The economic theory of social exchange has some serious shortcomings when applied to minorities--especially the disabled. First, it assumes dyads comprise the basic unit where exchange occurs and that rewards and costs must occur at that level. Second, the model standardizes the experience of white, Western European and American males. The model…
Evolutionary Theory under Fire.
ERIC Educational Resources Information Center
Lewin, Roger
1980-01-01
Summarizes events of a conference on evolutionary biology in Chicago entitled: "Macroevolution." Reviews the theory of modern synthesis, a term used to explain Darwinism in terms of population biology and genetics. Issues presented at the conference are discussed in detail. (CS)
ERIC Educational Resources Information Center
Langberg, Arnold
1984-01-01
Describes the individualized program of Mountain Open High School which at first coincidentally resembed Maurice Gibbons'"Walkabout" concept and was subsequently more consciously shaped by theory. Students move through three phases culminating in challenging independent projects of practical use. (MJL)
Yoshida, Wako; Dolan, Ray J.; Friston, Karl J.
2008-01-01
This paper introduces a model of ‘theory of mind’, namely, how we represent the intentions and goals of others to optimise our mutual interactions. We draw on ideas from optimum control and game theory to provide a ‘game theory of mind’. First, we consider the representations of goals in terms of value functions that are prescribed by utility or rewards. Critically, the joint value functions and ensuing behaviour are optimised recursively, under the assumption that I represent your value function, your representation of mine, your representation of my representation of yours, and so on ad infinitum. However, if we assume that the degree of recursion is bounded, then players need to estimate the opponent's degree of recursion (i.e., sophistication) to respond optimally. This induces a problem of inferring the opponent's sophistication, given behavioural exchanges. We show it is possible to deduce whether players make inferences about each other and quantify their sophistication on the basis of choices in sequential games. This rests on comparing generative models of choices with, and without, inference. Model comparison is demonstrated using simulated and real data from a ‘stag-hunt’. Finally, we note that exactly the same sophisticated behaviour can be achieved by optimising the utility function itself (through prosocial utility), producing unsophisticated but apparently altruistic agents. This may be relevant ethologically in hierarchal game theory and coevolution. PMID:19112488
1975-01-01
Passage Times with Application to Exciton Trapping on Photosvnthetic Units J. Math, i’hys. 10, 735 (1969) 1970 P. A. Blood, Jr. Approximate...Physics. Rio de Janeiro. S. Okubo. A. Isihara M. Wadati. A. Isihara Theory of Liquid Crystals Molec. Crystlas ( Liquid Crystals 17
NASA Technical Reports Server (NTRS)
Schmitz, F. H.; Yu, Y. H.; Boxwell, D. A.
1982-01-01
High speed compressibility noise and vortex interaction noise, which are aerodynamically generated noise sources, were investigated. Noise generating mechanisms were identified. Linear and nonlinear theory were compared and are in agreement with data on amplitude and wave forms. The interaction area between the acoustic planform and blade/vortex interaction lines are examined.
Nonlinear Theory and Breakdown
NASA Technical Reports Server (NTRS)
Smith, Frank
2007-01-01
The main points of recent theoretical and computational studies on boundary-layer transition and turbulence are to be highlighted. The work is based on high Reynolds numbers and attention is drawn to nonlinear interactions, breakdowns and scales. The research focuses in particular on truly nonlinear theories, i.e. those for which the mean-flow profile is completely altered from its original state. There appear to be three such theories dealing with unsteady nonlinear pressure-displacement interactions (I), with vortex/wave interactions (II), and with Euler-scale flows (III). Specific recent findings noted for these three, and in quantitative agreement with experiments, are the following. Nonlinear finite-time break-ups occur in I, leading to sublayer eruption and vortex formation; here the theory agrees with experiments (Nishioka) regarding the first spike. II gives rise to finite-distance blowup of displacement thickness, then interaction and break-up as above; this theory agrees with experiments (Klebanoff, Nishioka) on the formation of three-dimensional streets. III leads to the prediction of turbulent boundary-layer micro-scale, displacement-and stress-sublayer-thicknesses.
ERIC Educational Resources Information Center
Hickey, John J.
The current debates about cultural geography fall into three categories: (1) arguments for the convergence of cultural and spatial geography; (2) arguments against current reports of the disappearance of culture as a result of increased cultural divergence; and (3) attempts at the reconstruction of culture theory to conform with generally valid…
ERIC Educational Resources Information Center
Mislevy, Robert J.
2014-01-01
Background/Context: This article explains the idea of a neopragmatic postmodernist test theory and offers some thoughts about what changing notions concerning the nature of and meanings assigned to knowledge imply for educational assessment, present and future. Purpose: Advances in the learning sciences--particularly situative and sociocognitive…
NASA Astrophysics Data System (ADS)
Höhn, Philipp Andres; Wever, Christopher S. P.
2017-01-01
We reconstruct the explicit formalism of qubit quantum theory from elementary rules on an observer's information acquisition. Our approach is purely operational: we consider an observer O interrogating a system S with binary questions and define S 's state as O 's "catalog of knowledge" about S . From the rules we derive the state spaces for N elementary systems and show that (a) they coincide with the set of density matrices over an N -qubit Hilbert space C2N; (b) states evolve unitarily under the group PSU (2N) according to the von Neumann evolution equation; and (c) O 's binary questions correspond to projective Pauli operator measurements with outcome probabilities given by the Born rule. As a by-product, this results in a propositional formulation of quantum theory. Aside from offering an informational explanation for the theory's architecture, the reconstruction also unravels previously unnoticed structural insights. We show that, in a derived quadratic information measure, (d) qubits satisfy inequalities which bound the information content in any set of mutually complementary questions to 1 bit; and (e) maximal sets of mutually complementary questions for one and two qubits must carry precisely 1 bit of information in pure states. The latter relations constitute conserved informational charges which define the unitary groups and, together with their conservation conditions, the sets of pure quantum states. These results highlight information as a "charge of quantum theory" and the benefits of this informational approach. This work emphasizes the sufficiency of restricting to an observer's information to reconstruct the theory and completes the quantum reconstruction initiated in a companion paper (P. Höhn, arXiv:1412.8323).
Knot Theory and Topologically Massive Yang-Mills Theory
NASA Astrophysics Data System (ADS)
Yildirim, Tuna; Rodgers, Vincent; Nair, Parameswaran; Carter, Suzanne
2013-04-01
In 2+1 dimensions, we study Yang-Mills(YM) + Chern-Simons(CS) theory also known as topologically massive Yang-Mills(TMYM) theory. Using geometric quantization method we calculate the Wilson Loop expectation values of TMYM theory. At large distances, where only the topological theory survives, we obtain a condition that makes skein relations of knot theory useful to calculate Wilson loop expectation values of TMYM theory. These link invariants may lead to a better understanding of mass gap in 2+1 dimensions.
BOOK REVIEW: Kinetic theory of plasma waves, homogeneous plasmas
NASA Astrophysics Data System (ADS)
Porkolab, Miklos
1998-11-01
from the BBGKY hierarchy. This is a somewhat unusual chapter in a book on plasma waves, but I welcome it since it demonstrates the author's desire to be complete and rigorous in justifying the use of the collisionless Vlasov equation for `high frequency' wave propagation phenomena. Incidentally, it is interesting that while the author derives the Fokker-Planck equation at great length, it is used only to derive the fluid and MHD equations, but not for estimating Coulomb collisional damping of specific waves in later chapters. Chapter 4 gives the derivation of the hot plasma dielectric tensor. There is an extensive and excellent discussion of the relativistic formulation of the dielectric tensor, which is of fundamental importance to practising fusion physicists (for example) involved in ECR heating of high temperature plasmas. Various temperature limits are taken in Chapters 5, 6 and 7, and the author discusses the infinite number of waves in the cold plasma limit (Chapter 5), in the hot plasma limit (Chapter 6) and in the electrostatic limit (Chapter 7). In my opinion, these chapters represent the `meat' of the book. Chapter 7 includes a detailed treatment of electrostatic waves in a hot plasma, including Bernstein waves and their damping at high harmonics. This is a difficult topic, and the extensive treatment presented here is hard to find in other texts. The author also includes a discussion of two stream instabilities here, together with the Nyquist-Penrose criterion for instability. Chapter 8 discusses linear wave-particle interactions, including damping of electromagnetic waves, RF current drive and RF heating. Chapter 9 is called `Collisionless Stochasticity' and institutes an introduction to the subject as well as applications to the heating of ions by high harmonic, lower hybrid waves. Chapter 10 is another key part of the book, on the quasilinear theory of heating and current drive. It deals with the practical aspects of RF heating and current drive in
Non-Relativistic Superstring Theories
Kim, Bom Soo
2007-12-14
We construct a supersymmetric version of the 'critical' non-relativistic bosonic string theory [1] with its manifest global symmetry. We introduce the anticommuting bc CFT which is the super partner of the {beta}{gamma} CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of Type IIB superstring theory. There is one notable difference: the fermions are non-chiral. We further consider 'noncritical' generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical non-relativistic string theory and the lightlike Linear Dilaton theory.
Parameters Identification for an Abstract Cauchy Problem by Quasilinearization
1989-10-01
if in addition ’ is of bounded variation on (-r,01, then DF(q) satisfies (1111). -12- Proof: Let A = max lakI and IhI = max IhkI Then we obtain the...zero as q 4 q* and (H8) holds. If ’ is of bounded variation on I-r,0, then y and ; are of bounded variation on {-r,TI. By 115, Theorem 2.1.7(b)] this...4.5) satisfies (1110). Moreover, if in addition u is of bounded variation on [0,T], then DG(q) satisfies (H13). Proof: Using (4.5) in place of (4.4
Quasilinear Scattering from Waves Driven by Beam-Plasma Instabilities.
1980-04-21
Rutherford , Nuclear Fusion 15, 1012 (1976). 5. L. P. Mai and W. Horton, Jr., Phys. Fluids 18, 356, (1975). 6. M. Yamada, S. Seiler, H. W. Hendel and H...VA 22202 PALO ALTO, CA 94303 OICY ATTN J. M. AEIN OICY ATTN J. T. MATTINGLEY OICY ATTN ERNEST BAUER OICY ATTN HANS WOLFHARD GENERAL ELECTRIC COMPANY...CHARLES L. RINO01CY ATTN WALTER JAYE 01CY ATTN M. BARON 01CY ATTN RAY L. LEADABRAND OICY ATTN G. CARPENTER OICY ATTN G. PRICE OICY ATTN J. PETERSON
Bounded perturbations of homogeneous quasilinear operators using bifurcations from infinity
NASA Astrophysics Data System (ADS)
Drábek, P.; Girg, P.; Takáč, P.
This paper deals with existence results for the following nonlinear problem with the Dirichlet p-Laplacian Δ p in a bounded domain Ω⊂ RN: - Δpu=λ|u| p-2u+h(x,u) in Ω, u=0on ∂Ω. Here, Δpu limit=defdiv(| ∇u| p-2∇u) , where p∈(1,∞) is a fixed number, h≡ h( x, s) is a given function from Ω× R into R, and λ∈ R stands for a spectral parameter. We focus on λ close to λ1, including the resonant case λ= λ1. The nonlinearity h is assumed to be of Landesman-Lazer type, but we can deal with vanishing nonlinearities as well. Our asymptotic method substitutes the Lyapunov-Schmidt method in some sense. Unlike in the semilinear case p=2, our method can treat more general nonlinearities if p≠2 (vanishing nonlinearities with very fast decay).
A method for finding coefficients of a quasilinear hyperbolic equation
NASA Astrophysics Data System (ADS)
Shcheglov, A. Yu.
2006-05-01
The inverse problem of finding the coefficients q( s) and p( s) in the equation u tt = a 2 u xx + q( u) u t - p( u) u x is investigated. As overdetermination required in the inverse setting, two additional conditions are set: a boundary condition and a condition with a fixed value of the timelike variable. An iteration method for solving the inverse problem is proposed based on an equivalent system of integral equations of the second kind. A uniqueness theorem and an existence theorem in a small domain are proved for the inverse problem to substantiate the convergence of the algorithm.
Velocity Averaging, Kinetic Formulations and Regularizing Effects in Quasilinear PDEs
2005-10-31
nonlinear conservation laws. In [LPT94a], Lions, Perthame & Tadmor have shown that entropy solutions of such laws admit a regularizing effect of a fractional...one augments (1.1) with additional conditions on the behavior of Φ(ρ) for a large enough family of entropies Φ’s. These additional entropy conditions...imply that g is in fact a positive distribution, g = m ∈ M+, measuring the entropy dissipation of the nonlinear equation. We arrive at the kinetic
Undetermined Coefficient Problems for Quasi-Linear Parabolic Equations
1989-12-18
recovered by an iteration scheme, and give sufficient conditions for the unique solution of the inverse problem. Equation (1.1) describes the evolution of...unique fixed point for T, and give conditions on the data for which such a fixed point exists . The solution can then be obtained by the iteration scheme...the solution pair (u, h) in the one dimensional heat equation subject to the nonlinear boundary conditions u. = h(u) on 002. The value of u(0, t) = 8
Evolution and literary theory.
Carroll, J
1995-06-01
Presupposing that all knowledge is the study of a unitary order of nature, the author maintains that the study of literature should be included within the larger field of evolutionary theory. He outlines four elementary concepts in evolutionary theory, and he argues that these concepts should regulate our understanding of literature. On the basis of these concepts, he repudiates the antirealist and irrationalist views that, under the aegis of "poststructuralism," have dominated academic literary studies for the past two decades. He examines the linkage between poststructuralism and standard social science, and he speculates about the ideological and disciplinary motives that have hitherto impeded evolutionary study in both the social sciences and the humanities. Finally, he distinguishes literature from science and argues that literary criticism integrates elements of both.
Partition Density Functional Theory
NASA Astrophysics Data System (ADS)
Wasserman, Adam
2012-02-01
Partition Density Functional Theory (PDFT) is a formally exact method for obtaining molecular properties from self-consistent calculations on isolated fragments [1,2]. For a given choice of fragmentation, PDFT outputs the (in principle exact) molecular energy and density, as well as fragment densities that sum to the correct molecular density. I describe our progress understanding the behavior of the fragment energies as a function of fragment occupations, derivative discontinuities, practical implementation, and applications of PDFT to small molecules. I also discuss implications for ground-state Density Functional Theory, such as the promise of PDFT to circumvent the delocalization error of approximate density functionals. [4pt] [1] M.H. Cohen and A. Wasserman, J. Phys. Chem. A, 111, 2229(2007).[0pt] [2] P. Elliott, K. Burke, M.H. Cohen, and A. Wasserman, Phys. Rev. A 82, 024501 (2010).
Walsh, Timothy Francis; Reese, Garth M.; Bhardwaj, Manoj Kumar
2011-11-01
Salinas provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Salinas. For a more detailed description of how to use Salinas, we refer the reader to Salinas, User's Notes. Many of the constructs in Salinas are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Salinas are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature.
Jones, Dean P.
2015-01-01
Metazoan genomes encode exposure memory systems to enhance survival and reproductive potential by providing mechanisms for an individual to adjust during lifespan to environmental resources and challenges. These systems are inherently redox networks, arising during evolution of complex systems with O2 as a major determinant of bioenergetics, metabolic and structural organization, defense, and reproduction. The network structure decreases flexibility from conception onward due to differentiation and cumulative responses to environment (exposome). The redox theory of aging is that aging is a decline in plasticity of genome–exposome interaction that occurs as a consequence of execution of differentiation and exposure memory systems. This includes compromised mitochondrial and bioenergetic flexibility, impaired food utilization and metabolic homeostasis, decreased barrier and defense capabilities and loss of reproductive fidelity and fecundity. This theory accounts for hallmarks of aging, including failure to maintain oxidative or xenobiotic defenses, mitochondrial integrity, proteostasis, barrier structures, DNA repair, telomeres, immune function, metabolic regulation and regenerative capacity. PMID:25863726
Gelman, Susan A.; Legare, Cristine H.
2013-01-01
Human cognition is characterized by enormous variability and structured by universal psychological constraints. The focus of this chapter is on the development of knowledge acquisition because it provides important insight into how the mind interprets new information and constructs new ways of understanding. We propose that mental content can be productively approached by examining the intuitive causal explanatory “theories” that people construct to explain, interpret, and intervene on the world around them, including theories of mind, of biology, or of physics. A substantial amount of research in cognitive developmental psychology supports the integral role of intuitive theories in human learning and provides evidence that they structure, constrain, and guide the development of human cognition. PMID:23436950
NASA Astrophysics Data System (ADS)
Giudice, Gian F.; McCullough, Matthew
2017-02-01
The clockwork is a mechanism for generating light particles with exponentially suppressed interactions in theories which contain no small parameters at the fundamental level. We develop a general description of the clockwork mechanism valid for scalars, fermions, gauge bosons, and gravitons. This mechanism can be implemented with a discrete set of new fields or, in its continuum version, through an extra spatial dimension. In both cases the clockwork emerges as a useful tool for model-building applications. Notably, the continuum clockwork offers a solution to the Higgs naturalness problem, which turns out to be the same as in linear dilaton duals of Little String Theory. We also elucidate the similarities and differences of the continuum clockwork with large extra dimensions and warped spaces. All clockwork models, in the discrete and continuum, exhibit novel phenomenology with a distinctive spectrum of closely spaced resonances.
2015-01-01
Health is regulated by homeostasis, a property of all living things. Homeostasis maintains equilibrium at set-points using feedback loops for optimum functioning of the organism. Imbalances in homeostasis causing overweight and obesity are evident in more than 1 billion people. In a new theory, homeostatic obesity imbalance is attributed to a hypothesized ‘Circle of Discontent’, a system of feedback loops linking weight gain, body dissatisfaction, negative affect and over-consumption. The Circle of Discontent theory is consistent with an extensive evidence base. A four-armed strategy to halt the obesity epidemic consists of (1) putting a stop to victim-blaming, stigma and discrimination; (2) devalorizing the thin-ideal; (3) reducing consumption of energy-dense, low-nutrient foods and drinks; and (4) improving access to plant-based diets. If fully implemented, interventions designed to restore homeostasis have the potential to halt the obesity epidemic. PMID:28070357
Homeostatic theory of obesity.
Marks, David F
2015-01-01
Health is regulated by homeostasis, a property of all living things. Homeostasis maintains equilibrium at set-points using feedback loops for optimum functioning of the organism. Imbalances in homeostasis causing overweight and obesity are evident in more than 1 billion people. In a new theory, homeostatic obesity imbalance is attributed to a hypothesized 'Circle of Discontent', a system of feedback loops linking weight gain, body dissatisfaction, negative affect and over-consumption. The Circle of Discontent theory is consistent with an extensive evidence base. A four-armed strategy to halt the obesity epidemic consists of (1) putting a stop to victim-blaming, stigma and discrimination; (2) devalorizing the thin-ideal; (3) reducing consumption of energy-dense, low-nutrient foods and drinks; and (4) improving access to plant-based diets. If fully implemented, interventions designed to restore homeostasis have the potential to halt the obesity epidemic.
Panarchy: theory and application
Allen, Craig R.; Angeler, David G.; Garmestani, Ahjond S.; Gunderson, Lance H.; Holling, Crawford S.
2014-01-01
The concept of panarchy provides a framework that characterizes complex systems of people and nature as dynamically organized and structured within and across scales of space and time. It has been more than a decade since the introduction of panarchy. Over this period, its invocation in peer-reviewed literature has been steadily increasing, but its use remains primarily descriptive and abstract. Here, we discuss the use of the concept in the literature to date, highlight where the concept may be useful, and discuss limitations to the broader applicability of panarchy theory for research in the ecological and social sciences. Finally, we forward a set of testable hypotheses to evaluate key propositions that follow from panarchy theory.
Fleeson, William; Jayawickreme, Eranda
2014-01-01
Personality researchers should modify models of traits to include mechanisms of differential reaction to situations. Whole Trait Theory does so via five main points. First, the descriptive side of traits should be conceptualized as density distributions of states. Second, it is important to provide an explanatory account of the Big 5 traits. Third, adding an explanatory account to the Big 5 creates two parts to traits, an explanatory part and a descriptive part, and these two parts should be recognized as separate entities that are joined into whole traits. Fourth, Whole Trait Theory proposes that the explanatory side of traits consists of social-cognitive mechanisms. Fifth, social-cognitive mechanisms that produce Big-5 states should be identified. PMID:26097268
[Psychological theories of motivation].
Quoniam, Nolwenn; Bungener, Catherine
2004-03-01
The comprehension of the principles guiding the human actions has always been an important aspect of philosophy. The development of experimental psychology first completely rejected all mental explanations such as will, intentions or motives. Behavior should then only be understood as determined by conditioning and learning. However, different theories denied that human behavior could be considered as purely reactive to the environment and stressed the active role of the organism on the environment. Theories from the humanist psychology and the social psychology described two kinds of motivation. The extrinsic motivation results from external stimuli and the intrinsic motivation from the organism himself. Our behavior is therefore determined by an interaction between our beliefs, expectations, needs and the environment. Actually, the concept of motivation is not well specified. It refers either to a global dynamic structure responsible for action either to a specific tendency toward some specific actions. Anyway, motivation is a concept infered from behavior. Therefore, its evaluation could only be secondary.
Beyond mean field theory: statistical field theory for neural networks
Buice, Michael A; Chow, Carson C
2014-01-01
Mean field theories have been a stalwart for studying the dynamics of networks of coupled neurons. They are convenient because they are relatively simple and possible to analyze. However, classical mean field theory neglects the effects of fluctuations and correlations due to single neuron effects. Here, we consider various possible approaches for going beyond mean field theory and incorporating correlation effects. Statistical field theory methods, in particular the Doi–Peliti–Janssen formalism, are particularly useful in this regard. PMID:25243014
NASA Technical Reports Server (NTRS)
Wolpert, David H.
2005-01-01
Probability theory governs the outcome of a game; there is a distribution over mixed strat.'s, not a single "equilibrium". To predict a single mixed strategy must use our loss function (external to the game's players. Provides a quantification of any strategy's rationality. Prove rationality falls as cost of computation rises (for players who have not previously interacted). All extends to games with varying numbers of players.
Elasticity Theory of Composites.
1980-03-01
given by 22 ~ S1 A (4.10) This result was first given by Kneer (1965). The case for which P is the ellipsoid Tfl- <I (4.11) can be reduced to the one...spherical grains and applied the prescription (5.9). Anisotropic polycrystals require a computation. Kneer (1965) studied textured polycrystals, in which...Some questions concerning the theory of phase transformations in solids, Soviet Phys., Solid St. (English trans.) 8, 2163-2168. Kneer , G. (1965
NASA Technical Reports Server (NTRS)
Callier, Frank M.; Desoer, Charles A.
1991-01-01
The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.
Relativistic Quantum Information Theory
2007-11-20
In S. Kalara and D.V. Nanopou- los, editors, Proceedings of the International Symposium on Black Holes , Membranes, Wormholes and Superstrings, pages...within the gravitational field of a black hole . We outline the general theory of how the entanglement of polarized photons changes under...relativistic Lorentz transformations, and have studied quantum information transmission in the presence of a black hole . A description of the accretion of
Inokuti, Mitio.
1990-01-01
The multifaceted role of theoretical physics in understanding the earliest stages of radiation action is discussed. Scientific topics chosen for the present discourse include photoabsorption, electron collisions, and ionic collisions, and electron transport theory, Connections of atomic and molecular physics with condensed-matter physics are also discussed. The present article includes some historical perspective and an outlook for the future. 114 refs., 3 figs.
NASA Astrophysics Data System (ADS)
Zharov, V.
2015-08-01
Time series of the Earth orientation parameters (EOP) were calculated. The ARIADNA software was used to analyze the corrections of the nutation angles. Main feature is un-modeled motion of the CIP in the GCRS that is known as the free core nutation (FCN). In contrast from theory the FCN motion is complex motion. Hypothesis of reason of this complex motion is based on amplitude modulation of the excitation that is connected with the atmospheric tide ψ_1.
Paleo, Bruno Woltzenlogel
2012-01-01
Axiomatization of Physics (and science in general) has many drawbacks that are correctly criticized by opposing philosophical views of science. This paper shows that, by giving formal proofs a more prominent role in the formalization, many of the drawbacks can be solved and many of the opposing views are naturally conciliated. Moreover, this approach allows, by means of proof theory, to open new conceptual bridges between the disciplines of Physics and Computer Science. PMID:24976655
Postempiricism and psychological theory.
Bolton, D
1999-12-01
Discusses postempiricism as a view of scientific knowledge and of knowledge in general. It gives a prominent role to theory in relation to experience, experiment, and action and emphasizes the contextual nature of knowledge. The articles by Dishion and Patterson (this issue), Evans (this issue), and Liddle (this issue) are all positioned clearly in this contemporary epistemology. Fonagy's (this issue) analysis of the apparent restriction of psychoanalytic methods of change is discussed.
Nightingale's environmental theory.
Hegge, Margaret
2013-07-01
This author extracts the environmental theory from Florence Nightingale's writings and recorded experiences. As Nightingale's experiences broadened to other cultures and circumstances, she generated an ever-widening commitment to redress unjust social policies imperiling human health. She mobilized collaborators, shaped public awareness, and championed the cause of those suffering as a result of unjust policies. Nightingale challenged nurses to create environments where population health is a realistic expectation.
Operational Shock Complexity Theory
2005-05-26
but lies essentially at the door of the Westerner’s perceived need for order, theory and lack of belief in the concept of fate.25 Finally, complexity...elsewhere and the entire system exhibits properties and behaviors different from the parts.61 The two main types of system are open and closed systems...62 Open systems take on board excess energy to replace that which is lost in order to continue operating and remain alive. Closed systems seek
NASA Astrophysics Data System (ADS)
Hartsock, Robert
2011-10-01
The Least Particle Theory states that the universe was cast as a great sea of energy. MaX Planck declared a quantum of energy to be the least value in the universe. We declare the quantum of energy to be the least particle in the universe. Stephen Hawking declared quantum mechanics to be of no value in todays gross mechanics. That's like saying the number 1 has no place in mathematics.
Influence: Theory and Practice
2013-06-01
information, humans have developed cognitive processes to quickly filter decision-making requests according to probable importance. If determined routine...aspects of group social dynamics. To cope with the daily flood of life’s information, humans have developed cognitive processes to quickly filter...1965). Also refer to theories of Cognitive Psychology, specifically the idea of the individual as an information processing system. Ellul and
Astrophysical materials science: Theory
NASA Technical Reports Server (NTRS)
Ashcroft, N. W.
1984-01-01
A method of structural expansions for use in determining the equation of state of metallic hydrogen (and indeed other metals) up to the 4th order in the perturbation theory was developed. The electrical and thermal transport properties of the planetary interior of Jupiter were calculated. The nature of the interaction between molecules at short range and the importance of multicenter terms in arriving at an adequate description of the thermodynamic functions of condensed molecular hydrogen were also investigated.
Constructor theory of information
Deutsch, David; Marletto, Chiara
2015-01-01
We propose a theory of information expressed solely in terms of which transformations of physical systems are possible and which are impossible—i.e. in constructor-theoretic terms. It includes conjectured, exact laws of physics expressing the regularities that allow information to be physically instantiated. Although these laws are directly about information, independently of the details of particular physical instantiations, information is not regarded as an a priori mathematical or logical concept, but as something whose nature and properties are determined by the laws of physics alone. This theory solves a problem at the foundations of existing information theory, namely that information and distinguishability are each defined in terms of the other. It also explains the relationship between classical and quantum information, and reveals the single, constructor-theoretic property underlying the most distinctive phenomena associated with the latter, including the lack of in-principle distinguishability of some states, the impossibility of cloning, the existence of pairs of variables that cannot simultaneously have sharp values, the fact that measurement processes can be both deterministic and unpredictable, the irreducible perturbation caused by measurement, and locally inaccessible information (as in entangled systems). PMID:25663803
NASA Astrophysics Data System (ADS)
Stell, George
In recent years the properties of percolation models have been studied intensively. The purpose of our project was to develop a general theory of percolation and clustering between particles of arbitrary size and shape, with arbitrary correlations between them. The goal of such a theory includes the treatment of continuum percolation as well as a novel treatment of lattice percolation. We made substantial progress toward this goal. The quantities basic to a description of clustering, the mean cluster size, mean number of clusters, etc., were developed. Concise formulas were given for the terms in such series, and proved, at least for sufficiently low densities, that the series are absolutely convergent. These series can now be used to construct Pade approximants that will allow one to probe the percolation transition. A scaled-particle theory of percolation was developed which gives analytic approximants for the mean number of clusters in a large class of two and three dimensional percolation models. Although this quantity is essential in many applications, e.g., explaining colligative properties, and interpreting low-angle light-scattering data, no systematic studies of it have been done before this work. Recently carried out detailed computer simulations show that the mean number of clusters is given to high accuracy by several of there approximations. Extensions of this work will allow calculation of the complete cluster size distribution.
Celani, David P
2016-06-01
Fairbairn's unique structural theory with its three pairs of selves and objects has proven to be a highly usable and practical model of the human psyche, yet it has remained a minor player in the world of psychoanalysis. There are a number of factors that account for its lack of popularity, foremost among them the timing of the model's introduction to the analytic community. Fairbairn's four successive papers that described his metapsychology (1940, 1941, 1943, and 1944) were published just after Freud's death, when his theory was the dominant model of psychoanalysis. Additionally, Fairbairn's model was incomplete, used unfamiliar terminology, and, in its singularity, forced the analyst to abandon drive theory, the heart of Freud's metapsychology. This paper will examine and update Fairbairn's unique model of change-from the outset of pathology that begins with attachment to bad objects, to their metamorphosis into internal structures and finally to techniques of treatment that reduce their influence on the patients' internal world. The treatment section carefully follows Fairbairn's metapsychology, and focuses first on the analyst becoming a good object in the eyes of the patient, then unearthing bad object memories in a safe and compassionate interpersonal environment, engaging the patient's substructures in a manner that does not intensify preexisting internal templates, and finally aiding the patient in resuming his or her stalled emotional development. This exegesis of Fairbairn original model, along with recent modifications that have been made to it, demonstrates the consistency, clear focus, and utility of this little-known metapsychology.
Probabilistic theories with purification
Chiribella, Giulio; D'Ariano, Giacomo Mauro; Perinotti, Paolo
2010-06-15
We investigate general probabilistic theories in which every mixed state has a purification, unique up to reversible channels on the purifying system. We show that the purification principle is equivalent to the existence of a reversible realization of every physical process, that is, to the fact that every physical process can be regarded as arising from a reversible interaction of the system with an environment, which is eventually discarded. From the purification principle we also construct an isomorphism between transformations and bipartite states that possesses all structural properties of the Choi-Jamiolkowski isomorphism in quantum theory. Such an isomorphism allows one to prove most of the basic features of quantum theory, like, e.g., existence of pure bipartite states giving perfect correlations in independent experiments, no information without disturbance, no joint discrimination of all pure states, no cloning, teleportation, no programming, no bit commitment, complementarity between correctable channels and deletion channels, characterization of entanglement-breaking channels as measure-and-prepare channels, and others, without resorting to the mathematical framework of Hilbert spaces.
Digital lattice gauge theories
NASA Astrophysics Data System (ADS)
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.
Constructor theory of information.
Deutsch, David; Marletto, Chiara
2015-02-08
We propose a theory of information expressed solely in terms of which transformations of physical systems are possible and which are impossible-i.e. in constructor-theoretic terms. It includes conjectured, exact laws of physics expressing the regularities that allow information to be physically instantiated. Although these laws are directly about information, independently of the details of particular physical instantiations, information is not regarded as an a priori mathematical or logical concept, but as something whose nature and properties are determined by the laws of physics alone. This theory solves a problem at the foundations of existing information theory, namely that information and distinguishability are each defined in terms of the other. It also explains the relationship between classical and quantum information, and reveals the single, constructor-theoretic property underlying the most distinctive phenomena associated with the latter, including the lack of in-principle distinguishability of some states, the impossibility of cloning, the existence of pairs of variables that cannot simultaneously have sharp values, the fact that measurement processes can be both deterministic and unpredictable, the irreducible perturbation caused by measurement, and locally inaccessible information (as in entangled systems).
NASA Technical Reports Server (NTRS)
Bass, J; Agostini, L
1955-01-01
The theory of turbulence reached its full growth at the end of the 19th century as a result of the work by Boussinesq and Reynolds. It then underwent a long period of stagnation which ended under the impulse given to it by the development of wind tunnels caused by the needs of aviation. Numerous researchers, attempted to put Reynolds' elementary statistical theory into a more precise form. During the war, some isolated scientists - von Weizsacker and Heisenberg in Germany, Kolmogoroff in Russia, Onsager in the U.S.A. - started a program of research. By a system of assumptions which make it possible to approach the structure of turbulence in well-defined limiting conditions quantitatively, they obtained a certain number of laws on the correlations and the spectrum. Since the late reports have improved the mathematical language of turbulence, it was deemed advisable to start with a detailed account of the mathematical methods applicable to turbulence, inspired at first by the work of the French school, above all for the basic principles, then the work of the foreigners, above all for the theory of the spectrum.
Linear Theory, Dimensional Theory, and the Face-Inversion Effect
ERIC Educational Resources Information Center
Loftus, Geoffrey R.; Oberg, Martin A.; Dillon, Allyss M.
2004-01-01
We contrast 2 theories within whose context problems are conceptualized and data interpreted. By traditional linear theory, a dependent variable is the sum of main-effect and interaction terms. By dimensional theory, independent variables yield values on internal dimensions that in turn determine performance. We frame our arguments within an…
Schema Theory, Linguistic Theory, and Representations of Reading Comprehension.
ERIC Educational Resources Information Center
Richgels, Donald J.
1982-01-01
Two research areas, schema theory and linguistic theory, are described which have contributed to theories about language comprehension. Models of language comprehension conceptualized by Roger Schank, Carl Frederiksen, and Walter Kintsch are discussed in relation to the research and evaluated for practical use in reading instruction. (Author/PP)
Contrasting Ohlsson's Resubsumption Theory with Chi's Categorical Shift Theory
ERIC Educational Resources Information Center
Chi, Michelene T. H.; Brem, Sarah K.
2009-01-01
Ohlsson's proposal of resubsumption as the dominant process in conceptual, or nonmonotonic, change presents a worthy challenge to more established theories, such as Chi's theory of ontological shift. The two approaches differ primarily in that Ohlsson's theory emphasizes a process of learning in which narrower, more specific concepts are subsumed…
Critical Theory: Implications for School Leadership Theory and Practice.
ERIC Educational Resources Information Center
Peca, Kathy
The school leader's behaviors are inspired by theories, and theories are intrinsic to practice. This paper provides an overview of an emerging perspective in educational administration, critical theory. The paper first highlights the philosophies of Immanuel Kant, Fichte, Hegel, Marx, and the Frankfurt School. It then discusses critical theory…
Informal Theory: The Ignored Link in Theory-to-Practice
ERIC Educational Resources Information Center
Love, Patrick
2012-01-01
Applying theory to practice in student affairs is dominated by the assumption that formal theory is directly applied to practice. Among the problems with this assumption is that many practitioners believe they must choose between their lived experiences and formal theory, and that graduate students are taught that their experience "does not…
FROM BALLOT THEOREMS TO THE THEORY OF QUEUES,
QUEUEING THEORY, DISTRIBUTION THEORY ), (*PROBABILITY, DISTRIBUTION THEORY ), (* DISTRIBUTION THEORY , QUEUEING THEORY), (*STOCHASTIC PROCESSES... DISTRIBUTION THEORY ), SEQUENCES(MATHEMATICS), DIFFERENCE EQUATIONS, INTEGRAL TRANSFORMS, TIME, STATISTICAL FUNCTIONS
Theories for Psychotherapeutic Genetic Counseling: Fuzzy Trace Theory and Cognitive Behavior Theory.
Biesecker, Barbara; Austin, Jehannine; Caleshu, Colleen
2016-11-04
Psychotherapeutic genetic counseling is an increasingly relevant practice description. In this paper we aim to demonstrate how psychotherapeutic genetic counseling can be achieved by using psychological theories to guide one's approach to working with clients. We describe two illustrative examples, fuzzy trace theory and cognitive behavior theory, and apply them to two challenging cases. The theories were partially derived from evidence of beneficial client outcomes using a psychotherapeutic approach to patient care in other settings. We aim to demonstrate how these two specific theories can inform psychotherapeutic genetic counseling practice, and use them as examples of how to take a psychological theory and effectively apply it to genetic counseling.
Theories for Psychotherapeutic Genetic Counseling: Fuzzy Trace Theory and Cognitive Behavior Theory
Austin, Jehannine; Caleshu, Colleen
2016-01-01
Psychotherapeutic genetic counseling is an increasingly relevant practice description. In this paper we aim to demonstrate how psychotherapeutic genetic counseling can be achieved by using psychological theories to guide one’s approach to working with clients. We describe two illustrative examples, fuzzy trace theory and cognitive behavior theory, and apply them to two challenging cases. The theories were partially derived from evidence of beneficial client outcomes using a psychotherapeutic approach to patient care in other settings. We aim to demonstrate how these two specific theories can inform psychotherapeutic genetic counseling practice, and use them as examples of how to take a psychological theory and effectively apply it to genetic counseling. PMID:27812918
Targeting the Teaching of Theory.
ERIC Educational Resources Information Center
Walton, Charles W.
1981-01-01
Suggests that six target areas in the teaching of theory and musicianship need more attention and emphasis: listening, analysis, music reading, creativity, music writing, and keyboard harmony. Discusses content and sequence in music theory and presents two sample applications. (SJL)
Mexican contributions to Noncommutative Theories
Vergara, J. David; Garcia-Compean, H.
2006-09-25
In this paper we summarize the Mexican contributions to the subject of Noncommutative theories. These contributions span several areas: Quantum Groups, Noncommutative Field Theories, Hopf algebra of renormalization, Deformation Quantization, Noncommutative Gravity, and Noncommutative Quantum Mechanics.
CHALLENGES OF MODERN CONTROL THEORY
The fundamental objective of the new scientific discipline called ’ control theory ’ is that of modifying the behavior of a system subject to various...possible contributions of modern control theory to the biomedical domain are briefly indicated.
Reconsidering Moore's Transactional Distance Theory
ERIC Educational Resources Information Center
Giossos, Yiannis; Koutsouba, Maria; Lionarakis, Antonis; Skavantzos, Kosmas
2009-01-01
One of the core theories of distance education is Michael Graham Moore's "Theory of Transactional Distance" that provides the broad framework of the pedagogy of distance education and allows the generation of almost infinite number of hypotheses for research. However, the review of the existing studies relating to the theory showed the use of a…
Demonized Learners in Sociocultural Theory
ERIC Educational Resources Information Center
Chen, Joanna
2016-01-01
Within the frameworks of Sociocultural theory, particularly Vygotskian sociocultural theory and ZPD, Lave and Wenger's CoP, and contemporary sociocultural theory, this paper seeks to examine the unfavourable scholarly portrayal of learners and their identities based on learners' behaviours, attitudes, and beliefs about the social element of…
Chaos Theory and Post Modernism
ERIC Educational Resources Information Center
Snell, Joel
2009-01-01
Chaos theory is often associated with post modernism. However, one may make the point that both terms are misunderstood. The point of this article is to define both terms and indicate their relationship. Description: Chaos theory is associated with a definition of a theory dealing with variables (butterflies) that are not directly related to a…
Coding Issues in Grounded Theory
ERIC Educational Resources Information Center
Moghaddam, Alireza
2006-01-01
This paper discusses grounded theory as one of the qualitative research designs. It describes how grounded theory generates from data. Three phases of grounded theory--open coding, axial coding, and selective coding--are discussed, along with some of the issues which are the source of debate among grounded theorists, especially between its…
Circuit theory of Andreev conductance
NASA Astrophysics Data System (ADS)
Nazarov, Yuli V.
1994-09-01
Conductance of small normal metal structures adjacent to a superconductor is determined by coherent Andreev reflection. We show that under certain limitations the conductance can be found by means of an extended circuit theory. The theory deals with two types of elements: tunnel junctions and diffusive conductors and provides the basis for practical calculations. A new device proposed illustrates the advantages of the theory.
Program Theory Evaluation: Logic Analysis
ERIC Educational Resources Information Center
Brousselle, Astrid; Champagne, Francois
2011-01-01
Program theory evaluation, which has grown in use over the past 10 years, assesses whether a program is designed in such a way that it can achieve its intended outcomes. This article describes a particular type of program theory evaluation--logic analysis--that allows us to test the plausibility of a program's theory using scientific knowledge.…
Comments on quantum probability theory.
Sloman, Steven
2014-01-01
Quantum probability theory (QP) is the best formal representation available of the most common form of judgment involving attribute comparison (inside judgment). People are capable, however, of judgments that involve proportions over sets of instances (outside judgment). Here, the theory does not do so well. I discuss the theory both in terms of descriptive adequacy and normative appropriateness.
Learning theory and gestalt therapy.
Harper, R; Bauer, R; Kannarkat, J
1976-01-01
This article discusses the theory and operations of Gestalt Therapy from the viewpoint of learning theory. General comparative issues are elaborated as well as the concepts of introjection, retroflextion, confluence, and projection. Principles and techniques of Gestalt Therapy are discussed in terms of learning theory paradigm. Practical implications of the various Gestalt techniques are presented.
ERIC Educational Resources Information Center
Pryor, Robert G. L.; Bright, Jim
2003-01-01
Four theoretical streams--contexualism/ecology, systems theory, realism/constructivism, and chaos theory--contributed to a theory of individuals as complex, unique, nonlinear, adaptive chaotic and open systems. Individuals use purposive action to construct careers but can make maladaptive and inappropriate choices. (Contains 42 references.) (SK)
Quantum probability from decision theory?
NASA Astrophysics Data System (ADS)
Barnum, H.; Caves, C. M.; Finkelstein, J.; Fuchs, C. A.; Schack, R.
2000-05-01
In a recent paper (quant-ph/9906015), Deutsch claims to derive the "probabilistic predictions of quantum theory" from the "non-probabilistic axioms of quantum theory" and the "non-probabilistic part of classical decision theory." We show that his derivation fails because it includes hidden probabilistic assumptions.
Networking Theories by Iterative Unpacking
ERIC Educational Resources Information Center
Koichu, Boris
2014-01-01
An iterative unpacking strategy consists of sequencing empirically-based theoretical developments so that at each step of theorizing one theory serves as an overarching conceptual framework, in which another theory, either existing or emerging, is embedded in order to elaborate on the chosen element(s) of the overarching theory. The strategy is…
Logarithmic conformal field theory
NASA Astrophysics Data System (ADS)
Gainutdinov, Azat; Ridout, David; Runkel, Ingo
2013-12-01
Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more
[From the cell theory to the neuron theory].
Tixier-Vidal, Andrée
2010-01-01
The relationship between the cell theory formulated by Schwann (1839) and by Virchow (1855) on the one hand, and, on the other hand, the neuron theory, as formulated by Waldeyer (1891) and by Cajal (1906), are discussed from a historical point of view. Both of them are the result of technical and conceptuel progress. Both of them had to fight against the dominant dogma before being accepted. The cell theory opposed the school of Bichat, the vitalist philosophy and the positivist philosophy of Auguste Comte. The neuron theory, which is clearly based on the cell theory, was mostly concerned with the mode of interneuronal communication; it opposed the concept of contiguity to Golgi's concept of continuity. At present, the cell theory remains central in every field of Biology. By contrast, the neuron theory, which until the middle of the XXth century opened the study of the nervous system to a necessary reductionnist approach, is no longer central to recent developments of neurosciences.
Erickson, S.A. Jr.
1991-03-20
The purpose of this monograph is to start a theory of deterrence which has the capability of quantitatively answering the question of what is required to deter a nation or alliance from certain acts. Despite the existence of voluminous writing on deterrence, from the beginning of the nuclear age and even before, none of it attempts a theoretical discussion of how to calculate what it takes to deter a country from committing some acts which are objectionable to another country. Many theories of deterrence have already been created. They have exclusively been of two separate forms -- those of the social scientists, which deal with political questions, and how the concept of mass destruction psychological deters the initiation of war; and those of the mathematicians, who model the quantities of one country`s arsenal of strategic systems needed to destroy a certain portion of another country`s. Only the latter is quantitative, but they lack an essential element added to answer the question ``How much is enough?`` In order to use the techniques of operations research on the questions of what type and amount of weapons are adequate for deterrence, the definitions of quantities occurring in the calculations need to be made in quantifiable way. Numbers of weapons have been the only quantified parameter in previous deterrence calculations. Yet weapons alone do not deter. The threat of destruction and damage does. How is that threatenable damage to be measured, and as through defensive system construction, counterforce capability improvement, arms control, or other means, it becomes less when is the threshold for deterrence met and crossed? The calculation of this damage, and the implication of that damage to decision-makers capable of making a war initiation decision, is a complicated process, and it is what constitutes a theory of deterrence. 36 refs.
Quantum Transition State Theory
NASA Astrophysics Data System (ADS)
Waalkens, Holger
2009-03-01
The main idea of Wigner's transition state theory (TST) is to compute reaction rates from the flux through a dividing surface placed between reactants and products. In order not to overestimate the rate the dividing surface needs to have the no- recrossing property, i.e. reactive trajectories cross the dividing surface exactly once, and nonreactive trajectories do not cross it at all. The long standing problem of how to construct such a diving surface for multi-degree-of-freedom systems was solved only recently using ideas from dynamical systems theory. Here a normal form allows for a local decoupling of the classical dynamics which leads to the explicit construction of the phase space structures that govern the reaction dynamics through transition states. The dividing surface is spanned by a normally hyperbolic manifold which is the mathematical manifestation of the transition state as an unstable invariant subsystem of one degree of freedom less than the full system. The mere existence of a quantum version of TST is discussed controversially in the literature. The key isssue is the presence of quantum mechanical tunneling which prohibits the existence of a local theory analogous to the classical case. Various approaches have been devloped to overcome this problem by propagating quantum wavefunctions through the transition state region. These approaches have in common that they are computationally very expensive which seriously limits their applicability. In contrast the approach by Roman Schubert, Stephen Wiggins and myself is local in nature. A quantum normal form allows us to locally decouple the quantum dynamics to any desired order in Planck's constant. This yields not only the location of the scattering and resonance wavefunctions relative to the classical phase space structures, but also leads to very efficient algorithms to compute cumulative reaction probabilities and Gamov-Siegert resonances which are the quantum imprints of the transition state.
NASA Astrophysics Data System (ADS)
Stanton, John F.
2015-05-01
The interaction between quantum-mechanical theory and spectroscopy is one of the most fertile interfaces in all of science, and has a richly storied history. Of course it was spectroscopy that provided essentially all of the evidence that not all was well (or, perhaps more correctly put, complete) with the world of 19th century classical physics. From the discoveries of the dark lines in the solar spectrum by Fraunhöfer in 1814 to the curiously simple geometric formula discovered seventy years later that described the hydrogen atom spectrum, spectroscopy and spectroscopists have consistently identified the areas of atomic and molecular science that are most in need of hard thinking by theoreticians. The rest of the story, of course, is well-known: spectroscopic results were used to understand and motivate the theory of radioactivity and ultimately the quantum theory, first in its immature form that was roughly contemporaneous with the first World War, and then the Heisenberg-Schrödinger-Dirac version that has withstood the test of time. Since the basic principles of quantum mechanics ware first understood, the subject has been successfully used to understand the patterns found in spectra, and how these relate to molecular structure, symmetry, energy levels, and dynamics. But further understanding required to attain these intellectual achievements has often come only as a result of vital and productive interactions between theoreticians and spectroscopists (of course, many people have strengths in both areas). And indeed, a field that might be termed "theoretical spectroscopy" was cultivated and is now an important part of modern molecular science.
1980-12-01
7 AA096 14S ARI ZONA UNIV TUCSON OPTICA SCIENCES CENTER F/6 20/5 LASER GYRO THE.ORY ESTENS ION(U)7 C So M 0 SCULLY IF33615-79-C-17N4 UNCLASSIIED...GYRO We have been working with scientists at Litton Industries in the development of a Zeeman laser gyro (ZLAG). We have developed a vector laser...Hutchings and V. Sanders are with Litton Industries , Woodland rate measurements with laser gyros (Section II). The remain- Hills, CA 91364. ing
NASA Technical Reports Server (NTRS)
Holman, Gordon D.
1989-01-01
The primary purpose of the Theory and Modeling Group meeting was to identify scientists engaged or interested in theoretical work pertinent to the Max '91 program, and to encourage theorists to pursue modeling which is directly relevant to data which can be expected to result from the program. A list of participants and their institutions is presented. Two solar flare paradigms were discussed during the meeting -- the importance of magnetic reconnection in flares and the applicability of numerical simulation results to solar flare studies.
Neutrinos: Theory and Phenomenology
Parke, Stephen
2013-10-22
The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.
Supersymmetric invariant theories
NASA Astrophysics Data System (ADS)
Esipova, S. R.; Lavrov, P. M.; Radchenko, O. V.
2014-04-01
We study field models for which a quantum action (i.e. the action appearing in the generating functional of Green functions) is invariant under supersymmetric transformations. We derive the Ward identity which is a direct consequence of this invariance. We consider a change of variables in functional integral connected with supersymmetric transformations when its parameter is replaced by a nilpotent functional of fields. Exact form of the corresponding Jacobian is found. We find restrictions on generators of supersymmetric transformations when a consistent quantum description of given field theories exists.
Cowen, N M
1987-01-01
The purpose of this paper is to extend the theoretical basis for testcross selection theory from models assuming two alleles per locus to a model which is general for number and frequency of alleles. The expectations of genetic variances expressed among and within testcross families is presented for both inbred and population testers. Predicted change due to selection in testcross, non-inbred and selfed population performance with testcross selection are derived. Expected changes in testcross heterosis and inbreeding depression in the population are also derived. Approximate confidence intervals for predicted selection response are developed and appropriate sets of progeny to evaluate in order to estimate parameters of interest are identified.
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.
1989-01-01
Basic mathematical problems on the theory of gearing are covered in this book, such as the necessary and sufficient conditions of envelope existence, relations between principal curvatures and directions for surfaces of mating gears. Also included are singularities of surfaces accompanied by undercutting the process of generation, the phenomena of envelope of lines of contact, and the principles for generation of conjugate surfaces. Special attention is given to the algorithms for computer aided simulation of meshing and tooth contact. This edition was complemented with the results of research recently performed by the author and his doctoral students. The book contains sample problems and also problems for the reader to solve.
Theory of ultracold superstrings
Snoek, Michiel; Vandoren, S.; Stoof, H. T. C.
2006-09-15
The combination of a vortex line in a one-dimensional optical lattice with fermions bound to the vortex core makes up an ultracold superstring. We give a detailed derivation of the way to make this supersymmetric string in the laboratory. In particular, we discuss the presence of a fermionic bound state in the vortex core and the tuning of the laser beams needed to achieve supersymmetry. Moreover, we discuss experimental consequences of supersymmetry and identify the precise supersymmetry in the problem. Finally, we make the mathematical connection with string theory.
NASA Technical Reports Server (NTRS)
Hsu, C. H.; Lan, C. E.
1984-01-01
A theory is developed for predicting wing rock characteristics. From available data, it can be concluded that wing rock is triggered by flow asymmetries, developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. A new nonlinear aerodynamic model that includes all essential aerodynamic nonlinearities is developed. The Beecham-Titchener method is applied to obtain approximate analytic solutions for the amplitude and frequency of the limit cycle based on the three degree-of-freedom equations of motion. An iterative scheme is developed to calculate the average aerodynamic derivatives and dynamic characteristics at limit cycle conditions. Good agreement between theoretical and experimental results is obtained.
NASA Astrophysics Data System (ADS)
Hashimoto, Koji; Morita, Takeshi
2011-08-01
In generic holographic QCD, we find that baryons are bound to form a nucleus, and that its radius obeys the empirically-known mass-number (A) dependence r∝A1/3 for large A. Our result is robust, since we use only a generic property of D-brane actions in string theory. We also show that nucleons are bound completely in a finite volume. Furthermore, employing a concrete holographic model (derived by Hashimoto, Iizuka, and Yi, describing a multibaryon system in the Sakai-Sugimoto model), the nuclear radius is evaluated as O(1)×A1/3[fm], which is consistent with experiments.
Density matrix perturbation theory.
Niklasson, Anders M N; Challacombe, Matt
2004-05-14
An orbital-free quantum perturbation theory is proposed. It gives the response of the density matrix upon variation of the Hamiltonian by quadratically convergent recursions based on perturbed projections. The technique allows treatment of embedded quantum subsystems with a computational cost scaling linearly with the size of the perturbed region, O(N(pert.)), and as O(1) with the total system size. The method allows efficient high order perturbation expansions, as demonstrated with an example involving a 10th order expansion. Density matrix analogs of Wigner's 2n+1 rule are also presented.
Principles of electromagnetic theory
Kovetz, A.H. )
1990-01-01
This book emphasizes the fundamental understanding of the laws governing the behavior of charge and current carrying bodies. Electromagnetism is presented as a classical theory, based-like mechanics-on principles that are independent of the atomic constitution of matter. This book is unique among electromagnetic texts in its treatment of the precise manner in which electromagnetism is linked to mechanics and thermodynamics. Applications include electrostriction, piezoelectricity, ferromagnetism, superconductivity, thermoelectricity, magnetohydrodynamics, radiation from charged particles, electromagnetic wave propagation and guided waves. There are many worked examples of dynamical and thermal effects of electromagnetic fields, and of effects resulting from the motion of bodies.
Galton, D J
1998-08-01
With the recent developments in the Human Genome Mapping Project and the new technologies that are developing from it there is a renewal of concern about eugenic applications. Francis Galton (b1822, d1911), who developed the subject of eugenics, suggested that the ancient Greeks had contributed very little to social theories of eugenics. In fact the Greeks had a profound interest in methods of supplying their city states with the finest possible progeny. This paper therefore reviews the works of Plato (The Republic and Politics) and Aristotle (The Politics and The Athenian Constitution) which have a direct bearing on eugenic techniques and relates them to methods used in the present century.
Endochronic theory of dynamic viscoplasticity
Lin, H.C.
1983-06-01
This report summarizes the work completed on a project concerned with engineering models in dyanmic plasticity. The concept of the endochronic theory of viscoplasticity and its subsequent improvement are discussed briefly. Applications and extensions of the theory to various dynamic problems are presented. In particular, the strain-rate effect in the improved endochronic theory and its application to wave propagation problems are discussed. Comparing the numerical results with other calculations and experimental data, it appears that endochronic theory provides a promising representation of realistic material behavior. At the same time endochronic theory is often numerically more efficient than other formulations.
Complex higher order derivative theories
Margalli, Carlos A.; Vergara, J. David
2012-08-24
In this work is considered a complex scalar field theory with higher order derivative terms and interactions. A procedure is developed to quantize consistently this system avoiding the presence of negative norm states. In order to achieve this goal the original real scalar high order field theory is extended to a complex space attaching a complex total derivative to the theory. Next, by imposing reality conditions the complex theory is mapped to a pair of interacting real scalar field theories without the presence of higher derivative terms.
Quantum field theory of fluids.
Gripaios, Ben; Sutherland, Dave
2015-02-20
The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.
[Polyvagal theory and emotional trauma].
Leikola, Anssi; Mäkelä, Jukka; Punkanen, Marko
2016-01-01
According to the polyvagal theory, the autonomic nervous system can, in deviation from the conventional theory, be divided in three distinct parts that are in hierarchical relationship with each other. The most-primitive autonomic control results in depression of vital functions, the more evolved one in fighting or escape and the most evolved one in social involvement. Practical application of the polyvagal theory has resulted in positive results above all in the treatment of emotional trauma. in Finland, therapy of complex trauma is founded on the theory of structural dissociation of the personality, which together with the polyvagal theory forms a practical frame of reference for psychotherapeutic work.
Recent developments in superstring theory.
Schwarz, J H
1998-03-17
There have been many remarkable developments in our understanding of superstring theory in the past few years, a period that has been described as "the second superstring revolution." In particular, what once appeared to be five distinct theories are now recognized to be different manifestations of a single (unique) underlying theory. Some of the evidence for this, based on dualities and the appearance of an eleventh dimension, is presented. Also, a specific proposal for the underlying theory, called "Matrix Theory," is described. The presentation is intended primarily for the benefit of nonexperts.
Recent developments in superstring theory
Schwarz, John H.
1998-01-01
There have been many remarkable developments in our understanding of superstring theory in the past few years, a period that has been described as “the second superstring revolution.” In particular, what once appeared to be five distinct theories are now recognized to be different manifestations of a single (unique) underlying theory. Some of the evidence for this, based on dualities and the appearance of an eleventh dimension, is presented. Also, a specific proposal for the underlying theory, called “Matrix Theory,” is described. The presentation is intended primarily for the benefit of nonexperts. PMID:9501161
A Transversely Isotropic Thermoelastic Theory
NASA Technical Reports Server (NTRS)
Arnold, S. M.
1989-01-01
A continuum theory is presented for representing the thermoelastic behavior of composites that can be idealized as transversely isotropic. This theory is consistent with anisotropic viscoplastic theories being developed presently at NASA Lewis Research Center. A multiaxial statement of the theory is presented, as well as plane stress and plane strain reductions. Experimental determination of the required material parameters and their theoretical constraints are discussed. Simple homogeneously stressed elements are examined to illustrate the effect of fiber orientation on the resulting strain distribution. Finally, the multiaxial stress-strain relations are expressed in matrix form to simplify and accelerate implementation of the theory into structural analysis codes.
NASA Astrophysics Data System (ADS)
Aharony, Ofer; Komargodski, Zohar; Yankielowicz, Shimon
2016-04-01
We consider Euclidean Conformal Field Theories perturbed by quenched disorder, namely by random fluctuations in their couplings. Such theories are relevant for second-order phase transitions in the presence of impurities or other forms of disorder. Theories with quenched disorder often flow to new fixed points of the renormalization group. We begin with disorder in free field theories. Imry and Ma showed that disordered free fields can only exist for d > 4. For d > 4 we show that disorder leads to new fixed points which are not scale-invariant. We then move on to large- N theories (vector models or gauge theories in the `t Hooft limit). We compute exactly the beta function for the disorder, and the correlation functions of the disordered theory. We generalize the results of Imry and Ma by showing that such disordered theories exist only when disorder couples to operators of dimension Δ > d/4. Sometimes the disordered fixed points are not scale-invariant, and in other cases they have unconventional dependence on the disorder, including non-trivial effects due to irrelevant operators. Holography maps disorder in conformal theories to stochastic differential equations in a higher dimensional space. We use this dictionary to reproduce our field theory results. We also study the leading 1 /N corrections, both by field theory methods and by holography. These corrections are particularly important when disorder scales with the number of degrees of freedom.
A simple theory of motor protein kinetics and energetics. II.
Qian, H
2000-01-10
A three-state stochastic model of motor protein [Qian, Biophys. Chem. 67 (1997) pp. 263-267] is further developed to illustrate the relationship between the external load on an individual motor protein in aqueous solution with various ATP concentrations and its steady-state velocity. A wide variety of dynamic motor behavior are obtained from this simple model. For the particular case of free-load translocation being the most unfavorable step within the hydrolysis cycle, the load-velocity curve is quasi-linear, V/Vmax = (cF/Fmax-c)/(1-c), in contrast to the hyperbolic relationship proposed by A.V. Hill for macroscopic muscle. Significant deviation from the linearity is expected when the velocity is less than 10% of its maximal (free-load) value--a situation under which the processivity of motor diminishes and experimental observations are less certain. We then investigate the dependence of load-velocity curve on ATP (ADP) concentration. It is shown that the free load Vmax exhibits a Michaelis-Menten like behavior, and the isometric Fmax increases linearly with ln([ATP]/[ADP]). However, the quasi-linear region is independent of the ATP concentration, yielding an apparently ATP-independent maximal force below the true isometric force. Finally, the heat production as a function of ATP concentration and external load are calculated. In simple terms and solved with elementary algebra, the present model provides an integrated picture of biochemical kinetics and mechanical energetics of motor proteins.
Forgetting and remembering alienation theory.
Yuill, Chris
2011-01-01
Alienation theory has acted as the stimulus for a great deal of research and writing in the history of sociology. It has formed the basis of many sociological "classics" focused on the workplace and the experiences of workers, and has also been mobilized to chart wider social malaise and individual troubles. Alienation theory usage has, however, declined significantly since its heyday of the 1960s and 1970s. Here, the reasons why alienation theory was "forgotten" and what can be gained by "remembering" alienation theory are explored. to realize this ambition this article proceeds by (1) briefly visiting differing definitions of alienation theory, before charting its high point, and the various debates and tensions of the time, during the 1960s and 1970s; (2) analysing the reasons why alienation theory fell from grace from the 1980s onwards; (3) elaborating how and why alienation theory is still relevant for sociology and the wider social sciences today.
Relevance theory: pragmatics and cognition.
Wearing, Catherine J
2015-01-01
Relevance Theory is a cognitively oriented theory of pragmatics, i.e., a theory of language use. It builds on the seminal work of H.P. Grice(1) to develop a pragmatic theory which is at once philosophically sensitive and empirically plausible (in both psychological and evolutionary terms). This entry reviews the central commitments and chief contributions of Relevance Theory, including its Gricean commitment to the centrality of intention-reading and inference in communication; the cognitively grounded notion of relevance which provides the mechanism for explaining pragmatic interpretation as an intention-driven, inferential process; and several key applications of the theory (lexical pragmatics, metaphor and irony, procedural meaning). Relevance Theory is an important contribution to our understanding of the pragmatics of communication.
Observer Localization in Multiverse Theories
NASA Astrophysics Data System (ADS)
Hutter, Marcus
2011-11-01
The progression of theories suggested for our world, from ego- to geo- to helio-centric models to universe and multiverse theories and beyond, shows one tendency: The size of the described worlds increases, with humans being expelled from their center to ever more remote and random locations. If pushed too far, a potential theory of everything (TOE) is actually more a theories of nothing (TON). Indeed such theories have already been developed. I show that including observer localization into such theories is necessary and su_cient to avoid this problem. I develop a quantitative recipe to identify TOEs and distinguish them from TONs and theories in-between. This precisely shows what the problem is with some recently suggested universal TOEs.
[Shedding light on chaos theory].
Chou, Shieu-Ming
2004-06-01
Gleick (1987) said that only three twentieth century scientific theories would be important enough to continue be of use in the twenty-first century: The Theory of Relativity, Quantum Theory, and Chaos Theory. Chaos Theory has become a craze which is being used to forge a new scientific system. It has also been extensively applied in a variety of professions. The purpose of this article is to introduce chaos theory and its nursing applications. Chaos is a sign of regular order. This is to say that chaos theory emphasizes the intrinsic potential for regular order within disordered phenomena. It is to be hoped that this article will inspire more nursing scientists to apply this concept to clinical, research, or administrative fields in our profession.
6D Superconformal Theory as the Theory of Everything
NASA Astrophysics Data System (ADS)
Smilga, A. V.
2006-06-01
We argue that the fundamental Theory of Everything is a conventional field theory defined in the flat multidimensional bulk. Our Universe should be obtained as a 3-brane classical solution in this theory. The renormalizability of the fundamental theory implies that it involves higher derivatives (HD). It should be supersymmetric (otherwise one cannot get rid of the huge induced cosmological term) and probably conformal (otherwise one can hardly cope with the problem of ghosts). We present arguments that in conformal HD theories the ghosts (which are inherent for HD theories) might be not so malignant. In particular, we present a nontrivial QM HD model where ghosts are absent and the spectrum has a well defined ground state. The requirement of superconformal invariance restricts the dimension of the bulk to be D ≤ 6. We suggest that the TOE lives in six dimensions and enjoys the maximum {N} = (2, 0) superconformal symmetry. Unfortunately, no renormalizable field theory with this symmetry is presently known. We construct and discuss an {N} = (1, 0) 6D supersymmetric gauge theory with four derivatives in the action. This theory involves a dimensionless coupling constant and is renormalizable. At the tree level, the theory enjoys conformal symmetry, but the latter is broken by quantum anomaly. The sign of the β function corresponds to the Landau zero situation.
NASA Astrophysics Data System (ADS)
Griffiths, Robert B.
2001-11-01
Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics. Comprehensive account Written by one of the main figures in the field Paperback edition of successful work on philosophy of quantum mechanics
NASA Astrophysics Data System (ADS)
Raju, C. K.
2012-10-01
We propose a Lorentz-covariant theory of gravity, and explain its theoretical origins in the problem of time in Newtonian physics. In this retarded gravitation theory (RGT), the gravitational force depends upon both retarded position and velocity, and the equations of motion are time-asymmetric retarded functional differential equations. We explicitly solve these equations, under simplifying assumptions, for various NASA spacecraft. This shows that the differences from Newtonian gravity, though tiny within the solar system, are just appropriate to explain the flyby anomaly as a ν/c effect due to earth's rotation. The differences can, however, be large in the case of a spiral galaxy, and we show that the combined velocity drag from a large number of co-rotating stars enormously speeds up a test particle. Thus, the non-Newtonian behaviour of rotation curves in a spiral galaxy may be explained as being due to velocity drag rather than dark matter. RGT can also be tested in the laboratory. It necessitates a reappraisal of current laboratory methods of determining the Newtonian gravitational constant G. Since RGT makes no speculative assumptions, its refutation would have serious implications across physics.
NASA Astrophysics Data System (ADS)
Salam, Abdus; Wigner, E. P.
2010-03-01
Preface; List of contributors; Bibliography of P. A. M. Dirac; 1. Dirac in Cambridge R. J. Eden and J. C. Polkinghorne; 2. Travels with Dirac in the Rockies J. H. Van Vleck; 3. 'The golden age of theoretical physics': P. A. M. Dirac's scientific work from 1924 to 1933 Jagdish Mehra; 4. Foundation of quantum field theory Res Jost; 5. The early history of the theory of electron: 1897-1947 A. Pais; 6. The Dirac equation A. S. Wightman; 7. Fermi-Dirac statistics Rudolph Peierls; 8. Indefinite metric in state space W. Heisenberg; 9. On bras and kets J. M. Jauch; 10. The Poisson bracket C. Lanczos; 11. La 'fonction' et les noyaux L. Schwartz; 12. On the Dirac magnetic poles Edoardo Amadli and Nicola Cabibbo; 13. The fundamental constants and their time variation Freeman J. Dyson; 14. On the time-energy uncertainty relation Eugene P. Wigner; 15. The path-integral quantisation of gravity Abdus Salam and J. Strathdee; Index; Plates.
Changing theories of change: strategic shifting in implicit theory endorsement.
Leith, Scott A; Ward, Cindy L P; Giacomin, Miranda; Landau, Enoch S; Ehrlinger, Joyce; Wilson, Anne E
2014-10-01
People differ in their implicit theories about the malleability of characteristics such as intelligence and personality. These relatively chronic theories can be experimentally altered, and can be affected by parent or teacher feedback. Little is known about whether people might selectively shift their implicit beliefs in response to salient situational goals. We predicted that, when motivated to reach a desired conclusion, people might subtly shift their implicit theories of change and stability to garner supporting evidence for their desired position. Any motivated context in which a particular lay theory would help people to reach a preferred directional conclusion could elicit shifts in theory endorsement. We examine a variety of motivated situational contexts across 7 studies, finding that people's theories of change shifted in line with goals to protect self and liked others and to cast aspersions on disliked others. Studies 1-3 demonstrate how people regulate their implicit theories to manage self-view by more strongly endorsing an incremental theory after threatening performance feedback or memories of failure. Studies 4-6 revealed that people regulate the implicit theories they hold about favored and reviled political candidates, endorsing an incremental theory to forgive preferred candidates for past gaffes but leaning toward an entity theory to ensure past failings "stick" to opponents. Finally, in Study 7, people who were most threatened by a previously convicted child sex offender (i.e., parents reading about the offender moving to their neighborhood) gravitated most to the entity view that others do not change. Although chronic implicit theories are undoubtedly meaningful, this research reveals a previously unexplored source of fluidity by highlighting the active role people play in managing their implicit theories in response to goals.
Raby, S.; Walker, T.; Babu, K.S.; Baer, H.; Balantekin, A.B.; Barger, V.; Berezhiani, Z.; de Gouvea, A.; Dermisek, R.; Dolgov, A.; Fileviez Perez, P.; Gabadadze, G.; Gal, A.; Gondolo, P.; Haxton, W.; Kamyshkov, Y.; Kayser, B.; Kearns, E.; Kopeliovich, B.; Lande, K.; Marfatia, D.; /Kansas U. /Maryland U. /Northeastern U. /UC, Berkeley /LBL, Berkeley /Minnesota U. /SLAC /UC, Santa Cruz /SUNY, Stony Brook /Oklahoma State U. /Iowa State U. /Carnegie Mellon U.
2011-11-14
The scientific case for a Deep Underground Science and Engineering Laboratory [DUSEL] located at the Homestake mine in Lead, South Dakota is exceptional. The site of this future laboratory already claims a discovery for the detection of solar neutrinos, leading to a Nobel Prize for Ray Davis. Moreover this work provided the first step to our present understanding of solar neutrino oscillations and a chink in the armor of the Standard Model of particle physics. We now know, from several experiments located in deep underground experimental laboratories around the world, that neutrinos have mass and even more importantly this mass appears to fit into the framework of theories which unify all the known forces of nature, i.e. the strong, weak, electromagnetic and gravitational. Similarly, DUSEL can forge forward in the discovery of new realms of nature, housing six fundamental experiments that will test the frontiers of our knowledge: (1) Searching for nucleon decay (the decay of protons and neutrons predicted by grand unified theories of nature); (2) Searching for neutrino oscillations and CP violation by detecting neutrinos produced at a neutrino source (possibly located at Brookhaven National Laboratory and/or Fermi National Laboratory); (3) Searching for astrophysical neutrinos originating from the sun, from cosmic rays hitting the upper atmosphere or from other astrophysical sources, such a supernovae; (4) Searching for dark matter particles (the type of matter which does not interact electromagnetically, yet provides 24% of the mass of the Universe); (5) Looking for the rare process known as neutrino-less double beta decay which is predicted by most theories of neutrino mass and allows two neutrons in a nucleus to spontaneously change into two protons and two electrons; and (6) Searching for the rare process of neutron- anti-neutron oscillations, which would establish violation of baryon number symmetry. A large megaton water Cherenkov detector for neutrinos and
F-theory and 2d (0, 2) theories
NASA Astrophysics Data System (ADS)
Schäfer-Nameki, Sakura; Weigand, Timo
2016-05-01
F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N = (0 , 2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0 , 2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0 , 2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0 , 2) GLSM is realized via different T-branes or gluing data in F-theory.
Applying Lakatos' Theory to the Theory of Mathematical Problem Solving.
ERIC Educational Resources Information Center
Nunokawa, Kazuhiko
1996-01-01
The relation between Lakatos' theory and issues in mathematics education, especially mathematical problem solving, is investigated by examining Lakatos' methodology of a scientific research program. (AIM)
NASA Astrophysics Data System (ADS)
Suhov, Y.
We begin with the definition of information gained by knowing that an event A has occurred: iota (A) = -log_2 {{P}}(A). (A dual point of view is also useful (although more evasive), where iota (A) is the amount of information needed to specify event A.) Here and below {{P}} stands for the underlying probability distribution. So the rarer an event A, the more information we gain if we know it has occurred. (More broadly, the rarer an event A, the more impact it will have. For example, the unlikely event that occurred in 1938 when fishermen caught a coelacanth - a prehistoric fish believed to be extinct - required a significant change to beliefs about evolution and biology. On the other hand, the likely event of catching a herring or a tuna would hardly imply any change in theories.)
Semistrict higher gauge theory
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Sämann, Christian; Wolf, Martin
2015-04-01
We develop semistrict higher gauge theory from first principles. In particular, we describe the differential Deligne cohomology underlying semistrict principal 2-bundles with connective structures. Principal 2-bundles are obtained in terms of weak 2-functors from the Čech groupoid to weak Lie 2-groups. As is demonstrated, some of these Lie 2-groups can be differentiated to semistrict Lie 2-algebras by a method due to Ševera. We further derive the full description of connective structures on semistrict principal 2-bundles including the non-linear gauge transformations. As an application, we use a twistor construction to derive superconformal constraint equations in six dimensions for a non-Abelian tensor multiplet taking values in a semistrict Lie 2-algebra.
Galton, D J
1998-01-01
With the recent developments in the Human Genome Mapping Project and the new technologies that are developing from it there is a renewal of concern about eugenic applications. Francis Galton (b1822, d1911), who developed the subject of eugenics, suggested that the ancient Greeks had contributed very little to social theories of eugenics. In fact the Greeks had a profound interest in methods of supplying their city states with the finest possible progeny. This paper therefore reviews the works of Plato (The Republic and Politics) and Aristotle (The Politics and The Athenian Constitution) which have a direct bearing on eugenic techniques and relates them to methods used in the present century. PMID:9752630
Generalized scale invariant theories
NASA Astrophysics Data System (ADS)
Padilla, Antonio; Stefanyszyn, David; Tsoukalas, Minas
2014-03-01
We present the most general actions of a single scalar field and two scalar fields coupled to gravity, consistent with second-order field equations in four dimensions, possessing local scale invariance. We apply two different methods to arrive at our results. One method, Ricci gauging, was known to the literature and we find this to produce the same result for the case of one scalar field as a more efficient method presented here. However, we also find our more efficient method to be much more general when we consider two scalar fields. Locally scale invariant actions are also presented for theories with more than two scalar fields coupled to gravity and we explain how one could construct the most general actions for any number of scalar fields. Our generalized scale invariant actions have obvious applications to early Universe cosmology and include, for example, the Bezrukov-Shaposhnikov action as a subset.
NASA Astrophysics Data System (ADS)
Boccaletti, Dino; Pucacco, Giuseppe
This textbook treats Celestial Mechanics as well as Stellar Dynamics from the common point of view of orbit theory making use of the concepts and techniques from modern geometric mechanics. It starts with elementary Newtonian Mechanics and ends with the dynamics of chaotic motions. The book is meant for students in astronomy and physics alike. Prerequisite is a physicist's knowledge of calculus and differential geometry. Volume 1 begins with classical mechanics and a thorough treatment of the 2-body problem, including regularization, followed by an introduction to the N-body problem with particular attention given to the virial theorem. Then the authors discuss all important non-perturbative aspects of the 3-body problem. A final chapter deals with integrability of Hamilton-Jacobi-systems.
Limmer, David T.; Chandler, David
2014-01-01
We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens. PMID:24858957
NASA Technical Reports Server (NTRS)
Hsu, C.-H.; Lan, C. E.
1985-01-01
Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.
NASA Technical Reports Server (NTRS)
Chudnovsky, A.
1984-01-01
A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.
Kelly, Cynthia W
2008-01-01
This article introduces commitment to health as a middle-range. Commitment to health (CTH) is derived from Prochaska and DiClemente's (1983) Transtheoretical Model of Behavior Change. CTH theory is designed to predict the likelihood of behavior change between the action and maintenance stages of change. Commitment is defined as a freely chosen internal resolve to perform health behaviors, even when encumbered or inconvenienced by difficulties. Health is defined as the optimal level of well-being. Commitment is an independent continuous variable, but it can be categorized into three time-oriented categories: (1) low-level, (2) middle-level, and (3) high-level commitment. The higher the level of commitment, the more likely the individual will adopt long-term behavior change. This article presents the definitions, assumptions, and relational statements of CTH.
Svrcek, Peter; Witten, Edward; /Princeton, Inst. Advanced Study
2006-06-09
In the context of string theory, axions appear to provide the most plausible solution of the strong CP problem. However, as has been known for a long time, in many string-based models, the axion coupling parameter Fa is several orders of magnitude higher than the standard cosmological bounds. We re-examine this problem in a variety of models, showing that Fa is close to the GUT scale or above in many models that have GUT-like phenomenology, as well as some that do not. On the other hand, in some models with Standard Model gauge fields supported on vanishing cycles, it is possible for Fa to be well below the GUT scale.
Cuzinatto, R.R. . E-mail: rodrigo@ift.unesp.br; Melo, C.A.M. de . E-mail: cassius.anderson@gmail.com; Pompeia, P.J. . E-mail: pompeia@ift.unesp.br
2007-05-15
A gauge theory of second order in the derivatives of the auxiliary field is constructed following Utiyama's program. A novel field strength G = {partial_derivative}F + fAF arises besides the one of the first order treatment, F = {partial_derivative}A - {partial_derivative}A + fAA. The associated conserved current is obtained. It has a new feature: topological terms are determined from local invariance requirements. Podolsky Generalized Eletrodynamics is derived as a particular case in which the Lagrangian of the gauge field is L {sub P} {proportional_to} G {sup 2}. In this application the photon mass is estimated. The SU (N) infrared regime is analysed by means of Alekseev-Arbuzov-Baikov's Lagrangian.
NASA Astrophysics Data System (ADS)
Kylafis, Nikolaos D.
The theory of astronomical masers is reviewed. As with laboratory masers, masing occurs when a transition between two energy levels of a molecule exhibits inverted populations. In order to present the basic concepts about masers, an idealized two-level system is used. The exact energy level structure is taken into account later on when the pumping of specific molecules is discussed. Unlike laboratory masers, where the radiation must be bounced between two mirrors to accumulate gain, the propagation of radiation in astronomical masers is a lot simpler. This is because astronomical masers are single-pass and broadband. Thus, the main theoretical effort has concentrated on inventing efficient mechanisms that produce population inversion. Specific pumping mechanisms for the three molecules (H2O, SiO and OH) that exhibit strong masing are presented and their ability to explain the observations is discussed.
Effective string theory revisited
NASA Astrophysics Data System (ADS)
Dubovsky, Sergei; Flauger, Raphael; Gorbenko, Victor
2012-09-01
We revisit the effective field theory of long relativistic strings such as confining flux tubes in QCD. We derive the Polchinski-Strominger interaction by a calculation in static gauge. This interaction implies that a non-critical string which initially oscillates in one direction gets excited in orthogonal directions as well. In static gauge no additional term in the effective action is needed to obtain this effect. It results from a one-loop calculation using the Nambu-Goto action. Non-linearly realized Lorentz symmetry is manifest at all stages in dimensional regularization. We also explain that independent of the number of dimensions non-covariant counterterms have to be added to the action in the commonly used zeta-function regularization.
Tribology theory versus experiment
NASA Technical Reports Server (NTRS)
Ferrante, John
1987-01-01
Tribology, the study of friction and wear of materials, has achieved a new interest because of the need for energy conservation. Fundamental understanding of this field is very complex and requires a knowledge of solid-state physics, material science, chemistry, and mechanical engineering. This paper is meant to be didactic in nature and outlines some of the considerations needed for a tribology research program. The approach is first to present a simple model, a field emission tip in contact with a flat surface, in order to elucidate important considerations, such as contact area, mechanical deformations, and interfacial bonding. Then examples from illustrative experiments are presented. Finally, the current status of physical theories concerning interfacial bonding are presented.
Convexity and symmetrization in relativistic theories
NASA Astrophysics Data System (ADS)
Ruggeri, T.
1990-09-01
There is a strong motivation for the desire to have symmetric hyperbolic field equations in thermodynamics, because they guarantee well-posedness of Cauchy problems. A generic quasi-linear first order system of balance laws — in the non-relativistic case — can be shown to be symmetric hyperbolic, if the entropy density is concave with respect to the variables. In relativistic thermodynamics this is not so. This paper shows that there exists a scalar quantity in relativistic thermodynamics whose concavity guarantees a symmetric hyperbolic system. But that quantity — we call it —bar h — is not the entropy, although it is closely related to it. It is formed by contracting the entropy flux vector — ha with a privileged time-like congruencebar ξ _α . It is also shown that the convexity of h plus the requirement that all speeds be smaller than the speed of light c provide symmetric hyperbolic field equations for all choices of the direction of time. At this level of generality the physical meaning of —h is unknown. However, in many circumstances it is equal to the entropy. This is so, of course, in the non-relativistic limit but also in the non-dissipative relativistic fluid and even in relativistic extended thermodynamics for a non-degenerate gas.
NASA Astrophysics Data System (ADS)
Maxfield, Travis; Robbins, Daniel; Sethi, Savdeep
2016-11-01
Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2, 0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.
Extended vector-tensor theories
NASA Astrophysics Data System (ADS)
Kimura, Rampei; Naruko, Atsushi; Yoshida, Daisuke
2017-01-01
Recently, several extensions of massive vector theory in curved space-time have been proposed in many literatures. In this paper, we consider the most general vector-tensor theories that contain up to two derivatives with respect to metric and vector field. By imposing a degeneracy condition of the Lagrangian in the context of ADM decomposition of space-time to eliminate an unwanted mode, we construct a new class of massive vector theories where five degrees of freedom can propagate, corresponding to three for massive vector modes and two for massless tensor modes. We find that the generalized Proca and the beyond generalized Proca theories up to the quartic Lagrangian, which should be included in this formulation, are degenerate theories even in curved space-time. Finally, introducing new metric and vector field transformations, we investigate the properties of thus obtained theories under such transformations.
Exploring gravitational theories beyond Horndeski
NASA Astrophysics Data System (ADS)
Gleyzes, Jérôme; Langlois, David; Piazza, Federico; Vernizzi, Filippo
2015-02-01
We have recently proposed a new class of gravitational scalar-tensor theories free from Ostrogradski instabilities, in ref. [1]. As they generalize Horndeski theories, or "generalized" galileons, we call them G3. These theories possess a simple formulation when the time hypersurfaces are chosen to coincide with the uniform scalar field hypersurfaces. We confirm that they contain only three propagating degrees of freedom by presenting the details of the Hamiltonian formulation. We examine the coupling between these theories and matter. Moreover, we investigate how they transform under a disformal redefinition of the metric. Remarkably, these theories are preserved by disformal transformations that depend on the scalar field gradient, which also allow to map subfamilies of G3 into Horndeski theories.
Gauge Theories of Vector Particles
DOE R&D Accomplishments Database
Glashow, S. L.; Gell-Mann, M.
1961-04-24
The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.
A succession of theories: purging redundancy from disturbance theory.
Pulsford, Stephanie A; Lindenmayer, David B; Driscoll, Don A
2016-02-01
The topics of succession and post-disturbance ecosystem recovery have a long and convoluted history. There is extensive redundancy within this body of theory, which has resulted in confusion, and the links among theories have not been adequately drawn. This review aims to distil the unique ideas from the array of theory related to ecosystem change in response to disturbance. This will help to reduce redundancy, and improve communication and understanding between researchers. We first outline the broad range of concepts that have developed over the past century to describe community change in response to disturbance. The body of work spans overlapping succession concepts presented by Clements in 1916, Egler in 1954, and Connell and Slatyer in 1977. Other theories describing community change include state and transition models, biological legacy theory, and the application of functional traits to predict responses to disturbance. Second, we identify areas of overlap of these theories, in addition to highlighting the conceptual and taxonomic limitations of each. In aligning each of these theories with one another, the limited scope and relative inflexibility of some theories becomes apparent, and redundancy becomes explicit. We identify a set of unique concepts to describe the range of mechanisms driving ecosystem responses to disturbance. We present a schematic model of our proposed synthesis which brings together the range of unique mechanisms that were identified in our review. The model describes five main mechanisms of transition away from a post-disturbance community: (i) pulse events with rapid state shifts; (ii) stochastic community drift; (iii) facilitation; (iv) competition; and (v) the influence of the initial composition of a post-disturbance community. In addition, stabilising processes such as biological legacies, inhibition or continuing disturbance may prevent a transition between community types. Integrating these six mechanisms with the functional
Invariants from classical field theory
Diaz, Rafael; Leal, Lorenzo
2008-06-15
We introduce a method that generates invariant functions from perturbative classical field theories depending on external parameters. By applying our methods to several field theories such as Abelian BF, Chern-Simons, and two-dimensional Yang-Mills theory, we obtain, respectively, the linking number for embedded submanifolds in compact varieties, the Gauss' and the second Milnor's invariant for links in S{sup 3}, and invariants under area-preserving diffeomorphisms for configurations of immersed planar curves.
Sullivan, J J
1983-01-01
Ouchi's Theory Z prescribes how employees should be motivated for increased productivity. Based on the theoretical work of Emile Durkheim, it views the modern large corporation as a communal alternative to the shortcomings of other institutions in industrial mass society. Ouchi's assertion that Japan is the industrial society in which Theory Z has flourished received limited support from research findings. Moreover, Ouchi's grounding of the theory in humanistic management seem unwarranted.
Gravitational scalar-tensor theory
NASA Astrophysics Data System (ADS)
Naruko, Atsushi; Yoshida, Daisuke; Mukohyama, Shinji
2016-05-01
We consider a new form of gravity theories in which the action is written in terms of the Ricci scalar and its first and second derivatives. Despite the higher derivative nature of the action, the theory is ghost-free under an appropriate choice of the functional form of the Lagrangian. This model possesses 2 + 2 physical degrees of freedom, namely 2 scalar degrees and 2 tensor degrees. We exhaust all such theories with the Lagrangian of the form f(R,{({{\
Advancement of Latent Trait Theory.
1988-02-01
latent trait theory further, and include more varieties of situations. I [51 Investigation of ways of bridging across mathematical psychology and...five years on various topics in Latent Trait Theory, including more general topics such as the method of moments as the least squares solution for...response theory." The address described as (3) in the above list was a one hour special lecture overviewing latent trait models. There were more than two
Game Theory, Decision Theory, and Social Choice Theory in the Context of a New Theory of Equity
1978-12-01
singular deficiency in moral theory. Additionally, both Nozick (1974) and Wolff (1977) have criticized the Rawlsian and the utilitarian theories for...neglecting the question of contribution. 3. The distinction between manna and nonmanna environments was apparently introduced by Robert Nozick (1974, Chapter...Econometrica. Nozick , Robert, 1974, Anarchy, State and Utopia, New York: Basic Books. Rawls, John, 1971, A Theory of Justice, Cambridge: The Bellknap
Renormalization constants from string theory.
NASA Astrophysics Data System (ADS)
di Vecchia, P.; Magnea, L.; Lerda, A.; Russo, R.; Marotta, R.
The authors review some recent results on the calculation of renormalization constants in Yang-Mills theory using open bosonic strings. The technology of string amplitudes, supplemented with an appropriate continuation off the mass shell, can be used to compute the ultraviolet divergences of dimensionally regularized gauge theories. The results show that the infinite tension limit of string amplitudes corresponds to the background field method in field theory.
Non-equilibrium price theories
NASA Astrophysics Data System (ADS)
Helbing, Dirk; Kern, Daniel
2000-11-01
We propose two theories for the formation of stock prices under the condition that the number of available stocks is fixed. Both theories consider the balance equations for cash and several kinds of stocks. They also take into account interest rates, dividends, and transaction costs. The proposed theories have the advantage that they do not require iterative procedures to determine the price, which would be inefficient for simulations with many agents.
Core turbulent transport in tokamak plasmas: bridging theory and experiment with QuaLiKiz
NASA Astrophysics Data System (ADS)
Bourdelle, C.; Citrin, J.; Baiocchi, B.; Casati, A.; Cottier, P.; Garbet, X.; Imbeaux, F.; Contributors, JET
2016-01-01
Nonlinear gyrokinetic codes allow for detailed understanding of tokamak core turbulent transport. However, their computational demand precludes their use for predictive profile modeling. An alternative approach is required to bridge the gap between theoretical understanding and prediction of experiments. A quasilinear gyrokinetic model, QuaLiKiz (Bourdelle et al 2007 Phys. Plasmas 14 112501), is demonstrated to be rapid enough to ease systematic interface with experiments. The derivation and approximation of this approach are reviewed. The quasilinear approximation is proven valid over a wide range of core plasma parameters. Examples of profile prediction using QuaLiKiz coupled to the CRONOS integrated modeling code (Artaud et al 2010 Nucl. Fusion 50 043001) are presented. QuaLiKiz is being coupled to other integrated modeling platforms such as ETS and JETTO. QuaLiKiz quasilinear gyrokinetic turbulent heat, particle and angular momentum fluxes are available to all users. It allows for extensive stand-alone interpretative analysis and for first principle based integrated predictive modeling.
Theories of Motivation--Borrowing the Best.
ERIC Educational Resources Information Center
Terpstra, David E.
1979-01-01
Five theories of motivation are discussed: Maslow's Need Hierarchy, Herzberg's dual-factor or motivation-hygiene theory, goal setting or task motivation, expectancy/valence-theory (also known as instrumentality theory, valence-instrumentality-expectancy theory, or expectancy theory), and reinforcement. (JH)
Algebraic orbifold conformal field theories
Xu, Feng
2000-01-01
The unitary rational orbifold conformal field theories in the algebraic quantum field theory and subfactor theory framework are formulated. Under general conditions, it is shown that the orbifold of a given unitary rational conformal field theory generates a unitary modular category. Many new unitary modular categories are obtained. It is also shown that the irreducible representations of orbifolds of rank one lattice vertex operator algebras give rise to unitary modular categories and determine the corresponding modular matrices, which has been conjectured for some time. PMID:11106383
Toward a Unified Consciousness Theory
ERIC Educational Resources Information Center
Johnson, Richard H.
1977-01-01
The beginning of a holistic theory that can treat paranormal phenomena as normal human development is presented. Implications for counseling, counselor education, and counselor supervision are discussed. (Author)
Brain Physiology: Research and Theory.
ERIC Educational Resources Information Center
Esler, William K.
1982-01-01
Indicates how research about the physiology and chemistry of the brain verifies the educational applications of Piaget's theory. Discusses maturation, experience, social transmission, and equilibration. (Author/DC)
NASA Astrophysics Data System (ADS)
Martini, Luiz Cesar
2014-04-01
This article results from Introducing the Dimensional Continuous Space-Time Theory that was published in reference 1. The Dimensional Continuous Space-Time Theory shows a series of facts relative to matter, energy, space and concludes that empty space is inelastic, absolutely stationary, motionless, perpetual, without possibility of deformation neither can it be destroyed or created. A elementary cell of empty space or a certain amount of empty space can be occupied by any quantity of energy or matter without any alteration or deformation. As a consequence of these properties and being a integral part of the theory, the principles of Relativity Theory must be changed to become simple and intuitive.
Nonstationary statistical theory for multipactor
Anza, S.; Vicente, C.; Gil, J.
2010-06-15
This work presents a new and general approach to the real dynamics of the multipactor process: the nonstationary statistical multipactor theory. The nonstationary theory removes the stationarity assumption of the classical theory and, as a consequence, it is able to adequately model electron exponential growth as well as absorption processes, above and below the multipactor breakdown level. In addition, it considers both double-surface and single-surface interactions constituting a full framework for nonresonant polyphase multipactor analysis. This work formulates the new theory and validates it with numerical and experimental results with excellent agreement.
BOOK REVIEW: Plasma and Fluid Turbulence: Theory and Modelling
NASA Astrophysics Data System (ADS)
Yoshizawa, A.; Itoh, S. I.; Itoh, K.
2003-03-01
extensive description of dynamo theory in Magnetohydrodynamic turbulence. This area has applications both in geophysics and plasma confinement by magnetic fields. The most well known example being the reversed field pinch. This part is fundamental in several respects and the principle of relaxation of the turbulence to quasi stationary states that can be predicted theoretically is very elegant. The problem of rotation of magnetized plasmas and its importance for obtaining internal transport barriers is also treated here. This part is entirely described by the one-fluid magnetohydrodynamic (MHD) equations. The next part deals with plasma turbulence. It starts from the Braginskii collisional fluid equations. These are then reduced for typical cases of quasi two dimensional plasma turbulence where the magnetic perturbations can be described by a vector potential which is parallel to the unperturbed magnetic field. Also a couple of well known sets of nonlinear electrostatic systems for drift waves are presented as well as a gyro-averaged kinetic description for inhomogeneous plasmas. Then, several low frequency eigenmodes in magnetized plasmas are described and finally the quasilinear theory of transport is presented. The following part deals with strongly nonlinear phenomena in inhomogeneous plasma turbulence. Here, concepts of importance for confinement such as convective cells, zonal flows and streamers are presented. As a natural continuation, renormalization and scale invariance methods for strongly nonlinear plasmas are given. Also non-Markovian properties are discussed. This is natural since turbulence in inhomogeneous plasmas typically has a rather large real eigenfrequency leading to memory of the wave phase. The next part deals with plasma turbulence driven by inhomogeneities. This is followed by a new part on flows where the flows this time are generated by the turbulence which is driven by plasma inhomogeneities. In particular flows driven by such instabilities can
Integrating Practice-to-Theory and Theory-to-Practice
ERIC Educational Resources Information Center
Johnson, R. Burke; Stefurak, Tres
2012-01-01
In "Towards a systemic theory of gifted education", Ziegler and Phillipson offer a useful critique of current research and the current paradigm in gifted education. They provide an interesting and useful merging of systems theory with their actiotope model, and using this paradigm they suggest many fruitful areas for future research. However, the…
Introduction to conformal field theory and string theory
Dixon, L.J.
1989-12-01
These lectures are meant to provide a brief introduction to conformal field theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available, and most of these go in to much more detail than I will be able to here. 52 refs., 11 figs.
Theories and theorizers: a contextual approach to theories of cognition.
Barutta, Joaquín; Cornejo, Carlos; Ibáñez, Agustín
2011-06-01
An undisputable characteristic of cognitive science is its enormous diversity of theories. Not surprisingly, these often belong to different paradigms that focus on different processes and levels of analysis. A related problem is that researchers of cognition frequently seem to ascribe to incompatible approaches to research, creating a Tower of Babel of cognitive knowledge. This text presents a pragmatic model of meta-theoretical analysis, a theory conceived of to examine other theories, which allows cognitive theories to be described, integrated and compared. After a brief introduction to meta-theoretical analysis in cognitive science, the dynamic and structural components of a theory are described. The analysis of conceptual mappings between components and explanation strategies is also described, as well as the processes of intra-theory generalization and inter-theory comparison. The various components of the meta-theoretical model are presented with examples of different cognitive theories, mainly focusing on two current approaches to research: The dynamical approach to cognition and the computer metaphor of mind. Finally, two potential counter arguments to the model are presented and discussed.
The Theory Forum: Teaching Social Theory through Interactive Practice
ERIC Educational Resources Information Center
Osnowitz, Debra; Jenkins, Kathleen E.
2014-01-01
Common concerns in required theory courses are student disengagement when encountering difficult texts and hesitation to engage in theorizing. To address these challenges, we have developed an interactive exercise, which we call the theory forum. Students work in groups to develop questions from the perspective(s) of one or more theorists, and…
Motivated Action Theory: A Formal Theory of Causal Reasoning.
1991-12-01
approaches to temporal reasoning, and their shortcomings, in light of this analysis. We propose a new system for causal reasoning, motivated action theory , which...builds upon causation as a crucial preference criterion. Motivated action theory solves the traditional problems of both forward and backward
Double Exponential Relativity Theory Coupled Theoretically with Quantum Theory?
Montero Garcia, Jose de la Luz; Novoa Blanco, Jesus Francisco
2007-04-28
Here the problem of special relativity is analyzed into the context of a new theoretical formulation: the Double Exponential Theory of Special Relativity with respect to which the current Special or Restricted Theory of Relativity (STR) turns to be a particular case only.
Acquisition by Processing Theory: A Theory of Everything?
ERIC Educational Resources Information Center
Carroll, Susanne E.
2004-01-01
Truscott and Sharwood Smith (henceforth T&SS) propose a novel theory of language acquisition, "Acquisition by Processing Theory" (APT), designed to account for both first and second language acquisition, monolingual and bilingual speech perception and parsing, and speech production. This is a tall order. Like any theoretically ambitious…
The Lorentz Theory of Electrons and Einstein's Theory of Relativity
ERIC Educational Resources Information Center
Goldberg, Stanley
1969-01-01
Traces the development of Lorentz's theory of electrons as applied to the problem of the electrodynamics of moving bodies. Presents evidence that the principle of relativity did not play an important role in Lorentz's theory, and that though Lorentz eventually acknowledged Einstein's work, he was unwilling to completely embrace the Einstein…
Relevance Theory, Action Theory and Second Language Communication Strategies
ERIC Educational Resources Information Center
Foster-Cohen, Susan H.
2004-01-01
The discussion in this article offers a comparison between Relevance Theory as an account of human communication and Herbert Clark's (1996) sociocognitive Action Theory approach. It is argued that the differences are fundamental and impact analysis of all kinds of naturally occurring communicative data, including that produced by non-native…
NASA Astrophysics Data System (ADS)
vanden-Eijnden, E.
The dynamical behavior of many systems arising in physics, chemistry, biology, etc. is dominated by rare but important transition events between long lived states. For over 70 years, transition state theory (TST) has provided the main theoretical framework for the description of these events [17,33,34]. Yet, while TST and evolutions thereof based on the reactive flux formalism [1, 5] (see also [30,31]) give an accurate estimate of the transition rate of a reaction, at least in principle, the theory tells very little in terms of the mechanism of this reaction. Recent advances, such as transition path sampling (TPS) of Bolhuis, Chandler, Dellago, and Geissler [3, 7] or the action method of Elber [15, 16], may seem to go beyond TST in that respect: these techniques allow indeed to sample the ensemble of reactive trajectories, i.e. the trajectories by which the reaction occurs. And yet, the reactive trajectories may again be rather uninformative about the mechanism of the reaction. This may sound paradoxical at first: what more than actual reactive trajectories could one need to understand a reaction? The problem, however, is that the reactive trajectories by themselves give only a very indirect information about the statistical properties of these trajectories. This is similar to why statistical mechanics is not simply a footnote in books about classical mechanics. What is the probability density that a trajectory be at a given location in state-space conditional on it being reactive? What is the probability current of these reactive trajectories? What is their rate of appearance? These are the questions of interest and they are not easy to answer directly from the ensemble of reactive trajectories. The right framework to tackle these questions also goes beyond standard equilibrium statistical mechanics because of the nontrivial bias that the very definition of the reactive trajectories imply - they must be involved in a reaction. The aim of this chapter is to
Shafi, Qaisar; Barr, Steven; Gaisser, Thomas; Stanev, Todor
2015-03-31
1. Executive Summary (April 1, 2012 - March 31, 2015) Title: Particle Theory, Particle Astrophysics and Cosmology Qaisar Shafi University of Delaware (Principal Investigator) Stephen M. Barr, University of Delaware (Co-Principal Investigator) Thomas K. Gaisser, University of Delaware (Co-Principal Investigator) Todor Stanev, University of Delaware (Co-Principal Investigator) The proposed research was carried out at the Bartol Research included Professors Qaisar Shafi Stephen Barr, Thomas K. Gaisser, and Todor Stanev, two postdoctoral fellows (Ilia Gogoladze and Liucheng Wang), and several graduate students. Five students of Qaisar Shafi completed their PhD during the period August 2011 - August 2014. Measures of the group’s high caliber performance during the 2012-2015 funding cycle included pub- lications in excellent refereed journals, contributions to working groups as well as white papers, and conference activities, which together provide an exceptional record of both individual performance as well as overall strength. Another important indicator of success is the outstanding quality of the past and current cohort of graduate students. The PhD students under our supervision regularly win the top departmental and university awards, and their publications records show excellence both in terms of quality and quantity. The topics covered under this grant cover the frontline research areas in today’s High Energy Theory & Phenomenology. For Professors Shafi and Barr they include LHC related topics including supersymmetry, collider physics, fl vor physics, dark matter physics, Higgs boson and seesaw physics, grand unifi and neutrino physics. The LHC two years ago discovered the Standard Model Higgs boson, thereby at least partially unlocking the secrets behind electroweak symmetry breaking. We remain optimistic that new and exciting physics will be found at LHC 14, which explain our focus on physics beyond the Standard Model. Professors Shafi continued his