Science.gov

Sample records for quercetin attenuates hepatitis

  1. Quercetin Attenuates Chronic Ethanol-Induced Hepatic Mitochondrial Damage through Enhanced Mitophagy

    PubMed Central

    Yu, Xiao; Xu, Yanyan; Zhang, Shanshan; Sun, Jian; Liu, Peiyi; Xiao, Lin; Tang, Yuhan; Liu, Liegang; Yao, Ping

    2016-01-01

    Emerging evidence suggested mitophagy activation mitigates ethanol-induced liver injury. However, the effect of ethanol on mitophagy is inconsistent. Importantly, the understanding of mitophagy status after chronic ethanol consumption is limited. This study evaluated the effect of quercetin, a naturally-occurring flavonoid, on chronic ethanol-induced mitochondrial damage focused on mitophagy. An ethanol regime to mice for 15 weeks (accounting for 30% of total calories) led to significant mitochondrial damage as evidenced by changes of the mitochondrial ultrastructure, loss of mitochondrial membrane potential and remodeling of membrane lipid composition, which was greatly attenuated by quercetin (100 mg/kg.bw). Moreover, quercetin blocked chronic ethanol-induced mitophagy suppression as denoted by mitophagosomes-lysosome fusion and mitophagy-related regulator elements, including LC3II, Parkin, p62 and voltage-dependent anion channel 1 (VDAC1), paralleling with increased FoxO3a nuclear translocation. AMP-activated protein kinase (AMPK) and extracellular signal regulated kinase 2 (ERK2), instead of AKT and Sirtuin 1, were involved in quercetin-mediated mitophagy activation. Quercetin alleviated ethanol-elicited mitochondrial damage through enhancing mitophagy, highlighting a promising preventive strategy for alcoholic liver disease. PMID:26742072

  2. Quercetin Increases Hepatic Homocysteine Remethylation and Transsulfuration in Rats Fed a Methionine-Enriched Diet.

    PubMed

    Meng, Bin; Gao, Weina; Wei, Jingyu; Pu, Lingling; Tang, Zhenchuang; Guo, Changjiang

    2015-01-01

    This study was aimed at investigating the effects of quercetin on mRNA expression and activity of critical enzymes in homocysteine metabolism in rats fed a methionine-enriched diet. Rats were fed for 6 weeks the following diets, that is, control, 0.5% quercetin, 1.0% methionine, and 1.0% methionine plus 0.5% quercetin diets. Serum homocysteine was significantly increased after methionine treatment and decreased after the addition of quercetin. The mRNA expression of methionine synthase was significantly increased after methionine or methionine plus quercetin supplementation, while its enzymatic activity was significantly increased after methionine plus quercetin supplementation. The mRNA expression and enzymatic activity of cystathionine β-synthase and cystathionine γ-lyase were upregulated after quercetin, methionine, or quercetin plus methionine treatment and a more significant increase was observed for hepatic cystathionine β-synthase in the methionine plus quercetin treated rats, suggesting an interaction between methionine and quercetin. Meanwhile, hepatic ratio of S-adenosylmethionine to S-adenosylhomocysteine was significantly decreased in response to methionine supplementation and normalized after the addition of quercetin. It is concluded that quercetin reduces serum homocysteine by increasing remethylation and transsulfuration of homocysteine in rats exposed to a methionine-enriched diet.

  3. Quercetin Attenuates Lactate Production and Extracellular Matrix Secretion in Keratoconus

    PubMed Central

    McKay, T. B.; Lyon, D.; Sarker-Nag, A.; Priyadarsini, S.; Asara, J. M.; Karamichos, D.

    2015-01-01

    Keratoconus(KC) is an ecstatic corneal disease leading to corneal-thinning and the formation of a cone-like cornea. Elevated lactate levels, increased oxidative stress, and myofibroblast formation have all been previously reported. In the current study, we assess the role of Quercetin on collagen secretion and myofibroblast formation in KC in vitro. Human corneal fibroblasts(HCFs) and human keratoconus cells(HKCs) were treated with a stable Vitamin C derivative and cultured for 4 weeks, stimulating formation of a self-assembled extracellular matrix. All samples were analyzed using Western blots and targeted tandem mass spectrometry. Our data showed that Quercetin significantly down regulates myofibroblast differentiation and fibrotic markers, such as α-smooth muscle actin (α-SMA) and Collagen III (Col III), in both HCFs and HKCs. Collagen III secretion was reduced 80% in both HCFs and HKCs following Quercetin treatment. Furthermore, Quercetin reduced lactate production by HKCs to normal HCF levels. Quercetin down regulated TGF-βR2 and TGF-β2 expression in HKCs suggesting a significant link to the TGF-β pathway. These results assert that Quercetin is a key regulator of fibrotic markers and ECM assembly by modulating cellular metabolism and TGF-β signaling. Our study suggests that Quercetin is a potential therapeutic for treatment of corneal dystrophies, such as KC. PMID:25758533

  4. Inhibition of hepatitis B virus replication by quercetin in human hepatoma cell lines.

    PubMed

    Cheng, Zhikui; Sun, Ge; Guo, Wei; Huang, Yayun; Sun, Weihua; Zhao, Fei; Hu, Kanghong

    2015-08-01

    Hepatitis B virus (HBV) infection is one of the most serious and prevalent viral diseases in the world. Although several anti-HBV drugs have been used clinically, their side and adverse effects limit treatment efficacy. Therefore, it is necessary to identify novel potential anti-HBV agents. The flavonol quercetin has shown activity against some retroviruses, but its effect on HBV remains unclear. In the present study, quercetin was incubated with HepG2.2.15 cells, as well as HuH-7 cells transfected with an HBV plasmid. Quercetin was shown to significantly reduce Hepatitis B surface antigen (HBsAg) and Hepatitis B e antigen (HBeAg), secretion and HBV genomic DNA levels in both cell lines. In addition, co-incubation with lamivudine (3TC), entecavir (ETV), or adefovir (Ade) further enhanced the quercetin-induced inhibition of HBV replication. This inhibition was partially associated with decreased heat shock proteins and HBV transcription levels. The results indicate that quercetin inhibited HBV antigen secretion and genome replication in human hepatoma cell lines, which suggests that quercetin may be a potentially effective anti-HBV agent.

  5. Quercetin Induces Hepatic Lipid Omega-Oxidation and Lowers Serum Lipid Levels in Mice

    PubMed Central

    Hoek-van den Hil, Elise F.; Keijer, Jaap; Bunschoten, Annelies; Vervoort, Jacques J. M.; Stankova, Barbora; Bekkenkamp, Melissa; Herreman, Laure; Venema, Dini; Hollman, Peter C. H.; Tvrzicka, Eva; Rietjens, Ivonne M. C. M.; van Schothorst, Evert M.

    2013-01-01

    Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on lipid metabolism, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Gas chromatography and 1H nuclear magnetic resonance were used to quantitatively measure serum lipid profiles. Whole genome microarray analysis of liver tissue was used to identify possible mechanisms underlying altered circulating lipid levels. Body weight, energy intake and hepatic lipid accumulation did not differ significantly between the quercetin and the control group. In serum of quercetin-fed mice, triglycerides (TG) were decreased with 14% (p<0.001) and total poly unsaturated fatty acids (PUFA) were increased with 13% (p<0.01). Palmitic acid, oleic acid, and linoleic acid were all decreased by 9–15% (p<0.05) in quercetin-fed mice. Both palmitic acid and oleic acid can be oxidized by omega (ω)-oxidation. Gene expression profiling showed that quercetin increased hepatic lipid metabolism, especially ω-oxidation. At the gene level, this was reflected by the up-regulation of cytochrome P450 (Cyp) 4a10, Cyp4a14, Cyp4a31 and Acyl-CoA thioesterase 3 (Acot3). Two relevant regulators, cytochrome P450 oxidoreductase (Por, rate limiting for cytochrome P450s) and the transcription factor constitutive androstane receptor (Car; official symbol Nr1i3) were also up-regulated in the quercetin-fed mice. We conclude that quercetin intake increased hepatic lipid ω-oxidation and lowered corresponding circulating lipid levels, which may contribute to potential beneficial effects on CVD. PMID:23359794

  6. Effect of Quercetin on Hepatitis C Virus Life Cycle: From Viral to Host Targets.

    PubMed

    Rojas, Ángela; Del Campo, Jose A; Clement, Sophie; Lemasson, Matthieu; García-Valdecasas, Marta; Gil-Gómez, Antonio; Ranchal, Isidora; Bartosch, Birke; Bautista, Juan D; Rosenberg, Arielle R; Negro, Francesco; Romero-Gómez, Manuel

    2016-08-22

    Quercetin is a natural flavonoid, which has been shown to have anti hepatitis C virus (HCV) properties. However, the exact mechanisms whereby quercetin impacts the HCV life cycle are not fully understood. We assessed the effect of quercetin on different steps of the HCV life cycle in Huh-7.5 cells and primary human hepatocytes (PHH) infected with HCVcc. In both cell types, quercetin significantly decreased i) the viral genome replication; ii) the production of infectious HCV particles and iii) the specific infectivity of the newly produced viral particles (by 85% and 92%, Huh7.5 and PHH respectively). In addition, when applied directly on HCV particles, quercetin reduced their infectivity by 65%, suggesting that it affects the virion integrity. Interestingly, the HCV-induced up-regulation of diacylglycerol acyltransferase (DGAT) and the typical localization of the HCV core protein to the surface of lipid droplets, known to be mediated by DGAT, were both prevented by quercetin. In conclusion, quercetin appears to have direct and host-mediated antiviral effects against HCV.

  7. Effect of Quercetin on Hepatitis C Virus Life Cycle: From Viral to Host Targets

    PubMed Central

    Rojas, Ángela; Del Campo, Jose A.; Clement, Sophie; Lemasson, Matthieu; García-Valdecasas, Marta; Gil-Gómez, Antonio; Ranchal, Isidora; Bartosch, Birke; Bautista, Juan D.; Rosenberg, Arielle R.; Negro, Francesco; Romero-Gómez, Manuel

    2016-01-01

    Quercetin is a natural flavonoid, which has been shown to have anti hepatitis C virus (HCV) properties. However, the exact mechanisms whereby quercetin impacts the HCV life cycle are not fully understood. We assessed the effect of quercetin on different steps of the HCV life cycle in Huh-7.5 cells and primary human hepatocytes (PHH) infected with HCVcc. In both cell types, quercetin significantly decreased i) the viral genome replication; ii) the production of infectious HCV particles and iii) the specific infectivity of the newly produced viral particles (by 85% and 92%, Huh7.5 and PHH respectively). In addition, when applied directly on HCV particles, quercetin reduced their infectivity by 65%, suggesting that it affects the virion integrity. Interestingly, the HCV-induced up-regulation of diacylglycerol acyltransferase (DGAT) and the typical localization of the HCV core protein to the surface of lipid droplets, known to be mediated by DGAT, were both prevented by quercetin. In conclusion, quercetin appears to have direct and host-mediated antiviral effects against HCV. PMID:27546480

  8. Effect of Quercetin on Hepatitis C Virus Life Cycle: From Viral to Host Targets.

    PubMed

    Rojas, Ángela; Del Campo, Jose A; Clement, Sophie; Lemasson, Matthieu; García-Valdecasas, Marta; Gil-Gómez, Antonio; Ranchal, Isidora; Bartosch, Birke; Bautista, Juan D; Rosenberg, Arielle R; Negro, Francesco; Romero-Gómez, Manuel

    2016-01-01

    Quercetin is a natural flavonoid, which has been shown to have anti hepatitis C virus (HCV) properties. However, the exact mechanisms whereby quercetin impacts the HCV life cycle are not fully understood. We assessed the effect of quercetin on different steps of the HCV life cycle in Huh-7.5 cells and primary human hepatocytes (PHH) infected with HCVcc. In both cell types, quercetin significantly decreased i) the viral genome replication; ii) the production of infectious HCV particles and iii) the specific infectivity of the newly produced viral particles (by 85% and 92%, Huh7.5 and PHH respectively). In addition, when applied directly on HCV particles, quercetin reduced their infectivity by 65%, suggesting that it affects the virion integrity. Interestingly, the HCV-induced up-regulation of diacylglycerol acyltransferase (DGAT) and the typical localization of the HCV core protein to the surface of lipid droplets, known to be mediated by DGAT, were both prevented by quercetin. In conclusion, quercetin appears to have direct and host-mediated antiviral effects against HCV. PMID:27546480

  9. Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats.

    PubMed

    Zhang, Min; Xie, Zongkai; Gao, Weina; Pu, Lingling; Wei, Jingyu; Guo, Changjiang

    2016-03-01

    Quercetin, a common member of the flavonoid family, is widely present in plant kingdom. Despite that quercetin is implicated in regulating cholesterol metabolism, the molecular mechanism is poorly understood. We hypothesized that quercetin regulates cholesterol homeostasis through regulating the key enzymes involved in hepatic cholesterol metabolism. To test this hypothesis, we compared the profile of key enzymes and transcription factors involved in the hepatic cholesterol metabolism in rats with or without quercetin supplementation. Twenty male Wistar rats were randomly divided into control and quercetin-supplemented groups. Serum total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total bile acids in feces and bile were measured. Hepatic enzymatic activities were determined by activity assay kit and high-performance liquid chromatography-based analyses. The messenger RNA (mRNA) and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. The results showed that the activity of hepatic cholesterol 7α-hydroxylase, a critical enzyme in the conversion of cholesterol to bile acids, was significantly elevated by quercetin. The expression of cholesterol 7α-hydroxylase, as well as liver X receptor α, an important transcription factor, was also increased at both mRNA and protein levels by quercetin. However, quercetin exposure had no impact on the activity of hepatic HMG-CoA reductase, a rate-limiting enzyme in the biosynthesis of cholesterol. We also found that quercetin treatment significantly increased ATP binding cassette transporter G1 mRNA and protein expression in the liver, suggesting that quercetin may increase hepatic cholesterol efflux. Collectively, the results presented here indicate that quercetin regulates hepatic cholesterol metabolism mainly through the pathways that promote cholesterol-to-bile acid conversion and

  10. Quercetin supplementation attenuates the progression of cancer cachexia in ApcMin/+ mice.

    PubMed

    Velázquez, Kandy T; Enos, Reilly T; Narsale, Aditi A; Puppa, Melissa J; Davis, J Mark; Murphy, E Angela; Carson, James A

    2014-06-01

    Although there are currently no approved treatments for cancer cachexia, there is an intensified interest in developing therapies because of the high mortality index associated with muscle wasting diseases. Successful treatment of the cachectic patient focuses on improving or maintaining body weight and musculoskeletal function. Nutraceutical compounds, including the natural phytochemical quercetin, are being examined as potential treatments because of their anti-inflammatory, antioxidant, and anticarcinogenic properties. The purpose of this study was to determine the effect of quercetin supplementation on the progression of cachexia in the adenomatous polyposis coli (Apc)(Min/+) mouse model of colorectal cancer. At 15 wk of age, C57BL/6 and male Apc(Min/+) mice were supplemented with 25 mg/kg of quercetin or vehicle solution mix of Tang juice and water (V) daily for 3 wk. Body weight, strength, neuromuscular performance, and fatigue were assessed before and after quercetin or V interventions. Indicators of metabolic dysfunction and inflammatory signaling were also assessed. During the treatment period, the relative decrease in body weight in the Apc(Min/+) mice gavaged with V (Apc(Min/+)V; -14% ± 2.3) was higher than in control mice gavaged with V (+0.6% ± 1.0), control mice gavaged with quercetin (-2% ± 1.0), and Apc(Min/+) mice gavaged with quercetin (Apc(Min/+)Q; -9% ± 1.3). At 18 wk of age, the loss of grip strength and muscle mass shown in Apc(Min/+)V mice was significantly attenuated (P < 0.05) in Apc(Min/+)Q mice. Furthermore, Apc(Min/+)V mice had an induction of plasma interleukin-6 and muscle signal transducer and activator of transcription 3 phosphorylation, which were significantly (P < 0.05) mitigated in Apc(Min/+)Q mice, despite having a similar tumor burden. Quercetin treatment did not improve treadmill run-time-to-fatigue, hyperglycemia, or hyperlipidemia in cachectic Apc(Min/+) mice. Overall, quercetin supplementation positively affected

  11. Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells.

    PubMed

    Vidyashankar, Satyakumar; Sandeep Varma, R; Patki, Pralhad Sadashiv

    2013-03-01

    Hepatic lipid accumulation and oxidative stress contribute to non-alcoholic fatty liver disease (NAFLD). Thus, we hypothesized that the hypolipidemic and antioxidant activity of quercetin would attenuate events leading to NAFLD. Addition of 2.0mM oleic acid (OA) into the culture media induced fatty liver condition in HepG2 cells by 24h. It was marked by significant accumulation of lipid droplets as determined by Oil-Red-O (ORO) based colorimetric assay, increased triacylglycerol (TAG) and increased lipid peroxidation. The inflammatory cytokines TNF-α and IL-8 levels were significantly increased with decreased antioxidant molecules. OA induced insulin resistance which was evident by inhibition of glucose uptake and cell proliferation. Quercetin (10 μM) increased cell proliferation by 3.05 folds with decreased TAG content (45%) and was effective in increasing insulin mediated glucose uptake by 2.65 folds. The intracellular glutathione content was increased by 2.0 folds without substantial increase in GSSG content. Quercetin (10 μM) decreased TNF-α and IL-8 by 59.74% and 41.11% respectively and inhibited generation of lipid peroxides by 50.5%. In addition, RT-PCR results confirmed quercetin (10 μM) inhibited TNF-alpha gene expression. Further, superoxide dismutase, catalase and glutathione peroxidase activities were increased by 1.68, 2.19 and 1.71 folds respectively. Albumin and urea content was increased while the alanine aminotransferase (ALAT) activity was significantly decreased by quercetin. Hence, quercetin effectively reversed NAFLD symptoms by decreased triacyl glycerol accumulation, insulin resistance, inflammatory cytokine secretion and increased cellular antioxidants in OA induced hepatic steatosis in HepG2 cells. PMID:23348005

  12. Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells.

    PubMed

    Vidyashankar, Satyakumar; Sandeep Varma, R; Patki, Pralhad Sadashiv

    2013-03-01

    Hepatic lipid accumulation and oxidative stress contribute to non-alcoholic fatty liver disease (NAFLD). Thus, we hypothesized that the hypolipidemic and antioxidant activity of quercetin would attenuate events leading to NAFLD. Addition of 2.0mM oleic acid (OA) into the culture media induced fatty liver condition in HepG2 cells by 24h. It was marked by significant accumulation of lipid droplets as determined by Oil-Red-O (ORO) based colorimetric assay, increased triacylglycerol (TAG) and increased lipid peroxidation. The inflammatory cytokines TNF-α and IL-8 levels were significantly increased with decreased antioxidant molecules. OA induced insulin resistance which was evident by inhibition of glucose uptake and cell proliferation. Quercetin (10 μM) increased cell proliferation by 3.05 folds with decreased TAG content (45%) and was effective in increasing insulin mediated glucose uptake by 2.65 folds. The intracellular glutathione content was increased by 2.0 folds without substantial increase in GSSG content. Quercetin (10 μM) decreased TNF-α and IL-8 by 59.74% and 41.11% respectively and inhibited generation of lipid peroxides by 50.5%. In addition, RT-PCR results confirmed quercetin (10 μM) inhibited TNF-alpha gene expression. Further, superoxide dismutase, catalase and glutathione peroxidase activities were increased by 1.68, 2.19 and 1.71 folds respectively. Albumin and urea content was increased while the alanine aminotransferase (ALAT) activity was significantly decreased by quercetin. Hence, quercetin effectively reversed NAFLD symptoms by decreased triacyl glycerol accumulation, insulin resistance, inflammatory cytokine secretion and increased cellular antioxidants in OA induced hepatic steatosis in HepG2 cells.

  13. Quercetin decreases high-fat diet induced body weight gain and accumulation of hepatic and circulating lipids in mice.

    PubMed

    Hoek-van den Hil, E F; van Schothorst, E M; van der Stelt, I; Swarts, H J M; Venema, D; Sailer, M; Vervoort, J J M; Hollman, P C H; Rietjens, I M C M; Keijer, J

    2014-09-01

    Dietary flavonoids may protect against cardiovascular diseases (CVD). Increased circulating lipid levels and hepatic lipid accumulation are known risk factors for CVD. The aim of this study was to investigate the effects and underlying molecular mechanisms of the flavonoid quercetin on hepatic lipid metabolism in mice with high-fat diet induced body weight gain and hepatic lipid accumulation. Adult male mice received a 40 energy% high-fat diet without or with supplementation of 0.33 % (w/w) quercetin for 12 weeks. Body weight gain was 29 % lower in quercetin fed mice (p < 0.01), while the energy intake was not significantly different. Quercetin supplementation lowered hepatic lipid accumulation to 29 % of the amount present in the control mice (p < 0.01). (1)H nuclear magnetic resonance serum lipid profiling revealed that the supplementation significantly lowered serum lipid levels. Global gene expression profiling of liver showed that cytochrome P450 2b (Cyp2b) genes, key target genes of the transcription factor constitutive androstane receptor (Car; official symbol Nr1i3), were downregulated. Quercetin decreased high-fat diet induced body weight gain, hepatic lipid accumulation and serum lipid levels. This was accompanied by regulation of cytochrome P450 2b genes in liver, which are possibly under transcriptional control of CAR. The quercetin effects are likely dependent on the fat content of the diet.

  14. Pioglitazone, quercetin and hydroxy citric acid effect on hepatic biomarkers in Non Alcoholic Steatohepatitis

    PubMed Central

    Surapaneni, Krishna Mohan; Jainu, Mallika

    2014-01-01

    Background: Non alcoholic steatohepatitis (NASH), severe form of diseases belonging to the spectrum of the Non alcoholic fatty liver disease (NAFLD). It is an asymptomatic disease which leads to fibrosis and finally to cirrhosis, an end stage liver disease. Objective: To study the effect of pioglitazone, quercetin and hydroxy citric acid on hepatic biomarkers and various biochemical parameters in experimentally induced non alcoholic steatohepatitis (NASH). Materials and Methods: Male Wister rats were divided into 8 groups. The activities of alkaline phosphatase (ALP), aspartate transaminase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH) and γ-Glutamyl Transferase (GGT) were assayed in serum. The levels of various other biochemical parameters such as serum albumin, total bilirubin, creatinine, urea, uric acid and glucose were also estimated in experimental NASH. Results: The NASH group produced severe liver injury by significantly increasing the serum levels of ALT, AST, GGT and LDH compared with that of the control. However, the experimental NASH rats treated with pioglitazone, with quercetin and with hydroxy citric acid showed an obvious decrease in ALT, AST, GGT and LDH levels when compared with that of NASH induced group. A significant increase in the levels of albumin, creatinine, urea, uric acid, glucose and total bilirubin was noticed in experimentally induced NASH group (group 2) when compared to rats in control group (group 1). Conclusion: It could be inferred from this study that, pioglitazone, quercetin and hydroxy citric acid may afford protection to the liver against NASH, as evidenced by the results of this study on the levels of various biochemical parameters such as glucose, urea, uric acid, creatinine and bilirubin. Whereas from the results of hepatic marker enzymes, it is evident that optimal protection was observed after quercetin treatment against experimental NASH whereas pioglitazone and hydroxy citric acid also confers

  15. Quercetin ameliorates cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats.

    PubMed

    Panchal, Sunil K; Poudyal, Hemant; Brown, Lindsay

    2012-06-01

    Metabolic syndrome is a risk factor for cardiovascular disease and nonalcoholic fatty liver disease (NAFLD). We investigated the responses to the flavonol, quercetin, in male Wistar rats (8-9 wk old) divided into 4 groups. Two groups were given either a corn starch-rich (C) or high-carbohydrate, high-fat (H) diet for 16 wk; the remaining 2 groups were given either a C or H diet for 8 wk followed by supplementation with 0.8 g/kg quercetin in the food for the following 8 wk (CQ and HQ, respectively). The H diet contained ~68% carbohydrates, mainly as fructose and sucrose, and ~24% fat from beef tallow; the C diet contained ~68% carbohydrates as polysaccharides and ~0.7% fat. Compared with the C rats, the H rats had greater body weight and abdominal obesity, dyslipidemia, higher systolic blood pressure, impaired glucose tolerance, cardiovascular remodeling, and NAFLD. The H rats had lower protein expressions of nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), and carnitine palmitoyltransferase 1 (CPT1) with greater expression of NF-κB in both the heart and the liver and less expression of caspase-3 in the liver than in C rats. HQ rats had higher expression of Nrf2, HO-1, and CPT1 and lower expression of NF-κB than H rats in both the heart and the liver. HQ rats had less abdominal fat and lower systolic blood pressure along with attenuation of changes in structure and function of the heart and the liver compared with H rats, although body weight and dyslipidemia did not differ between the H and HQ rats. Thus, quercetin treatment attenuated most of the symptoms of metabolic syndrome, including abdominal obesity, cardiovascular remodeling, and NAFLD, with the most likely mechanisms being decreases in oxidative stress and inflammation.

  16. Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity.

    PubMed

    Bachmetov, L; Gal-Tanamy, M; Shapira, A; Vorobeychik, M; Giterman-Galam, T; Sathiyamoorthy, P; Golan-Goldhirsh, A; Benhar, I; Tur-Kaspa, R; Zemel, R

    2012-02-01

    Phytochemicals exert antiviral activity and may play a potential therapeutic role in hepatitis C virus (HCV) infection. In this work, we aimed to isolate NS3 inhibitors from traditional Indian medicinal plants that were found, in our earlier study, to inhibit HCV NS3 protease activity and to evaluate their potential to inhibit HCV replication. A potent inhibitory effect of NS3 catalytic activity was obtained with Embelia ribes plant extracts. Quercetin, a ubiquitous plant flavonoid, was identified as the active substance in the fractioned extract. It was found to inhibit NS3 activity in a specific dose-dependent manner in an in vitro catalysis assay. Quercetin inhibited HCV RNA replication as analysed in the subgenomic HCV RNA replicon system. It also inhibited HCV infectious virus production in the HCV infectious cell culture system (HCVcc), as analysed by the focus-forming unit reduction assay and HCV RNA real-time PCR. The inhibitory effect of quercetin was also obtained when using a model system in which NS3 engineered substrates were introduced in NS3-expressing cells, providing evidence that inhibition in vivo could be directed to the NS3 and do not involve other HCV proteins. Our work demonstrates that quercetin has a direct inhibitory effect on the HCV NS3 protease. These results point to the potential of quercetin as a natural nontoxic anti-HCV agent reducing viral production by inhibiting both NS3 and heat shock proteins essential for HCV replication.

  17. PI-103 and Quercetin Attenuate PI3K-AKT Signaling Pathway in T- Cell Lymphoma Exposed to Hydrogen Peroxide.

    PubMed

    Maurya, Akhilendra Kumar; Vinayak, Manjula

    2016-01-01

    Phosphatidylinositol 3 kinase-protein kinase B (PI3K-AKT) pathway has been considered as major drug target site due to its frequent activation in cancer. AKT regulates the activity of various targets to promote tumorigenesis and metastasis. Accumulation of reactive oxygen species (ROS) has been linked to oxidative stress and regulation of signaling pathways for metabolic adaptation of tumor microenvironment. Hydrogen peroxide (H2O2) in this context is used as ROS source for oxidative stress preconditioning. Antioxidants are commonly considered to be beneficial to reduce detrimental effects of ROS and are recommended as dietary supplements. Quercetin, a ubiquitous bioactive flavonoid is a dietary component which has attracted much of interest due to its potential health-promoting effects. Present study is aimed to analyze PI3K-AKT signaling pathway in H2O2 exposed Dalton's lymphoma ascite (DLA) cells. Further, regulation of PI3K-AKT pathway by quercetin as well as PI-103, an inhibitor of PI3K was analyzed. Exposure of H2O2 (1mM H2O2 for 30min) to DLA cells caused ROS accumulation and resulted in increased phosphorylation of PI3K and downstream proteins PDK1 and AKT (Ser-473 and Thr-308), cell survival factors BAD and ERK1/2, as well as TNFR1. However, level of tumor suppressor PTEN was declined. Both PI-103 & quercetin suppressed the enhanced level of ROS and significantly down-regulated phosphorylation of AKT, PDK1, BAD and level of TNFR1 as well as increased the level of PTEN in H2O2 induced lymphoma cells. The overall result suggests that quercetin and PI3K inhibitor PI-103 attenuate PI3K-AKT pathway in a similar mechanism. PMID:27494022

  18. PI-103 and Quercetin Attenuate PI3K-AKT Signaling Pathway in T- Cell Lymphoma Exposed to Hydrogen Peroxide

    PubMed Central

    Maurya, Akhilendra Kumar; Vinayak, Manjula

    2016-01-01

    Phosphatidylinositol 3 kinase—protein kinase B (PI3K-AKT) pathway has been considered as major drug target site due to its frequent activation in cancer. AKT regulates the activity of various targets to promote tumorigenesis and metastasis. Accumulation of reactive oxygen species (ROS) has been linked to oxidative stress and regulation of signaling pathways for metabolic adaptation of tumor microenvironment. Hydrogen peroxide (H2O2) in this context is used as ROS source for oxidative stress preconditioning. Antioxidants are commonly considered to be beneficial to reduce detrimental effects of ROS and are recommended as dietary supplements. Quercetin, a ubiquitous bioactive flavonoid is a dietary component which has attracted much of interest due to its potential health-promoting effects. Present study is aimed to analyze PI3K-AKT signaling pathway in H2O2 exposed Dalton’s lymphoma ascite (DLA) cells. Further, regulation of PI3K-AKT pathway by quercetin as well as PI-103, an inhibitor of PI3K was analyzed. Exposure of H2O2 (1mM H2O2 for 30min) to DLA cells caused ROS accumulation and resulted in increased phosphorylation of PI3K and downstream proteins PDK1 and AKT (Ser-473 and Thr-308), cell survival factors BAD and ERK1/2, as well as TNFR1. However, level of tumor suppressor PTEN was declined. Both PI-103 & quercetin suppressed the enhanced level of ROS and significantly down-regulated phosphorylation of AKT, PDK1, BAD and level of TNFR1 as well as increased the level of PTEN in H2O2 induced lymphoma cells. The overall result suggests that quercetin and PI3K inhibitor PI-103 attenuate PI3K-AKT pathway in a similar mechanism. PMID:27494022

  19. Iron-Mediated Lysosomal Membrane Permeabilization in Ethanol-Induced Hepatic Oxidative Damage and Apoptosis: Protective Effects of Quercetin

    PubMed Central

    Li, Yanyan; Chen, Man; Xu, Yanyan; Yu, Xiao; Xiong, Ting; Du, Min; Sun, Jian; Liu, Liegang; Tang, Yuhan; Yao, Ping

    2016-01-01

    Iron, in its free ferrous states, can catalyze Fenton reaction to produce OH∙, which is recognized as a crucial role in the pathogenesis of alcoholic liver diseases (ALD). As a result of continuous decomposition of iron-containing compounds, lysosomes contain a pool of redox-active iron. To investigate the important role of intralysosomal iron in alcoholic liver injury and the potential protection of quercetin, male C57BL/6J mice fed by Lieber De Carli diets containing ethanol (30% of total calories) were cotreated by quercetin or deferoxamine (DFO) for 15 weeks and ethanol-incubated mice primary hepatocytes were pretreated with FeCl3, DFO, and bafilomycin A1 at their optimal concentrations and exposure times. Chronic ethanol consumption caused an evident increase in lysosomal redox-active iron accompanying sustained oxidative damage. Iron-mediated ROS could trigger lysosomal membrane permeabilization (LMP) and subsequent mitochondria apoptosis. The hepatotoxicity was attenuated by reducing lysosomal iron while being exacerbated by escalating lysosomal iron. Quercetin substantially alleviated the alcoholic liver oxidative damage and apoptosis by decreasing lysosome iron and ameliorating iron-mediated LMP, which provided a new prospective of the use of quercetin against ALD. PMID:27057276

  20. Myricetin and quercetin attenuate ischemic injury in glial cultures by different mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have demonstrated that polyphenols from cinnamon and green tea reduce cell swelling and mitochondrial dysfunction in C6 glial cultures following ischemic injury. We tested the protective effects of the flavonoid polyphenols, myricetin and quercetin, on key features of ischemic injury. C6 cultures...

  1. A Phase I Dose Escalation Study Demonstrates Quercetin Safety and Explores Potential for Bioflavonoid Antivirals in Patients with Chronic Hepatitis C.

    PubMed

    Lu, Nu T; Crespi, Catherine M; Liu, Natalie M; Vu, James Q; Ahmadieh, Yasaman; Wu, Sheng; Lin, Sherry; McClune, Amy; Durazo, Francisco; Saab, Sammy; Han, Steven; Neiman, David C; Beaven, Simon; French, Samuel W

    2016-01-01

    The hepatitis C virus (HCV) infects more than 180 million people worldwide, with long-term consequences including liver failure and hepatocellular carcinoma. Quercetin bioflavonoids can decrease HCV production in tissue culture, in part through inhibition of heat shock proteins. If quercetin demonstrates safety and antiviral activity in patients, then it could be developed into an inexpensive HCV treatment for third world countries or other affected populations that lack financial means to cover the cost of mainstream antivirals. A phase 1 dose escalation study was performed to evaluate the safety of quercetin in 30 untreated patients with chronic HCV infection and to preliminarily characterize quercetin's potential in suppressing viral load and/or liver injury. Quercetin displayed safety in all trial participants. Additionally, 8 patients showed a "clinically meaningful" 0.41-log viral load decrease. There was a positive correlation (r = 0.41, p = 0.03) indicating a tendency for HCV decrease in patients with a lower ratio of plasma quercetin relative to dose. No significant changes in aspartate transaminase and alanine transaminase were detected. In conclusion, quercetin exhibited safety (up to 5 g daily) and there was a potential for antiviral activity in some hepatitis C patients.

  2. Quercetin, Inflammation and Immunity

    PubMed Central

    Li, Yao; Yao, Jiaying; Han, Chunyan; Yang, Jiaxin; Chaudhry, Maria Tabassum; Wang, Shengnan; Liu, Hongnan; Yin, Yulong

    2016-01-01

    In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity. PMID:26999194

  3. Quercetin, Inflammation and Immunity.

    PubMed

    Li, Yao; Yao, Jiaying; Han, Chunyan; Yang, Jiaxin; Chaudhry, Maria Tabassum; Wang, Shengnan; Liu, Hongnan; Yin, Yulong

    2016-03-01

    In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity. PMID:26999194

  4. Genotoxicity and apoptosis in Drosophila melanogaster exposed to benzene, toluene and xylene: Attenuation by quercetin and curcumin

    SciTech Connect

    Singh, Mahendra P.; Mishra, M.; Sharma, A.; Shukla, A.K.; Mudiam, M.K.R.; Patel, D.K.; Ram, K. Ravi; Chowdhuri, D. Kar

    2011-05-15

    Monocyclic aromatic hydrocarbons (MAHs) such as benzene, toluene and xylene are being extensively used for various industrial and household purposes. Exposure to these hydrocarbons, occupationally or non-occupationally, is harmful to organisms including human. Several studies tested for toxicity of benzene, toluene and xylene, and interestingly, only a few studies looked into the attenuation. We used Drosophila model to test the genotoxic and apoptotic potential of these compounds and subsequently evaluated the efficiency of two phytochemicals, namely, quercetin and curcumin in attenuating test chemical induced toxicity. We exposed third instar larvae of wild type Drosophila melanogaster (Oregon R{sup +}) to 1.0-100.0 mM benzene, toluene or xylene, individually, for 12, 24 and 48 h and examined their apoptotic and genotoxic potential. We observed significantly (P < 0.001) increased apoptotic markers and genotoxicity in a concentration- and time-dependent manner in organisms exposed to benzene, toluene or xylene. We also observed significantly (P < 0.001) increased cytochrome P450 activity in larvae exposed to test chemicals and this was significantly reduced in the presence of 3',4'-dimethoxyflavone, a known Aryl hydrocarbon receptor (AhR) blocker. Interestingly, we observed a significant reduction in cytochrome P450 activity, GST levels, oxidative stress parameters, genotoxic and apoptotic endpoints when organisms were exposed simultaneously to test chemical along with quercetin or curcumin. The study further suggests the suitability of D. melanogaster as an alternate animal model for toxicological studies involving benzene, toluene and xylene and its potential in studying the protective role(s) of phytochemicals.

  5. Targeting oxidative stress attenuates trinitrobenzene sulphonic acid induced inflammatory bowel disease like symptoms in rats: Role of quercetin

    PubMed Central

    Dodda, Dilip; Chhajed, Ruchi; Mishra, Jitendriya; Padhy, Monalisa

    2014-01-01

    Objective: This study was aimed to investigate the beneficial effects of quercetin (QCT) against trinitrobenzene sulfonic acid (TNBS) induced clinical, morphological, and biochemical alterations in rats. Materials and Methods: Colitis in rats was induced by administration of TNBS (25 mg dissolved in 0.25 ml of 30% ethanol) 8 cm into the rectum of the rat using a catheter. The animals were divided into six experimental groups (n = 6); naive (saline only without TNBS administration), control (saline + TNBS), standard (sulfasalazine 25 mg/kg + TNBS), QCT (25) (QCT 25 mg/kg + TNBS), QCT (50) (QCT 50 mg/kg + TNBS), QCT (100) (QCT 100 mg/kg + TNBS). Sulfasalazine (25 mg/kg) and QCT (25, 50 and 100 mg/kg) were administered per oral for 11 days and the colonic damage was evaluated in terms of macroscopical (body weight, stool consistency, rectal bleeding, and ulcer index) and biochemical parameters (myeloperoxidase activity, lipid peroxidation, nitrite, and glutathione). Results: Treatment with QCT (50, 100 mg/kg) for 10 days following TNBS administration significantly attenuated the clinical, morphological, and biochemical alterations induced by TNBS, whereas it was found to be not effective at its lower dose (25 mg/kg) throughout the experimental protocol. Conclusion: QCT attenuates the clinical, morphological and biochemical alterations induced by TNBS possibly via its antioxidant mechanism. PMID:24987175

  6. Quercetin attenuates the effects of H2O2 on endoplasmic reticulum morphology and tyrosinase export from the endoplasmic reticulum in melanocytes.

    PubMed

    Guan, Cuiping; Xu, Wen; Hong, Weisong; Zhou, Miaoni; Lin, Fuquan; Fu, Lifang; Liu, Dongyin; Xu, Aie

    2015-06-01

    Swollen endoplasmic reticulum (ER) is commonly observed in the melanocytes of vitiligo patients; however, the cause and proteins involved in this remain to be elucidated. Oxidative stress has been reported to be involved in the pathogenesis of vitiligo and previous studies have demonstrated that hydrogen peroxide (H2O2) induced melanocyte apoptosis, whereas quercetin exhibited cytoprotective activities against the effects of H2O2. The aim of the present study was to further investigate the role of H2O2 in the ER of melanocytes as well as its role in the export of tyrosinase from ER; in addition, the present study aimed to determine the mechanism by which quercetin protects against the effects of H2O2. The results demonstrated that melanocyte cells treated with H2O2 presented with swollen ER; however, a normal ER configuration was observed in untreated cells as well as quercetin/H2O2‑treated cells. Furthermore, H2O2 inhibited tyrosinase export from the ER and decreased expression levels of tyrosinase; however, quercetin was found to attenuate the effects induced by H2O2. In conclusion, the results of the present study confirmed the hypothesis that H2O2 induced ER dilation and hindered functional tyrosinase export from the ER of melanocytes. It was also found that quercetin significantly weakened these effects mediated by H2O2, therefore it may have the potential for use in the treatment of vitiligo.

  7. Live attenuated hepatitis A vaccines developed in China.

    PubMed

    Xu, Zhi-Yi; Wang, Xuan-Yi

    2014-01-01

    Two live, attenuated hepatitis A vaccines, H 2 and LA-1 virus strains, were developed through serial passages of the viruses in cell cultures at 32 °C and 35 °C respectively. Both vaccines were safe and immunogenic, providing protection against clinical hepatitis A in 95% of the vaccinees, with a single dose by subcutaneous injection. The vaccine recipients were not protected from asymptomatic, subclinical hepatitis A virus (HAV) infection, which induced a similar antibody response as for unvaccinated subjects. A second dose caused anamnestic response and can be used for boosting. Oral immunization of human with H 2 vaccine or of marmoset with LA-1 vaccine failed, and no evidence was found for person-to-person transmission of the H 2 strain or for marmoset-to-marmoset transmission of LA-1 strain, by close contact. H 2 strain was genetically stable when passaged in marmosets, humans or cell cultures at 37 °C; 3 consecutive passages of the virus in marmosets did not cause virulence mutation. The live vaccines offer the benefits of low cost, single dose injection, long- term protection, and increased duration of immunity through subclinical infection. Improved sanitation and administration of 150 million doses of the live vaccines to children had led to a 90% reduction in the annual national incidence rate of hepatitis A in China during the 16-year period, from 1991 to 2006. Hepatitis A immunization with both live and inactivated HA vaccines was implemented in the national routine childhood immunization program in 2008 and around 92% of the 16 million annual births received the affordable live, attenuated vaccines at 18 months of age. Near elimination of the disease was achieved in China for 14 years following introduction of the H 2 live vaccine into the Expanded Immunization Program (EPI) in 1992.

  8. IL-33 treatment attenuated diet-induced hepatic steatosis but aggravated hepatic fibrosis

    PubMed Central

    Gao, Yinjie; Liu, Yuan; Yang, Mei; Guo, Xiaodong; Zhang, Min; Li, Hanwei; Li, Jin; Zhao, Jingmin

    2016-01-01

    The aim of our work was to investigate the role of interleukin-33 (IL-33) and its receptor ST2 in the progression of diet-induced nonalcoholic steatohepatitis (NASH) in mice, and the characteristic expression in livers of patients with NASH. Mice were fed with high-fat diet (HFD) or methionine-choline 4-deficient diet (MCD) and injected intraperitoneally with IL-33. Both mRNA and protein expression levels of IL-33 and ST2 were up-regulated in the livers of mice fed with HFD or MCD. Treatment with IL-33 attenuated diet-induced hepatic steatosis and reduced activities of ALT in serum, as well as ameliorated HFD-induced systemic insulin resistance and glucose intolerance, while aggravated hepatic fibrosis in diet-induced NASH. Furthermore, treatment with IL-33 can also promote Th2 response and M2 macrophage activation and beneficial modulation on expression profiles of fatty acid metabolism genes in livers. ST2 deficiency did not affect hepatic steatosis and fibrosis when fed with controlling diet. IL-33 did not affect diet-induced hepatic steatosis and fibrosis in ST2 knockout mice. Meanwhile, in the livers of patients with NASH, IL-33 was mainly located in hepatic sinusoid, endothelial cells, and hepatic stellate cells. The mRNA expression level of IL-33 and ST2 was elevated with the progression of NASH. In conclusion, treatment with IL-33 attenuated diet-induced hepatic steatosis, but aggravated hepatic fibrosis, in a ST2-dependent manner. PMID:27172901

  9. Hepatic Aryl Hydrocarbon Receptor Attenuates Fibroblast Growth Factor 21 Expression.

    PubMed

    Girer, Nathaniel G; Murray, Iain A; Omiecinski, Curtis J; Perdew, Gary H

    2016-07-15

    The Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in many physiological processes. Several studies indicate that AHR is also involved in energy homeostasis. Fibroblast growth factor 21 (FGF21) is an important regulator of the fasting and feeding responses. When administered to various genetic and diet-induced mouse models of obesity, FGF21 can attenuate obesity-associated morbidities. Here, we explore the role of AHR in hepatic Fgf21 expression through the use of a conditional, hepatocyte-targeted AHR knock-out mouse model (Cre(Alb)Ahr(Fx/Fx)). Compared with the congenic parental strain (Ahr(Fx/Fx)), non-fasted Cre(Alb)Ahr(Fx/Fx) mice exhibit a 4-fold increase in hepatic Fgf21 expression, as well as elevated expression of the FGF21-target gene Igfbp1 Furthermore, in vivo agonist activation of AHR reduces hepatic Fgf21 expression during a fast. The Fgf21 promoter contains several putative dioxin response elements (DREs). Using EMSA, we demonstrate that the AHR-ARNT heterodimer binds to a specific DRE that overlaps binding sequences for peroxisome proliferator-activated receptor α (PPARα), carbohydrate response element-binding protein (ChREBP), and cAMP response element-binding protein, hepatocyte specific (CREBH). In addition, we reveal that agonist-activated AHR impairs PPARα-, ChREBP-, and CREBH-mediated promoter activity in Hepa-1 cells. Accordingly, agonist treatment in Hepa-1 cells ablates potent ER stress-driven Fgf21 expression, and pre-treatment with AHR antagonist blocks this effect. Finally, we show that pre-treatment of primary human hepatocytes with AHR agonist diminishes PPARα-, glucose-, and ER stress-driven induction of FGF21 expression, indicating the effect is not mouse-specific. Together, our data show that AHR contributes to hepatic energy homeostasis, partly through the regulation of FGF21 expression and signaling. PMID:27226639

  10. Effect of quercetin against lindane induced alterations in the serum and hepatic tissue lipids in wistar rats

    PubMed Central

    Padma, Viswanadha Vijaya; Lalitha, Gurusamy; Shirony, Nicholson Puthanveedu; Baskaran, Rathinasamy

    2012-01-01

    Objective To assess the effect of quercetin (flavonoid) against lindane induced alterations in lipid profile of wistar rats. Methods Rats were administered orally with lindane (100 mg/kg body weight) and quercetin (10 mg/kg body weight) for 30 days. After the end of treatment period lipid profile was estimated in serum and tissue. Results Elevated levels of serum cholesterol, triglycerides, low density lipoprotein (LDL), very Low Density Lipoprotein (VLDL) and tissue triglycerides, cholesterol with concomitant decrease in serum HDL and tissue phospholipids were decreased in lindane treated rats were found to be significantly decreased in the quercetin and lindane co-treated rats. Conclusions Our study suggests that quercetin has hypolipidemic effect and offers protection against lindane induced toxicity in liver by restoring the altered levels of lipids. The quercetin cotreatment along with lindane for 30 days reversed these biochemical alterations in lipids induced by lindane. PMID:23569870

  11. Quercetin and hydroxytyrosol attenuates xanthine/xanthine oxidase-induced toxicity in H9c2 cardiomyocytes by regulation of oxidative stress and stress-sensitive signaling pathways.

    PubMed

    Ozbek, Namik; Bali, Elif B; Karasu, Cimen

    2015-10-01

    The increased activity of xanthine/xanthine oxidase (X/XO) has been suggested as a risk factor for heart disease and herbal polyphenols exhibits cardioprotection in vitro and in vivo. To understand the cardioprotective action mechanisms of polyphenol quercetin and hydroxytyrosol, the expression levels of stress-responsive proteins were studied in X/XO-induced toxicity model of H9c2 cardiomyocyocytes. Pretreatment with each polypenol (0.1-10 μg/ml; 24 h) enhanced viability (p < 0.01; MTT test) and inhibited reactive oxygen species (ROS) generation (p < 0.001; H2DCFDA assay) against 12 h exposure to a free radical generating system, X (0.5 mM) and XO (5 mU/ml). Western blotting experiments showed that X/XO increases the phosphorylation of downstream substrate of p38, MAPK-activated protein kinase 2 (MAPKAPK-2), p44/42-MAPK (Erk1/2) and cleaved caspase-3 (p < 0.001, vs. Control), however inhibits the levels of phosphorylated c-Jun and Hsp27 (p < 0.01, vs. Control). Pretreatment with quercetin or hydroxytyrosol attenuated the phosphorylation of MAPKAPK-2 and cleaved caspase-3 in X/XO-exposed cells (p < 0.01, vs. X/XO). Hydroxytyrosol enhanced the reduction of phosphorylation of a transcriptional target c-Jun and led to overphosphorylation in protective proteins, p44/42-MAPK and Hsp27 in X/XO-exposed cells (p < 0.01, vs. X/XO). Our data suggest that quercetin and hydroxytyrosol protects cardiomyocytes against X/XO-induced oxidative toxicity by diminishing intracellular ROS and the regulation of stress-sensitive protein kinase cascades and transcription factors. PMID:26374991

  12. Long Chain Fatty Acid Esters of Quercetin-3-O-glucoside Attenuate H₂O₂-induced Acute Cytotoxicity in Human Lung Fibroblasts and Primary Hepatocytes.

    PubMed

    Warnakulasuriya, Sumudu N; Ziaullah; Rupasinghe, H P Vasantha

    2016-01-01

    Cellular oxidative stress causes detrimental effects to macromolecules, such as lipids, nucleic acids and proteins, leading to many pathological conditions. Quercetin-3-O-glucoside (Q3G), a glycosylated derivative of quercetin (Q), is a natural polyphenolic compound known to possess antioxidant activity. The hydrophilic/lipophilic nature of an antioxidant molecule is considered as an important factor governing the accessibility to the active sites of oxidative damages in vivo. Six long chain fatty acid esters of Q3G were evaluated with comparison to Q and Q3G, for their cytoprotective activity under H₂O₂-induced oxidative stress using cell culture model systems through cell viability, lipid peroxidation and fluorescence microscopy studies. Pre-incubation of α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) esters of Q3G exhibited significantly (p ≤ 0.05) greater cell viability in both human lung fibroblast (WI-38) and human primary hepatocytes upon exposure to H₂O₂ insult when compared to the control. Cytoprotection due to oleic acid and linoleic acid esters of Q3G was observed only in human primary hepatocytes. All the derivatives, Q3G and quercetin showed ability to significantly (p ≤ 0.05) lower production of lipid hydroperoxides under induced oxidative stress, compared to the control. However, ALA and DHA esters of Q3G resulted in significantly lower lipid hydroperoxidation than Q and Q3G. Based on fluorescence microscopy study, H₂O₂-induced apoptosis was attenuated by the fatty acid derivatives of Q3G. The fatty acid derivatives of Q3G possess better cytoprotective effect than Q3G against H₂O₂-induced cytotoxicity in vitro and the concentration should be selected to avoid cytotoxicity. PMID:27058521

  13. Hepatic glutathione contributes to attenuation of thioacetamide-induced hepatic necrosis due to suppression of oxidative stress in diet-induced obese mice.

    PubMed

    Shirai, Makoto; Matsuoka, Miho; Makino, Toshihiko; Kai, Kiyonori; Teranishi, Munehiro; Takasaki, Wataru

    2015-08-01

    We previously reported that hepatic necrosis induced by thioacetamide (TA), a hepatotoxicant, was attenuated in mice fed a high-fat diet (HFD mice) in comparison with mice fed a normal rodent diet (ND mice). In this study, we focused on investigation of the mechanism of the attenuation. Hepatic content of thiobarbituric acid reactive substances (TBARS), an oxidative stress marker, significantly increased in ND mice at 24 and 48 hr after TA administration in comparison to that in vehicle-treated ND mice. At these time points, severe hepatic necrosis was observed in ND mice. Treatment with an established antioxidant, butylated hydroxyanisole, attenuated the TA-induced hepatic necrosis in ND mice. In contrast, in HFD mice, hepatic TBARS content did not increase, and hepatic necrosis was attenuated in comparison with ND mice at 24 and 48 hr after TA dosing. Metabolomics analysis regarding hepatic glutathione, a biological antioxidant, revealed decreased glutathione and changes in the amount of glutathione metabolism-related metabolites, such as increased ophtalmate and decreased cysteine, and this indicated activation of glutathione synthesis and usage in HFD mice. Finally, after treatment with L-buthionine-S,R-sulfoxinine, an inhibitor of glutathione synthesis, TA-induced hepatic necrosis was enhanced and hepatic TBARS contents increased after TA dosing in HFD mice. These results suggested that activated synthesis and usage of hepatic GSH, which suppresses hepatic oxidative stress, is one of the factors that attenuate TA-induced hepatic necrosis in HFD mice. PMID:26165648

  14. 3,4-Dihydroxyphenylacetic acid, a microbiota-derived metabolite of quercetin, attenuates acetaminophen (APAP)-induced liver injury through activation of Nrf-2.

    PubMed

    Xue, Huiting; Xie, Wenyan; Jiang, Zhihui; Wang, Meng; Wang, Jian; Zhao, Hongqiong; Zhang, Xiaoying

    2016-10-01

    1. Acetaminophen (APAP) overdose leads to severe hepatotoxicity. 3,4-dihydroxyphenylacetic acid (DOPAC) is a scarcely studied microbiota-derived metabolite of quercetin. The aim of this study was to determine the protective effect of DOPAC against APAP-induced liver injury. 2. Mice were treated intragastrically with DOPAC (10, 20 or 50 mg/kg) for 3 days before APAP (300 mg/kg) injection. APAP alone caused increase in serum aminotransferase levels and changes in hepatic histopathology. APAP also promoted oxidative stress by increasing lipid peroxidation and decreasing anti-oxidant enzyme activities. These events led to hepatocellular necrosis and reduced liver function. DOPAC increased nuclear factor erythroid 2-related factor 2 (Nrf-2) translocation to the nucleus and enhanced the expression of phase II enzymes and anti-oxidant enzymes, and thereby reduced APAP hepatotoxicity and enhanced anti-oxidant ability. 3. Our data provide evidence that DOPAC protected the liver against APAP-induced injury, which is involved in Nrf-2 activation, implying that DOPAC can be considered as a potential natural hepatoprotective agent.

  15. Hydrogen sulfide protects against cognitive impairment induced by hepatic ischemia and reperfusion via attenuating neuroinflammation.

    PubMed

    Tu, Faping; Li, Jingdong; Wang, Ji; Li, Qiang; Chu, Weihua

    2016-03-01

    Previously, hepatic ischemia followed by reperfusion (hepatic I/R) has been found to cause cognitive impairment. Hydrogen sulfide (H2S) attenuates hepatectomy induced cognitive deficits and also protects against cognitive dysfunction induced by neurodegenerative diseases. In this study, we aim to determine whether sodium hydrosulfide (NaHS), a H2S donor, could alleviate hepatic I/R-induced cognitive impairment and the underlying mechanisms. Rats were injected intraperitoneally with NaHS (5 mg/kg/d) for 11 days. A segmental hepatic I/R model was established on the fourth day. Cognitive function, proinflammatory cytokines levels, and hippocampal ionized calcium-binding adaptor molecule 1 (Iba1) expression was analyzed. We found hepatic I/R increased proinflammatory cytokines levels in serum and hippocampus, up-regulated Iba1 expression, leading to cognitive impairment in rats. However, treatment with NaHS alleviated hepatic I/R induced these neuroinflammatory changes and effectively improved cognitive function. Thus, NaHS appears to protect against cognitive impairment in rats undergoing hepatic I/R by attenuating neuroinflammation in the hippocampus.

  16. Hydrogen sulfide protects against cognitive impairment induced by hepatic ischemia and reperfusion via attenuating neuroinflammation

    PubMed Central

    Tu, Faping; Li, Jingdong; Wang, Ji; Li, Qiang

    2016-01-01

    Previously, hepatic ischemia followed by reperfusion (hepatic I/R) has been found to cause cognitive impairment. Hydrogen sulfide (H2S) attenuates hepatectomy induced cognitive deficits and also protects against cognitive dysfunction induced by neurodegenerative diseases. In this study, we aim to determine whether sodium hydrosulfide (NaHS), a H2S donor, could alleviate hepatic I/R-induced cognitive impairment and the underlying mechanisms. Rats were injected intraperitoneally with NaHS (5 mg/kg/d) for 11 days. A segmental hepatic I/R model was established on the fourth day. Cognitive function, proinflammatory cytokines levels, and hippocampal ionized calcium-binding adaptor molecule 1 (Iba1) expression was analyzed. We found hepatic I/R increased proinflammatory cytokines levels in serum and hippocampus, up-regulated Iba1 expression, leading to cognitive impairment in rats. However, treatment with NaHS alleviated hepatic I/R induced these neuroinflammatory changes and effectively improved cognitive function. Thus, NaHS appears to protect against cognitive impairment in rats undergoing hepatic I/R by attenuating neuroinflammation in the hippocampus. PMID:26811101

  17. Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents

    PubMed Central

    Lee, Byung-Hwan; Choi, Sun-Hye; Kim, Hyeon-Joong; Jung, Seok-Won; Hwang, Sung-Hee; Pyo, Mi-Kyung; Rhim, Hyewhon; Kim, Hyoung-Chun; Kim, Ho-Kyoung; Lee, Sang-Mok; Nah, Seung-Yeol

    2016-01-01

    Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin-3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance α7 nicotinic acetylcholine receptor (α7 nAChR)-mediated ion currents. However, the role of the carbohydrates attached to quercetin in the regulation of α7 nAChR channel activity has not been determined. In the present study, we investigated the effects of quercetin glycosides on the acetylcholine induced peak inward current (IACh) in Xenopus oocytes expressing the α7 nAChR. IACh was measured with a two-electrode voltage clamp technique. In oocytes injected with α7 nAChR copy RNA, quercetin enhanced IACh, whereas quercetin glycosides inhibited IACh. Quercetin glycosides mediated an inhibition of IACh, which increased when they were pre-applied and the inhibitory effects were concentration dependent. The order of IACh inhibition by quercetin glycosides was Rutin≥Rham1>Rham2. Quercetin glycosides-mediated IACh enhancement was not affected by ACh concentration and appeared voltage-independent. Furthermore, quercetin-mediated IACh inhibition can be attenuated when quercetin is co-applied with Rham1 and Rutin, indicating that quercetin glycosides could interfere with quercetin-mediated α7 nAChR regulation and that the number of carbohydrates in the quercetin glycoside plays a key role in the interruption of quercetin action. These results show that quercetin and quercetin glycosides regulate the α7 nAChR in a differential manner. PMID:27098860

  18. Ibuprofen administration attenuates serum TNF-{alpha} levels, hepatic glutathione depletion, hepatic apoptosis and mouse mortality after Fas stimulation

    SciTech Connect

    Cazanave, Sophie; Vadrot, Nathalie; Tinel, Marina; Berson, Alain; Letteron, Philippe; Larosche, Isabelle; Descatoire, Veronique; Feldmann, Gerard; Robin, Marie-Anne |; Pessayre, Dominique |

    2008-09-15

    Fas stimulation recruits neutrophils and activates macrophages that secrete tumor necrosis factor-{alpha} (TNF-{alpha}), which aggravates Fas-mediated liver injury. To determine whether nonsteroidal anti-inflammatory drugs modify these processes, we challenged 24-hour-fasted mice with the agonistic Jo2 anti-Fas antibody (4 {mu}g/mouse), and treated the animals 1 h later with saline or ibuprofen (250 mg/kg), a dual cyclooxygenase (COX)-1 and COX-2 inhibitor. Ibuprofen attenuated the Jo2-mediated recruitment/activation of myeloperoxidase-secreting neutrophils/macrophages in the liver, and attenuated the surge in serum TNF-{alpha}. Ibuprofen also minimized hepatic glutathione depletion, Bid truncation, caspase activation, outer mitochondrial membrane rupture, hepatocyte apoptosis and the increase in serum alanine aminotransferase (ALT) activity 5 h after Jo2 administration, to finally decrease mouse mortality at later times. The concomitant administration of pentoxifylline (decreasing TNF-{alpha} secretion) and infliximab (trapping TNF-{alpha}) likewise attenuated the Jo2-mediated increase in TNF-{alpha}, the decrease in hepatic glutathione, and the increase in serum ALT activity 5 h after Jo2 administration. The concomitant administration of the COX-1 inhibitor, SC-560 (10 mg/kg) and the COX-2 inhibitor, celecoxib (40 mg/kg) 1 h after Jo2 administration, also decreased liver injury 5 h after Jo2 administration. In contrast, SC-560 (10 mg/kg) or celecoxib (40 or 160 mg/kg) given alone had no significant protective effects. In conclusion, secondary TNF-{alpha} secretion plays an important role in Jo2-mediated glutathione depletion and liver injury. The combined inhibition of COX-1 and COX-2 by ibuprofen attenuates TNF-{alpha} secretion, glutathione depletion, mitochondrial alterations, hepatic apoptosis and mortality in Jo2-treated fasted mice.

  19. Curcumin attenuates diet-induced hepatic steatosis by activating AMP-activated protein kinase.

    PubMed

    Um, Min Young; Hwang, Kwang Hyun; Ahn, Jiyun; Ha, Tae Youl

    2013-09-01

    Curcumin is a well-known component of traditional turmeric (Curcuma longa), which has been reported to prevent obesity and diabetes. However, the effect of curcumin on hepatic lipid metabolism remains unclear. The aim of this study was to examine the effects of curcumin on hepatic steatosis in high-fat/cholesterol diet (HFD)-induced obese mice. Male C57BL/6J mice were fed a normal diet (ND), HFD or HFD with 0.15% curcumin (HFD+C) for 11 weeks. We found that curcumin significantly lowered the body-weight and adipose tissue weight of mice in the HFD+C group compared with the findings for the HFD group (p < 0.05). The levels of total cholesterol, fasting glucose and insulin in serum were decreased, and HFD-induced impairment of insulin sensitivity was improved by curcumin supplementation (p < 0.05). Curcumin protected against the development of hepatic steatosis by reducing hepatic fat accumulation. Moreover, curcumin activated AMP-activated protein kinase (AMPK) and elevated the gene expression of peroxisome proliferator-activated receptor alpha. By contrast, curcumin suppressed the HFD-mediated increases in sterol regulatory element-binding protein-1, acetyl-CoA carboxylase 1, fatty acid synthase and cluster of differentiation 36 expression. Taken together, these findings indicate that curcumin attenuates HFD-induced hepatic steatosis by regulating hepatic lipid metabolism via AMPK activation, suggesting its use as a therapeutic for hepatic steatosis.

  20. Novel matrine derivative MD-1 attenuates hepatic fibrosis by inhibiting EGFR activation of hepatic stellate cells.

    PubMed

    Feng, Yi; Ying, Hai-Yan; Qu, Ying; Cai, Xiao-Bo; Xu, Ming-Yi; Lu, Lun-Gen

    2016-09-01

    Matrine (MT), the effective component of Sophora flavescens Ait, has been shown to have anti-inflammation, immune-suppressive, anti-tumor, and anti-hepatic fibrosis activities. However, the pharmacological effects of MT still need to be strengthened due to its relatively low efficacy and short half-life. In the present study, we report a more effective thio derivative of MT, MD-1, and its inhibitory effects on the activation of hepatic stellate cells (HSCs) in both cell culture and animal models. Cytological experiments showed that MD-1 can inhibit the proliferation of HSC-T6 cells with a half-maximal inhibitory concentration (IC50) of 62 μmol/L. In addition, MD-1 more strongly inhibits the migration of HSC-T6 cells compared to MT and can more effectively induce G0/G1 arrest and apoptosis. Investigating the biological mechanisms underlying anti-hepatic fibrosis in the presence of MD-1, we found that MD-1 can bind the epidermal growth factor receptor (EGFR) on the surface of HSC-T6 cells, which can further inhibit the phosphorylation of EGFR and its downstream protein kinase B (Akt), resulting in decreased expression of cyclin D1 and eventual inhibition of the activation of HSC-T6 cells. Furthermore, in rats with dimethylnitrosamine (DMN)-induced hepatic fibrosis, MD-1 slowed the development and progression of hepatic fibrosis, protecting hepatic parenchymal cells and improving hepatic functions. Therefore, MD-1 is a potential drug for anti-hepatic fibrosis.

  1. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation.

    PubMed

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis.

  2. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation

    PubMed Central

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis.

  3. Naltrexone attenuates endoplasmic reticulum stress induced hepatic injury in mice.

    PubMed

    Moslehi, A; Nabavizadeh, F; Nabavizadeh, Fatemeh; Dehpour, A R; Dehpou, A R; Tavanga, S M; Hassanzadeh, G; Zekri, A; Nahrevanian, H; Sohanaki, H

    2014-09-01

    Endoplasmic reticulum (ER) stress provides abnormalities in insulin action, inflammatory responses, lipoprotein B100 degradation and hepatic lipogenesis. Excess accumulation of triglyceride in hepatocytes may also lead to disorders such as non-alcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Opioid peptides are involved in triglyceride and cholesterol dysregulation, inflammation and cell death. In this study, we evaluated Naltrexone effects on ER stress induced liver injury. To do so, C57/BL6 mice received saline, DMSO and Naltrexone, as control groups. ER stress was induced by tunicamycin (TM) injection. Naltrexone was given before TM administration. Liver blood flow and biochemical serum analysis were measured. Histopathological evaluations, TNF-α measurement and Real-time RT-PCR were also performed. TM challenge provokes steatosis, cellular ballooning and lobular inflammation which significantly reduced in Naltrexone treated animals. ALT, AST and TNF-α increased in the TM group and improved in the Naltrexone plus TM group. Triglyceride and cholesterol levels decreased in TM treated mice with no increase in Naltrexone treated animals. In the Naltrexone plus TM group, gene expression of Bax/Bcl-2 ratio and caspase3 significantly lowered compared with the TM group. In this study, we found that Naltrexone had a notable alleviating role in ER stress induced steatosis and liver injury.

  4. Quercetin Attenuates Inflammatory Responses in BV-2 Microglial Cells: Role of MAPKs on the Nrf2 Pathway and Induction of Heme Oxygenase-1

    PubMed Central

    Sun, Grace Y.; Chen, Zihong; Jasmer, Kimberly J.; Chuang, Dennis Y.; Gu, Zezong; Hannink, Mark; Simonyi, Agnes

    2015-01-01

    A large group of flavonoids found in fruits and vegetables have been suggested to elicit health benefits due mainly to their anti-oxidative and anti-inflammatory properties. Recent studies with immune cells have demonstrated inhibition of these inflammatory responses through down-regulation of the pro-inflammatory pathway involving NF-κB and up-regulation of the anti-oxidative pathway involving Nrf2. In the present study, the murine BV-2 microglial cells were used to compare anti-inflammatory activity of quercetin and cyanidin, two flavonoids differing by their alpha, beta keto carbonyl group. Quercetin was 10 folds more potent than cyanidin in inhibition of lipopolysaccharide (LPS)-induced NO production as well as stimulation of Nrf2-induced heme-oxygenase-1 (HO-1) protein expression. In addition, quercetin demonstrated enhanced ability to stimulate HO-1 protein expression when cells were treated with LPS. In an attempt to unveil mechanism(s) for quercetin to enhance Nrf2/HO-1 activity under endotoxic stress, results pointed to an increase in phospho-p38MAPK expression upon addition of quercetin to LPS. In addition, pharmacological inhibitors for phospho-p38MAPK and MEK1/2 for ERK1/2 further showed that these MAPKs target different sites of the Nrf2 pathway that regulates HO-1 expression. However, inhibition of LPS-induced NO by quercetin was not fully reversed by TinPPIX, a specific inhibitor for HO-1 activity. Taken together, results suggest an important role of quercetin to regulate inflammatory responses in microglial cells and its ability to upregulate HO-1 against endotoxic stress through involvement of MAPKs. PMID:26505893

  5. Modulation of PI3K-LXRα-dependent lipogenesis mediated by oxidative/nitrosative stress contributes to inhibition of HCV replication by quercetin.

    PubMed

    Pisonero-Vaquero, Sandra; García-Mediavilla, María V; Jorquera, Francisco; Majano, Pedro L; Benet, Marta; Jover, Ramiro; González-Gallego, Javier; Sánchez-Campos, Sonia

    2014-03-01

    There is experimental evidence that some antioxidant flavonoids show therapeutic potential in the treatment of hepatitis C through inhibition of hepatitis C virus (HCV) replication. We examined the effect of treatment with the flavonols quercetin and kaempferol, the flavanone taxifolin and the flavone apigenin on HCV replication efficiency in an in vitro model. While all flavonoids studied were able to reduce viral replication at very low concentrations (ranging from 0.1 to 5 μM), quercetin appeared to be the most effective inhibitor of HCV replication, showing a marked anti-HCV activity in replicon-containing cells when combined with interferon (IFN)α. The contribution of oxidative/nitrosative stress and lipogenesis modulation to inhibition of HCV replication by quercetin was also examined. As expected, quercetin decreased HCV-induced reactive oxygen and nitrogen species (ROS/RNS) generation and lipoperoxidation in replicating cells. Quercetin also inhibited liver X receptor (LXR)α-induced lipid accumulation in LXRα-overexpressing and replicon-containing Huh7 cells. The mechanism underlying the LXRα-dependent lipogenesis modulatory effect of quercetin in HCV-replicating cells seems to involve phosphatidylinositol 3-kinase (PI3K)/AKT pathway inactivation. Thus, inhibition of the PI3K pathway by LY294002 attenuated LXRα upregulation and HCV replication mediated by lipid accumulation, showing an additive effect when combined with quercetin. Inactivation of the PI3K pathway by quercetin may contribute to the repression of LXRα-dependent lipogenesis and to the inhibition of viral replication induced by the flavonol. Combined, our data suggest that oxidative/nitrosative stress blockage and subsequent modulation of PI3K-LXRα-mediated lipogenesis might contribute to the inhibitory effect of quercetin on HCV replication.

  6. Petroselinum crispum extract attenuates hepatic steatosis in rats fed with fructose enriched diet.

    PubMed

    Nair, V Yuneesha; Balakrishanan, N; Antony Santiago, J Victor

    2015-01-01

    Non alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and ongoing research efforts are focused on understanding the underlying pathophysiology of hepatic steatosis with the anticipation that these efforts will identify novel therapeutic targets. This study investigated the Petroselinum crispum extract in hepatic steatosis in rats fed with fructose enriched diet. Rats were divided into the 4 groups: Group 1 rats received standard pellet diet with corn starch for the entire experimental period of 8 weeks. Group 2 rats received standard pellet diet and 2 gm/kg body weight crude Parsley leaf ethanol extract for the entire experimental period of 8 weeks. Group 3 rats received modified fructose diet. Group 4 rats received modified fructose diet and 2gm/kg crude Parsley leaf ethanol extract. Hepatic function and structure was evaluated in these rats. Modified fructose diet produced dyslipidemia, hepatic steatosis and infiltration of inflammatory cells in the liver and higher plasma hepatic markers. Petroselinum crispum extract reversed metabolic changes such as abnormal crispum extract attenuated chronic changes in modified fructose diet induced NAFLD (Tab. 2, Fig. 3, Ref. 43). PMID:26435020

  7. Petroselinum crispum extract attenuates hepatic steatosis in rats fed with fructose enriched diet.

    PubMed

    Nair, V Yuneesha; Balakrishanan, N; Antony Santiago, J Victor

    2015-01-01

    Non alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and ongoing research efforts are focused on understanding the underlying pathophysiology of hepatic steatosis with the anticipation that these efforts will identify novel therapeutic targets. This study investigated the Petroselinum crispum extract in hepatic steatosis in rats fed with fructose enriched diet. Rats were divided into the 4 groups: Group 1 rats received standard pellet diet with corn starch for the entire experimental period of 8 weeks. Group 2 rats received standard pellet diet and 2 gm/kg body weight crude Parsley leaf ethanol extract for the entire experimental period of 8 weeks. Group 3 rats received modified fructose diet. Group 4 rats received modified fructose diet and 2gm/kg crude Parsley leaf ethanol extract. Hepatic function and structure was evaluated in these rats. Modified fructose diet produced dyslipidemia, hepatic steatosis and infiltration of inflammatory cells in the liver and higher plasma hepatic markers. Petroselinum crispum extract reversed metabolic changes such as abnormal crispum extract attenuated chronic changes in modified fructose diet induced NAFLD (Tab. 2, Fig. 3, Ref. 43).

  8. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation.

    PubMed

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis. PMID:27679638

  9. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation

    PubMed Central

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis. PMID:27679638

  10. Oleoylethanolamide, an endogenous PPAR-α ligand, attenuates liver fibrosis targeting hepatic stellate cells

    PubMed Central

    Chen, Junde; Li, Lei; Zheng, Zihan; Ren, Jie; Qiu, Yan

    2015-01-01

    Oleoylethanolamide (OEA), an endocannabinoid-like molecule, was revealed to modulate lipid metabolism through a peroxisome proliferator-activated receptor-α (PPAR-α) mediated mechanism. In present study, we further investigated the activities and mechanisms of OEA in ameliorating hepatic fibrosis in Sv/129 mice induced by a methionine choline-deficient (MCD) diet or thioacetamide (TAA) treatment. Liver fibrosis development was assessed by Hematoxylin-eosin and Sirius red staining. Treatment with OEA (5 mg/kg/day, intraperitoneal injection, i.p.) significantly attenuated the progress of liver fibrosis in both two experimental animal models by blocking the activation of hepatic stellate cells (HSCs). Gene expression analysis of hepatic tissues indicated that OEA inhibited the expression of α-smooth muscle action (α-SMA) and collagen matrix, fibrosis markers, and genes involved in inflammation and extracellular matrix remodeling. In vitro studies showed that OEA inhibited transforming growth factor β1-stimulated HSCs activation through suppressing Smad2/3 phosphorylation, α-SMA expression and myofibroblast transformation. These improvements could not be observed in PPAR-α knockout mice models with OEA administration, which suggested all the anti-fibrotic effects of OEA in vivo and in vitro were mediated by PPAR-α activation. Collectively, our results suggested that OEA exerted a pharmacological effect on modulating hepatic fibrosis development through the inhibition of HSCs activation in liver and therefore may be a potential therapeutic agent for liver fibrosis. PMID:26729705

  11. Genistein Attenuates Nonalcoholic Steatohepatitis and Increases Hepatic PPARγ in a Rat Model

    PubMed Central

    Susutlertpanya, Warinda; Werawatganon, Duangporn; Siriviriyakul, Prasong; Klaikeaw, Naruemon

    2015-01-01

    Nonalcoholic steatohepatitis (NASH) has become a global chronic liver disease, but no effective medicine has been proven to cure it. This study investigated the protective effects of genistein, a phytoestrogen, on NASH and examined whether it has any effect on hepatic PPARγ. Male Sprague-Dawley rats were divided into four groups: control group fed ad libitum with standard rat diet, NASH group fed ad libitum with high-fat diet to induce NASH and NASH + Gen8 group and NASH + Gen16 group fed with high-fat diet plus intragastric administration of 8 or 16 mg/kg genistein once daily. After 6 weeks, liver samples were collected to determine MDA, TNF-α, PPARγ, and histopathology. The findings were that levels of hepatic MDA and TNF-α increased in NASH group, but 16 mg/kg genistein reduced these levels significantly. Downregulation of hepatic PPARγ was observed in NASH group, but genistein significantly upregulated the expression of PPARγ in both NASH + Gen groups. The histological appearance of liver in NASH group presented pathological features of steatohepatitis which were diminished in both NASH + Gen groups. The results suggest that genistein attenuates the liver histopathology of NASH with upregulation of hepatic PPARγ, reduction of oxidative stress, and inhibition of inflammatory cytokine. PMID:26246839

  12. Quercetin and vitamin E attenuate Bonny Light crude oil-induced alterations in testicular apoptosis, stress proteins and steroidogenic acute regulatory protein in Wistar rats.

    PubMed

    Ebokaiwe, Azubuike P; Mathur, Premendu P; Farombi, Ebenezer O

    2016-10-01

    Studies have shown the reproductive effects of Bonny Light crude oil (BLCO) via the mechanism of oxidative stress and testicular apoptosis. We investigated the protective role of quercetin and vitamin E on BLCO-induced testicular apoptosis. Experimental rats were divided into four groups of four each. Animals were orally administered 2 ml/kg corn oil (control: group 1), BLCO-800 mg/kg body weight + 10 mg/kg quercetin (group 2), BLCO-800 mg/kg body weight + 50 mg/kg vitamin E (group 3) and BLCO-800 mg/kg body weight only (group 4) for 7 d. Protein levels of caspase 3, FasL, NF-kB, steroidogenic acute regulatory protein and stress response proteins were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunofluorescence staining was used to quantify the expression of caspase 3, FasL and NF-kB. Apoptosis was quantified by the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Administration of BLCO resulted in a significant increase in the levels of stress response proteins and apoptosis-related proteins by 50% and above after 7 d following BLCO exposure and a concomitant increase in expression of caspase 3, FasL and NF-kB expression by immunofluorescence staining. Apoptosis showed a significant increase in TUNEL positive cells. Co-administration with quercetin or vitamin E reversed BLCO-induced apoptosis and levels of stress protein, relative to control. These findings suggest that quercetin and vitamin E may confer protection against BLCO-induced testicular oxidative stress-related apoptosis.

  13. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    SciTech Connect

    Wu, Weibin; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.

  14. Aloe vera attenuated liver injury in mice with acetaminophen-induced hepatitis

    PubMed Central

    2014-01-01

    that Aloe vera attenuate APAP-induced hepatitis through the improvement of liver histopathology by decreased oxidative stress, reduced liver injury, and restored hepatic GSH. PMID:25005608

  15. Deletion of tumor progression locus 2 attenuates alcohol-induced hepatic inflammation

    PubMed Central

    Stice, Camilla P.; Hussain, Sajid; Liu, Chun; Ausman, Lynne M.

    2016-01-01

    Background The pathogenesis of alcoholic liver disease (ALD) involves the interaction of several inflammatory signaling pathways. Tumor progression locus 2 (TPL2), also known as Cancer Osaka Thyroid (COT) and MAP3K8, is a serine-threonine kinase that functions as a critical regulator of inflammatory pathways by up-regulating production of inflammatory cytokines. The present study aims to fill the gap in knowledge regarding the involvement of TPL2 in the mechanism of alcohol-induced hepatic inflammation. Methods Male TPL2−/− knockout (TPL2KO) mice and TPL2+/+ wild-type (WT) mice were group pair-fed with Lieber-DeCarli liquid ethanol diet (EtOH diet, 27% energy from EtOH) or control diet (ctrl diet) for 4 weeks. Both histological and molecular biomarkers involved in the induction of hepatic inflammation by alcohol consumption were examined. Results Consumption of the EtOH diet in WT mice lead to a significant induction of TPL2 mRNA expression as compared with WT mice fed ctrl diet. A significant induction in inflammatory foci and steatosis was also observed in WT mice fed EtOH diet. The deletion of TPL2 significantly reduced inflammatory foci in the liver of mice consuming both ctrl and EtOH diets as compared to their respective WT controls. This reduction was associated with suppression of hepatic inflammatory gene expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) and macrophage marker F4/80. In addition, histological analysis of livers revealed that TPL2 deletion resulted in reduced steatosis in both ctrl (significant) and EtOH (non-significant) diet-fed mice as compared to their respective WT controls. Conclusions The demonstration that TPL2 deletion attenuates alcohol-induced hepatic inflammation provides evidence of a novel role for TPL2 in the pathogenesis of ALD. PMID:26904554

  16. Quercetin-3-O-(2″-galloyl)-α-L-rhamnopyranoside attenuates cholesterol oxidation product-induced apoptosis by suppressing NF-κB-mediated cell death process in differentiated PC12 cells.

    PubMed

    Lee, Da Hee; Nam, Yoon Jeong; Lee, Chung Soo

    2015-08-01

    Cholesterol oxidation products are suggested to be involved in neuronal cell degeneration. We examined the preventive effect of quercetin-3-O-(2″-galloyl)-α-L-rhamnopyranoside (QGR), a quercetin derivative, on the cholesterol oxidation product-induced neuronal cell death using differentiated PC12 cells in relation to nuclear factor (NF)-κB-mediated apoptotic process. 7-Ketocholesterol and 25-hydroxycholesterol induced a decrease in the levels of BH3 interacting-domain death agonist (Bid) and B cell lymphoma 2 (Bcl-2), increase in the levels of Bcl-2-associated X protein (Bax) and p53, loss of the mitochondrial transmembrane potential, cytochrome c release, activation of caspases, and cleavage of poly(ADP-ribose) polymerase 1 (PARP-1). 7-Ketocholesterol induced increase in cytosolic and nuclear NF-κB p65, nuclear phospho-NF-κB p65, cytosolic NF-κB p50, and cytosolic phospho-IκB-α levels. The addition of QGR, N-acetyl cysteine, or Bay 11-7085 attenuated the cholesterol oxidation product-induced changes in the apoptosis-related protein levels, activation of NF-κB, formation of reactive oxygen species, depletion of glutathione (GSH), nuclear damage, and cell death. The results show that QGR may attenuate the cholesterol oxidation product-induced apoptosis in PC12 cells by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways that is mediated by NF-κB activation. The preventive effect appears to be associated with the inhibitory effect on the formation of reactive oxygen species and depletion of GSH.

  17. The quercetin paradox

    SciTech Connect

    Boots, Agnes W. . E-mail: a.boots@farmaco.unimaas.nl; Li, Hui; Schins, Roel P.F.; Duffin, Rodger; Heemskerk, Johan W.M.; Bast, Aalt; Haenen, Guido R.M.M.

    2007-07-01

    Free radical scavenging antioxidants, such as quercetin, are chemically converted into oxidation products when they protect against free radicals. The main oxidation product of quercetin, however, displays a high reactivity towards thiols, which can lead to the loss of protein function. The quercetin paradox is that in the process of offering protection, quercetin is converted into a potential toxic product. In the present study, this paradox is evaluated using rat lung epithelial (RLE) cells. It was found that quercetin efficiently protects against H{sub 2}O{sub 2}-induced DNA damage in RLE cells, but this damage is swapped for a reduction in GSH level, an increase in LDH leakage as well as an increase of the cytosolic free calcium concentration. To our knowledge, this is the first study that indicates that the quercetin paradox, i.e. the exchange of damage caused by quercetin and its metabolites, also occurs in living lung cells. Following depletion of GSH in the cells by BSO pre-treatment, this quercetin paradox becomes more pronounced, confirming that the formation of thiol reactive quercetin metabolites is involved in the quercetin paradox. The quercetin paradox in living cells implies that the anti-oxidant directs oxidative damage selectively to thiol arylation. Apparently, the potential toxicity of metabolites formed during the actual antioxidant activity of free radical scavengers should be considered in antioxidant supplementation.

  18. Protective effects of Quercetin and chronic moderate exercise (training) against oxidative stress in the liver tissue of streptozotocin-induced diabetic rats.

    PubMed

    Chiş, I C; Mureşan, A; Oros, A; Nagy, A L; Clichici, S

    2016-03-01

    Background To investigate the protective effects of Quercetin administration associated with chronic moderate exercise (training) on oxidative stress in the liver in streptozotocin-induced diabetic rats. Methods Diabetic rats that performed exercise training were subjected to a swimming training program (1 hour/day, 5 days/week, 4 weeks). The diabetic rats received natural antioxidant, Quercetin (20 mg/kg body weight/day) for 4 weeks. At the end of the study, all animals were sacrificed and liver samples were collected for estimation: some oxidative stress markers (malondialdehyde, MDA and protein carbonyls groups, PC), the activity of antioxidant enzymes (superoxide dismutase, SOD and catalase, CAT), reduced glutathione (GSH) level and reduced (GSH) and oxidized (GSSG) glutathione ratio. Results Diabetic rats submitted to exercise training showed significantly increased the oxidative stress markers (MDA and PC) and a reduction of antioxidant enzyme (SOD and CAT) activity, GSH level and GSH/ GSSG ratio in hepatic tissues. A decrease in the levels of oxidative stress markers associated with elevated activity of antioxidant enzymes, the GSH level and GSH/GSSG ratio in the hepatic tissue were observed in Quercetin-treated diabetic trained rats. Conclusions These findings suggest that Quercetin administration in association with chronic moderate exercise exerts a protective effect in diabetes by attenuating hyperglycemia-mediated oxidative stress in hepatic tissue. PMID:27030627

  19. Decreased hepatic phosphorylated p38 mitogen-activated protein kinase contributes to attenuation of thioacetamide-induced hepatic necrosis in diet-induced obese mice.

    PubMed

    Shirai, Makoto; Arakawa, Shingo; Teranishi, Munehiro; Kai, Kiyonori

    2016-04-01

    We previously reported that thioacetamide (TA)-induced hepatocellular necrosis was attenuated in mice fed a high-fat diet (HFD mice) compared with mice fed a normal rodent diet (ND mice). In this study, we investigated whether p38 mitogen-activated protein kinase (p38 MAPK) was involved in this attenuation. Western blot analysis revealed that hepatic phosphorylated p38 MAPK protein decreased at 8 and 24 hours (hr) after TA dosing in the HFD mice, while it decreased only at 24 hr in the ND mice in comparison to the time- and diet-matched, vehicle-treated mice. p38 MAPK regulates various biological functions including inflammation, therefore, hepatic metabolomics analysis focusing on pro-inflammatory lipid mediators was performed. At 24 hr after TA dosing, only one pro-inflammatory mediator, 12-hydroxyeicosatetraenoic acid (HETE), was higher in the HFD mice. On the other hand, in addition to 12-HETE, 15-HETE and 12-hydroxyeicosapentaenoic acid (HEPE) were higher and omega-3/omega-6 polyunsaturated fatty acids ratios were lower in the ND mice at 24 hr. These results of metabolomics indicated that less pro-inflammatory state was seen in HFD mice than in ND mice at 24 hr. Finally, to confirm whether the observed decrease in phosphorylated p38 MAPK could attenuate TA-induced hepatocellular necrosis, we showed that SB203580 hydrochloride, an inhibitor of p38 MAPK, partially attenuated TA-induced hepatic necrosis in ND mice. Collectively, these results suggest that a prompt decrease in phosphorylation of p38 MAPK after TA administration is one of the factors that attenuate TA-induced hepatic necrosis in HFD mice. PMID:26961609

  20. Raspberry seed flour attenuates high-sucrose diet-mediated hepatic stress and adipose tissue inflammation.

    PubMed

    Kang, Inhae; Espín, Juan Carlos; Carr, Timothy P; Tomás-Barberán, Francisco A; Chung, Soonkyu

    2016-06-01

    Chronic intake of high sucrose (HS) diet exacerbates high-fat (HF) diet-induced obesity and its associated metabolic complications. Previously, we have demonstrated that ellagic acid (EA), an abundant polyphenol found in some fruits and nuts, exerts distinct lipid-lowering characteristics in hepatocytes and adipocytes. In this study, we hypothesized that EA supplementation inhibits HS diet-mediated hepatic toxicity and its accompanied metabolic dysregulation. To test this hypothesis, C57BL/6 male mice were randomly assigned to three isocaloric HF diets (41% calories from fat) containing either no-sucrose (HF), high-sucrose (HFHS), or high-sucrose plus EA (HFHS-R) from raspberry seed flour (RSF, equivalent to 0.03% of EA), and fed for 12weeks. The inclusion of EA from RSF significantly improved HFHS diet-mediated dyslipidemia and restored glucose homeostasis levels similar to the HF diet-fed mice. Despite marginal difference in hepatic triglyceride content, the addition of EA substantially reversed the activation of endoplasmic reticulum (ER) stress and oxidative damage triggered by HFHS diet in the liver. These effects of EA were further confirmed in human hepatoma cells by reducing ER stress and reactive oxygen species (ROS) production. Moreover, HFHS-R diet significantly decreased visceral adipocyte hypertrophy and adipose tissue inflammation evidenced by reduced proinflammatory gene expression and macrophage infiltration. In summary, EA supplementation from RSF was effective in reducing HFHS diet-mediated metabolic complication by attenuating hepatic ER and oxidative stresses as well as adipocyte inflammation. Our results suggest that the inclusion of EA in diets may normalize metabolic insults triggered by HS consumption. PMID:27142738

  1. Hepatoprotective Effect of Quercetin on Endoplasmic Reticulum Stress and Inflammation after Intense Exercise in Mice through Phosphoinositide 3-Kinase and Nuclear Factor-Kappa B.

    PubMed

    Tang, Yuhan; Li, Juan; Gao, Chao; Xu, Yanyan; Li, Yanyan; Yu, Xiao; Wang, Jing; Liu, Liegang; Yao, Ping

    2016-01-01

    The mechanisms underlying intense exercise-induced liver damage and its potential treatments remain unclear. We explored the hepatoprotection and mechanisms of quercetin, a naturally occurring flavonoid, in strenuous exercise-derived endoplasmic reticulum stress (ERS) and inflammation. Intense exercise (28 m/min at a 5° slope for 90 min) resulted in the leakage of aminotransferases in the BALB/C mice. The hepatic ultrastructural malformations and oxidative stress levels were attenuated by quercetin (100 mg/kg·bw). Intense exercise and thapsigargin- (Tg-) induced ERS (glucose-regulated protein 78, GRP78) and inflammatory cytokines levels (IL-6 and TNF-α) were decreased with quercetin. Furthermore, quercetin resulted in phosphoinositide 3-kinase (PI3K) induction, Ca(2+) restoration, and blockade of the activities of Jun N-terminal kinase (JNK), activating transcription factor 6 (ATF6) and especially NF-κB (p65 and p50 nuclear translocation). A PI3K inhibitor abrogated the protection of quercetin on ERS and inflammation of mouse hepatocytes. SP600125 (JNK inhibitor), AEBSF (ATF6 inhibitor), and especially PDTC (NF-κB inhibitor) enhanced the quercetin-induced protection against Tg stimulation. Collectively, intense exercise-induced ERS and inflammation were attenuated by quercetin. PI3K/Akt activation and JNK, ATF6, and especially NF-κB suppression were involved in the protection. Our results highlight a novel preventive strategy for treating ERS and inflammation-mediated liver damage induced by intense exercise using natural phytochemicals. PMID:27504150

  2. Hepatoprotective Effect of Quercetin on Endoplasmic Reticulum Stress and Inflammation after Intense Exercise in Mice through Phosphoinositide 3-Kinase and Nuclear Factor-Kappa B

    PubMed Central

    Tang, Yuhan; Li, Juan; Gao, Chao; Xu, Yanyan; Li, Yanyan; Yu, Xiao; Wang, Jing; Liu, Liegang

    2016-01-01

    The mechanisms underlying intense exercise-induced liver damage and its potential treatments remain unclear. We explored the hepatoprotection and mechanisms of quercetin, a naturally occurring flavonoid, in strenuous exercise-derived endoplasmic reticulum stress (ERS) and inflammation. Intense exercise (28 m/min at a 5° slope for 90 min) resulted in the leakage of aminotransferases in the BALB/C mice. The hepatic ultrastructural malformations and oxidative stress levels were attenuated by quercetin (100 mg/kg·bw). Intense exercise and thapsigargin- (Tg-) induced ERS (glucose-regulated protein 78, GRP78) and inflammatory cytokines levels (IL-6 and TNF-α) were decreased with quercetin. Furthermore, quercetin resulted in phosphoinositide 3-kinase (PI3K) induction, Ca2+ restoration, and blockade of the activities of Jun N-terminal kinase (JNK), activating transcription factor 6 (ATF6) and especially NF-κB (p65 and p50 nuclear translocation). A PI3K inhibitor abrogated the protection of quercetin on ERS and inflammation of mouse hepatocytes. SP600125 (JNK inhibitor), AEBSF (ATF6 inhibitor), and especially PDTC (NF-κB inhibitor) enhanced the quercetin-induced protection against Tg stimulation. Collectively, intense exercise-induced ERS and inflammation were attenuated by quercetin. PI3K/Akt activation and JNK, ATF6, and especially NF-κB suppression were involved in the protection. Our results highlight a novel preventive strategy for treating ERS and inflammation-mediated liver damage induced by intense exercise using natural phytochemicals. PMID:27504150

  3. Opuntia ficus indica (nopal) attenuates hepatic steatosis and oxidative stress in obese Zucker (fa/fa) rats.

    PubMed

    Morán-Ramos, Sofía; Avila-Nava, Azalia; Tovar, Armando R; Pedraza-Chaverri, José; López-Romero, Patricia; Torres, Nimbe

    2012-11-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with multiple factors such as obesity, insulin resistance, and oxidative stress. Nopal, a cactus plant widely consumed in the Mexican diet, is considered a functional food because of its antioxidant activity and ability to improve biomarkers of metabolic syndrome. The aim of this study was to assess the effect of nopal consumption on the development of hepatic steatosis and hepatic oxidative stress and on the regulation of genes involved in hepatic lipid metabolism. Obese Zucker (fa/fa) rats were fed a control diet or a diet containing 4% nopal for 7 wk. Rats fed the nopal-containing diet had ∼50% lower hepatic TG than the control group as well as a reduction in hepatomegaly and biomarkers of hepatocyte injury such as alanine and aspartate aminotransferases. Attenuation of hepatic steatosis by nopal consumption was accompanied by a higher serum concentration of adiponectin and a greater abundance of mRNA for genes involved in lipid oxidation and lipid export and production of carnitine palmitoyltransferase-1 and microsomal TG transfer proteins in liver. Hepatic reactive oxygen species and lipid peroxidation biomarkers were significantly lower in rats fed nopal compared with the control rats. Furthermore, rats fed the nopal diet had a lower postprandial serum insulin concentration and a greater liver phosphorylated protein kinase B (pAKT):AKT ratio in the postprandial state. This study suggests that nopal consumption attenuates hepatic steatosis by increasing fatty acid oxidation and VLDL synthesis, decreasing oxidative stress, and improving liver insulin signaling in obese Zucker (fa/fa) rats. PMID:23014486

  4. Opuntia ficus indica (nopal) attenuates hepatic steatosis and oxidative stress in obese Zucker (fa/fa) rats.

    PubMed

    Morán-Ramos, Sofía; Avila-Nava, Azalia; Tovar, Armando R; Pedraza-Chaverri, José; López-Romero, Patricia; Torres, Nimbe

    2012-11-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with multiple factors such as obesity, insulin resistance, and oxidative stress. Nopal, a cactus plant widely consumed in the Mexican diet, is considered a functional food because of its antioxidant activity and ability to improve biomarkers of metabolic syndrome. The aim of this study was to assess the effect of nopal consumption on the development of hepatic steatosis and hepatic oxidative stress and on the regulation of genes involved in hepatic lipid metabolism. Obese Zucker (fa/fa) rats were fed a control diet or a diet containing 4% nopal for 7 wk. Rats fed the nopal-containing diet had ∼50% lower hepatic TG than the control group as well as a reduction in hepatomegaly and biomarkers of hepatocyte injury such as alanine and aspartate aminotransferases. Attenuation of hepatic steatosis by nopal consumption was accompanied by a higher serum concentration of adiponectin and a greater abundance of mRNA for genes involved in lipid oxidation and lipid export and production of carnitine palmitoyltransferase-1 and microsomal TG transfer proteins in liver. Hepatic reactive oxygen species and lipid peroxidation biomarkers were significantly lower in rats fed nopal compared with the control rats. Furthermore, rats fed the nopal diet had a lower postprandial serum insulin concentration and a greater liver phosphorylated protein kinase B (pAKT):AKT ratio in the postprandial state. This study suggests that nopal consumption attenuates hepatic steatosis by increasing fatty acid oxidation and VLDL synthesis, decreasing oxidative stress, and improving liver insulin signaling in obese Zucker (fa/fa) rats.

  5. Unique immunogenicity of hepatitis B virus DNA vaccine presented by live-attenuated Salmonella typhimurium.

    PubMed

    Woo, P C; Wong, L P; Zheng, B J; Yuen, K Y

    2001-04-01

    A novel vaccine for hepatitis B virus (HBV) was designed by putting a naked DNA vaccine carrying hepatitis B surface antigen (HBsAg) into live-attenuated Salmonella typhimurium. Mucosal immunization by the oral route in mice showed significantly stronger cytotoxic T lymphocyte (CTL) response than recombinant HBsAg vaccination (P < 0.01 at an effector:target ratio of 100:1), while comparable to intramuscular naked DNA immunization at all effector:target ratios. Contrary to previous reports on naked DNA vaccines given intramuscularly, the IgG antibody response induced by the mucosal DNA vaccine is relatively weak when compared to recombinant HBsAg vaccine (P < 0.001 at day 21). These findings are supported by a high interferon-gamma but a low interleukin-4 level detected in the supernatant of splenic cell cultures obtained from mucosally immunized mice. As distinct to recombinant HBsAg vaccine which is effective for protection, oral mucosal DNA vaccine should be considered as a candidate for therapeutic immunization in chronic HBV infection, donor immunization before adoptive transfer of HBV-specific CTL to HBsAg positive bone marrow transplant recipients, and immunization of non-responders to recombinant HBsAg vaccine. This strongly cellular and relatively absent humoral response may make this vaccine a better candidate as a therapeutic vaccine for chronic HBV carriers than naked DNA vaccines, as the humoral response is relatively less important for the clearance of HBV from hepatocytes, but its presence may lead to side effects such as serum sickness and immune complex deposition in chronic HBV carriers.

  6. Artemisia annua Leaf Extract Attenuates Hepatic Steatosis and Inflammation in High-Fat Diet-Fed Mice

    PubMed Central

    Kim, Kyung Eun; Ko, Keon-Hee; Heo, Rok Won; Yi, Chin-ok; Shin, Hyun Joo; Kim, Jun Young; Park, Jae-Ho; Nam, Sanghae; Kim, Hwajin

    2016-01-01

    Abstract Artemisia annua L. (AA) is a well-known source of the antimalarial drug artemisinin. AA also has an antibacterial and antioxidant activity. However, the effect of AA extract on hepatic steatosis induced by obesity is unclear. We investigated whether AA extract prevents obesity-induced insulin resistance and hepatic steatosis in high-fat diet (HFD)-fed mice. Mice were randomly divided into groups that received a normal chow diet or HFD with or without AA for 12 weeks. We found that AA extract reduced insulin resistance and hepatic steatosis in HFD-fed mice. Western blot analysis showed that HFD-induced expression of nuclear sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein in the livers was decreased by AA extract. In particular, dietary administration of AA extract decreased hepatic high-mobility group box 1 and cyclooxygenase-2 expression in HFD-fed mice. AA extract also attenuated HFD-induced collagen deposition and fibrosis-related transforming growth factor-β1 and connective tissue growth factor. These data indicate that dietary AA extract has beneficial effects on hepatic steatosis and inflammation in HFD-fed mice. PMID:26741655

  7. Artemisia annua Leaf Extract Attenuates Hepatic Steatosis and Inflammation in High-Fat Diet-Fed Mice.

    PubMed

    Kim, Kyung Eun; Ko, Keon-Hee; Heo, Rok Won; Yi, Chin-ok; Shin, Hyun Joo; Kim, Jun Young; Park, Jae-Ho; Nam, Sanghae; Kim, Hwajin; Roh, Gu Seob

    2016-03-01

    Artemisia annua L. (AA) is a well-known source of the antimalarial drug artemisinin. AA also has an antibacterial and antioxidant activity. However, the effect of AA extract on hepatic steatosis induced by obesity is unclear. We investigated whether AA extract prevents obesity-induced insulin resistance and hepatic steatosis in high-fat diet (HFD)-fed mice. Mice were randomly divided into groups that received a normal chow diet or HFD with or without AA for 12 weeks. We found that AA extract reduced insulin resistance and hepatic steatosis in HFD-fed mice. Western blot analysis showed that HFD-induced expression of nuclear sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein in the livers was decreased by AA extract. In particular, dietary administration of AA extract decreased hepatic high-mobility group box 1 and cyclooxygenase-2 expression in HFD-fed mice. AA extract also attenuated HFD-induced collagen deposition and fibrosis-related transforming growth factor-β1 and connective tissue growth factor. These data indicate that dietary AA extract has beneficial effects on hepatic steatosis and inflammation in HFD-fed mice. PMID:26741655

  8. Hepatitis

    MedlinePlus

    ... Got Homework? Here's Help White House Lunch Recipes Hepatitis KidsHealth > For Kids > Hepatitis Print A A A ... an important digestive liquid called bile . What Is Hepatitis? Hepatitis is an inflammation (say: in-fluh-MAY- ...

  9. Docosahexaenoic acid attenuates Western diet-induced hepatic fibrosis in Ldlr-/- mice by targeting the TGFβ-Smad3 pathway.

    PubMed

    Lytle, Kelli A; Depner, Christopher M; Wong, Carmen P; Jump, Donald B

    2015-10-01

    DHA (22:6,ω3), but not EPA (20:5,ω3), attenuates Western diet (WD)-induced hepatic fibrosis in a Ldlr(-/-) mouse model of nonalcoholic steatohepatitis. We examined the molecular basis for the differential effect of dietary EPA and DHA on WD-induced hepatic fibrosis. DHA was more effective than EPA at preventing WD-induced effects on hepatic transcripts linked to fibrosis, including collagen 1A1 (Col1A1), transforming growth factor-β (TGFβ) signaling and proteins involved in remodeling the extracellular matrix, including metalloproteases, tissue inhibitors of metalloproteases, and lysyl oxidase subtypes. Examination of the TGFβ pathway showed that mice fed the WD supplemented with either olive oil or EPA had a significant (≥2.5-fold) increase in hepatic nuclear abundance of phospho-mothers against decapentaplegic homolog (Smad)3 when compared with mice fed the reference diet (RD); Smad3 is a key regulator of Col1A1 expression in stellate cells. In contrast, mice fed the WD supplemented with DHA had no increase in phospho-Smad3 when compared with mice fed the RD. Changes in hepatic phospho-Smad3 nuclear content correlated with proCol1A1 mRNA and protein abundance. Pretreatment of human LX2 stellate cells with DHA, but not other unsaturated fatty acids, blocked TGFβ1-mediated induction of Col1A1. In conclusion, DHA attenuates WD-induced fibrosis by targeting the TGFβ-Smad3-Col1A1 pathway in stellate cells. PMID:26315048

  10. Quercetin inhibits rhinovirus replication in vitro and in vivo.

    PubMed

    Ganesan, Shyamala; Faris, Andrea N; Comstock, Adam T; Wang, Qiong; Nanua, Suparna; Hershenson, Marc B; Sajjan, Uma S

    2012-06-01

    Rhinovirus (RV), which is responsible for the majority of common colds, also causes exacerbations in patients with asthma and chronic obstructive pulmonary disease. So far, there are no drugs available for treatment of rhinovirus infection. We examined the effect of quercetin, a plant flavanol on RV infection in vitro and in vivo. Pretreatment of airway epithelial cells with quercetin decreased Akt phosphosphorylation, viral endocytosis and IL-8 responses. Addition of quercetin 6h after RV infection (after viral endocytosis) reduced viral load, IL-8 and IFN responses in airway epithelial cells. This was associated with decreased levels of negative and positive strand viral RNA, and RV capsid protein, abrogation of RV-induced eIF4GI cleavage and increased phosphorylation of eIF2α. In mice infected with RV, quercetin treatment decreased viral replication as well as expression of chemokines and cytokines. Quercetin treatment also attenuated RV-induced airway cholinergic hyperresponsiveness. Together, our results suggest that quercetin inhibits RV endocytosis and replication in airway epithelial cells at multiple stages of the RV life cycle. Quercetin also decreases expression of pro-inflammatory cytokines and improves lung function in RV-infected mice. Based on these observations, further studies examining the potential benefits of quercetin in the prevention and treatment of RV infection are warranted.

  11. Epigallocatechin-3-gallate attenuates apoptosis and autophagy in concanavalin A-induced hepatitis by inhibiting BNIP3

    PubMed Central

    Li, Sainan; Xia, Yujing; Chen, Kan; Li, Jingjing; Liu, Tong; Wang, Fan; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2016-01-01

    Background Epigallocatechin-3-gallate (EGCG) is the most effective compound in green tea, and possesses a wide range of beneficial effects, including anti-inflammatory, antioxidant, antiobesity, and anticancer effects. In this study, we investigated the protective effects of EGCG in concanavalin A (ConA)-induced hepatitis in mice and explored the possible mechanisms involved in these effects. Methods Balb/C mice were injected with ConA (25 mg/kg) to induce acute autoimmune hepatitis, and EGCG (10 or 30 mg/kg) was administered orally twice daily for 10 days before ConA injection. Serum liver enzymes, proinflammatory cytokines, and other marker proteins were determined 2, 8, and 24 hours after the ConA administration. Results BNIP3 mediated cell apoptosis and autophagy in ConA-induced hepatitis. EGCG decreased the immunoreaction and pathological damage by reducing inflammatory factors, such as TNF-α, IL-6, IFN-γ, and IL-1β. EGCG also exhibited an antiapoptotic and antiautophagic effect by inhibiting BNIP3 via the IL-6/JAKs/STAT3 pathway. Conclusion EGCG attenuated liver injury in ConA-induced hepatitis by downregulating IL-6/JAKs/STAT3/BNIP3-mediated apoptosis and autophagy. PMID:26929598

  12. Attenuated viral hepatitis in Trem1−/− mice is associated with reduced inflammatory activity of neutrophils

    PubMed Central

    Kozik, Jan-Hendrik; Trautmann, Tanja; Carambia, Antonella; Preti, Max; Lütgehetmann, Marc; Krech, Till; Wiegard, Christiane; Heeren, Joerg; Herkel, Johannes

    2016-01-01

    TREM1 (Triggering Receptor Expressed on Myeloid Cells 1) is a pro-inflammatory receptor expressed by phagocytes, which can also be released as a soluble molecule (sTREM1). The roles of TREM1 and sTREM1 in liver infection and inflammation are not clear. Here we show that patients with hepatitis B virus (HBV) or hepatitis C virus (HCV) infection manifest elevated serum levels of sTREM1. In mice, experimental viral hepatitis induced by infection with Lymphocytic Choriomeningitis Virus (LCMV)-WE was likewise associated with increased sTREM1 in serum and urine, and with increased TREM1 and its associated adapter molecule DAP12 in the liver. Trem1−/− mice showed accelerated clearance of LCMV-WE and manifested attenuated liver inflammation and injury. TREM1 expression in the liver of wild-type mice was mostly confined to infiltrating neutrophils, which responded to LCMV by secretion of CCL2 and TNF-α, and release of sTREM1. Accordingly, the production of CCL2 and TNF-α was decreased in the livers of LCMV-infected Trem1−/− mice, as compared to LCMV-infected wildtype mice. These findings indicate that TREM1 plays a role in viral hepatitis, in which it seems to aggravate the immunopathology associated with viral clearance, mainly by increasing the inflammatory activity of neutrophils. PMID:27328755

  13. A Novel Small-molecule Tumor Necrosis Factor α Inhibitor Attenuates Inflammation in a Hepatitis Mouse Model*

    PubMed Central

    Ma, Li; Gong, Haiyan; Zhu, Haiyan; Ji, Qing; Su, Pei; Liu, Peng; Cao, Shannan; Yao, Jianfeng; Jiang, Linlin; Han, Mingzhe; Ma, Xiaotong; Xiong, Dongsheng; Luo, Hongbo R.; Wang, Fei; Zhou, Jiaxi; Xu, Yuanfu

    2014-01-01

    Overexpression of tumor necrosis factor α (TNFα) is a hallmark of many inflammatory diseases, including rheumatoid arthritis, inflammatory bowel disease, and septic shock and hepatitis, making it a potential therapeutic target for clinical interventions. To explore chemical inhibitors against TNFα activity, we applied computer-aided drug design combined with in vitro and cell-based assays and identified a lead chemical compound, (E)-4-(2-(4-chloro-3-nitrophenyl) (named as C87 thereafter), which directly binds to TNFα, potently inhibits TNFα-induced cytotoxicity (IC50 = 8.73 μm) and effectively blocks TNFα-triggered signaling activities. Furthermore, by using a murine acute hepatitis model, we showed that C87 attenuates TNFα-induced inflammation, thereby markedly reducing injuries to the liver and improving animal survival. Thus, our results lead to a novel and highly specific small-molecule TNFα inhibitor, which can be potentially used to treat TNFα-mediated inflammatory diseases. PMID:24634219

  14. Activation of PPARγ is required for hydroxysafflor yellow A of Carthamus tinctorius to attenuate hepatic fibrosis induced by oxidative stress.

    PubMed

    Wang, C Y; Liu, Q; Huang, Q X; Liu, J T; He, Y H; Lu, J J; Bai, X Y

    2013-05-15

    Oxidative stress caused hepatic fibrosis by activating hepatic stellate cells (HSCs), which were implemented by depressing PPARγ activation. Hydroxysafflor yellow A (HSYA) as a nature active ingredient with antioxidant capacity was able to effectively attenuate oxidative stress mediated injury. So it will be very interesting to study effect of HSYA on HSCs activation and liver fibrosis, and reveal the role of PPARγ·CCl4 and H2O2 were used to mimic oxidative stress mediated hepatic injury in vitro and in vivo respectively. The anti-fibrosis effects of HSYA were evaluated and its mechanisms were disclosed by applying western blot, histopathological analysis, flow cytometry, RT-PCR and ELISA. Our results showed that HSCs activation and proliferation could be induced by oxidative stress, and the expressive levels of TGF-β1 and TIMP-1, the serum levels of ALT, AST, HA, LN, III-C and IV-C were also enhanced by oxidative stress, which is correlated with liver fibrosis (p<0.05 or p<0.01). HSYA was able to effectively inhibit oxidative stress mediated hepatic injury by increasing the activities of antioxidant enzymes, up regulating the expression of PPARγ and MMP-2, and down regulating the expression of TGF-β1 and TIMP-1, and reducing α-SMA level. The protective effect of HSYA can be significantly attenuated by GW9662 via blocking PPARγ (p<0.05 or p<0.01). Taken together, these results demonstrate that HSYA is able to significantly protect the liver from oxidative stress, which requires for HSYA to stimulate PPARγ activity, reduce cell proliferation and suppress ECM synthesis.

  15. Short-Term Hypocaloric High-Fiber and High-Protein Diet Improves Hepatic Steatosis Assessed by Controlled Attenuation Parameter

    PubMed Central

    Arslanow, Anita; Teutsch, Melanie; Walle, Hardy; Grünhage, Frank; Lammert, Frank; Stokes, Caroline S

    2016-01-01

    OBJECTIVES: Non-alcoholic fatty liver disease is one of the most prevalent liver diseases and increases the risk of fibrosis and cirrhosis. Current standard treatment focuses on lifestyle interventions. The primary aim of this study was to assess the effects of a short-term low-calorie diet on hepatic steatosis, using the controlled attenuation parameter (CAP) as quantitative tool. METHODS: In this prospective observational study, 60 patients with hepatic steatosis were monitored during a hypocaloric high-fiber, high-protein diet containing 1,000 kcal/day. At baseline and after 14 days, we measured hepatic fat contents using CAP during transient elastography, body composition with bioelectrical impedance analysis, and serum liver function tests and lipid profiles using standard clinical–chemical assays. RESULTS: The median age was 56 years (25–78 years); 51.7% were women and median body mass index was 31.9 kg/m2 (22.4–44.8 kg/m2). After 14 days, a significant CAP reduction (14.0% P<0.001) was observed from 295 dB/m (216–400 dB/m) to 266 dB/m (100–353 dB/m). In parallel, body weight decreased by 4.6% (P<0.001), of which 61.9% was body fat. In addition, liver stiffness (P=0.002), γ-GT activities, and serum lipid concentrations decreased (all P<0.001). CONCLUSIONS: This study shows for the first time that non-invasive elastography can be used to monitor rapid effects of dietary treatment for hepatic steatosis. CAP improvements occur after only 14 days on short-term low-calorie diet, together with reductions of body composition parameters, serum lipids, and liver enzymes, pointing to the dynamics of hepatic lipid turnover. PMID:27311064

  16. Comparison of the bioavailability of quercetin and catechin in rats.

    PubMed

    Manach, C; Texier, O; Morand, C; Crespy, V; Régérat, F; Demigné, C; Rémésy, C

    1999-12-01

    Quercetin and catechin are present in noticeable amounts in human diet and these polyphenolic compounds are supposed to exert beneficial effects on human health. However, their metabolic fates in the organism have never been compared. In the present study, rats were fed a 0.25% quercetin or a 0.25% catechin diet. Quercetin and catechin metabolites were analyzed in plasma and liver samples by high-performance liquid chromatography coupled to an ultraviolet or a multielectrode coulometric detection. All plasma metabolites were present as conjugated forms, but catechin metabolites were mainly constituted by glucuronidated derivatives, whereas quercetin metabolites were sulfo- and glucurono-sulfo conjugates. Quercetin was more intensively methylated than catechin in plasma. The plasma quercetin metabolites are well maintained during the postabsorptive period (approximately 50 microM), whereas the concentration of catechin metabolites dropped dramatically between 12- and 24-h after an experimental meal (from 38.0 to 4.5 microM). In the liver, the concentrations of quercetin and catechin derivatives were lower than in plasma, and no accumulation was observed when the rats were adapted for 14 d to the supplemented diets. The hepatic metabolites were intensively methylated (90-95%), but in contrast to plasma, some free aglycones could be detected. Thus, it clearly appears that studies dealing with the biological impact of these polyphenols should take into account the feature of their bioavailability, particularly the fact that their circulating metabolites are conjugated derivatives. PMID:10641719

  17. Comparison of the bioavailability of quercetin and catechin in rats.

    PubMed

    Manach, C; Texier, O; Morand, C; Crespy, V; Régérat, F; Demigné, C; Rémésy, C

    1999-12-01

    Quercetin and catechin are present in noticeable amounts in human diet and these polyphenolic compounds are supposed to exert beneficial effects on human health. However, their metabolic fates in the organism have never been compared. In the present study, rats were fed a 0.25% quercetin or a 0.25% catechin diet. Quercetin and catechin metabolites were analyzed in plasma and liver samples by high-performance liquid chromatography coupled to an ultraviolet or a multielectrode coulometric detection. All plasma metabolites were present as conjugated forms, but catechin metabolites were mainly constituted by glucuronidated derivatives, whereas quercetin metabolites were sulfo- and glucurono-sulfo conjugates. Quercetin was more intensively methylated than catechin in plasma. The plasma quercetin metabolites are well maintained during the postabsorptive period (approximately 50 microM), whereas the concentration of catechin metabolites dropped dramatically between 12- and 24-h after an experimental meal (from 38.0 to 4.5 microM). In the liver, the concentrations of quercetin and catechin derivatives were lower than in plasma, and no accumulation was observed when the rats were adapted for 14 d to the supplemented diets. The hepatic metabolites were intensively methylated (90-95%), but in contrast to plasma, some free aglycones could be detected. Thus, it clearly appears that studies dealing with the biological impact of these polyphenols should take into account the feature of their bioavailability, particularly the fact that their circulating metabolites are conjugated derivatives.

  18. Thymoquinone attenuates liver fibrosis via PI3K and TLR4 signaling pathways in activated hepatic stellate cells.

    PubMed

    Bai, Ting; Lian, Li-Hua; Wu, Yan-Ling; Wan, Ying; Nan, Ji-Xing

    2013-02-01

    Thymoquinone (TQ) is the major active compound derived from the medicinal Nigella sativa. In the present study, we investigated the anti-fibrotic mechanism of TQ in lipopolysaccharide (LPS)-activated rat hepatic stellate cells line, T-HSC/Cl-6. T-HSC/Cl-6 cells were treated with TQ (3.125, 6.25 and 12.5μM) prior to LPS (1μg/ml). Our data demonstrated that TQ effectively decreased activated T-HSC/Cl-6 cell viability. TQ significantly attenuated the expression of CD14 and Toll-like receptor 4 (TLR4). TQ also significantly inhibited phosphatidylinositol 3-kinase (PI3K) and serine/threonine kinase-protein kinase B (Akt) phosphorylation. The expression of α-SMA and collagen-I were significantly decreased by TQ. Furthermore, TQ decreased X linked inhibitor of apoptosis (XIAP) and cellular FLIP (c-FLIPL) expression, which are related with the regulation of apoptosis. Furthermore, TQ significantly increased the survival against LPS challenge in d-galactosamine (d-GlaN)-sensitized mice, and decreased the levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), which were in line with in vitro results. Our data demonstrated that TQ attenuates liver fibrosis partially via blocking TLR4 expression and PI3K phosphorylation on the activated HSCs. Therefore, TQ may be a potential candidate for the therapy of hepatic fibrosis.

  19. Oral bioavailability of quercetin from different quercetin glycosides in dogs.

    PubMed

    Reinboth, Marianne; Wolffram, Siegfried; Abraham, Getu; Ungemach, Fritz R; Cermak, Rainer

    2010-07-01

    Although the flavonol quercetin is used as a supplement in commercial dog food, data on quercetin bioavailability in dogs are not available. Thus, we investigated quercetin bioavailability (measured as area under the concentration-time curve) in nine adult beagle dogs at an oral dose of 10 mg/kg body weight (b.w.). The major fraction (>80 %) of flavonols circulating in blood plasma were conjugated metabolites of quercetin. The absolute bioavailability of quercetin (i.e. the fraction that reaches the systemic circulation) was only about 4 %. We also compared the oral bioavailability between the aglycone quercetin and its more often used glucorhamnoside (rutin) and 3-O-glucoside (isoquercitrin) at an equimolar dose of 30 mumol/kg b.w. (corresponding to 10 mg quercetin/kg). Quercetin and isoquercitrin were mainly absorbed in the small intestine with isoquercitrin being one and a half times more bioavailable than quercetin. Maximal plasma concentration after isoquercitrin treatment was 0.89 (sem 0.07) mumol/l. Although quercetin absorption from rutin was delayed, relative bioavailability was not lower than from the aglycone itself. The latter observation is in clear contrast to findings in human subjects, pigs or rats and might indicate that rutin is a better source of quercetin in dogs than in other species. However, potential in vivo quercetin effects beyond the gastrointestinal tract are limited by the intensive metabolism as well as by the rather low bioavailability of this flavonol.

  20. Dimethyl dimethoxy biphenyl dicarboxylate attenuates hepatic and metabolic alterations in high fructose-fed rats.

    PubMed

    Morsy, Mohamed A; Ibrahim, Mohamed A; Abd-Elghany, Manal I

    2016-01-01

    High fructose consumption is currently linked to metabolic disorders including insulin resistance and dyslipidemia as well as hepatic steatosis. Dimethyl dimethoxy biphenyl dicarboxylate (DDB) is a hepatoprotectant with antioxidant and anti-inflammatory properties. The aim of this study therefore is to evaluate the effect of DDB on high fructose-induced metabolic disturbances and hepatic steatosis in a rat model. Male Wistar rats were allocated into three groups: control, fructose-fed (10% in drinking water and 10% in diet), and fructose-fed DDB (300 mg/kg, orally)-treated groups. Rats were fed a high-fructose diet for 6 weeks, while DDB was administered for an additional 2 weeks. High-fructose consumption elevated serum glucose and insulin levels and impaired oral glucose tolerance test, revealing insulin resistance. It also increased serum triglycerides and alanine aminotransferase as well as visceral fat content and decreased serum high-density lipoprotein. Additionally, histopathological examination revealed that high fructose intake induced hepatic steatosis. These alterations were associated with increased serum uric acid as well as hepatic content of malondialdehyde and nitric oxide (NO) in addition to overexpression of inducible NO synthase (iNOS). DDB administration significantly ameliorated the high fructose-induced hepatic and metabolic alterations. In conclusion, DDB ameliorates high fructose-induced metabolic disorders and hepatic steatosis in rats. Such protection is, at least in part, due to the inhibition of lipid peroxidation, decrease in iNOS overexpression, and reduction of elevated uric acid.

  1. Down-Regulated Receptor Interacting Protein 140 Is Involved in Lipopolysaccharide-Preconditioning-Induced Inactivation of Kupffer Cells and Attenuation of Hepatic Ischemia Reperfusion Injury

    PubMed Central

    Ji, Li; Jie, Xu; Yue, Li; Kang, Yang; Jianping, Gong; Zuojin, Liu

    2016-01-01

    Background Lipopolysaccharide (LPS) preconditioning is known to attenuate hepatic ischemia/reperfusion injury (I/RI); however, the precise mechanism remains unclear. This study investigated the role of receptor-interacting protein 140 (RIP140) on the protective effect of LPS preconditioning in hepatic I/RI involving Kupffer cells (KCs). Methods Sprague—Dawley rats underwent 70% hepatic ischemia for 90 minutes. LPS (100 μg/kg) was injected intraperitoneally 24 hours before ischemia. Hepatic injury was observed using serum and liver samples. The LPS/NF-κB (nuclear factor-κB) pathway and hepatic RIP140 expression in isolated KCs were investigated. Results LPS preconditioning significantly inhibited hepatic RIP140 expression, NF-κB activation, and serum proinflammatory cytokine expression after I/RI, with an observation of remarkably reduced serum enzyme levels and histopathologic scores. Our experiments showed that protection effects could be effectively induced in KCs by LPS preconditioning, but couldn’t when RIP140 was overexpressed in KCs. Conversely, even without LPS preconditioning, protective effects were found in KCs if RIP140 expression was suppressed with siRNA. Conclusions Down-regulated RIP140 is involved in LPS-induced inactivation of KCs and hepatic I/RI attenuation. PMID:27723769

  2. Attenuated Effects of Deep-Sea Water on Hepatic Apoptosis in STZ-Induced Diabetic Rats.

    PubMed

    Hsu, Tsai-Ching; Chiu, Chun-Ching; Lin, Hsou-Lin; Kao, Tseng-Wei; Chen, Li-Jeng; Wu, Li-Yi; Huang, Chih-Yang; Tzang, Bor-Show

    2015-06-30

    Diabetes mellitus (DM) is a metabolic disorder and increasing evidences have indicated a connection between DM and hepatic abnormality. Deep-sea water (DSW) has been applied in many fields, especially in medicine; herein, we investigated the influence of DSW on hepatic apoptosis in streptozocin (STZ)-induced diabetes rats. Our experimental results firstly demonstrated the beneficial effects of 1×DSW, 2×DSW and 3×DSW in alleviating hepatic apoptosis in STZ-induced diabetic rats. We demonstrated that 1×DSW, 2×DSW and 3×DSW significantly suppressed the caspase-3 activity and TUNEL-positive cells in livers of STZ-induced diabetic rats. Significant reductions of both Fas-dependent and mitochondrial-dependent apoptotic molecules were also detected in livers of STZ-induced diabetic rats receiving DSW. Additionally, apoptotic signaling molecules such as phosphorylated IκB-α and NF-κB were significantly reduced in livers of DSW-treated STZ-induced diabetic rats. These findings indicate hepatic protective effects of DSW on DM and suggest DSW as a possible ingredient for health food. PMID:26014125

  3. Sasa borealis Stem Extract Attenuates Hepatic Steatosis in High-Fat Diet-induced Obese Rats

    PubMed Central

    Song, Yuno; Lee, Soo-Jung; Jang, Sun-Hee; Ha, Ji Hee; Song, Young Min; Ko, Yeoung-Gyu; Kim, Hong-Duck; Min, Wongi; Kang, Suk Nam; Cho, Jae-Hyeon

    2014-01-01

    The aim of the current study is to examine the improving effect of Sasa borealis stem (SBS) extract extracts on high-fat diet (HFD)-induced hepatic steatosis in rats. To determine the hepatoprotective effect of SBS, we fed rats a normal regular diet (ND), HFD, and HFD supplemented with 150 mg/kg body weight (BW) SBS extracts for five weeks. We found that the body weight and liver weight of rats in the HFD + SBS group were significantly lower than those in the HFD group. Significantly lower serum total cholesterol (TC) and triglyceride (TG) concentrations were observed in the SBS-supplemented group compared with the HFD group. We also found that the HFD supplemented with SBS group showed dramatically reduced hepatic lipid accumulation compared to the HFD alone group, and administration of SBS resulted in dramatic suppression of TG, TC in the HFD-induced fatty liver. In liver gene expression within the SBS treated group, PPARα was significantly increased and SREBP-1c was significantly suppressed. SBS induced a significant decrease in the hepatic mRNA levels of PPARγ, FAS, ACC1, and DGAT2. In conclusion, SBS improved cholesterol metabolism, decreased lipogenesis, and increased lipid oxidation in HFD-induced hepatic steatosis in rats, implying a potential application in treatment of non-alcoholic fatty liver disease. PMID:24905748

  4. Sasa borealis stem extract attenuates hepatic steatosis in high-fat diet-induced obese rats.

    PubMed

    Song, Yuno; Lee, Soo-Jung; Jang, Sun-Hee; Ha, Ji Hee; Song, Young Min; Ko, Yeoung-Gyu; Kim, Hong-Duck; Min, Wongi; Kang, Suk Nam; Cho, Jae-Hyeon

    2014-06-01

    The aim of the current study is to examine the improving effect of Sasa borealis stem (SBS) extract extracts on high-fat diet (HFD)-induced hepatic steatosis in rats. To determine the hepatoprotective effect of SBS, we fed rats a normal regular diet (ND), HFD, and HFD supplemented with 150 mg/kg body weight (BW) SBS extracts for five weeks. We found that the body weight and liver weight of rats in the HFD + SBS group were significantly lower than those in the HFD group. Significantly lower serum total cholesterol (TC) and triglyceride (TG) concentrations were observed in the SBS-supplemented group compared with the HFD group. We also found that the HFD supplemented with SBS group showed dramatically reduced hepatic lipid accumulation compared to the HFD alone group, and administration of SBS resulted in dramatic suppression of TG, TC in the HFD-induced fatty liver. In liver gene expression within the SBS treated group, PPARα was significantly increased and SREBP-1c was significantly suppressed. SBS induced a significant decrease in the hepatic mRNA levels of PPARγ, FAS, ACC1, and DGAT2. In conclusion, SBS improved cholesterol metabolism, decreased lipogenesis, and increased lipid oxidation in HFD-induced hepatic steatosis in rats, implying a potential application in treatment of non-alcoholic fatty liver disease. PMID:24905748

  5. Attenuated Effects of Deep-Sea Water on Hepatic Apoptosis in STZ-Induced Diabetic Rats.

    PubMed

    Hsu, Tsai-Ching; Chiu, Chun-Ching; Lin, Hsou-Lin; Kao, Tseng-Wei; Chen, Li-Jeng; Wu, Li-Yi; Huang, Chih-Yang; Tzang, Bor-Show

    2015-06-30

    Diabetes mellitus (DM) is a metabolic disorder and increasing evidences have indicated a connection between DM and hepatic abnormality. Deep-sea water (DSW) has been applied in many fields, especially in medicine; herein, we investigated the influence of DSW on hepatic apoptosis in streptozocin (STZ)-induced diabetes rats. Our experimental results firstly demonstrated the beneficial effects of 1×DSW, 2×DSW and 3×DSW in alleviating hepatic apoptosis in STZ-induced diabetic rats. We demonstrated that 1×DSW, 2×DSW and 3×DSW significantly suppressed the caspase-3 activity and TUNEL-positive cells in livers of STZ-induced diabetic rats. Significant reductions of both Fas-dependent and mitochondrial-dependent apoptotic molecules were also detected in livers of STZ-induced diabetic rats receiving DSW. Additionally, apoptotic signaling molecules such as phosphorylated IκB-α and NF-κB were significantly reduced in livers of DSW-treated STZ-induced diabetic rats. These findings indicate hepatic protective effects of DSW on DM and suggest DSW as a possible ingredient for health food.

  6. Ability of IDO to attenuate liver injury in alpha-galactosylceramide-induced hepatitis model.

    PubMed

    Ito, Hiroyasu; Hoshi, Masato; Ohtaki, Hirofumi; Taguchi, Ayako; Ando, Kazuki; Ishikawa, Tetsuya; Osawa, Yosuke; Hara, Akira; Moriwaki, Hisataka; Saito, Kuniaki; Seishima, Mitsuru

    2010-10-15

    IDO converts tryptophan to l-kynurenine, and it is noted as a relevant molecule in promoting tolerance and suppressing adaptive immunity. In this study, we examined the effect of IDO in α-galactosylceramide (α-GalCer)-induced hepatitis. The increase in IDO expression in the liver of wild-type (WT) mice administered α-GalCer was confirmed by real-time PCR, Western blotting, and IDO immunohistochemical analysis. The serum alanine aminotransferase levels in IDO-knockout (KO) mice after α-GalCer injection significantly increased compared with those in WT mice. 1-Methyl-D-tryptophan also exacerbated liver injury in this murine hepatitis model. In α-GalCer-induced hepatitis models, TNF-α is critical in the development of liver injury. The mRNA expression and protein level of TNF-α in the liver from IDO-KO mice were more enhanced compared with those in WT mice. The phenotypes of intrahepatic lymphocytes from WT mice and IDO-KO mice treated with α-GalCer were analyzed by flow cytometry, and the numbers of CD49b(+) and CD11b(+) cells were found to have increased in IDO-KO mice. Moreover, as a result of the increase in the number of NK cells and macrophages in the liver of IDO-KO mice injected with α-GalCer, TNF-α secretion in these mice was greater than that in WT mice. Deficiency of IDO exacerbated liver injury in α-GalCer-induced hepatitis. IDO induced by proinflammatory cytokines may decrease the number of TNF-α-producing immune cells in the liver. Thus, IDO may suppress overactive immune response in the α-GalCer-induced hepatitis model.

  7. Hepatitis

    MedlinePlus

    ... has been associated with drinking contaminated water. Hepatitis Viruses Type Transmission Prognosis A Fecal-oral (stool to ... risk for severe disease. Others A variety of viruses can affect the liver Signs and Symptoms Hepatitis ...

  8. Hepatitis C Virus Attenuates Interferon-Induced MHC Class I Expression and Decreases CD8+ T-Cell Effector Functions

    PubMed Central

    Kang, Wonseok; Sung, Pil Soo; Park, Su-Hyung; Yoon, Sarah; Chang, Dong-Yeop; Kim, Seungtaek; Han, Kwang Hyub; Kim, Ja Kyung; Rehermann, Barbara; Chwae, Yong-Joon; Shin, Eui-Cheol

    2015-01-01

    BACKGROUND & AIMS MHC class I-restricted CD8+ T cells are required for clearance of hepatitis C virus (HCV) infection. MHC class I expression is upregulated by type I and II interferons (IFNs). However, little is known about the effects of HCV infection on IFN-induced expression of MHC class I. METHODS We used the HCV cell culture system (HCVcc) with the genotype 2a Japanese Fulminant Hepatitis-1 strain to investigate IFN-induced expression of MHC class I and its regulatory mechanisms. HCVcc-infected Huh-7.5 cells were analyzed by flow cytometry, metabolic labeling, immunoprecipitation, and immunoblotting analyses. Protein kinase R (PKR) was knocked-down with lentiviruses that express small hairpin (sh)RNAs. The functional effects of MHC class I regulation by HCV were demonstrated in co-culture studies, using HCV-specific CD8+ T cells. RESULTS Although the baseline level of MHC class I was not affected by HCV infection, IFN-induced expression of MHC class I was notably attenuated in HCV-infected cells. This was associated with replicating HCV RNA, not with viral protein. HCV infection reduced IFN-induced synthesis of MHC class I protein and induced phosphorylation of PKR and eIF2α. IFN-induced MHC class I expression was restored by shRNA-mediated knockdown of PKR in HCV-infected cells. Co-culture of HCV-specific CD8+ T cells and HCV-infected cells that expressed HLA-A2 demonstrated that HCV infection reduced the effector functions of HCV-specific CD8+ T cells; these functions were restored by shRNA-mediated knockdown of PKR. CONCLUSIONS IFN-induced expression of MHC class I is attenuated in HCV-infected cells by activation of PKR, which reduces the effector functions of HCV-specific CD8+ T cells. This appears to be an important mechanism by which HCV circumvents antiviral adaptive immune responses. PMID:24486950

  9. Set7 facilitates hepatitis C virus replication via enzymatic activity-dependent attenuation of the IFN-related pathway.

    PubMed

    Han, Tao; Wan, Yushun; Wang, Jun; Zhao, Peng; Yuan, Yue; Wang, Li; She, Yinglong; Broering, Ruth; Lu, Mengji; Ye, Linbai; Zhu, Ying

    2015-03-15

    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease, usually resulting in persistent infection involving hepatic steatosis, cirrhosis, and hepatocellular carcinoma via escape of the host's immune response. Set7 is a lysine-specific methyltransferase that is involved in gene regulation and virus replication. However, the mechanism underlying the immune evasion between HCV and Set7 is not well understood. In this study, we observed that the expression of Set7 in Huh7.5.1 cells was upregulated by HCV infection, and high levels of Set7 expression were also found in the sera, PBMCs, and liver tissue of HCV patients relative to healthy individuals. Further investigation showed that Set7 enhanced HCV replication in an enzymatic activity-dependent manner. Moreover, our data showed that Set7 decreased the expression of virus-induced IFN and IFN-related effectors, such as dsRNA-activated protein kinase and 2',5'-oligoadenylate synthetase. Further investigation suggested that Set7 suppressed the endogenous IFN expression by reducing the nuclear translocation of IFN regulatory factor 3/7 and the p65 subunit of NF-κB and reduced IFN-induced dsRNA-activated protein kinase and 2',5'-oligoadenylate synthetase via attenuation of the phosphorylation of STAT1 and STAT2. Additionally, IFN receptors, including IFNAR1 and IFNAR2, which are located upstream of the JAK/STAT pathway, were reduced by Set7. Taken together, our results reveal that Set7 facilitates HCV replication through the attenuation of IFN signaling pathways and IFN-related effectors.

  10. Attenuation of Hepatic Graft-versus-host Disease in Allogeneic Recipients of MyD88-deficient Donor Bone Marrow

    PubMed Central

    Lim, Ji-Young; Lee, Young-Kwan; Lee, Sung-Eun; Ju, Ji-Min; Park, Gyeongsin; Choi, Eun Young

    2015-01-01

    Acute graft-versus-host-disease (GVHD) is characterized by selective damage to the liver, the skin, and the gastrointestinal tract. Following allogeneic hematopoietic stem cell transplantation, donor bone marrow (BM) cells repopulate the immune system of the recipient. We previously demonstrated that the acute intestinal GVHD (iGVHD) mortality rate was higher in MyD88-deficient BM recipients than that in the control BM recipients. In the present study, the role of MyD88 (expressed by donor BM) in the pathophysiology of hepatic GVHD (hGVHD) was examined. Unlike iGVHD, transplantation with MyD88-deficient T-cell depleted (TCD) BM attenuated hGVHD severity and was associated with low infiltration of T cells into the liver of the recipients. Moreover, GVHD hosts, transplanted with MyD88-deficient TCD BM, exhibited markedly reduced expansion of CD11b+Gr-1+ myeloid-derived suppressor cells (MDSC) in the liver. Adoptive injection of the MDSC from wild type mice, but not MyD88-deficient mice, enhanced hepatic T cell infiltration in the MyD88-deficient TCD BM recipients. Pre-treatment of BM donors with LPS increased MDSC levels in the liver of allogeneic wild type BM recipients. In conclusion, hGVHD and iGVHD may occur through various mechanisms based on the presence of MyD88 in the non-T cell compartment of the allograft. PMID:26140044

  11. Different profiles of quercetin metabolites in rat plasma: comparison of two administration methods.

    PubMed

    Kawai, Yoshichika; Saito, Satomi; Nishikawa, Tomomi; Ishisaka, Akari; Murota, Kaeko; Terao, Junji

    2009-03-23

    The bioavailability of polyphenols in human and rodents has been discussed regarding their biological activity. We found different metabolite profiles of quercetin in rat plasma between two administration procedures. A single intragastric administration (50 mg/kg) resulted in the appearance of a variety of metabolites in the plasma, whereas only a major fraction was detected by free access (1% quercetin). The methylated/non-methylated metabolites ratio was much higher in the free access group. Mass spectrometric analyses showed that the fraction from free access contained highly conjugated quercetin metabolites such as sulfo-glucuronides of quercetin and methylquercetin. The metabolite profile of human plasma after an intake of onion was similar to that with intragastric administration in rats. In vitro oxidation of human low-density lipoprotein showed that methylation of the catechol moiety of quercetin significantly attenuated the antioxidative activity. These results might provide information about the bioavailability of quercetin when conducting animal experiments. PMID:19270373

  12. Different profiles of quercetin metabolites in rat plasma: comparison of two administration methods.

    PubMed

    Kawai, Yoshichika; Saito, Satomi; Nishikawa, Tomomi; Ishisaka, Akari; Murota, Kaeko; Terao, Junji

    2009-03-23

    The bioavailability of polyphenols in human and rodents has been discussed regarding their biological activity. We found different metabolite profiles of quercetin in rat plasma between two administration procedures. A single intragastric administration (50 mg/kg) resulted in the appearance of a variety of metabolites in the plasma, whereas only a major fraction was detected by free access (1% quercetin). The methylated/non-methylated metabolites ratio was much higher in the free access group. Mass spectrometric analyses showed that the fraction from free access contained highly conjugated quercetin metabolites such as sulfo-glucuronides of quercetin and methylquercetin. The metabolite profile of human plasma after an intake of onion was similar to that with intragastric administration in rats. In vitro oxidation of human low-density lipoprotein showed that methylation of the catechol moiety of quercetin significantly attenuated the antioxidative activity. These results might provide information about the bioavailability of quercetin when conducting animal experiments.

  13. Helenalin attenuates alcohol-induced hepatic fibrosis by enhancing ethanol metabolism, inhibiting oxidative stress and suppressing HSC activation.

    PubMed

    Lin, Xing; Zhang, Shijun; Huang, Renbin; Wei, Ling; Tan, Shimei; Liang, Shuang; Tian, Yuanchun; Wu, Xiaoyan; Lu, Zhongpeng; Huang, Quanfang

    2014-06-01

    A compound was isolated from Centipeda minima using bioassay-guided screening. The structure of this compound was elucidated based on its spectral data, and it was identified as helenalin. The hepatoprotective effect of helenalin was evaluated using a liver fibrosis model induced by intragastric administration with alcohol within 24 weeks in rats. The results revealed that helenalin significantly prevented alcohol-induced hepatic injury and fibrogenesis, as evidenced by the decrease in serum aminotransferase, the attenuation of histopathological changes, and the inhibition of the hepatic fibrosis indicators, such as hyaluronic acid, type III precollagen, laminin, hydroxyproline and collagen α type I. Mechanistically, studies showed that helenalin expedited ethanol metabolism by enhancing the alcohol and aldehyde dehydrogenase activities. Furthermore, helenalin alleviated lipid peroxidation, recruited the antioxidative defense system, inhibited CYP2E1 activity, and reduced the inflammatory mediators, including TGF-β1, TNF-α, IL-6 and IL-1β and myeloperoxidase, via down-regulation of NF-κB. Helenalin significantly decreased collagen deposition by reducing the profibrotic cytokines like transforming growth factor-β, platelet-derived growth factor-β and connective tissue growth factor, and promoted extracellular matrix degradation by modulating the levels of tissue inhibitor of matrix metalloproteinase-1 and matrix metalloproteinase-9. In addition, helenalin inhibited HSC activation as evidenced by the down-regulation of α-SMA and TGF-β levels. In conclusion, helenalin had a significant protective effect on chronic ethanol-induced hepatic fibrosis and may be a major bioactive ingredient of C. minima.

  14. Diosgenin attenuates hepatic stellate cell activation through transforming growth factor-β/Smad signaling pathway

    PubMed Central

    Xie, Wei-Lin; Jiang, Rong; Shen, Xiao-Lu; Chen, Zhi-Yu; Deng, Xiao-Ming

    2015-01-01

    Activation of hepatic stellate cells (HSC) plays a pivotal role in the development of hepatic fibrosis. Transforming growth factor-β1 (TGF-β1) is considered to be the main stimuli factor responsible for the activation of HSC. Diosgenin is a steroidal saponin found in several plants including Solanum and Dioscorea species, and it inhibited high glucose-induced renal tubular fibrosis. However, the effects of diosgenin against hepatic fibrosis remain elusive. Therefore, in this study, we investigated the effects of diosgenin on TGF-β1-induced HSCs and elucidate the possible mechanism of its anti-fibrotic effect. Our results demonstrated that diosgenin inhibited TGF-β1-induced HSC proliferation, reduced the expression of collagen I and α-smooth muscle actin (α-SMA), as well as the expression of TGF-β receptor I (TGF-β RI) and II. Moreover, diosgenin suppressed TGF-β1-induced phosphorylation of Smad3 in HSCs. In conclusion, our data demonstrate that diosgenin inhibited HSC-T6 cell proliferation and activation, at least in part, via the TGF-β1/Smad signaling pathway. These results provide that diosgenin may have potential to treat liver fibrosis. PMID:26884947

  15. Diosgenin attenuates hepatic stellate cell activation through transforming growth factor-β/Smad signaling pathway.

    PubMed

    Xie, Wei-Lin; Jiang, Rong; Shen, Xiao-Lu; Chen, Zhi-Yu; Deng, Xiao-Ming

    2015-01-01

    Activation of hepatic stellate cells (HSC) plays a pivotal role in the development of hepatic fibrosis. Transforming growth factor-β1 (TGF-β1) is considered to be the main stimuli factor responsible for the activation of HSC. Diosgenin is a steroidal saponin found in several plants including Solanum and Dioscorea species, and it inhibited high glucose-induced renal tubular fibrosis. However, the effects of diosgenin against hepatic fibrosis remain elusive. Therefore, in this study, we investigated the effects of diosgenin on TGF-β1-induced HSCs and elucidate the possible mechanism of its anti-fibrotic effect. Our results demonstrated that diosgenin inhibited TGF-β1-induced HSC proliferation, reduced the expression of collagen I and α-smooth muscle actin (α-SMA), as well as the expression of TGF-β receptor I (TGF-β RI) and II. Moreover, diosgenin suppressed TGF-β1-induced phosphorylation of Smad3 in HSCs. In conclusion, our data demonstrate that diosgenin inhibited HSC-T6 cell proliferation and activation, at least in part, via the TGF-β1/Smad signaling pathway. These results provide that diosgenin may have potential to treat liver fibrosis. PMID:26884947

  16. Dexamethasone pretreatment attenuates lung and kidney injury in cholestatic rats induced by hepatic ischemia/reperfusion.

    PubMed

    Zhou, Liangyi; Yao, Xiangqing; Chen, Yanling

    2012-02-01

    Hepatic ischemia followed by reperfusion (IR) results in mild to severe organ injury, in which tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) seem to be involved. Thus, we aim to assess the influence of hepatic ischemia/reperfusion injury on remote organs in addition to cholestasis and consider the possible efficacy of steroid pretreatment in reducing the injury. A common bile duct ligation model was done on 24 male Sprague-Dawley rats. After 7 days, the rats were divided randomly into control group, IR group, and dexamethasone (DEX) group. The IR group showed significant increases in serum alanine aminotransferase, aspartate aminotransferase, and creatinine levels compared with the control and DEX groups. By ELISA techniques, higher levels of TNF-α and IL-1β in lung and kidney tissues were measured in the IR group than in the control and DEX groups, these were verified by immunohistochemistry. The lung histology of the IR group rats showed neutrophil infiltration, interstitial edema, and alveolar wall thickening. Kidney histology of the IR group rats showed vacuolization of the proximal tubular epithelial cells and tubular dilatation with granular eosinophilic casts. Better morphological aspects were observed in the DEX-pretreated animals. Minimal lesions were observed in the control. The results suggest that hepatic ischemia/reperfusion injury in cholestatic rats induced lung and kidney injuries. Pretreatment with dexamethasone reduced the IR-induced injury in addition to cholestasis.

  17. Ginsenoside Rc from Korean Red Ginseng (Panax ginseng C.A. Meyer) Attenuates Inflammatory Symptoms of Gastritis, Hepatitis and Arthritis.

    PubMed

    Yu, Tao; Rhee, Man Hee; Lee, Jongsung; Kim, Seung Hyung; Yang, Yanyan; Kim, Han Gyung; Kim, Yong; Kim, Chaekyun; Kwak, Yi-Seong; Kim, Jong-Hoon; Cho, Jae Youl

    2016-01-01

    Korean Red Ginseng (KRG) is an herbal medicine prescribed worldwide that is prepared from Panax ginseng C.A. Meyer (Araliaceae). Out of ginseng's various components, ginsenosides are regarded as the major ingredients, exhibiting anticancer and anti-inflammatory activities. Although recent studies have focused on understanding the anti-inflammatory activities of KRG, compounds that are major anti-inflammatory components, precisely how these can suppress various inflammatory processes has not been fully elucidated yet. In this study, we aimed to identify inhibitory saponins, to evaluate the in vivo efficacy of the saponins, and to understand the inhibitory mechanisms. To do this, we employed in vitro lipopolysaccharide-treated macrophages and in vivo inflammatory mouse conditions, such as collagen (type II)-induced arthritis (CIA), EtOH/HCl-induced gastritis, and lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-triggered hepatitis. Molecular mechanisms were also verified by real-time PCR, immunoblotting analysis, and reporter gene assays. Out of all the ginsenosides, ginsenoside Rc (G-Rc) showed the highest inhibitory activity against the expression of tumor necrosis factor (TNF)-[Formula: see text], interleukin (IL)-1[Formula: see text], and interferons (IFNs). Similarly, this compound attenuated inflammatory symptoms in CIA, EtOH/HCl-mediated gastritis, and LPS/D-galactosamine (D-GalN)-triggered hepatitis without altering toxicological parameters, and without inducing gastric irritation. These anti-inflammatory effects were accompanied by the suppression of TNF-[Formula: see text] and IL-6 production and the induction of anti-inflammatory cytokine IL-10 in mice with CIA. G-Rc also attenuated the increased levels of luciferase activity by IRF-3 and AP-1 but not NF-[Formula: see text]B. In support of this phenomenon, G-Rc reduced TBK1, IRF-3, and ATF2 phosphorylation in the joint and liver tissues of mice with hepatitis. Therefore, our results strongly suggest that

  18. Interleukin-22 ameliorates liver fibrogenesis by attenuating hepatic stellate cell activation and downregulating the levels of inflammatory cytokines

    PubMed Central

    Lu, Dong-Hong; Guo, Xiao-Yun; Qin, Shan-Yu; Luo, Wei; Huang, Xiao-Li; Chen, Mei; Wang, Jia-Xu; Ma, Shi-Jia; Yang, Xian-Wen; Jiang, Hai-Xing

    2015-01-01

    AIM: To investigate the effect of interleukin (IL)-22 on hepatic fibrosis in mice and the possible mechanism involved. METHODS: Liver fibrosis was induced in male BALB/c mice by CCl4. Recombinant IL-22 (rmIL-22) was administered intraperitoneally in CCl4-treated mice. Fibrosis was assessed by histology and Masson staining. The activation of hepatic stellate cells (HSCs) was investigated by analysis of α-smooth muscle actin expression. The frequencies of T helper (Th) 22 cells, Th17 cells and Th1 cells, the expression of inflammatory cytokines [IL-22, IL-17A, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), IL-6, IL-1β] and transcription factors [aryl hydrocarbon receptor (AHR), RAR-related orphan receptor (RORγt), T-bet] mRNA in the liver were investigated. In addition, the plasma levels of IL-22, IL-17A, IFN-γ, TNF-α, IL-6 and IL-1β were evaluated. RESULTS: Significant elevations in circulating Th22 cells, Th17 cells, Th1 cells, IL-22, IL-17A, and IFN-γ were observed in the hepatic fibrosis group compared with the control group (P < 0.01). Treatment with rmIL-22 in mice with hepatic fibrosis ameliorated the severity of hepatic fibrosis, which was confirmed by lower hepatic fibrosis pathological scores (P < 0.01). RmIL-22 decreased the frequencies of Th22 cells (6.71% ± 0.97% vs 8.09% ± 0.74%, P < 0.01), Th17 cells (4.34% ± 0.37% vs 5.71% ± 0.24%, P < 0.01), Th1 cells (3.09% ± 0.49% vs 4.91% ± 0.73%, P < 0.01), and the levels of IL-22 (56.23 ± 3.08 vs 70.29 ± 3.01, P < 0.01), IL-17A (30.74 ± 2.77 vs 45.68 ± 2.71, P < 0.01), and IFN-γ (74.78 ± 2.61 vs 124.89 ± 2.82, P < 0.01). Down-regulation of IL-22, IL-17A, IFN-γ, TNF-α, IL-6, IL-1β, AHR RORγt, and T-bet gene expression in the liver was observed in the rmIL-22 group (P < 0.01). CONCLUSION: The frequencies of Th22, Th17 and Th1 cells are elevated in hepatic fibrosis. RmIL-22 can attenuate HSC activation and down-regulate the levels of inflammatory cytokines, thereby ameliorating

  19. Electrospun quercetin-loaded zein nanoribbons.

    PubMed

    Li, Xiao-Yan; Shi, Chen-Jie; Yu, Deng-Guang; Liao, Yao-Zu; Wang, Xia

    2014-01-01

    This study investigates quercetin-loaded zein nanoribbons, which were fabricated using different types of electrospinning processes. Using ethanol aqueous solutions as sheath fluids, the widths of quercetin-loaded zein nanoribbons (D, nm) could be manipulated simply through the adjustment of water contents(C) in the sheath fluids according to an equation of D=958-8.01C(r=0.9977), as indicated by the field emission scanning electron microscopic observations. X-ray diffraction and attenuated total reflectance Fourier transform infrared analysis suggested that the quercetin presented in the zein nanoribbons in an amorphous state due to their high compability resulted from hydrogen bonds. In vitro dissolution tests verified that nanoribbons from the coaxial process and single fluid process could provide drug sustained release profiles via a typical Fickian diffusion mechanism, and the former exhibited better performance than the later in terms of small initial burst effect and leveling-off release. Coaxial electrospinning with solvents can expand the capability of electrospinning in generating nanoproducts and provide a way for improving the nanoproducts' quality and functional performance. PMID:25226898

  20. Inhibition of soluble epoxide hydrolase attenuates hepatic fibrosis and endoplasmic reticulum stress induced by carbon tetrachloride in mice

    SciTech Connect

    Harris, Todd R.; Bettaieb, Ahmed; Kodani, Sean; Dong, Hua; Myers, Richard; Chiamvimonvat, Nipavan; Haj, Fawaz G.; Hammock, Bruce D.

    2015-07-15

    Liver fibrosis is a pathological condition in which chronic inflammation and changes to the extracellular matrix lead to alterations in hepatic tissue architecture and functional degradation of the liver. Inhibitors of the enzyme soluble epoxide hydrolase (sEH) reduce fibrosis in the heart, pancreas and kidney in several disease models. In this study, we assess the effect of sEH inhibition on the development of fibrosis in a carbon tetrachloride (CCl{sub 4})-induced mouse model by monitoring changes in the inflammatory response, matrix remolding and endoplasmic reticulum stress. The sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) was administered in drinking water. Collagen deposition in the liver was increased five-fold in the CCl{sub 4}-treated group, and this was returned to control levels by TPPU treatment. Hepatic expression of Col1a2 and 3a1 mRNA was increased over fifteen-fold in the CCl{sub 4}-treated group relative to the Control group, and this increase was reduced by 50% by TPPU treatment. Endoplasmic reticulum (ER) stress observed in the livers of CCl{sub 4}-treated animals was attenuated by TPPU treatment. In order to support the hypothesis that TPPU is acting to reduce the hepatic fibrosis and ER stress through its action as a sEH inhibitor we used a second sEH inhibitor, trans-4-(4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy)-benzoic acid (t-TUCB), and sEH null mice. Taken together, these data indicate that the sEH may play an important role in the development of hepatic fibrosis induced by CCl{sub 4}, presumably by reducing endogenous fatty acid epoxide chemical mediators acting to reduce ER stress. - Highlights: • We administer an inhibitor of sEH in a CCl4 murine model. • sEH inhibition reduces liver collagen deposition and pro-fibrotic gene expression. • sEH inhibition induces MMP-1a activity.

  1. Garcinia Cambogia attenuates diet-induced adiposity but exacerbates hepatic collagen accumulation and inflammation

    PubMed Central

    Kim, Young-Je; Choi, Myung-Sook; Park, Yong Bok; Kim, Sang Ryong; Lee, Mi-Kyung; Jung, Un Ju

    2013-01-01

    AIM: To investigate long-term effects of Garcinia Cambogia (GC), weight-loss supplement, on adiposity and non-alcoholic fatty liver disease in obese mice. METHODS: Obesity-prone C57BL/6J mice were fed a high-fat diet (HFD, 45 kcal% fat) with or without GC (1%, w/w) for 16 wk. The HFD contained 45 kcal% fat, 20 kcal% protein and 35 kcal% carbohydrate. They were given free access to food and distilled water, and food consumption and body weight were measured daily and weekly, respectively. Data were expressed as the mean ± SE. Statistical analyses were performed using the statistical package for the social science software program. Student’s t test was used to assess the differences between the groups. Statistical significance was considered at P < 0.05. RESULTS: There were no significant changes in body weight and food intake between the groups. However, the supplementation of GC significantly lowered visceral fat accumulation and adipocyte size via inhibition of fatty acid synthase activity and its mRNA expression in visceral adipose tissue, along with enhanced enzymatic activity and gene expression involved in adipose fatty acid β-oxidation. Moreover, GC supplementation resulted in significant reductions in glucose intolerance and the plasma resistin level in the HFD-fed mice. However, we first demonstrated that it increased hepatic collagen accumulation, lipid peroxidation and mRNA levels of genes related to oxidative stress (superoxide dismutase and glutathione peroxidase) and inflammatory responses (tumor necrosis factor-α and monocyte chemoattractant protein-1) as well as plasma alanine transaminase and aspartate transaminase levels, although HFD-induced hepatic steatosis was not altered. CONCLUSION: GC protects against HFD-induced obesity by modulating adipose fatty acid synthesis and β-oxidation but induces hepatic fibrosis, inflammation and oxidative stress. PMID:23922466

  2. Morin attenuates hepatic insulin resistance in high-fat-diet-induced obese mice.

    PubMed

    Naowaboot, Jarinyaporn; Wannasiri, Supaporn; Pannangpetch, Patchareewan

    2016-06-01

    Morin is a natural bioflavonoid that exhibits antioxidant and anti-inflammatory properties. The present study was designed to evaluate the effect of morin on insulin resistance, oxidative stress, and inflammation in a high-fat-diet (HFD)-induced obese mice. Obesity was induced in ICR mice by feeding a HFD (60 % kcal from fat) for 12 weeks. After the first 6 weeks, obese mice were treated with morin (50 or 100 mg/kg/day) once daily for further 6 weeks. Blood glucose, lipid profile, insulin, leptin, adiponectin, and markers of oxidative stress and inflammation were then measured. Liver was excised, subjected to histopathology, glycogen determination, and gene and protein expression analysis. Morin administration reduced blood glucose, serum insulin, leptin, malondialdehyde, interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1) levels and increased serum adiponectin levels. Moreover, there was a reduction in serum lipid and liver triglyceride levels. Liver histology indicated that morin limited accumulation of lipid droplets. Interestingly, morin reduced expression of hepatic sterol regulatory element binding protein 1c (SREBP1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) and up-regulated hepatic carnitine palmitoyltransferase 1a (CPT1a) expression. Morin also stimulated glycogen storage and suppressed phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) protein expression. Furthermore, hepatic superoxide dismutase (SOD) and catalase (CAT) expression were increased after morin treatment. These findings indicate that morin has a positive effect in the HFD-induced obesity condition by suppressing lipogenesis, gluconeogenesis, inflammation, and oxidative stress activities.

  3. Effects of rutin and quercetin on monooxygenase activities in experimental influenza virus infection.

    PubMed

    Savov, Varban M; Galabov, Angel S; Tantcheva, Lyubka P; Mileva, Milka M; Pavlova, Elitsa L; Stoeva, Emilia S; Braykova, Ana A

    2006-08-01

    The aim of this work is to study the effect of the flavonoids rutin and quercetin on hepatic monooxygenase activities in experimental influenza virus infection (EIVI). EIVI causes oxidative stress in the whole organism. This is confirmed by the rapidly increased concentrations of thiobarbituric reactive substances in influenza-infected mice: lungs - 290%; blood plasma - more than 320%; liver - 230%; brain - 50%. Although known for their antioxidant activities, rutin and quercetin exhibit prooxidant effect in healthy and antioxidant activity in influenza-infected animals. The pretreatment with both flavonoids (20 mg/kg b.w.) restores oxidative damage mostly in the target organ of the infection as well as in the liver of all infected mice (lungs: rutin - 30%, quercetin - 40%, combination - 45%; liver: rutin - 12%; quercetin - 40%; combination - 50%). As far as EIVI causes oxidative stress, toxicosis and inhibition of the hepatic monooxygenase activity, it is important to study the effects of rutin and quercetin on these systems. Both flavonoids induce the level of cytochrome P-450 (rutin - 13%, quercetin - 30%, combination - 22%) but inactivate NADPH-cytochrome c reductase, aminopyrine N-demethylase and analgin N-demethylase on the 5th day of EIVI. Probably, these flavonoids affect different components of the monooxygenase system. These effects could be explained with oxidative hepatic intoxication on the 5th critical day of EIVI as well as higher dose treatment. More data are needed on the antioxidant/prooxidant effects of rutin and quercetin, probably due to specific metabolic and physiological activities, chemical structure, etc.

  4. Opuntia ficus-indica seed attenuates hepatic steatosis and promotes M2 macrophage polarization in high-fat diet-fed mice.

    PubMed

    Kang, Jung-Woo; Shin, Jun-Kyu; Koh, Eun-Ji; Ryu, Hyojeong; Kim, Hyoung Ja; Lee, Sun-Mee

    2016-04-01

    Opuntia ficus-indica (L.) is a popular edible plant that possesses considerable nutritional value and exhibits diverse biological actions including anti-inflammatory and antidiabetic activities. In this study, we hypothesized that DWJ504, an extract of O ficus-indica seed, would ameliorate hepatic steatosis and inflammation by regulating hepatic de novo lipogenesis and macrophage polarization against experimental nonalcoholic steatohepatitis. Mice were fed a normal diet or a high-fat diet (HFD) for 10 weeks. DWJ504 (250, 500, and 1000 mg/kg) or vehicle (0.5% carboxymethyl cellulose) were orally administered for the last 4 weeks of the 10-week HFD feeding period. DWJ504 treatment remarkably attenuated HFD-induced increases in hepatic lipid content and hepatocellular damage. DWJ504 attenuated increases in sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein expression and a decrease in carnitine palmitoyltransferase 1A. Although DWJ504 augmented peroxisome proliferator-activated receptor α protein expression, it attenuated peroxisome proliferator-activated receptor γ expression. Moreover, DWJ504 promoted hepatic M2 macrophage polarization as indicated by attenuation of the M1 marker genes and enhancement of M2 marker genes. Finally, DWJ504 attenuated expression of toll-like receptor 4, nuclear factor κB, tumor necrosis factor α, interleukin 6, TIR-domain-containing adapter-inducing interferon β, and interferon β levels. Our results demonstrate that DWJ504 prevented intrahepatic lipid accumulation, induced M2 macrophage polarization, and suppressed the toll-like receptor 4-mediated inflammatory signaling pathway. Thus, DWJ504 has therapeutic potential in the prevention of nonalcoholic fatty liver disease.

  5. Opuntia ficus-indica seed attenuates hepatic steatosis and promotes M2 macrophage polarization in high-fat diet-fed mice.

    PubMed

    Kang, Jung-Woo; Shin, Jun-Kyu; Koh, Eun-Ji; Ryu, Hyojeong; Kim, Hyoung Ja; Lee, Sun-Mee

    2016-04-01

    Opuntia ficus-indica (L.) is a popular edible plant that possesses considerable nutritional value and exhibits diverse biological actions including anti-inflammatory and antidiabetic activities. In this study, we hypothesized that DWJ504, an extract of O ficus-indica seed, would ameliorate hepatic steatosis and inflammation by regulating hepatic de novo lipogenesis and macrophage polarization against experimental nonalcoholic steatohepatitis. Mice were fed a normal diet or a high-fat diet (HFD) for 10 weeks. DWJ504 (250, 500, and 1000 mg/kg) or vehicle (0.5% carboxymethyl cellulose) were orally administered for the last 4 weeks of the 10-week HFD feeding period. DWJ504 treatment remarkably attenuated HFD-induced increases in hepatic lipid content and hepatocellular damage. DWJ504 attenuated increases in sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein expression and a decrease in carnitine palmitoyltransferase 1A. Although DWJ504 augmented peroxisome proliferator-activated receptor α protein expression, it attenuated peroxisome proliferator-activated receptor γ expression. Moreover, DWJ504 promoted hepatic M2 macrophage polarization as indicated by attenuation of the M1 marker genes and enhancement of M2 marker genes. Finally, DWJ504 attenuated expression of toll-like receptor 4, nuclear factor κB, tumor necrosis factor α, interleukin 6, TIR-domain-containing adapter-inducing interferon β, and interferon β levels. Our results demonstrate that DWJ504 prevented intrahepatic lipid accumulation, induced M2 macrophage polarization, and suppressed the toll-like receptor 4-mediated inflammatory signaling pathway. Thus, DWJ504 has therapeutic potential in the prevention of nonalcoholic fatty liver disease. PMID:27001282

  6. Cerebrolysin attenuates cerebral and hepatic injury due to lipopolysaccharide in rats.

    PubMed

    Abdel-Salam, O M E; Omara, E A; Mohammed, N A; Youness, E R; Khadrawy, Y A; Sleem, A A

    2013-12-01

    This study aimed to investigate the effect of cerebrolysin on oxidative stress in the brain and liver during systemic inflammation. Rats were intraperitoneally challenged with a single subseptic dose of lipopolysaccharide (LPS; 300 μg/kg) without or with cerebrolysin at doses of 21.5, 43 or 86 mg/kg. After 4 h, rats were euthanized and the brain and liver tissues were subjected to biochemical and histopathological analyses. Cerebrolysin revealed inhibitory effects on the elevation of lipid peroxidation and nitric oxide induced by LPS. In contrast, the decrease in reduced glutathione level and paraoxonase activity induced by LPS was attenuated by an injection of cerebrolysin in a dose-dependent manner. Moreover, cerebrolysin reduced LPS-induced activation of brain NF-κB and reversed LPS-induced decline of brain butyrylcholinesterase and acetylcholinesterase activities in a dose-dependent manner. Histopathological analyses revealed that neuronal damage and liver necrosis induced by LPS were ameliorated by cerebrolysin dose-dependently. Cerebrolysin treatment dose-dependently attenuated LPS-induced expressions in cyclooxygenase 2, inducible nitric oxide synthase, and caspase-3 in the cortex or striatum as well as the liver. These results suggest that cerebrolysin treatment might have beneficial therapeutic effects in cerebral inflammation. Cerebrolysin might also prove of value in liver disease and this possibility requires further exploration.

  7. Periostin down-regulation attenuates the pro-fibrogenic response of hepatic stellate cells induced by TGF-β1.

    PubMed

    Hong, Li; Shejiao, Dai; Fenrong, Chen; Gang, Zhao; Lei, Dong

    2015-10-01

    Liver fibrosis is characterized by an exacerbated accumulation of deposition of the extracellular matrix (ECM), and the activation of hepatic stellate cells (HSC) plays a pivotal role in the development of liver fibrosis. Periostin has been shown to regulate cell adhesion, proliferation, migration and apoptosis; however, the involvement of periostin and its role in transforming growth factor (TGF)-β1-induced HSC activation remains unclear. We used RT-PCR and Western blot to evaluate the expression level of periostin in hepatic fibrosis tissues and HSCs, respectively. Cell proliferation was determined using the Cell Proliferation ELISA BrdU kit, cell cycle was analysed by flow cytometry. The expression of α-smooth muscle actin (α-SMA), collagen I, TGF-β1, p-Smad2 and p-Smad3 were determined by western blot. Our study found that periostin was up-regulated in liver fibrotic tissues and activated HSCs. In addition, siRNA-periostin suppressed TGF-β1-induced HSC proliferation. The HSC transfected with siRNA-periostin significantly inhibited TGF-β1-induced expression levels of α-SMA and collagen I. Furthermore, TGF-β1 stimulated the expression of periostin, and siRNA-periostin attenuated TGF-β1-induced Smad2/3 activation in HSCs. These results suggest that periostin may function as a novel regulator to modulate HSC activation, potentially by promoting the TGF-β1/Smad signalling pathway, and propose a strategy to target periostin for the treatment of liver fibrosis.

  8. Effect of quercetin and its metabolite on caveolin-1 expression induced by oxidized LDL and lysophosphatidylcholine in endothelial cells

    PubMed Central

    Kamada, Chiemi; Mukai, Rie; Kondo, Akari; Sato, Shinya; Terao, Junji

    2016-01-01

    Oxidized low-density lipoprotein contributes to atherosclerotic plaque formation, and quercetin is expected to exert anti-atherosclerotic effects. We previously reported accumulation of conjugated quercetin metabolites in the aorta of rabbits fed high-cholesterol diets with quercetin glucosides, resulting in attenuation of lipid peroxidation and inhibition of lipid accumulation. Caveolin-1, a major structural protein of caveolae in vascular endothelial cells, plays a role in atherosclerosis development. Here we investigated effects of oxidized low-density lipoprotein, quercetin and its metabolite, quercetin 3-O-β-glucuronide, on caveolin-1 expression. Oxidized low-density lipoprotein significantly upregulated caveolin-1 mRNA expression. An oxidized low-density lipoprotein component, lysophosphatidylcholine, also induced expression of both caveolin-1 mRNA and protein. However, lysophosphatidylcholine did not affect the location of caveolin-1 proteins within caveolae structures. Co-treatment with quercetin or quercetin 3-O-β-glucuronide inhibited lysophosphatidylcholine-induced caveolin-1 expression. Quercetin and quercetin 3-O-β-glucuronide also suppressed expression of adhesion molecules induced by oxidized low-density lipoprotein and lysophosphatidylcholine. These results strongly suggest lysophosphatidylcholine derived from oxidized low-density lipoprotein contributes to atherosclerotic events by upregulating caveolin-1 expression, resulting in induction of adhesion molecules. Quercetin metabolites are likely to exert an anti-atherosclerotic effect by attenuating caveolin-1 expression in endothelial cells. PMID:27257344

  9. Water Extract of Dolichos lablab Attenuates Hepatic Lipid Accumulation in a Cellular Nonalcoholic Fatty Liver Disease Model.

    PubMed

    Im, A-Rang; Kim, Yun Hee; Lee, Hye Won; Song, Kwang Hoon

    2016-05-01

    Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that is rising in prevalence worldwide. Therapeutic strategies for patients with NAFLD are limited by a lack of effective drugs. In this report, we show that Dolichos lablab water extract (DLL-Ex) protects against free fatty acid (FFA)-induced lipid accumulation and attenuates expression of genes involved in lipid droplet accumulation in cellular NAFLD models. The hepatoprotective effects and underlying mechanism of DLL-Ex were assessed using an in vitro cellular model in which NAFLD was simulated by inducing excessive FFA influx into hepatocytes. HepG2 cells were treated with DLL-Ex and FFAs for 24 h, after which intracellular lipid content was observed by using Nile Red and Oil Red O staining. Quantitative real-time polymerase chain reaction was used to measure expression levels of genes related to FFA-mediated cellular energy depletion. Western blotting was used to measure protein levels of phosphorylated c-Jun N-terminal kinase, AMP-activated protein kinase alpha (AMPKα), and peroxisome proliferator-activated receptor γ coactivator 1 alpha. In HepG2 cells, DLL-Ex inhibited expression of CD36, which regulates fatty acid uptake, as well as BODIPY-labeled fatty acid uptake. Additionally, DLL-Ex significantly attenuated FFA-mediated cellular energy depletion and mitochondrial membrane depolarization. Furthermore, DLL-Ex enhanced phosphorylation of AMPK, indicating that AMPK is a critical regulator of DLL-Ex-mediated inhibition of hepatic lipid accumulation, possibly through its antioxidative effect. These results demonstrate that DLL-Ex exerts potent anti-NAFLD activity, suggesting that it could be a potential adjuvant treatment for patients with NAFLD. PMID:27152979

  10. Pharmacologic inhibition of the renin-angiotensin system did not attenuate hepatic toxicity induced by carbon tetrachloride in rats.

    PubMed

    Ekor, Martins; Odewabi, Adesina O; Kale, Oluwafemi E; Oritogun, Kolawole S; Adesanoye, Omolola A; Bamidele, Titilayo O

    2011-11-01

    The renin-angiotensin system (RAS) subserves vital physiological functions and also implicated in certain pathological states. Modulation of this system has been proposed in recent studies to be a promising strategy in treating liver fibrosis. We investigated the effect of the pharmacologic inhibition of RAS with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker in CCl(4)-induced liver injury with a view to ascertaining the chemopreventive benefit. Fifty-six Wistar albino rats were divided into eight experimental groups of seven rats/group. Groups 1-4 received normal saline (10 ml/kg), enalapril (0.6 mg/kg), losartan (1.4 mg/kg) and CCl(4) (80 mg/kg), respectively. Groups 5-8 were pretreated with enalapril (0.3 mg/kg), enalapril (0.6 mg/kg), losartan (0.7 mg/kg) and losartan (1.4 mg/kg) 1 hour before CCl(4) administration. Experiment lasted 11 days and dosing was via oral route. Rats were killed 24 hours after the last treatment. Serum activities of alkaline phosphatase, aspartate and alanine aminotransferases increased significantly (p < 0.05) by 46.0%, 90.6% and 122.3%, respectively, with severe hepatic centrilobular necrosis, fatty infiltration and increase in liver weight (p < 0.05) in the CCl(4)-treated rats. Enalapril (0.6 mg/kg) and losartan (1.4 mg/kg) significantly (p < 0.05) increased aspartate aminotransferase activity by 37.0% and 94.7% and produced mild centrilobular and periportal hepatic necrosis, respectively, with enalapril significantly (p < 0.05) increasing liver weight. Serum total cholesterol, triglyceride, albumin and total protein did not change significantly in these rats. Also, glutathione, malondialdehyde and uric acid levels were not significantly altered. Enalapril and losartan failed to attenuate liver injury associated with CCl(4) treatment. Although both drugs did not significantly alter serum biochemistry in the CCl(4)-treated rats, they however produced slight elevations in biomarkers of liver function and

  11. Epigallocatechin-3-gallate (EGCG) attenuates concanavalin A-induced hepatic injury in mice.

    PubMed

    Liu, Dongmei; Zhang, Xiaoli; Jiang, Li; Guo, Yun; Zheng, Changqing

    2014-05-01

    (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenolic compound present in green tea and has been shown to possess anti-inflammatory and anti-oxidative properties. In this study, we investigated the protective effects of EGCG against concanavalin A (ConA)-induced liver injury and the underlying mechanisms. EGCG (5 mg/kg) was administered orally by gavage to mice twice daily for 10 days before an intravenous injection of ConA. We found that EGCG effectively rescued lethality, improved hepatic pathological damage, and decreased serum levels of alanine aminotransaminase (ALT) in ConA-challenged mice. Furthermore, EGCG also significantly prevented the release of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-4, and IL-6 in serum, reduced malondialdehyde (MDA) levels, and restored glutathione (GSH) content and superoxide dismutase (SOD) activity in liver tissues from ConA-challenged mice. Finally, nuclear factor (NF)-κB activation and expression levels of Toll-like receptor (TLR) 2, TLR4 and TLR9 protein in liver tissues were significantly inhibited by EGCG pretreatment. Taken together, our data suggest that EGCG possesses hepatoprotective properties against ConA-induced liver injury through its anti-inflammatory and anti-oxidant actions. PMID:24373695

  12. Attenuation of KBrO3-induced renal and hepatic toxicity by cloudy apple juice in rat.

    PubMed

    Kujawska, Małgorzata; Ignatowicz, Ewa; Ewertowska, Małgorzata; Adamska, Teresa; Markowski, Jarosław; Jodynis-Liebert, Jadwiga

    2013-08-01

    The aim of the study was to evaluate a protective effect of apple juice on KBrO3-induced oxidative stress in rats. Male Wistar rats were administered apple juice per os, 10 ml/kg b.w. for 28 days. On 27 day of the experiment, some rats were given i.p. a single 125 mg/kg b.w. dose of KBrO3 . Markers of oxidative damage and clinical chemistry parameters were determined. Treatment with apple juice prior to KBrO3 challenge prevented an increase in hepatic and renal microsomal lipid peroxidation by 25 and 44%, respectively, increased the activity of antioxidant enzymes in the liver by 29 - 59% and decreased the plasma content of carbonyl groups by 19%. Aminotransferases activity in plasma was reduced by 19% and 36%, concentrations of plasma bilirubin, cholesterol and creatinine were suppressed by 21%, 16% and 26%, respectively, in rats supplemented with juice before KBrO3 injection. No protective effect of apple juice on nuclear DNA was observed. Supplementation with cloudy apple juice to some extent attenuated oxidative damage induced by KBrO3 in the liver and kidney of rats as evidenced by alterations of certain oxidative stress markers and clinical chemistry parameters.

  13. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD)

    PubMed Central

    Ni, Xunjun; Wang, Haiyan

    2016-01-01

    Silymarin, which derived from the milk thistle plant (silybum marianum), has been used for centuries as a natural remedy for diseases of the liver and biliary tract. Considering the therapeutic potential to liver disease, we tested efficacy of silymarin on hepatic steatosis with a high fat diet (HFD)-induced mouse model of non-alcoholic fatty liver disease (NAFLD), and investigated possible effects on lipid metabolic pathways. In our study, silymarin could attenuate the hepatic steatosis, which was proved by both Oil Red O staining and hepatic triglyceride (TG) level determination. Furthermore, compared with INT-747, a potent and selective FXR agonist, silymarin could preserve plasmatic high-density lipoprotein cholesterol (HDL-C) to a higher level and low-density lipoprotein cholesterol (LDL-C) to a lower level, which benefited more to the circulation system. Through real-time PCR analysis, we clarified a vital protective role of silymarin in mRNA regulation of genes involved in lipid metabolism and oxidative stress. It was also shown that silymarin had no effects on body weight, food intake, and liver transaminase. Taken together, silymarin could attenuate hepatic steatosis in a mouse model of NAFLD through regulation of lipid metabolism and oxidative stress, and benefit to the circulation system. All these findings shed new light on NAFLD treatment. PMID:27158393

  14. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD).

    PubMed

    Ni, Xunjun; Wang, Haiyan

    2016-01-01

    Silymarin, which derived from the milk thistle plant (silybum marianum), has been used for centuries as a natural remedy for diseases of the liver and biliary tract. Considering the therapeutic potential to liver disease, we tested efficacy of silymarin on hepatic steatosis with a high fat diet (HFD)-induced mouse model of non-alcoholic fatty liver disease (NAFLD), and investigated possible effects on lipid metabolic pathways. In our study, silymarin could attenuate the hepatic steatosis, which was proved by both Oil Red O staining and hepatic triglyceride (TG) level determination. Furthermore, compared with INT-747, a potent and selective FXR agonist, silymarin could preserve plasmatic high-density lipoprotein cholesterol (HDL-C) to a higher level and low-density lipoprotein cholesterol (LDL-C) to a lower level, which benefited more to the circulation system. Through real-time PCR analysis, we clarified a vital protective role of silymarin in mRNA regulation of genes involved in lipid metabolism and oxidative stress. It was also shown that silymarin had no effects on body weight, food intake, and liver transaminase. Taken together, silymarin could attenuate hepatic steatosis in a mouse model of NAFLD through regulation of lipid metabolism and oxidative stress, and benefit to the circulation system. All these findings shed new light on NAFLD treatment.

  15. Ulinastatin preconditioning attenuates inflammatory reaction of hepatic ischemia reperfusion injury in rats via high mobility group box 1(HMGB1) inhibition.

    PubMed

    Tong, Ying; Tang, Zhaohui; Yang, Tian; Yang, Yuting; Yang, Liqun; Shen, Weixing; Chen, Weixin

    2014-01-01

    Objective It has been found that ulinastatin (UTI) can attenuate hepatic injury in a rat model of ischemia reperfusion (IR), but the specific mechanism is unclear. This study aims to investigate possible pathomechanism of ulinastatin in reducing the inflammatory response after hepatic IR. Methods A male sprague-dawley(SD) rat model of hepatic ischemia reperfusion injury was used. The rats were randomly divided into 4 groups on average, which were 0.9% saline and IR group as control, ulinastatin preconditioning (UPC) group, UPC+rHMGB1 (recombinant HMGB1) group and UPC +anti-HMGB1 group. Serum aminotransferases, TNF-α, IL-1 and Myeloperoxidase (MPO) levels were measured. Histopathology examination and apoptotic cell detection and the different expression of HMGB1 protein were also assessed. Results Serum levels of aminotransferases, cytokines and hepatic MPO in UPC and UPC+anti-HMGB1 groups were significantly lower than those in control group (p<0.05). Decreased histologic damage and apoptosis were also seen in these two groups (p<0.05). Conclusions HMGB1 expressions in UPC and UPC+anti-HMGB1 groups were significantly lower than those in the two control groups (p<0.05), pretreatment with ulinastatin attenuated liver IR injury by reducing HMGB1 expression through its anti-inflammatory effects.

  16. Connective tissue growth factor hammerhead ribozyme attenuates human hepatic stellate cell function

    PubMed Central

    Gao, Run-Ping; Brigstock, David R

    2009-01-01

    AIM: To determine the effect of hammerhead ribozyme targeting connective tissue growth factor (CCN2) on human hepatic stellate cell (HSC) function. METHODS: CCN2 hammerhead ribozyme cDNA plus two self-cleaving sequences were inserted into pTriEx2 to produce pTriCCN2-Rz. Each vector was individually transfected into cultured LX-2 human HSCs, which were then stimulated by addition of transforming growth factor (TGF)-β1 to the culture medium. Semi-quantitative RT-PCR was used to determine mRNA levels for CCN2 or collagen I, while protein levels of each molecule in cell lysates and conditioned medium were measured by ELISA. Cell-cycle progression of the transfected cells was assessed by flow cytometry. RESULTS: In pTriEx2-transfected LX-2 cells, TGF-β1 treatment caused an increase in the mRNA level for CCN2 or collagen I, and an increase in produced and secreted CCN2 or extracellular collagen I protein levels. pTriCCN2-Rz-transfected LX-2 cells showed decreased basal CCN2 or collagen mRNA levels, as well as produced and secreted CCN2 or collagen I protein. Furthermore, the TGF-β1-induced increase in mRNA or protein for CCN2 or collagen I was inhibited partially in pTriCCN2-Rz-transfected LX-2 cells. Inhibition of CCN2 using hammerhead ribozyme cDNA resulted in fewer of the cells transitioning into S phase. CONCLUSION: Endogenous CCN2 is a mediator of basal or TGF-β1-induced collagen I production in human HSCs and regulates entry of the cells into S phase. PMID:19673024

  17. Protective Effect of Quercetin on Posttraumatic Cardiac Injury

    PubMed Central

    Jing, Zehao; Wang, Zhuorun; Li, Xiujie; Li, Xintao; Cao, Tingting; Bi, Yue; Zhou, Jicheng; Chen, Xu; Yu, Deqin; Zhu, Liang; Li, Shuzhuang

    2016-01-01

    Quercetin is an important dietary flavonoid present in fruits and vegetables and has attracted attention because of its anti-inflammatory and anti-oxidative properties. Inflammation and oxidative stress play important roles in posttraumatic cardiomyocyte apoptosis, which contributes to secondary cardiac dysfunction. This study investigates the protective effect of quercetin on trauma-induced secondary cardiac injury and the mechanisms involved. Widely accepted nonlethal mechanical trauma models were established. In vivo, cardiomyocyte apoptosis and cardiac dysfunction in rats were assessed using TUNEL staining and a biological mechanic experiment system. In vitro, cell viability, tumour necrosis factor-α (TNF-α), reactive oxygen species (ROS) and [Ca2+]i of H9c2 cells were detected using an MTT assay, ELISA, and 2′,7′-dichlorofluorescin diacetate and fluo-4 acetoxymethyl ester assays respectively. Quercetin pretreatment (20 mg/kg i.p.; 0.5 h before trauma) significantly improved posttraumatic cardiomyocyte apoptosis and cardiac dysfunction. Pretreatment with quercetin (20 μM; 24 h before trauma plasma addition) significantly attenuated trauma-induced viability decreases, TNF-α increases, ROS overproduction and [Ca2+]i overload in H9c2 cells. In conclusion, quercetin may reverse posttraumatic cardiac dysfunction by reducing cardiomyocyte apoptosis through the suppression of TNF-α increases, ROS overproduction and Ca2+ overload in cardiomyocytes, representing a potential preventive approach for the treatment of secondary cardiac injury after mechanical trauma. PMID:27470932

  18. Inhibiting miR-21 attenuates experimental hepatic fibrosis by suppressing both the ERK1 pathway in HSC and hepatocyte EMT.

    PubMed

    Wu, Kaiming; Ye, Changhong; Lin, Lin; Chu, Yimin; Ji, Meng; Dai, Weiping; Zeng, Xin; Lin, Yong

    2016-08-01

    MicroRNA-21 (miR-21) has emerged as a critical regulatory molecule and an important serum marker in hepatic fibrogenesis. The aim of the present study was to investigate the role of inhibiting miR-21 on hepatic fibrosis treatment. Serum miR-21 levels in 60 healthy individuals and 180 patients with different stages of liver cirrhosis were examined, miR-21 levels in normal or cirrhotic human liver tissues (n=10 each) were also detected. An adenoviral vector (Ad-TuD-21) carrying the sponging ToughDecoy (TuD)-RNA sequence against miR-21 was constructed to reduce miR-21 expression efficiently in vitro and in vivo Histological and immunohistological examinations were performed to evaluate the inhibitory effects and mechanism of Ad-TuD-21 delivery into carbon tetrachloride (CCl4) induced hepatic fibrosis rats by targeting extracellular signal-regulated kinase 1 (ERK1) signalling in hepatic stellate cells (HSC) and hepatocyte epithelial-mesenchymal transition (EMT). Our results revealed that enhanced miR-21 levels in cirrhotic patients were related to the severity and activity of liver cirrhosis. Ad-TuD-21 administered to liver fibrosis rats could remarkably suppress profibrotic gene expression, cause histological improvements in liver and attenuate hepatic fibrosis significantly. More importantly, after Ad-TuD-21 treatment, inhibition of both the ERK1 signalling pathway in HSC and hepatocyte EMT was confirmed, which paralleled the enhancement of miR-21 target genes-sprouty2 (SPRY2) and hepatocyte nuclear factor 4α (HNF4α)-expression in vivo These data demonstrated that miR-21 is a key regulator to promote hepatic fibrogenesis, and sponging miR-21 expression may present a novel potentially therapeutic option for hepatic fibrosis.

  19. Modulation of BV-2 microglia functions by novel quercetin pivaloyl ester.

    PubMed

    Mrvová, Nataša; Škandík, Martin; Kuniaková, Marcela; Račková, Lucia

    2015-11-01

    Chronic inflammation in brain plays a critical role in major neurodegenerative diseases such as Alzheimer's, Parkinson's disease, stroke or multiple sclerosis. Microglia, resident macrophages and intristinc components of CNS, appear to be main effectors in this pathological process. Quercetin, a naturally occurring flavonoid, was proven to downregulate inflammatory genes in microglia. Synthetically modified quercetin, 3'-O-(3-chloropivaloyl) quercetin (CPQ), is assumed to possess better biological availability and enhanced antioxidant properties. In the present study, antineuroinflammatory capability of the novel compound CPQ was assessed in BV-2 microglial cells. Our data show that treatment with CPQ attenuated the production of the inflammatory mediators, nitric oxide (NO) and tumour necrosis factor-α (TNF-α), in LPS-stimulated microglia somewhat more efficiently than did quercetin (p > 0.05 for CPQ vs. quercetin-treated group). Also, protein level of inducible NO synthase (iNOS) in LPS-activated BV-2 microglia was to some extent more effectively supressed by CPQ than by unmodified flavonoid. In consistence with the extent of their effects on pro-inflammatory markers, CPQ and quercetin showed down-regulation of NFκB activation. This quercetin analogue caused also a decline in BV-2 microglia proliferation with interfering with cell cycle progression (p < 0.001 for CPQ vs. quercetin-treated group). However, CPQ did not remarkably affect cell viability. In addition, CPQ showed a minor better suppression of PMA-induced generation of superoxide than did quercetin. Neither CPQ nor quercetin influenced phagocytosis of BV-2 cells. These results point to the therapeutic potential of 3'-O-(3-chloropivaloyl)quercetin (CPQ) as a novel antiinflammatory drug in neurodegenerative diseases, mediating favourable modulation of pro-inflammatory functions of microglia.

  20. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    SciTech Connect

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M.; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.

  1. Docosahexaenoic acid attenuates Western diet-induced hepatic fibrosis in Ldlr−/− mice by targeting the TGFβ-Smad3 pathway[S

    PubMed Central

    Lytle, Kelli A.; Depner, Christopher M.; Wong, Carmen P.; Jump, Donald B.

    2015-01-01

    DHA (22:6,ω3), but not EPA (20:5,ω3), attenuates Western diet (WD)-induced hepatic fibrosis in a Ldlr−/− mouse model of nonalcoholic steatohepatitis. We examined the molecular basis for the differential effect of dietary EPA and DHA on WD-induced hepatic fibrosis. DHA was more effective than EPA at preventing WD-induced effects on hepatic transcripts linked to fibrosis, including collagen 1A1 (Col1A1), transforming growth factor-β (TGFβ) signaling and proteins involved in remodeling the extracellular matrix, including metalloproteases, tissue inhibitors of metalloproteases, and lysyl oxidase subtypes. Examination of the TGFβ pathway showed that mice fed the WD supplemented with either olive oil or EPA had a significant (≥2.5-fold) increase in hepatic nuclear abundance of phospho-mothers against decapentaplegic homolog (Smad)3 when compared with mice fed the reference diet (RD); Smad3 is a key regulator of Col1A1 expression in stellate cells. In contrast, mice fed the WD supplemented with DHA had no increase in phospho-Smad3 when compared with mice fed the RD. Changes in hepatic phospho-Smad3 nuclear content correlated with proCol1A1 mRNA and protein abundance. Pretreatment of human LX2 stellate cells with DHA, but not other unsaturated fatty acids, blocked TGFβ1-mediated induction of Col1A1. In conclusion, DHA attenuates WD-induced fibrosis by targeting the TGFβ-Smad3-Col1A1 pathway in stellate cells. PMID:26315048

  2. Novel controlled attenuation parameter for noninvasive assessment of steatosis using Fibroscan(®): validation in chronic hepatitis C.

    PubMed

    Sasso, M; Tengher-Barna, I; Ziol, M; Miette, V; Fournier, C; Sandrin, L; Poupon, R; Cardoso, A-C; Marcellin, P; Douvin, C; de Ledinghen, V; Trinchet, J-C; Beaugrand, M

    2012-04-01

    A novel controlled attenuation parameter (CAP) has been developed for Fibroscan(®) to assess liver steatosis, simultaneously with liver stiffness measurement (LSM). We assessed CAP diagnostic accuracy in a large cohort of patients with chronic hepatitis C (CHC) virus. A total of 615 patients with CHC, who underwent both Fibroscan(®) and liver biopsy, were analysed. Fibrosis was graded using METAVIR score. Steatosis was categorized by visual assessment as S(0) : steatosis in <10% of hepatocytes, S(1) : 11-33%, S(2) : 34-66% and S(3) : 67-100%. Performances of CAP and liver stiffness were determined using receiver operating characteristic (ROC) curve analysis and cross-validated using the bootstrap method. The Obuchowski measure was used to assess overall accuracy of CAP and to differentiate between steatosis grades. In multivariate analysis, CAP was related to steatosis (P < 10(-15) ) independently of fibrosis stage (which was related to LSM). The areas under ROC curves using CAP to detect steatosis were 0.80 (95% CI, 0.75-0.84) for S ≥ S(1) , 0.86 (0.81-0.92) for S ≥ S(2) and 0.88 (0.73-1) S = S(3) . CAP exhibited a good ability to differentiate steatosis grades (Obuchowski measure = 0.92). Performance of LSM for fibrosis assessment confirmed results from previous studies. CAP is a novel tool to assess the degree of steatosis and both fibrosis and steatosis can be evaluated noninvasively during the same procedure using Fibroscan(®) , in patients with CHC.

  3. The Dipeptidyl Peptidase-4 Inhibitor Teneligliptin Attenuates Hepatic Lipogenesis via AMPK Activation in Non-Alcoholic Fatty Liver Disease Model Mice

    PubMed Central

    Ideta, Takayasu; Shirakami, Yohei; Miyazaki, Tsuneyuki; Kochi, Takahiro; Sakai, Hiroyasu; Moriwaki, Hisataka; Shimizu, Masahito

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD), which is strongly associated with metabolic syndrome, is increasingly a major cause of hepatic disorder. Dipeptidyl peptidase (DPP)-4 inhibitors, anti-diabetic agents, are expected to be effective for the treatment of NAFLD. In the present study, we established a novel NAFLD model mouse using monosodium glutamate (MSG) and a high-fat diet (HFD) and investigated the effects of a DPP-4 inhibitor, teneligliptin, on the progression of NAFLD. Male MSG/HFD-treated mice were divided into two groups, one of which received teneligliptin in drinking water. Administration of MSG and HFD caused mice to develop severe fatty changes in the liver, but teneligliptin treatment improved hepatic steatosis and inflammation, as evaluated by the NAFLD activity score. Serum alanine aminotransferase and intrahepatic triglyceride levels were significantly decreased in teneligliptin-treated mice (p < 0.05). Hepatic mRNA levels of the genes involved in de novo lipogenesis were significantly downregulated by teneligliptin (p < 0.05). Moreover, teneligliptin increased hepatic expression levels of phosphorylated AMP-activated protein kinase (AMPK) protein. These findings suggest that teneligliptin attenuates lipogenesis in the liver by activating AMPK and downregulating the expression of genes involved in lipogenesis. DPP-4 inhibitors may be effective for the treatment of NAFLD and may be able to prevent its progression to non-alcoholic steatohepatitis. PMID:26670228

  4. The Combination of Resveratrol and Quercetin Attenuates Metabolic Syndrome in Rats by Modifying the Serum Fatty Acid Composition and by Upregulating SIRT 1 and SIRT 2 Expression in White Adipose Tissue

    PubMed Central

    Peredo-Escárcega, Ana Elena; Guarner-Lans, Verónica; Pérez-Torres, Israel; Ortega-Ocampo, Sergio; Carreón-Torres, Elizabeth; Castrejón-Tellez, Vicente; Díaz-Díaz, Eulises; Rubio-Ruiz, María Esther

    2015-01-01

    Resveratrol (RSV) and quercetin (QRC) modify energy metabolism and reduce cardiovascular risk factors included in the metabolic syndrome (MetS). These natural compounds upregulate and activate sirtuins (SIRTs), a family of NAD-dependent histone deacetylases. We analyzed the effect of two doses of a commercial combination of RSV and QRC on serum fatty acid composition and their regulation of SIRTs 1–3 and PPAR-γ expression in white adipose tissue. MetS was induced in Wistar rats by adding 30% sucrose to drinking water for five months. Rats were divided into control and two groups receiving the two different doses of RSV and QRC in drinking water daily for 4 weeks following the 5 months of sucrose treatment. Commercial kits were used to determine serum parameters and the expressions of SIRTs in WAT were analysed by western blot. In MetS rats body mass, central adiposity, insulin, triglycerides, non-HDL-C, leptin, adiponectin, monounsaturated fatty acids (MUFAs), and nonesterified fatty acids (NEFAs) were increased, while polyunsaturated fatty acids (PUFAs) and HDL-C were decreased. SIRT 1 and SIRT 2 were downregulated, while PPAR-γ was increased. RSV + QRC administration improved the serum health parameters modified by MetS and upregulate SIRT 1 and SIRT 2 expression in white abdominal tissue in MetS animals. PMID:26609312

  5. C1q/TNF-Related Protein 9 (CTRP9) attenuates hepatic steatosis via the autophagy-mediated inhibition of endoplasmic reticulum stress.

    PubMed

    Jung, Tae Woo; Hong, Ho Cheol; Hwang, Hwan-Jin; Yoo, Hye Jin; Baik, Sei Hyun; Choi, Kyung Mook

    2015-12-01

    C1q/TNF-Related Protein (CTRP) 9, the closest paralog of adiponectin, has been reported to protect against diet-induced obesity and non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanism has not been fully elucidated. We explored the protective effect of CTRP9 against hepatic steatosis and apoptosis, and identified the mechanisms through autophagy and endoplasmic reticulum (ER) stress using in vitro and in vivo experiments. Treating HepG2 cells with human recombinant CTRP9 significantly ameliorated palmitate- or tunicamycin-induced dysregulation of lipid metabolism, caspase 3 activity and chromatin condensation, which lead to reduction of hepatic triglyceride (TG) accumulation. CTRP9 treatment induced autophagy markers including LC3 conversion, P62 degradation, Beclin1 and ATG7 through AMPK phosphorylation in human primary hepatocytes. Furthermore, CTRP9 decreased palmitate- or tunicamycin-induced ER stress markers, such as eIF2α, CHOP and IRE-1, in HepG2 cells. Compound C, an AMPK inhibitor, and 3 methyladenine (3 MA), an autophagy inhibitor, canceled the effects of CTRP9 on ER stress, apoptosis and hepatic steatosis. In the livers of HFD-fed mice, adenovirus-mediated CTRP9 overexpression significantly induced AMPK phosphorylation and autophagy, whereas suppressed ER stress markers. In addition, both SREBP1-mediated lipogenic gene expression and apoptosis were significantly attenuated, which result in improvement in hepatic steatosis by overexpression of CTRP9. These results demonstrate that CTRP9 alleviates hepatic steatosis through relief of ER stress via the AMPK-mediated induction of autophagy. PMID:26419929

  6. C1q/TNF-Related Protein 9 (CTRP9) attenuates hepatic steatosis via the autophagy-mediated inhibition of endoplasmic reticulum stress.

    PubMed

    Jung, Tae Woo; Hong, Ho Cheol; Hwang, Hwan-Jin; Yoo, Hye Jin; Baik, Sei Hyun; Choi, Kyung Mook

    2015-12-01

    C1q/TNF-Related Protein (CTRP) 9, the closest paralog of adiponectin, has been reported to protect against diet-induced obesity and non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanism has not been fully elucidated. We explored the protective effect of CTRP9 against hepatic steatosis and apoptosis, and identified the mechanisms through autophagy and endoplasmic reticulum (ER) stress using in vitro and in vivo experiments. Treating HepG2 cells with human recombinant CTRP9 significantly ameliorated palmitate- or tunicamycin-induced dysregulation of lipid metabolism, caspase 3 activity and chromatin condensation, which lead to reduction of hepatic triglyceride (TG) accumulation. CTRP9 treatment induced autophagy markers including LC3 conversion, P62 degradation, Beclin1 and ATG7 through AMPK phosphorylation in human primary hepatocytes. Furthermore, CTRP9 decreased palmitate- or tunicamycin-induced ER stress markers, such as eIF2α, CHOP and IRE-1, in HepG2 cells. Compound C, an AMPK inhibitor, and 3 methyladenine (3 MA), an autophagy inhibitor, canceled the effects of CTRP9 on ER stress, apoptosis and hepatic steatosis. In the livers of HFD-fed mice, adenovirus-mediated CTRP9 overexpression significantly induced AMPK phosphorylation and autophagy, whereas suppressed ER stress markers. In addition, both SREBP1-mediated lipogenic gene expression and apoptosis were significantly attenuated, which result in improvement in hepatic steatosis by overexpression of CTRP9. These results demonstrate that CTRP9 alleviates hepatic steatosis through relief of ER stress via the AMPK-mediated induction of autophagy.

  7. Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: a mechanism including AMPKα1/SIRT1[S

    PubMed Central

    Dong, Jing; Zhang, Xian; Zhang, Lei; Bian, Hui-Xi; Xu, Na; Bao, Bin; Liu, Jian

    2014-01-01

    Adipose tissue macrophage (ATM) plays a central role in obesity-associated inflammation and insulin resistance. Quercetin, a dietary flavonoid, possesses anti-inflammation and anti-insulin resistance properties. However, it is unclear whether quercetin can alleviate high-fat diet (HFD)-induced ATM infiltration and inflammation in mice. In this study, 5-week-old C57BL/6 mice were fed low-fat diet, HFD, or HFD with 0.l% quercetin for 12 weeks, respectively. Dietary quercetin reduced HFD-induced body weight gain and improved insulin sensitivity and glucose intolerance in mice. Meanwhile, dietary quercetin enhanced glucose transporter 4 translocation and protein kinase B signal in epididymis adipose tissues (EATs), suggesting that it heightened glucose uptake in adipose tissues. Histological and real-time PCR analysis revealed that quercetin attenuated mast cell and macrophage infiltration into EATs in HFD-fed mice. Dietary quercetin also modified the phenotype ratio of M1/M2 macrophages, lowered the levels of proinflammatory cytokines, and enhanced adenosine monophosphate-activated protein kinase (AMPK) α1 phosphorylation and silent information regulator 1 (SIRT1) expression in EATs. Further, using AMPK activator 5-aminoimidazole-4-carboxamide-1-β4-ribofuranoside and inhibitor Compound C, we found that quercetin inhibited polarization and inflammation of mouse bone marrow-derived macrophages through an AMPKα1/SIRT1-mediated mechanism. In conclusion, dietary quercetin might suppress ATM infiltration and inflammation through the AMPKα1/SIRT1 pathway in HFD-fed mice PMID:24465016

  8. Aguamiel concentrate from Agave salmiana and its extracted saponins attenuated obesity and hepatic steatosis and increased Akkermansia muciniphila in C57BL6 mice

    PubMed Central

    Leal-Díaz, Ana María; Noriega, Lilia G.; Torre-Villalvazo, Ivan; Torres, Nimbe; Alemán-Escondrillas, Gabriela; López-Romero, Patricia; Sánchez-Tapia, Mónica; Aguilar-López, Miriam; Furuzawa-Carballeda, Janette; Velázquez-Villegas, Laura A.; Avila-Nava, Azalia; Ordáz, Guillermo; Gutiérrez-Uribe, Janet A.; Serna-Saldivar, Sergio O.; Tovar, Armando R.

    2016-01-01

    Obesity and its comorbidities are a severe public health problem worldwide. The use of bioactive compounds found in some foods has been demonstrated to ameliorate the metabolic abnormalities associated with obesity. The purpose of this study was to assess whether the bioactive compounds present in aguamiel concentrate (AC) from Agave salmiana could attenuate glucose intolerance and hepatic steatosis in mice fed a high fat (HF) diet. HPLC-ELSD analysis showed that AC contained several saponins. The consumption of an AC extract rich in saponins reduced weight gain and fat mass and lowered serum glucose, insulin and LDL-cholesterol levels in mice fed a HF diet. Additionally, mice fed the saponin extract exhibited a reduced HOMA index and hepatic lipid levels and increased expression of genes involved in fatty acid oxidation. Saponins increased white adipose tissue browning, AMPK phosphorylation, fatty acid oxidation, and mitochondrial activity in skeletal muscle and energy expenditure in mice fed the HF diet. These metabolic changes were accompanied by an increase in the abundance of Akkermansia muciniphila in the gut microbiota. Therefore, Agave salmiana saponins can be an alternative to attenuate the metabolic changes that accompany obesity. PMID:27678062

  9. White Pitaya (Hylocereus undatus) Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice

    PubMed Central

    Song, Haizhao; Zheng, Zihuan; Wu, Jianan; Lai, Jia; Chu, Qiang; Zheng, Xiaodong

    2016-01-01

    Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2) but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos). In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism. PMID:26914024

  10. Korean Pine Nut Oil Attenuated Hepatic Triacylglycerol Accumulation in High-Fat Diet-Induced Obese Mice.

    PubMed

    Park, Soyoung; Shin, Sunhye; Lim, Yeseo; Shin, Jae Hoon; Seong, Je Kyung; Han, Sung Nim

    2016-01-21

    Korean pine nut oil (PNO) has been reported to influence weight gain and lipid metabolism. We examined whether PNO replacement in a high-fat diet (HFD) can ameliorate HFD-induced hepatic steatosis. Five-week-old male C57BL mice were fed control diets containing 10% of the energy from fat from PNO or soybean oil (SBO) (PC, SC) or HFDs with 45% of the energy from fat, with 10% from PNO or SBO and 35% from lard (PHFD, SHFD), for 12 weeks. Body weight gain and amount of white adipose tissue were lower in PHFD (10% and 18% lower, respectively) compared with SHFD. Hepatic triacylglycerol (TG) level was significantly lower in PHFD than the SHFD (26% lower). PNO consumption upregulated hepatic ACADL mRNA levels. The hepatic PPARG mRNA level was lower in the PC than in the SC. Expression of the sirtuin (SIRT) 3 protein in white adipose tissue was down-regulated in the SHFD and restored in the PHFD to the level in the lean control mice. SIRT 3 was reported to be upregulated under conditions of caloric restriction (CR) and plays a role in regulating mitochondrial function. PNO consumption resulted in lower body fat and hepatic TG accumulation in HFD-induced obesity, which seemed to be associated with the CR-mimetic response.

  11. White Pitaya (Hylocereus undatus) Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice.

    PubMed

    Song, Haizhao; Zheng, Zihuan; Wu, Jianan; Lai, Jia; Chu, Qiang; Zheng, Xiaodong

    2016-01-01

    Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2) but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos). In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism. PMID:26914024

  12. White Pitaya (Hylocereus undatus) Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice.

    PubMed

    Song, Haizhao; Zheng, Zihuan; Wu, Jianan; Lai, Jia; Chu, Qiang; Zheng, Xiaodong

    2016-01-01

    Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2) but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos). In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism.

  13. iPLA2β deficiency attenuates obesity and hepatic steatosis in ob/ob mice through hepatic fatty-acyl phospholipid remodeling.

    PubMed

    Deng, Xiuling; Wang, Jiliang; Jiao, Li; Utaipan, Tanyarath; Tuma-Kellner, Sabine; Schmitz, Gerd; Liebisch, Gerhard; Stremmel, Wolfgang; Chamulitrat, Walee

    2016-05-01

    PLA2G6 or GVIA calcium-independent PLA2 (iPLA2β) is identified as one of the NAFLD modifier genes in humans, and thought to be a target for NAFLD therapy. iPLA2β is known to play a house-keeping role in phospholipid metabolism and remodeling. However, its role in NAFLD pathogenesis has not been supported by results obtained from high-fat feeding of iPLA2β-null (PKO) mice. Unlike livers of human NAFLD and genetically obese rodents, fatty liver induced by high-fat diet is not associated with depletion of hepatic phospholipids. We therefore tested whether iPLA2β could regulate obesity and hepatic steatosis in leptin-deficient mice by cross-breeding PKO with ob/ob mice to generate ob/ob-PKO mice. Here we observed an improvement in ob/ob-PKO mice with significant reduction in serum enzymes, lipids, glucose, insulin as well as improved glucose tolerance, and reduction in islet hyperplasia. The improvement in hepatic steatosis measured by liver triglycerides, fatty acids and cholesterol esters was associated with decreased expression of PPARγ and de novo lipogenesis genes, and the reversal of β-oxidation gene expression. Notably, ob/ob livers contained depleted levels of lysophospholipids and phospholipids, and iPLA2β deficiency in ob/ob-PKO livers lowers the former, but replenished the latter particularly phosphatidylethanolamine (PE) and phosphatidylcholine (PC) that contained arachidonic (AA) and docosahexaenoic (DHA) acids. Compared with WT livers, PKO livers also contained increased PE and PC containing AA and DHA. Thus, iPLA2β deficiency protected against obesity and ob/ob fatty liver which was associated with hepatic fatty-acyl phospholipid remodeling. Our results support the deleterious role of iPLA2β in severe obesity associated NAFLD. PMID:26873633

  14. iPLA2β deficiency attenuates obesity and hepatic steatosis in ob/ob mice through hepatic fatty-acyl phospholipid remodeling.

    PubMed

    Deng, Xiuling; Wang, Jiliang; Jiao, Li; Utaipan, Tanyarath; Tuma-Kellner, Sabine; Schmitz, Gerd; Liebisch, Gerhard; Stremmel, Wolfgang; Chamulitrat, Walee

    2016-05-01

    PLA2G6 or GVIA calcium-independent PLA2 (iPLA2β) is identified as one of the NAFLD modifier genes in humans, and thought to be a target for NAFLD therapy. iPLA2β is known to play a house-keeping role in phospholipid metabolism and remodeling. However, its role in NAFLD pathogenesis has not been supported by results obtained from high-fat feeding of iPLA2β-null (PKO) mice. Unlike livers of human NAFLD and genetically obese rodents, fatty liver induced by high-fat diet is not associated with depletion of hepatic phospholipids. We therefore tested whether iPLA2β could regulate obesity and hepatic steatosis in leptin-deficient mice by cross-breeding PKO with ob/ob mice to generate ob/ob-PKO mice. Here we observed an improvement in ob/ob-PKO mice with significant reduction in serum enzymes, lipids, glucose, insulin as well as improved glucose tolerance, and reduction in islet hyperplasia. The improvement in hepatic steatosis measured by liver triglycerides, fatty acids and cholesterol esters was associated with decreased expression of PPARγ and de novo lipogenesis genes, and the reversal of β-oxidation gene expression. Notably, ob/ob livers contained depleted levels of lysophospholipids and phospholipids, and iPLA2β deficiency in ob/ob-PKO livers lowers the former, but replenished the latter particularly phosphatidylethanolamine (PE) and phosphatidylcholine (PC) that contained arachidonic (AA) and docosahexaenoic (DHA) acids. Compared with WT livers, PKO livers also contained increased PE and PC containing AA and DHA. Thus, iPLA2β deficiency protected against obesity and ob/ob fatty liver which was associated with hepatic fatty-acyl phospholipid remodeling. Our results support the deleterious role of iPLA2β in severe obesity associated NAFLD.

  15. Cilostazol attenuates murine hepatic ischemia and reperfusion injury via heme oxygenase-dependent activation of mitochondrial biogenesis.

    PubMed

    Joe, Yeonsoo; Zheng, Min; Kim, Hyo Jeong; Uddin, Md Jamal; Kim, Seul-Ki; Chen, Yingqing; Park, Jeongmin; Cho, Gyeong Jae; Ryter, Stefan W; Chung, Hun Taeg

    2015-07-01

    Hepatic ischemia-reperfusion (I/R) can cause hepatocellular injury associated with the inflammatory response and mitochondrial dysfunction. We studied the protective effects of the phosphodiesterase inhibitor cilostazol in hepatic I/R and the roles of mitochondria and the Nrf2/heme oxygenase-1 (HO-1) system. Wild-type, Hmox1(-/-), or Nrf2(-/-) mice were subjected to hepatic I/R in the absence or presence of cilostazol followed by measurements of liver injury. Primary hepatocytes were subjected to cilostazol with the HO-1 inhibitor ZnPP, or Nrf2-specific siRNA, followed by assessment of mitochondrial biogenesis. Preconditioning with cilostazol prior to hepatic I/R protected against hepatocellular injury and mitochondrial dysfunction. Cilostazol reduced the serum levels of alanine aminotransferase, TNF-α, and liver myeloperoxidase content relative to control I/R-treated mice. In primary hepatocytes, cilostazol increased the expression of HO-1, and markers of mitochondrial biogenesis, PGC-1α, NRF-1, and TFAM, induced the mitochondrial proteins COX III and COX IV and increased mtDNA and mitochondria content. Pretreatment of primary hepatocytes with ZnPP inhibited cilostazol-induced PGC-1α, NRF-1, and TFAM mRNA expression and reduced mtDNA and mitochondria content. Genetic silencing of Nrf2 prevented the induction of HO-1 and mitochondrial biogenesis by cilostazol in HepG2 cells. Cilostazol induced hepatic HO-1 production and mitochondrial biogenesis in wild-type mice, but not in Hmox1(-/-) or Nrf2(-/-) mice, and failed to protect against liver injury in Nrf2(-/-) mice. These results suggest that I/R injury can impair hepatic mitochondrial function, which can be reversed by cilostazol treatment. These results also suggest that cilostazol-induced mitochondrial biogenesis was mediated by an Nrf-2- and HO-1-dependent pathway.

  16. Exogenous heat shock cognate protein 70 pretreatment attenuates cardiac and hepatic dysfunction with associated anti-inflammatory responses in experimental septic shock.

    PubMed

    Hsu, Jong-Hau; Yang, Rei-Cheng; Lin, Shih-Jen; Liou, Shu-Fen; Dai, Zen-Kong; Yeh, Jwu-Lai; Wu, Jiunn-Ren

    2014-12-01

    It has been recently demonstrated that intracellular heat shock cognate protein 70 (HSC70) can be released into extracellular space with physiologic effects. However, its extracellular function in sepsis is not clear. In this study, we hypothesize that extracellular HSC70 can protect against lipopolysaccharide (LPS)-induced myocardial and hepatic dysfunction because of its anti-inflammatory actions. In Wistar rats, septic shock developed with hypotension, tachycardia, and myocardial and hepatic dysfunction at 4 h following LPS administration (10 mg/kg, i.v.). Pretreatment with recombinant bovine HSC70 (20 μg/kg, i.v.) attenuated LPS-induced hypotension and tachycardia by 21% and 23%, respectively (P < 0.05), improved myocardial dysfunction (left ventricular systolic pressure: 33%; max dP/dt: 20%; min dP/dt: 33%, P < 0.05), and prevented hepatic dysfunction (glutamic-oxaloacetic transaminase: 81 vs. 593 IU/L; glutamic-pyruvic transaminase: 15 vs. 136 IU/L, P < 0.05) compared with LPS-treated rats at 4 h. Heat shock cognate protein 70 also prevented LPS-induced hypoglycemia (217 vs. 59 mg/dL, P < 0.05) and elevated lactate dehydrogenase (1,312 vs. 6,301 IU/L, P < 0.05). Furthermore, HSC70 decreased LPS-induced elevation of circulating tumor necrosis factor α and nitrite/nitrate, and tissue expression of inducible nitric oxide synthase, cyclooxygenase 2, and matrix metalloproteinase 9 in the heart and liver. To investigate underlying mechanisms, we found that HSC70 attenuated LPS-induced nuclear translocation of nuclear factor κB subunit p65 by blocking the phosphorylation of inhibitor of nuclear factor κB. Finally, we showed that HSC70 repressed the activation of MAPKs caused by LPS. These results demonstrate that in LPS-induced septic shock, extracellular HSC70 conveys pleiotropic protection on myocardial, hepatic, and systemic derangements, with associated inhibition of proinflammatory mediators including tumor necrosis factor α, nitric oxide, cyclooxygenase 2

  17. Ebselen pretreatment attenuates ischemia/reperfusion injury and prevents hyperglycemia by improving hepatic insulin signaling and β-cell survival in gerbils.

    PubMed

    Park, S; Kang, S; Kim, D S; Shin, B K; Moon, N R; Daily, J W

    2014-08-01

    Transient carotid artery occlusion causes ischemia/reperfusion (I/R) injury resulting in neuron and pancreatic β-cell death with consequential post-stroke hyperglycemia, which can lead to diabetes and may accelerate the development of Alzheimer's disease. Antioxidants have been shown to protect against the I/R injury and destruction of neurons. However, it is unknown whether the protection against I/R injury extends to the pancreatic β-cells. Therefore, we investigated whether treatment with ebselen, a glutathione peroxidase mimic, prevents neuronal and β-cell death following I/R in gerbils susceptible to stroke. After 28 days post artery occlusion, there was widespread neuronal cell death in the CA1 of the hippocampus and elevated IL-1β and TNF-α levels. Pretreatment with ebselen prevented the death by 56% and attenuated neurological damage (abnormal eyelid drooping, hair bristling, muscle tone, flexor reflex, posture, and walking patterns). Ischemic gerbils also exhibited impaired glucose tolerance and insulin sensitivity which induced post-stroke hyperglycemia associated with decreased β-cell mass due to increased β-cell apoptosis. Ebselen prevented the increased β-cell apoptosis, possibly by decreasing IL-1β and TNF-α in islets. Ischemia also attenuated hepatic insulin signaling, and expression of GLUT2 and glucokinase, whereas ebselen prevented the attenuation and suppressed gluconeogenesis by decreasing PEPCK expression. In conclusion, antioxidant protection by ebselen attenuated I/R injury of neurons and pancreatic β-cells and prevented subsequent impairment of glucose regulation that could lead to diabetes and Alzheimer's disease. PMID:24807533

  18. Mulberry ethanol extract attenuates hepatic steatosis and insulin resistance in high-fat diet-fed mice.

    PubMed

    Song, Haizhao; Lai, Jia; Tang, Qiong; Zheng, Xiaodong

    2016-07-01

    Nonalcoholic fatty liver disease is one of the most common complications of obesity. Mulberry is an important source of phytochemicals, such as anthocyanins, polyphenols and flavonoids, which are related to its antioxidant activity. In this study, we developed a hypothesis that mulberry exerted beneficial effects on metabolic disorders and evaluated the influence of the mulberry ethanol extract (MEE) on high-fat diet-induced hepatic steatosis and insulin resistance in mice. Thirty-six male C57BL/6J mice were assigned into 3 groups and fed either a low-fat diet or a high-fat diet with or without supplementation with MEE. Our results showed that administration of MEE reduced diet-induced body weight gain, improved high-fat diet-induced hepatic steatosis and adipose hypertrophy, alleviated insulin resistance, and improved glucose homeostasis. Analysis of hepatic gene expression indicated that MEE treatment changed the expression profile of genes involved in lipid and cholesterol metabolism. In conclusion, the present study demonstrated that MEE supplementation protected mice from high-fat diet-induced obesity, hepatic steatosis, and insulin resistance. Moreover, the protective effects of MEE were associated with the induction of fatty acid oxidation and decreased fatty acid and cholesterol biosynthesis.

  19. Mulberry ethanol extract attenuates hepatic steatosis and insulin resistance in high-fat diet-fed mice.

    PubMed

    Song, Haizhao; Lai, Jia; Tang, Qiong; Zheng, Xiaodong

    2016-07-01

    Nonalcoholic fatty liver disease is one of the most common complications of obesity. Mulberry is an important source of phytochemicals, such as anthocyanins, polyphenols and flavonoids, which are related to its antioxidant activity. In this study, we developed a hypothesis that mulberry exerted beneficial effects on metabolic disorders and evaluated the influence of the mulberry ethanol extract (MEE) on high-fat diet-induced hepatic steatosis and insulin resistance in mice. Thirty-six male C57BL/6J mice were assigned into 3 groups and fed either a low-fat diet or a high-fat diet with or without supplementation with MEE. Our results showed that administration of MEE reduced diet-induced body weight gain, improved high-fat diet-induced hepatic steatosis and adipose hypertrophy, alleviated insulin resistance, and improved glucose homeostasis. Analysis of hepatic gene expression indicated that MEE treatment changed the expression profile of genes involved in lipid and cholesterol metabolism. In conclusion, the present study demonstrated that MEE supplementation protected mice from high-fat diet-induced obesity, hepatic steatosis, and insulin resistance. Moreover, the protective effects of MEE were associated with the induction of fatty acid oxidation and decreased fatty acid and cholesterol biosynthesis. PMID:27262537

  20. Astaxanthin Pretreatment Attenuates Hepatic Ischemia Reperfusion-Induced Apoptosis and Autophagy via the ROS/MAPK Pathway in Mice

    PubMed Central

    Li, Jingjing; Wang, Fan; Xia, Yujing; Dai, Weiqi; Chen, Kan; Li, Sainan; Liu, Tong; Zheng, Yuanyuan; Wang, Jianrong; Lu, Wenxia; Zhou, Yuqing; Yin, Qin; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2015-01-01

    Background: Hepatic ischemia reperfusion (IR) is an important issue in complex liver resection and liver transplantation. The aim of the present study was to determine the protective effect of astaxanthin (ASX), an antioxidant, on hepatic IR injury via the reactive oxygen species/mitogen-activated protein kinase (ROS/MAPK) pathway. Methods: Mice were randomized into a sham, IR, ASX or IR + ASX group. The mice received ASX at different doses (30 mg/kg or 60 mg/kg) for 14 days. Serum and tissue samples at 2 h, 8 h and 24 h after abdominal surgery were collected to assess alanine aminotransferase (ALT), aspartate aminotransferase (AST), inflammation factors, ROS, and key proteins in the MAPK family. Results: ASX reduced the release of ROS and cytokines leading to inhibition of apoptosis and autophagy via down-regulation of the activated phosphorylation of related proteins in the MAPK family, such as P38 MAPK, JNK and ERK in this model of hepatic IR injury. Conclusion: Apoptosis and autophagy caused by hepatic IR injury were inhibited by ASX following a reduction in the release of ROS and inflammatory cytokines, and the relationship between the two may be associated with the inactivation of the MAPK family. PMID:26023842

  1. Melatonin attenuates (-)-epigallocatehin-3-gallate-triggered hepatotoxicity without compromising its downregulation of hepatic gluconeogenic and lipogenic genes in mice.

    PubMed

    Wang, Dongxu; Wei, Yaqing; Wang, Taotao; Wan, Xiaochun; Yang, Chung S; Reiter, Russel J; Zhang, Jinsong

    2015-11-01

    (-)-Epigallocatehin-3-gallate (EGCG), a major constituent of green tea, can ameliorate metabolic syndrome at least in part through reducing gluconeogenesis and lipogenesis. Green tea extracts, of which EGCG is a key constituent, have been used for weight loss in humans. A potential adverse effect of high-dose EGCG or green tea extracts is hepatotoxicity. Melatonin, an endogenous antioxidant with a high safety profile, is effective in preventing various types of tissue damage. The current study investigated the influence of melatonin on EGCG-triggered hepatotoxicity and EGCG-downregulated hepatic genes responsible for gluconeogenesis and lipogenesis in mice. We found that (i) melatonin extended survival time of mice intoxicated with lethal doses of EGCG; (ii) melatonin ameliorated acute liver damage and associated hepatic Nrf2 suppression caused by a nonlethal toxic dose of EGCG; (iii) melatonin reduced subacute liver injury and hepatic Nrf2 activation caused by lower toxic doses of EGCG; and (iv) melatonin did not compromise the action of pharmacological doses of EGCG in downregulating a battery of hepatic genes responsible for gluconeogenesis and lipogenesis, including G6Pc, PEPCK, FOXO1α, SCD1, Fasn, leptin, ACCα, ACCβ, GAPT, and Srebp-1. Taken together, these results suggest that the combination of EGCG and melatonin is an effective approach for preventing potential adverse effects of EGCG as a dietary supplement for metabolic syndrome alleviation and body weight reduction. PMID:26426126

  2. Quercetin: A flavonol with multifaceted therapeutic applications?

    PubMed

    D'Andrea, Gabriele

    2015-10-01

    Great interest is currently centered on the biologic activities of quercetin a polyphenol belonging to the class of flavonoids, natural products well known for their beneficial effects on health, long before their biochemical characterization. In particular, quercetin is categorized as a flavonol, one of the five subclasses of flavonoid compounds. Although flavonoids occur as either glycosides (with attached glycosyl groups) or as aglycones, most altogether of the dietary intake concerning quercetin is in the glycoside form. Following chewing, digestion, and absorption sugar moieties can be released from quercetin glycosides. Several organs contribute to quercetin metabolism, including the small intestine, the kidneys, the large intestine, and the liver, giving rise to glucuronidated, methylated, and sulfated forms of quercetin; moreover, free quercetin (such as aglycone) is also found in plasma. Quercetin is now largely utilized as a nutritional supplement and as a phytochemical remedy for a variety of diseases like diabetes/obesity and circulatory dysfunction, including inflammation as well as mood disorders. Owing to its basic chemical structure themost obvious feature of quercetin is its strong antioxidant activity which potentially enables it to quench free radicals from forming resonance-stabilized phenoxyl radicals. In this review the molecular, cellular, and functional bases of therapy will be emphasized taking strictly into account data appearing in the peer-reviewed literature and summarizing the main therapeutic applications of quercetin; furthermore, the drug metabolism and the main drug interaction as well as the potential toxicity will be also spotlighted.

  3. Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: implications in Huntington's disease.

    PubMed

    Sandhir, Rajat; Mehrotra, Arpit

    2013-03-01

    The study was designed to investigate the beneficial effect of quercetin supplementation in 3-nitropropionic acid (3-NP) induced model of Huntington's disease (HD). HD was induced in rats by administering sub-chronic dose of 3-NP, intraperitoneally, twice daily for 17days. Quercetin was supplemented at a dose of 25mg/kg body weight by oral gavage for 21days. At the end of treatment, mitochondrial bioenergetics, mitochondrial swelling, oxidative stress, neurobehavioral deficits and histopathological changes were analyzed. Quercetin supplementation was able to reverse 3-NP induced inhibition of respiratory chain complexes, restore ATP levels, attenuate mitochondrial oxidative stress in terms of lipid peroxidation and prevent mitochondrial swelling. Quercetin administration also restored the activities of superoxide dismutase and catalase along with thiol content in 3-NP treated animals. Beneficial effect of quercetin administration was observed on 3-NP induced motor deficits analyzed by narrow beam walk and footprint analysis. Histopathological analysis of 3-NP treated rats revealed pyknotic nuclei and astrogliosis in striatum, which were reduced or absent in quercetin supplemented animals. Altogether, our results show that quercetin supplementation to 3-NP induced HD animals ameliorated mitochondrial dysfunctions, oxidative stress and neurobehavioral deficits in rats showing potential of this flavonoid in maintaining mitochondrial functions, suggesting a putative role of quercetin in HD management. PMID:23220257

  4. Hepatitis B Virus-Induced Parkin-Dependent Recruitment of Linear Ubiquitin Assembly Complex (LUBAC) to Mitochondria and Attenuation of Innate Immunity

    PubMed Central

    Khan, Mohsin; Syed, Gulam Hussain; Kim, Seong-Jun; Siddiqui, Aleem

    2016-01-01

    Hepatitis B virus (HBV) suppresses innate immune signaling to establish persistent infection. Although HBV is a DNA virus, its pre-genomic RNA (pgRNA) can be sensed by RIG-I and activates MAVS to mediate interferon (IFN) λ synthesis. Despite of the activation of RIG-I-MAVS axis by pgRNA, the underlying mechanism explaining how HBV infection fails to induce interferon-αβ (IFN) synthesis remained uncharacterized. We demonstrate that HBV induced parkin is able to recruit the linear ubiquitin assembly complex (LUBAC) to mitochondria and abrogates IFN β synthesis. Parkin interacts with MAVS, accumulates unanchored linear polyubiquitin chains on MAVS via LUBAC, to disrupt MAVS signalosome and attenuate IRF3 activation. This study highlights the novel role of parkin in antiviral signaling which involves LUBAC being recruited to the mitochondria. These results provide avenues of investigations on the role of mitochondrial dynamics in innate immunity. PMID:27348524

  5. Chronic activation of central AMPK attenuates glucose-stimulated insulin secretion and exacerbates hepatic insulin resistance in diabetic rats.

    PubMed

    Park, Sunmin; Kim, Da Sol; Kang, Suna; Shin, Bae Keun

    2014-09-01

    We investigated the effects of chronic AMP-activated kinase (AMPK) activation in the hypothalamus on energy and glucose metabolism in 90% pancreatectomized diabetic rats. Diabetic rats fed a high fat diet were divided into 3 groups and intracerebroventricular (ICV) administered with one of the following: 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR, AMPK activator; 80 μg/day), AICAR+compound C (AMPK inhibitor; 6.2 μg/day), or an artificial cerebrospinal fluid (control) by means of osmotic pumps for 4 weeks. In the hypothalamus, central AICAR activated the phosphorylation of AMPK whereas adding compound C suppressed the activation. AICAR increased body weight and epididymal and retroperitoneal fat mass by increasing energy intake for the first 2 weeks and decreasing energy expenditure, whereas compound C reversed the AICAR effect on energy metabolism. Indirect calorimetry revealed that ICV-AICAR decreased carbohydrate oxidation, but not fat oxidation, compared to the control. During euglycemic hyperinsulinemic clamp, central AICAR increased hepatic glucose output at hyperinsulinemic states. ICV-AICAR increased expressions of hepatic genes involved in fatty acid synthesis and decreased expression of hepatic genes related to thermogenesis whereas compound C nullified the AICAR effect. Insulin secretion in the first and second phases decreased in AICAR-treated rats at hyperglycemic clamp, but compound C nullified the decrease. However, central AICAR did not alter β-cell mass via its proliferation or apoptosis. In conclusion, chronic hypothalamic AMPK activation impaired energy metabolism and glucose homeostasis by increasing food intake, increasing hepatic glucose output and decreasing insulin secretion in diabetic rats. The impairment of energy and glucose homeostasis by AMPK activation was nullified by an AMPK inhibitor.

  6. Quercetin, not caffeine, is a major neuroprotective component in coffee.

    PubMed

    Lee, Moonhee; McGeer, Edith G; McGeer, Patrick L

    2016-10-01

    Epidemiologic studies indicate that coffee consumption reduces the risk of Parkinson's disease and Alzheimer's disease. To determine the factors involved, we examined the protective effects of coffee components. The test involved prevention of neurotoxicity to SH-SY5Y cells that was induced by lipopolysaccharide plus interferon-γ or interferon-γ released from activated microglia and astrocytes. We found that quercetin, flavones, chlorogenic acid, and caffeine protected SH-SY5Y cells from these toxins. They also reduced the release of tumor necrosis factor-α and interleukin-6 from the activated microglia and astrocytes and attenuated the activation of proteins from P38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa light chain enhancer of activated B cells (NFκB). After exposure to toxin containing glial-stimulated conditioned medium, we also found that quercetin reduced oxidative/nitrative damage to DNA, as well as to the lipids and proteins of SH-SY5Y cells. There was a resultant increase in [GSH]i in SH-SY5Y cells. The data indicate that quercetin is the major neuroprotective component in coffee against Parkinson's disease and Alzheimer's disease. PMID:27479153

  7. Quercetin, not caffeine, is a major neuroprotective component in coffee.

    PubMed

    Lee, Moonhee; McGeer, Edith G; McGeer, Patrick L

    2016-10-01

    Epidemiologic studies indicate that coffee consumption reduces the risk of Parkinson's disease and Alzheimer's disease. To determine the factors involved, we examined the protective effects of coffee components. The test involved prevention of neurotoxicity to SH-SY5Y cells that was induced by lipopolysaccharide plus interferon-γ or interferon-γ released from activated microglia and astrocytes. We found that quercetin, flavones, chlorogenic acid, and caffeine protected SH-SY5Y cells from these toxins. They also reduced the release of tumor necrosis factor-α and interleukin-6 from the activated microglia and astrocytes and attenuated the activation of proteins from P38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa light chain enhancer of activated B cells (NFκB). After exposure to toxin containing glial-stimulated conditioned medium, we also found that quercetin reduced oxidative/nitrative damage to DNA, as well as to the lipids and proteins of SH-SY5Y cells. There was a resultant increase in [GSH]i in SH-SY5Y cells. The data indicate that quercetin is the major neuroprotective component in coffee against Parkinson's disease and Alzheimer's disease.

  8. The ethanolic extract of Juglans sinensis leaves and twigs attenuates CCl4-induced hepatic oxidative stress in rats

    PubMed Central

    Yang, Heejung; Sung, Sang Hyun; Kim, Young Choong

    2015-01-01

    Background: The nuts of Juglans sinensis Dode, walnut tree, are rich in unsaturated fatty acids and bioactive compounds with antioxidant activity on liver damages. However, hepatoprotective activity of the leaves and twigs of J. sinensis have not intensively studied yet. Objective: Hepatoprotective activity of the refined ethanolic extract of J. sinensis (JSE3) was evaluated using carbon tetrachloride (CCl4)-intoxicated rats. Materials and Methods: Hepatotoxicity was induced in Sprague Dawley rats by intraperitoneal injection of CCl4 for 6 weeks in the presence or absence of JSE3 (100 and 200 mg/kg body weight). The hepatoprotective activity of JSE3 was assessed by biochemical parameters including plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), and antioxidant enzymes, such as superoxide dismutase (SOD), glutathione reductase, glutathione peroxide, reduced glutathione and oxidized glutathione, along with histopathological studies on hepatic tissue. Results: JSE3 significantly decreased the elevated levels of AST and ALT and restored the reduced levels of antioxidant enzymes. JSE3 also decreased the amounts of collagen content accumulated by CCl4 intoxication. Conclusion: These results suggested that the refined extract of J. sinensis may have a potential to be developed as a therapeutic agent to treat hepatic diseases, such as fatty liver and hepatic fibrosis. PMID:26246728

  9. Direct vascular actions of quercetin in aorta from renal hypertensive rats

    PubMed Central

    Choi, Seok; Ryu, Kwon Ho; Park, Sang Hag; Jun, Jae Yeoul; Shin, Byung Chul; Chung, Jong Hoon; Yeum, Cheol Ho

    2016-01-01

    Background Chronic treatment with the dietary flavonoid quercetin is known to lower blood pressure and restore endothelial dysfunction in animal models of hypertension. This study investigated the direct effects of quercetin on vascular response in chronic 2-kidney, 1-clip (2K1C) renal hypertensive rats. The effects of antioxidant vitamin ascorbic acid on the vasoreactivity were also examined. Methods 2K1C renal hypertension was induced by clipping the left renal artery; age-matched rats that received sham treatment served as controls. Thoracic aortae were mounted in tissue baths for the measurement of isometric tension. Results Relaxant responses to acetylcholine were significantly attenuated in 2K1C rats in comparison with sham rats. Quercetin or ascorbic acid augmented acetylcholine-induced relaxation in 2K1C rats, whereas no significant differences were noted in sham rats. The relaxation response to sodium nitroprusside was comparable between 2K1C and sham rats, and sodium nitroprusside–induced relaxation was not altered by quercetin or ascorbic acid in either group. The contractile response to phenylephrine was significantly enhanced in 2K1C rats compared with sham rats. Phenylephrine-induced contraction was inhibited by pretreatment with quercetin or ascorbic acid in 2K1C rats, whereas neither chemical affected responses in sham rats. Nw-nitro-L-arginine methyl ester markedly augmented the contractile response to phenylephrine in sham rats, whereas no significant differences were observed in 2K1C rats. Quercetin or ascorbic acid did not affect phenylephrine-induced contraction in the presence of Nw-nitro-L-arginine methyl ester in either 2K1C or sham rats. Conclusion Acute exposure to quercetin appears to improve endothelium-dependent relaxation and inhibit the contractile response, similar to the effect of ascorbic acid in 2K1C hypertension. These results partially explain the vascular beneficial effects of quercetin in renal hypertension. PMID:27069853

  10. Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-β receptor-mediated ERK and p38 pathways

    SciTech Connect

    Zhang, Feng; Ni, Chunyan; Kong, Desong; Zhang, Xiaoping; Zhu, Xiaojing; Chen, Li; Lu, Yin; Zheng, Shizhong

    2012-11-15

    Hepatic fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. Compelling evidence indicates that oxidative stress is concomitant with liver fibrosis irrespective of the underlying etiology. Natural antioxidant ligustrazine exhibits potent antifibrotic activities, but the mechanisms are poorly understood. Our studies were to investigate the ligustrazine effects on HSC activation stimulated by hydrogen peroxide (H{sub 2}O{sub 2}), an in vitro model mimicking the oxidative stress in liver fibrogenesis, and to elucidate the possible mechanisms. Our results demonstrated that H{sub 2}O{sub 2} at 5 μM significantly stimulated HSC proliferation and expression of marker genes of HSC activation; whereas ligustrazine dose-dependently suppressed proliferation and induced apoptosis in H{sub 2}O{sub 2}-activated HSCs, and attenuated expression of fibrotic marker genes. Mechanistic investigations revealed that ligustrazine reduced platelet-derived growth factor-β receptor (PDGF-βR) expression and blocked the phosphorylation of extracellular regulated protein kinase (ERK) and p38 kinase, two downstream effectors of PDGF-βR. Further molecular evidence suggested that ligustrazine interruption of ERK and p38 pathways was dependent on the blockade of PDGF-βR and might be involved in ligustrazine reduction of fibrotic marker gene expression under H{sub 2}O{sub 2} stimulation. Furthermore, ligustrazine modulated some proteins critical for HSC activation and ECM homeostasis in H{sub 2}O{sub 2}-stimulated HSCs. These data collectively indicated that ligustrazine could attenuate HSC activation caused by oxidative stress, providing novel insights into ligustrazine as a therapeutic option for hepatic fibrosis. Highlights: ► Ligustrazine inhibits oxidative stress-induced HSC activation.

  11. Role of quercetin in vascular physiology.

    PubMed

    Chirumbolo, Salvatore

    2012-12-01

    A recent paper in the Canadian Journal of Physiology and Pharmacology has shown that quercetin has a vascular protective effect associated with eNOS up-regulation, blood GSH redox ratio, and reduction of oxidative stress. Recent reports have recommended the consumption of quercetin, as it may contribute to a reduction in the risk of cardiovascular disease. However, the mechanisms by which quercetin exerts its action have not been fully elucidated. The majority of these mechanisms have been identified with models using animals treated with quercetin, and relatively few have been corroborated in human studies, which indicates the need for further investigation.

  12. Enriched cereal bars are more effective in increasing plasma quercetin compared with quercetin from powder-filled hard capsules.

    PubMed

    Egert, Sarah; Wolffram, Siegfried; Schulze, Beate; Langguth, Peter; Hubbermann, Eva Maria; Schwarz, Karin; Adolphi, Berit; Bosy-Westphal, Anja; Rimbach, Gerald; Müller, Manfred James

    2012-02-01

    The flavonol quercetin, is one of the major flavonoids found in edible plants. The bioavailability of quercetin in humans may be influenced by the food matrix in which it is consumed as well as by its chemical and physical form. The objective of the present study was to investigate the biokinetics of quercetin from quercetin-enriched cereal bars and quercetin powder-filled hard capsules. In a randomised, single-blinded, diet-controlled cross-over study, six healthy women aged 22-28 years took a single oral dose of approximately 130 mg quercetin equivalents from either quercetin-enriched cereal bars (containing 93·3 % quercetin aglycone plus 6·7 % quercetin-4'-glucoside) or quercetin powder-filled hard capsules (100 % quercetin aglycone). Blood samples were drawn before and after quercetin administration over a 24 h period. The concentrations of quercetin and its monomethylated derivatives, isorhamnetin (3'-O-methyl quercetin) and tamarixetin (4'-O-methyl quercetin), were measured by HPLC with fluorescence detection after plasma enzymatic treatment. The systemic availability as determined by comparing the plasma concentration-time curves of quercetin was found to be five times and the cmax values six times higher after ingestion of 130 mg quercetin by quercetin-enriched cereal bars than after ingestion by quercetin capsules. In contrast, tmax did not differ significantly between the two treatments. The cmax values for isorhamnetin and tamarixetin were four and nine times higher after ingestion of quercetin by quercetin-enriched cereal bars than after ingestion by quercetin capsules. In conclusion, quercetin from quercetin-enriched cereal bars is significantly more bioavailable than from quercetin powder-filled hard capsules. PMID:21774840

  13. Inhibitory effects of the attenuated Salmonella typhimurium containing the IL-2 gene on hepatic tumors in mice.

    PubMed

    Ha, Xiao-qin; Yin, Qiang; Zhao, Hong-bin; Hui, Ling; Wang, Mei-liang; Peng, Jun-hua; Dong, Ju-zi; Deng, Zhi-yun; Zhao, Yong; Zhang, Yuan-yuan

    2012-01-01

    To observe the inhibitory effects of an attenuated S. typhimurium strain carrying IL-2 gene (TPI) on hepatoma cell line (HepG2) and transplanted tumors in mice. TPI, TPG (an attenuated S. typhimurium strain carrying green fluorescent protein gene), and TP (an attenuated S. typhimurium strain) strains were transfected into HepG2 cells. At 48 h after transfecting, the transfection rate was 82.58 ± 1.74%. The expression level of IL-2 was (99.5 ± 12.2) ng/1 × 10(6) cells. Compared with TPG, TP, and normal mouse groups, the proportion of CD4(+) T and CD8(+) T cells in the blood from the TPI group was higher, the levels of IgM and IgG(1) were significantly increased, and the proliferation activity of splenic lymphocyte was significantly stronger. The transplanted tumor weight in the TPI group was significantly smaller than that in the other two groups. The infiltration of lymphocytes increased in the tumor from TPI group mice. TPI was effectively transfected into cancer cells, which expressed the protein of interest. Oral administration of TPI prolonged survival of mice transplanted with hepatoma cell tumours.

  14. Bioavailability of the flavonol quercetin in cows after intraruminal application of quercetin aglycone and rutin.

    PubMed

    Berger, L M; Wein, S; Blank, R; Metges, C C; Wolffram, S

    2012-09-01

    The bioavailability of quercetin has been intensively investigated in monogastric species, but knowledge about its bioavailability in ruminants does not exist. Thus, the aim of the present study was to determine the bioavailability of quercetin in nonlactating cows equipped with indwelling catheters placed in one jugular vein after intraruminal and additionally after i.v. application, respectively. Quercetin was administered intraruminally in equimolar amounts, either in the aglycone form or as its glucorhamnoside rutin, each at 2 dosages [10 and 50 mg of quercetin/kg of body weight (BW)]. In a second trial, 0.8 mg of quercetin aglycone/kg of BW was applied i.v. Blood samples were drawn 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 12, and 24 h after intraruminal application and every 5 min (first hour), every 10 min(second hour), and at 3 and 6h after i.v. bolus application, respectively. Quercetin and quercetin metabolites with an intact flavonol structure (isorhamnetin, tamarixetin, and kaempferol) in plasma samples were analyzed by HPLC with fluorescence detection. After intraruminal application of quercetin and rutin, respectively, quercetin and its methylated (isorhamnetin, tamarixetin) and dehydroxylated (kaempferol) derivatives were present in plasma mainly as conjugated forms, whereas free quercetin and its derivatives were scarcely detected. For rutin, the relative bioavailability of total flavonols (sum of conjugated and nonconjugated quercetin and its conjugated and nonconjugated derivatives after intake of 50 mg/kg of BW) was 767.3% compared with quercetin aglycone (100%). Absolute bioavailability of total flavonols was only 0.1 and 0.5% after quercetin aglycone and rutin applications, respectively. Our data demonstrate that bioavailability of quercetin from rutin is substantially higher compared with that from quercetin aglycone in cows after intraruminal (or oral) application, unlike in monogastric species. PMID:22916908

  15. DGAT1-deficiency affects the cellular distribution of hepatic retinoid and attenuates the progression of CCl4-induced liver fibrosis

    PubMed Central

    Yuen, Jason J.; Lee, Seung-Ah; Jiang, Hongfeng; Brun, Pierre-Jacques

    2015-01-01

    Background Diacylglycerol O-acyltransferase 1 (DGAT1) catalyzes the final step of triglyceride synthesis, transferring an acyl group from acyl-CoA to diacylglycerol. DGAT1 also catalyzes the acyl-CoA-dependent formation of retinyl esters in vitro and in mouse intestine and skin. Although DGAT1 is expressed in both hepatocytes and hepatic stellate cells (HSCs), we reported genetic and nutritional studies that established that DGAT1 does not contribute to retinyl ester formation in the liver. Methods We now have explored in more depth the role(s) of DGAT1 in hepatic retinoid metabolism and storage. Results Our data show that DGAT1 affects the cellular distribution between hepatocytes and HSCs of stored and newly absorbed dietary retinol. For livers of Dgat1-deficient mice, a greater percentage of stored retinyl ester is present in HSCs at the expense of hepatocytes. This is also true for newly absorbed oral [3H]retinol. These differences are associated with significantly increased expression, by 2.8-fold, of cellular retinol-binding protein, type I (RBP1) in freshly isolated HSCs from Dgat1-deficient mice, raising the possibility that RBP1, which contributes to retinol uptake into cells and retinyl ester synthesis, accounts for the differences. We further show that the retinyl ester-containing lipid droplets in HSCs are affected in Dgat1-null mice, being fewer in number but, on average, larger than in wild type (WT) HSCs. Finally, we demonstrate that DGAT1 affects experimentally induced HSC activation in vivo but that this effect is independent of altered retinoic acid availability or effects on gene expression. Conclusions Our studies establish that DGAT1 has a role in hepatic retinoid storage and metabolism, but this does not involve direct actions of DGAT1 in retinyl ester synthesis. PMID:26151058

  16. Live Attenuated Vaccine Based on Duck Enteritis Virus against Duck Hepatitis A Virus Types 1 and 3

    PubMed Central

    Zou, Zhong; Ma, Ji; Huang, Kun; Chen, Huanchun; Liu, Ziduo; Jin, Meilin

    2016-01-01

    As causative agents of duck viral hepatitis, duck hepatitis A virus type 1 (DHAV-1) and type 3 (DHAV-3) causes significant economic losses in the duck industry. However, a licensed commercial vaccine that simultaneously controls both pathogens is currently unavailable. Here, we generated duck enteritis virus recombinants (rC-KCE-2VP1) containing both VP1 from DHAV-1 (VP1/DHAV-1) and VP1 from DHAV-3 (VP1/DHAV-3) between UL27 and UL26. A self-cleaving 2A-element of FMDV was inserted between the two different types of VP1, allowing production of both proteins from a single open reading frame. Immunofluorescence and Western blot analysis results demonstrated that both VP1 proteins were robustly expressed in rC-KCE-2VP1-infected chicken embryo fibroblasts. Ducks that received a single dose of rC-KCE-2VP1 showed potent humoral and cellular immune responses and were completely protected against challenges of both pathogenic DHAV-1 and DHAV-3 strains. The protection was rapid, achieved as early as 3 days after vaccination. Moreover, viral replication was fully blocked in vaccinated ducks as early as 1 week post-vaccination. These results demonstrated, for the first time, that recombinant rC-KCE-2VP1 is potential fast-acting vaccine against DHAV-1 and DHAV-3. PMID:27777571

  17. Effect of different exposed lights on quercetin and quercetin glucoside content in onion (Allium cepa L.).

    PubMed

    Ko, Eun Young; Nile, Shivraj Hariram; Sharma, Kavita; Li, Guan Hao; Park, Se Won

    2015-07-01

    Quercetin and quercetin glucosides are the major flavonols present in onion (Allium cepa L.) and are predominantly present as quercetin, quercetin-3,4'-diglucoside and quercetin-4'-glucoside. Effect of different light wavelengths on onion after harvest and storage, with fluorescent, blue, red and ultra violet light influenced the quercetin and quercetin glucosides profile. In a peeled onion, all the light treatments elevated quercetin content in bulb. Among them, particularly fluorescent light effect was more eminent which stimulates the maximum synthesis of quercetin in onion. In case of whole onion bulb, skin and pulp showed different responses to light treatment, respectively. The pulp had the highest quercetin glucosides under blue light, whereas the lowest under fluorescent light. Onion skin showed nearly opposite pattern as compared to the pulp. In particular, light treatment proved to be a better way to increase the level of quercetin content in onions which might be utilized for industrial production of bioactive compounds from onion and onion waste products.

  18. Quercetin and the mitochondria: A mechanistic view.

    PubMed

    de Oliveira, Marcos Roberto; Nabavi, Seyed Mohammad; Braidy, Nady; Setzer, William N; Ahmed, Touqeer; Nabavi, Seyed Fazel

    2016-01-01

    Quercetin is an important flavonoid that is ubiquitously present in the diet in a variety of fruits and vegetables. It has been traditionally viewed as a potent antioxidant and anti-inflammatory molecule. However, recent studies have suggested that quercetin may exert its beneficial effects independent of its free radical-scavenging properties. Attention has been placed on the effect of quercetin on an array of mitochondrial processes. Quercetin is now recognized as a phytochemical that can modulate pathways associated with mitochondrial biogenesis, mitochondrial membrane potential, oxidative respiration and ATP anabolism, intra-mitochondrial redox status, and subsequently, mitochondria-induced apoptosis. The present review evaluates recent evidence on the ability of quercetin to interact with the abovementioned pathways, and critically analyses how, such interactions can exert protection against mitochondrial damage in response to toxicity induced by several exogenously and endogenously-produced cellular stressors, and oxidative stress in particular. PMID:26740171

  19. Quercetin sensitizes pancreatic cancer cells to TRAIL-induced apoptosis through JNK-mediated cFLIP turnover.

    PubMed

    Kim, Ji Hye; Kim, Min Joo; Choi, Kyung-Chul; Son, Jaekyoung

    2016-09-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent that can selectively kill cancer cells. Nonetheless, many cancers are resistant to TRAIL, and the molecular mechanisms of TRAIL resistance in cancer, particularly pancreatic cancer, are still unclear. In this study, we tested the hypothesis that quercetin, a flavonoid, induces apoptosis in TRAIL-resistant pancreatic cancer cells. Although quercetin alone had no significant cytotoxic effect, when combined with TRAIL, it promoted TRAIL-induced apoptosis that required mitochondrial outer membrane permeabilization. A BH3-only protein BID knockdown dramatically attenuated TRAIL/quercetin-induced apoptosis. The expression levels of cellular FLICE-like inhibitory protein (cFLIP) decreased in a dose-dependent manner in the presence of quercetin, and overexpression of cFLIP was able to robustly rescue pancreatic cancer cells from TRAIL/quercetin-induced apoptosis. Additionally, quercetin activated c-Jun N-terminal kinase (JNK) in a dose-dependent manner, which in turn induced the proteasomal degradation of cFLIP, and JNK activation also sensitized pancreatic cancer cells to TRAIL-induced apoptosis. Thus, our results suggest that quercetin induces TRAIL-induced apoptosis via JNK activation-mediated cFLIP turnover. PMID:27477310

  20. Viral hepatitis*

    PubMed Central

    Deinhardt, F.; Gust, I. D.

    1982-01-01

    Three forms of viral hepatitis can be recognized: hepatitis A, hepatitis B, and hepatitis non-A, non-B. Hepatitis A is caused by a picornavirus, is transmitted by the faceal—oral route, does not become chronic, and no chronic virus carriers exist. The virus can be grown in cell cultures, and killed as well as live attenuated virus vaccines are under development. Hepatitis B is caused by an enveloped virus containing a circular, double-stranded form of DNA. The disease is transmitted parenterally through inoculation of blood or blood products containing virus or through close personal contact with a virus-positive person. Hepatitis B becomes chronic in a certain number of cases and can lead to cirrhosis and primary liver cell carcinoma. The blood and certain body secretions of individuals with a persistent or chronic infection may remain infectious for many years. The hepatitis B virus cannot be grown in cell cultures but the entire genome has been sequenced and cloned in bacterial and eukaryotic cells. An inactivated virus vaccine has been prepared from hepatitis B surface antigen present in the plasma of hepatitis B virus carriers and further vaccines are under development. The agents of hepatitis non-A, non-B have not been identified. It is possible to distinguish between a predominantly parenterally transmitted and an orally transmitted form of hepatitis non-A, non-B. The latter is reported to be caused by a picornavirus that does not, however, have any antigenic relationship with hepatitis A virus. PMID:6817933

  1. Intake of a Western diet containing cod instead of pork alters fatty acid composition in tissue phospholipids and attenuates obesity and hepatic lipid accumulation in mice.

    PubMed

    Liisberg, Ulrike; Fauske, Kristin Røen; Kuda, Ondrej; Fjære, Even; Myrmel, Lene Secher; Norberg, Nina; Frøyland, Livar; Graff, Ingvild Eide; Liaset, Bjørn; Kristiansen, Karsten; Kopecky, Jan; Madsen, Lise

    2016-07-01

    The content of the marine n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is far lower in lean than in fatty seafood. Cod filets contain less than 2g fat per kg, whereof approximately 50% is EPA and DHA. However, a large fraction of these n-3 PUFAs is present in the phospholipid (PL) fraction and may have high bioavailability and capacity to change the endocannabinoid profile. Here we investigated whether exchanging meat from a lean terrestrial animal with cod in a background Western diet would alter the endocannabinoid tone in mice and thereby attenuate obesity development and hepatic lipid accumulation. Accordingly, we prepared iso-caloric diets with 15.1 energy (e) % protein, 39.1 e% fat and 45.8 e% carbohydrates using freeze-dried meat from cod filets or pork sirloins, and using a combination of soybean oil, corn oil, margarine, milk fat, and lard as the fat source. Compared with mice receiving diets containing pork, mice fed cod gained less adipose tissue mass and had a lower content of hepatic lipids. This was accompanied by a lower n-6 to n-3 ratio in liver PLs and in red blood cells (RBCs) in the mice. Furthermore, mice receiving the cod-containing diet had lower circulating levels of the two major endocannabinoids, N-arachidonoylethanolamine and 2-arachidonoylglycerol. Together, our data demonstrate that despite the relatively low content of n-3 PUFAs in cod fillets, the cod-containing diet could exert beneficial metabolic effects.

  2. Methane Attenuates Hepatic Ischemia/Reperfusion Injury in Rats Through Antiapoptotic, Anti-Inflammatory, and Antioxidative Actions.

    PubMed

    Ye, Zhouheng; Chen, Ouyang; Zhang, Rongjia; Nakao, Atsunori; Fan, Danfeng; Zhang, Ting; Gu, Zhengyong; Tao, Hengyi; Sun, Xuejun

    2015-08-01

    Hepatic ischemia/reperfusion (I/R) injury, which occurs in various diseases, introduces severe tissue damage and liver dysfunction. However, no promising therapies for such a significant condition currently exist. Methane has been suggested to exert a protective effect against intestinal I/R injury. In this study, we introduced methane to treat hepatic I/R injury to show its promising protective effect. Also, intraperitoneal injection with methane-rich saline, which could have potential clinical applications, was applied as a new method. Partial liver warm ischemia was applied in Sprague-Dawley rats for 60 min followed by succedent reperfusion. In the test for effective dosage, methane-rich saline was administrated intraperitoneally to the rats at doses of 1, 5, 20, or 40 mL/kg at onset of reperfusion. In the test for protective effect, rats received methane-rich saline intraperitoneally at a dose of 10 mL/kg before the initiation of reperfusion. We found that methane-rich saline significantly decreased serum alanine aminotransferase, aspartate aminotransferase activity, and the occurrence of necrosis. Moreover, methane-rich saline reduced the amount of caspase-3 and the number of apoptotic cells. In addition, methane-rich saline increased the level of superoxide dismutase and decreased the level of malondialdehyde and 8-hydroxyguanosine. Furthermore, research indicated that methane-rich saline markedly decreased gene expression and content of tumor necrosis factor-α and interleukin-6. Also, reduced CD68-positive cells showed decreased inflammatory cells in the liver. Our results suggest that methane protects the liver against I/R injury through antiapoptotic, antioxidative, and anti-inflammatory actions.

  3. Essential role of Nrf2 in keratinocyte protection from UVA by quercetin

    SciTech Connect

    Kimura, Shintarou; Warabi, Eiji; Yanagawa, Toru; Ma, Dongmei; Itoh, Ken; Ishii, Yoshiyuki; Kawachi, Yasuhiro; Ishii, Tetsuro

    2009-09-11

    Much of the cell injury caused by ultraviolet A (UVA) irradiation is associated with oxidative stress. Quercetin is a major natural polyphenol that is known to protect cells from UVA-induced damage. Here, we investigated the molecular mechanism of this protection. Quercetin pretreatment strongly suppressed UVA-induced apoptosis in human keratinocyte HaCaT cells, markedly increased protein levels of the transcription factor Nrf2, induced the expression of antioxidative genes, and dramatically reduced the production of reactive oxygen species following UVA irradiation. Importantly, these beneficial effects were greatly attenuated by downregulating Nrf2 expression. Thus, quercetin protects cells from UVA damage mainly by elevating intracellular antioxidative activity via the enhanced accumulation of a transcription factor for antioxidant genes, Nrf2.

  4. Hydrodynamics-based transfection of rat interleukin-10 gene attenuates porcine serum-induced liver fibrosis in rats by inhibiting the activation of hepatic stellate cells.

    PubMed

    Huang, Yue-Hong; Chen, Yun-Xin; Zhang, Li-Juan; Chen, Zhi-Xin; Wang, Xiao-Zhong

    2014-09-01

    Liver fibrosis is the common pathological outcome for the majority of chronic liver diseases. Interleukin-10 (IL-10) is a cytokine that downregulates proinflammatory responses and has a modulatory effect on liver fibrogenesis. However, little is known regarding the effect of rat interleukin‑10 (rIL‑10) gene by hydrodynamics-based transfection (HBT) on liver fibrosis in rats. The aim of this study was to investigate the effect of the rIL-10 gene by HBT on the progression of liver fibrosis induced by porcine serum (PS) in rats and explore its possible mechanism. Plasmid‑expressing rIL-10 was transferred into rats by HBT and immunohistochemistry and RT-PCR were used to detect the major organ expressing rIL-10. Liver fibrosis was induced in rats by intraperitoneal administration of PS for 8 weeks. Plasmid pcDNA3-rIL-10 solution was administered weekly by HBT starting at the 5th week. Liver function and hepatic histology were examined. The possible molecular mechanisms of rIL-10 gene therapy were assessed in liver tissue and hepatic stellate cells (HSCs) co-cultured with BRL cells (a hepatocyte line) in vitro. The results showed rIL-10 expression occurred mainly in the liver following rIL-10 gene transfer by HBT. Maintaining a stable expression of rIL-10 in serum was assessed by repeated administration. The rIL-10 gene treatment attenuated liver inflammation and fibrosis in PS-induced fibrotic rats, reduced the deposition of collagen and the expression of α-smooth muscle actin (α-SMA) in fibrotic rats. The in vitro experiment showed that the expression of a-SMA and procollagen type I in HSCs co-cultured with the BRL‑transfected rIL-10 gene were significantly decreased. These findings indicate that rIL-10 gene therapy by HBT attenuates PS-induced liver fibrosis in rats and that its mechanism is associated with rIL-10 inhibiting the activation of HSCs and promoting the degeneration of collagen.

  5. Dioscin alleviates alcoholic liver fibrosis by attenuating hepatic stellate cell activation via the TLR4/MyD88/NF-κB signaling pathway

    PubMed Central

    Liu, Min; Xu, Youwei; Han, Xu; Yin, Lianhong; Xu, Lina; Qi, Yan; Zhao, Yanyan; Liu, Kexin; Peng, Jinyong

    2015-01-01

    The present work aimed to investigate the activities and underlying mechanisms of dioscin against alcoholic liver fibrosis (ALF). In vivo liver fibrosis in mice was induced by an alcoholic liquid diet, and in vitro studies were performed on activated HSC-T6 and LX2 cells treated with lipopolysaccharide. Our results showed that dioscin significantly attenuated hepatic stellate cells (HSCs) activation, improved collagen accumulation, and attenuated inflammation through down-regulating the levels of myeloid differentiation factor 88 (MyD88), nuclear factor κB (NF-κB), interleukin (IL)-1, IL-6 and tumour necrosis factor-α by decreasing Toll-like receptor (TLR)4 expression both in vivo and in vitro. TLR4 overexpression was also decreased by dioscin, leading to the markedly down-regulated levels of MyD88, NF-κB, transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA) and type I collagen (COL1A1) in cultured HSCs. Suppression of cellular MyD88 by ST2825 or abrogation of NF-κB by pyrrolidine dithiocarbamate eliminated the inhibitory effects of dioscin on the levels of TGF-β1, α-SMA and COL1A1. In a word, dioscin exhibited potent effects against ALF via altering TLR4/MyD88/NF-κB signaling pathway, which provided novel insights into the mechanisms of this compound as an antifibrogenic candidate for the treatment of ALF in the future. PMID:26655640

  6. Long term follow-up study to evaluate immunogenicity and safety of a single dose of live attenuated hepatitis a vaccine in children.

    PubMed

    Mitra, Monjori; Shah, Nitin; Faridi, Mma; Ghosh, Apurba; Sankaranarayanan, V S; Aggarwal, Anju; Chatterjee, Suparna; Bhattacharyya, Nisha; Kadhe, Ganesh; Vishnoi, Gaurav; Mane, Amey

    2015-01-01

    Worldwide, viral hepatitis continues to be a cause of considerable morbidity and mortality. Mass immunization with a single dose of live attenuated HAV has been shown to significantly reduce disease burden in the community. This was a phase IV, 5-year follow up study carried out at 4 centers (Kolkata, Delhi, Mumbai and Chennai) across India. The subjects with antibody titer <20 mIU/mL at baseline were evaluated for long term immunogenicity. Of the 503 subjects enrolled, 349 subjects were baseline seronegative with an anti-HAV antibody titer <20 mIU/mL. Overall, 343 subjects could be followed up at some point of time during this 5 y post vaccination period. In the last year (60 months) of follow-up, 108 subjects (97.3%) of 111 subjects (who came for follow-up at the end of 5 y) had a protective antibody titer (anti-HAV antibody titer >20 mIU/mL). The seroconversion rates considering seroprotection levels of anti-HAV antibody titer >20 mIU/mL, following vaccination starting from 6 weeks, 6 months, 12 months, 24 months, 36 months, 48 months and 60 months were 95.1%, 97.9%, 98.3%, 96.2%, 97.8%, 92.6% and 97.3%, respectively. The geometric mean concentration (GMC) over the years increased from 64.9 mIU/mL at 6 weeks to 38.1 mIU/mL and 135.2 mIU/mL at 6 months and 12 months, respectively and was maintained at 127.1 mIU/mL at 60 months. In conclusion, the result of this 5-year follow up study showed that the single dose of live attenuated vaccine is well tolerated and provides long-term immunogenicity in healthy Indian children.

  7. Oral Delivery of a High Quercetin Payload Nanosized Emulsion: In Vitro and In Vivo Activity Against B16-F10 Melanoma.

    PubMed

    Dora, Cristiana Lima; Silva, Luis Felipe Costa; Mazzarino, Leticia; Siqueira, Jarbas Mota; Fernandes, Daniel; Pacheco, Leticia Kramer; Maioral, Mariana Franzoni; Santos-Silva, Maria Claudia; Baischl, Ana Luiza Muccillo; Assreuy, Jamil; Lemos-Senna, Elenara

    2016-02-01

    Quercetin is a natural compound that has several biological activities including anticancer activity. However, the use of this drug has been limited mostly because of its poor water solubility and low bioavailability. Therefore, the development of quercetin-loaded nanocarrier systems may be considered a promising advance to exploit its therapeutic properties in clinical setting including cancer treatment. This study evaluates the effect of orally administered nanosized emulsion containing quercetin (QU-NE) on the cytotoxicity activity against B16-F10 cells in vitro, and on subcutaneous melanoma in mice inoculated with B16-F1O cells. In vivo experiments, also evaluate the co-administration of quercetin with cisplatin in order to predict synergic effects and the renal and hepatic toxicity. The nanocarriers were prepared through the hot solvent diffusion associated with the phase inversion temperature methods. In vitro study showed reduction of cell viability in a concentration-depend manner for free quercetin and QU-NE. In vivo study, quercetin either as a free drug or colloidal dispersion was administrated at a dose of 5 mg kg(-1) twice a week for 17 days via oral route. Cisplatin was administrated at dose of 1 mg kg(-1) once a week intraperitoneally. Free quercetin and QU-NE reduced tumor growth, however, the reduction observed for QU-NE (P < 0.001 vs. control) was significantly higher than free quercetin (P < 0.05 vs. control). The association of both drugs did not show synergic effect. Besides, no renal or hepatic toxicities were observed after administration of free quercetin and QU-NE. These results suggest that an improvement in the oral bioavailability of quercetin occurred when this compound was dissolved in the oily phase of a nanosized emulsion, indicating that it might have a potential application in the treatment of melanoma. PMID:27433577

  8. Oral Delivery of a High Quercetin Payload Nanosized Emulsion: In Vitro and In Vivo Activity Against B16-F10 Melanoma.

    PubMed

    Dora, Cristiana Lima; Silva, Luis Felipe Costa; Mazzarino, Leticia; Siqueira, Jarbas Mota; Fernandes, Daniel; Pacheco, Leticia Kramer; Maioral, Mariana Franzoni; Santos-Silva, Maria Claudia; Baischl, Ana Luiza Muccillo; Assreuy, Jamil; Lemos-Senna, Elenara

    2016-02-01

    Quercetin is a natural compound that has several biological activities including anticancer activity. However, the use of this drug has been limited mostly because of its poor water solubility and low bioavailability. Therefore, the development of quercetin-loaded nanocarrier systems may be considered a promising advance to exploit its therapeutic properties in clinical setting including cancer treatment. This study evaluates the effect of orally administered nanosized emulsion containing quercetin (QU-NE) on the cytotoxicity activity against B16-F10 cells in vitro, and on subcutaneous melanoma in mice inoculated with B16-F1O cells. In vivo experiments, also evaluate the co-administration of quercetin with cisplatin in order to predict synergic effects and the renal and hepatic toxicity. The nanocarriers were prepared through the hot solvent diffusion associated with the phase inversion temperature methods. In vitro study showed reduction of cell viability in a concentration-depend manner for free quercetin and QU-NE. In vivo study, quercetin either as a free drug or colloidal dispersion was administrated at a dose of 5 mg kg(-1) twice a week for 17 days via oral route. Cisplatin was administrated at dose of 1 mg kg(-1) once a week intraperitoneally. Free quercetin and QU-NE reduced tumor growth, however, the reduction observed for QU-NE (P < 0.001 vs. control) was significantly higher than free quercetin (P < 0.05 vs. control). The association of both drugs did not show synergic effect. Besides, no renal or hepatic toxicities were observed after administration of free quercetin and QU-NE. These results suggest that an improvement in the oral bioavailability of quercetin occurred when this compound was dissolved in the oily phase of a nanosized emulsion, indicating that it might have a potential application in the treatment of melanoma.

  9. Mitochondrial Aldehyde Dehydrogenase Activation by Alda‐1 Inhibits Atherosclerosis and Attenuates Hepatic Steatosis in Apolipoprotein E‐Knockout Mice

    PubMed Central

    Stachowicz, Aneta; Olszanecki, Rafał; Suski, Maciej; Wiśniewska, Anna; Totoń‐Żurańska, Justyna; Madej, Józef; Jawień, Jacek; Białas, Magdalena; Okoń, Krzysztof; Gajda, Mariusz; Głombik, Katarzyna; Basta‐Kaim, Agnieszka; Korbut, Ryszard

    2014-01-01

    Background Mitochondrial dysfunction has been shown to play an important role in the development of atherosclerosis and nonalcoholic fatty liver disease (NAFLD). Mitochondrial aldehyde dehydrogenase (ALDH2), an enzyme responsible for the detoxification of reactive aldehydes, is considered to exert protective function in mitochondria. We investigated the influence of Alda‐1, an activator of ALDH2, on atherogenesis and on the liver steatosis in apolipoprotein E knockout (apoE−/−) mice. Methods and Results Alda‐1 caused decrease of atherosclerotic lesions approximately 25% as estimated by “en face” and “cross‐section” methods without influence on plasma lipid profile, atherosclerosis‐related markers of inflammation, and macrophage and smooth muscle content in the plaques. Plaque nitrotyrosine was not changed upon Alda‐1 treatment, and there were no changes in aortic mRNA levels of factors involved in antioxidative defense, regulation of apoptosis, mitogenesis, and autophagy. Hematoxylin/eosin staining showed decrease of steatotic changes in liver of Alda‐1‐treated apoE−/− mice. Alda‐1 attenuated formation of 4‐hydroxy‐2‐nonenal (4‐HNE) protein adducts and decreased triglyceride content in liver tissue. Two‐dimensional electrophoresis coupled with mass spectrometry identified 20 differentially expressed mitochondrial proteins upon Alda‐1 treatment in liver of apoE−/− mice, mostly proteins related to metabolism and oxidative stress. The most up‐regulated were the proteins that participated in beta oxidation of fatty acids. Conclusions Collectively, Alda‐1 inhibited atherosclerosis and attenuated NAFLD in apoE−/− mice. The pattern of changes suggests a beneficial effect of Alda‐1 in NAFLD; however, the exact liver functional consequences of the revealed alterations as well as the mechanism(s) of antiatherosclerotic Alda‐1 action require further investigation. PMID:25392542

  10. Quercetin inhibits radiation-induced skin fibrosis.

    PubMed

    Horton, Jason A; Li, Fei; Chung, Eun Joo; Hudak, Kathryn; White, Ayla; Krausz, Kristopher; Gonzalez, Frank; Citrin, Deborah

    2013-08-01

    Radiation induced fibrosis of the skin is a late toxicity that may result in loss of function due to reduced range of motion and pain. The current study sought to determine if oral delivery of quercetin mitigates radiation-induced cutaneous injury. Female C3H/HeN mice were fed control chow or quercetin-formulated chow (1% by weight). The right hind leg was exposed to 35 Gy of X rays and the mice were followed serially to assess acute toxicity and hind leg extension. Tissue samples were collected for assessment of soluble collagen and tissue cytokines. Human and murine fibroblasts were subjected to clonogenic assays to determine the effects of quercetin on radiation response. Contractility of fibroblasts was assessed with a collagen contraction assay in the presence or absence of quercetin and transforming growth factor-β (TGF-β). Western blotting of proteins involved in fibroblast contractility and TGF-β signaling were performed. Quercetin treatment significantly reduced hind limb contracture, collagen accumulation and expression of TGF-β in irradiated skin. Quercetin had no effect on the radioresponse of fibroblasts or murine tumors, but was capable of reducing the contractility of fibroblasts in response to TGF-β, an effect that correlated with partial stabilization of phosphorylated cofilin. Quercetin is capable of mitigating radiation induced skin fibrosis and should be further explored as a therapy for radiation fibrosis.

  11. Quercetin-induced cardioprotection against doxorubicin cytotoxicity

    PubMed Central

    2013-01-01

    Background Cancer has continually been the leading cause of death worldwide for decades. Thus, scientists have actively devoted themselves to studying cancer therapeutics. Doxorubicin is an efficient drug used in cancer therapy, but also produces reactive oxygen species (ROS) that induce severe cytotoxicity against heart cells. Quercetin, a plant-derived flavonoid, has been proven to contain potent antioxidant and anti-inflammatory properties. Thus, this in vitro study investigated whether quercetin can decrease doxorubicin-induced cytotoxicity and promote cell repair systems in cardiomyocyte H9C2 cells. Results Proteomic analysis and a cell biology assay were performed to investigate the quercetin-induced responses. Our data demonstrated that quercetin treatment protects the cardiomyocytes in a doxorubicin-induced heart damage model. Quercetin significantly facilitated cell survival by inhibiting cell apoptosis and maintaining cell morphology by rearranging the cytoskeleton. Additionally, 2D-DIGE combined with MALDI-TOF MS analysis indicated that quercetin might stimulate cardiomyocytes to repair damage after treating doxorubicin by modulating metabolic activation, protein folding and cytoskeleton rearrangement. Conclusion Based on a review of the literature, this study is the first to report detailed protective mechanisms for the action of quercetin against doxorubicin-induced cardiomyocyte toxicity based on in-depth cell biology and proteomic analysis. PMID:24359494

  12. Quercetin Inhibits Radiation-Induced Skin Fibrosis

    PubMed Central

    Horton, Jason A.; Li, Fei; Chung, Eun Joo; Hudak, Kathryn; White, Ayla; Krausz, Kristopher; Gonzalez, Frank; Citrin, Deborah

    2013-01-01

    Radiation induced fibrosis of the skin is a late toxicity that may result in loss of function due to reduced range of motion and pain. The current study sought to determine if oral delivery of quercetin mitigates radiation-induced cutaneous injury. Female C3H/HeN mice were fed control chow or quercetin-formulated chow (1% by weight). The right hind leg was exposed to 35 Gy of X rays and the mice were followed serially to assess acute toxicity and hind leg extension. Tissue samples were collected for assessment of soluble collagen and tissue cytokines. Human and murine fibroblasts were subjected to clonogenic assays to determine the effects of quercetin on radiation response. Contractility of fibroblasts was assessed with a collagen contraction assay in the presence or absence of quercetin and transforming growth factor-β (TGF-β). Western blotting of proteins involved in fibroblast contractility and TGF-β signaling were performed. Quercetin treatment significantly reduced hind limb contracture, collagen accumulation and expression of TGF-β in irradiated skin. Quercetin had no effect on the radioresponse of fibroblasts or murine tumors, but was capable of reducing the contractility of fibroblasts in response to TGF-β, an effect that correlated with partial stabilization of phosphorylated cofilin. Quercetin is capable of mitigating radiation induced skin fibrosis and should be further explored as a therapy for radiation fibrosis. PMID:23819596

  13. Green tea phenolic epicatechins inhibit hepatitis C virus replication via cycloxygenase-2 and attenuate virus-induced inflammation.

    PubMed

    Lin, Ying-Ting; Wu, Yu-Hsuan; Tseng, Chin-Kai; Lin, Chun-Kuang; Chen, Wei-Chun; Hsu, Yao-Chin; Lee, Jin-Ching

    2013-01-01

    Chronic hepatitis C virus (HCV) infection is the leading risk factor for hepatocellular carcinoma (HCC) and chronic liver disease worldwide. Green tea, in addition to being consumed as a healthy beverage, contains phenolic catechins that have been used as medicinal substances. In the present study, we illustrated that the epicatechin isomers (+)-epicatechin and (-)-epicatechin concentration-dependently inhibited HCV replication at nontoxic concentrations by using in vitro cell-based HCV replicon and JFH-1 infectious systems. In addition to significantly suppressing virus-induced cyclooxygenase-2 (COX-2) expression, our results revealed that the anti-HCV activity of the epicatechin isomers occurred through the down-regulation of COX-2. Furthermore, both the epicatechin isomers additively inhibited HCV replication in combination with either interferon-α or viral enzyme inhibitors [2'-C-methylcytidine (NM-107) or telaprevir]. They also had prominent anti-inflammatory effects by inhibiting the gene expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and inducible nitrite oxide synthase as well as the COX-2 in viral protein-expressing hepatoma Huh-7 cells. Collectively, (+)-epicatechin and (-)-epicatechin may serve as therapeutic supplements for treating HCV-related diseases.

  14. HS-173, a Novel PI3K Inhibitor, Attenuates the Activation of Hepatic Stellate Cells in Liver Fibrosis

    PubMed Central

    Son, Mi Kwon; Ryu, Ye-Lim; Jung, Kyung Hee; Lee, Hyunseung; Lee, Hee Seung; Yan, Hong Hua; Park, Heon Joo; Ryu, Ji-Kan; Suh, Jun–Kyu; Hong, Sungwoo; Hong, Soon-Sun

    2013-01-01

    Hepatic stellate cells (HSCs) are the primary source of matrix components in liver disease such as fibrosis. Phosphatidylinositol 3-kinase (PI3K) signaling in HSCs has been shown to induce fibrogenesis. In this study, we evaluated the anti-fibrotic activity of a novel imidazopyridine analogue (HS-173) in human HSCs as well as mouse liver fibrosis. HS-173 strongly suppressed the growth and proliferation of HSCs and induced the arrest at the G2/M phase and apoptosis in HSCs. Furthermore, it reduced the expression of extracellular matrix components such as collagen type I, which was confirmed by an in vivo study. We also observed that HS-173 blocked the PI3K/Akt signaling pathway in vitro and in vivo. Taken together, HS-173 suppressed fibrotic responses such as cell proliferation and collagen synthesis by blocking PI3K/Akt signaling. Therefore, we suggest that this compound may be an effective therapeutic agent for ameliorating liver fibrosis through the inhibition of PI3K signaling. PMID:24326778

  15. Adenovirus-mediated expression of orphan nuclear receptor NR4A2 targeting hepatic stellate cell attenuates liver fibrosis in rats

    PubMed Central

    Chen, Pengguo; Li, Jie; Huo, Yan; Lu, Jin; Wan, Lili; Yang, Quanjun; Huang, Jinlu; Gan, Run; Guo, Cheng

    2016-01-01

    Liver fibrosis is a wound-healing response characterized with the accumulation of extracellular matrix (ECM). And hepatic stellate cells (HSCs) are the principal cell source of ECM. NR4A2 (Nurr1) is a member of orphan nuclear receptor NR4A family and acts as transcription factor. It participates in regulating cell differentiation, proliferation and apoptosis. We previously demonstrated that NR4A2 expression in fibrotic liver reduced significantly compared with normal liver and NR4A2 knockout in HSCs promoted ECM production. In the present study we explored the role of NR4A2 on liver fibrosis. Studies in cultured HSCs demonstrated that NR4A2 over-expression suppressed the activation of HSCs, such as ECM production and invasion ability. Moreover cell cycle was arrested, cell apoptosis was promoted and cell signaling pathway was influenced. Adenovirus-mediated delivery of NR4A2 in rats ameliorated significantly dimethylnitrosamine (DMN) induced liver fibrosis. The In vivo experiments produced results consistent with in vitro experiments. Taken together these results demonstrate NR4A2 enhancement attenuates liver fibrosis via suppressing the activation of HSCs and NR4A2 may be an ideal target for anti-fibrotic therapy. PMID:27646469

  16. Adenovirus-mediated expression of orphan nuclear receptor NR4A2 targeting hepatic stellate cell attenuates liver fibrosis in rats.

    PubMed

    Chen, Pengguo; Li, Jie; Huo, Yan; Lu, Jin; Wan, Lili; Yang, Quanjun; Huang, Jinlu; Gan, Run; Guo, Cheng

    2016-01-01

    Liver fibrosis is a wound-healing response characterized with the accumulation of extracellular matrix (ECM). And hepatic stellate cells (HSCs) are the principal cell source of ECM. NR4A2 (Nurr1) is a member of orphan nuclear receptor NR4A family and acts as transcription factor. It participates in regulating cell differentiation, proliferation and apoptosis. We previously demonstrated that NR4A2 expression in fibrotic liver reduced significantly compared with normal liver and NR4A2 knockout in HSCs promoted ECM production. In the present study we explored the role of NR4A2 on liver fibrosis. Studies in cultured HSCs demonstrated that NR4A2 over-expression suppressed the activation of HSCs, such as ECM production and invasion ability. Moreover cell cycle was arrested, cell apoptosis was promoted and cell signaling pathway was influenced. Adenovirus-mediated delivery of NR4A2 in rats ameliorated significantly dimethylnitrosamine (DMN) induced liver fibrosis. The In vivo experiments produced results consistent with in vitro experiments. Taken together these results demonstrate NR4A2 enhancement attenuates liver fibrosis via suppressing the activation of HSCs and NR4A2 may be an ideal target for anti-fibrotic therapy. PMID:27646469

  17. Quercetin-induced apoptosis prevents EBV infection.

    PubMed

    Lee, Minjung; Son, Myoungki; Ryu, Eunhyun; Shin, Yu Su; Kim, Jong Gwang; Kang, Byung Woog; Cho, Hyosun; Kang, Hyojeung

    2015-05-20

    Epstein-Barr virus (EBV) is a human gamma-1 herpesvirus that establishes a lifelong latency in over 90% of the world's population. During latency, virus exists predominantly as a chromatin-associated, multicopy episome in the nuclei of a variety of tumor cells derived from B cells, T cells, natural killer (NK) cells, and epithelial cells. Licorice is the root of Glycyrrhiza uralensis or G. glabra that has traditionally cultivated in eastern part of Asia. Licorice was reported to have anti-viral, anti-inflammatory, anti-atopic, hepatoprotective, anti-neurodegenerative, anti-tumor, anti-diabetic effects and so forth. Quercetin and isoliquiritigenin are produced from licorice and highly similar in molecular structure. They have diverse bioactive effects such as antiviral activity, anti-asthmatic activity, anti-cancer activity, anti-inflammation activity, monoamine-oxidase inhibitor, and etc. To determine anti-EBV and anti-EBVaGC (Epstein-Barr virus associated gastric carcinoma) effects of licorice, we investigated antitumor and antiviral effects of quercetin and isoliquiritigenin against EBVaGC. Although both quercetin and isoliquiritigenin are cytotoxic to SNU719 cells, quercetin induced more apoptosis in SNU719 cells than isoliquiritigenin, more completely eliminated DNMT1 and DNMT3A expressions than isoliquiritigenin, and more strongly affects the cell cycle progression of SNU719 than isoliquiritigenin. Both quercetin and isoliquiritigenin induce signal transductions to stimulate apoptosis, and induce EBV gene transcription. Quercetin enhances frequency of F promoter use, whereas isoliquiritigenin enhances frequency of Q promoter use. Quercetin reduces EBV latency, whereas isoliquiritigenin increases the latency. Quercetin increases more the EBV progeny production, and inhibits more EBV infection than isoliquiritigenin. These results indicate that quercetin could be a promising candidate for antiviral and antitumor agents against EBV and human gastric carcinoma.

  18. Quercetin-induced apoptosis prevents EBV infection

    PubMed Central

    Lee, Minjung; Son, Myoungki; Ryu, Eunhyun; Shin, Yu Su; Kim, Jong Gwang; Kang, Byung Woog; Sung, Gi-Ho; Cho, Hyosun; Kang, Hyojeung

    2015-01-01

    Epstein-Barr virus (EBV) is a human gamma-1 herpesvirus that establishes a lifelong latency in over 90% of the world's population. During latency, virus exists predominantly as a chromatin-associated, multicopy episome in the nuclei of a variety of tumor cells derived from B cells, T cells, natural killer (NK) cells, and epithelial cells. Licorice is the root of Glycyrrhiza uralensis or G. glabra that has traditionally cultivated in eastern part of Asia. Licorice was reported to have anti-viral, anti-inflammatory, anti-atopic, hepatoprotective, anti-neurodegenerative, anti-tumor, anti-diabetic effects and so forth. Quercetin and isoliquiritigenin are produced from licorice and highly similar in molecular structure. They have diverse bioactive effects such as antiviral activity, anti-asthmatic activity, anti-cancer activity, anti-inflammation activity, monoamine-oxidase inhibitor, and etc. To determine anti-EBV and anti-EBVaGC (Epstein-Barr virus associated gastric carcinoma) effects of licorice, we investigated antitumor and antiviral effects of quercetin and isoliquiritigenin against EBVaGC. Although both quercetin and isoliquiritigenin are cytotoxic to SNU719 cells, quercetin induced more apoptosis in SNU719 cells than isoliquiritigenin, more completely eliminated DNMT1 and DNMT3A expressions than isoliquiritigenin, and more strongly affects the cell cycle progression of SNU719 than isoliquiritigenin. Both quercetin and isoliquiritigenin induce signal transductions to stimulate apoptosis, and induce EBV gene transcription. Quercetin enhances frequency of F promoter use, whereas isoliquiritigenin enhances frequency of Q promoter use. Quercetin reduces EBV latency, whereas isoliquiritigenin increases the latency. Quercetin increases more the EBV progeny production, and inhibits more EBV infection than isoliquiritigenin. These results indicate that quercetin could be a promising candidate for antiviral and antitumor agents against EBV and human gastric carcinoma

  19. Quercetin protects mouse liver against nickel-induced DNA methylation and inflammation associated with the Nrf2/HO-1 and p38/STAT1/NF-κB pathway.

    PubMed

    Liu, Chan-Min; Ma, Jie-Qiong; Xie, Wan-Ru; Liu, Si-Si; Feng, Zhao-Jun; Zheng, Gui-Hong; Wang, Ai-Min

    2015-08-01

    Quercetin (QE), a natural flavonoid, has been reported to have many benefits and medicinal properties. However, its protective effects against nickel (Ni) induced injury in liver have not been clarified. The aim of the present study was to investigate the effects of quercetin on hepatic DNA methylation and inflammation in mice exposed to nickel. ICR mice were exposed to nickel sulfate with or without quercetin co-administration for 20 days. Our results showed that quercetin administration significantly inhibited nickel-induced liver injury, which was indicated by diagnostic indicators. In exploring the underlying mechanisms of quercetin action, we found that quercetin decreased total DNA methyltransferases (DNMTs) activity and DNA methylation level of the NF-E2 related factor 2 (Nrf2) DNA in livers of nickel-treated mice. Quercetin also induced Nrf2 nuclear translocation and heme oxygenase-1 (HO-1) activity. Moreover, quercetin decreased production of pro-inflammatory markers including TNF-α, IL-1β and iNOS. Quercetin significantly inhibited the p38 and signal transducer and activator of transcription 1 (STAT1) activation, which in turn inactivated NF-κB and the inflammatory cytokines in livers of the nickel-treated mice. In conclusion, these results suggested that the inhibition of nickel-induced inflammation by quercetin is associated with its ability to modulate Nrf2/HO-1 and p38/STAT1/NF-κB signaling pathway.

  20. Uptake of quercetin and quercetin 3-glucoside from whole onion and apple peel extracts by Caco-2 cell monolayers.

    PubMed

    Boyer, Jeanelle; Brown, Dan; Liu, Rui Hai

    2004-11-17

    Evidence suggests that regular consumption of fruits and vegetables may reduce the risk of chronic diseases, and phytochemicals from fruits and vegetables may be responsible for this health benefit. However, there is limited knowledge on the bioavailability of specific phytochemicals from whole fruits and vegetables. This study used Caco-2 cells to examine uptake of quercetin aglycon and quercetin 3-glucoside as purified compounds and from whole onion and apple peel extracts. Pure quercetin aglycon was absorbed by the Caco-2 cells in higher concentrations than quercetin 3-glucoside (p < 0.05). Caco-2 cells treated with quercetin 3-glucoside accumulated both quercetin 3-glucoside and quercetin. Caco-2 cells absorbed more onion quercetin aglycon than onion quercetin 3-glucoside (p < 0.05), and the percentage of onion quercetin absorbed was greater than that of pure quercetin, most likely due to enzymatic hydrolysis of quercetin 3-glucoside and other quercetin glucosides found in the onion by the Caco-2 cells. Caco-2 cells absorbed low levels of quercetin 3-glucoside from apple peel extracts, but quercetin aglycon absorption was not detected. Caco-2 cell homogenates demonstrated both lactase and glucosidase activities when incubated with lactose and quercetin 3-glucoside, respectively. This use of the Caco2 cell model appears to be a simple and useful system for studying bioavailability of whole food phytochemicals and may be used to assess differences in bioavailability between foods. PMID:15537334

  1. Uptake of quercetin and quercetin 3-glucoside from whole onion and apple peel extracts by Caco-2 cell monolayers.

    PubMed

    Boyer, Jeanelle; Brown, Dan; Liu, Rui Hai

    2004-11-17

    Evidence suggests that regular consumption of fruits and vegetables may reduce the risk of chronic diseases, and phytochemicals from fruits and vegetables may be responsible for this health benefit. However, there is limited knowledge on the bioavailability of specific phytochemicals from whole fruits and vegetables. This study used Caco-2 cells to examine uptake of quercetin aglycon and quercetin 3-glucoside as purified compounds and from whole onion and apple peel extracts. Pure quercetin aglycon was absorbed by the Caco-2 cells in higher concentrations than quercetin 3-glucoside (p < 0.05). Caco-2 cells treated with quercetin 3-glucoside accumulated both quercetin 3-glucoside and quercetin. Caco-2 cells absorbed more onion quercetin aglycon than onion quercetin 3-glucoside (p < 0.05), and the percentage of onion quercetin absorbed was greater than that of pure quercetin, most likely due to enzymatic hydrolysis of quercetin 3-glucoside and other quercetin glucosides found in the onion by the Caco-2 cells. Caco-2 cells absorbed low levels of quercetin 3-glucoside from apple peel extracts, but quercetin aglycon absorption was not detected. Caco-2 cell homogenates demonstrated both lactase and glucosidase activities when incubated with lactose and quercetin 3-glucoside, respectively. This use of the Caco2 cell model appears to be a simple and useful system for studying bioavailability of whole food phytochemicals and may be used to assess differences in bioavailability between foods.

  2. Antidiabetic and antioxidative effects of Annona squamosa leaves are possibly mediated through quercetin-3-O-glucoside.

    PubMed

    Panda, Sunanda; Kar, Anand

    2007-01-01

    Present investigation was made to reveal the involvement of a quercetin in the antidiabetic and antiperoxidative effects of Annona squamosa leaf extract. Quercetin-3-O-glucoside (characterized by UV, IR, MS and NMR analyses) was isolated from Annona squamosa leaves and examined for its potential to regulate alloxan-induced hyperglycemia and lipid peroxidation (LPO) in rats. While in alloxan treated animals, an increase in the concentration of serum glucose with a parallel decrease in insulin level was observed, administration of 15 mg/kg/day of isolated quercetin-3-O-glucoside for 10 consecutive days to the hyperglycemic animals reversed these effects and simultaneously inhibited the activity of hepatic glucose-6-phosphatase. It further decreased the hepatic and renal LPO with a concomitant increase in the activities of antioxidative enzymes, such as catalase (CAT) and superoxide dismutase (SOD) and in glutathione (GSH) content, indicating its safe and antiperoxidative effects. These findings suggest the potential of quercetin-3-O-glucoside in the amelioration of diabetes mellitus and tissue lipid peroxidation. It also appears that the antidiabetic effects of A. squamosa leaf extract is possibly mediated through the insulin stimulating and/or free radical scavenging properties of its active constituent, quercetin-3-O-glucoside. PMID:18997283

  3. Synthesis and antiviral activity of substituted quercetins.

    PubMed

    Thapa, Mahendra; Kim, Yunjeong; Desper, John; Chang, Kyeong-Ok; Hua, Duy H

    2012-01-01

    Influenza viruses are important pathogens that cause respiratory infections in humans and animals. In addition to vaccination, antiviral drugs against influenza virus play a significant role in controlling viral infections by reducing disease progression and virus transmission. Plant derived polyphenols are associated with antioxidant activity, anti-carcinogenic, and cardio- and neuro-protective actions. Some polyphenols, such as resveratrol and epigallocatechin gallate (EGCG), showed significant anti-influenza activity in vitro and/or in vivo. Recently we showed that quercetin and isoquercetin (quercetin-3-β-d-glucoside), a glucoside form of quercetin, significantly reduced the replication of influenza viruses in vitro and in vivo (isoquercetin). The antiviral effects of isoquercetin were greater than that of quercetin with lower IC(50) values and higher in vitro therapeutic index. Thus, we investigated the synthesis and antiviral activities of various quercetin derivatives with substitution of C3, C3', and C5 hydroxyl functions with various phenolic ester, alkoxy, and aminoalkoxy moieties. Among newly synthesized compounds, quercetin-3-gallate which is structurally related to EGCG showed comparable antiviral activity against influenza virus (porcine H1N1 strain) to that of EGCG with improved in vitro therapeutic index.

  4. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle.

    PubMed

    Khachatoorian, Ronik; Arumugaswami, Vaithilingaraja; Raychaudhuri, Santanu; Yeh, George K; Maloney, Eden M; Wang, Julie; Dasgupta, Asim; French, Samuel W

    2012-11-25

    We have previously demonstrated that quercetin, a bioflavonoid, blocks hepatitis C virus (HCV) proliferation by inhibiting NS5A-driven internal ribosomal entry site (IRES)-mediated translation of the viral genome. Here, we investigate the mechanisms of antiviral activity of quercetin and six additional bioflavonoids. We demonstrate that catechin, naringenin, and quercetin possess significant antiviral activity, with no associated cytotoxicity. Infectious virion secretion was not significantly altered by these bioflavonoids. Catechin and naringenin demonstrated stronger inhibition of infectious virion assembly compared to quercetin. Quercetin markedly blocked viral translation whereas catechin and naringenin demonstrated mild activity. Similarly quercetin completely blocked NS5A-augmented IRES-mediated translation in an IRES reporter assay, whereas catechin and naringenin had only a mild effect. Moreover, quercetin differentially inhibited HSP70 induction compared to catechin and naringenin. Thus, the antiviral activity of these bioflavonoids is mediated through different mechanisms. Therefore combination of these bioflavonoids may act synergistically against HCV.

  5. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle

    SciTech Connect

    Khachatoorian, Ronik; Arumugaswami, Vaithilingaraja; Raychaudhuri, Santanu; Yeh, George K.; Maloney, Eden M.; Wang, Julie; and others

    2012-11-25

    We have previously demonstrated that quercetin, a bioflavonoid, blocks hepatitis C virus (HCV) proliferation by inhibiting NS5A-driven internal ribosomal entry site (IRES)-mediated translation of the viral genome. Here, we investigate the mechanisms of antiviral activity of quercetin and six additional bioflavonoids. We demonstrate that catechin, naringenin, and quercetin possess significant antiviral activity, with no associated cytotoxicity. Infectious virion secretion was not significantly altered by these bioflavonoids. Catechin and naringenin demonstrated stronger inhibition of infectious virion assembly compared to quercetin. Quercetin markedly blocked viral translation whereas catechin and naringenin demonstrated mild activity. Similarly quercetin completely blocked NS5A-augmented IRES-mediated translation in an IRES reporter assay, whereas catechin and naringenin had only a mild effect. Moreover, quercetin differentially inhibited HSP70 induction compared to catechin and naringenin. Thus, the antiviral activity of these bioflavonoids is mediated through different mechanisms. Therefore combination of these bioflavonoids may act synergistically against HCV.

  6. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle

    PubMed Central

    Khachatoorian, Ronik; Arumugaswami, Vaithilingaraja; Raychaudhuri, Santanu; Yeh, George K.; Maloney, Eden M.; Wang, Julie; Dasgupta, Asim; French, Samuel W.

    2012-01-01

    We have previously demonstrated that quercetin, a bioflavonoid, blocks hepatitis C virus (HCV) proliferation by inhibiting NS5A-driven internal ribosomal entry site (IRES)-mediated translation of the viral genome. Here, we investigate the mechanisms of antiviral activity of quercetin and six additional bioflavonoids. We demonstrate that catechin, naringenin, and quercetin possess significant antiviral activity, with no associated cytotoxicity. Infectious virion secretion was not significantly altered by these bioflavonoids. Catechin and naringenin demonstrated stronger inhibition of infectious virion assembly compared to quercetin. Quercetin markedly blocked viral translation whereas catechin and naringenin demonstrated mild activity. Similarly quercetin completely blocked NS5A-augmented IRES-mediated translation in an IRES reporter assay, whereas catechin and naringenin had only a mild effect. Moreover, quercetin differentially inhibited HSP70 induction compared to catechin and naringenin. Thus, the antiviral activity of these bioflavonoids is mediated through different mechanisms. Therefore combination of these bioflavonoids may act synergistically against HCV. PMID:22975673

  7. Acetonic and Methanolic Extracts of Heterotheca inuloides, and Quercetin, Decrease CCl4-Oxidative Stress in Several Rat Tissues

    PubMed Central

    Coballase-Urrutia, Elvia; Pedraza-Chaverri, José; Cárdenas-Rodríguez, Noemí; Huerta-Gertrudis, Bernardino; García-Cruz, Mercedes Edna; Montesinos-Correa, Hortencia; Sánchez-González, Dolores Javier; Camacho-Carranza, Rafael; Espinosa-Aguirre, Jesús Javier

    2013-01-01

    The present study was designed to test the hypothesis that the acetonic and methanolic extracts of H. inuloides prevent carbon tetrachloride-(CCl4) induced oxidative stress in vital tissues. Pretreatment with both H. inuloides extracts or quercetin attenuated the increase in serum activity of alkaline phosphatase (ALP), total bilirubin (BB), creatinine (CRE), and creatine kinase (CK), and impeded the decrease of γ-globulin (γ-GLOB) and albumin (ALB) observed in CCl4-induced tissue injury. The protective effect was confirmed by histological analysis with hematoxylin-eosin and periodic acid/Schiff's reagent. Level of lipid peroxidation was higher in the organs of rats exposed to CCl4 than in those of the animals treated with Heterohteca extracts or quercetin, and these showed levels similar to the untreated group. Pretreatment of animals with either of the extracts or quercetin also prevented the increase of 4-hydroxynonenal and 3-nitrotyrosine. Pretreatment with the plant extracts or quercetin attenuated CCl4 toxic effects on the activity of several antioxidant enzymes. The present results strongly suggest that the chemopreventive effect of the extracts used and quercetin, against CCl4 toxicity, is associated with their antioxidant properties and corroborated previous results obtained in liver tissue. PMID:23365610

  8. Neuroprotective effects of quercetin, rutin and okra (Abelmoschus esculentus Linn.) in dexamethasone-treated mice.

    PubMed

    Tongjaroenbuangam, Walaiporn; Ruksee, Nootchanart; Chantiratikul, Piyanete; Pakdeenarong, Noppakun; Kongbuntad, Watee; Govitrapong, Piyarat

    2011-10-01

    The administration of dexamethasone, a synthetic glucocorticoid receptor agonist, causes neuronal death in the CA3 layer of the hippocampus, which has been associated with learning and memory impairments. This study aimed to examine the ability of okra (Abelmoschus esculentus Linn.) extract and its derivatives (quercetin and rutin) to protect neuronal function and improve learning and memory deficits in mice subjected to dexamethasone treatment. Learning and memory functions in mice were examined using the Morris water maze test. The results showed that the mice treated with dexamethasone had prolonged water maze performance latencies and shorter time spent in the target quadrant while mice pretreated with quercetin, rutin or okra extract prior to dexamethasone treatment showed shorter latencies and longer time spent in target quadrant. Morphological changes in pyramidal neurons were observed in the dexamethasone treated group. The number of CA3 hippocampal neurons was significantly lower while pretreated with quercetin, rutin or okra attenuated this change. Prolonged treatment with dexamethasone altered NMDA receptor expression in the hippocampus. Pretreatment with quercetin, rutin or okra extract prevented the reduction in NMDA receptor expression. Dentate gyrus (DG) cell proliferation was examined using the 5-bromo-2-deoxyuridine (BrdU) immunohistochemistry technique. The number of BrdU-immunopositive cells was significantly reduced in dexamethasone-treated mice compared to control mice. Pretreatment with okra extract, either quercetin or rutin was found to restore BrdU-immunoreactivity in the dentate gyrus. These findings suggest that quercetin, rutin and okra extract treatments reversed cognitive deficits, including impaired dentate gyrus (DG) cell proliferation, and protected against morphological changes in the CA3 region in dexamethasone-treated mice. The precise mechanism of the neuroprotective effect of these plant extracts should be further investigated.

  9. Discovery of Metal Ions Chelator Quercetin Derivatives with Potent Anti-HCV Activities.

    PubMed

    Zhong, Dongwei; Liu, Mingming; Cao, Yang; Zhu, Yelin; Bian, Shihui; Zhou, Jiayi; Wu, Fengjie; Ryu, Kum-Chol; Zhou, Lu; Ye, Deyong

    2015-04-16

    Analogues or isosteres of α,γ-diketoacid (DKA) 1a show potent inhibition of hepatitis C virus (HCV) NS5B polymerase through chelation of the two magnesium ions at the active site. The anti-HCV activity of the flavonoid quercetin (2) could partly be attributed to it being a structural mimic of DKAs. In order to delineate the structural features required for the inhibitory effect and improve the anti-HCV potency, two novel types of quercetin analogues, 7-O-arylmethylquercetins and quercetin-3-O-benzoic acid esters, were designed, synthesized and evaluated for their anti-HCV properties in cell-based assays. Among the 38 newly synthesized compounds, 7-O-substituted derivative 3i and 3-O-substituted derivative 4f were found to be the most active in the corresponding series (EC50 = 3.8 μM and 9.0 μΜ, respectively). Docking studies suggested that the quercetin analogues are capable of establishing key coordination with the two magnesium ions as well as interactions with residues at the active site of HCV NS5B.

  10. Role of Quercetin Benefits in Neurodegeneration.

    PubMed

    Elumalai, Preetham; Lakshmi, Sreeja

    2016-01-01

    Neurodegenerative disorders are often life threatening and hired as an economic burden to the health-care system. Nutritional interventions principally involving polyphenols were practiced to arrest or reverse the age-related health disorders. Flavonoids, a class of dietary polyphenols, are rising to superstardom in preventing brain disorders with their potent antioxidant defense mechanism. Quercetin is a ubiquitous flavonoid reported to have all-natural myriad of health benefits. Citrus fruits, apple, onion, parsley, berries, green tea, and red wine comprise the major dietary supplements of quercetin apart from some herbal remedies like Ginkgo biloba. Appositeness of quercetin in reducing risks of neurodegenerative disorders, cancer, cardiovascular diseases, allergic disorders, thrombosis, atherosclerosis, hypertension, and arrhythmia, to name a few, is attributed to its highly pronounced antioxidant and anti-inflammatory properties. Neurodegeneration, characterized by progressive deterioration of the structure and function of neurons, is crucially accompanied by severe cognitive deficits. Aging is the major risk factor for neurodegenerative disorders in Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) being coequal high hands. Oxidative stress and mitochondrial dysfunction are the key players in triggering neurodegeneration. The upsurge of neurodegenerative disorders is always appalling since there exists a paucity in effective treatment practices. Past few years' studies have underpinned the mechanisms through which quercetin boons the brain health in many aspects including betterment in cognitive output. Undoubtedly, quercetin will be escalating as an arable field, both in scientific research and in pharmacological and clinical applications. PMID:27651256

  11. Quercetin Directly Interacts with Vitamin D Receptor (VDR): Structural Implication of VDR Activation by Quercetin

    PubMed Central

    Lee, Ki-Young; Choi, Hye-Seung; Choi, Ho-Sung; Chung, Ka Young; Lee, Bong-Jin; Maeng, Han-Joo; Seo, Min-Duk

    2016-01-01

    The vitamin D receptor (VDR) is a member of the nuclear receptor (NR) superfamily. The VDR binds to active vitamin D3 metabolites, which stimulates downstream transduction signaling involved in various physiological activities such as calcium homeostasis, bone mineralization, and cell differentiation. Quercetin is a widely distributed flavonoid in nature that is known to enhance transactivation of VDR target genes. However, the detailed molecular mechanism underlying VDR activation by quercetin is not well understood. We first demonstrated the interaction between quercetin and the VDR at the molecular level by using fluorescence quenching and saturation transfer difference (STD) NMR experiments. The dissociation constant (Kd) of quercetin and the VDR was 21.15 ± 4.31 μM, and the mapping of quercetin subsites for VDR binding was performed using STD-NMR. The binding mode of quercetin was investigated by a docking study combined with molecular dynamics (MD) simulation. Quercetin might serve as a scaffold for the development of VDR modulators with selective biological activities. PMID:26902087

  12. Quercetin Feeding in Newborn Dairy Calves Cannot Compensate Colostrum Deprivation: Study on Metabolic, Antioxidative and Inflammatory Traits

    PubMed Central

    Gruse, Jeannine; Kanitz, Ellen; Weitzel, Joachim M.; Tuchscherer, Armin; Stefaniak, Tadeusz; Jawor, Paulina; Wolffram, Siegfried; Hammon, Harald M.

    2016-01-01

    formula- than in colostrum-fed groups. Hepatic mRNA expression of tumor necrosis factor was higher after quercetin feeding and expression of C-reactive protein was higher after formula feeding. Data confirm that colostrum improves neonatal health and indicate that quercetin feeding cannot compensate for insufficient colostrum supply. PMID:26752173

  13. Quercetin Feeding in Newborn Dairy Calves Cannot Compensate Colostrum Deprivation: Study on Metabolic, Antioxidative and Inflammatory Traits.

    PubMed

    Gruse, Jeannine; Kanitz, Ellen; Weitzel, Joachim M; Tuchscherer, Armin; Stefaniak, Tadeusz; Jawor, Paulina; Wolffram, Siegfried; Hammon, Harald M

    2016-01-01

    formula- than in colostrum-fed groups. Hepatic mRNA expression of tumor necrosis factor was higher after quercetin feeding and expression of C-reactive protein was higher after formula feeding. Data confirm that colostrum improves neonatal health and indicate that quercetin feeding cannot compensate for insufficient colostrum supply. PMID:26752173

  14. Absorption and disposition of naringenin and quercetin after simultaneous administration via intestinal perfusion in mice.

    PubMed

    Orrego-Lagarón, Naiara; Martínez-Huélamo, Miriam; Quifer-Rada, Paola; Lamuela-Raventos, Rosa M; Escribano-Ferrer, Elvira

    2016-09-14

    As common constituents of tomatoes and other fruits and/or vegetables, naringenin and quercetin are usually ingested together, so for a clearer understanding of their bioavailability, metabolic fates and health benefits, it is more insightful to study them together. The purpose of the present work was to study how co-administration of naringenin and quercetin at realistic doses (3.5 μg ml(-1) and 2.36 μg ml(-1), respectively) influences their absorption and intestinal first-pass metabolism. A single-pass intestinal perfusion model in mice (n = 4-6) was used. Perfusate (every 10 minutes), blood (at 60 min) and bile samples were analysed by an UPLC-ESI-MS/MS method to evaluate the presence of the aglycones and their metabolites. Both naringenin and quercetin showed high permeability coefficients when administered separately (7.71 ± 0.82 × 10(-4) cm s(-1)vs. 7.30 ± 1.95 × 10(-4) cm s(-1), respectively), but these values decreased by 50% with co-administration (4.09 ± 0.89 × 10(-4) cm s(-1) for naringenin and 3.18 ± 0.45 × 10(-4) cm s(-1) for quercetin). Moreover, the level of phase II metabolites in perfusion, plasma and bile samples increased when naringenin and quercetin were administered together. The higher biliary excretion of these metabolites could thus favour the entero-hepatic recycling of the aglycones and metabolites. The results of this study may have several useful applications: to know and consider the possible interactions between polyphenols and drugs that use the same mechanism of absorption and elimination; when polyphenol-rich nutritional supplements are supplied, and in our regular diets to optimize the health benefits afforded by the biological activities of such aglycones and/or metabolites.

  15. Absorption and disposition of naringenin and quercetin after simultaneous administration via intestinal perfusion in mice.

    PubMed

    Orrego-Lagarón, Naiara; Martínez-Huélamo, Miriam; Quifer-Rada, Paola; Lamuela-Raventos, Rosa M; Escribano-Ferrer, Elvira

    2016-09-14

    As common constituents of tomatoes and other fruits and/or vegetables, naringenin and quercetin are usually ingested together, so for a clearer understanding of their bioavailability, metabolic fates and health benefits, it is more insightful to study them together. The purpose of the present work was to study how co-administration of naringenin and quercetin at realistic doses (3.5 μg ml(-1) and 2.36 μg ml(-1), respectively) influences their absorption and intestinal first-pass metabolism. A single-pass intestinal perfusion model in mice (n = 4-6) was used. Perfusate (every 10 minutes), blood (at 60 min) and bile samples were analysed by an UPLC-ESI-MS/MS method to evaluate the presence of the aglycones and their metabolites. Both naringenin and quercetin showed high permeability coefficients when administered separately (7.71 ± 0.82 × 10(-4) cm s(-1)vs. 7.30 ± 1.95 × 10(-4) cm s(-1), respectively), but these values decreased by 50% with co-administration (4.09 ± 0.89 × 10(-4) cm s(-1) for naringenin and 3.18 ± 0.45 × 10(-4) cm s(-1) for quercetin). Moreover, the level of phase II metabolites in perfusion, plasma and bile samples increased when naringenin and quercetin were administered together. The higher biliary excretion of these metabolites could thus favour the entero-hepatic recycling of the aglycones and metabolites. The results of this study may have several useful applications: to know and consider the possible interactions between polyphenols and drugs that use the same mechanism of absorption and elimination; when polyphenol-rich nutritional supplements are supplied, and in our regular diets to optimize the health benefits afforded by the biological activities of such aglycones and/or metabolites. PMID:27515345

  16. In vitro digestion and lactase treatment influence uptake of quercetin and quercetin glucoside by the Caco-2 cell monolayer

    PubMed Central

    Boyer, Jeanelle; Brown, Dan; Liu, Rui Hai

    2005-01-01

    Background Quercetin and quercetin glycosides are widely consumed flavonoids found in many fruits and vegetables. These compounds have a wide range of potential health benefits, and understanding the bioavailability of flavonoids from foods is becoming increasingly important. Methods This study combined an in vitro digestion, a lactase treatment and the Caco-2 cell model to examine quercetin and quercetin glucoside uptake from shallot and apple homogenates. Results The in vitro digestion alone significantly decreased quercetin aglycone recovery from the shallot digestate (p < 0.05), but had no significant effect on quercetin-3-glucoside recovery (p > 0.05). Digestion increased the Caco-2 cell uptake of shallot quercetin-4'-glucoside by 2-fold when compared to the non-digested shallot. Despite the loss of quercetin from the digested shallot, the bioavailability of quercetin aglycone to the Caco-2 cells was the same in both the digested and non-digested shallot. Treatment with lactase increased quercetin recovery from the shallot digestate nearly 10-fold and decreased quercetin-4'-glucoside recovery by more than 100-fold (p < 0.05), but had no effect on quercetin recovery from apple digestates. Lactase treatment also increased shallot quercetin bioavailability to the Caco-2 cells approximately 14-fold, and decreased shallot quercetin-4'-glucoside bioavailability 23-fold (p < 0.05). These Caco-2 cells had lactase activity similar to that expressed by a lactose intolerant human. Conclusions The increase in quercetin uptake following treatment with lactase suggests that dietary supplementation with lactase may increase quercetin bioavailability in lactose intolerant humans. Combining the digestion, the lactase treatment and the Caco-2 cell culture model may provide a reliable in vitro model for examining flavonoid glucoside bioavailability from foods. PMID:15644141

  17. Rat Pial Microvascular Responses to Transient Bilateral Common Carotid Artery Occlusion and Reperfusion: Quercetin's Mechanism of Action.

    PubMed

    Lapi, D; Vagnani, S; Pignataro, G; Esposito, E; Paterni, M; Colantuoni, A

    2012-01-01

    The aim of the present study was to assess quercetin's mechanism of action in rat pial microvessels during transient bilateral common carotid artery occlusion (BCCAO) and reperfusion. Rat pial microcirculation was visualized using fluorescence microscopy through a closed cranial window. Pial arterioles were classified in five orders of branchings. In ischemic rats, 30 min BCCAO and 60 min reperfusion caused arteriolar diameter decrease, microvascular leakage, leukocyte adhesion in venules, and reduction of capillary perfusion. Quercetin highest dose determined dilation in all arteriolar orders, by 40 ± 4% of baseline in order 2 vessels, and prevented microvascular permeability [0.15 ± 0.02 normalized gray levels (NGL)], leukocyte adhesion, and capillary failure. Protein kinase C (PKC) inhibition exerted by chelerythrine prior to quercetin attenuated quercetin-induced effects: order 2 arterioles dilated by 19.0 ± 2.4% baseline, while there was an increase in permeability (0.40 ± 0.05 NGL) and leukocyte adhesion with a marked decrease in capillary perfusion. Tyrosine kinase (TK) inhibition by tyrphostin 47 prior to quercetin lessened smaller pial arterioles responses, dilating by 20.7 ± 2.5% of baseline, while leakage increased (0.39 ± 0.04 NGL) sustained by slight leukocyte adhesion and ameliorated capillary perfusion. Inhibition of endothelium nitric oxide synthase (eNOS) by N(G)-nitro-L-arginine-methyl ester (L-NAME) prior to PKC or TK reduced the quercetin's effects on pial arteriolar diameter and leakage. eNOS inhibition by L-NAME reduced quercetin effects on pial arteriolar diameter and leakage. Finally, combined inhibition of PKC and TK prior to quercetin abolished quercetin-induced effects, decreasing eNOS expression, while blocking ATP-sensitive potassium (K(ATP)) channels by glibenclamide suppressed arteriolar dilation. In conclusion, the protective effects of quercetin could be due to different mechanisms resulting in NO

  18. Quercetin modulates keratoconus metabolism in vitro

    PubMed Central

    McKay, Tina B; Sarker-Nag, Akhee; Lyon, Desiree’; Asara, John M; Karamichos, Dimitrios

    2016-01-01

    Corneal scarring is the result of a disease, infection or injury. The resulting scars cause significant loss of vision or even blindness. To-date, the most successful treatment is corneal transplantation, but it does not come without side effects. One of the corneal dystrophies that are correlated with corneal scarring is keratoconus (KC). The onset of the disease is still unknown; however, altered cellular metabolism has been linked to promoting the fibrotic phenotype and therefore scarring. We have previously shown that human keratoconus cells (HKCs) have altered metabolic activity when compared to normal human corneal fibroblasts (HCFs). In our current study, we present evidence that quercetin, a natural flavonoid, is a strong candidate for regulating metabolic activity of both HCFs and HKCs in vitro and therefore a potential therapeutic to target the altered cellular metabolism characteristic of HKCs. Targeted mass spectrometry-based metabolomics was performed on HCFs and HKCs with and without quercetin treatment in order to identify variations in metabolite flux. Overall, our study reveals a novel therapeutic target OF Quercetin on corneal stromal cell metabolism in both healthy and diseased states. Clearly, further studies are necessary in order to dissect the mechanism of action of quercetin. PMID:26173740

  19. Protective effect of quercetin on cadmium-induced oxidative toxicity on germ cells in male mice.

    PubMed

    Bu, Tongliang; Mi, Yuling; Zeng, Weidong; Zhang, Caiqiao

    2011-03-01

    Cadmium is a toxic heavy metal that is widely distributed in the environment. As a critical process, oxidative toxicity mediates the morphological and functional damages in germ cells after cadmium exposure. In this study, the protective effect of quercetin on cadmium-induced oxidative toxicity was investigated in mouse testicular germ cells. After oral administration of cadmium chloride at 4 mg/kg body weight for 2 weeks, damages in spermatozoa occurred in the early stage of spermatogenesis. Cadmium treatment significantly decreased the testicular antioxidant system, including decreases in the glutathione (GSH) level, superoxide dismutase (SOD), and GSH peroxidase (GSH-Px) activities. Moreover, exposure to cadmium resulted in an increase of hydrogen peroxide production and lipid peroxidation in testes. In addition, cadmium provoked germ cell apoptosis by upregulating expression of the proapoptotic proteins Bax and caspase-3 and downregulating expression of the antiapoptotic protein Bcl-XL. However, combined administration of a common flavonoid quercetin at 75 mg/kg body weight significantly attenuated cadmium-induced germ cell apoptosis by suppressing the hydrogen peroxide production and lipid peroxidation in testicular tissue. Simultaneous supplementation of quercetin markedly restored the decrease in GSH level and SOD and GSH-Px activities elicited by cadmium treatment. Additionally, quercetin protected germ cells from cadmium-induced apoptosis by downregulating the expression of Bax and caspase-3 and upregulating Bcl-XL expression. These results indicate that quercetin, due to its antioxidative and antiapoptotic characters, may manifest effective protective action against cadmium-induced oxidative toxicity in mouse testicular germ cells. PMID:21337715

  20. Berberine Attenuates Development of the Hepatic Gluconeogenesis and Lipid Metabolism Disorder in Type 2 Diabetic Mice and in Palmitate-Incubated HepG2 Cells through Suppression of the HNF-4α miR122 Pathway

    PubMed Central

    Yu, Yang; Lan, Xiaoxin; Yao, Fan; Yan, Xin; Chen, Li; Hatch, Grant M.

    2016-01-01

    Berberine (BBR) has been shown to exhibit protective effects against diabetes and dyslipidemia. Previous studies have indicated that BBR modulates lipid metabolism and inhibits hepatic gluconeogensis by decreasing expression of Hepatocyte Nuclear Factor-4α (HNF-4α). However, the mechanism involved in this process was unknown. In the current study, we examined the mechanism of how BBR attenuates hepatic gluconeogenesis and the lipid metabolism alterations observed in type 2 diabetic (T2D) mice and in palmitate (PA)-incubated HepG2 cells. Treatment with BBR for 4 weeks improve all biochemical parameters compared to T2D mice. Treatment of T2D mice for 4 weeks or treatment of PA-incubated HepG2 cells for 24 h with BBR decreased expression of HNF-4α and the microRNA miR122, the key gluconeogenesis enzymes Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase) and the key lipid metabolism proteins Sterol response element binding protein-1 (SREBP-1), Fatty acid synthase-1 (FAS-1) and Acetyl-Coenzyme A carboxylase (ACCα) and increased Carnitine palmitoyltransferase-1(CPT-1) compared to T2D mice or PA-incubated HepG2 cells. Expression of HNF-4α in HepG2 cells increased expression of gluconeogenic and lipid metabolism enzymes and BBR treatment or knock down of miR122 attenuated the effect of HNF-4α expression. In contrast, BBR treatment did not alter expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. In addition, miR122 mimic increased expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. These data indicate that miR122 is a critical regulator in the downstream pathway of HNF-4α in the regulation of hepatic gluconeogenesis and lipid metabolism in HepG2 cells. The effect of BBR on hepatic gluconeogenesis and lipid metabolism is mediated through HNF-4α and is regulated downstream of miR122. Our data provide new evidence to support HNF-4α and miR122

  1. Berberine Attenuates Development of the Hepatic Gluconeogenesis and Lipid Metabolism Disorder in Type 2 Diabetic Mice and in Palmitate-Incubated HepG2 Cells through Suppression of the HNF-4α miR122 Pathway.

    PubMed

    Wei, Shengnan; Zhang, Ming; Yu, Yang; Lan, Xiaoxin; Yao, Fan; Yan, Xin; Chen, Li; Hatch, Grant M

    2016-01-01

    Berberine (BBR) has been shown to exhibit protective effects against diabetes and dyslipidemia. Previous studies have indicated that BBR modulates lipid metabolism and inhibits hepatic gluconeogensis by decreasing expression of Hepatocyte Nuclear Factor-4α (HNF-4α). However, the mechanism involved in this process was unknown. In the current study, we examined the mechanism of how BBR attenuates hepatic gluconeogenesis and the lipid metabolism alterations observed in type 2 diabetic (T2D) mice and in palmitate (PA)-incubated HepG2 cells. Treatment with BBR for 4 weeks improve all biochemical parameters compared to T2D mice. Treatment of T2D mice for 4 weeks or treatment of PA-incubated HepG2 cells for 24 h with BBR decreased expression of HNF-4α and the microRNA miR122, the key gluconeogenesis enzymes Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase) and the key lipid metabolism proteins Sterol response element binding protein-1 (SREBP-1), Fatty acid synthase-1 (FAS-1) and Acetyl-Coenzyme A carboxylase (ACCα) and increased Carnitine palmitoyltransferase-1(CPT-1) compared to T2D mice or PA-incubated HepG2 cells. Expression of HNF-4α in HepG2 cells increased expression of gluconeogenic and lipid metabolism enzymes and BBR treatment or knock down of miR122 attenuated the effect of HNF-4α expression. In contrast, BBR treatment did not alter expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. In addition, miR122 mimic increased expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. These data indicate that miR122 is a critical regulator in the downstream pathway of HNF-4α in the regulation of hepatic gluconeogenesis and lipid metabolism in HepG2 cells. The effect of BBR on hepatic gluconeogenesis and lipid metabolism is mediated through HNF-4α and is regulated downstream of miR122. Our data provide new evidence to support HNF-4α and miR122

  2. Isorhamnetin attenuates liver fibrosis by inhibiting TGF-β/Smad signaling and relieving oxidative stress.

    PubMed

    Yang, Ji Hye; Kim, Sang Chan; Kim, Kyu Min; Jang, Chang Ho; Cho, Sam Seok; Kim, Seung Jung; Ku, Sae Kwang; Cho, Il Je; Ki, Sung Hwan

    2016-07-15

    Hepatic fibrosis is considered integral to the progression of chronic liver diseases, leading to the development of cirrhosis and hepatocellular carcinoma. Activation of hepatic stellate cells (HSCs) is the dominant event in hepatic fibrogenesis. We investigated the ability of isorhamnetin, the 3'-O-methylated metabolite of quercetin, to protect against hepatic fibrosis in vitro and in vivo. Isorhamnetin inhibited transforming growth factor (TGF)-β1-induced expression of α-smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), and collagen in primary murine HSCs and LX-2 cells. The TGF-β1- or Smad-induced luciferase reporter activity of Smad binding elements was significantly decreased by isorhamnetin with a concomitant decrease in Smad2/3 phosphorylation. Isorhamnetin increased the nuclear translocation of Nrf2 in HSCs and increased antioxidant response element reporter gene activity. Furthermore, isorhamnetin blocked TGF-β1-induced reactive oxygen species production. The specific role of Nrf2 in isorhamnetin-mediated suppression of PAI-1 and phosphorylated Smad3 was verified using a siRNA against Nrf2. To examine the anti-fibrotic effect of isorhamnetin in vivo, liver fibrosis was induced by CCl4 in mice. Isorhamnetin significantly prevented CCl4-induced increases in serum alanine transaminase and aspartate transaminase levels, and caused histopathological changes characterized by decreases in hepatic degeneration, inflammatory cell infiltration, and collagen accumulation. Moreover, isorhamnetin markedly decreased the expression of phosphorylated Smad3, TGF-β1, α-SMA, and PAI-1. Isorhamnetin attenuated the CCl4-induced increase in the number of 4-hydroxynonenal and nitrotyrosine-positive cells, and prevented glutathione depletion. We propose that isorhamnetin inhibits the TGF-β/Smad signaling pathway and relieves oxidative stress, thus inhibiting HSC activation and preventing liver fibrosis.

  3. Isorhamnetin attenuates liver fibrosis by inhibiting TGF-β/Smad signaling and relieving oxidative stress.

    PubMed

    Yang, Ji Hye; Kim, Sang Chan; Kim, Kyu Min; Jang, Chang Ho; Cho, Sam Seok; Kim, Seung Jung; Ku, Sae Kwang; Cho, Il Je; Ki, Sung Hwan

    2016-07-15

    Hepatic fibrosis is considered integral to the progression of chronic liver diseases, leading to the development of cirrhosis and hepatocellular carcinoma. Activation of hepatic stellate cells (HSCs) is the dominant event in hepatic fibrogenesis. We investigated the ability of isorhamnetin, the 3'-O-methylated metabolite of quercetin, to protect against hepatic fibrosis in vitro and in vivo. Isorhamnetin inhibited transforming growth factor (TGF)-β1-induced expression of α-smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), and collagen in primary murine HSCs and LX-2 cells. The TGF-β1- or Smad-induced luciferase reporter activity of Smad binding elements was significantly decreased by isorhamnetin with a concomitant decrease in Smad2/3 phosphorylation. Isorhamnetin increased the nuclear translocation of Nrf2 in HSCs and increased antioxidant response element reporter gene activity. Furthermore, isorhamnetin blocked TGF-β1-induced reactive oxygen species production. The specific role of Nrf2 in isorhamnetin-mediated suppression of PAI-1 and phosphorylated Smad3 was verified using a siRNA against Nrf2. To examine the anti-fibrotic effect of isorhamnetin in vivo, liver fibrosis was induced by CCl4 in mice. Isorhamnetin significantly prevented CCl4-induced increases in serum alanine transaminase and aspartate transaminase levels, and caused histopathological changes characterized by decreases in hepatic degeneration, inflammatory cell infiltration, and collagen accumulation. Moreover, isorhamnetin markedly decreased the expression of phosphorylated Smad3, TGF-β1, α-SMA, and PAI-1. Isorhamnetin attenuated the CCl4-induced increase in the number of 4-hydroxynonenal and nitrotyrosine-positive cells, and prevented glutathione depletion. We propose that isorhamnetin inhibits the TGF-β/Smad signaling pathway and relieves oxidative stress, thus inhibiting HSC activation and preventing liver fibrosis. PMID:27151496

  4. Controllable attenuators

    NASA Astrophysics Data System (ADS)

    Krylov, G. M.; Khoniak, E. I.; Tynynyka, A. N.; Iliushenko, V. N.; Sikolenko, S. F.

    Methods for the synthesis of controllable attenuators and their implementations are examined. In particular, attention is given to the general properties of controllable attenuators, control elements, types of controllable attenuators and methods of their analysis, and synthesis of the control characteristic of attenuators. The discussion also covers the efficiency of attenuator control, the use of transmission line segments in wide-band controllable attenuators, and attenuators with a discretely controlled transmission coefficient.

  5. Clonorchis sinensis lysophospholipase inhibits TGF-β1-induced expression of pro-fibrogenic genes through attenuating the activations of Smad3, JNK2, and ERK1/2 in hepatic stellate cell line LX-2.

    PubMed

    Zhou, Lina; Shang, Mei; Shi, Mengchen; Zhao, Lu; Lin, Zhipeng; Chen, Tingjin; Wu, Yinjuan; Tang, Zeli; Sun, Hengchang; Yu, Jinyun; Huang, Yan; Yu, Xinbing

    2016-02-01

    Liver fibrosis is a wound healing response associated with chronic liver injury. Hepatic stellate cells (HSCs) activation is a key event in the development of liver fibrosis. Since helminths have the ability to live for decades in the host by establishing an adaptive relationship in the interplay with its hosts, we hypothesize that whether Clonochis sinensis LysophospholipaseA (CsLysoPLA), a component of excretory/secretory proteins, can attenuate the fibrogenic response by inhibiting activation of LX-2 cells, thereby balancing the pro-fibrotic and anti-fibrotic response during the Clonochis sinensis (C. sinensis) infection. In the present study, LX-2 cells were stimulated with CsLysoPLA in the presence of TGF-β1, and the expressions of collagen type I (COL1A1), α-smooth muscle actin (α-SMA), and matrix metalloproteinase 2 (MMP2) were decreased. In addition, CsLysoPLA significantly inhibited the proliferation and migration of LX-2 cells stimulated by TGF-β1. Pretreatment of LX-2 cells with CsLysoPLA attenuated the phosphorylation of Smad3 as well as JNK2 and ERK1/2 in response to the stimulation of TGF-β1. For the first time, our results showed an anti-fibrogenic effect of CsLysoPLA by attenuating the response of LX-2 cells to TGF-β1 through inhibiting the activations of Smad3, ERK1/2, and JNK2. PMID:26486942

  6. Protective effects of quercetin during influenza virus-induced oxidative stress.

    PubMed

    Raju, T A; Lakshmi, A N; Anand, T; Rao, L V; Sharma, G

    2000-12-01

    Oxidative stress was found to have a role in many viral diseases including AIDS, hepatitis and influenza. In the present study the pathology of influenza viral infection in the lungs, which may lead to oxidative stress, was investigated and an attempt was made to study the efficacy of anti-oxidants as therapeutic agents. Adult male mice of Swiss albino type were infected with influenza virus (A/Hong Kong/8/68) and studied for the antioxidant status in the lungs by evaluating the lung enzymatic anti-oxidant system including superoxide dismutase and catalase. Superoxide radical generation, which might increase by the activated alveolar macrophages, was estimated by nitroblue-tetrazolium reduction assay. We have also estimated lipid peroxidation levels in lung through thiobarbutiric acid reactive substances assay. We also examined the ability of flavonoid quercetin in protecting from influenza virus-induced oxidative stress. The influenza-infected group showed decreased levels of superoxide dismutase and catalase; however, anti-oxidant supplemented groups showed these activities to be the same as in the control group. The lipid peroxide levels were increased in virus-infected mice. Administration of quercetin lowered the lipid peroxide levels significantly. Formazan positive cells were increased by 80% in the virus-infected group and supplementation with quercetin reduced their number to 44%.

  7. Polyploidy Analysis and Attenuation of Oxidative Stress in Hepatic Tissue of STZ-Induced Diabetic Rats Treated with an Aqueous Extract of Vochysia rufa

    PubMed Central

    Moraes, Izabela Barbosa; Manzan-Martins, Camilla; de Gouveia, Neire Moura; Calábria, Luciana Karen; Hiraki, Karen Renata Nakamura; Moraes, Alberto da Silva; Espindola, Foued Salmen

    2015-01-01

    Diabetes mellitus (DM) is characterized by hyperglycemia and alterations in the metabolism of lipids, carbohydrates, and proteins. Due to its hypoglycemic effect Vochysia rufa is frequently used in Uberlandia, Brazil, to treat DM. Despite its popularity, there is little information about its effect on hepatic tissue. Therefore, we evaluated the histoarchitecture, oxidative stress parameters, and polyploidy of liver tissue from streptozotocin- (STZ-) induced diabetic rats treated with aqueous extract of Vochysia rufa (AEV). Histology was determined by fixing the livers, processing, and staining with HE. Oxidative stress was determined by evaluating CAT, GPx, and SOD activity in liver homogenates and hepatic mitochondria fraction and by measuring GST, GSH levels and lipid peroxidation (MDA). Polyploidy was determined by subjecting isolated hepatocyte nuclei to flow cytometry. In the diabetic group, GST activity and GSH rates decreased whereas liver homogenate analysis showed that GPx, SOD activity and MDA increased. AEV treatment restored all parameters to normal levels. The oxidative stress analysis of hepatic mitochondria fraction showed similar results. Lower polyploid cell populations were found in the diabetic rat livers, even after glibenclamide treatment. Thus, AEV treatment efficiently reduced hepatic oxidative stress caused by STZ-induced diabetes and produced no morphological changes in the histological analysis. PMID:25763088

  8. Curcumin attenuates arsenic-induced hepatic injuries and oxidative stress in experimental mice through activation of Nrf2 pathway, promotion of arsenic methylation and urinary excretion.

    PubMed

    Gao, Shuang; Duan, Xiaoxu; Wang, Xin; Dong, Dandan; Liu, Dan; Li, Xin; Sun, Guifan; Li, Bing

    2013-09-01

    Oxidative stress is one of the major mechanisms implicated in inorganic arsenic poisoning. Curcumin is a natural phenolic compound with impressive antioxidant properties. What's more, curcumin is recently proved to exert its chemopreventive effects partly through the activation of nuclear factor (erythroid-2 related) factor 2 (Nrf2) and its antioxidant and phase II detoxifying enzymes. In vivo, we investigated the protective effects of curcumin against arsenic-induced hepatotoxicity and oxidative injuries. Our results showed that arsenic-induced elevation of serum alanine amino transferase (ALT) and aspartate aminotransferase (AST) activities, augmentation of hepatic malonaldehyde (MDA), as well as the reduction of blood and hepatic glutathione (GSH) levels, were all consistently relieved by curcumin. We also observed the involvement of curcumin in promoting arsenic methylation and urinary elimination in vivo. Furthermore, both the hepatic Nrf2 protein and two typically recognized Nrf2 downstream genes, NADP(H) quinine oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), were consistently up-regulated in curcumin-treated mice. Our study confirmed the antagonistic roles of curcumin to counteract inorganic arsenic-induced hepatic toxicity in vivo, and suggested that the potent Nrf2 activation capability might be valuable for the protective effects of curcumin against arsenic intoxication. This provides a potential useful chemopreventive dietary component for human populations. PMID:23871787

  9. Curcumin attenuates arsenic-induced hepatic injuries and oxidative stress in experimental mice through activation of Nrf2 pathway, promotion of arsenic methylation and urinary excretion.

    PubMed

    Gao, Shuang; Duan, Xiaoxu; Wang, Xin; Dong, Dandan; Liu, Dan; Li, Xin; Sun, Guifan; Li, Bing

    2013-09-01

    Oxidative stress is one of the major mechanisms implicated in inorganic arsenic poisoning. Curcumin is a natural phenolic compound with impressive antioxidant properties. What's more, curcumin is recently proved to exert its chemopreventive effects partly through the activation of nuclear factor (erythroid-2 related) factor 2 (Nrf2) and its antioxidant and phase II detoxifying enzymes. In vivo, we investigated the protective effects of curcumin against arsenic-induced hepatotoxicity and oxidative injuries. Our results showed that arsenic-induced elevation of serum alanine amino transferase (ALT) and aspartate aminotransferase (AST) activities, augmentation of hepatic malonaldehyde (MDA), as well as the reduction of blood and hepatic glutathione (GSH) levels, were all consistently relieved by curcumin. We also observed the involvement of curcumin in promoting arsenic methylation and urinary elimination in vivo. Furthermore, both the hepatic Nrf2 protein and two typically recognized Nrf2 downstream genes, NADP(H) quinine oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), were consistently up-regulated in curcumin-treated mice. Our study confirmed the antagonistic roles of curcumin to counteract inorganic arsenic-induced hepatic toxicity in vivo, and suggested that the potent Nrf2 activation capability might be valuable for the protective effects of curcumin against arsenic intoxication. This provides a potential useful chemopreventive dietary component for human populations.

  10. Quercetin Treatment Ameliorates Systemic Oxidative Stress in Cirrhotic Rats

    PubMed Central

    Vieira, Emanuelle Kerber; Bona, Silvia; Di Naso, Fábio Cangeri; Porawski, Marilene; Tieppo, Juliana; Marroni, Norma Possa

    2011-01-01

    Our aim was to investigate whether the antioxidant quercetin protects against liver injury and ameliorates the systemic oxidative stress in rats with common bile duct ligation. Secondary biliary cirrhosis was induced through 28 days of bile duct obstruction. Animals received quercetin (Q) after 14 days of obstruction. Groups of control (CO) and cirrhotic (CBDL) animals received a daily 50 mg/kg body weight i.p. injection of quercetin (CO + Q; CBDL + Q) or vehicle (CO; CBDL). Quercetin corrected the reduction in superoxide dismutase (SOD), catalase CAT, and glutathione peroxidase GPx activities and prevented the increase of thiobarbituric acid reactive substances (TBARS), aminotransferases, and alkaline phosphatase in cirrhotic animals. Quercetin administration also corrected the reduced total nitrate concentration in the liver and prevented liver fibrosis and necrosis. These effects suggest that quercetin might be a useful agent to preserve liver function and prevent systemic oxidative stress. PMID:21991520

  11. Differential effects of quercetin on hippocampus-dependent learning and memory in mice fed with different diets related with oxidative stress.

    PubMed

    Xia, Shu-Fang; Xie, Zhen-Xing; Qiao, Yi; Li, Li-Rong; Cheng, Xiang-Rong; Tang, Xue; Shi, Yong-Hui; Le, Guo-Wei

    2015-01-01

    High fat diets induce oxidative stress which may be involved in neurodegenerative diseases. Quercetin is a kind of antioxidant that has neuroprotective effects and potent7ial pro-oxidant effects as well. In this study, we evaluated cognitive function in mice fed with high fat diets and basic diets with or without quercetin. Male Chinese Kunming (KM) mice were randomly assigned to five groups fed with basic diet (Control), basic diet with 0.005% (w/w) quercetin (CQ1), high fat diet (HFD), HFD with 0.005% (w/w) quercetin (HFDQ1) and 0.01% (w/w) quercetin (HFDQ2) for 13weeks. At the end of the study period, fasting blood glucose (FBG), plasma and hippocampal markers of oxidative stress, plasma lipid status, Morris water maze as well as hippocampal relative mRNA expression of akt, bdnf, camkII, creb, gsk-3β, nrf2 and pi3k were examined. The results suggested that in comparison to the control group, the escape latency was increased and percent time spent in the target quadrant was decreased, with increased reactive carbonyls, malondialdehyde (MDA) and declined expression of pi3k, akt, nrf2, creb and bdnf in the hippocampus of HFD and CQ1 groups. Conversely, higher quercetin supplemented to HFD improved antioxidant capacity and reversed cognitive decline completely. Significant correlations between the redox status and cognition-related gene expression were observed as well (P<0.05). Thus, in the case of oxidative stress, an appropriate dose of quercetin can attenuate oxidative stress to improve hippocampus dependent cognition. But under a balanced situation, quercetin exerts pro-oxidant effects to impair cognition.

  12. Application of Bioactive Quercetin in Oncotherapy: From Nutrition to Nanomedicine.

    PubMed

    Nam, Ju-Suk; Sharma, Ashish Ranjan; Nguyen, Lich Thi; Chakraborty, Chiranjib; Sharma, Garima; Lee, Sang-Soo

    2016-01-01

    Phytochemicals as dietary constituents are being explored for their cancer preventive properties. Quercetin is a major constituent of various dietary products and recently its anti-cancer potential has been extensively explored, revealing its anti-proliferative effect on different cancer cell lines, both in vitro and in vivo. Quercetin is known to have modulatory effects on cell apoptosis, migration and growth via various signaling pathways. Though, quercetin possesses great medicinal value, its applications as a therapeutic drug are limited. Problems like low oral bioavailability and poor aqueous solubility make quercetin an unreliable candidate for therapeutic purposes. Additionally, the rapid gastrointestinal digestion of quercetin is also a major barrier for its clinical translation. Hence, to overcome these disadvantages quercetin-based nanoformulations are being considered in recent times. Nanoformulations of quercetin have shown promising results in its uptake by the epithelial system as well as enhanced delivery to the target site. Herein we have tried to summarize various methods utilized for nanofabrication of quercetin formulations and for stable and sustained delivery of quercetin. We have also highlighted the various desirable measures for its use as a promising onco-therapeutic agent. PMID:26797598

  13. Platycodon grandiflorus Root Extract Attenuates Body Fat Mass, Hepatic Steatosis and Insulin Resistance through the Interplay between the Liver and Adipose Tissue.

    PubMed

    Kim, Ye Jin; Choi, Ji-Young; Ryu, Ri; Lee, Jeonghyeon; Cho, Su-Jung; Kwon, Eun-Young; Lee, Mi-Kyung; Liu, Kwang-Hyeon; Rina, Yu; Sung, Mi-Kyung; Choi, Myung-Sook

    2016-08-30

    The Platycodon grandiflorus root, a Korean medicinal food, is well known to have beneficial effects on obesity and diabetes. In this study, we demonstrated the metabolic effects of P. grandiflorus root ethanol extract (PGE), which is rich in platycodins, on diet-induced obesity. C57BL/6J mice (four-week-old males) were fed a normal diet (16.58% of kilocalories from fat), high-fat diet (HFD, 60% of kilocalories from fat), and HFD supplemented with 5% (w/w) PGE. In the HFD-fed mice, PGE markedly suppressed the body weight gain and white fat mass to normal control level, with simultaneous increase in the expression of thermogenic genes (such as SIRT1, PPARα, PGC1α, and UCP1), that accompanied changes in fatty acid oxidation (FAO) and energy expenditure. In addition, PGE improved insulin sensitivity through activation of the PPARγ expression, which upregulates adiponectin while decreasing leptin gene expression in adipocytes. Furthermore, PGE improved hepatic steatosis by suppressing hepatic lipogenesis while increasing expression of FAO-associated genes such as PGC1α. PGE normalized body fat and body weight, which is likely associated with the increased energy expenditure and thermogenic gene expression. PGE can protect from HFD-induced insulin resistance, and hepatic steatosis by controlling lipid and glucose metabolism.

  14. Platycodon grandiflorus Root Extract Attenuates Body Fat Mass, Hepatic Steatosis and Insulin Resistance through the Interplay between the Liver and Adipose Tissue

    PubMed Central

    Kim, Ye Jin; Choi, Ji-Young; Ryu, Ri; Lee, Jeonghyeon; Cho, Su-Jung; Kwon, Eun-Young; Lee, Mi-Kyung; Liu, Kwang-Hyeon; Rina, Yu; Sung, Mi-Kyung; Choi, Myung-Sook

    2016-01-01

    The Platycodon grandiflorus root, a Korean medicinal food, is well known to have beneficial effects on obesity and diabetes. In this study, we demonstrated the metabolic effects of P. grandiflorus root ethanol extract (PGE), which is rich in platycodins, on diet-induced obesity. C57BL/6J mice (four-week-old males) were fed a normal diet (16.58% of kilocalories from fat), high-fat diet (HFD, 60% of kilocalories from fat), and HFD supplemented with 5% (w/w) PGE. In the HFD-fed mice, PGE markedly suppressed the body weight gain and white fat mass to normal control level, with simultaneous increase in the expression of thermogenic genes (such as SIRT1, PPARα, PGC1α, and UCP1), that accompanied changes in fatty acid oxidation (FAO) and energy expenditure. In addition, PGE improved insulin sensitivity through activation of the PPARγ expression, which upregulates adiponectin while decreasing leptin gene expression in adipocytes. Furthermore, PGE improved hepatic steatosis by suppressing hepatic lipogenesis while increasing expression of FAO-associated genes such as PGC1α. PGE normalized body fat and body weight, which is likely associated with the increased energy expenditure and thermogenic gene expression. PGE can protect from HFD-induced insulin resistance, and hepatic steatosis by controlling lipid and glucose metabolism. PMID:27589792

  15. Platycodon grandiflorus Root Extract Attenuates Body Fat Mass, Hepatic Steatosis and Insulin Resistance through the Interplay between the Liver and Adipose Tissue.

    PubMed

    Kim, Ye Jin; Choi, Ji-Young; Ryu, Ri; Lee, Jeonghyeon; Cho, Su-Jung; Kwon, Eun-Young; Lee, Mi-Kyung; Liu, Kwang-Hyeon; Rina, Yu; Sung, Mi-Kyung; Choi, Myung-Sook

    2016-01-01

    The Platycodon grandiflorus root, a Korean medicinal food, is well known to have beneficial effects on obesity and diabetes. In this study, we demonstrated the metabolic effects of P. grandiflorus root ethanol extract (PGE), which is rich in platycodins, on diet-induced obesity. C57BL/6J mice (four-week-old males) were fed a normal diet (16.58% of kilocalories from fat), high-fat diet (HFD, 60% of kilocalories from fat), and HFD supplemented with 5% (w/w) PGE. In the HFD-fed mice, PGE markedly suppressed the body weight gain and white fat mass to normal control level, with simultaneous increase in the expression of thermogenic genes (such as SIRT1, PPARα, PGC1α, and UCP1), that accompanied changes in fatty acid oxidation (FAO) and energy expenditure. In addition, PGE improved insulin sensitivity through activation of the PPARγ expression, which upregulates adiponectin while decreasing leptin gene expression in adipocytes. Furthermore, PGE improved hepatic steatosis by suppressing hepatic lipogenesis while increasing expression of FAO-associated genes such as PGC1α. PGE normalized body fat and body weight, which is likely associated with the increased energy expenditure and thermogenic gene expression. PGE can protect from HFD-induced insulin resistance, and hepatic steatosis by controlling lipid and glucose metabolism. PMID:27589792

  16. TOP1 and 2, polysaccharides from Taraxacum officinale, attenuate CCl(4)-induced hepatic damage through the modulation of NF-kappaB and its regulatory mediators.

    PubMed

    Park, Chung Mu; Youn, Hyun Joo; Chang, Hee Kyung; Song, Young Sun

    2010-05-01

    In this work, we estimate the inhibitory effect of two polysaccharides from Taraxacum officinale (TOP) on CCl(4)-induced oxidative stress and inflammation in Sprague-Dawley rats. TOP1 and 2 (304, 92 mg/kg bw) were administered for 7 days via a stomach sonde, and hepatitis was induced by a single dose of CCl(4) (50% CCl(4)/olive oil; 0.5 mL/kg bw) administration. CCl(4) significantly elevated serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities. Histopathological observation further revealed that CCl(4)-induced moderate levels of inflammatory cell infiltration, centrilobular fatty change, apoptosis, and necrosis. However, TOPs pretreatment markedly decreased AST and ALT activities as well as hepatic lesions. TOPs also increased free radical scavenging activity, as exhibited by a lowered TBARS concentration. TOPs pretreatment also reversed other hepatitis-associated symptoms, including GSH depletion, inhibited anti-oxidative enzyme activities, up-regulation of NF-kappaB and increased expression of its regulatory inflammatory mediators, such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-alpha, and interleukin (IL)-1beta. These results suggest that TOPs have a hepatoprotective effect by modulating inflammatory responses and ameliorating oxidative stress.

  17. Bioavailability of quercetin: problems and promises.

    PubMed

    Cai, X; Fang, Z; Dou, J; Yu, A; Zhai, G

    2013-01-01

    Quercetin (QC) is a typical plant flavonoid, possesses diverse pharmacologic effects including antiinflammatory, antioxidant, anti-cancer, anti-anaphylaxis effects and against aging. However, the application of QC in pharmaceutical field is limited due to its poor solubility, low bioavailability, poor permeability and instability. To improve the bioavailability of QC, numerous approaches have been undertaken, involving the use of promising drug delivery systems such as inclusion complexes, liposomes, nanoparticles or micelles, which appear to provide higher solubility and bioavailability. Enhanced bioavailability of QC in the near future is likely to bring this product to the forefront of therapeutic agents for treatment of human disease.

  18. Bovine Serum Albumin Nanoparticles Containing Quercetin: Characterization and Antioxidant Activity.

    PubMed

    Antônio, Emilli; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2016-02-01

    Quercetin is a flavonoid reported as anti-allergic, anti-inflammatory, antiplatelet, anti-microbial, antioxidant, antineurodegenerative and antitumoral. However, due to its low water solubility, its efficacy is restricted. Nanotechnology can be an importante tool to improve the quercetin properties and increase its bioavailability. In this study, bovine serum albumin (BSA) nanoparticles containing quercetin were developed by desolvation technique, characterized the mean particle size, polydispersity, zeta potential, encapsulation efficiency, physical state of drug in nanoparticles and drug release profile as well as their antioxidant activity was evaluated. The influence of glutaraldehyde percentage in nanoparticles properties was evaluated and did not influence the nanoparticles parameters. Nanoparticles presented a mean size around 130 nm and encapsulation efficiency around 85%. Results from X-ray diffractometry showed that the crystal of the drug was converted to an amorphous state in polymeric matrix. Quercetin release profile demonstrated a biphasic pattern and after 96 h approximately 18% of drug was released. Kinetic models demonstrated that the quercetin release followed a second-order model and the release was governed by Fickian diffusion. After 96 h, quercetin-loaded nanoparticles were more effective than free quercetin for scanvenger of radical ABTS + and hypochlorous acid. BSA nanoparticles represents potential carriers for improve quercetin properties. PMID:27433585

  19. Kaempferol and quercetin glycosides from Rubus idaeus L. leaves.

    PubMed

    Gudej, Jan

    2003-01-01

    Quercetin 3-0-beta-D-glucoside (I), quercetin and kaempferol 3-0-beta-D-galactosides (II, III), kaempferol 3-0-beta-L-arabinopyranoside (IV), kaempferol 3-0-beta-D-(6''-E-p-coumaroyl)-glucoside (tiliroside) (V) and methyl gallate (VI) were isolated from Rubus idaeus L. subspecies culture of Norna leaves and fully characterized.

  20. Bovine Serum Albumin Nanoparticles Containing Quercetin: Characterization and Antioxidant Activity.

    PubMed

    Antônio, Emilli; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2016-02-01

    Quercetin is a flavonoid reported as anti-allergic, anti-inflammatory, antiplatelet, anti-microbial, antioxidant, antineurodegenerative and antitumoral. However, due to its low water solubility, its efficacy is restricted. Nanotechnology can be an importante tool to improve the quercetin properties and increase its bioavailability. In this study, bovine serum albumin (BSA) nanoparticles containing quercetin were developed by desolvation technique, characterized the mean particle size, polydispersity, zeta potential, encapsulation efficiency, physical state of drug in nanoparticles and drug release profile as well as their antioxidant activity was evaluated. The influence of glutaraldehyde percentage in nanoparticles properties was evaluated and did not influence the nanoparticles parameters. Nanoparticles presented a mean size around 130 nm and encapsulation efficiency around 85%. Results from X-ray diffractometry showed that the crystal of the drug was converted to an amorphous state in polymeric matrix. Quercetin release profile demonstrated a biphasic pattern and after 96 h approximately 18% of drug was released. Kinetic models demonstrated that the quercetin release followed a second-order model and the release was governed by Fickian diffusion. After 96 h, quercetin-loaded nanoparticles were more effective than free quercetin for scanvenger of radical ABTS + and hypochlorous acid. BSA nanoparticles represents potential carriers for improve quercetin properties.

  1. Quercetin Reduces Ehrlich Tumor-Induced Cancer Pain in Mice

    PubMed Central

    Calixto-Campos, Cassia; Corrêa, Mab P.; Carvalho, Thacyana T.; Zarpelon, Ana C.; Hohmann, Miriam S. N.; Rossaneis, Ana C.; Coelho-Silva, Leticia; Pavanelli, Wander R.; Pinge-Filho, Phileno; Crespigio, Jefferson; Bernardy, Catia C. F.; Casagrande, Rubia; Verri, Waldiceu A.

    2015-01-01

    Cancer pain directly affects the patient's quality of life. We have previously demonstrated that the subcutaneous administration of the mammary adenocarcinoma known as Ehrlich tumor induces pain in mice. Several studies have shown that the flavonoid quercetin presents important biological effects, including anti-inflammatory, antioxidant, analgesic, and antitumor activity. Therefore, the analgesic effect and mechanisms of quercetin were evaluated in Ehrlich tumor-induced cancer pain in mice. Intraperitoneal (i.p.) treatments with quercetin reduced Ehrlich tumor-induced mechanical and thermal hyperalgesia, but not paw thickness or histological alterations, indicating an analgesic effect without affecting tumor growth. Regarding the analgesic mechanisms of quercetin, it inhibited the production of hyperalgesic cytokines IL-1β and TNFα and decreased neutrophil recruitment (myeloperoxidase activity) and oxidative stress. Naloxone (opioid receptor antagonist) inhibited quercetin analgesia without interfering with neutrophil recruitment, cytokine production, and oxidative stress. Importantly, cotreatment with morphine and quercetin at doses that were ineffective as single treatment reduced the nociceptive responses. Concluding, quercetin reduces the Ehrlich tumor-induced cancer pain by reducing the production of hyperalgesic cytokines, neutrophil recruitment, and oxidative stress as well as by activating an opioid-dependent analgesic pathway and potentiation of morphine analgesia. Thus, quercetin treatment seems a suitable therapeutic approach for cancer pain that merits further investigation. PMID:26351625

  2. Quercetinase pirin makes poliovirus replication resistant to flavonoid quercetin.

    PubMed

    Neznanov, Nickolay; Kondratova, Anna; Chumakov, Konstantin M; Neznanova, Lubov; Kondratov, Roman; Banerjee, Amiya K; Gudkov, Andrei V

    2008-04-01

    Flavonoid quercetin and its derivative, methylquercetin, inhibit the replication of poliovirus in several cell lines. Here, we show that replication of poliovirus is inhibited by quercetin and that the extent of this inhibition depends on the intracellular content of pirin, a quercetinase. HeLa cells contain higher content of pirin protein than normal kidney human epithelial (NKE) or 293 cells do. Poliovirus replication in HeLa cells is significantly more resistant to quercetin than its replication in NKE and 293 cells. Overexpression of pirin reduced antiviral inhibitory effect of quercetin, while siRNA-induced suppression of pirin level made poliovirus replication more sensitive to the flavonoid. The results suggest that quercetinase activity of pirin determines the resistance of poliovirus infection to quercetin.

  3. Quercetin Alleviates High-Fat Diet-Induced Oxidized Low-Density Lipoprotein Accumulation in the Liver: Implication for Autophagy Regulation.

    PubMed

    Liu, Liang; Gao, Chao; Yao, Ping; Gong, Zhiyong

    2015-01-01

    A growing body of evidence has indicated that high-fat diet-induced nonalcoholic fatty liver disease is usually accompanied by oxidized low-density lipoprotein (ox-LDL) deposited in the liver. The current study aimed to investigate the effect of quercetin on high-fat diet-induced ox-LDL accumulation in the liver and to explore the potential underlying mechanisms. The results demonstrate that quercetin supplementation for 24 weeks significantly alleviated high-fat diet-induced liver damage and reduced hepatic cholesterol and ox-LDL level. Quercetin notably inhibited both mRNA and protein expression of CD36 (reduced by 53% and 71%, resp.) and MSR1 (reduced by 25% and 45%, resp.), which were upregulated by high-fat diet. The expression of LC3II was upregulated by 2.4 times whereas that of p62 and mTOR was downregulated by 57% and 63% by quercetin treatment. Therefore, the significantly improved autophagy lysosomal degradation capacity for ox-LDL may be implicated in the hepatoprotective effect of quercetin; scavenger receptors mediated ox-LDL uptake might also be involved.

  4. Quercetin Alleviates High-Fat Diet-Induced Oxidized Low-Density Lipoprotein Accumulation in the Liver: Implication for Autophagy Regulation

    PubMed Central

    Liu, Liang; Gao, Chao; Yao, Ping; Gong, Zhiyong

    2015-01-01

    A growing body of evidence has indicated that high-fat diet-induced nonalcoholic fatty liver disease is usually accompanied by oxidized low-density lipoprotein (ox-LDL) deposited in the liver. The current study aimed to investigate the effect of quercetin on high-fat diet-induced ox-LDL accumulation in the liver and to explore the potential underlying mechanisms. The results demonstrate that quercetin supplementation for 24 weeks significantly alleviated high-fat diet-induced liver damage and reduced hepatic cholesterol and ox-LDL level. Quercetin notably inhibited both mRNA and protein expression of CD36 (reduced by 53% and 71%, resp.) and MSR1 (reduced by 25% and 45%, resp.), which were upregulated by high-fat diet. The expression of LC3II was upregulated by 2.4 times whereas that of p62 and mTOR was downregulated by 57% and 63% by quercetin treatment. Therefore, the significantly improved autophagy lysosomal degradation capacity for ox-LDL may be implicated in the hepatoprotective effect of quercetin; scavenger receptors mediated ox-LDL uptake might also be involved. PMID:26697490

  5. UVA and UVB radiation-induced oxidation products of quercetin.

    PubMed

    Fahlman, Brian M; Krol, Ed S

    2009-12-01

    The flavonol quercetin is believed to provide protection against ultraviolet (UV) radiation-induced damage in plants. As part of our investigations into the potential for quercetin to protect skin against UV radiation-induced damage we have investigated the products of quercetin exposed to UV radiation in vitro. UVA (740 microW cm(-2) at 365 nm) or UVB (1300 microW cm(-2) at 310 nm) irradiation of quercetin in methanol results in a small conversion (less than 20%) to C-ring breakdown products over 11 h. When the triplet sensitizer benzophenone is added, greater than 90% conversion by UVA or UVB occurs within 1h. The major photoproducts from either UVA or UVB radiation are 2,4,6-trihydroxybenzaldehyde (1), 2-(3',4'-dihydroxybenzoyloxy)-4,6-dihydroxybenzoic acid (2) and 3,4-dihydroxyphenylethanol (3). Product 2 has previously been observed as a product of oxidative metabolism of quercetin, however products 1 and 3 appear to be the result of a unique UV-dependent pathway. In conclusion we have determined that quercetin undergoes slow decomposition to a mixture of C-ring-opened products, two of which to our knowledge have not been previously observed for quercetin decomposition, and that the presence of a triplet sensitizer greatly increases UV radiation-mediated quercetin decomposition. The presence of endogenous photosensitizers in the skin could potentially affect the UV stability of quercetin, suggesting that further study of quercetin for both its photoprotective properties and photostabilty in skin are warranted.

  6. Garlic and Resveratrol Attenuate Diabetic Complications, Loss of β-Cells, Pancreatic and Hepatic Oxidative Stress in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Kaur, Gagandeep; Padiya, Raju; Adela, Ramu; Putcha, Uday K.; Reddy, G. S.; Reddy, B. R.; Kumar, K. P.; Chakravarty, Sumana; Banerjee, Sanjay K.

    2016-01-01

    The study was aimed at finding the effect of garlic and resveratrol on loss of β-cells and diabetic complication in streptozotocin (STZ)-induced Type-I diabetic rats. Rats were injected with single dose STZ (50 mg/kg, i.p.) for induction of type 1 diabetes (Dia) and compared with control group. Rats from third (Dia+Gar), fourth (Dia+Resv), and fifth (Dia+Met) groups were fed raw garlic homogenate (250 mg/kg/day), resveratrol (25 mg/kg/day), and metformin (500 mg/kg/day) orally, respectively, for a period of 4 weeks. Diabetic group had decreased serum insulin and hydrogen sulfide levels along with increased blood glucose and glycated hemoglobin, triglyceride, uric acid, and nitric oxide levels. Significant (p < 0.05) increase in pancreatic and hepatic TBARS, conjugated dienes, nitric oxide, and AGE level and significant (p < 0.05) decrease in SOD, catalase, H2S, GSH level were observed in diabetic group. Administration of garlic, resveratrol, and metformin significantly (p < 0.05) normalized most of the altered metabolic and oxidative stress parameters as well as histopathological changes. Administration of garlic, resveratrol, and metformin in diabetic rat decreases pancreatic β-cell damage and hepatic injury. Our data concluded that administration of garlic showed more promising effect in terms of reducing oxidative stress and pathological changes when compared to resveratrol and metformin groups. PMID:27790139

  7. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats.

    PubMed

    Etxeberria, U; Arias, N; Boqué, N; Macarulla, M T; Portillo, M P; Martínez, J A; Milagro, F I

    2015-06-01

    Diet-induced obesity is associated to an imbalance in the normal gut microbiota composition. Resveratrol and quercetin, widely known for their health beneficial properties, have low bioavailability, and when they reach the colon, they are targets of the gut microbial ecosystem. Hence, the use of these molecules in obesity might be considered as a potential strategy to modulate intestinal bacterial composition. The purpose of this study was to determine whether trans-resveratrol and quercetin administration could counteract gut microbiota dysbiosis produced by high-fat sucrose diet (HFS) and, in turn, improve gut health. Wistar rats were randomised into four groups fed an HFS diet supplemented or not with trans-resveratrol [15 mg/kg body weight (BW)/day], quercetin (30 mg/kg BW/day) or a combination of both polyphenols at those doses. Administration of both polyphenols together prevented body weight gain and reduced serum insulin levels. Moreover, individual supplementation of trans-resveratrol and quercetin effectively reduced serum insulin levels and insulin resistance. Quercetin supplementation generated a great impact on gut microbiota composition at different taxonomic levels, attenuating Firmicutes/Bacteroidetes ratio and inhibiting the growth of bacterial species previously associated to diet-induced obesity (Erysipelotrichaceae, Bacillus, Eubacterium cylindroides). Overall, the administration of quercetin was found to be effective in lessening HFS-diet-induced gut microbiota dysbiosis. In contrast, trans-resveratrol supplementation alone or in combination with quercetin scarcely modified the profile of gut bacteria but acted at the intestinal level, altering the mRNA expression of tight-junction proteins and inflammation-associated genes.

  8. Quercetin ameliorates ischemia/reperfusion-induced cognitive deficits by inhibiting ASK1/JNK3/caspase-3 by enhancing the Akt signaling pathway.

    PubMed

    Pei, Bing; Yang, Miaomiao; Qi, Xiaoyan; Shen, Xin; Chen, Xing; Zhang, Fayong

    2016-09-01

    Cerebral ischemia/reperfusion (I/R) is a major cause of severe disability and death all worldwide. However, therapeutic options to minimize the detrimental effects of cerebral I/R injury are limited. Recent research has demonstrated that quercetin mediates neuroprotective effects associated with the activation of the Akt signaling pathway in the cerebral I/R brain. Therefore, the aim of this study was to further investigate the mechanisms of cognitive deficits induced by cerebral I/R injury and the effects of quercetin on these mechanisms. First, we assessed anxiety-like behavioral and cognitive impairment using the open field test and the Morris water maze test, respectively. Next, we examined the severity of apoptosis by staining hippocampal neurons by the Cresyl violet method. Third, we used western blot analysis to investigate the expression of total and phosphorylated Akt, ASK1, JNK3, c-Jun and caspase-3 after I/R injury. Our results revealed that mice subjected to bilateral common carotid occlusion exhibited severe anxiety-like behavior, learning and memory impairment, cell damage and apoptosis. These severe effects were attenuated by administration of quercetin. Further, western blot analysis revealed that quercetin increased p-Akt expression and decreased p-ASK1, p-JNK3 and cleaved caspase-3 expression after cerebral I/R injury and led to inhibition of neuronal apoptosis. Conversely, treatment with LY294002 (a selective inhibitor of Akt1) reversed the effects of quercetin. In conclusion, these findings highlight the important role of quercetin in protecting against cognitive deficits and inhibiting neuronal apoptosis via the Akt signaling pathway. We believe that quercetin might prove to be a useful therapeutic component in treating cerebral I/R diseases in the near future. PMID:27450812

  9. Cynanchum wilfordii Radix attenuates liver fat accumulation and damage by suppressing hepatic cyclooxygenase-2 and mitogen-activated protein kinase in mice fed with a high-fat and high-fructose diet.

    PubMed

    Jang, Seon-A; Lee, SungRyul; Sohn, Eun-Hwa; Yang, Jaehyuk; Park, Dae Won; Jeong, Yong Joon; Kim, Inhye; Kwon, Jung Eun; Song, Hae Seong; Cho, Young Mi; Meng, Xue; Koo, Hyun Jung; Kang, Se Chan

    2016-09-01

    Excessive consumption of fat and fructose augments the pathological progression of nonalcoholic fatty liver disease through hepatic fibrosis, inflammation, and hepatic de novo lipogenesis. We hypothesized that supplementation with Cynanchum wilfordii extract (CWE) decreases fat accumulation in the liver by suppressing cyclooxygenase-2 (COX-2), the nuclear translocation of nuclear factor κB (NF-κB), and p38 mitogen-activated protein kinase (MAPK). The beneficial effect of CWE was evaluated in a murine model of nonalcoholic fatty liver disease. Mice were fed either a normal diet or an atherogenic diet with fructose (ATHFR) in the presence or absence of CWE (50, 100, or 200 mg/kg; n=6/group). Treatment with ATHFR induced a hepatosplenomegaly-like condition (increased liver and spleen weight); this pathological change was attenuated in the presence of CWE. The ATHFR group exhibited impaired liver function, as evidenced by increased blood levels of glutamic oxaloacetic transaminase and glutamic pyruvic transaminase, fat accumulation in the liver, and lipid profiles. Supplementation of CWE (100 and 200 mg/kg, P<.05) ameliorated these impaired liver functions. Atherogenic diet with fructose increased the protein levels of COX-2 and p38 MAPK, as well as the nuclear translocation of NF-κB. These signaling pathways, which are associated with the inflammatory response, were markedly suppressed after CWE treatment (100 and 200 mg/kg). In summary, CWE supplementation reduced high-fat and high-fructose diet-induced fat accumulation and damage in the liver by suppressing COX-2, NF-κB, and p38 MAPK. PMID:27632911

  10. Betaine attenuates hepatic steatosis by reducing methylation of the MTTP promoter and elevating genomic methylation in mice fed a high-fat diet.

    PubMed

    Wang, Li-jun; Zhang, Hong-wei; Zhou, Jing-ya; Liu, Yan; Yang, Yang; Chen, Xiao-ling; Zhu, Cui-hong; Zheng, Rui-dan; Ling, Wen-hua; Zhu, Hui-lian

    2014-03-01

    Aberrant DNA methylation contributes to the abnormality of hepatic gene expression, one of the main factors in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Betaine is a methyl donor and has been considered to be a lipotropic agent. However, whether betaine supplementation improves NAFLD via its effect on the DNA methylation of specific genes and the genome has not been explored. Male C57BL/6 mice were fed either a control diet or high-fat diet (HFD) supplemented with 0%, 1% and 2% betaine in water (wt/vol) for 12 weeks. Betaine supplementation ameliorated HFD-induced hepatic steatosis in a dose-dependent manner. HFD up-regulated FAS and ACOX messenger RNA (mRNA) expression and down-regulated PPARα, ApoB and MTTP mRNA expression; however, these alterations were reversed by betaine supplementation, except ApoB. MTTP mRNA expression was negatively correlated with the DNA methylation of its CpG sites at -184, -156, -63 and -60. Methylation of these CpG sites was lower in both the 1% and 2% betaine-supplemented groups than in the HFD group (averages; 25.55% and 14.33% vs. 30.13%). In addition, both 1% and 2% betaine supplementation significantly restored the methylation capacity [S-adenosylmethionine (SAM) concentration and SAM/S-adenosylhomocysteine ratios] and genomic methylation level, which had been decreased by HFD (0.37% and 0.47% vs. 0.25%). These results suggest that the regulation of aberrant DNA methylation by betaine might be a possible mechanism of the improvements in NAFLD upon betaine supplementation.

  11. Antioxidative and antiinflammatory activities of quercetin-loaded silica nanoparticles.

    PubMed

    Lee, Ga Hyun; Lee, Sung June; Jeong, Sang Won; Kim, Hyun-Chul; Park, Ga Young; Lee, Se Geun; Choi, Jin Hyun

    2016-07-01

    Utilizing the biological activities of compounds by encapsulating natural components in stable nanoparticles is an important strategy for a variety of biomedical and healthcare applications. In this study, quercetin-loaded silica nanoparticles were synthesized using an oil-in-water microemulsion method, which is a suitable system for producing functional nanoparticles of controlled size and shape. The resulting quercetin-loaded silica nanoparticles were spherical, highly monodispersed, and stable in an aqueous system. Superoxide radical scavenging effects were found for the quercetin-loaded silica nanoparticles as well as free quercetin. The quercetin-loaded silica nanoparticles showed cell viability comparable to that of the controls. The amounts of proinflammatory cytokines produced by macrophages, such as interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha, were reduced significantly for the quercetin-loaded silica nanoparticles. These results suggest that the antioxidative and antiinflammatory activities of quercetin are maintained after encapsulation in silica. Silica nanoparticles can be used for the effective and stable incorporation of biologically active natural components into composite biomaterials. PMID:27038916

  12. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles

    NASA Astrophysics Data System (ADS)

    Dian, Linghui; Yu, Enjiang; Chen, Xiaona; Wen, Xinguo; Zhang, Zhengzan; Qin, Lingzhen; Wang, Qingqing; Li, Ge; Wu, Chuanbin

    2014-12-01

    To improve its poor aqueous solubility and stability, the potential chemotherapeutic drug quercetin was encapsulated in soluplus polymeric micelles by a modified film dispersion method. With the encapsulation efficiency over 90%, the quercetin-loaded polymeric micelles (Qu-PMs) with drug loading of 6.7% had a narrow size distribution around mean size of 79.00 ± 2.24 nm, suggesting the complete dispersibility of quercetin in water. X-ray diffraction (XRD) patterns illustrated that quercetin was in amorphous or molecular form within PMs. Fourier transform infrared spectroscopy (FTIR) indicated that quercetin formed intermolecular hydrogen bonding with carriers. An in vitro dialysis test showed the Qu-PMs possessed significant sustained-release property, and the formulation was stable for at least 6 months under accelerated conditions. The pharmacokinetic study in beagle dogs showed that absorption of quercetin after oral administration of Qu-PMs was improved significantly, with a half-life 2.19-fold longer and a relative oral bioavailability of 286% as compared to free quercetin. Therefore, these novel soluplus polymeric micelles can be applied to encapsulate various poorly water-soluble drugs towards a development of more applicable therapeutic formulations.

  13. Conjugation position of quercetin glucuronides and effect on biological activity.

    PubMed

    Day, A J; Bao, Y; Morgan, M R; Williamson, G

    2000-12-15

    Quercetin glycosides are common dietary antioxidants. In general, however, potential biological effects of the circulating plasma metabolites (e.g., glucuronide conjugates) have not been measured. We have determined the rate of glucuronidation of quercetin at each position on the polyphenol ring by human liver cell-free extracts containing UDP-glucuronosyltransferases. The apparent affinity of UDP-glucuronosyltransferase followed the order 4'- > 3'- > 7- > 3, although the apparent maximum rate of formation was for the 7-position. The 5-position did not appear to be a site for conjugation. After isolation of individual glucuronides, the inhibition of xanthine oxidase and lipoxygenase were assessed. The K(i) for the inhibition of xanthine oxidase by quercetin glucuronides followed the order 4'- > 3'- > 7- > 3-, with quercetin-4'-glucuronide a particularly potent inhibitor (K(i) = 0. 25 microM). The glucuronides, with the exception of quercetin-3-glucuronide, were also inhibitors of lipoxygenase. Quercetin glucuronides are metabolites of quercetin in humans, and these compounds can retain some biological activity depending on conjugation position at expected plasma concentrations. PMID:11118813

  14. Viral Hepatitis

    MedlinePlus

    ... Public Home » For Veterans and the Public Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... the Public Veterans and Public Home How is Hepatitis C Treated? Find the facts about the newest ...

  15. [Study of quantum-pharmacological chemical characteristics of quercetin].

    PubMed

    Zahorodnyĭ, M I

    2007-01-01

    It was established in the previous studies that quercetin prevented the development and caused faster regression of ulcers, petechia and anabroses in rats, which were induced by diclofenac taking. In the group of patients taking diclofenac together with quercetin, the ulcers and dyspeptic events were less found. The application of quercetin normalizes the function and metabolism of cartilage tissue of rabbits with an experimental osteoarthrosis and in patients with osteoartrosis. Quantum-chemical properties of molecule quercetin were studied using the methods of molecular mechanics MM+ and ab initio 6-31G*, and also semiempirical method. The following indices were investigated: distance between atoms (A), the distribution of electronic density of only external valency electrons, distribution of electrostatic potential; common energy of the exertion of molecule (kkal/mmol); binding energy (kkal/mmol); electron energy (kkal/mmol); energy of nucleus-nucleus interaction (kkal/mmol); formation heat (kkal/mmol); atomic charge (eB); value of the dipole moment of molecule (D); localization and energy of highest occupied orbital (HOMO) and the lowest unoccupied (LUMO) molecular orbital (eB) of quercetin miolecule; the value of absolute rigidity of chemical structure of bioflavonoid. It was shown, that bioflavonoid quercetin belongs to mild reagents, has nucleophilic properties, can react with alkaline, unsaturated and aromatic compounds,. Polar substitutes in the quercetine molecule influence on the distribution of superficial valency electrons and localization of HOMO and LUMO. The energy value of quercetin LUMO enables us to refer quercetine to the reducing agent and it is illustrated by antioxidant properties of this medicine. PMID:18663944

  16. Quercetin for chronic prostatitis/chronic pelvic pain syndrome.

    PubMed

    Shoskes, Daniel A; Nickel, J Curtis

    2011-08-01

    Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common condition with a heterogeneous origin that responds best to multimodal therapy. The bioflavonoid quercetin has antioxidant and antiinflammatory effects that have proven useful for treating this condition. Using the clinical phenotype system UPOINT, quercetin can be helpful for those with organ-specific complaints (bladder or prostate) and pelvic floor spasm. This article discusses the current understanding of CP/CPPS and how treatment with quercetin can be used alone or as part of multimodal therapy.

  17. Viral Hepatitis

    MedlinePlus

    ... with hepatitis? How does a pregnant woman pass hepatitis B virus to her baby? If I have hepatitis B, what does my baby need so that she ... Can I breastfeed my baby if I have hepatitis B? More information on viral hepatitis What is hepatitis? ...

  18. Modulatory effects of morin on hyperglycemia by attenuating the hepatic key enzymes of carbohydrate metabolism and β-cell function in streptozotocin-induced diabetic rats.

    PubMed

    Vanitha, P; Uma, C; Suganya, N; Bhakkiyalakshmi, E; Suriyanarayanan, S; Gunasekaran, P; Sivasubramanian, S; Ramkumar, K M

    2014-01-01

    The present study was aimed to evaluate the effect of morin on blood glucose, insulin level, hepatic glucose regulating enzyme activities and glycogen level in experimental diabetes. Diabetes mellitus was induced by a single intraperitoneal injection of streptozotocin (STZ) (50 mg/kg b.w.). Five days after STZ injection, diabetic rats received morin (25 and 50 mg/kg b.w.) orally for 30 days. Glibenclamide was used as reference drug. Morin treatment significantly reduced the blood glucose and improved the serum insulin levels. Further, a dose-dependent reduction in glucose-6-phosphatase and fructose-1,6-bisphosphatase was observed along with the increase in liver hexokinase and glucose-6-phosphate dehydrogenase activities. Morin supplement were found to be effective in preserving the normal histological appearance of pancreatic islets as well as to preserve insulin-positive β-cells in STZ-rats. Therefore, these findings suggest that morin displays beneficial effects in the treatment of diabetes, mediated through the regulation of carbohydrate metabolic enzyme activities.

  19. Aqueous Date Flesh or Pits Extract Attenuates Liver Fibrosis via Suppression of Hepatic Stellate Cell Activation and Reduction of Inflammatory Cytokines, Transforming Growth Factor-β1 and Angiogenic Markers in Carbon Tetrachloride-Intoxicated Rats

    PubMed Central

    Al-Rasheed, Nouf M.; Attia, Hala A.; Mohamad, Raeesa A.; Al-Rasheed, Nawal M.; Al-Amin, Maha A.; AL-Onazi, Asma

    2015-01-01

    Previous data indicated the protective effect of date fruit extract on oxidative damage in rat liver. However, the hepatoprotective effects via other mechanisms have not been investigated. This study was performed to evaluate the antifibrotic effect of date flesh extract (DFE) or date pits extract (DPE) via inactivation of hepatic stellate cells (HSCs), reducing the levels of inflammatory, fibrotic and angiogenic markers. Coffee was used as reference hepatoprotective agent. Liver fibrosis was induced by injection of CCl4 (0.4 mL/kg) three times weekly for 8 weeks. DFE, DPE (6 mL/kg), coffee (300 mg/kg), and combination of coffee + DFE and coffee + DPE were given to CCl4-intoxicated rats daily for 8 weeks. DFE, DPE, and their combination with coffee attenuated the elevated levels of inflammatory cytokines including tumor necrosis factor-α, interleukin-6, and interleukin-1β. The increased levels of transforming growth factor-β1 and collagen deposition in injured liver were alleviated by both extracts. CCl4-induced expression of α-smooth muscle actin was suppressed indicating HSCs inactivation. Increased angiogenesis was ameliorated as revealed by reduced levels and expression of vascular endothelial growth factor and CD31. We concluded that DFE or DPE could protect liver via different mechanisms. The combination of coffee with DFE or DPE may enhance its antifibrotic effects. PMID:25945106

  20. 17β-Estradiol attenuates saturated fatty acid diet-induced liver injury in ovariectomized mice by up-regulating hepatic senescence marker protein-30.

    PubMed

    Fukui, Michiaki; Senmaru, Takafumi; Hasegawa, Goji; Yamazaki, Masahiro; Asano, Mai; Kagami, Yayoi; Ishigami, Akihito; Maruyama, Naoki; Iwasa, Koichi; Kitawaki, Jo; Itoh, Yoshito; Okanoue, Takeshi; Ohta, Mitsuhiro; Obayashi, Hiroshi; Nakamura, Naoto

    2011-11-18

    Senescence marker protein-30 (SMP30) plays an important role in intracellular Ca(2+) homeostasis. The aim of the present study was to investigate the effects of estrogens on liver apoptotic damage and changes in SMP30 expression induced by a high saturated fatty acid diet (HSFD). Ovariectomized mice (OVX) and sham-operated mice (SHAM) were randomly divided into five groups: SHAM fed a normal diet (SHAM/ND), SHAM fed HSFD (SHAM/HSFD), OVX fed ND (OVX/ND), OVX fed HSFD (OVX/HSFD) and OVX fed HSFD with 17β-estradiol (E2) supplementation using an implanted slow-release pellet (OVX/HSFD+E2). After 8 weeks, markers of endoplasmic reticulum (ER) stress and apoptosis, and levels of tumor necrosis factor-α (TNFα and SMP30 expression were investigated. Compared with SHAM/ND, OVX/HSFD mice showed significantly increased spliced X-box protein-1 (s-XBP1), phosphorylated eukaryotic initiation factor-2α (p-eIF2α), glucose-regulated protein 78 (GPR78), C/EBP homologous protein (CHOP), cytosolic cytochrome c, caspase-3 activity, and TNFα, and significantly decreased SMP30. These differences in OVX/HSFD mice were restored to the levels of SHAM/ND mice by E2 supplementation. These results suggest that E2 supplementation attenuates HSFD-induced liver apoptotic death in ovariectomized mice by up-regulating SMP30. PMID:22037452

  1. Naringenin and quercetin--potential anti-HCV agents for NS2 protease targets.

    PubMed

    Lulu, S Sajitha; Thabitha, A; Vino, S; Priya, A Mohana; Rout, Madhusmita

    2016-01-01

    Nonstructural proteins of hepatitis C virus had drawn much attention for the scientific fraternity in drug discovery due to its important role in the disease. 3D structure of the protein was predicted using molecular modelling protocol. Docking studies of 10 medicinal plant compounds and three drugs available in the market (control) with NS2 protease were employed by using rigid docking approach of AutoDock 4.2. Among the molecules tested for docking study, naringenin and quercetin revealed minimum binding energy of - 7.97 and - 7.95 kcal/mol with NS2 protease. All the ligands were docked deeply within the binding pocket region of the protein. The docking study results showed that these compounds are potential inhibitors of the target; and also all these docked compounds have good inhibition constant, vdW+Hbond+desolv energy with best RMSD value.

  2. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update.

    PubMed

    Khan, Fazlullah; Niaz, Kamal; Maqbool, Faheem; Ismail Hassan, Fatima; Abdollahi, Mohammad; Nagulapalli Venkata, Kalyan C; Nabavi, Seyed Mohammad; Bishayee, Anupam

    2016-08-29

    Quercetin, a medicinally important member of the flavonoid family, is one of the most prominent dietary antioxidants. It is present in a variety of foods-including fruits, vegetables, tea, wine, as well as other dietary supplements-and is responsible for various health benefits. Numerous pharmacological effects of quercetin include protection against diseases, such as osteoporosis, certain forms of malignant tumors, and pulmonary and cardiovascular disorders. Quercetin has the special ability of scavenging highly reactive species, such as hydrogen peroxide, superoxide anion, and hydroxyl radicals. These oxygen radicals are called reactive oxygen species, which can cause oxidative damage to cellular components, such as proteins, lipids, and deoxyribonucleic acid. Various oxygen radicals play important roles in pathophysiological and degenerative processes, such as aging. Subsequently, several studies have been performed to evaluate possible advantageous health effects of quercetin and to collect scientific evidence for these beneficial health claims. These studies also gather data in order to evaluate the exact mechanism(s) of action and toxicological effects of quercetin. The purpose of this review is to present and critically analyze molecular pathways underlying the anticancer effects of quercetin. Current limitations and future directions of research on this bioactive dietary polyphenol are also critically discussed.

  3. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update.

    PubMed

    Khan, Fazlullah; Niaz, Kamal; Maqbool, Faheem; Ismail Hassan, Fatima; Abdollahi, Mohammad; Nagulapalli Venkata, Kalyan C; Nabavi, Seyed Mohammad; Bishayee, Anupam

    2016-01-01

    Quercetin, a medicinally important member of the flavonoid family, is one of the most prominent dietary antioxidants. It is present in a variety of foods-including fruits, vegetables, tea, wine, as well as other dietary supplements-and is responsible for various health benefits. Numerous pharmacological effects of quercetin include protection against diseases, such as osteoporosis, certain forms of malignant tumors, and pulmonary and cardiovascular disorders. Quercetin has the special ability of scavenging highly reactive species, such as hydrogen peroxide, superoxide anion, and hydroxyl radicals. These oxygen radicals are called reactive oxygen species, which can cause oxidative damage to cellular components, such as proteins, lipids, and deoxyribonucleic acid. Various oxygen radicals play important roles in pathophysiological and degenerative processes, such as aging. Subsequently, several studies have been performed to evaluate possible advantageous health effects of quercetin and to collect scientific evidence for these beneficial health claims. These studies also gather data in order to evaluate the exact mechanism(s) of action and toxicological effects of quercetin. The purpose of this review is to present and critically analyze molecular pathways underlying the anticancer effects of quercetin. Current limitations and future directions of research on this bioactive dietary polyphenol are also critically discussed. PMID:27589790

  4. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update

    PubMed Central

    Khan, Fazlullah; Niaz, Kamal; Maqbool, Faheem; Ismail Hassan, Fatima; Abdollahi, Mohammad; Nagulapalli Venkata, Kalyan C.; Nabavi, Seyed Mohammad; Bishayee, Anupam

    2016-01-01

    Quercetin, a medicinally important member of the flavonoid family, is one of the most prominent dietary antioxidants. It is present in a variety of foods—including fruits, vegetables, tea, wine, as well as other dietary supplements—and is responsible for various health benefits. Numerous pharmacological effects of quercetin include protection against diseases, such as osteoporosis, certain forms of malignant tumors, and pulmonary and cardiovascular disorders. Quercetin has the special ability of scavenging highly reactive species, such as hydrogen peroxide, superoxide anion, and hydroxyl radicals. These oxygen radicals are called reactive oxygen species, which can cause oxidative damage to cellular components, such as proteins, lipids, and deoxyribonucleic acid. Various oxygen radicals play important roles in pathophysiological and degenerative processes, such as aging. Subsequently, several studies have been performed to evaluate possible advantageous health effects of quercetin and to collect scientific evidence for these beneficial health claims. These studies also gather data in order to evaluate the exact mechanism(s) of action and toxicological effects of quercetin. The purpose of this review is to present and critically analyze molecular pathways underlying the anticancer effects of quercetin. Current limitations and future directions of research on this bioactive dietary polyphenol are also critically discussed. PMID:27589790

  5. The supplement-drug interaction of quercetin with tamsulosin on vasorelaxation.

    PubMed

    Vrolijk, Misha F; Haenen, Guido R M M; Opperhuizen, Antoon; Jansen, Eugène H J M; Schiffers, Paul M; Bast, Aalt

    2015-01-01

    The food supplement quercetin is used as self-medication for prostate disorders and is known to induce vasorelaxation. The drug tamsulosin is used in the treatment of benign prostatic hyperplasia. A major side effect of tamsulosin is orthostatic hypotension, mediated by vasorelaxation resulting from α1-adrenoceptor blockade. The overlapping profile prompted us to investigate the pharmacodynamic interaction of quercetin with tamsulosin. Since quercetin is extensively metabolized in the intestines and the liver, the metabolites quercetin-3-glucuronide and 4'O-methyl-quercetin were also examined. Vasorelaxation induced by the compounds was tested in rat mesenteric arteries (average diameter: 360±μm) constricted by the α1-adrenoceptor agonist phenylephrine. Tamsulosin (0.1nM) decreased phenylephrine sensitivity 17-fold (n=10). Quercetin (5, 10 and 20µM) also caused a decrease (2-, 4- and 6-fold respectively) of phenylephrine sensitivity, while 10µM of quercetin-3-glucuronide and 4'O-methyl-quercetin decreased this sensitivity (1.5- and 2-fold) only slightly (n=6). The combination of tamsulosin with quercetin or quercetin metabolites proved to be far more potent than the compounds in isolation. The combination of quercetin, quercetin-3-glucuronide or 4'O-methyl-quercetin with tamsulosin decreased the phenylephrine sensitivity approximately 200-, 35- and 150-fold (n=6). The strong pharmacodynamic interaction between the food supplement quercetin and tamsulosin underlines the potential of the impact of supplement-drug interactions that warrant more research.

  6. Quercetin reduces susceptibility to influenza infection following stressful exercise.

    PubMed

    Davis, J M; Murphy, E A; McClellan, J L; Carmichael, M D; Gangemi, J D

    2008-08-01

    Exercise stress is associated with increased risk for upper respiratory tract infection. We have shown that exercise stress can increase susceptibility to infection. Quercetin, a flavonoid present in a wide variety of fruits and vegetables, has been reported to inhibit infectivity and replication of a broad spectrum of viruses and may offset the increase in susceptibility to infection associated with stressful exercise. This study examined the effects of quercetin feedings on susceptibility to the influenza virus A/Puerto Rico/8/34 (H1N1) following stressful exercise. Mice were randomly assigned to one of four treatment groups: exercise-placebo, exercise-quercetin, control-placebo, or control-quercetin. Exercise consisted of a run to fatigue (approximately 140 min) on a treadmill for 3 consecutive days. Quercetin (12.5 mg/kg) was administered via gavage for 7 days before viral challenge. At 30 min after the last bout of exercise or rest, mice (n=23-30) were intranasally inoculated with a standardized dose of influenza virus (0.04 hemagglutinating units). Mice were monitored daily for morbidity (time to sickness), symptom severity, and mortality (time to death) for 21 days. Exercise stress was associated with an increased susceptibility to infection [morbidity, mortality, and symptom severity on days 5-7 (P<0.05)]; quercetin offset the increase in susceptibility to infection [morbidity, mortality, and symptom severity on days 5-7 (P<0.05)] that was associated with stressful exercise. These data suggest that short-term quercetin feedings may prove to be an effective strategy to lessen the impact of stressful exercise on susceptibility to respiratory infection.

  7. Dietary quercetin supplementation is not ergogenic in untrained men.

    PubMed

    Cureton, Kirk J; Tomporowski, Phillip D; Singhal, Arpit; Pasley, Jeffrey D; Bigelman, Kevin A; Lambourne, Kathleen; Trilk, Jennifer L; McCully, Kevin K; Arnaud, Maurice J; Zhao, Qun

    2009-10-01

    Quercetin supplementation increases muscle oxidative capacity and endurance in mice, but its ergogenic effect in humans has not been established. Our study investigates the effects of short-duration chronic quercetin supplementation on muscle oxidative capacity; metabolic, perceptual, and neuromuscular determinants of performance in prolonged exercise; and cycling performance in untrained men. Using a double-blind, pretest-posttest control group design, 30 recreationally active, but not endurance-trained, young men were randomly assigned to quercetin and placebo groups. A noninvasive measure of muscle oxidative capacity (phosphocreatine recovery rate using magnetic resonance spectroscopy), peak oxygen uptake (Vo(2peak)), metabolic and perceptual responses to submaximal exercise, work performed on a 10-min maximal-effort cycling test following the submaximal cycling, and voluntary and electrically evoked strength loss following cycling were measured before and after 7-16 days of supplementation with 1 g/day of quercetin in a sports hydration beverage or a placebo beverage. Pretreatment-to-posttreatment changes in phosphocreatine recovery time constant, Vo(2peak,) substrate utilization, and perception of effort during submaximal exercise, total work done during the 10-min maximal effort cycling trial, and voluntary and electrically evoked strength loss were not significantly different (P > 0.05) in the quercetin and placebo groups. Short duration, chronic dietary quercetin supplementation in untrained men does not improve muscle oxidative capacity; metabolic, neuromuscular and perceptual determinants of performance in prolonged exercise; or cycling performance. The null findings indicate that metabolic and physical performance consequences of quercetin supplementation observed in mice should not be generalized to humans.

  8. Dietary quercetin supplementation is not ergogenic in untrained men.

    PubMed

    Cureton, Kirk J; Tomporowski, Phillip D; Singhal, Arpit; Pasley, Jeffrey D; Bigelman, Kevin A; Lambourne, Kathleen; Trilk, Jennifer L; McCully, Kevin K; Arnaud, Maurice J; Zhao, Qun

    2009-10-01

    Quercetin supplementation increases muscle oxidative capacity and endurance in mice, but its ergogenic effect in humans has not been established. Our study investigates the effects of short-duration chronic quercetin supplementation on muscle oxidative capacity; metabolic, perceptual, and neuromuscular determinants of performance in prolonged exercise; and cycling performance in untrained men. Using a double-blind, pretest-posttest control group design, 30 recreationally active, but not endurance-trained, young men were randomly assigned to quercetin and placebo groups. A noninvasive measure of muscle oxidative capacity (phosphocreatine recovery rate using magnetic resonance spectroscopy), peak oxygen uptake (Vo(2peak)), metabolic and perceptual responses to submaximal exercise, work performed on a 10-min maximal-effort cycling test following the submaximal cycling, and voluntary and electrically evoked strength loss following cycling were measured before and after 7-16 days of supplementation with 1 g/day of quercetin in a sports hydration beverage or a placebo beverage. Pretreatment-to-posttreatment changes in phosphocreatine recovery time constant, Vo(2peak,) substrate utilization, and perception of effort during submaximal exercise, total work done during the 10-min maximal effort cycling trial, and voluntary and electrically evoked strength loss were not significantly different (P > 0.05) in the quercetin and placebo groups. Short duration, chronic dietary quercetin supplementation in untrained men does not improve muscle oxidative capacity; metabolic, neuromuscular and perceptual determinants of performance in prolonged exercise; or cycling performance. The null findings indicate that metabolic and physical performance consequences of quercetin supplementation observed in mice should not be generalized to humans. PMID:19679747

  9. Antioxidant and Prophylactic Effects of Delonix elata L., Stem Bark Extracts, and Flavonoid Isolated Quercetin against Carbon Tetrachloride-Induced Hepatotoxicity in Rats

    PubMed Central

    Venkatarangaiah, Krishna; Venkatesh; Shivamogga Rajanna, Santosh Kumar; Kashi Prakash Gupta, Rajesh

    2014-01-01

    Delonix elata L. (Ceasalpinaceae), is widely used by the traditional medical practitioners of Karnataka, India, to cure jaundice, and bronchial and rheumatic problems. The objective of this study was to screen the in vitro antioxidant and hepatoprotective activity of the stem bark extracts against CCl4-induced liver damage in rats. Among different stem bark extracts tested, the ethanol extract (DSE) has shown significant in vitro antioxidant property in radicals scavenging, metal chelating, and lipid peroxidation inhibition assays. HPLC analysis of the DSE revealed the presence of known antioxidant molecules, namely, gallic acid, ellagic acid, coumaric acid, quercetin, and rutin. Bioassay-guided fractionation of DSE has resulted in the isolation and characterization of quercetin. DSE and quercetin have shown significant prophylactic effects by restoring the liver function markers (AST, ALT, ALP, serum bilirubin, and total protein) and antioxidant enzymes (SOD, CAT, GPx, and GST). These results were proved to be hepatoprotective at par with silymarin and well supported by the histological observations of liver sections with distinct hepatic cells, and mild degree of fatty change and necrosis. The results indicated that the DSE and quercetin were significant for prophylactic activity against CCl4-induced liver damage in rats. This activity could be attributed to the antioxidant constituents in the DSE and hence justified the ethnomedicinal claims. PMID:24987689

  10. Potential protective effects of quercetin and curcumin on paracetamol-induced histological changes, oxidative stress, impaired liver and kidney functions and haematotoxicity in rat.

    PubMed

    Yousef, Mokhtar I; Omar, Sahar A M; El-Guendi, Marwa I; Abdelmegid, Laila A

    2010-11-01

    The present study was carried out to evaluate the potential protective role of quercetin and curcumin against paracetamol-induced oxidative injury, liver damage and impairment of kidney function, as well as haematotoxicity in rats. Also, N-acetylcysteine was used to evaluate the potency of quercetin and curcumin. Paracetamol caused an elevation in thiobarbituric acid-reactive substances (TBARS) paralleled with significant decline in glutathione peroxidase, glutathione S-transferase, superoxide dismutase and catalase activities (in plasma, brain, lung, heart, liver, kidney and testes) and glutathione content (in lung, liver and kidney). The apparent oxidative injury was associated with evident hepatic necrosis confirmed in histological examination, elevated plasma transmainases, alkaline phosphatase and lactate dehydrogenase. Paracetamol reduced plasma total protein, albumin and globulin, while increased bilirubin, urea and creatinine, and induced haematotoxicity. The presence of quercetin or curcumin with paracetamol successfully mitigated the rise in TBARS and restored the activities of antioxidant enzymes compared to the group treated with both paracetamol and N-acetylcysteine. They also protected liver histology, normalized liver and kidney functions, which was more pronounced with curcumin. Therefore, it can be concluded that concomitant administration of quercetin or curcumin with paracetamol may be useful in reversing the toxicity of the drug compared to N-acetylcysteine.

  11. Pharmacokinetic comparison between quercetin and quercetin 3-O-β-glucuronide in rats by UHPLC-MS/MS

    PubMed Central

    Yang, Le-Le; Xiao, Na; Li, Xiao-Wei; Fan, Yong; Alolga, Raphael N.; Sun, Xiao-Yue; Wang, Shi-Lei; Li, Ping; Qi, Lian-Wen

    2016-01-01

    Quercetin is a natural flavonoid widely distributed in human diet and functional foods. Quercetin 3-O-β-glucuronide (Q3G) is present in wine and some medicinal plants. Quercetin and Q3G may be metabolized from each other in vivo. While quercetin has been the subject of many studies, the pharmacokinetic profiles of quercetin and Q3G (in animals) have not yet been compared. Herein, we prepared a column-based method for rapid isolation of Q3G from Nelumbo nucifera. Then, we developed an UHPLC-MS/MS method to compare the pharmacokinetics of quercetin and Q3G. Our results showed that the plasma concentration-time curves of quercetin and Q3G show two maxima (Tmax1 ≈ 0.75 h, Tmax2 ≈ 5 h). After oral administration of 100 mg/kg quercetin or 100 mg/kg Q3G in rats, predominantly Q3G was detected in plasma with AUC at 39529.2 ± 6108.2 mg·h·L−1 or 24625.1 ± 1563.8 mg·h·L−1, 18-fold higher than quercetin with AUC at 1583.9 ± 583.3 mg·h·L−1 or 1394.6 ± 868.1 mg·h·L−1, respectively. After intravenous injection of 10 mg/kg in rats, Q3G showed extensive tissue uptake in kidney (409.2 ± 118.4 ng/g), liver (166.1 ± 52.9 ng/g), heart (97.7 ± 22.6 ng/g), and brain (5.8 ± 1.2 ng/g). In conclusion, we have shown that Q3G is a major active component in plasma and tissue for oral administration of quercetin or Q3G. PMID:27775094

  12. Quercetin and quercetin 3-O-glycosides from Bauhinia longifolia (Bong.) Steud. show anti-Mayaro virus activity

    PubMed Central

    2014-01-01

    Background The arthropod-borne Mayaro virus (MAYV) causes ‘Mayaro fever’, a disease of medical significance, primarily affecting individuals in permanent contact with forested areas in tropical South America. Recently, MAYV has attracted attention due to its likely urbanization. Currently, there are no licensed drugs against most mosquito-transmitted viruses. Here, we investigated the in vitro anti-MAYV activity of the flavonoids quercetin and its derivatives from the Brazilian shrub Bauhinia longifolia (Bong.) Steud. Methods Flavonoids were purified by chromatographic fractionation from leaf extracts of B. longifolia and chemically identified as quercetin and quercetin glycosides using spectroscopic techniques. Cytotoxicity of purified flavonoids and of EtOAc- and n-BuOH-containing flavonoid mixtures was measured by the dye-uptake assay while their antiviral activity was evaluated by a virus yield inhibition assay. Results The following flavonoids were purified from B. longifolia leaves: non-glycosylated quercetin and its glycosides guaijaverin, quercitrin, isoquercitrin, and hyperin. EtOAc and n-BuOH fractions containing these flavonoids demonstrated the highest antiviral activity of all tested substances, while quercetin had the highest antiviral activity amongst purified flavonoids. Quercetin, EtOAc, or n-BuOH fractions inhibited MAYV production by more than 90% at 25 μg/mL, displaying a stronger antiviral effect than the licensed antiviral ribavirin. A mixture of the isomers isoquercitrin and hyperin had a modest antiviral effect (IC90 = 104.9), while guaijaverin and quercitrin did not show significant antiviral activity. Conclusions B. longifolia is a good source of flavonoids with anti-Mayaro virus activity. This is the first report of the activity of quercetin and its derivatives against an alphavirus. PMID:24678592

  13. Inhibitory effect of quercetin on periodontal pathogens in vitro.

    PubMed

    Geoghegan, F; Wong, R W K; Rabie, A B M

    2010-06-01

    Actinobacillus actinomycetemcomitans (Aa) and Porphyromonas gingivalis (Pg) are bacteria strongly associated with early onset, progressive and refractory periodontal disease and associated alveolar bone loss. Quercetin is a flavonoid found in many foods including apples, onions and tea. The aim of this study was to evaluate the effect of quercetin on in vitro growth of periodontal pathogens Aa and Pg. For comparison, quercetin's effect on several oral microbes was also evaluated. Different concentrations of quercetin solution were added to calibrated suspensions of Aa and Pg. All suspensions were incubated for 1, 3, 6, and 24 h in an anaerobic chamber at 37 degrees C. At each time point, selected dilutions from each culture broth were plated on blood agar plates. Colonies appearing on blood agar plates were visually counted on 3 days for Aa and 5 days for Pg. Minimum inhibitory concentrations of both periodontal pathogens were also determined. Both periodontal bacteria showed a significant decrease (p < 0.05) in viable counts after 1 h. No colony forming units of Pg could be observed after 24 h. The results suggest that quercetin possesses significant antimicrobial properties on periodontal pathogens in vitro. PMID:19957242

  14. Quercetin and Its Anti-Allergic Immune Response.

    PubMed

    Mlcek, Jiri; Jurikova, Tunde; Skrovankova, Sona; Sochor, Jiri

    2016-01-01

    Quercetin is the great representative of polyphenols, flavonoids subgroup, flavonols. Its main natural sources in foods are vegetables such as onions, the most studied quercetin containing foods, and broccoli; fruits (apples, berry crops, and grapes); some herbs; tea; and wine. Quercetin is known for its antioxidant activity in radical scavenging and anti-allergic properties characterized by stimulation of immune system, antiviral activity, inhibition of histamine release, decrease in pro-inflammatory cytokines, leukotrienes creation, and suppresses interleukin IL-4 production. It can improve the Th1/Th2 balance, and restrain antigen-specific IgE antibody formation. It is also effective in the inhibition of enzymes such as lipoxygenase, eosinophil and peroxidase and the suppression of inflammatory mediators. All mentioned mechanisms of action contribute to the anti-inflammatory and immunomodulating properties of quercetin that can be effectively utilized in treatment of late-phase, and late-late-phase bronchial asthma responses, allergic rhinitis and restricted peanut-induced anaphylactic reactions. Plant extract of quercetin is the main ingredient of many potential anti-allergic drugs, supplements and enriched products, which is more competent in inhibiting of IL-8 than cromolyn (anti-allergic drug disodium cromoglycate) and suppresses IL-6 and cytosolic calcium level increase. PMID:27187333

  15. Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More

    PubMed Central

    Costa, Lucio G.; Garrick, Jacqueline M.; Roquè, Pamela J.; Pellacani, Claudia

    2016-01-01

    Increasing interest has recently focused on determining whether several natural compounds, collectively referred to as nutraceuticals, may exert neuroprotective actions in the developing, adult, and aging nervous system. Quercetin, a polyphenol widely present in nature, has received the most attention in this regard. Several studies in vitro, in experimental animals and in humans, have provided supportive evidence for neuroprotective effects of quercetin, either against neurotoxic chemicals or in various models of neuronal injury and neurodegenerative diseases. The exact mechanisms of such protective effects remain elusive, though many hypotheses have been formulated. In addition to a possible direct antioxidant effect, quercetin may also act by stimulating cellular defenses against oxidative stress. Two such pathways include the induction of Nrf2-ARE and induction of the antioxidant/anti-inflammatory enzyme paraoxonase 2 (PON2). In addition, quercetin has been shown to activate sirtuins (SIRT1), to induce autophagy, and to act as a phytoestrogen, all mechanisms by which quercetin may provide its neuroprotection. PMID:26904161

  16. Site-specific anticancer effects of dietary flavonoid quercetin.

    PubMed

    Sak, Katrin

    2014-01-01

    Food-derived flavonoid quercetin, widely distributed in onions, apples, and tea, is able to inhibit growth of various cancer cells indicating that this compound can be considered as a good candidate for anticancer therapy. Although the exact mechanism of this action is not thoroughly understood, behaving as antioxidant and/or prooxidant as well as modulating different intracellular signalling cascades may all play a certain role. Such inhibitory activity of quercetin has been shown to depend first of all on cell lines and cancer types; however, no comprehensive site-specific analysis of this effect has been published. In this review article, cytotoxicity constants of quercetin measured in various human malignant cell lines of different origin were compiled from literature and a clear cancer selective action was demonstrated. The most sensitive malignant sites for quercetin revealed to be cancers of blood, brain, lung, uterine, and salivary gland as well as melanoma whereas cytotoxic activity was higher in more aggressive cells compared to the slowly growing cells showing that the most harmful cells for the organism are probably targeted. More research is needed to overcome the issues of poor water solubility and relatively low bioavailability of quercetin as the major obstacles limiting its clinical use. PMID:24377461

  17. Liquid chromatography-tandem mass spectroscopy assay for quercetin and conjugated quercetin metabolites in human plasma and urine.

    PubMed

    Wang, Liang; Morris, Marilyn E

    2005-07-25

    A sensitive and specific method was developed and validated for the quantitation of quercetin in human plasma and urine. The application of liquid chromatography-tandem mass spectrometry (LC/MS/MS) with a TurboIonspray (TIS) interface in negative mode under multiple reactions monitoring was investigated. Chromatographic separation was achieved on a C12 column using a mobile phase of acetonitrile/water with 0.2% formic acid (pH 2.4) (40/60, v/v). The detection limit was 100 pg/ml and the lower limit of quantification was 500 pg/ml for plasma samples; the detection limit was 500 pg/ml and the lower limit of quantification was 1 ng/ml for urine samples. The calibration curve was linear from 1 to 800 ng/ml for plasma samples and was linear from 1 to 200 and 50 to 2000 ng/ml for urine samples. All the intra- and inter-day coefficients of variation were less than 11% and intra- and inter-day accuracies were within +/-15% of the known concentrations. This represents a LC/MS/MS assay with the sensitivity and specificity necessary to determine quercetin in human plasma and urine. This assay was used to determine both parent quercetin and the quercetin after enzymatic hydrolysis with beta-glucuronidase/sulfatase in human plasma and urine samples following the ingestion of quercetin 500 mg capsules.

  18. [Hypoglycemic and hypolipidemic effects of quercetin and its glycosides].

    PubMed

    Yan, Shu-xia; Li, Xian; Sun, Chong-de; Chen, Kun-song

    2015-12-01

    Quercetin and its glycosides are important flavonols in traditional herbal drugs and plant-derived food, and they have diverse hiological activities such as antioxidant, anticarcinogenic, anti-inflammatory, hypoglycemic and hypolipidemic activities. Numerous studies have demonstrated that quercetin and its glycosides were effective in the prevention and treatment of non-infectious chronic disease such as diabetes, obesity, and hyperlipidemia. They can regulate glucose and lipid metaholism through different mechanisms. They can decrease blood glucose via protecting pancreatic/p cells or/and improving insulin sensitivity. Also, they have lipid-lowering effects, which may be the result of regulation of lipid catabolism or/and anabolism. Their distributions, as well as the hypoglycemic and hypolipidemic effects are reviewed in this paper. In addition, further bioactivities as well as their dose-activity relationship, structure-activity relationship, bioavailability, and future clinical application of quercetin and its glycosides are discussed and proposed. PMID:27141664

  19. Quercetin as natural stabilizing agent for bio-polymer

    SciTech Connect

    Morici, Elisabetta; Arrigo, Rossella; Dintcheva, Nadka Tzankova

    2014-05-15

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.

  20. Quercetin as natural stabilizing agent for bio-polymer

    NASA Astrophysics Data System (ADS)

    Morici, Elisabetta; Arrigo, Rossella; Dintcheva, Nadka Tzankova

    2014-05-01

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.

  1. Pharmacokinetics of quercetin-loaded nanodroplets with ultrasound activation and their use for bioimaging

    PubMed Central

    Chang, Li-Wen; Hou, Mei-Ling; Hung, Shuo-Hui; Lin, Lie-Chwen; Tsai, Tung-Hu

    2015-01-01

    Bubble formulations have both diagnostic and therapeutic applications. However, research on nanobubbles/nanodroplets remains in the initial stages. In this study, a nanodroplet formulation was prepared and loaded with a novel class of chemotherapeutic drug, ie, quercetin, to observe its pharmacokinetic properties and ultrasonic bioimaging of specific sites, namely the abdominal vein and bladder. Four parallel groups were designed to investigate the effects of ultrasound and nanodroplets on the pharmacokinetics of quercetin. These groups were quercetin alone, quercetin triggered with ultrasound, quercetin-encapsulated in nanodroplets, and quercetin encapsulated in nanodroplets triggered with ultrasound. Spherical vesicles with a mean diameter of 280 nm were formed, and quercetin was completely encapsulated within. In vivo ultrasonic imaging confirmed that the nanodroplets could be treated by ultrasound. The results indicate that the initial 5-minute serum concentration, area under the concentration–time curve, elimination half-life, and clearance of quercetin were significantly enhanced by nanodroplets with or without ultrasound. PMID:25945049

  2. Quercetin Targets Cysteine String Protein (CSPα) and Impairs Synaptic Transmission

    PubMed Central

    Xu, Fenglian; Proft, Juliane; Gibbs, Sarah; Winkfein, Bob; Johnson, Jadah N.; Syed, Naweed; Braun, Janice E. A.

    2010-01-01

    Background Cysteine string protein (CSPα) is a synaptic vesicle protein that displays unique anti-neurodegenerative properties. CSPα is a member of the conserved J protein family, also called the Hsp40 (heat shock protein of 40 kDa) protein family, whose importance in protein folding has been recognized for many years. Deletion of the CSPα in mice results in knockout mice that are normal for the first 2–3 weeks of life followed by an unexplained presynaptic neurodegeneration and premature death. How CSPα prevents neurodegeneration is currently not known. As a neuroprotective synaptic vesicle protein, CSPα represents a promising therapeutic target for the prevention of neurodegenerative disorders. Methodology/Principal Findings Here, we demonstrate that the flavonoid quercetin promotes formation of stable CSPα-CSPα dimers and that quercetin-induced dimerization is dependent on the unique cysteine string region. Furthermore, in primary cultures of Lymnaea neurons, quercetin induction of CSPα dimers correlates with an inhibition of synapse formation and synaptic transmission suggesting that quercetin interfers with CSPα function. Quercetin's action on CSPα is concentration dependent and does not promote dimerization of other synaptic proteins or other J protein family members and reduces the assembly of CSPα:Hsc70 units (70kDa heat shock cognate protein). Conclusions/Significance Quercetin is a plant derived flavonoid and popular nutritional supplement proposed to prevent memory loss and altitude sickness among other ailments, although its precise mechanism(s) of action has been unclear. In view of the therapeutic promise of upregulation of CSPα and the undesired consequences of CSPα dysfunction, our data establish an essential proof of principle that pharmaceutical agents can selectively target the neuroprotective J protein CSPα. PMID:20548785

  3. Hepatitis virus panel

    MedlinePlus

    Hepatitis A antibody test; Hepatitis B antibody test; Hepatitis C antibody test; Hepatitis D antibody test ... or past infection, or immunity to hepatitis A Hepatitis B tests: Hepatitis B surface antigen (HBsAg), you have ...

  4. Hepatitis C and HIV

    MedlinePlus

    ... Problems : Hepatitis C Subscribe Translate Text Size Print Hepatitis C What is Hepatitis? Hepatitis means inflammation of the liver. This condition ... our related pages, Hepatitis A and Hepatitis B . Hepatitis C and HIV About 25% of people living ...

  5. Hepatitis B and HIV

    MedlinePlus

    ... Problems : Hepatitis B Subscribe Translate Text Size Print Hepatitis B What is Hepatitis? Hepatitis means inflammation of the liver. This condition ... our related pages, Hepatitis A and Hepatitis C . Hepatitis B and HIV About 10% of people living ...

  6. Quercetin-Imprinted Nanospheres as Novel Drug Delivery Devices

    PubMed Central

    Curcio, Manuela; Cirillo, Giuseppe; Parisi, Ortensia Ilaria; Iemma, Francesca; Picci, Nevio; Puoci, Francesco

    2012-01-01

    In this work, molecularly imprinted nanospheres for controlled/sustained release of quercetin were synthesized employing methacrylic acid and ethylene glycoldymethacrylate as functional monomer and crosslinking agent, respectively. One pot precipitation polymerization was chosen as polymerization technique to obtain nanosized materials with spherical shape. Morphological and hydrophilic properties by scanning electron microscopy and water content measurements were determined, and recognition and selectivity properties of the imprinted materials were tested using the template quercetin and its structural analogue, the flavonoid catechin. Finally, the applicability of the obtained materials as drug delivery devices was evaluated by performing in vitro release studies in plasma simulating fluids and cytotoxicity testson HeLa cells. PMID:24955531

  7. Production of 3-O-xylosyl quercetin in Escherichia coli.

    PubMed

    Pandey, Ramesh Prasad; Malla, Sailesh; Simkhada, Dinesh; Kim, Byung-Gee; Sohng, Jae Kyung

    2013-03-01

    Quercetin, a flavonol aglycone, is one of the most abundant flavonoids with high medicinal value. The bioavailability and pharmacokinetic properties of quercetin are influenced by the type of sugars attached to the molecule. To efficiently diversify the therapeutic uses of quercetin, Escherichia coli was harnessed as a production factory by the installation of various plant and bacterial UDP-xylose sugar biosynthetic genes. The genes encoding for the UDP-xylose pathway enzymes phosphoglucomutase (nfa44530), glucose-1-phosphate uridylyltransferase (galU), UDP-glucose dehydrogenase (calS8), and UDP-glucuronic acid decarboxylase (calS9) were overexpressed in E. coli BL21 (DE3) along with a glycosyltransferase (arGt-3) from Arabidopsis thaliana. Furthermore, E. coli BL21(DE3)/∆pgi, E. coli BL21(DE3)/∆zwf, E. coli BL21(DE3)/∆pgi∆zwf, and E. coli BL21(DE3)/∆pgi∆zwf∆ushA mutants carrying the aforementioned UDP-xylose sugar biosynthetic genes and glycosyltransferase and the galU-integrated E. coli BL21(DE3)/∆pgi host harboring only calS8, calS9, and arGt-3 were constructed to enhance whole-cell bioconversion of exogeneously supplied quercetin into 3-O-xylosyl quercetin. Here, we report the highest production of 3-O-xylosyl quercetin with E. coli BL21 (DE3)/∆pgi∆zwf∆ushA carrying UDP-xylose sugar biosynthetic genes and glycosyltransferase. The maximum concentration of 3-O-xylosyl quercetin achieved was 23.78 mg/L (54.75 μM), representing 54.75 % bioconversion, which was an ~4.8-fold higher bioconversion than that shown by E. coli BL21 (DE3) with the same set of genes when the reaction was carried out in 5-mL culture tubes with 100 μM quercetin under optimized conditions. Bioconversion was further improved by 98 % when the reaction was scaled up in a 3-L fermentor at 36 h. PMID:23053089

  8. Estimated daily intake and seasonal food sources of quercetin in Japan.

    PubMed

    Nishimuro, Haruno; Ohnishi, Hirofumi; Sato, Midori; Ohnishi-Kameyama, Mayumi; Matsunaga, Izumi; Naito, Shigehiro; Ippoushi, Katsunari; Oike, Hideaki; Nagata, Tadahiro; Akasaka, Hiroshi; Saitoh, Shigeyuki; Shimamoto, Kazuaki; Kobori, Masuko

    2015-04-01

    Quercetin is a promising food component, which can prevent lifestyle related diseases. To understand the dietary intake of quercetin in the subjects of a population-based cohort study and in the Japanese population, we first determined the quercetin content in foods available in the market during June and July in or near a town in Hokkaido, Japan. Red leaf lettuce, asparagus, and onions contained high amounts of quercetin derivatives. We then estimated the daily quercetin intake by 570 residents aged 20-92 years old in the town using a food frequency questionnaire (FFQ). The average and median quercetin intakes were 16.2 and 15.5 mg day(-1), respectively. The quercetin intakes by men were lower than those by women; the quercetin intakes showed a low correlation with age in both men and women. The estimated quercetin intake was similar during summer and winter. Quercetin was mainly ingested from onions and green tea, both in summer and in winter. Vegetables, such as asparagus, green pepper, tomatoes, and red leaf lettuce, were good sources of quercetin in summer. Our results will help to elucidate the association between quercetin intake and risks of lifestyle-related diseases by further prospective cohort study and establish healthy dietary requirements with the consumption of more physiologically useful components from foods. PMID:25849945

  9. Estimated Daily Intake and Seasonal Food Sources of Quercetin in Japan

    PubMed Central

    Nishimuro, Haruno; Ohnishi, Hirofumi; Sato, Midori; Ohnishi-Kameyama, Mayumi; Matsunaga, Izumi; Naito, Shigehiro; Ippoushi, Katsunari; Oike, Hideaki; Nagata, Tadahiro; Akasaka, Hiroshi; Saitoh, Shigeyuki; Shimamoto, Kazuaki; Kobori, Masuko

    2015-01-01

    Quercetin is a promising food component, which can prevent lifestyle related diseases. To understand the dietary intake of quercetin in the subjects of a population-based cohort study and in the Japanese population, we first determined the quercetin content in foods available in the market during June and July in or near a town in Hokkaido, Japan. Red leaf lettuce, asparagus, and onions contained high amounts of quercetin derivatives. We then estimated the daily quercetin intake by 570 residents aged 20–92 years old in the town using a food frequency questionnaire (FFQ). The average and median quercetin intakes were 16.2 and 15.5 mg day−1, respectively. The quercetin intakes by men were lower than those by women; the quercetin intakes showed a low correlation with age in both men and women. The estimated quercetin intake was similar during summer and winter. Quercetin was mainly ingested from onions and green tea, both in summer and in winter. Vegetables, such as asparagus, green pepper, tomatoes, and red leaf lettuce, were good sources of quercetin in summer. Our results will help to elucidate the association between quercetin intake and risks of lifestyle-related diseases by further prospective cohort study and establish healthy dietary requirements with the consumption of more physiologically useful components from foods. PMID:25849945

  10. Intracellular metabolism and bioactivity of quercetin and its in vivo metabolites.

    PubMed Central

    Spencer, Jeremy P E; Kuhnle, Gunter G C; Williams, Robert J; Rice-Evans, Catherine

    2003-01-01

    Understanding the cellular effects of flavonoid metabolites is important for predicting which dietary flavonoids might be most beneficial in vivo. Here we investigate the bioactivity in dermal fibroblasts of the major reported in vivo metabolites of quercetin, i.e. 3'-O-methyl quercetin, 4'-O-methyl quercetin and quercetin 7-O-beta-D-glucuronide, relative to that of quercetin, in terms of their further metabolism and their resulting cytotoxic and/or cytoprotective effects in the absence and presence of oxidative stress. Uptake experiments indicate that exposure to quercetin led to the generation of two novel cellular metabolites, one characterized as a 2'-glutathionyl quercetin conjugate and another product with similar spectral characteristics but 1 mass unit lower, putatively a quinone/quinone methide. A similar product was identified in cells exposed to 3'-O-methyl quercetin, but not in the lysates of those exposed to its 4'-O-methyl counterpart, suggesting that its formation is related to oxidative metabolism. There was no uptake or metabolism of quercetin 7-O-beta-D-glucuronide by fibroblasts. Formation of oxidative metabolites may explain the observed concentration-dependent toxicity of quercetin and 3'-O-methyl quercetin, whereas the formation of a 2'-glutathionyl quercetin conjugate is interpreted as a detoxification step. Both O -methylated metabolites conferred less protection than quercetin against peroxide-induced damage, and quercetin glucuronide was ineffective. The ability to modulate cellular toxicity paralleled the ability of the compounds to decrease the level of peroxide-induced caspase-3 activation. Our data suggest that the actions of quercetin and its metabolites in vivo are mediated by intracellular metabolites. PMID:12578560

  11. DFT study of glycosyl group reactivity in quercetin derivatives

    NASA Astrophysics Data System (ADS)

    Jeevitha, D.; Sadasivam, K.; Praveena, R.; Jayaprakasam, R.

    2016-09-01

    Density functional theory (DFT) is used to compute relevant electronic properties with the purpose of generating precise information which facilitates the best activity given by the positions of glycosyl group attached at all 3 different rings of quercetin such as Q3G (C- ring), Q7G (A-ring) and Q3‧G (B-ring). Computed values of the OH BDE, frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP), Density of states (DOS,PDOS,OPDOS) and electronic properties such as electron affinity (EA), ionization potential (IP), softness (S), hardness (η), electronegativity (χ) and electrophilic index (ω) indicate that the title compounds possess good radical scavenging activity. Charge delocalization and intramolecular hydrogen bonds are characterized using natural bond orbital (NBO) analysis. NBO accurately differentiate the weak and strong intramolecular hydrogen bond of quercetin-O-glycoside compounds. Results available from the computational investigation have proved that A-ring glycoside of quercetin is capable of donating electrons and acts as a good anti-oxidant than B-ring glycoside and C-ring glycoside of quercetin.

  12. Quercetin as colorimetric reagent for determination of zirconium

    USGS Publications Warehouse

    Grimaldi, F.S.; White, C.E.

    1953-01-01

    Methods described in the literature for the determination of zirconium are generally designed for relatively large amounts of this element. A good procedure using colorimetric reagent for the determination of trace amounts is desirable. Quercetin has been found to yield a sensitive color reaction with zirconium suitable for the determination of from 0.1 to 50?? of zirconium dioxide. The procedure developed involves the separation of zirconium from interfering elements by precipitation with p-dimethylaminoazophenylarsonic acid prior to its estimation with quercetin. The quercetin reaction is carried out in 0.5N hydrochloric acid solution. Under the operating conditions it is indicated that quercetin forms a 2 to 1 complex with zirconium; however, a 2 to 1 and a 1 to 1 complex can coexist under special conditions. Approximate values for the equilibrium constants of the complexes are K1 = 0.33 ?? 10-5 and K2 = 1.3 ?? 10-9. Seven Bureau of Standards samples of glass sands and refractories were analyzed with excellent results. The method described should find considerable application in the analysis of minerals and other materials for macro as well as micro amounts of zirconium.

  13. Quercetin, a Flavonoid Antioxidant, Ameliorated Procarbazine-Induced Oxidative Damage to Murine Tissues.

    PubMed

    Olayinka, Ebenezer Tunde; Ore, Ayokanmi; Adeyemo, Oluwatobi Adewumi; Ola, Olaniyi Solomon; Olotu, Olaoluwa Oluwaseun; Echebiri, Roseline Chinonye

    2015-01-01

    Procarbazine (PCZ) (indicated in Hodgkin's disease), is an alkylating agent known to generate free radicals in vivo, while Quercetin (QCT) is a flavonoid antioxidant with proven free radical scavenging capacity. This study investigated the protective effects of QCT on PCZ-induced oxidative damage in the rat. Male Wistar rats (160-180 g) were randomized into five groups (n = 5/group): I (control), II PCZ-treated (2 mg/kg body weight (bw) for seven days); III pre-treated with QCT (20 mg/kg bw) for seven days, followed by PCZ for seven days; IV co-treated with PCZ and QCT for seven days and V administered QCT alone for seven days. PCZ caused a significant increase in plasma total bilirubin, urea, and creatinine when compared with control (P < 0.05). Similarly, plasma activities of alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and γ-glutamyl transferase (γ-GT) were significantly increased in the PCZ-treated group relative to control. Furthermore, PCZ caused a significant decrease in the activities of hepatic superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) as well as levels of ascorbic acid (AA) and glutathione (GSH). This was followed by a significant increase in hepatic malondialdehyde (MDA) content. However, QCT pre-treatment and co-treatment ameliorated the PCZ-induced changes in plasma levels of urea, creatinine, and bilirubin as well as the activities of ALP, AST, ALT, and GGT. QCT also ameliorated hepatic AA and GSH levels and the activities of SOD, CAT, and GST. This all suggests that QCT protected against PCZ-induced oxidative damage in rats. PMID:26783707

  14. Protective mechanism of quercetin on acute myocardial infarction in rats.

    PubMed

    Li, B; Yang, M; Liu, J W; Yin, G T

    2016-03-11

    To investigate the protective mechanism of quercetin on acute myocardial infarction (AMI) rats, an AMI rat model was established by ligating the left coronary anterior descending branch. The rats were randomly divided into the model group and low- and high-dose quercetin groups. The control group comprised sham-operated rats. The rats in the low- and high-dose quercetin groups were administered 100 and 400 mg/kg quercetin, respectively, by gavage. The rats in the control and model groups were administered isometric normal saline once daily for one week. The mRNA and protein levels of TNF-α and IL-1β in the myocardial tissue of rats were detected in each group by real time polymerase chain reaction and enzyme-linked immunosorbent assay. Malondialdehyde (MDA) content in the myocardial tissue and superoxide dismutase (SOD) and catalase (CAT) activities were detected using a colorimetric method. The level of apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling. Compared with those in the control group, the mRNA and protein levels of TNF-α, IL-1β and MDA content in the model, low-, and high-dose groups significantly increased. SOD and CAT activities decreased significantly. The cell apoptosis index increased significantly  (P < 0.05). Compared with those in the model group, the mRNA and protein levels of TNF-α and IL-1β and MDA content in myocardial tissue of rats in the low-dose and high-dose groups decreased significantly. SOD and CAT activities increased significantly. The cell apoptosis index significantly reduced (P < 0.05). In conclusion, quercetin has significant anti-inflammatory, antioxidant, and anti-apoptotic effects on AMI rats and can effectively protect against myocardium damage.

  15. Maltodextrin fast dissolving films for quercetin nanocrystal delivery. A feasibility study.

    PubMed

    Lai, Francesco; Franceschini, Ilaria; Corrias, Francesco; Sala, Maria Chiara; Cilurzo, Francesco; Sinico, Chiara; Pini, Elena

    2015-05-01

    The objective of this study was to evaluate the feasibility to prepare fast dissolving films as quercetin nanocrystal delivery systems, using maltodextrins as film forming material and glycerin as plasticizer, with the goal of enhancing quercetin oral bioavailability. Quercetin nanosuspensions were prepared using a high-pressure homogenizer, and then directly used to prepare the films by a casting method. Spectroscopic and calorimetric analysis evidenced that reduction of quercetin size at nanoscale and incorporation in maltodextrin films do not affect the solid state of the active ingredient. The loading of quercetin nanocrystals into the film determined a slight variation of film elasticity and ductility. Indeed, the elastic modulus of the loaded films resulted about a half of the placebo ones, while the elongation at break increased four folds. Free and film loaded quercetin nanocrystals showed a comparable dissolution rate, much higher than that of bulk quercetin.

  16. Characterization of adsorption and electronic excited states of quercetin on titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Zdyb, Agata; Krawczyk, Stanisław

    2016-03-01

    Adsorption of quercetin on colloidal titanium dioxide nanoparticles in ethanol and its excited-state electronic structure were investigated by means of electronic and vibrational spectroscopies. The changes in electronic charge redistribution as reflected by the dipole moment difference, ∆μ, between the ground and excited electronic states were measured with electroabsorption spectroscopy and analyzed using results of TD DFT computations. Adsorption of quercetin causes a red shift of its absorption spectrum. Raman spectra of quercetin analyzed with reference to analogous data for morin indicate binding of quercetin through the hydroxy groups of the catechol moiety. The difference dipole moment, which is 5.5 D in free quercetin, increases to 11.8 D in opposite direction in adsorbed quercetin, and is associated with charge-transfer to the Ti atom. The computed transition energy, intensity, vector Δμ and molecular orbitals involved in the electronic transition at different molecular configurations indicate a bidentate chelating mode of binding of quercetin.

  17. Antioxidant study of quercetin and their metal complex and determination of stability constant by spectrophotometry method.

    PubMed

    Ravichandran, R; Rajendran, M; Devapiriam, D

    2014-03-01

    Quercetin found chelate cadmium ions, scavenge free radicals produced by cadmium. Hence new complex, quercetin with cadmium was synthesised, and the synthesised complex structures were determined by UV-vis spectrophotometry, infrared spectroscopy, thermogravimetry and differential thermal analysis techniques (UV-vis, IR, TGA and DTA). The equilibrium stability constants of quercetin-cadmium complex were determined by Job's method. The determined stability constant value of quercetin-cadminum complex at pH 4.4 is 2.27×10(6) and at pH 7.4 is 7.80×10(6). It was found that the quercetin and cadmium ion form 1:1 complex in both pH 4.4 and pH 7.4. The structure of the compounds was elucidated on the basis of obtained results. Furthermore, the antioxidant activity of the free quercetin and quercetin-cadmium complexes were determined by DPPH and ABTS assays.

  18. Hepatitis C: Treatment

    MedlinePlus

    ... Public Home » Hepatitis C » Hepatitis C Treatment Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... Enter ZIP code here Enter ZIP code here Hepatitis C Treatment for Veterans and the Public Treatment ...

  19. Hepatitis C and Incarceration

    MedlinePlus

    HEPATITIS C & INCARCERATION What is hepatitis? “Hepatitis” means inflammation or swelling of the liver. The liver is an important ... viral hepatitis: Hepatitis A, Hepatitis B, and Hepatitis C. They are all different from each other and ...

  20. Hepatitis A

    MedlinePlus

    ... an inflammation of the liver. One type, hepatitis A, is caused by the hepatitis A virus (HAV). The disease spreads through contact with ... washed in untreated water Putting into your mouth a finger or object that came into contact with ...

  1. Autoimmune hepatitis

    MedlinePlus

    Lupoid hepatitis; Chronic acute liver disease ... This form of hepatitis is an autoimmune disease . The body's immune system cannot tell the difference between healthy body tissue and harmful, outside ...

  2. Hepatitis D

    MedlinePlus

    ... if the hepatitis B virus is also present. Transmission Hepatitis D can be found in the blood, ... other body fluids of people who are infected. Transmission happens when infected body fluid enters another person’s ...

  3. Hepatitis C

    MedlinePlus

    ... 2014 Select a Language: Fact Sheet 507 Hepatitis C WHAT IS HEPATITIS C? HOW IS IT DIAGNOSED? ... treatment may be less likely to work. Hep C treatment is less effective for coinfected people. Cure ...

  4. Hepatitis A

    MedlinePlus

    ... Organizations ​​ (PDF, 341 KB)​​​​​ Alternate Language URL Español Hepatitis A Page Content On this page: What is ... Nutrition Points to Remember Clinical Trials What is hepatitis A? Hepatitis * A is a virus , or infection, ...

  5. Autoimmune Hepatitis

    MedlinePlus

    ... Organizations ​​ (PDF, 341 KB)​​​​​ Alternate Language URL Autoimmune Hepatitis Page Content On this page: What is autoimmune ... Points to Remember Clinical Trials What is autoimmune hepatitis? Autoimmune hepatitis is a chronic—or long lasting— ...

  6. Hepatitis C

    MedlinePlus

    ... an inflammation of the liver. One type, hepatitis C, is caused by the hepatitis C virus (HCV). It usually spreads through contact with ... childbirth. Most people who are infected with hepatitis C don't have any symptoms for years. If ...

  7. Oral and Intraperitoneal Administration of Quercetin Decreased Lymphocyte DNA Damage and Plasma Lipid Peroxidation Induced by TSA In Vivo

    PubMed Central

    Chan, Shu-Ting; Shiau, Rong-Jen; Liao, Jiunn-Wang; Yeh, Shu-Lan

    2014-01-01

    Our previous study showed that quercetin enhances the anticancer effect of trichostatin A (TSA) in xenograft mice given quercetin intraperitoneally (10 mg/kg, 3 times/week). Herein, we investigate whether quercetin administered orally exerts such an effect and prevents the cytotoxic side effects of TSA. We found that quercetin given orally (20 and 100 mg/kg, 3 times/week) failed to enhance the antitumor effect of TSA although it increased the total quercetin concentration more than quercetin administered intraperitoneally in the plasma. The compound quercetin-3-glucuronide (Q3G) increased the most. However, quercetin administered intraperitoneally increased the total quercetin level in tumor tissues more than oral quercetin. Oral and intraperitoneal administration of quercetin similarly decreased lymphocyte DNA damage and plasma lipid peroxidation level induced by TSA. Furthermore, we found that the enhancing effect of Q3G on the antitumor effect of TSA and the incorporation of Q3G was less than that of quercetin in A549 cells. However, we found that A549 cells possessed the ability to convert Q3G to quercetin. In conclusion, different from quercetin administered intraperitoneally, quercetin administered orally failed to enhance the antitumor effect of TSA because of its metabolic conversion. However, it prevented TSA-induced DNA damage and lipid peroxidation. PMID:24868531

  8. Evaluation of tolerable levels of dietary quercetin for exerting its antioxidative effect in high cholesterol-fed rats.

    PubMed

    Azuma, Keiko; Ippoushi, Katsunari; Terao, Junji

    2010-04-01

    The tolerable level of dietary quercetin for exerting its antioxidative effect was evaluated in high cholesterol-fed rats, using quercetin-containing diets (31-1260 mg quercetin/kg body weight/day) and onion diets (19-94 mg quercetin aglycone equivalent/kg body weight/day), from the viewpoint of a safety assessment. After feeding for 4 weeks, the urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) levels of the quercetin-containing diet groups fed more than 157 mg quercetin/kg body weight/day were higher than the group fed a quercetin-free diet, although the plasma quercetin metabolite levels and plasma antioxidative activity were elevated depending on the amounts of quercetin or onion diet intake. No significant effect on body weight gain by quercetin-containing diets or onion diets was observed. However, ratios of the liver and kidney weights to the body weight were significantly increased in the quercetin-containing diet groups fed more than 314 mg and 157 mg quercetin/kg body weight/day, respectively, and in the onion diet groups fed more than 47 mg quercetin aglycone equivalent/kg body weight/day. These results indicated that the tolerable level for dietary quercetin for exerting its antioxidative effect was between 126 and 157 mg/kg/day for the quercetin diet and between 19 and 34 mg/kg/day for the onion diet. PMID:20138950

  9. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability.

    PubMed

    Tran, Thanh Huyen; Guo, Yi; Song, Donghui; Bruno, Richard S; Lu, Xiuling

    2014-03-01

    Quercetin is a dietary flavonoid with potential chemoprotective effects, but has low bioavailability because of poor aqueous solubility and low intestinal absorption. A quercetin-containing self-nanoemulsifying drug delivery system (Q-SNEDDS) was developed to form oil-in-water nanoemulsions in situ for improving quercetin oral bioavailability. On the basis of the quercetin solubility, emulsifying ability, and stability after dispersion in an aqueous phase, an optimal SNEDDS consisting of castor oil, Tween® 80, Cremophor® RH 40, and PEG 400 (20:16:34:30, w/w) was identified. Upon mixing with water, Q-SNEDDS formed a nanoemulsion having a droplet size of 208.8 ± 4.5 nm and zeta potential of -26.3 ± 1.2 mV. The presence of Tween® 80 and PEG 400 increased quercetin solubility and maintained supersaturated quercetin concentrations (5 mg/mL) for >1 month. The optimized Q-SNEDDS significantly improved quercetin transport across a human colon carcinoma (Caco-2) cell monolayer. Fluorescence imaging demonstrated rapid absorption of the Q-SNEDDS within 40 min of oral ingestion. Following oral administration of Q-SNEDDS in rats (15 mg/kg), the area under the concentration curve and maximum concentration of plasma quercetin after 24 h increased by approximately twofold and threefold compared with the quercetin control suspension. These data suggest that this Q-SNEDDS formulation can enhance the solubility and oral bioavailability of quercetin for appropriate clinical application.

  10. Quercetin 3,7-dimethyl ether: a vasorelaxant flavonoid isolated from Croton schiedeanus Schlecht.

    PubMed

    Guerrero, M F; Puebla, P; Carrón, R; Martín, M L; San Román, L

    2002-10-01

    The vasorelaxant profile of quercetin 3,7-dimethyl ether, a flavonoid isolated from Croton schiedeanus Schlecht (Euphorbiaceae), was assessed in aortic rings isolated from Wistar rats. To gain insight into its structure-activity relationship, we compared this substance with quercetin 3,4',7-trimethyl ether (ayanin), another flavonoid isolated from this plant, quercetin 3,3',4',7-tetramethyl ether, a flavonoid synthesized by us, and quercetin. In addition we examined the interaction of quercetin 3,7-dimethyl ether with the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway. According to their pEC50 values (concentration producing a 50% inhibition of the maximal contractile response) to phenylephrine-induced precontraction in rat isolated aorta, the potency order was quercetin 3,7-dimethyl ether > quercetin > quercetin 3,4',7-trimethyl ether > quercetin 3,3',4',7-tetramethyl ether (4.70+/-0.18; 3.96+/-0.07; 3.64+/-0.02; 3.11+/-0.16). The relaxant effect of quercetin 3,7-dimethyl ether was significantly decreased by the removal of endothelium as well as by methylene blue, an inhibitor of guanylyl cyclase, and by N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME), an NO-synthase inhibitor. Therefore, quercetin 3,7-dimethyl ether has a NO/cGMP pathway-related profile, with increased vasorelaxant activity due to hydroxylation at positions 3 and 4 of the B ring. In addition, methylation at positions 3 and 7 with respect to quercetin of the C and A rings, respectively, seems to further enhance the vasorelaxant activity of quercetin 3,7-dimethyl ether.

  11. Quercetin represses apolipoprotein B expression by inhibiting the transcriptional activity of C/EBPβ.

    PubMed

    Shimizu, Makoto; Li, Juan; Inoue, Jun; Sato, Ryuichiro

    2015-01-01

    Quercetin is one of the most abundant polyphenolic flavonoids found in fruits and vegetables and has anti-oxidative and anti-obesity effects. Because the small intestine is a major absorptive organ of dietary nutrients, it is likely that highly concentrated food constituents, including polyphenols, are present in the small intestinal epithelial cells, suggesting that food factors may have a profound effect in this tissue. To identify novel targets of quercetin in the intestinal enterocytes, mRNA profiling using human intestinal epithelial Caco-2 cells was performed. We found that mRNA levels of some apolipoproteins, particularly apolipoprotein B (apoB), are downregulated in the presence of quercetin. On the exposure of Caco-2 cells to quercetin, both mRNA and protein levels of apoB were decreased. Promoter analysis of the human apoB revealed that quercetin response element is localized at the 5'-proximal promoter region, which contains a conserved CCAAT enhancer-binding protein (C/EBP)-response element. We found that quercetin reduces the promoter activity of apoB, driven by the enforced expression of C/EBPβ. Quercetin had no effect on either mRNA or protein levels of C/EBPβ. In contrast, we found that quercetin inhibits the transcriptional activity of C/EBPβ but not its recruitment to the apoB promoter. On the exposure of Caco-2 cells to quercetin 3-O-glucuronide, which is in a cell-impermeable form, no notable change in apoB mRNA was observed, suggesting an intracellular action of quercetin. In vitro interaction experiments using quercetin-conjugated beads revealed that quercetin binds to C/EBPβ. Our results describe a novel regulatory mechanism of transcription of apolipoprotein genes by quercetin in the intestinal enterocytes. PMID:25875015

  12. New benzophenone and quercetin galloyl glycosides from Psidium guajava L.

    PubMed

    Matsuzaki, Keiichi; Ishii, Rie; Kobiyama, Kaori; Kitanaka, Susumu

    2010-07-01

    New benzophenone and flavonol galloyl glycosides were isolated from an 80% MeOH extract of Psidium guajava L. (Myrtaceae) together with five known quercetin glycosides. The structures of the novel glycosides were elucidated to be 2,4,6-trihydroxybenzophenone 4-O-(6''-O-galloyl)-beta-D: -glucopyranoside (1, guavinoside A), 2,4,6-trihydroxy-3,5-dimethylbenzophenone 4-O-(6''-O-galloyl)-beta-D: -glucopyranoside (2, guavinoside B), and quercetin 3-O-(5''-O-galloyl)-alpha-L: -arabinofuranoside (3, guavinoside C) by NMR, MS, UV, and IR spectroscopies. Isolated phenolic glycosides showed significant inhibitory activities against histamine release from rat peritoneal mast cells, and nitric oxide production from a murine macrophage-like cell line, RAW 264.7.

  13. Quercetin inhibits inflammatory bone resorption in a mouse periodontitis model.

    PubMed

    Napimoga, Marcelo H; Clemente-Napimoga, Juliana T; Macedo, Cristina G; Freitas, Fabiana F; Stipp, Rafael N; Pinho-Ribeiro, Felipe A; Casagrande, Rubia; Verri, Waldiceu A

    2013-12-27

    Periodontitis is a disease that leads to bone destruction and represents the main cause of tooth loss in adults. The development of aggressive periodontitis has been associated with increased inflammatory response that is induced by the presence of a subgingival biofilm containing Aggregatibacter actinomycetemcomitans. The flavonoid quercetin (1) is widespread in vegetables and fruits and exhibits many biological properties for possible medical and clinical applications such as its anti-inflamatory and antioxidant effects. Thus, in the present study, the properties of 1 have been evaluated in bone loss and inflammation using a mouse periodontitis model induced by A. actinomycetemcomitans infection. Subcutaneous treatment with 1 reduced A. actinomycetemcomitans-induced bone loss and IL-1β, TNF-α, IL-17, RANKL, and ICAM-1 production in the gingival tissue without affecting bacterial counts. These results demonstrated that quercetin exhibits protective effects in A. actinomycetemcomitans-induced periodontitis in mice by modulating cytokine and ICAM-1 production.

  14. Benzbromarone, Quercetin, and Folic Acid Inhibit Amylin Aggregation

    PubMed Central

    López, Laura C.; Varea, Olga; Navarro, Susanna; Carrodeguas, José A.; Sanchez de Groot, Natalia; Ventura, Salvador; Sancho, Javier

    2016-01-01

    Human Amylin, or islet amyloid polypeptide (hIAPP), is a small hormone secreted by pancreatic β-cells that forms aggregates under insulin deficiency metabolic conditions, and it constitutes a pathological hallmark of type II diabetes mellitus. In type II diabetes patients, amylin is abnormally increased, self-assembled into amyloid aggregates, and ultimately contributes to the apoptotic death of β-cells by mechanisms that are not completely understood. We have screened a library of approved drugs in order to identify inhibitors of amylin aggregation that could be used as tools to investigate the role of amylin aggregation in type II diabetes or as therapeutics in order to reduce β-cell damage. Interestingly, three of the compounds analyzed—benzbromarone, quercetin, and folic acid—are able to slow down amylin fiber formation according to Thioflavin T binding, turbidimetry, and Transmission Electron Microscopy assays. In addition to the in vitro assays, we have tested the effect of these compounds in an amyloid toxicity cell culture model and we have found that one of them, quercetin, has the ability to partly protect cultured pancreatic insulinoma cells from the cytotoxic effect of amylin. Our data suggests that quercetin can contribute to reduce oxidative damage in pancreatic insulinoma β cells by modulating the aggregation propensity of amylin. PMID:27322259

  15. Benzbromarone, Quercetin, and Folic Acid Inhibit Amylin Aggregation.

    PubMed

    López, Laura C; Varea, Olga; Navarro, Susanna; Carrodeguas, José A; Sanchez de Groot, Natalia; Ventura, Salvador; Sancho, Javier

    2016-01-01

    Human Amylin, or islet amyloid polypeptide (hIAPP), is a small hormone secreted by pancreatic β-cells that forms aggregates under insulin deficiency metabolic conditions, and it constitutes a pathological hallmark of type II diabetes mellitus. In type II diabetes patients, amylin is abnormally increased, self-assembled into amyloid aggregates, and ultimately contributes to the apoptotic death of β-cells by mechanisms that are not completely understood. We have screened a library of approved drugs in order to identify inhibitors of amylin aggregation that could be used as tools to investigate the role of amylin aggregation in type II diabetes or as therapeutics in order to reduce β-cell damage. Interestingly, three of the compounds analyzed-benzbromarone, quercetin, and folic acid-are able to slow down amylin fiber formation according to Thioflavin T binding, turbidimetry, and Transmission Electron Microscopy assays. In addition to the in vitro assays, we have tested the effect of these compounds in an amyloid toxicity cell culture model and we have found that one of them, quercetin, has the ability to partly protect cultured pancreatic insulinoma cells from the cytotoxic effect of amylin. Our data suggests that quercetin can contribute to reduce oxidative damage in pancreatic insulinoma β cells by modulating the aggregation propensity of amylin. PMID:27322259

  16. Dipeptidyl peptidase-4 inhibition ameliorates Western diet-induced hepatic steatosis and insulin resistance through hepatic lipid remodeling and modulation of hepatic mitochondrial function.

    PubMed

    Aroor, Annayya R; Habibi, Javad; Ford, David A; Nistala, Ravi; Lastra, Guido; Manrique, Camila; Dunham, Merlow M; Ford, Kaitlin D; Thyfault, John P; Parks, Elizabeth J; Sowers, James R; Rector, R Scott

    2015-06-01

    Novel therapies are needed for treating the increasing prevalence of hepatic steatosis in Western populations. In this regard, dipeptidyl peptidase-4 (DPP-4) inhibitors have recently been reported to attenuate the development of hepatic steatosis, but the potential mechanisms remain poorly defined. In the current study, 4-week-old C57Bl/6 mice were fed a high-fat/high-fructose Western diet (WD) or a WD containing the DPP-4 inhibitor, MK0626, for 16 weeks. The DPP-4 inhibitor prevented WD-induced hepatic steatosis and reduced hepatic insulin resistance by enhancing insulin suppression of hepatic glucose output. WD-induced accumulation of hepatic triacylglycerol (TAG) and diacylglycerol (DAG) content was significantly attenuated with DPP-4 inhibitor treatment. In addition, MK0626 significantly reduced mitochondrial incomplete palmitate oxidation and increased indices of pyruvate dehydrogenase activity, TCA cycle flux, and hepatic TAG secretion. Furthermore, DPP-4 inhibition rescued WD-induced decreases in hepatic PGC-1α and CPT-1 mRNA expression and hepatic Sirt1 protein content. Moreover, plasma uric acid levels in mice fed the WD were decreased after MK0626 treatment. These studies suggest that DPP-4 inhibition ameliorates hepatic steatosis and insulin resistance by suppressing hepatic TAG and DAG accumulation through enhanced mitochondrial carbohydrate utilization and hepatic TAG secretion/export with a concomitant reduction of uric acid production.

  17. Synthesis and characterization of a novel antioxidant RS4 by esterifying carboxymethyl sweetpotato starch with quercetin.

    PubMed

    Lv, Xia; Ye, Fayin; Li, Jinfeng; Ming, Jian; Zhao, Guohua

    2016-11-01

    Quercetin is grafted to carboxymethyl sweetpotato starch (CMSS) by esterification. Upon esterification, the water solubility of CMSS decreases and the CMSS-quercetin conjugates (CMSS-Q) are yellowish. FT-IR and 1H NMR indicated the covalent attachment of quercetin to CMSS. Thermogravimetry revealed the superior thermal stability of CMSS-Q over CMSS and native sweetpotato starch (NSS). The in vitro digestibility assays showed that CMSS is highly resistant to digestion while the quercetin graft with degree of substitution (DS) above 0.074 slightly increased its digestibility. The quercetin graft imparted CMSS with strong antioxidant activity and enhanced its thermal stability, which increased with quercetin DS. In vitro cyotoxicity assessment revealed that CMSS-Q is as safe as CMSS and NSS. This study showed that CMSS-Q is a novel antioxidant-resistant starch in RS4 form.

  18. Synthesis and characterization of a novel antioxidant RS4 by esterifying carboxymethyl sweetpotato starch with quercetin.

    PubMed

    Lv, Xia; Ye, Fayin; Li, Jinfeng; Ming, Jian; Zhao, Guohua

    2016-11-01

    Quercetin is grafted to carboxymethyl sweetpotato starch (CMSS) by esterification. Upon esterification, the water solubility of CMSS decreases and the CMSS-quercetin conjugates (CMSS-Q) are yellowish. FT-IR and 1H NMR indicated the covalent attachment of quercetin to CMSS. Thermogravimetry revealed the superior thermal stability of CMSS-Q over CMSS and native sweetpotato starch (NSS). The in vitro digestibility assays showed that CMSS is highly resistant to digestion while the quercetin graft with degree of substitution (DS) above 0.074 slightly increased its digestibility. The quercetin graft imparted CMSS with strong antioxidant activity and enhanced its thermal stability, which increased with quercetin DS. In vitro cyotoxicity assessment revealed that CMSS-Q is as safe as CMSS and NSS. This study showed that CMSS-Q is a novel antioxidant-resistant starch in RS4 form. PMID:27516278

  19. Hepatitis Vaccines

    PubMed Central

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver. PMID:26978406

  20. [Autoimmune hepatitis].

    PubMed

    Ostojić, Rajko

    2003-01-01

    Autoimmune hepatitis is an unresolving, hepatocellular inflammation of unknown cause that is characterized by the presence of periportal hepatitis on histologic examination, tissue autoantibodies in serum, and hypergammaglobulinemia. By international consensus, the designation autoimmune hepatitis has replaced alternative terms for the condition. Three types of autoimmune hepatitis have been proposed based on immunoserologic findings. Type 1 autoimmune hepatitis is characterized by the presence of antinuclear antibodies (ANA) or smooth muscle antibodies (SMA) (or both) in serum. Seventy percent of patients with type 1 of autoimmune hepatitis are women. This type is the most common form and accounts for at least 80% of cases. Type 2 is characterized by the presence of antibodies to liver-kidney microsome type 1 (anti-LKM1) in serum. Patients with this type of autoimmune hepatitis are predominantly children. Type 3 autoimmune hepatitis is characterized by the presence of antibodies to soluble liver antigen (anti-SLA) in serum. There are no individual features that are pathognomonic of autoimmune hepatitis, and its diagnosis requires the confident exclusion of other conditions. The large majority of patients show satisfactory response to corticosteroid (usually prednisone or prednisolone) therapy. For the past 30 years it has been customary to add azathioprine as a "steroid sparing" agent to allow lower doses of steroids to be used and remission, once achieved, can be sustained in many patients with azathioprine alone after steroid withdrawal. Patients with autoimmune hepatitis who have decompensated during or after corticosteroid therapy are candidates for liver transplantation.

  1. Rutin (quercetin rutinoside) induced protein-energy malnutrition in chronic kidney disease, but quercetin acted beneficially.

    PubMed

    Hsieh, Chiu-Lan; Peng, Chiung-Chi; Chen, Kuan-Chou; Peng, Robert Y

    2013-07-31

    Nutraceutically, much of the literature has indicated that an aglycon and its related glycoside would act similarly. However, controversial reports are accumulating. We hypothesize that rutin (RT) and quercetin (QT) pharmacodynamically could act differently. To confirm this, doxorubicin (DR) (8.5 mg/kg) was used to induce rat chronic kidney disease (CKD) and then treated with QT and RT (each 70 mg/kg body weight per day) for 13 weeks. QT exhibited better body weight gaining effect (420 ± 45) vs RT, 350 ± 57 g/rat (p < 0.001). DR raised the ratio kidney-to-body weight (%) to 0.82 (p < 0.001) vs RT, 0.62 (p < 0.01), and QT, 0.35 (p < 0.01). DR reduced the glomerular filtration rate to 25.2 vs RT, 48 ± 11.3; QT, 124.7 ± 12.8 (p < 0.001) and the control, 191.5 ± 15.7 mL/h (p < 0.001). DRCKD reduced hematocrit to 29 ± 5; RT, to 28 ± 5 (p < 0.05); QT, to 36 ± 6 vs the control 37.5 ± 4%, (p < 0.01). DRCKD reduced the serum albumin (s-Ab) to 2.1 ± 0.2 (p < 0.001); QT, to 2.7 ± 0.2 (p < 0.05) vs the normal 4.3 ± 0.5 g/dL, yet RT was totally ineffective. DRCKD raised serum cholesterol level to 340 ± 30; vs RT, 260 ± 12; QT, 220 ± 25; and the normal value, 70 ± 25 mg/dL. DRCKD increased serum triglyceride to 260 ± 15 (p < 0.001), RT and QT restored it to 170 ± 25 and 200 ± 15 (p < 0.05) vs the normal 26-145 mg/dL. DRCKD elevated blood urea nitrogen to 38 ± 3 vs RT, to 98 ± 6 mg/dL (p < 0.001), implicating "protein-energy malnutrition". RT stimulated serum creatinine (sCr) production to reach 6.0 ± 0.9 mg/dL (p < 0.001). QT did not alter the sCr level. RT but not QT induced uremia and hypercreatininemia. DR significantly downregulated Bcl-2, but highly upregulated Bax, Bad, and cleaved caspase-3, implicating the intrinsic mitochondrial pathway. DR damaged DNA, but QT completely rescued such an effect and recovered renal amyloidosis and collagen deposition. Conclusively, RT and QT act differently, and RT is inferior to QT with respect to treating CKD.

  2. Quercetin from shallots (Allium cepa L. var. aggregatum) is more bioavailable than its glucosides.

    PubMed

    Wiczkowski, Wieslaw; Romaszko, Jerzy; Bucinski, Adam; Szawara-Nowak, Dorota; Honke, Joanna; Zielinski, Henryk; Piskula, Mariusz K

    2008-05-01

    The lipophilic character of quercetin suggests that it can cross enterocyte membranes via simple diffusion. Therefore, it should be more bioavailable than its glucosides, which require preliminary hydrolysis or active transport for absorption. However, the published human studies show that quercetin is less bioavailable than its glucosides. Assuming that low bioavailability of quercetin aglycone provided to humans as a pure substance is the result of its low solubility in the digestive tract, we studied its bioavailability from dietary sources in which quercetin was dispersed in the food matrix. In a randomized crossover study, 9 volunteers took a single dose of either shallot flesh (99.2% quercetin glucosides and 0.8% quercetin aglycone) or dry shallot skin (83.3% quercetin aglycone and 16.7% quercetin glucosides), providing 1.4 mg quercetin per kg of body weight. Blood samples were collected before and after consumption of shallot preparations. Plasma quercetin was measured on HPLC with electrochemical detection after plasma enzymatic treatment. The maximum plasma quercetin concentration of 1.02 +/- 0.13 micromol/L was reached at 2.33 +/- 0.50 h after shallot flesh consumption compared with 3.95 +/- 0.62 micromol/L at 2.78 +/- 0.15 h after dry skin consumption. The area under the concentration-time curve after dry skin consumption was 47.23 +/- 7.53 micromol x h(-1) x L(-1) and was significantly higher than that after shallot flesh intake (22.23 +/- 2.32 micromol x h(-1) x L(-1)). When provided along with dietary sources, quercetin aglycone is more bioavailable than its glucosides in humans. Results point to the food matrix as a key factor.

  3. Effects of daily quercetin-rich supplementation on cardiometabolic risks in male smokers.

    PubMed

    Lee, Kyung-Hea; Park, Eunju; Lee, Hye-Jin; Kim, Myeong-Ok; Cha, Yong-Jun; Kim, Jung-Mi; Lee, Hyeran; Shin, Min-Jeong

    2011-02-01

    Limited information from human studies indicates that dietary quercetin supplementation influences blood lipid profiles, glycemic response, and inflammatory status, collectively termed cardiometabolic risks. We tested the hypothesis that quercetin-rich supplementation, derived from onion peel extract, improves cardiometabolic risk components in healthy male smokers in a randomized, double blinded, placebo-controlled parallel design. Randomly assigned subjects were instructed to take either the placebo (n = 43) or 100 mg quercetin capsules each day (n = 49) for 10 weeks. Anthropometric parameters and blood pressure were measured, and blood lipids, glucose, interleukin-6, and soluble vascular cell adhesion molecule-1 (sVCAM-1) were determined at baseline and after 10 weeks of quercetin supplementation. Quercetin-rich supplementation significantly reduced serum concentrations of total cholesterol (P < 0.05) and LDL-cholesterol (P < 0.01), whereas these effects were not shown in the placebo group. Furthermore, significant increases were observed in serum concentrations of HDL-cholesterol both in the placebo (P < 0.005) and quercetin-rich supplementation group (P < 0.001); however, changes in HDL-cholesterol were significantly greater in subjects receiving quercetin-rich supplementation than the placebo. Both systolic (P < 0.05) and diastolic blood pressure (P < 0.01) decreased significantly in the quercetin-rich supplementation group. Glucose concentrations decreased significantly after 10 weeks of quercetin-rich supplementation (P < 0.05). In contrast, no effects of quercetin-rich supplementation were observed for the inflammatory markers-IL-6 and sVCAM-1. Daily quercetin-rich supplementation from onion peel extract improved blood lipid profiles, glucose, and blood pressure, suggesting a beneficial role for quercetin as a preventive measure against cardiovascular risk. PMID:21487493

  4. Quercetin from shallots (Allium cepa L. var. aggregatum) is more bioavailable than its glucosides.

    PubMed

    Wiczkowski, Wieslaw; Romaszko, Jerzy; Bucinski, Adam; Szawara-Nowak, Dorota; Honke, Joanna; Zielinski, Henryk; Piskula, Mariusz K

    2008-05-01

    The lipophilic character of quercetin suggests that it can cross enterocyte membranes via simple diffusion. Therefore, it should be more bioavailable than its glucosides, which require preliminary hydrolysis or active transport for absorption. However, the published human studies show that quercetin is less bioavailable than its glucosides. Assuming that low bioavailability of quercetin aglycone provided to humans as a pure substance is the result of its low solubility in the digestive tract, we studied its bioavailability from dietary sources in which quercetin was dispersed in the food matrix. In a randomized crossover study, 9 volunteers took a single dose of either shallot flesh (99.2% quercetin glucosides and 0.8% quercetin aglycone) or dry shallot skin (83.3% quercetin aglycone and 16.7% quercetin glucosides), providing 1.4 mg quercetin per kg of body weight. Blood samples were collected before and after consumption of shallot preparations. Plasma quercetin was measured on HPLC with electrochemical detection after plasma enzymatic treatment. The maximum plasma quercetin concentration of 1.02 +/- 0.13 micromol/L was reached at 2.33 +/- 0.50 h after shallot flesh consumption compared with 3.95 +/- 0.62 micromol/L at 2.78 +/- 0.15 h after dry skin consumption. The area under the concentration-time curve after dry skin consumption was 47.23 +/- 7.53 micromol x h(-1) x L(-1) and was significantly higher than that after shallot flesh intake (22.23 +/- 2.32 micromol x h(-1) x L(-1)). When provided along with dietary sources, quercetin aglycone is more bioavailable than its glucosides in humans. Results point to the food matrix as a key factor. PMID:18424596

  5. Effects of dietary quercetin on female fertility in mice: implication of transglutaminase 2

    PubMed Central

    Beazley, Kelly E.; Nurminskaya, Maria

    2016-01-01

    Use of the dietary supplement quercetin is on the rise. Because previous studies imply an inhibitory effect of quercetin on male fertility, we explored the effects of this flavonoid on fertility in female mice. Birth outcomes, and ovarian morphology in 4-week-old offspring, were assessed in mice receiving dietary quercetin (5 mg kg−1 day−1) for 9 months during two breeding periods: from 2 to 6 months (prime reproductive age) and 8 to11 months of age. Quercetin increased birth spacing, leading to a 60% reduction in the number of litters, but enhanced folliculogenesis in ovaries of female offspring. While in young females quercetin caused an almost 70% increase in litter size, in older animals this effect was reversed. Consistent with the inhibitory activity of quercetin on the enzyme transglutaminase 2 (TG2), genetic ablation of TG2 in mice mirrors the effects of quercetin on birth outcomes and follicular development. Further, TG2-null mice lack responsiveness to quercetin ingestion. Our study shows for the first time that dietary quercetin can cause reduced reproductive potential in female mice and implies that TG2 may regulate ovarian ageing. PMID:25557047

  6. Quercetin suppresses HeLa cells by blocking PI3K/Akt pathway.

    PubMed

    Xiang, Tao; Fang, Yong; Wang, Shi-Xuan

    2014-10-01

    To explore the effect of quercetin on the proliferation and apoptosis of HeLa cells, HeLa cells were incubated with quercetin at different concentrations. Cell viability was evaluated by MTT assay, cell apoptosis was detected by Annexin-V/PI double labeled cytometry and DNA ladder assay. Cell cycle was flow cytometrically determined and the morphological changes of the cells were observed under a fluorescence microscope after Hoechst 33258 staining and the apoptosis-related proteins in the HeLa cells were assessed by Western blotting. The results showed that quercetin significantly inhibited the growth of HeLa cells and induced obvious apoptosis in vitro in a time- and dose-dependent manner. Moreover, quercetin induced apoptosis of HeLa cells in cell cycle-dependent manner because quercetin could induce arrest of HeLa cells at G0/G1 phase. Quercetin treatment down-regulated the expression of the PI3K and p-Akt. In addition, quercetin could down-regulate expression of bcl-2, up-regulate Bax, but exerted no effect on the overall expression of Akt. We are led to conclude that quercetin induces apoptosis via PI3k/Akt pathways, and quercetin has potential to be used as an anti-tumor agent against human cervix cancer.

  7. Human myeloperoxidase activity is inhibited in vitro by quercetin. Comparison with three related compounds.

    PubMed

    Pincemail, J; Deby, C; Thirion, A; de Bruyn-Dister, M; Goutier, R

    1988-05-15

    Quercetin is an effective inhibitor of human myeloperoxidase (MPO) activity, both with purified enzyme (IC50 = 3.5 microM) and in a system using stimulated human neutrophils. Quercetin is significantly more potent than three other related compounds (rutin, rutin sulfate and troxerutin) and than methimazole, a previously-known myeloperoxidase inhibitor. The inhibitory activity of quercetin is of the competitive type. Moreover, quercetin is directly able to scavenge hypochlorous acid (HOCl), a chlorinated species generated by the MPO/H2O2/Cl- system.

  8. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery

    PubMed Central

    Tan, Qi; Liu, Weidong; Guo, Chenyu; Zhai, Guangxi

    2011-01-01

    Background The purpose of this study was to investigate lecithin-chitosan nanoparticles as a topical delivery system for quercetin. Methods Tocopheryl propylene glycol succinate was chosen to be the surfactant for the nanosystem. The mean particle size of the nanoparticles was 95.3 nm, and the entrapment efficiency and drug loading for quercetin were 48.5% and 2.45%, respectively. Topical delivery in vitro and in vivo of the quercetin-loaded nanoparticles was evaluated using quercetin propylene glycol solution as the control. Results Compared with quercetin solution, the quercetin-loaded nanoparticles showed higher permeation ability, and significantly increased accumulation of quercetin in the skin, especially in the epidermis. Microstructure observation of the skin surface after administration indicated that the interaction between ingredients of the nanoparticles and the skin surface markedly changed the morphology of the stratum corneum and disrupted the corneocyte layers, thus facilitating the permeation and accumulation of quercetin in skin. Conclusion Lecithin-chitosan nanoparticles are a promising carrier for topical delivery of quercetin. PMID:21904452

  9. Effects of Functional Groups and Sugar Composition of Quercetin Derivatives on Their Radical Scavenging Properties.

    PubMed

    Kato, Komei; Ninomiya, Masayuki; Tanaka, Kaori; Koketsu, Mamoru

    2016-07-22

    Quercetin derivatives are widespread in the plant kingdom and exhibit various biological actions. The aim of this study was to investigate the structure-activity relationships of quercetin derivatives, with a focus on the influence of functional groups and sugar composition on their antioxidant capacity. A series of quercetin derivatives were therefore prepared and assessed for their DPPH radical scavenging properties. Isoquercetin O-gallates were more potent radical scavengers than quercetin. The systematic analysis highlights the importance of the distribution of hydroxy substituents in isoquercetin O-gallates to their potency. PMID:27314621

  10. Autoimmune hepatitis.

    PubMed

    Roberts, E A

    1995-01-01

    Autoimmune hepatitis can present as either acute or chronic disease in children. Clinical and laboratory features, including association with extrahepatic autoimmune syndromes and prompt response to immunosuppressive treatment, circulating autoantibodies and hypergammaglobulinemia, suggest an immune etiology. However, the disease mechanism remains uncertain. Different types of autoimmune hepatitis are defined on the basis of which autoantibodies are present: anti-smooth muscle (type 1), anti-liver/kidney microsomal (type 2), or anti-soluble liver antigen (type 3). Diseases which may be clinically similar to autoimmune hepatitis must be excluded before the diagnosis of autoimmune hepatitis is established: Wilson's disease, primary sclerosing cholangitis, chronic hepatitis B or C, and drug-induced liver disease are among the most important entities. Corticosteroids alone or with azathioprine constitute the usual treatment for autoimmune hepatitis. Although some children achieve a complete remission, or even recovery, and can stop immunosuppressive treatment, others required low-dose prednisone treatment indefinitely.

  11. Effects of a six-week intraduodenal supplementation with quercetin on liver lipid metabolism and oxidative stress in peripartal dairy cows.

    PubMed

    Stoldt, A-K; Mielenz, M; Nürnberg, G; Sauerwein, H; Esatbeyoglu, T; Wagner, A E; Rimbach, G; Starke, A; Wolffram, S; Metges, C C

    2016-05-01

    The purpose of this study was to evaluate possible effects of quercetin (Q) on liver lipid metabolism and antioxidative status in periparturient dairy cows. The periparturient period is associated with enormous metabolic changes for dairy cows. Energy needs for incipient lactation are too high to be balanced by feed intake, leading to negative energy balance and body fat mobilization. It has been estimated that this leads to the development of fatty liver in about 50% of cows, which are at high risk for disease. Furthermore, the antioxidative status of these cows may be impaired. Quercetin is a plant flavonoid having hepatoprotective and antioxidative potential and the ability to reduce liver lipid accumulation in monogastric animals. Little information is available in regard to these effects in ruminants. To prevent microbial Q degradation in the rumen, Q was administered via a duodenal fistula to improve systemic availability. Five cows of the Q-treated group received, daily, 100 mg of quercetin dehydrate/kg BW in a 0.9% sodium chloride solution from d -20 until d 20 relative to calving, whereas 5 control (CTR) cows received only a sodium chloride solution. Blood samples were taken weekly and liver biopsies were performed in wk -4, -2, and 3 relative to calving. Cows treated with Q showed a tendency ( = 0.082) for lower liver fat content compared with CTR cows. Liver glycogen, glutathione concentrations, and relative mRNA abundance of genes related to hepatic lipid metabolism and antioxidative status as well as parameters of antioxidative status in plasma were not affected ( > 0.1) by Q supplementation. In conclusion, liver fat content in dairy cows tended to be reduced by Q supplementation, but potential underlying mechanisms remain unclear because analyzed parameters related to hepatic lipid metabolism and antioxidative defense were not altered by Q supplementation.

  12. Hepatitis B Vaccine

    MedlinePlus

    ... as a combination product containing Hepatitis A Vaccine, Hepatitis B Vaccine) ... What is hepatitis B?Hepatitis B is a serious infection that affects the liver. It is caused by the hepatitis B virus. ...

  13. Hepatitis C: Clinical Trials

    MedlinePlus

    ... and Public Home » Hepatitis C » Treatment Decisions Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... can I find out about participating in a hepatitis C clinical trial? Many trials are being conducted ...

  14. Hepatitis B

    MedlinePlus

    ... A Hepatitis B HPV (Human Papillomavirus) Influenza (Flu) Measles Meningococcal Disease Mumps Pertussis (Whooping Cough) Pneumococcal Disease Rubella (German Measles) Shingles (Herpes Zoster) Tetanus (Lockjaw) Professional Resources Adult ...

  15. Glucuronidated Quercetin Lowers Blood Pressure in Spontaneously Hypertensive Rats via Deconjugation

    PubMed Central

    Galindo, Pilar; Rodriguez-Gómez, Isabel; González-Manzano, Susana; Dueñas, Montserrat; Jiménez, Rosario; Menéndez, Carmen; Vargas, Félix; Tamargo, Juan; Santos-Buelga, Celestino; Pérez-Vizcaíno, Francisco; Duarte, Juan

    2012-01-01

    Background Chronic oral quercetin reduces blood pressure and restores endothelial dysfunction in hypertensive animals. However, quercetin (aglycone) is usually not present in plasma, because it is rapidly metabolized into conjugated, mostly inactive, metabolites. The aim of the study is to analyze whether deconjugation of these metabolites is involved in the blood pressure lowering effect of quercetin. Methodology/Principal Findings We have analyzed the effects on blood pressure and vascular function in vitro of the conjugated metabolites of quercetin (quercetin-3-glucuronide, Q3GA; isorhamnetin-3-glucuronide, I3GA; and quercetin-3′-sulfate, Q3'S) in spontaneously hypertensive rats (SHR). Q3GA and I3GA (1 mg/kg i.v.), but not Q3'S, progressively reduced mean blood pressure (MBP), measured in conscious SHR. The hypotensive effect of Q3GA was abolished in SHR treated with the specific inhibitor of β-glucuronidase, saccharic acid 1,4-lactone (SAL, 10 mg/ml). In mesenteric arteries, unlike quercetin, Q3GA had no inhibitory effect in the contractile response to phenylephrine after 30 min of incubation. However, after 1 hour of incubation Q3GA strongly reduced this contractile response and this effect was prevented by SAL. Oral administration of quercetin (10 mg/Kg) induced a progressive decrease in MBP, which was also suppressed by SAL. Conclusions Conjugated metabolites are involved in the in vivo antihypertensive effect of quercetin, acting as molecules for the plasmatic transport of quercetin to the target tissues. Quercetin released from its glucuronidated metabolites could be responsible for its vasorelaxant and hypotensive effect. PMID:22427863

  16. Inhibition of tobacco mosaic virus infection by quercetin and vitexin.

    PubMed

    Krcatović, E; Rusak, G; Bezić, N; Krajacić, M

    2008-01-01

    The flavonoids, quercetin and vitexin were proved to reduce lesion number in the local hosts Datura stramonium and Chenopodium amaranticolor infected with Tobacco mosaic virus (TMV). Both flavonoids also reduced the virus concentration in systemically infected tobacco plants. This effect was restricted to an early stage of infection and correlated with an induced synthesis of salicylic acid (SA) and kaempferol suggesting their possible defensive role in the infected plant tissue. Since the tested flavonoids did not bind to the virus particles, their antiphytoviral activity was probably not based on a direct virus inactivation.

  17. [Autoimmune hepatitis].

    PubMed

    Marcais, O; Larrey, D

    1994-01-01

    Acute and chronic autoimmune hepatitis are uncommon inflammatory liver diseases, mainly occurring in young women, in association with hypergammaglobulinemia and serum autoantibodies. Different types have been described: type 1 characterized by anti-smooth muscle and anti-nuclear antibodies; type 2 characterized by anti-LKM1 antibodies; type 3 characterized by anti-SLA antibodies. Other types, still not clearly defined, may exist. Autoimmune hepatitis are associated with HLA A1 B8 DR3 and HLA DR4. Without any treatment, the disease leads to cirrhosis and, uncommonly, to fulminant hepatitis. Large doses of corticosteroids usually allow to control the disease. Relapse of hepatitis is frequent after corticosteroid withdrawal. Concomitant administration of immunosuppressive agents such as azathioprine allows to reduce corticosteroid dosage and contributes to maintain the remission of the disease. Liver transplantation may be indicated in cases of severe cirrhosis or fulminant hepatitis.

  18. Anthocyanin indexes, quercetin, kaempferol, and myricetin concentration in leaves and fruit of Abutilon theophrasti Medik. genetic resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanin indexes, quercetin, kaempferol, and myricetin may provide industry with potential new medicines or nutraceuticals. Velvetleaf (Abutilon theophrasti Medik) leaves from 42 accessions were analyzed for anthocyanin indexes while both leaves and fruit were used for quercetin, kaempferol, and ...

  19. Quercetin, kaempferol, myricetin, and fatty acid content among several Hibiscus sabdariffa accession calyces based on maturity in a greenhouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavonols including quercetin, kaempferol, myricetin, and fatty acids in plants have many useful health attributes including antioxidants, cholesterol lowering, and cancer prevention. Six accessions of roselle, Hibiscus sabdariffa calyces were evaluated for quercetin, kaempferol, and myricetin conte...

  20. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    SciTech Connect

    Wang, Feng; Yang, Yong

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  1. Microsomal quercetin glucuronidation in rat small intestine depends on age and segment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    UDP-glucuronosyltransferase (UGT) activity toward the flavonoid quercetin and UGT protein were characterized in 3 equidistant small intestine (SI) segments from 4, 12, 18, and 28 mo male F344 rats, n=8/age using villin to control for enterocyte content. SI microsomal intrinsic clearance of quercetin...

  2. [The efficacy of quercetin and tocopherol acetate in treating patients with Flexner's dysentery].

    PubMed

    Frolov, V M; Peresadin, N A; Khomutianskaia, N I; Pshenichnyĭ, I Ia

    1993-04-01

    Quercetin and tocopherol were given to 134 patients with Flexner's dysentery intramuscularly for 7 days; 154 patients received routine treatment. It was found that quercetin and tocopherol acetate enhanced normalization of clinical indices and restoration of the immune homeostasis. The above drugs are recommended for the complex treatment of dysentery.

  3. Preventive effect of dietary quercetin on disuse muscle atrophy by targeting mitochondria in denervated mice.

    PubMed

    Mukai, Rie; Matsui, Naoko; Fujikura, Yutaka; Matsumoto, Norifumi; Hou, De-Xing; Kanzaki, Noriyuki; Shibata, Hiroshi; Horikawa, Manabu; Iwasa, Keiko; Hirasaka, Katsuya; Nikawa, Takeshi; Terao, Junji

    2016-05-01

    Quercetin is a major dietary flavonoid in fruits and vegetables. We aimed to clarify the preventive effect of dietary quercetin on disuse muscle atrophy and the underlying mechanisms. We established a mouse denervation model by cutting the sciatic nerve in the right leg (SNX surgery) to lack of mobilization in hind-limb. Preintake of a quercetin-mixed diet for 14days before SNX surgery prevented loss of muscle mass and atrophy of muscle fibers in the gastrocnemius muscle (GM). Phosphorylation of Akt, a key phosphorylation pathway of suppression of protein degradation, was activated in the quercetin-mixed diet group with and without SNX surgery. Intake of a quercetin-mixed diet suppressed the generation of hydrogen peroxide originating from mitochondria and elevated mitochondrial peroxisome proliferator-activated receptor-γ coactivator 1α mRNA expression as well as NADH dehydrogenase 4 expression in the GM with SNX surgery. Quercetin and its conjugated metabolites reduced hydrogen peroxide production in the mitochondrial fraction obtained from atrophied muscle. In C2C12 myotubes, quercetin reached the mitochondrial fraction. These findings suggest that dietary quercetin can prevent disuse muscle atrophy by targeting mitochondria in skeletal muscle tissue through protecting mitochondria from decreased biogenesis and reducing mitochondrial hydrogen peroxide release, which can be related to decreased hydrogen peroxide production and/or improvements on antioxidant capacity of mitochondria. PMID:27133425

  4. Genetic expression profile analysis of the temporal inhibition of quercetin and naringenin on Lactobacillus rhamnosus GG

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant polyphenols, quercetin and naringenin, are considered healthy dietary compounds; however, little is known of their effects on the probiotic Lactobacillus rhamnosus GG (LGG). In this study, it was discovered that both quercetin and naringenin produced temporary inhibition of LGG growth, par...

  5. The flavonoid quercetin induces apoptosis and inhibits JNK activation in intimal vascular smooth muscle cells

    SciTech Connect

    Perez-Vizcaino, Francisco . E-mail: fperez@med.ucm.es; Bishop-Bailley, David; Lodi, Federica; Duarte, Juan; Cogolludo, Angel; Moreno, Laura; Bosca, Lisardo; Mitchell, Jane A.; Warner, Timothy D.

    2006-08-04

    Quercetin, the most abundant dietary flavonol, exerts vasodilator, anti-hypertensive, and anti-atherogenic effects and reduces the vascular remodelling associated with elevated blood pressure. Here, we have compared the effects of quercetin in intimal- and medial-type rat vascular smooth muscle cells (VSMC) in culture. After 48 h, quercetin reduced the viability of a polyclonal intimal-type cell line derived from neonatal aorta but not of a medial-type cell line derived from adult aorta. These differential effects were similar in both proliferating and quiescent VSMC. Quercetin also preferentially reduced the viability of intimal-type over medial-type VSMC in primary cultures derived from balloon-injured carotid arteries. The effects of quercetin on cell viability were mainly dependent upon induction of apoptosis, as demonstrated by nuclear condensation and fragmentation, and were unrelated to PPAR{gamma}, pro-oxidant effects or nitric oxide. The expression of MAPKs (ERK, p38, and JNK) and ERK phosphorylation were not different between intimal- and medial-type VSMC. p38 phosphorylation was negligible in both cell types. Medial-type showed a weak JNK phosphorylation while this was markedly increased in intimal-type cells. Quercetin reduced JNK phosphorylation but had no consistent effect on ERK phosphorylation. In conclusion, quercetin preferentially produced apoptosis in intimal-type compared to medial-type VSMC. This might play a role in the anti-atherogenic and anti-hypertensive effects of quercetin.

  6. Effects of quercetin on pharmacokinetics of cefprozil in Chinese-Han male volunteers.

    PubMed

    Jia, Fei-Fei; Tan, Zhi-Rong; McLeod, Howard L; Chen, Yao; Ou-Yang, Dong-Sheng; Zhou, Hong-Hao

    2016-10-01

    1. The primary objective of this study was to evaluate the effects of quercetin on the pharmacokinetics of cefprozil. The secondary objective was to evaluate the safety of the combined use of cefprozil and quercetin. 2. An open-label, two-period, crossover phase I trial among 24 Han Chinese male subjects was conducted. Participants were given 500 mg of quercetin orally once daily for 15 d followed by single dose of cefprozil (500 mg) on day 15. Serum concentrations of cefprozil were then measured in all participants on day 15. A 15-d washout period was then assigned after which a 500 mg dose of cefprozil was administered and measured in the serum on day 36. 3. All subjects completed the trial, and no serious adverse events were reported. We measured mean serum concentrations of cefprozil in the presence and absence of quercetin in all participants. The maximum serum concentration of cefprozil in the presence of quercetin was 8.18 ug/ml (95% CI: 7.55-8.81) versus a maximum cefprozil concentration of 8.35 ug/ml (95% CI: 7.51-9.19) in the absence of quercetin. We conclude that the concurrent use of quercetin has no substantial effect on serum concentrations of orally administered cefprozil. 4. Co-administration of quercetin showed no statistically significant effects on the pharmacokinetics of cefprozil in healthy Chinese subjects.

  7. Quercetin-3-O-(2″-galloyl)-α-l-rhamnopyranoside inhibits TNF-α-activated NF-κB-induced inflammatory mediator production by suppressing ERK activation.

    PubMed

    Lee, Chung Soo; Jeong, Eun Byul; Kim, Yun Jeong; Lee, Min Sung; Seo, Seong Jun; Park, Kwan Hee; Lee, Min Won

    2013-08-01

    Quercetin and its derivatives have anti-inflammatory and anti-oxidant effects. However, the effect of quercetin-3-O-(2″-galloyl)-α-l-rhamnopyranoside (QGR), a new quercetin derivative, on the tumor necrosis factor (TNF)-α-stimulated production of inflammatory mediators in keratinocytes is unclear. In addition, the effect of QGR on the ERK and NF-κB-mediated inflammatory process has not been studied. In human keratinocyte HaCat cells, we investigated the effect of QGR on the TNF-α-stimulated production of inflammatory mediators in relation to the nuclear factor (NF)-κB, which regulates the transcription genes involved in immune and inflammatory responses. QGR inhibited the TNF-α-stimulated production of cytokines and chemokines in HaCaT cells. QGR, dexamethasone, cyclosporine A, Bay 11-7085 (an inhibitor of NF-κB activation) and cell signaling ERK inhibitor attenuated the TNF-α-induced formation of inflammatory mediators and activation of the NF-κB and ERK. Unlike other compounds, dexamethasone and cyclosporine A did not reduce formation of reactive oxygen species. The results show that QGR may attenuate TNF-α-stimulated inflammatory mediator production in HaCaT cells by suppressing the activation of the ERK-mediated NF-κB pathway that is mediated by reactive oxygen species. Additionally, QGR may exhibit a preventive effect against the proinflammatory mediator-induced skin diseases by inhibiting the activation of the ERK and NF-κB pathways.

  8. Quercetin induces mitochondrial biogenesis in experimental traumatic brain injury via the PGC-1α signaling pathway

    PubMed Central

    Li, Xiang; Wang, Handong; Gao, Yongyue; Li, Liwen; Tang, Chao; Wen, Guodao; Yang, Youqing; Zhuang, Zong; Zhou, Mengliang; Mao, Lei; Fan, Youwu

    2016-01-01

    Quercetin, a dietary flavonoid used as a food supplement, has been found to have protective effect against mitochondria damage after traumatic brain injury (TBI) in mice. However, the mechanisms underlying these effects are still not well understood. The aim of the present study was to investigate the effect of quercetin on the potential mechanism mediating these effects in the weight-drop model of TBI in male mice that were treated with quercetin or vehicle via intraperitoneal injection administration 30 min after TBI. Brain samples were collected 24 h later for analysis. Quercetin treatment upregulated the expression of PGC-1α and restored the level of cytochrome c, malondialdehyde (MDA) and superoxide dismutase (SOD). These results demonstrate that quercetin improves mitochondrial function in mice by improving the level of PGC-1α following TBI. PMID:27648146

  9. Quercetin induces mitochondrial biogenesis in experimental traumatic brain injury via the PGC-1α signaling pathway

    PubMed Central

    Li, Xiang; Wang, Handong; Gao, Yongyue; Li, Liwen; Tang, Chao; Wen, Guodao; Yang, Youqing; Zhuang, Zong; Zhou, Mengliang; Mao, Lei; Fan, Youwu

    2016-01-01

    Quercetin, a dietary flavonoid used as a food supplement, has been found to have protective effect against mitochondria damage after traumatic brain injury (TBI) in mice. However, the mechanisms underlying these effects are still not well understood. The aim of the present study was to investigate the effect of quercetin on the potential mechanism mediating these effects in the weight-drop model of TBI in male mice that were treated with quercetin or vehicle via intraperitoneal injection administration 30 min after TBI. Brain samples were collected 24 h later for analysis. Quercetin treatment upregulated the expression of PGC-1α and restored the level of cytochrome c, malondialdehyde (MDA) and superoxide dismutase (SOD). These results demonstrate that quercetin improves mitochondrial function in mice by improving the level of PGC-1α following TBI.

  10. Quercetin induces mitochondrial biogenesis in experimental traumatic brain injury via the PGC-1α signaling pathway.

    PubMed

    Li, Xiang; Wang, Handong; Gao, Yongyue; Li, Liwen; Tang, Chao; Wen, Guodao; Yang, Youqing; Zhuang, Zong; Zhou, Mengliang; Mao, Lei; Fan, Youwu

    2016-01-01

    Quercetin, a dietary flavonoid used as a food supplement, has been found to have protective effect against mitochondria damage after traumatic brain injury (TBI) in mice. However, the mechanisms underlying these effects are still not well understood. The aim of the present study was to investigate the effect of quercetin on the potential mechanism mediating these effects in the weight-drop model of TBI in male mice that were treated with quercetin or vehicle via intraperitoneal injection administration 30 min after TBI. Brain samples were collected 24 h later for analysis. Quercetin treatment upregulated the expression of PGC-1α and restored the level of cytochrome c, malondialdehyde (MDA) and superoxide dismutase (SOD). These results demonstrate that quercetin improves mitochondrial function in mice by improving the level of PGC-1α following TBI. PMID:27648146

  11. A Molecularly Imprinted Polymer with Incorporated Graphene Oxide for Electrochemical Determination of Quercetin

    PubMed Central

    Sun, Si; Zhang, Mengqi; Li, Yijun; He, Xiwen

    2013-01-01

    The molecularly imprinted polymer based on polypyrrole film with incorporated graphene oxide was fabricated and used for electrochemical determination of quercetin. The electrochemical behavior of quercetin on the modified electrode was studied in detail using differential pulse voltammetry. The oxidation peak current of quercetin in B-R buffer solution (pH = 3.5) at the modified electrode was regressed with the concentration in the range from 6.0 × 10−7 to 1.5 × 10−5 mol/L (r2 = 0.997) with a detection limit of 4.8 × 10−8 mol/L (S/N = 3). This electrode showed good stability and reproducibility. In the above mentioned range, rutin or morin which has similar structures and at the same concentration as quercetin did not interfere with the determination of quercetin. The applicability of the method for complex matrix analysis was also evaluated. PMID:23698263

  12. Synthesis, characterization and study of antioxidant activity of quercetin-magnesium complex.

    PubMed

    Ghosh, Nilanjan; Chakraborty, Tania; Mallick, Sougata; Mana, Supriya; Singha, Deepanwita; Ghosh, Balaram; Roy, Souvik

    2015-12-01

    Quercetin (3,3',4',5,7-pentahydroxyflavone) one of the most abundant dietary flavonoids, has been investigated in the presence of magnesium (II) in methanol. The complex formation between quercetin and magnesium (II) was examined under UV-visible, Infra-red and (1)H NMR spectroscopic techniques. The spectroscopic data denoted that quercetin can reacts with magnesium cation (Mg(+2)) through the chelation site in the quercetin molecule. The free radical antioxidant activity of the complex with respect to the parent molecule was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) method. It was observed that the free radical scavenging activity of quercetin was increased after complexation of magnesium (Mg(+2)) cation.

  13. Antioxidative Properties and Effect of Quercetin and Its Glycosylated Form (Rutin) on Acetylcholinesterase and Butyrylcholinesterase Activities.

    PubMed

    Ademosun, Ayokunle O; Oboh, Ganiyu; Bello, Fatai; Ayeni, Peluola O

    2016-10-01

    This study sought to investigate the anticholinesterase and antioxidative properties of quercetin and its glycosylated conjugate, rutin. The in vitro inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities, inhibition of Fe(2+)-induced lipid peroxidation in rat's brain homogenates, radicals scavenging, and Fe(2+)-chelating abilities of the flavonoids were investigated in vitro with concentrations of the samples ranging from 0.06 to 0.6 mM. Quercetin had significantly higher AChE and BChE inhibitory abilities than rutin. Quercetin also had stronger inhibition of Fe(2+)-induced lipid peroxidation in rat's brain homogenates. Similarly, quercetin had higher radical scavenging abilities than rutin. Quercetin also had stronger Fe(2+)-chelating ability than rutin. The inhibition of cholinesterases and antioxidative properties are possible mechanisms by which the flavonoids can be used in the management of oxidative stress-induced neurodegeneration.

  14. The fetal programming of dietary fructose and saturated fat on hepatic quercetin glucuronidation in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective Phase II biotransformation of flavonoids generates bioactive metabolites in vivo. However, data on the effect of environmental and physiological factors and fetal programming on phase II pathways toward flavonoids are limited. We examined the effect of parental exposure to a diet high in s...

  15. DC attenuation meter

    DOEpatents

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  16. Dietary quercetin exacerbates the development of estrogen-induced breast tumors in female ACI rats

    SciTech Connect

    Singh, Bhupendra; Mense, Sarah M.; Bhat, Nimee K.; Putty, Sandeep; Guthiel, William A.; Remotti, Fabrizio; Bhat, Hari K.

    2010-09-01

    Phytoestrogens are plant compounds that structurally mimic the endogenous estrogen 17{beta}-estradiol (E{sub 2}). Despite intense investigation, the net effect of phytoestrogen exposure on the breast remains unclear. The objective of the current study was to examine the effects of quercetin on E{sub 2}-induced breast cancer in vivo. Female ACI rats were given quercetin (2.5 g/kg food) for 8 months. Animals were monitored weekly for palpable tumors, and at the end of the experiment, rats were euthanized, breast tumor and different tissues excised so that they could be examined for histopathologic changes, estrogen metabolic activity and oxidant stress. Quercetin alone did not induce mammary tumors in female ACI rats. However, in rats implanted with E{sub 2} pellets, co-exposure to quercetin did not protect rats from E{sub 2}-induced breast tumor development with 100% of the animals developing breast tumors within 8 months of treatment. No changes in serum quercetin levels were observed in quercetin and quercetin + E{sub 2}-treated groups at the end of the experiment. Tumor latency was significantly decreased among rats from the quercetin + E{sub 2} group relative to those in the E{sub 2} group. Catechol-O-methyltransferase (COMT) activity was significantly downregulated in quercetin-exposed mammary tissue. Analysis of 8-isoprostane F{sub 2{alpha}} (8-iso-PGF{sub 2{alpha}}) levels as a marker of oxidant stress showed that quercetin did not decrease E{sub 2}-induced oxidant stress. These results indicate that quercetin (2.5 g/kg food) does not confer protection against breast cancer, does not inhibit E{sub 2}-induced oxidant stress and may exacerbate breast carcinogenesis in E{sub 2}-treated ACI rats. Inhibition of COMT activity by quercetin may expose breast cells chronically to E{sub 2} and catechol estrogens. This would permit longer exposure times to the carcinogenic metabolites of E{sub 2} and chronic exposure to oxidant stress as a result of metabolic redox

  17. Simultaneous ingestion of high-methoxy pectin from apple can enhance absorption of quercetin in human subjects.

    PubMed

    Nishijima, Tomohiko; Takida, Yoshiki; Saito, Yasuo; Ikeda, Takayuki; Iwai, Kunihisa

    2015-05-28

    Chronic ingestion of apple pectin has been shown to increase the absorption of quercetin in rats. The present study was designed to elucidate whether the simultaneous ingestion of quercetin with apple pectin could enhance the absorption of quercetin in humans, and the effects of dose dependency and degree of pectin methylation on quercetin absorption were also investigated. Healthy volunteers (n 19) received 200 ml of 0.5 mg/ml of quercetin drinks with or without 10 mg/ml of pectin each in a randomised cross-over design study with over 1-week intervals; urine samples from all the subjects were collected within 24 h after ingestion of the test drinks, and urinary deconjugated quercetin and its metabolites were determined using HPLC. The sum of urinary quercetin and its metabolites excreted was increased by 2.5-fold by the simultaneous ingestion of pectin. The metabolism of methylated quercetin (isorhamnetin and tamarixetin) was not affected by pectin ingestion. In six volunteers, who received quercetin drinks containing 0, 3 and 10 mg/ml of pectin, the sum of urinary quercetin and its metabolites excreted also increased in a pectin dose-dependent manner. Furthermore, the simultaneous ingestion of quercetin with low-methoxy and high-methoxy pectin, respectively, increased the sum of urinary excretion of quercetin and its metabolites by 1.69-fold and significantly by 2.13-fold compared with the ingestion of quercetin without pectin. These results elucidated that apple pectin immediately enhanced quercetin absorption in human subjects, and that its enhancing effect was dependent on the dose and degree of pectin methylation. The results also suggested that the viscosity of pectin may play a role in the enhancement of quercetin absorption. PMID:25865751

  18. Simultaneous ingestion of high-methoxy pectin from apple can enhance absorption of quercetin in human subjects.

    PubMed

    Nishijima, Tomohiko; Takida, Yoshiki; Saito, Yasuo; Ikeda, Takayuki; Iwai, Kunihisa

    2015-05-28

    Chronic ingestion of apple pectin has been shown to increase the absorption of quercetin in rats. The present study was designed to elucidate whether the simultaneous ingestion of quercetin with apple pectin could enhance the absorption of quercetin in humans, and the effects of dose dependency and degree of pectin methylation on quercetin absorption were also investigated. Healthy volunteers (n 19) received 200 ml of 0.5 mg/ml of quercetin drinks with or without 10 mg/ml of pectin each in a randomised cross-over design study with over 1-week intervals; urine samples from all the subjects were collected within 24 h after ingestion of the test drinks, and urinary deconjugated quercetin and its metabolites were determined using HPLC. The sum of urinary quercetin and its metabolites excreted was increased by 2.5-fold by the simultaneous ingestion of pectin. The metabolism of methylated quercetin (isorhamnetin and tamarixetin) was not affected by pectin ingestion. In six volunteers, who received quercetin drinks containing 0, 3 and 10 mg/ml of pectin, the sum of urinary quercetin and its metabolites excreted also increased in a pectin dose-dependent manner. Furthermore, the simultaneous ingestion of quercetin with low-methoxy and high-methoxy pectin, respectively, increased the sum of urinary excretion of quercetin and its metabolites by 1.69-fold and significantly by 2.13-fold compared with the ingestion of quercetin without pectin. These results elucidated that apple pectin immediately enhanced quercetin absorption in human subjects, and that its enhancing effect was dependent on the dose and degree of pectin methylation. The results also suggested that the viscosity of pectin may play a role in the enhancement of quercetin absorption.

  19. Hepatitis B

    MedlinePlus

    ... U.S. Preventive Services Task Force recommendation statement. Ann Intern Med . 2014;161(1):58-66. PMID 24863637 ... Development Conference Statement: Management of hepatitis B. Ann Intern Med . 2009;150:104-10. PMID: 19124811 www. ...

  20. Hepatitis B

    MedlinePlus

    ... and Change Plan Wallet card for patients to record their alcohol use over a 4-week period as a way to monitor and reduce their drinking behavior. Glossary Definitions of terms commonly used with viral hepatitis and ...

  1. Hepatitis B

    MedlinePlus

    ... All babies should get the vaccine, but older children and adults can get it too. If you travel to countries where Hepatitis B is common, you should get the vaccine. NIH: National Institute of Diabetes and Digestive and Kidney Diseases

  2. Hepatic Sarcoidosis.

    PubMed

    Tadros, Micheal; Forouhar, Faripour; Wu, George Y

    2013-12-01

    Sarcoidosis is a multisystem disease characterized by the presence of non-caseating granulomas in affected organs. Pulmonary involvement is the most common site of disease activity. However, hepatic involvement is also common in sarcoidosis, occurring in up to 70% of patients. Most patients with liver involvement are asymptomatic. Therefore, the majority of cases are discovered incidentally, frequently by the finding of elevated liver enzymes. Pain in the right upper quadrant of the abdomen, fatigue, pruritus, and jaundice may be associated with liver involvement. Portal hypertension and cirrhosis are complications linked to long-standing hepatic sarcoidosis. Liver biopsy is usually required to confirm the diagnosis. It is important to differentiate hepatic sarcoidosis from other autoimmune and granulomatous liver diseases. Not all cases of hepatic sarcoidosis require treatment. For symptomatic patients, the first line treatment includes corticosteroids or ursodeoxycholic acid. Various immunosuppressant agents can be used as second line agents. Rarely, severe cases require liver transplantation.

  3. Autoimmune hepatitis.

    PubMed

    Heneghan, Michael A; Yeoman, Andrew D; Verma, Sumita; Smith, Alastair D; Longhi, Maria Serena

    2013-10-26

    Autoimmune hepatitis is a disease of the hepatic parenchyma that can present in acute or chronic forms. In common with many autoimmune diseases, autoimmune hepatitis is associated with non-organ-specific antibodies in the context of hepatic autoimmunity. This dichotomy has made definition of a unifying hypothesis in the pathophysiology of the disease difficult, although data from the past 8 years have drawn attention to the role of regulatory T cells. Several triggers have been identified, and the disease arises in genetically susceptible individuals. Clinical and biochemical remission is achievable in up to 85% of cases. For the remaining patients, alternative immunosuppression strategies are an option. Liver transplantation provides an excellent outcome for patients with acute liver failure or complications of end-stage liver disease, including hepatocellular carcinoma. Variant or overlapping syndromes are worthy of consideration when unexpected disease features arise.

  4. Hepatitis C FAQs

    MedlinePlus

    ... of Viral Hepatitis Contact Us Quick Links to Hepatitis ... A | B | C | D | E Viral Hepatitis Home ... Outbreaks State and Local Partners & Grantees Resource Center Hepatitis C FAQs for the Public Recommend on Facebook ...

  5. Hepatitis B FAQs

    MedlinePlus

    ... of Viral Hepatitis Contact Us Quick Links to Hepatitis ... A | B | C | D | E Viral Hepatitis Home ... Outbreaks State and Local Partners & Grantees Resource Center Hepatitis B FAQs for the Public Recommend on Facebook ...

  6. Hepatitis A Test

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? Hepatitis A Testing Share this page: Was this page ... HAV-Ab total; Anti-HAV Formal name: Viral Hepatitis A Antibody Related tests: Hepatitis B Testing ; Hepatitis ...

  7. Delta agent (Hepatitis D)

    MedlinePlus

    Hepatitis D virus ... Hepatitis D virus (HDV) is found only in people who carry the hepatitis B virus. HDV may make liver ... B virus but who never had symptoms. Hepatitis D infects about 15 million people worldwide. It occurs ...

  8. Quercetin induces HepG2 cell apoptosis by inhibiting fatty acid biosynthesis

    PubMed Central

    ZHAO, PENG; MAO, JUN-MIN; ZHANG, SHU-YUN; ZHOU, ZE-QUAN; TAN, YANG; ZHANG, YU

    2014-01-01

    Quercetin can inhibit the growth of cancer cells with the ability to act as a ‘chemopreventer’. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis, as well as its antioxidant functions. Quercetin can also reduce adipogenesis. Previous studies have shown that quercetin has potent inhibitory effects on animal fatty acid synthase (FASN). In the present study, activity of quercetin was evaluated in human liver cancer HepG2 cells. Intracellular FASN activity was calculated by measuring the absorption of NADPH via a spectrophotometer. MTT assay was used to test the cell viability, immunoblot analysis was performed to detect FASN expression levels and the apoptotic effect was detected by Hoechst 33258 staining. In the present study, it was found that quercetin could induce apoptosis in human liver cancer HepG2 cells with overexpression of FASN. This apoptosis was accompanied by the reduction of intracellular FASN activity and could be rescued by 25 or 50 μM exogenous palmitic acids, the final product of FASN-catalyzed synthesis. These results suggested that the apoptosis induced by quercetin was via the inhibition of FASN. These findings suggested that quercetin may be useful for preventing human liver cancer. PMID:25009654

  9. Quercetin mediated reduction of angiogenic markers and chaperones in DLA-induced solid tumours.

    PubMed

    Anand, Kushi; Asthana, Pallavi; Kumar, Anup; Ambasta, Rashmi K; Kumar, Pravir

    2011-01-01

    Diet-derived flavonoids, in particular quercetin, may play advantageous roles by preventing or/and inhibiting oncogenesis. Evidence suggests that quercetin can elicit various properties depending on the cell type. The aim of this study was to evaluate its effects on Dalton's lymphoma ascites (DLA) induced solid tumours and to identify the target(s) of action. We addressed this question by inducing subcutaneous solid tumours in Swiss albino mice and investigated whether the quercetin affects essential biological processes that are responsible for tumour growth, morphology, angiogenesis and apoptosis. We also studied influence on several heat shock proteins (HSPs). Our findings demonstrate that intra-tumour administration of quercetin results in decreased volume/weight. Furthermore, we demonstrate that quercetin promotes apoptosis of cancer cells by down-regulating the levels of Hsp90 and Hsp70. Depletion of these two chaperones by quercetin might result in triggering of caspase-3 in treated tumours. Moreover, it also down-regulated the expression of major key angiogenic or pro-angiogenic factors, like HIF-1α and VEGF In addition, H and E staining together with immunofluorescence of fixed tumour tissue provided evidence in support of increased cell death in quercetin-treated mice. PMID:22393949

  10. The critical role of quercetin in autophagy and apoptosis in HeLa cells.

    PubMed

    Wang, Yijun; Zhang, Wei; Lv, Qiongying; Zhang, Juan; Zhu, Dingjun

    2016-01-01

    In recent years, the effects of quercetin on autophagy and apoptosis of cancer cells have been widely reported, while effects on HeLa cells are still unclear. Here, HeLa cells were subjected to quercetin treatment, and then proliferation, apoptosis, and autophagy were evaluated using MTT, flow cytometry, and MDC staining, respectively. The LC3-I/II, Beclin 1, active caspase-3, and S6K1 phosphorylation were detected using Western blot assay. The ultrastructure of HeLa was observed via transmission electron microscope (TEM). Our findings showed that quercetin can dose-dependently inhibit the growth of HeLa cells. The MDC fluorescence was enhanced with increased concentration of quercetin and hit a plateau at 50 μmol/l. Western blot assay revealed that LC3-I/II ratio, Beclin 1, and active caspase-3 protein were enforced in a dose-dependent method. However, the phosphorylation of S6K1 gradually decreased, concomitant with an increase of autophagy. In addition, TEM revealed that the number of autophagic vacuoles was peaked at 50 μmol/l of quercetin. Besides, interference of autophagy with 3-MA led to proliferation inhibition and increased apoptosis in HeLa cells, accompanied by the decreased LC3-I/II conversion and the increased active caspase-3. In conclusion, quercetin can inhibit HeLa cell proliferation and induce protective autophagy at low concentrations; thus, 3-MA plus quercetin would suppress autophagy and effectively increased apoptosis.

  11. Onion skin waste as a valorization resource for the by-products quercetin and biosugar.

    PubMed

    Choi, In Seong; Cho, Eun Jin; Moon, Jae-Hak; Bae, Hyeun-Jong

    2015-12-01

    Onion skin waste (OSW), which is produced from processed onions, is a major industrial waste. We evaluated the use of OSW for biosugar and quercetin production. The carbohydrate content of OSW was analyzed, and the optimal conversion conditions were evaluated by varying enzyme mixtures and loading volumes for biosugar production and quercetin extraction. The enzymatic conversion rate of OSW to biosugar was 98.5% at 0.72 mg of cellulase, 0.16 mg of pectinase, and 1.0mg of xylanase per gram of dry OSW. Quercetin extraction also increased by 1.61-fold after complete enzymatic hydrolysis. In addition, the newly developed nano-matrix (terpyridine-immobilized silica-coated magnetic nanoparticles-zinc (TSMNP-Zn matrix) was utilized to separate quercetin from OSW extracts. The nano-matrix facilitated easy separation and purification of quercetin. Using the TSMNP-Zn matrix the quercetin was approximately 90% absorbed. In addition, the recovery yield of quercetin was approximately 75% after treatment with ethylenediaminetetraacetic acid.

  12. Quercetin-3-O-glucuronide induces ABCA1 expression by LXRα activation in murine macrophages

    SciTech Connect

    Ohara, Kazuaki; Wakabayashi, Hideyuki; Taniguchi, Yoshimasa; Shindo, Kazutoshi; Yajima, Hiroaki; Yoshida, Aruto

    2013-11-29

    Highlights: •The major circulating quercetin metabolite (Q3GA) activated LXRα. •Q3GA induced ABCA1 via LXRα activation in macrophages. •Nelumbo nucifera leaf extracts contained quercetin glycosides. •N. nucifera leaf extract feeding elevated HDLC in mice. -- Abstract: Reverse cholesterol transport (RCT) removes excess cholesterol from macrophages to prevent atherosclerosis. ATP-binding cassette, subfamily A, member 1 (ABCA1) is a crucial cholesterol transporter involved in RCT to produce high density lipoprotein-cholesterol (HDLC), and is transcriptionally regulated by liver X receptor alpha (LXRα), a nuclear receptor. Quercetin is a widely distributed flavonoid in edible plants which prevented atherosclerosis in an animal model. We found that quercetin-3-O-glucuronide (Q3GA), a major quercetin metabolite after absorption from the digestive tract, enhanced ABCA1 expression, in vitro, via LXRα in macrophages. In addition, leaf extracts of a traditional Asian edible plant, Nelumbo nucifera (NNE), which contained abundant amounts of quercetin glycosides, significantly elevated plasma HDLC in mice. We are the first to present experimental evidence that Q3GA induced ABCA1 in macrophages, and to provide an alternative explanation to previous studies on arteriosclerosis prevention by quercetin.

  13. Alleviative effect of quercetin on rat testis against arsenic: a histological and biochemical study.

    PubMed

    Jahan, Sarwat; Iftikhar, Natasha; Ullah, Hizb; Rukh, Gul; Hussain, Ishtiaq

    2015-04-01

    The preventive effect of quercetin on arsenic stimulated reproductive ailments in male Sprague Dawely (SD) rats was investigated. Twenty rats were divided into four groups. The first group served as a control and was provided tap water. The second group of rats was treated with sodium arsenite at the dose of 50 ppm in drinking water. The third group served as a positive control and received an oral dose of quercetin (50 mg/kg). In the fourth group, quercetin (50 mg/kg) was co-administered orally with arsenic (50 ppm in drinking water). All the treatments were carried out for 49 days. Arsenic treatment resulted in adverse morphological and histopathological changes in testis of rats including reduced epithelial height and tubular diameter, and increased luminal diameter. In contrast, these adverse effects of arsenic were eliminated by co-administration of quercetin. Additionally arsenic treatment significantly increased testicular thiobarbituric acid reactive substance (TBARS) levels while catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and glutathione reductase (GSR) activities, and plasma and intra-testicular testosterone concentrations, were decreased significantly. Lipid peroxidation (LPO) was significantly suppressed and depleted antioxidant defense mechanism was restored by the quercetin co-treatment. Also quercetin treatment resulted in a marked increase in plasma and testicular testosterone concentrations. On the basis of these findings, it was concluded that quercetin may be used as a potential therapeutic drug against arsenic induced reproductive toxicity. PMID:25539033

  14. Quercetin Influences Quorum Sensing in Food Borne Bacteria: In-Vitro and In-Silico Evidence

    PubMed Central

    Gopu, Venkadesaperumal; Meena, Chetan Kumar; Shetty, Prathapkumar Halady

    2015-01-01

    Quorum sensing (QS) plays a vital role in regulating the virulence factor of many food borne pathogens, which causes severe public health risk. Therefore, interrupting the QS signaling pathway may be an attractive strategy to combat microbial infections. In the current study QS inhibitory activity of quercetin and its anti-biofilm property was assessed against food-borne pathogens using a bio-sensor strain. In addition in-silico techniques like molecular docking and molecular dynamics simulation studies were applied to screen the quercetin’s potentiality as QS inhibitor. Quercetin (80μg/ml) showed the significant reduction in QS-dependent phenotypes like violacein production, biofilm formation, exopolysaccharide (EPS) production, motility and alginate production in a concentration-dependent manner. Synergistic activity of conventional antibiotics with quercetin enhanced the susceptibility of all tested pathogens. Furthermore, Molecular docking analysis revealed that quercetin binds more rigidly with LasR receptor protein than the signaling compound with docking score of -9.17Kcal/mol. Molecular dynamics simulation predicted that QS inhibitory activity of quercetin occurs through the conformational changes between the receptor and quercetin complex. Above findings suggest that quercetin can act as a competitive inhibitor for signaling compound towards LasR receptor pathway and can serve as a novel QS-based antibacterial/anti-biofilm drug to manage food-borne pathogens. PMID:26248208

  15. Quercetin in Cancer Treatment, Alone or in Combination with Conventional Therapeutics?

    PubMed

    Brito, Ana Filipa; Ribeiro, Marina; Abrantes, Ana Margarida; Pires, Ana Salomé; Teixo, Ricardo Jorge; Tralhão, José Guilherme; Botelho, Maria Filomena

    2015-01-01

    Cancer is a problem of global importance, since the incidence is increasing worldwide and therapeutic options are generally limited. Thus, it becomes imperative to find new therapeutic targets as well as new molecules with therapeutic potential for tumors. Flavonoids are polyphenolic compounds that may be potential therapeutic agents. Several studies have shown that these compounds have a higher anticancer potential. Among the flavonoids in the human diet, quercetin is one of the most important. In the last decades, several anticancer properties of quercetin have been described, such as cell signaling, pro-apoptotic, anti-proliferative and anti-oxidant effects, growth suppression. In fact, it is now well known that quercetin has diverse biological effects, inhibiting multiple enzymes involved in cell proliferation, as well as, in signal transduction pathways. On the other hand, there are also studies reporting potential synergistic effects when combined quercetin with chemotherapeutic agents or radiotherapy. In fact, several studies which aim to explore the anticancer potential of these combined treatments have already been published, the majority with promising results. Actually it is well known that quercetin can act on the chemosensitization and radiosensitization but also as chemoprotective and radioprotective, protecting normal cells of the side effects that results from chemotherapy and radiotherapy, which obviously provides notable advantages in their use in anticancer treatment. Thus, all these data indicate that quercetin may have a key role in anticancer treatment. In this context, this review is focused on the relationship between flavonoids and cancer, with special emphasis on the role of quercetin.

  16. Alleviative effect of quercetin on rat testis against arsenic: a histological and biochemical study.

    PubMed

    Jahan, Sarwat; Iftikhar, Natasha; Ullah, Hizb; Rukh, Gul; Hussain, Ishtiaq

    2015-04-01

    The preventive effect of quercetin on arsenic stimulated reproductive ailments in male Sprague Dawely (SD) rats was investigated. Twenty rats were divided into four groups. The first group served as a control and was provided tap water. The second group of rats was treated with sodium arsenite at the dose of 50 ppm in drinking water. The third group served as a positive control and received an oral dose of quercetin (50 mg/kg). In the fourth group, quercetin (50 mg/kg) was co-administered orally with arsenic (50 ppm in drinking water). All the treatments were carried out for 49 days. Arsenic treatment resulted in adverse morphological and histopathological changes in testis of rats including reduced epithelial height and tubular diameter, and increased luminal diameter. In contrast, these adverse effects of arsenic were eliminated by co-administration of quercetin. Additionally arsenic treatment significantly increased testicular thiobarbituric acid reactive substance (TBARS) levels while catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and glutathione reductase (GSR) activities, and plasma and intra-testicular testosterone concentrations, were decreased significantly. Lipid peroxidation (LPO) was significantly suppressed and depleted antioxidant defense mechanism was restored by the quercetin co-treatment. Also quercetin treatment resulted in a marked increase in plasma and testicular testosterone concentrations. On the basis of these findings, it was concluded that quercetin may be used as a potential therapeutic drug against arsenic induced reproductive toxicity.

  17. Quercetin supplementation does not enhance cerebellar mitochondrial biogenesis and oxidative status in exercised rats.

    PubMed

    Casuso, Rafael A; Martínez-Amat, Antonio; Hita-Contreras, Fidel; Camiletti-Moirón, Daniel; Aranda, Pilar; Martínez-López, Emilio

    2015-07-01

    The present study tested the hypothesis that quercetin may inhibit the mitochondrial and antioxidant adaptations induced by exercise in cerebellar tissue. Thirty-five 6-week-old Wistar rats were randomly allocated into the following groups: quercetin, exercised (Q-Ex; n = 9); quercetin, sedentary (Q-Sed; n = 9); no quercetin, exercised (NQ-Ex; n = 9); and no quercetin, sedentary (NQ-Sed; n = 8). After 6 weeks of quercetin supplementation and/or exercise training, cerebellums were collected. Protein carbonyl content (PCC), sirtuin 1, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), messenger RNA levels, citrate synthase (CS), and mitochondrial DNA were measured. When Q-Sed was compared with NQ-Sed, PCC (P < .005) showed decreased levels, whereas PGC-1α, sirtuin 1 (both, P < .01), mitochondrial DNA (P < .001), and CS (P < .01) increased. However, when Q-Ex was compared with Q-Sed, PCC showed increased levels (P < .001), whereas CS decreased (P < .01). Furthermore, the NQ-Ex group experienced an increase in PGC-1α messenger RNA levels in comparison with NQ-Sed (P > .01). This effect, however, did not appear in Q-Ex (P < .05). Therefore, we must hypothesize that either the dose (25 mg/kg) or the length of the quercetin supplementation period that was used in the present study (or perhaps both) may impair exercise-induced adaptations in cerebellar tissue. PMID:26032482

  18. Insulin Protects against Hepatic Damage Postburn

    PubMed Central

    Jeschke, Marc G; Kraft, Robert; Song, Juquan; Gauglitz, Gerd G; Cox, Robert A; Brooks, Natasha C; Finnerty, Celeste C; Kulp, Gabriela A; Herndon, David N; Boehning, Darren

    2011-01-01

    Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subsequent apoptosis. Male Sprague Dawley rats received a 60% total body surface area (TBSA) burn injury. Animals were randomized to receive saline (controls) or insulin (2.5 IU/kg q. 24 h) and euthanized at 24 and 48 h postburn. Burn injury induced dramatic changes in liver structure and function, including induction of the ER stress response, mitochondrial dysfunction, hepatocyte apoptosis, and up-regulation of inflammatory mediators. Insulin decreased hepatocyte caspase-3 activation and apoptosis significantly at 24 and 48 h postburn. Furthermore, insulin administration decreased ER stress significantly and reversed structural and functional changes in hepatocyte mitochondria. Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes. PMID:21267509

  19. Quercetin 3-rhamnoside exerts antiinfluenza A virus activity in mice.

    PubMed

    Choi, Hwa Jung; Song, Jae Hyoung; Kwon, Dur Han

    2012-03-01

    Our previous report showed that quercetin 3-rhamnoside (Q3R) possessed antiviral activity against influenza A/WS/33 virus in vitro. The present study evaluated the effect of Q3R on influenza A/WS/33 virus infected mice. Mice orally treated with Q3R (6.25 mg/kg per dose) at 2 h before and once daily for 6 days after influenza virus infection showed significant decreases in weight loss, and decreased mortality. Lung virus titers of mice killed at 6 days after infection were about 2000 times lower than that of the placebo-treated control mice and about two times lower than that for the oseltamivir-treated mice. Furthermore, histological evaluation showed that administration of Q3R delayed the development and progression of pulmonary lesions. Therefore, Q3R could be an attractive lead for the development of antiviral agents against influenza virus.

  20. Quercetin inhibits intestinal iron absorption and ferroportin transporter expression in vivo and in vitro.

    PubMed

    Lesjak, Marija; Hoque, Rukshana; Balesaria, Sara; Skinner, Vernon; Debnam, Edward S; Srai, Surjit K S; Sharp, Paul A

    2014-01-01

    Balancing systemic iron levels within narrow limits is critical for maintaining human health. There are no known pathways to eliminate excess iron from the body and therefore iron homeostasis is maintained by modifying dietary absorption so that it matches daily obligatory losses. Several dietary factors can modify iron absorption. Polyphenols are plentiful in human diet and many compounds, including quercetin--the most abundant dietary polyphenol--are potent iron chelators. The aim of this study was to investigate the acute and longer-term effects of quercetin on intestinal iron metabolism. Acute exposure of rat duodenal mucosa to quercetin increased apical iron uptake but decreased subsequent basolateral iron efflux into the circulation. Quercetin binds iron between its 3-hydroxyl and 4-carbonyl groups and methylation of the 3-hydroxyl group negated both the increase in apical uptake and the inhibition of basolateral iron release, suggesting that the acute effects of quercetin on iron transport were due to iron chelation. In longer-term studies, rats were administered quercetin by a single gavage and iron transporter expression measured 18 h later. Duodenal FPN expression was decreased in quercetin-treated rats. This effect was recapitulated in Caco-2 cells exposed to quercetin for 18 h. Reporter assays in Caco-2 cells indicated that repression of FPN by quercetin was not a transcriptional event but might be mediated by miRNA interaction with the FPN 3'UTR. Our study highlights a novel mechanism for the regulation of iron bioavailability by dietary polyphenols. Potentially, diets rich in polyphenols might be beneficial for patients groups at risk of iron loading by limiting the rate of intestinal iron absorption. PMID:25058155

  1. Quercetin Inhibits Intestinal Iron Absorption and Ferroportin Transporter Expression In Vivo and In Vitro

    PubMed Central

    Balesaria, Sara; Skinner, Vernon; Debnam, Edward S.; Srai, Surjit K. S.; Sharp, Paul A.

    2014-01-01

    Balancing systemic iron levels within narrow limits is critical for maintaining human health. There are no known pathways to eliminate excess iron from the body and therefore iron homeostasis is maintained by modifying dietary absorption so that it matches daily obligatory losses. Several dietary factors can modify iron absorption. Polyphenols are plentiful in human diet and many compounds, including quercetin – the most abundant dietary polyphenol – are potent iron chelators. The aim of this study was to investigate the acute and longer-term effects of quercetin on intestinal iron metabolism. Acute exposure of rat duodenal mucosa to quercetin increased apical iron uptake but decreased subsequent basolateral iron efflux into the circulation. Quercetin binds iron between its 3-hydroxyl and 4-carbonyl groups and methylation of the 3-hydroxyl group negated both the increase in apical uptake and the inhibition of basolateral iron release, suggesting that the acute effects of quercetin on iron transport were due to iron chelation. In longer-term studies, rats were administered quercetin by a single gavage and iron transporter expression measured 18 h later. Duodenal FPN expression was decreased in quercetin-treated rats. This effect was recapitulated in Caco-2 cells exposed to quercetin for 18 h. Reporter assays in Caco-2 cells indicated that repression of FPN by quercetin was not a transcriptional event but might be mediated by miRNA interaction with the FPN 3′UTR. Our study highlights a novel mechanism for the regulation of iron bioavailability by dietary polyphenols. Potentially, diets rich in polyphenols might be beneficial for patients groups at risk of iron loading by limiting the rate of intestinal iron absorption. PMID:25058155

  2. Feature Hepatitis: Hepatitis Symptoms, Diagnosis, Treatment & Prevention

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues Feature Hepatitis Hepatitis: Symptoms, Diagnosis, Treatment & Prevention Past Issues / Spring 2009 ... No appetite Fever Headaches Diagnosis To check for hepatitis viruses, your doctor will test your blood. You ...

  3. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells

    SciTech Connect

    Pham, Anh; Bortolazzo, Anthony; White, J. Brandon

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Quercetin cannot be detected intracellularly despite killing MDA-MB-231 cells. Black-Right-Pointing-Pointer Quercetin forms a heterodimer through oxidation in media with serum. Black-Right-Pointing-Pointer The quercetin heterodimer does not kill MDA-MB-231 cells. Black-Right-Pointing-Pointer Ascorbic acid stabilizes quercetin increasing cell death in quercetin treated cells. Black-Right-Pointing-Pointer Quercetin, and not a modified form, is responsible for apoptosis and cell death. -- Abstract: Quercetin is a member of the flavonoid family and has been previously shown to have a variety of anti-cancer activities. We and others have reported anti-proliferation, cell cycle arrest, and induction of apoptosis of cancer cells after treatment with quercetin. Quercetin has also been shown to undergo oxidation. However, it is unclear if quercetin or one of its oxidized forms is responsible for cell death. Here we report that quercetin rapidly oxidized in cell culture media to form a dimer. The quercetin dimer is identical to a dimer that is naturally produced by onions. The quercetin dimer and quercetin-3-O-glucopyranoside are unable to cross the cell membrane and do not kill MDA-MB-231 cells. Finally, supplementing the media with ascorbic acid increases quercetin's ability to induce cell death probably by reduction oxidative dimerization. Our results suggest that an unmodified quercetin is the compound that elicits cell death.

  4. The effects of quercetin supplementation on cognitive functioning in a community sample: a randomized, placebo-controlled trial

    PubMed Central

    Canu, Will H.; Trout, Krystal L.; Nieman, David C.

    2012-01-01

    Background: The purpose of the present study was to examine the effects of quercetin supplementation on neurocognitive functioning. Methods: A large community sample (n = 941) completed a 12-week supplementation protocol, and participants were randomly assigned to receive 500 mg/day or 1000 mg/day quercetin, or placebo. Results: Results failed to indicate significant effects of quercetin on memory, psychomotor speed, reaction time, attention, or cognitive flexibility, despite large increases in plasma quercetin levels among the quercetin treatment groups. Discussion: Consistent with recent research, this study raises concerns regarding the generalizability of positive findings of in vitro and animal quercetin research, and provides evidence that quercetin may not have an ergogenic effect on neurocognitive functioning in humans. PMID:23983966

  5. Novel nanocomposite stent coating releasing resveratrol and quercetin reduces neointimal hyperplasia and promotes re-endothelialization.

    PubMed

    Kleinedler, James J; Foley, John D; Orchard, Elysse A; Dugas, Tammy R

    2012-04-10

    Late-term thrombosis associated with drug-eluting stents may be due to the non-selective actions of antimitogenic drugs on endothelial cells, leading to delayed vascular healing after stenting angioplasty. Currently, there is a need for stent-based therapies that can both attenuate neointimal hyperplasia and promote re-endothelialization. The aim of this study was to compare the effects of a resveratrol (R)- and quercetin (Q)-eluting stent with that of a bare metal stent (BMS) on neointimal hyperplasia and re-endothelialization in a rat model of arterial angioplasty and stenting. Miniature stents (2.5×1.25mm) were sprayed with nanocomposite coatings containing two concentrations of R:Q (50:25μg/cm(2) (RQ1) or 150:75μg/cm(2) (RQ2)). The stents were deployed into the common carotid artery of rats and their impact on vascular remodeling was compared to that of BMS. Luminal stenosis in arteries stented with RQ2-eluting stents was reduced by 64.6% (p<0.05) compared to arteries stented with BMS. Accompanying this effect was a 59.8% reduction in macrophage infiltration (p<0.05). There were no differences found between RQ1 and BMS. Finally, the RQ2-coated stent accelerated re-endothelialization by 50% compared with BMS (p<0.05). Thus, compared with BMS, local delivery of R and Q from a stent platform significantly reduced in-stent stenosis, while promoting re-endothelialization. These data suggest that R and Q may be favorable candidates for novel stent coatings, potentially reducing the risk of late thrombosis associated with drug-eluting stents.

  6. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells.

    PubMed

    Pham, Anh; Bortolazzo, Anthony; White, J Brandon

    2012-10-19

    Quercetin is a member of the flavonoid family and has been previously shown to have a variety of anti-cancer activities. We and others have reported anti-proliferation, cell cycle arrest, and induction of apoptosis of cancer cells after treatment with quercetin. Quercetin has also been shown to undergo oxidation. However, it is unclear if quercetin or one of its oxidized forms is responsible for cell death. Here we report that quercetin rapidly oxidized in cell culture media to form a dimer. The quercetin dimer is identical to a dimer that is naturally produced by onions. The quercetin dimer and quercetin-3-O-glucopyranoside are unable to cross the cell membrane and do not kill MDA-MB-231 cells. Finally, supplementing the media with ascorbic acid increases quercetin's ability to induce cell death probably by reduction oxidative dimerization. Our results suggest that an unmodified quercetin is the compound that elicits cell death. PMID:23000408

  7. Hepatitis C: Sex and Sexuality

    MedlinePlus

    ... with Hepatitis » Sex and Sexuality: Entire Lesson Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... hepatitis C virus through sex. Can you pass hepatitis C to a sex partner? Yes, but it ...

  8. Hepatitis C

    PubMed Central

    Mehta, Bharti; Kumar Dharma, Vijay; Chawla, Sumit; Jindal, Harashish; Bhatt, Bhumika

    2014-01-01

    Hepatitis C Virus (HCV) infection is a major cause of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Following acute infection, 20% of people eliminate the virus over weeks or months and are often asymptomatic. The remaining 80% of people will develop chronic disease, of which approximately 20% will eventually develop liver cirrhosis and 1–5% will develop liver cancer. About 150 million people are chronically infected with HCV, and more than 350 000 people die every year from hepatitis C related liver diseases. The economic cost of hepatitis C is significant both to the individual and to the society. In the United States the average lifetime cost of the disease was estimated at $33 407 USD with the cost of a liver transplant approximately $200 000 USD. PEG-IFN and ribavirin treatment is also expensive and, at an average cost of approximately GB £7000 in the UK for a treatment course, is unaffordable in developing countries. Hepatitis C, not only brings down the quality of the life of individuals but also affect progress of the nation by adding financial burden. If we prevent the disease from occurring or find a perfect cure of the disease, in form of a prophylactic or therapeutic vaccine, it will be a boon to not only to the individual but to the nation as a whole. PMID:24165512

  9. Pressure surge attenuator

    DOEpatents

    Christie, Alan M.; Snyder, Kurt I.

    1985-01-01

    A pressure surge attenuation system for pipes having a fluted region opposite crushable metal foam. As adapted for nuclear reactor vessels and heads, crushable metal foam is disposed to attenuate pressure surges.

  10. Hepatic encephalopathy.

    PubMed

    Córdoba, Juan; Mínguez, Beatriz

    2008-02-01

    Hepatic encephalopathy is a severe complication of cirrhosis that is related to the effects of ammonia. Analysis of interorgan ammonia trafficking has identified an important role of skeletal muscle in ammonia removal and has highlighted the importance of the nutritional status. Ammonia causes neurotransmitter abnormalities and induces injury to astrocytes that is partially mediated by oxidative stress. These disturbances lead to astrocyte swelling and brain edema, which appear to be involved in the pathogenesis of neurological manifestations. Inflammatory mediators worsen brain disturbances. New methods for assessing hepatic encephalopathy include clinical scales, neuropsychological tests, imaging of portal-systemic circulation, and magnetic resonance of the brain. Reappraisal of current therapy indicates the need for performing placebo-controlled trials and the lack of evidence for administering diets with restricted protein content. Liver transplant should be considered in selected patients with hepatic encephalopathy. Future prospects include new drugs that decrease plasma ammonia, measures to reduce brain edema, and liver-support devices. PMID:18293278

  11. Role of quercetin as an alternative for obesity treatment: you are what you eat!

    PubMed

    Nabavi, Seyed Fazel; Russo, Gian Luigi; Daglia, Maria; Nabavi, Seyed Mohammad

    2015-07-15

    Obesity is one of the most serious global health problems, which increases the risk of other different chronic diseases. The crucial role of oxidative stress in the initiation and progression of obesity leads to the hypothesis that antioxidants can be used as therapeutic agents for obesity treatment. Among antioxidants, much attention has been paid to polyphenols due to their negligible adverse effects. Among them, quercetin is one of the most common dietary antioxidants widely distributed in different plant materials, such as fruits, vegetables and cereals. Quercetin shows a wide range of biological and health-promoting effects, such as anticancer, hepatoprotective, antidiabetic, anti-inflammatory and antibacterial activities. Furthermore, quercetin has anti-obesity activity through mitogen-activated protein kinase and adenine monophosphate-activated protein kinase signaling pathways. In this study, we reviewed the available scientific reports concerning the beneficial role of quercetin against obesity with emphasis on its mechanisms of action.

  12. Preparation and characterization of quercetin-loaded lipid liquid crystalline systems.

    PubMed

    Linkevičiūtė, A; Misiūnas, A; Naujalis, E; Barauskas, J

    2015-04-01

    The aim of the present study was to investigate mixtures of soy phosphatidylcholine (SPC) and glycerol dioleate (GDO) as encapsulation matrices for antioxidant quercetin. The effects of quercetin loading into non-aqueous formulations, non-lamellar liquid crystalline phases and their colloidal dispersions were studied by using synchrotron small angle X-ray diffraction, dynamic light scattering, cryogenic electron microscopy and high performance liquid chromatography. Quercetin incorporation is discussed in the context of lipid aggregation behavior, self-assembled nanostructure and chemical stability. The obtained results show that SPC/GDO-based formulations can incorporate relatively high amounts of quercetin and serve as liquid crystalline delivery vehicles in the form of bulk phases or colloidal dispersions.

  13. Exploration of the kinetic and thermochemical abilities for the free radical scavenging of two quercetin conformers

    NASA Astrophysics Data System (ADS)

    Mendoza-Wilson, Ana María; Sotelo-Mundo, Rogerio R.; Balandrán-Quintana, René R.; Glossman-Mitnik, Daniel; Sántiz-gómez, Marco a.; García-orozco, karina D.

    2010-09-01

    Quercetin has a great antioxidant potential due to its large capacity for free radical scavenging. Although it has been found that conformational changes have a profound effect on its chemical properties, there are few studies where conformation is associated with the antioxidant activity. The aim of this investigation was to explore the kinetic and the thermochemical abilities of two quercetin conformers for the free radical scavenging. Quercetin unhydrate (QUH) and quercetin dihydrate (QDH) conformers were studied employing 2,2-diphenyl-1-picrylhydrazyl (DPPH rad ) as in vitro radical model, and catechol and 4-hexyl-resorcinol as reference systems, for identifying the oxidation products. QDH showed to be most effective under conditions of free radical excess, while QUH was most effective when the flavonoid far exceeds the concentration of free radical. It was found, by means of experimental and computational methods, that 4'-OH, 3-OH and 3'-OH are the main reactive sites of both conformers.

  14. Hepatic sarcoidosis.

    PubMed

    Karagiannidis, Alexandros; Karavalaki, Maria; Koulaouzidis, Anastasios

    2006-01-01

    Sarcoidosis is a multisystem disease of unknown aetiology. Histological evidence of non-caseating granulomas represents the main finding. It affects mostly young people, targeting primary the lung and hilar lymph nodes although liver involvement is often encountered. Hepatic sarcoidosis covers a broad spectrum from asymptomatic hepatic granulomas formation and slightly deranged liver function tests to clinically evident disease with cholestasis or, in advanced cases, cirrhosis and portal hypertension. Other granulomatous diseases (mainly systemic infections like tuberculosis) should be excluded prior to treatment, as longstanding corticosteroid administration is the main stem of therapy. In advanced cases, liver transplantation represents the ultimate therapeutic option.

  15. In silico QSAR analysis of quercetin reveals its potential as therapeutic drug for Alzheimer's disease

    PubMed Central

    Islam, Md. Rezaul; Zaman, Aubhishek; Jahan, Iffat; Chakravorty, Rajib; Chakraborty, Sajib

    2013-01-01

    Acetylcholine-esterase (AchE) inhibitors are one of the most potent drug molecules against Alzheimer's disease (AD). But, patients treated with current AchE inhibitors often experience severe side effects. Quercetin is a plant flavonoid compound which can act as AchE inhibitor and it may be a better alternative to current AchE inhibitors in terms of effectiveness with no or fewer side effects. Aims The aim of the study was to compare quercetin with conventional AchE inhibitors to search for a better drug candidate. Methods and materials Physico-chemical properties of conventional drugs and quercetin were predicted using bioinformatics tools. Molecular docking of these compounds on the active site of AchE was performed using AutoDock and comparative analysis was performed. Later, modification on the basic structure of quercetin with different functional groups was done to perform QSAR analysis. Result and discussion Quercetin showed a similar drug likeness score to the conventional drugs. The binding strength for quercetin in the active site of the enzyme was −8.8 kcal/mol, which was considerably higher than binding scores for some of the drugs such as donepezil (binding score −7.9 kcal/mol). Fifteen hydrogen bonds were predicted between quercetin and the enzyme whereas conventional drugs had fewer or even no hydrogen bonds. It implies that quercetin can act as a better inhibitor than conventional drugs. To find out even better inhibitor, similar structures of quercetin were searched through SIMCOMP database and a methylation in the 4-OH position of the molecule showed better binding affinity than parent quercetin. Quantitative structure activity relationship study indicated that O-4 methylation was specifically responsible for better affinity. Conclusion This in silico study has conclusively predicted the superiority of the natural compound quercetin over the conventional drugs as AchE inhibitor and it sets the need for further in-vitro study of this

  16. A novel solid fluorescence method for the fast determination of quercetin in biological samples based on the quercetin-Al(III) complex imprinted polymer

    NASA Astrophysics Data System (ADS)

    Hu, Yufei; Feng, Ting; Li, Gongke

    2014-01-01

    In this work, a novel solid fluorescence method was proposed and applied to the fast determination of quercetin in urine and onion skin samples by using metal coordination imprinted polymer membrane, which was regarded as a recognition element. The quercetin-Al(III) imprinted polymer was immobilized in the microporous polypropylene fiber membrane via consecutive in situ polymerization. The CIP membrane had the porous, loose and layer upon layer structure. The CIP membrane was characterized by electron microscope photographs, infrared spectra, thermogravimetric analysis and solvent-resistant investigation. The extraction conditions including extraction solvent, extraction time, desorption solvent were optimized. Compared with MIP and NIP membrane, CIP membrane had been proved to be peculiar selective for quercetin even in presence of the structurally similar compounds such as kaempferol, rutin, naringenin and alpinetin. The CIP membrane was characteristic of high selectivity, stable and sensitive response to quercetin in polar environment. Under the optimum condition, there was a linear relationship between the state fluorescent response and the concentration of quercetin. The linear calibration range was over 0.02 mg L-1-0.80 mg L-1 with a detection limit of 5 μg L-1. The method was characteristic of flexible and good repeatability with relative standard deviation (RSD) of 4.1%. The proposed method was also successfully applied for the determination of quercetin in urine and onion skin samples without complicated pretreatment. The recoveries were 84.0-112.4% and RSDs varied from 1.5% to 6.8%. The results obtained by the proposed method agreed well with those obtained by HPLC method.

  17. Cardioprotective effects of quercetin against ischemia-reperfusion injury are age-dependent.

    PubMed

    Bartekova, M; Radosinska, J; Pancza, D; Barancik, M; Ravingerova, T

    2016-09-19

    Quercetin, a polyphenolic compound present in various types of food, has been shown to exert beneficial effects in different cardiac as well as non-cardiac ischemia/reperfusion (I/R) models in adult animals. However, there is no evidence about the effects of quercetin on I/R injury in non-mature animals, despite the fact that efficiency of some interventions against I/R is age-dependent. This study was aimed to investigate the effects of chronic quercetin treatment on I/R injury in juvenile and adult rat hearts. Juvenile (4-week-old) as well as adult (12-week-old) rats were treated with quercetin (20 mg/kg/day) for 4 weeks, hearts were excised and exposed to 25-min global ischemia followed by 40-min reperfusion. Functional parameters of hearts and occurrence of reperfusion arrhythmias were registered to assess the cardiac function. Our results have shown that quercetin improved post-ischemic recovery of LVDP, as well as recovery of markers of contraction and relaxation, +(dP/dt)max and -(dP/dt)max, respectively, in juvenile hearts, but not in adult hearts. Quercetin had no impact on incidence as well as duration of reperfusion arrhythmias in animals of both ages. We conclude that the age of rats plays an important role in heart response to quercetin treatment in the particular dose and duration of the treatment. Therefore, the age of the treated subjects should be taken into consideration when choosing the dose of quercetin and duration of its application in prevention and/or treatment of cardiovascular diseases.

  18. Cardioprotective effects of quercetin against ischemia-reperfusion injury are age-dependent.

    PubMed

    Bartekova, M; Radosinska, J; Pancza, D; Barancik, M; Ravingerova, T

    2016-09-19

    Quercetin, a polyphenolic compound present in various types of food, has been shown to exert beneficial effects in different cardiac as well as non-cardiac ischemia/reperfusion (I/R) models in adult animals. However, there is no evidence about the effects of quercetin on I/R injury in non-mature animals, despite the fact that efficiency of some interventions against I/R is age-dependent. This study was aimed to investigate the effects of chronic quercetin treatment on I/R injury in juvenile and adult rat hearts. Juvenile (4-week-old) as well as adult (12-week-old) rats were treated with quercetin (20 mg/kg/day) for 4 weeks, hearts were excised and exposed to 25-min global ischemia followed by 40-min reperfusion. Functional parameters of hearts and occurrence of reperfusion arrhythmias were registered to assess the cardiac function. Our results have shown that quercetin improved post-ischemic recovery of LVDP, as well as recovery of markers of contraction and relaxation, +(dP/dt)max and -(dP/dt)max, respectively, in juvenile hearts, but not in adult hearts. Quercetin had no impact on incidence as well as duration of reperfusion arrhythmias in animals of both ages. We conclude that the age of rats plays an important role in heart response to quercetin treatment in the particular dose and duration of the treatment. Therefore, the age of the treated subjects should be taken into consideration when choosing the dose of quercetin and duration of its application in prevention and/or treatment of cardiovascular diseases. PMID:27643931

  19. Ameliorative effect of quercetin against arsenic-induced sperm DNA damage and daily sperm production in adult male rats.

    PubMed

    Jahan, Sarwat; Rehman, Saima; Ullah, Hizb; Munawar, Asma; Ain, Qurat Ul; Iqbal, Tariq

    2016-01-01

    In this study, the protective effect of quercetin was evaluated against arsenic induced reproductive ailments in male rats. For this purpose, male rats (n = 5/group) weighing 180-250 g were used. First group served as control, second group received arsenic (50 ppm) in drinking water. Third group was treated with quercetin (50 mg/kg) alone, while fourth group received arsenic + quercetin. All treatments were carried out for 49 days. After treatment, animals were killed by decapitation; testis and epididymis were dissected out. Right epididymis was minced immediately for comet assay, while left epididymis was processed for histology. Similarly, right testis was homogenized for estimation of daily sperm production (DSP) and detection of metal concentration. The results of our research revealed that arsenic treatment did not cause any significant change in body weight and testicular volume. Quercetin treatment significantly prevented tissue deposition of arsenic within the testis. Arsenic treatment caused a significant reduction in DSP, however, in the arsenic + quercetin-treated group and quercetin alone-treated group, DSP was significantly high as compared to the arsenic-treated group. Histological study of epididymis showed empty lumen in arsenic-treated group while in arsenic + quercetin-treated group and quercetin alone-treated group, lumen were filled with sperm and were comparable to control. Sperm DNA damage, induced by arsenic, was significantly reversed toward control levels by supplementation of quercetin. These results suggest that quercetin not only prevents deposition of arsenic in tissues, but can also protect the sperm DNA damage.

  20. Genistein modulates the expression of NF-κB and MAPK (p-38 and ERK1/2), thereby attenuating D-Galactosamine induced fulminant hepatic failure in Wistar rats

    SciTech Connect

    Ganai, Ajaz A. Khan, Athar A. Malik, Zainul A. Farooqi, Humaira

    2015-03-01

    Genistein is an isoflavanoid abundantly found in soy. It has been found to play an important role in the prevention of various chronic diseases including cancer. In this study, we evaluated potential therapeutic properties of Genistein against D-Galactosamine (D-GalN) induced inflammation and hepatotoxicity in male Wistar rats. Fulminant hepatic failure (FHF) was induced in rats by intraperitoneal injection of D-GalN (700 mg/kgBW). Genistein (5 mg/kgBW/day) was given as pre-treatment for 30 days via intra-gastric route followed by D-GalN (700 mg/kgBW) injection. The hepatoprotective and curative effects of Genistein were evident from a significant decrease in the serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels as well as prevention of histological damage by pre-treatment of Genistein. Genistein pre-treatment significantly inhibited the increased protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), thereby reducing nitric oxide (NO) and prostaglandin-E2 (PGE) levels, respectively. In addition Genistein significantly suppressed the production of D-GalN-induced proinflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β. These inhibitory effects were associated with the suppression of nuclear factor-kappa B (NF-ĸB) activation, IKKα/β and Mitogen activated protein kinase (MAPK) phosphorylation by Genistein in D-GalN-treated animals. In conclusion, our results suggest that Genistein may serve as a potential supplement in the prevention of hepatic and inflammatory diseases. Furthermore Genistein is able to maintain the redox potential and strengthens the antioxidant defense system of a cell. - Highlights: • First study to evaluate hepatoprotective effect of Genistein against D-GalN • Genistein prevents oxidative damage induced by D-GalN. • Genistein blunts iNOS, COX-2, NF-ĸB, IKKα/β and MAPK expression. • Genistein prevents D-GalN induced apoptosis and

  1. Pharmacological Intervention in Hepatic Stellate Cell Activation and Hepatic Fibrosis

    PubMed Central

    Schon, Hans-Theo; Bartneck, Matthias; Borkham-Kamphorst, Erawan; Nattermann, Jacob; Lammers, Twan; Tacke, Frank; Weiskirchen, Ralf

    2016-01-01

    The activation and transdifferentiation of hepatic stellate cells (HSCs) into contractile, matrix-producing myofibroblasts (MFBs) are central events in hepatic fibrogenesis. These processes are driven by autocrine- and paracrine-acting soluble factors (i.e., cytokines and chemokines). Proof-of-concept studies of the last decades have shown that both the deactivation and removal of hepatic MFBs as well as antagonizing profibrogenic factors are in principle suitable to attenuate ongoing hepatic fibrosis. Although several drugs show potent antifibrotic activities in experimental models of hepatic fibrosis, there is presently no effective pharmaceutical intervention specifically approved for the treatment of liver fibrosis. Pharmaceutical interventions are generally hampered by insufficient supply of drugs to the diseased liver tissue and/or by adverse effects as a result of affecting non-target cells. Therefore, targeted delivery systems that bind specifically to receptors solely expressed on activated HSCs or transdifferentiated MFBs and delivery systems that can improve drug distribution to the liver in general are urgently needed. In this review, we summarize current strategies for targeted delivery of drugs to the liver and in particular to pro-fibrogenic liver cells. The applicability and efficacy of sequestering molecules, selective protein carriers, lipid-based drug vehicles, viral vectors, transcriptional targeting approaches, therapeutic liver- and HSC-specific nanoparticles, and miRNA-based strategies are discussed. Some of these delivery systems that had already been successfully tested in experimental animal models of ongoing hepatic fibrogenesis are expected to translate into clinically useful therapeutics specifically targeting HSCs. PMID:26941644

  2. Quercetin reduced inflammation and increased antioxidant defense in rat adjuvant arthritis.

    PubMed

    Gardi, C; Bauerova, K; Stringa, B; Kuncirova, V; Slovak, L; Ponist, S; Drafi, F; Bezakova, L; Tedesco, I; Acquaviva, A; Bilotto, S; Russo, G L

    2015-10-01

    Novel therapies for rheumatoid arthritis also include the use of naturally occurring compounds possessing antioxidant properties. In the present work, the effects of oral administration of quercetin were investigated in a rat model of adjuvant arthritis. Arthritis was induced by a single intradermal injection of heat-inactivated Mycobacterium butyricum in incomplete Freund's adjuvant. The experimental groups were treated with an oral daily dose of 150 mg/kg b.w. of quercetin for 28 days. Results indicated that quercetin was able to ameliorate all markers of inflammation and oxidative stress measured. Quercetin lowered levels of interleukin-1β, C-reactive protein, and monocyte chemotactic protein-1 and restored plasma antioxidant capacity. In addition, quercetin inhibited the enzymatic activity of pro-inflammatory 12/15-lipoxygenase in lung and liver and increased the expression of heme oxygenase-1 in joint and lung of arthritic rats. Finally, quercetin inhibited the 2-fold increase of NF-қB activity observed in lung, liver and joint after induction of arthritis. PMID:26297952

  3. Experimental evidence and molecular modeling of the interaction between hRSV-NS1 and quercetin.

    PubMed

    Gomes, Deriane Elias; Caruso, Ícaro Putinhon; de Araujo, Gabriela Campos; de Lourenço, Isabella Otenio; de Melo, Fernando Alves; Cornélio, Marinônio Lopes; Fossey, Marcelo Andrés; de Souza, Fátima Pereira

    2016-04-01

    Human Respiratory Syncytial Virus is one of the major causes of acute respiratory infections in children, causing bronchiolitis and pneumonia. Non-Structural Protein 1 (NS1) is involved in immune system evasion, a process that contributes to the success of hRSV replication. This protein can act by inhibiting or neutralizing several steps of interferon pathway, as well as by silencing the hRSV ribonucleoproteic complex. There is evidence that quercetin can reduce the infection and/or replication of several viruses, including RSV. The aims of this study include the expression and purification of the NS1 protein besides experimental and computational assays of the NS1-quercetin interaction. CD analysis showed that NS1 secondary structure composition is 30% alpha-helix, 21% beta-sheet, 23% turn and 26% random coils. The melting temperature obtained through DSC analysis was around 56°C. FRET analysis showed a distance of approximately 19Å between the NS1 and quercetin. Fluorescence titration results showed that the dissociation constant of the NS1-quercetin interaction was around 10(-6)M. In thermodynamic analysis, the enthalpy and entropy balanced forces indicated that the NS1-quercetin interaction presented both hydrophobic and electrostatic contributions. The computational results from the molecular modeling for NS1 structure and molecular docking regarding its interaction with quercetin corroborate the experimental data.

  4. Quercetin, E7 and p53 in papillomavirus oncogenic cell transformation.

    PubMed

    Beniston, R G; Morgan, I M; O'Brien, V; Campo, M S

    2001-07-01

    Bovine papillomavirus type 4 (BPV-4) infects the upper alimentary canal of cattle causing benign papillomas which can progress to squamous carcinomas in cattle grazing on bracken fern (BF). We have previously shown that quercetin, a well characterized and potent mutagen found in BF, causes cell cycle arrest of primary bovine cells (PalF), but that a single exposure to quercetin can cause full oncogenic transformation of PalF cells partially transformed by BPV-4. Here we show that cell cycle arrest correlates with an increase in p53 protein levels and transcriptional activity. However, in cells transformed but non-tumorigenic, p53 protein is elevated and transcriptionally activated in response to quercetin or other DNA damaging stimuli, but the cells bypass quercetin-induced G1 arrest likely due to E7 expression. In transformed tumorigenic cells, p53 is elevated in response to quercetin but its transcriptional activity is inhibited due to mutation, and the cells fail to stop in G1 in the presence of quercetin.

  5. Bioconversion of quercetin and rutin and the cytotoxicity activities of the transformed products.

    PubMed

    Araújo, Kelly Carolina Frauzino; de M B Costa, Eula Maria; Pazini, Francine; Valadares, Marize Campos; de Oliveira, Valéria

    2013-01-01

    Quercetin and rutin are well-know flavonoids. In spite of this, the comprehension of their metabolism is still incomplete. In this work, the cytotoxic activity of quercetin and rutin and its metabolites produced by metabolism of filamentous fungi was investigated. Flavonoids metabolism was monitored by HPLC and LC-MS. Both flavonoids were extensively metabolized. Quercetin was converted into metabolite methylquercetin (2) and quercetin glucuronide (3) and rutin into metabolite rutin sulphate (5), methylrutin (6) and rutin glucuronide (7). Cytotoxic effects of rutin, quercetin and its metabolites were measured by MTT tetrazolium reduction test and the trypan blue exclusion assay on HL-60 leukemic cells. The results showed similar concentration-dependent cytotoxic effect for rutin and rutin sulphate (5), while no cytotoxic effect was detected with the metabolites 6 and 7. In relation to the quercetin and its metabolites the results showed that all compounds have a similar concentration-dependent inhibitory effect on HL-60 cells. These findings corroborate the literature, showing that bioconversion is a useful strategy for production of biological active metabolites.

  6. Onion extract and quercetin induce matrix metalloproteinase-1 in vitro and in vivo.

    PubMed

    Cho, Jae-We; Cho, Sun-Young; Lee, Seong-Ryong; Lee, Kyu-Suk

    2010-03-01

    A scar is usually developed by an imbalance of collagen synthesis and degradation. It is believed that the flavonoids (quercetin and kaempferol) in onion extract play a role in reducing scar formation through inhibition of fibroblast activities. Even though several commercial products are composed of onion extract, the precise molecular mechanisms of onion extract in reduction of scar formation in skin are still largely unknown. In this study we investigated the effect both of onion extract and quercetin on the proliferation of fibroblasts, expression of type I collagen and matrix metalloproteinase-1 (MMP-1). Our data show that proliferation rates of fibroblasts were decreased in a dose-dependent manner of the onion extract and quercetin. The expression of type I collagen was not markedly changed by the onion extract and quercetin. Interestingly, the expression of MMP-1 was markedly increased by both onion extract and quercetin in vitro and in vivo. Thus, our data indicate that onion extract and quercetin play a role in the anti-scar effect in skin through up-regulation of MMP-1 expression, implying this agent is a promising material for reducing scar formation.

  7. Quercetin suppresses cellular migration and invasion in human head and neck squamous cell carcinoma (HNSCC).

    PubMed

    Chan, Chien-Yi; Lien, Chia-Hsien; Lee, Ming-Fen; Huang, Chun-Yin

    2016-06-01

    Head and neck squamous cell carcinoma (HNSCC) with aberrant epidermal growth factor receptor (EGFR) signaling is often associated with a poor prognosis and a low survival rate. Hence, efficient inhibition of the EGFR signaling-mediated malignancy would improve survival rate. In a previous study, we demonstrated that quercetin appears to be a potent anti-tumorigenic agent through its inhibition of the EGFR/Akt pathway in oral cancer, but its anti-metastatic potential in HNSCC remains unclear [1]. Here, we have hypothesized that quercetin might be effective in metastatic inhibition in EGFR-overexpressing HNSCC cells. Quercetin treatment with 10 μM (half concentration of IC50) suppressed cell migration and invasion in EGFR-overexpressing HSC-3 and FaDu HNSCC cells. Quercetin also inhibited the colony growth of HSC-3 cells embedded in a Matrigel matrix. Among matrix metalloproteinases (MMPs), the secreted gelatinases MMP-2 and MMP-9 are responsible for the degradation of gelatin in the extracellular matrix and type IV collagen in the basement membrane; and this degradation event is crucial for the migration from the origin and the invasion into the bone in HNSCC. Quercetin (10 μM) treatment also suppressed the expression and proteolytic activity of MMP-2 and MMP-9. Taken together, our data indicate that quercetin is an effective anti-cancer agent against MMP-2- and MMP-9-mediated metastasis in EGFR-overexpressing HNSCC. PMID:27510965

  8. Development of an antioxidant biomaterial by promoting the deglycosylation of rutin to isoquercetin and quercetin.

    PubMed

    Cruz-Zúñiga, Johana M; Soto-Valdez, Herlinda; Peralta, Elizabeth; Mendoza-Wilson, Ana María; Robles-Burgueño, M Refugio; Auras, Rafael; Gámez-Meza, Nohemí

    2016-08-01

    Quercetin-3-O-rutinoside (rutin), quercetin-3-O-glucoside (isoquercetin) and quercetin have shown antioxidant, cytoprotective, vasoprotective, antiproliferative and antiinflammatory properties. The aim of this work was to determine the conversion of rutin to isoquercetin and quercetin during the production of poly(l-lactic acid) films with potential to deliver these flavonoids toward tissues, pharmaceuticals or food matrices. Three poly(l-lactic acid) formulations with 17.7, 39.6 and 39.1mg/g of rutin were prepared by the extrusion process. Processing temperatures (130-165°C) promoted the deglycosylation of rutin to produce isoquercetin and subsequently quercetin, identified by high performance liquid chromatography coupled to mass spectrometry. The effect of the process on the antioxidant activity of the films was determined by measuring the capacity to scavenge 2,2 diphenyl-1-picrylhydrazyl radicals. The material with the highest proportion of quercetin showed the highest antioxidant activity which could be used to produce delivering devices of the flavonoids to tissues, pharmaceuticals or food matrices. PMID:26988520

  9. Protective Effects of Quercetin against Dimethoate-Induced Cytotoxicity and Genotoxicity in Allium sativum Test

    PubMed Central

    Ahmad, Waseem; Shaikh, Sibhghatulla; Nazam, Nazia; Lone, Mohammad Iqbal

    2014-01-01

    The present investigation was directed to study the possible protective activity of quercetin—a natural antioxidant against dimethoate-induced cyto- and genotoxicity in meristematic cells of Allium sativum. So far there is no report on the biological properties of quercetin in plant test systems. Chromosome breaks, multipolar anaphase, stick chromosome, and mitotic activity were undertaken in the current study as markers of cyto- and genotoxicity. Untreated control, quercetin controls (@ 5, 10 and 20 μg/mL for 3 h), and dimethoate exposed groups (@ 100 and 200 μg/mL for 3 h) were maintained. For protection against cytogenotoxicity, the root tip cells treated with dimethoate at 100 and 200 μg/mL for 3 h and quercetin treatment at 5, 10, and 20 μg/mL for 16 h, prior to dimethoate treatment, were undertaken. Quercetin was found to be neither cytotoxic nor genotoxic in Allium sativum control at these doses. A significant increase (P < 0.05) in chromosomal aberrations was noted in dimethoate treated Allium. Pretreatment of Allium sativum with quercetin significantly (P < 0.05) reduced dimethoate-induced genotoxicity and cytotoxicity in meristematic cells, and these effects were dose dependent. In conclusion, quercetin has a protective role in the abatement of dimethoate-induced cyto- and genotoxicity in the meristematic cells of Allium sativum that resides, at least in part, on its antioxidant effects. PMID:27379342

  10. Quercetin alleviates inflammation after short-term treatment in high-fat-fed mice.

    PubMed

    Das, Nilanjan; Sikder, Kunal; Bhattacharjee, Surajit; Majumdar, Suchandra Bhattacharya; Ghosh, Santinath; Majumdar, Subrata; Dey, Sanjit

    2013-06-01

    Consumption of a high-fat diet (HFD) promotes reactive oxygen species (ROS) which ultimately trigger inflammation. The aim of this study was to investigate the role of Moringa oleifera leaf extract (MoLE) and its active component quercetin in preventing NF-κB-mediated inflammation raised by short-term HFD. Quercetin was found to be one of the major flavonoid components from HPLC of MoLE. Swiss mice were fed for 15 days on HFD, both with or without MoLE/quercetin. The antioxidant profile was estimated from liver homogenate. NF-κB and some relevant inflammatory markers were evaluated by immunoblotting, RT-PCR and ELISA. Significantly (P < 0.05) lower antioxidant profile and higher lipid peroxidation was found in HFD group compared to control (P < 0.05). Increased nuclear import of NF-κB and elevated expressions of pro-inflammatory markers were further manifestations in the HFD group. All these changes were reversed in the MoLE/quercetin-treated groups with significant improvement of antioxidant activity compared to the HFD group. MoLE was found to be rich in polyphenols and both MoLE and quercetin showed potent free radical and hydroxyl radical quenching activity. Thus, the present study concluded that short-term treatment with MoLE and its constituent quercetin prevent HFD-mediated inflammation in mice. PMID:23644882

  11. Quercetin alleviates inflammation after short-term treatment in high-fat-fed mice.

    PubMed

    Das, Nilanjan; Sikder, Kunal; Bhattacharjee, Surajit; Majumdar, Suchandra Bhattacharya; Ghosh, Santinath; Majumdar, Subrata; Dey, Sanjit

    2013-06-01

    Consumption of a high-fat diet (HFD) promotes reactive oxygen species (ROS) which ultimately trigger inflammation. The aim of this study was to investigate the role of Moringa oleifera leaf extract (MoLE) and its active component quercetin in preventing NF-κB-mediated inflammation raised by short-term HFD. Quercetin was found to be one of the major flavonoid components from HPLC of MoLE. Swiss mice were fed for 15 days on HFD, both with or without MoLE/quercetin. The antioxidant profile was estimated from liver homogenate. NF-κB and some relevant inflammatory markers were evaluated by immunoblotting, RT-PCR and ELISA. Significantly (P < 0.05) lower antioxidant profile and higher lipid peroxidation was found in HFD group compared to control (P < 0.05). Increased nuclear import of NF-κB and elevated expressions of pro-inflammatory markers were further manifestations in the HFD group. All these changes were reversed in the MoLE/quercetin-treated groups with significant improvement of antioxidant activity compared to the HFD group. MoLE was found to be rich in polyphenols and both MoLE and quercetin showed potent free radical and hydroxyl radical quenching activity. Thus, the present study concluded that short-term treatment with MoLE and its constituent quercetin prevent HFD-mediated inflammation in mice.

  12. Potential of Excipient Emulsions for Improving Quercetin Bioaccessibility and Antioxidant Activity: An in Vitro Study.

    PubMed

    Chen, Xing; Zou, Liqiang; Liu, Wei; McClements, David Julian

    2016-05-11

    The potential for excipient emulsions to enhance the bioaccessibility and antioxidant activity of quercetin was determined in this study. Oil-in-water excipient emulsions containing two levels (4 or 10%) of small lipid droplets (d < 250 nm) were prepared from a long-chain triglyceride (corn oil). The solubilization of quercetin by the excipient emulsions was faster than by bulk corn oil or bulk water, and the solubilization rate was higher at 100 °C than at 30 °C. The bioaccessibility of quercetin samples was determined using an in vitro gastrointestinal model, and the bioactivity of quercetin was determined using a rat feeding study. The excipient emulsions were more effective at enhancing quercetin bioaccessibility and rat plasma antioxidant activity than either bulk oil or bulk water. This effect was attributed to the rapid digestion of the long chain triglycerides when they were in an emulsified form, which led to the rapid production of mixed micelles capable of solubilizing, protecting, and transporting quercetin.

  13. Cardioprotective Effects of Quercetin in Cardiomyocyte under Ischemia/Reperfusion Injury

    PubMed Central

    Chen, Yi-Wen; Chou, Hsiu-Chuan; Lin, Szu-Ting; Chen, You-Hsuan; Chang, Yu-Jung; Chen, Linyi; Chan, Hong-Lin

    2013-01-01

    Quercetin, a polyphenolic compound existing in many vegetables, fruits, has antiinflammatory, antiproliferation, and antioxidant effect on mammalian cells. Quercetin was evaluated for protecting cardiomyocytes from ischemia/reperfusion injury, but its protective mechanism remains unclear in the current study. The cardioprotective effects of quercetin are achieved by reducing the activity of Src kinase, signal transducer and activator of transcription 3 (STAT3), caspase 9, Bax, intracellular reactive oxygen species production, and inflammatory factor and inducible MnSOD expression. Fluorescence two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) can reveal the differentially expressed proteins of H9C2 cells treated with H2O2 or quercetin. Although 17 identified proteins were altered in H2O2-induced cells, these proteins such as alpha-soluble NSF attachment protein (α-SNAP), Ena/VASP-like protein (Evl), and isopentenyl-diphosphate delta-isomerase 1 (Idi-1) were reverted by pretreatment with quercetin, which correlates with kinase activation, DNA repair, lipid, and protein metabolism. Quercetin dephosphorylates Src kinase in H2O2-induced H9C2 cells and likely blocks the H2O2-induced inflammatory response through STAT3 kinase modulation. This probably contributes to prevent ischemia/reperfusion injury in cardiomyocytes. PMID:23573126

  14. UHPLC-(ESI)QTOF MS/MS profiling of quercetin metabolites in human plasma postconsumption of applesauce enriched with apple peel and onion.

    PubMed

    Lee, Jihyun; Ebeler, Susan E; Zweigenbaum, Jerry A; Mitchell, Alyson E

    2012-08-29

    An ultrahigh pressure liquid chromatography accurate mass quadrupole time-of-flight mass spectrometry with electrospray ionization (UHPLC-(ESI)QTOF MS/MS) method was developed for measuring individual quercetin metabolites in human plasma with high sensitivity and high selectivity. Quercetin (3,3',4',5,7-pentahydroxyflavone) occurs as glycosides in foods. The composition of glycosides is species and cultivar specific. In humans, quercetin undergoes extensive biotransformation, resulting in a range of metabolites. The bioactivity of quercetin metabolites will depend on the type and position of the conjugates. Herein, individual quercetin metabolites (i.e., sulfate, glucuronide or methyl conjugates) were identified by accurate mass MS in human plasma (females = 8 and males = 8) over 24 h after consumption of applesauce enriched with either micronized apple peel (AP) or onion powder (OP). The AP and OP contained ~180 μmol of quercetin glycosides. The relative amounts of quercetin metabolites were quantified in plasma. The complement of identified quercetin metabolites was similar after consumption of AP and OP. Primary metabolites included the following: quercetin sulfate, quercetin glucuronide, and quercetin diglucuronide. A quercetin glutathione adduct was identified in negative ion mode but not apparent in positive ion mode. The pharmacokinetic parameters for AUC0-24 h and Cmax were significantly different for AP and OP. For example, consumption of the AP resulted in Cmax of quercetin sulfate, 4.6 ng/mL; quercetin glucuronide, 15.5 ng/mL; quercetin diglucuronide, 9.3 ng/mL; quercetin glucuronide sulfate, 1.3 ng/mL; methyl quercetin glucuronide, 7.5 ng/mL; and methyl quercetin diglucuronide, 3.6 ng/mL, whereas the OP resulted in Cmax of quercetin sulfate, 37.3 ng/mL; quercetin glucuronide, 212.8 ng/mL; quercetin diglucuronide, 168.8 ng/mL; quercetin glucuronide sulfate, 43.0 ng/mL; methyl quercetin glucuronide, 90.1 ng/mL; methyl quercetin diglucuronide, 65.4 ng

  15. Tracer attenuation in groundwater

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  16. Hepatitis C.

    PubMed

    Liddle, C

    1996-04-01

    The hepatitis C virus (HCV) genome was isolated during the late 1980s using molecular cloning techniques. It is recognized as the cause of most cases of percutaneously transmitted non-A, non-B hepatitis. Prevalence of antibodies to HCV(anti-HCV) in the general Australian population is 0.3%. However, among regular intravenous drug users the prevalence exceeds 90%. The predominant risk factors for HCV are intravenous drug use, tattoos, exposure to blood products, occupational risk and ethnicity. In contrast to hepatitis B, sexual spread and vertical transmission of HCV from mother to neonate are relatively uncommon. The risk of acquiring HCV from a single HCV-contaminated needlestick accident is about 5%. Most cases of acute HCV infection are asymptomatic, but 50 to 80% progress to chronic disease. The percentage of those with chronic HCV progressing to cirrhosis is not accurately known, but is probably 20%. Treatment strategies for HCV, utilizing recombinant interferons, are proving useful in patients with mild to moderate liver disease, but fare less well in patients with cirrhosis. Currently, there is no vaccine for hepatitis C, so pre-exposure prophylaxis is not possible. Equally, no post-exposure intervention, for example with gamma globulin, has been shown to be beneficial, though there may be a role for early interferon therapy.

  17. Synthesis and Antiviral Activity of Quercetin Brominated Derivatives.

    PubMed

    Karimova, Elza; Baltina, Lidia; Spirikhin, Leonid; Gabbasov, Tagir; Orshanskaya, Yana; Zarubaev, Vladimir

    2015-09-01

    Reaction of quercetin (QR) (1) with bromine under various conditions was studied. Interaction of QR with 2-3 equiv. of bromine in glacial acetic acid at 35-40°C for 2-4 h and 20-22°C for 24 h led to the formation of QR 6,8-dibromide (2) (52-54% yields, 96-98% purity by HPLC). Interaction of QR with 2-5 equiv. bromine in absolute ethanol at 0-5°C and 20-22°C for 24 h led to the formation of 3-O-ethyl-QR-2,3,6,8,5'-pentabromide (3) (95-97% purity by HPLC) the output of which depends on the quantity of bromine. It was shown in MDCK cell culture that compound 2 exhibits a moderate inhibitory activity against pandemic influenza virus A/H1N1/pdm09 (EC50 6.0 µg/mL, CTD50 97.7 µg/mL, SI 16). Compound 3 was inactive.

  18. Enhanced electrochemical detection of quercetin by Natural Deep Eutectic Solvents.

    PubMed

    Gomez, Federico José Vicente; Espino, Magdalena; de Los Angeles Fernandez, María; Raba, Julio; Silva, María Fernanda

    2016-09-14

    New trends in analytical chemistry encourage the development of smart techniques and methods aligned with Green Chemistry. In this sense, Natural Deep Eutectic Solvents represents an excellent opportunity as a new generation of green solvents. In this work a new application for them has been proposed and demonstrated. These solvents were synthesized by combinations of inexpensive and natural components like, Glucose, Fructose, Citric acid and Lactic acid. The different natural solvents were easily prepared and added to buffer solution in different concentrations, allowing the enhancement of electrochemical detection of an important representative antioxidant like quercetin (QR) with improved signal up to 380%. QR is a ubiquitous flavonoid widespread in plants and food of plant origin. The proposed method using phosphate buffer with a eutectic mixture of Citric acid, Glucose and water in combination with carbon screen printed electrodes exhibited a good analytical performance. Detection and quantification limits were of 7.97 and 26.3 nM respectively; and repeatability with %RSDs of 1.41 and 7.49 for peak potential and intensity respectively. In addition, it has proved to be faster, greener and cheaper than other sensors and chromatographic methods available with the additional advantage of being completely portable. Furthermore, the obtained results demonstrated that the proposed method is able for the determination of QR in complex food samples.

  19. Amperometric monitoring of quercetin permeation through skin membranes.

    PubMed

    Rembiesa, Jadwiga; Gari, Hala; Engblom, Johan; Ruzgas, Tautgirdas

    2015-12-30

    Transdermal delivery of quercetin (QR, 3,3',4',5,7-pentahydroxyflavone), a natural flavonoid with a considerable antioxidant capacity, is important for medical treatment of, e.g., skin disorders. QR permeability through skin is low, which, at the same time, makes the monitoring of percutaneous QR penetration difficult. The objective of this study was to assess an electrochemical method for monitoring QR penetration through skin membranes. An electrode was covered with the membrane, exposed to QR solution, and electrode current was measured. The registered current was due to electro-oxidation of QR penetrating the membrane. Exploiting strict current-QR flux relationships diffusion coefficient, D, of QR in skin and dialysis membranes was calculated. The D values were strongly dependent on the theoretical model and parameters assumed in the processing of the amperometric data. The highest values of D were in the range of 1.6-6.1×10(-7)cm(2)/s. This was reached only for skin membranes pretreated with buffer-ethanol mixture for more than 24h. QR solutions containing penetration enhancers, ethanol and l-menthol, definitely increased D values. The results demonstrate that electrochemical setup gives a possibility to assess penetration characteristics as well as enables monitoring of penetration dynamics, which is more difficult by traditional methods using Franz cells.

  20. Design and characterization of protein-quercetin bioactive nanoparticles

    PubMed Central

    2011-01-01

    Background The synthesis of bioactive nanoparticles with precise molecular level control is a major challenge in bionanotechnology. Understanding the nature of the interactions between the active components and transport biomaterials is thus essential for the rational formulation of bio-nanocarriers. The current study presents a single molecule of bovine serum albumin (BSA), lysozyme (Lys), or myoglobin (Mb) used to load hydrophobic drugs such as quercetin (Q) and other flavonoids. Results Induced by dimethyl sulfoxide (DMSO), BSA, Lys, and Mb formed spherical nanocarriers with sizes less than 70 nm. After loading Q, the size was further reduced by 30%. The adsorption of Q on protein is mainly hydrophobic, and is related to the synergy of Trp residues with the molecular environment of the proteins. Seven Q molecules could be entrapped by one Lys molecule, 9 by one Mb, and 11 by one BSA. The controlled releasing measurements indicate that these bioactive nanoparticles have long-term antioxidant protection effects on the activity of Q in both acidic and neutral conditions. The antioxidant activity evaluation indicates that the activity of Q is not hindered by the formation of protein nanoparticles. Other flavonoids, such as kaempferol and rutin, were also investigated. Conclusions BSA exhibits the most remarkable abilities of loading, controlled release, and antioxidant protection of active drugs, indicating that such type of bionanoparticles is very promising in the field of bionanotechnology. PMID:21586116

  1. Enhanced electrochemical detection of quercetin by Natural Deep Eutectic Solvents.

    PubMed

    Gomez, Federico José Vicente; Espino, Magdalena; de Los Angeles Fernandez, María; Raba, Julio; Silva, María Fernanda

    2016-09-14

    New trends in analytical chemistry encourage the development of smart techniques and methods aligned with Green Chemistry. In this sense, Natural Deep Eutectic Solvents represents an excellent opportunity as a new generation of green solvents. In this work a new application for them has been proposed and demonstrated. These solvents were synthesized by combinations of inexpensive and natural components like, Glucose, Fructose, Citric acid and Lactic acid. The different natural solvents were easily prepared and added to buffer solution in different concentrations, allowing the enhancement of electrochemical detection of an important representative antioxidant like quercetin (QR) with improved signal up to 380%. QR is a ubiquitous flavonoid widespread in plants and food of plant origin. The proposed method using phosphate buffer with a eutectic mixture of Citric acid, Glucose and water in combination with carbon screen printed electrodes exhibited a good analytical performance. Detection and quantification limits were of 7.97 and 26.3 nM respectively; and repeatability with %RSDs of 1.41 and 7.49 for peak potential and intensity respectively. In addition, it has proved to be faster, greener and cheaper than other sensors and chromatographic methods available with the additional advantage of being completely portable. Furthermore, the obtained results demonstrated that the proposed method is able for the determination of QR in complex food samples. PMID:27566343

  2. Quercetin Influence on Thermal Denaturation of Bovine Serum Albumin.

    PubMed

    Precupas, Aurica; Sandu, Romica; Popa, Vlad T

    2016-09-01

    The effect of quercetin (QUER) binding on bovine serum albumin (BSA) thermal denaturation was systematically investigated by means of differential scanning calorimetry (DSC). Additional information concerning thermodynamic and structural binding parameters was provided by isothermal titration calorimetry (ITC) and molecular docking. The most relevant effect of QUER is manifested in the modification of the two-step thermal fingerprint of protein denaturation. Higher QUER concentrations result in a single-step denaturation thermogram, ascribed to the interplay between specific and nonspecific binding and enhancement of the solvent unfolding action. Analysis of ITC data indicate sequential binding of two molecules of QUER occurring spontaneously at different binding sites of BSA involving hydrophobic, electrostatic and hydrogen binding forces. Identification of QUER binding sites was possible through corroboration of DSC runs in the presence of site markers and molecular docking. Modeling of ligand-protein interaction confirmed the experimental data. On one hand, a neutral form of QUER binds in a nonplanar conformation to Sudlow's site I, a large hydrophobic cavity of subdomain IIA of BSA and decreases its thermal stability. On the other hand, a second molecule of QUER, the anionic form, is bound in planar conformation to Sudlow's site II, situated in the subdomain IIIA of the folded protein, and increases the thermal stability of the corresponding structural domain of the protein. PMID:27505141

  3. Pharmacokinetics of quercetin absorption from apples and onions in healthy humans.

    PubMed

    Lee, Jihyun; Mitchell, Alyson E

    2012-04-18

    A high-throughput method for the extraction and analysis of quercetin in human plasma using 96-well SPE and LC-(ESI)MS/MS (7 min/run) is described. Quercetin exists as a range of glycosides in foods. The dominant types of quercetin glycosides vary depending on genetics (i.e., species and cultivar). Dietary sources include onions and apples (i.e., the peel). Herein the quercetin glycoside composition was determined in a composite standard of dried apple peel and in onion powder. The predominant forms of quercetin in apple peel include quercetin O-arabinoside, 3-O-galactoside, 3-O-glucoside, and 3-O-rhamnoside. In the onion powder, quercetin occurred as the quercetin 3,4'-O-glucoside and 4'-O-glucoside. Pharmacokinetics relating to absorption (C(max), t(max), and AUC(0-24 h)) and elimination (k(el) and t(1/2)) were compared after the consumption of apple peel powder (AP), onion powder (OP), or a mixture of the apple peel and onion powder enriched applesauce (MP) by healthy volunteers (eight females and eight males). The enriched applesauce delivered ∼100 mg of quercetin aglycone equivalents. Consumption of the OP resulted in C(max) = 273.2 ± 93.7 ng/mL, t(max) = 2.0 ± 1.7 h, and t(1/2) = 14.8 ± 4.8 h, whereas the AP resulted in C(max) = 63.8 ± 22.4 ng/mL, t(max) = 2.9 ± 2.0 h, and t(1/2) = 65.4 ± 80.0 h. The MP resulted in an intermediate response with C(max) = 136.5 ± 45.8 ng/mL, t(max) = 2.4 ± 1.5 h, and t(1/2) = 18.7 ± 6.8 h. Consumption of the OP led to faster absorption, higher concentration, and greater bioavailability as compared to the AP. No significant gender-related differences were observed in the absorption of quercetin, whereas significant gender-related differences in the elimination half-time (t(1/2)) were observed. PMID:22439822

  4. Hepatic regenerating nodules in hereditary tyrosinemia

    SciTech Connect

    Day, D.L.; Letourneau, J.G.; Allan, B.T.; Sharp, H.L.; Ascher, N.; Dehner, L.P.; Thompson, W.M.

    1987-08-01

    Hereditary tyrosinemia is an autosomal recessive, enzymatic disorder that results in micro- and macronodular cirrhosis in early childhood. Hepatocellular carcinoma occurs in approximately one-third of affected children. We evaluated the imaging studies performed in five children with this disorder. Pathologic examination of all five of the livers revealed cirrhosis and multiple regenerating nodules; hepatocellular carcinoma was present in two of the five livers. All five patients had high-attenuation or high- and low-attenuation foci within the liver. These high-attenuation foci were not apparent as focal lesions in three of four hepatic sonograms or in one of two hepatic nuclear scans. Angiography showed tumor vascularity in one patient with a focal hepatocellular carcinoma, but was indeterminate in a second patient with severe cirrhosis and multifocal hepatocellular carcinoma. Children with cirrhosis due to tyrosinemia may develop regenerating nodules that appear as high-attenuation hepatic foci on CT scans. It is difficult to differentiate regenerating nodules from multifocal hepatocellular carcinoma in these patients.

  5. Quercetin effectively quells peanut-induced anaphylactic reactions in the peanut sensitized rats.

    PubMed

    Shishehbor, Farideh; Behroo, Lotfollah; Ghafouriyan Broujerdnia, Mehri; Namjoyan, Forough; Latifi, Seiyed-Mahmoud

    2010-03-01

    Peanut allergy is the major leading cause of fatal or life-threatening anaphylactic reactions to foods. At present, there is no remedy for this condition. The applied pharmaceutical cares are merely palliative, while their deleterious side effects have already been established. Hence, many sufferers search for complementary and alternative medicines. A versatile-, "flavonol" subgroup-member of the flavonoid family, quercetin, is of paramount interest to investigators. In this study the effects of quercetin on peanut-induced anaphylactic reactions were investigated in a rat model of peanut allergy. Wistar rats were sensitized with crude peanut extract in the presence of Cholera toxin and Aluminium hydroxide. Sensitized rats were then allotted into three groups; Positive control, Quercetin-treatment and Sham, (n=7, each). Naive rats (n=7) served as negative controls. One week post-sensitization period, the rats in treatment group were treated with quercetin at a dose of 50 mg/kg(Body Weight)/mL Di-methyl-sulfoxide 5%/rat, over a period of four weeks. Subsequently, rats were challenged, and anaphylactic reaction parameters including variations in plasma histamine levels, vascular permeability, systemic anaphylaxis scores, and total serum Immunoglobulin E levels were measured. After daily-gavaging for four weeks, quercetin completely abrogated peanut-induced anaphylactic reactions following challenges, so that the mean of plasma histamine levels in the quercetin-treated rats, were lower significantly (p=0.004) as compared with positive control group. Our findings suggest that the flavonoid quercetin is potent enough to suppress the on-going Immunoglobulin E responses against peanut proteins, and can be propounded as an alternative medicine to protect against Immunoglobulin E-mediated food allergies.

  6. HPV-18 transformed cells fail to arrest in G1 in response to quercetin treatment.

    PubMed

    Beniston, R G; Campo, M S

    2005-05-01

    Previous work with primary human keratinocytes demonstrated that quercetin, a potent mutagen found in high levels in bracken fern (Pteridium aquilinum), arrested cells in G1 with concomitant elevation of the cyclin-dependent kinase inhibitor (cdki) p27Kip1. Expression of the human papillomavirus type 16 (HPV-16) E6 and E7 oncoproteins, under transcriptional control of a heterologous promoter, in transformed keratinocytes failed to abrogate this arrest [Beniston, R., Campo, M.S., 2003. Quercetin elevates p27Kip1 and arrests both primary and HPV-16 E6/E7 transformed human keratinocytes in G1. Oncogene 22, 5504-5514]. Given the link between papillomavirus infection, bracken fern in the diet and cancer of the oesophagus in humans, we wished to investigate further whether cells transformed by the whole genome of HPV-16 or HPV-18, with E6 and E7 under the transcriptional control of their respective homologous promoters, would be similarly arrested in G1 by quercetin. In agreement with earlier work, quercetin arrested HPV-16 transformed cells in G1 with an increase in the cyclin-dependent kinase inhibitor p27Kip1. However, HPV-18 transformed cells did not arrest after quercetin treatment. The failure of HPV-18 transformed cells to arrest in G1 was linked to the up-regulation of the HPV-18 long control region (LCR) by quercetin, maintaining high expression of the viral transforming proteins. Transcriptional up-regulation of the HPV-18 LCR was mediated by a "quercetin responsive element" homologous to the one identified previously in the bovine papillomavirus type 4 (BPV-4) LCR.

  7. Co-encapsulation of biodegradable nanoparticles with silicon quantum dots and quercetin for monitored delivery.

    PubMed

    Wang, Qi; Bao, Yongping; Ahire, Jayshree; Chao, Yimin

    2013-03-01

    Polymer nanoparticles have emerged as a promising new strategy for the efficient delivery of drugs. They have several advantages when used as drug carriers, such as high stability, high capacity, improvement of drug bioavailability, as well as allowing for sustained drug release. Quercetin has therapeutic potential as an anticancer drug, but has poor solubility and low bioavailability. In this study it is shown that co-encapsulation of quercetin and fluorescent Silicon quantum dots (SiQDs) in poly (ethylene glycol)-block-polylactide (PEG-PLA) nanoparticles can be used for simultaneous in vitro imaging and to improve the biocompatibility of quercetin. Fluorescent imaging with SiQDs can provide a new concept to monitor the delivery of anti-cancer drugs. The nanoparticles are synthesized based on the double emulsion method and are extensively characterized and assayed for cytotoxicity in vitro. HepG2 cells are incubated with quercetin and SiQDs dual-loaded PEG-PLA nanoparticles, resulting in a red fluorescent staining which can be detected with a confocal microscope. PEG-PLA nanoparticle encapsulated quercetin suppresses human hepatoma HepG2 cell proliferation more effectively than the free-standing form. In addition, nanoparticle-encapsulated quercetin significantly inhibits hydrogen peroxide-induced DNA damage in HepG2 cells. These data show that nanocapsulated quercetin possesses the potential bioactivity to reduce the drug dosage frequency, as well as increase patient compliance. The combination of polymeric nanoparticles and semiconductor quantum dots can allow monitoring of delivery, improve aqueous solubility, and enhance biocompatibility. Such nanoparticulated systems could shape the future of drug delivery.

  8. Quercetin alleviates pulmonary angiogenesis in a rat model of hepatopulmonary syndrome

    PubMed Central

    Li, X.; Chen, Y.; Wang, L.; Shang, G.; Zhang, C.; Zhao, Z.; Zhang, H.; Liu, A.

    2016-01-01

    Quercetin shows protective effects against hepatopulmonary syndrome (HPS), as demonstrated in a rat model. However, whether these effects involve pulmonary vascular angiogenesis in HPS remains unclear. Therefore, this study aimed to assess the effect of quercetin on pulmonary vascular angiogenesis and explore the underlying mechanisms. Male Sprague-Dawley rats weighing 200-250 g underwent sham operation or common bile duct ligation (CBDL). Two weeks after surgery, HIF-1α and NFκB levels were assessed in rat lung tissue by immunohistochemistry and western blot. Then, CBDL and sham-operated rats were further divided into 2 subgroups each to receive intraperitoneal administration of quercetin (50 mg/kg daily) or 0.2% Tween for two weeks: Sham (Sham+Tween; n=8), CBDL (CBDL+Tween; n=8), Q (Sham+quercetin; n=8), and CBDL+Q (CBDL+quercetin; n=8). After treatment, lung tissue specimens were assessed for protein (immunohistochemistry and western blot) and/or gene expression (quantitative real-time PCR) levels of relevant disease markers, including VEGFA, VEGFR2, Akt/p-Akt, HIF-1α, vWf, and IκB/p-IκB. Finally, arterial blood was analyzed for alveolar arterial oxygen pressure gradient (AaPO2). Two weeks after CBDL, HIF-1α expression in the lung decreased, but was gradually restored at four weeks. Treatment with quercetin did not significantly alter HIF-1α levels, but did reduce AaPO2 as well as lung tissue NF-κB activity, VEGFA gene and protein levels, Akt activity, and angiogenesis. Although hypoxia is an important feature in HPS, our findings suggest that HIF-1α was not the main cause for the VEGFA increase. Interestingly, quercetin inhibited pulmonary vascular angiogenesis in rats with HPS, with involvement of Akt/NF-κB and VEGFA/VEGFR-2 pathways. PMID:27383124

  9. Alleviative effects of quercetin and onion on male reproductive toxicity induced by diesel exhaust particles.

    PubMed

    Izawa, Hiromi; Kohara, Machiko; Aizawa, Koichi; Suganuma, Hiroyuki; Inakuma, Takahiro; Watanabe, Gen; Taya, Kazuyoshi; Sagai, Masaru

    2008-05-01

    Diesel exhaust particles (DEPs) are particulate matter from diesel exhaust that contain many toxic compounds, such as polyaromatic hydrocarbons (PAHs). Some toxicities of PAH are thought to be expressed via aryl hydrocarbon receptors (AhRs). The male reproductive toxicity of DEPs might depend on AhR activation induced by PAHs. We hypothesized that AhR antagonists protect against the male reproductive toxicity of DEPs. Quercetin is a flavonoid and a well-known AhR antagonist, while onion contains many flavonoids, including quercetin. Hence, we examined whether quercetin and onion have alleviative effects against the male reproductive toxicity induced by DEPs. BALB/c male mice were fed quercetin- or onion-containing diets and received 10 injections of DEP suspension or vehicle into the dorsal subcutaneous layer over 5 weeks. The mice were euthanized at 2 weeks, after the last treatment, and their organs were collected. Daily sperm production and total incidence of sperm abnormalities were significantly affected in the DEP groups as compared with the vehicle group, but the total incidence of sperm abnormalities in the quercetin + DEP-treated mice was significantly reduced as compared with the DEP-treated mice. The numbers of Sertoli cells were significantly decreased in DEP-treated mice as compared with the vehicle-treated mice, but, the numbers of Sertoli cells were significantly increased in the quercetin and the onion + DEP-treated mice as compared with the DEP-treated mice. These results clearly indicate alleviative effects of quercetin and onion against the male reproductive toxicity induced by DEP.

  10. Therapeutic effects of quercetin against bisphenol A induced testicular damage in male Sprague Dawley rats.

    PubMed

    Jahan, Sarwat; Ain, Qurat Ul; Ullah, Hizb

    2016-01-01

    The present study was designed to investigate protective effects of quercetin against bisphenol A (BPA) induced testicular toxicity in male Sprague Dawley rats. Twenty adult male rats were divided into four groups. The first group served as the control and was provided with normal saline. The second group of rats was treated with 50 mg/kg of BPA dissolved in alcoholic saline. The third group received oral gavage of 50 mg/kg quercetin while the fourth group was treated with quercetin (50 mg/kg) along with BPA (50 mg/kg). All of the treatments were carried out for 52 days. Testicular tissues and epididymis were used for histology while blood plasma was used for hormonal and biochemical analysis. BPA administration resulted in a significant reduction in seminiferous tubule diameter and epithelial height with impaired spermatogenesis. Quercetin treatment resulted in restoration of spermatogenesis and reversal of histological damage. In addition, BPA treatment significantly reduced (p < 0.05) plasma testosterone level (ng/ml) while estrogen was not affected. Similarly, BPA caused a significant alteration in the lipid profile. Interestingly, quercetin treatment led to a marked increase in plasma testosterone, decrease in estrogen concentration, as well as a normalized lipid profile. In conclusion, results indicated that BPA administration induces toxic effects on testis and epididymis, impairs spermatogenesis, with an imbalance in hormonal levels and lipid profile while quercetin amended these toxic effects by restoring normal spermatogenesis, testicular tissue damage, and hormonal levels. This suggests that quercetin may be a potential therapeutic against BPA induced testicular toxicity. PMID:26787223

  11. Protective effect of quercetin on skeletal and neural tube teratogenicity induced by cyclophosphamide in rat fetuses.

    PubMed

    Khaksary Mahabady, Mahmood; Gholami, Mohammad Reza; Najafzadeh Varzi, Hossein; Zendedel, Abolfazl; Doostizadeh, Mona

    2016-01-01

    Cyclophosphamide (CP) is a drug commonly used to treat neoplastic disease and some autoimmune diseases. It is also a well-known and well-studied teratogen causing a variety of birth defects in fetuses of pregnant women treated with the drug. There are many reports that show the adverse effects of CP can be decreased by use of antioxidant drugs. It appears that, quercetin has antioxidant effect. The aim of this study was prevention or decrease of teratogenicity of CP in fetuses of rats by quercetin. This study was performed on 35 pregnant rats divided into six groups. Control group was received normal saline (5 mL kg(-1), intraperitoneally) and 2-6 groups received a single dose of CP (15 mg kg(-1)), a single dose of quercetin (75 or 200 mg kg(-1)), CP plus quercetin (75 or 200 mg kg(-1)) intraperitoneally at 9(th) day of gestation, respectively. Fetuses were collected at 20(th) day of gestation and after determination of weight and crown rump length were stained by alizarin red - alcian blue method and skeletal system were examined by stereomicroscope. The results showed that the cleft palate, exencephaly, spina bifida and omphalocele incidence were 55.56%, 27.77%, 33.34% and 11.11%, in fetuses of rat that received only CP, respectively. However, it decreased to 16.00%, 16.00%, 16.00% and 8.00% by quercetin (75 mg kg(-1)) and so to 12.90%, 12.90%, 6.45% and 3.28% by quercetin (200 mg kg(-1)), respectively. On the basis of results, quercetin significantly can decrease teratogenicity induced by CP. PMID:27482358

  12. Protective effect of quercetin on skeletal and neural tube teratogenicity induced by cyclophosphamide in rat fetuses

    PubMed Central

    Khaksary Mahabady, Mahmood; Gholami, Mohammad Reza; Najafzadeh Varzi, Hossein; Zendedel, Abolfazl; Doostizadeh, Mona

    2016-01-01

    Cyclophosphamide (CP) is a drug commonly used to treat neoplastic disease and some autoimmune diseases. It is also a well-known and well-studied teratogen causing a variety of birth defects in fetuses of pregnant women treated with the drug. There are many reports that show the adverse effects of CP can be decreased by use of antioxidant drugs. It appears that, quercetin has antioxidant effect. The aim of this study was prevention or decrease of teratogenicity of CP in fetuses of rats by quercetin. This study was performed on 35 pregnant rats divided into six groups. Control group was received normal saline (5 mL kg-1, intraperitoneally) and 2-6 groups received a single dose of CP (15 mg kg-1), a single dose of quercetin (75 or 200 mg kg-1), CP plus quercetin (75 or 200 mg kg-1) intraperitoneally at 9th day of gestation, respectively. Fetuses were collected at 20th day of gestation and after determination of weight and crown rump length were stained by alizarin red – alcian blue method and skeletal system were examined by stereomicroscope. The results showed that the cleft palate, exencephaly, spina bifida and omphalocele incidence were 55.56%, 27.77%, 33.34% and 11.11%, in fetuses of rat that received only CP, respectively. However, it decreased to 16.00%, 16.00%, 16.00% and 8.00% by quercetin (75 mg kg-1) and so to 12.90%, 12.90%, 6.45% and 3.28% by quercetin (200 mg kg-1), respectively. On the basis of results, quercetin significantly can decrease teratogenicity induced by CP. PMID:27482358

  13. Quercetin, a Natural Flavonoid Interacts with DNA, Arrests Cell Cycle and Causes Tumor Regression by Activating Mitochondrial Pathway of Apoptosis

    PubMed Central

    Srivastava, Shikha; Somasagara, Ranganatha R.; Hegde, Mahesh; Nishana, Mayilaadumveettil; Tadi, Satish Kumar; Srivastava, Mrinal; Choudhary, Bibha; Raghavan, Sathees C.

    2016-01-01

    Naturally occurring compounds are considered as attractive candidates for cancer treatment and prevention. Quercetin and ellagic acid are naturally occurring flavonoids abundantly seen in several fruits and vegetables. In the present study, we evaluate and compare antitumor efficacies of quercetin and ellagic acid in animal models and cancer cell lines in a comprehensive manner. We found that quercetin induced cytotoxicity in leukemic cells in a dose-dependent manner, while ellagic acid showed only limited toxicity. Besides leukemic cells, quercetin also induced cytotoxicity in breast cancer cells, however, its effect on normal cells was limited or none. Further, quercetin caused S phase arrest during cell cycle progression in tested cancer cells. Quercetin induced tumor regression in mice at a concentration 3-fold lower than ellagic acid. Importantly, administration of quercetin lead to ~5 fold increase in the life span in tumor bearing mice compared to that of untreated controls. Further, we found that quercetin interacts with DNA directly, and could be one of the mechanisms for inducing apoptosis in both, cancer cell lines and tumor tissues by activating the intrinsic pathway. Thus, our data suggests that quercetin can be further explored for its potential to be used in cancer therapeutics and combination therapy. PMID:27068577

  14. Effect of quercetin on nicotine-induced biochemical changes and DNA damage in rat peripheral blood lymphocytes.

    PubMed

    Muthukumaran, Shanmugavelu; Sudheer, Adluri Ram; Nalini, Namasivayam; Menon, Venugopal Padmanabhan

    2008-01-01

    We elucidated the protective effect of quercetin, a polyphenolic flavonoid, on lipid peroxidation, endogenous antioxidant status and DNA damage during nicotine-induced toxicity in cultured rat peripheral blood lymphocytes as compared to N-acetylcysteine (NAC), a well-known antioxidant. Lymphocytes were exposed to nicotine (3 mM) with and without quercetin and NAC (1 mM) in RPMI-1640 medium for 1 h. In preliminary experiments to fix the effective dose of quercetin, different doses of quercetin (25, 50, 75, 100 and 200 microM) were administered to lymphocytes with nicotine, and lipid peroxidation markers (thiobarbituric acid reactive substances and hydroperoxides) were analysed. A 75 microM dose of quercetin was found to be effective as evidenced by decreased lipid peroxidation. To evaluate the protective potential of quercetin against genotoxic effects of nicotine we used comet and micronucleus assays, which are valid parameters to assess genetic damage. In addition, biochemical changes including lipid peroxidation and antioxidant status were assessed. There were significant increases in the levels of lipid peroxidation, comet parameters and micronuclei frequencies, followed by decrease in the endogenous antioxidant status, in nicotine-treated lymphocytes, which were brought back to near normal by quercetin or NAC treatment. The protective effect of quercetin against nicotine toxicity was comparable to that of NAC. These findings suggest that quercetin can be as effective as NAC in protecting rat peripheral lymphocytes against nicotine-induced cellular and DNA damage. PMID:18796241

  15. Quercetin, a Natural Flavonoid Interacts with DNA, Arrests Cell Cycle and Causes Tumor Regression by Activating Mitochondrial Pathway of Apoptosis.

    PubMed

    Srivastava, Shikha; Somasagara, Ranganatha R; Hegde, Mahesh; Nishana, Mayilaadumveettil; Tadi, Satish Kumar; Srivastava, Mrinal; Choudhary, Bibha; Raghavan, Sathees C

    2016-01-01

    Naturally occurring compounds are considered as attractive candidates for cancer treatment and prevention. Quercetin and ellagic acid are naturally occurring flavonoids abundantly seen in several fruits and vegetables. In the present study, we evaluate and compare antitumor efficacies of quercetin and ellagic acid in animal models and cancer cell lines in a comprehensive manner. We found that quercetin induced cytotoxicity in leukemic cells in a dose-dependent manner, while ellagic acid showed only limited toxicity. Besides leukemic cells, quercetin also induced cytotoxicity in breast cancer cells, however, its effect on normal cells was limited or none. Further, quercetin caused S phase arrest during cell cycle progression in tested cancer cells. Quercetin induced tumor regression in mice at a concentration 3-fold lower than ellagic acid. Importantly, administration of quercetin lead to ~5 fold increase in the life span in tumor bearing mice compared to that of untreated controls. Further, we found that quercetin interacts with DNA directly, and could be one of the mechanisms for inducing apoptosis in both, cancer cell lines and tumor tissues by activating the intrinsic pathway. Thus, our data suggests that quercetin can be further explored for its potential to be used in cancer therapeutics and combination therapy. PMID:27068577

  16. Quercetin increases macrophage cholesterol efflux to inhibit foam cell formation through activating PPARγ-ABCA1 pathway

    PubMed Central

    Sun, Liqiang; Li, En; Wang, Feng; Wang, Tao; Qin, Zhiping; Niu, Shaohui; Qiu, Chunguang

    2015-01-01

    The accumulation of cholesterol in macrophages could induce the formation of foam cells and increase the risk of developing atherosclerosis. We wonder if quercetin, one of flavonoids with anti-inflammation functions in different cell types, could elevate the development of foam cells formation in atherosclerosis. We treated foam cells derived from oxLDL induced THP-1 cells with quercetin, and evaluated the foam cells formation, cholesterol content and apoptosis of the cells. We found that quercetin induced the expression of ABCA1 in differentiated THP-1 cells, and increased the cholesterol efflux from THP-1 cell derived foam cells. Eventually, cholesterol level and the formation of foam cell derived from THP-1 cells decreased after quercetin treatment. In addition, quercetin activated PPARγ-LXRα pathway to upregulate ABCA1 expression through increasing protein level of PPARγ and its transcriptional activity. Inhibition of PPARγ activity by siRNA knockdown or the addition of chemical inhibitor, GW9662, abolished quercetin induced ABCA1 expression and cholesterol efflux in THP-1 derived macrophages. Our data demonstrated that quercetin increased cholesterol efflux from macrophages through upregulating the expressions of PPARγ and ABCA1. Taken together, increasing uptake of quercetin or quercetin-rich foods would be an effective way to lower the risk of atherosclerosis. PMID:26617799

  17. Protective Effects of Quercetin on Mitochondrial Biogenesis in Experimental Traumatic Brain Injury via the Nrf2 Signaling Pathway

    PubMed Central

    Li, Xiang; Wang, Handong; Gao, Yongyue; Li, Liwen; Tang, Chao; Wen, Guodao; Zhou, Yuan; Zhou, Mengliang; Mao, Lei; Fan, Youwu

    2016-01-01

    The present investigation was carried out to elucidate a possible molecular mechanism related to the protective effect of quercetin administration against oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in mitochondrial biogenesis. Recently, quercetin has been proved to have a protective effect against mitochondria damage after traumatic brain injury (TBI). However, its precise role and underlying mechanisms in traumatic brain injury are not yet fully understood. The aim of the present study was to investigate the effect of quercetin on the potential mechanism of these effects in a weight-drop model of TBI in male mice that were treated with quercetin or vehicle via intraperitoneal injection administrated 30 min after TBI. In this experiment, ICR mice were divided into four groups: A sham group, TBI group, TBI + vehicle group, and TBI + quercetin group. Brain samples were collected 24 h later for analysis. Quercetin treatment resulted in an upregulation of Nrf2 expression and cytochrome c, malondialdehyde (MDA) and superoxide dismutase (SOD) levels were restored by quercetin treatment. Quercetin markedly promoted the translocation of Nrf2 protein from the cytoplasm to the nucleus. These observations suggest that quercetin improves mitochondrial function in TBI models, possibly by activating the Nrf2 pathway. PMID:27780244

  18. Predicting Hepatic Steatosis in Living Liver Donors via Noninvasive Methods.

    PubMed

    Kim, Jong Man; Ha, Sang Yun; Joh, Jae-Won; Sinn, Dong Hyun; Jeong, Woo Kyung; Choi, Gyu-Seong; Gwak, Geum Youn; Kwon, Choon Hyuck David; Kim, Young Kon; Paik, Yong Han; Lee, Joon Hyeok; Lee, Won Jae; Lee, Suk-Koo; Park, Cheol Keun

    2016-02-01

    Hepatic steatosis assessment is of paramount importance for living liver donor selection because significant hepatic steatosis can affect the postoperative outcome of recipients and the safety of the donor. The validity of various noninvasive imaging methods to assess hepatic steatosis remains controversial. The purpose of our study is to investigate the association between noninvasive imaging methods and pathology to detect steatosis in living liver donors and to propose a prediction model for hepatic steatosis. Liver stiffness measurements (LSMs) and controlled attenuation parameter values in vibration controlled transient elastography, ultrasonography, computed tomography (CT), and magnetic resonance imaging were used as pretransplant screening methods to evaluate living liver donors between 2012 and 2014. Only 1 pathologist assessed tissue sample for hepatic steatosis. The median age of the 79 living donors (53 men and 26 women) was 32 years (16-68 years). The CT liver-spleen attenuation (L-S) difference and the controlled attenuation parameter values were well correlated with the level of hepatic steatosis on liver pathology. Multivariate analysis showed that liver stiffness measurement (LSM) (β = 0.903; 95% CI, 0.105-1.702; P = 0.027) and the CT L to S attenuation difference (β = -3.322; 95% CI, -0.502 to -0.142; P = 0.001) were closely associated with hepatic steatosis. We generated the following equation to predict total hepatic steatosis: Hepatic steatosis = 0.903 × LSM - 0.322 × CT L to S attenuation difference (AUC = 86.6% and P = 0.001). The values predicted by the equation correlated well with the presence of hepatic steatosis (r = 0.509 and P < 0.001). The combination of nonenhanced CT L to S attenuation difference and transient elastography using vibration controlled transient elastography provides sufficient information to predict hepatic steatosis in living liver donor candidates. PMID:26886612

  19. Predicting Hepatic Steatosis in Living Liver Donors via Noninvasive Methods

    PubMed Central

    Kim, Jong Man; Ha, Sang Yun; Joh, Jae-Won; Sinn, Dong Hyun; Jeong, Woo Kyung; Choi, Gyu-Seong; Gwak, Geum Youn; Kwon, Choon Hyuck David; Kim, Young Kon; Paik, Yong Han; Lee, Joon Hyeok; Lee, Won Jae; Lee, Suk-Koo; Park, Cheol Keun

    2016-01-01

    Abstract Hepatic steatosis assessment is of paramount importance for living liver donor selection because significant hepatic steatosis can affect the postoperative outcome of recipients and the safety of the donor. The validity of various noninvasive imaging methods to assess hepatic steatosis remains controversial. The purpose of our study is to investigate the association between noninvasive imaging methods and pathology to detect steatosis in living liver donors and to propose a prediction model for hepatic steatosis. Liver stiffness measurements (LSMs) and controlled attenuation parameter values in vibration controlled transient elastography, ultrasonography, computed tomography (CT), and magnetic resonance imaging were used as pretransplant screening methods to evaluate living liver donors between 2012 and 2014. Only 1 pathologist assessed tissue sample for hepatic steatosis. The median age of the 79 living donors (53 men and 26 women) was 32 years (16–68 years). The CT liver–spleen attenuation (L–S) difference and the controlled attenuation parameter values were well correlated with the level of hepatic steatosis on liver pathology. Multivariate analysis showed that liver stiffness measurement (LSM) (β = 0.903; 95% CI, 0.105–1.702; P = 0.027) and the CT L to S attenuation difference (β = −3.322; 95% CI, −0.502 to −0.142; P = 0.001) were closely associated with hepatic steatosis. We generated the following equation to predict total hepatic steatosis: Hepatic steatosis = 0.903 × LSM – 0.322 × CT L to S attenuation difference (AUC = 86.6% and P = 0.001). The values predicted by the equation correlated well with the presence of hepatic steatosis (r = 0.509 and P < 0.001). The combination of nonenhanced CT L to S attenuation difference and transient elastography using vibration controlled transient elastography provides sufficient information to predict hepatic steatosis in living liver donor

  20. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells.

    PubMed

    Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N; Guo, Lei; Mei, Nan

    2015-09-30

    Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition.

  1. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells.

    PubMed

    Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N; Guo, Lei; Mei, Nan

    2015-01-01

    Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition. PMID:26419945

  2. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells

    PubMed Central

    Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N.; Guo, Lei; Mei, Nan

    2015-01-01

    Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition. PMID:26419945

  3. Hepatitis B virus (image)

    MedlinePlus

    Hepatitis B is also known as serum hepatitis and is spread through blood and sexual contact. It is ... population. This photograph is an electronmicroscopic image of hepatitis B virus particles. (Image courtesy of the Centers for ...

  4. What Is Hepatitis?

    MedlinePlus

    ... Twitter Facebook Google + iTunes Play Store What is hepatitis? Online Q&A Reviewed July 2016 Q: What ... Question and answer archives Submit a question World Hepatitis Day Know hepatitis - Act now Event notice Key ...

  5. Drug-induced hepatitis

    MedlinePlus

    Toxic hepatitis ... to get liver damage. Some drugs can cause hepatitis with small doses, even if the liver breakdown ... liver. Many different drugs can cause drug-induced hepatitis. Painkillers and fever reducers that contain acetaminophen are ...

  6. Variable laser attenuator

    DOEpatents

    Foltyn, S.R.

    1987-05-29

    The disclosure relates to low loss, high power variable attenuators comprising one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength. 9 figs.

  7. Variable laser attenuator

    DOEpatents

    Foltyn, Stephen R.

    1988-01-01

    The disclosure relates to low loss, high power variable attenuators comprng one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength.

  8. Mesoporous silica as topical nanocarriers for quercetin: characterization and in vitro studies.

    PubMed

    Sapino, Simona; Ugazio, Elena; Gastaldi, Lucia; Miletto, Ivana; Berlier, Gloria; Zonari, Daniele; Oliaro-Bosso, Simonetta

    2015-01-01

    The flavonoid quercetin is extensively studied for its antioxidant and chemopreventive properties. However the poor water-solubility, low stability and short half-life could restrict its use in skin care products and therapy. The present study was aimed to evaluate the potential of aminopropyl functionalized mesoporous silica nanoparticles (NH2-MSN) as topical carrier system for quercetin delivery. Thermo gravimetric analysis, X-ray diffraction, high resolution transmission electron microscopy, nitrogen adsorption isotherms, FT-IR spectroscopy, zeta potential measurements and differential scanning calorimetry allowed analyzing with great detail the organic-inorganic molecular interaction. The protective effect of this vehicle on UV-induced degradation of the flavonoid was investigated revealing a certain positive influence of the inclusion on the photostability over time. Epidermal accumulation and transdermal permeation of this molecule were ex vivo evaluated using porcine skin mounted on Franz diffusion cells. The inclusion complexation with the inorganic nanoparticles increased the penetration of quercetin into the skin after 24h post-application without transdermal delivery. The effect of quercetin alone or given as complex with NH2-MSN on proliferation of JR8 human melanoma cells was evaluated by sulforhodamine B colorimetric proliferation assay. At a concentration 60 μM the complex with NH2-MSN was more effective than quercetin alone, causing about 50% inhibition of cell proliferation. PMID:25478737

  9. Quercetin Impacts Expression of Metabolism- and Obesity-Associated Genes in SGBS Adipocytes.

    PubMed

    Leiherer, Andreas; Stoemmer, Kathrin; Muendlein, Axel; Saely, Christoph H; Kinz, Elena; Brandtner, Eva M; Fraunberger, Peter; Drexel, Heinz

    2016-05-12

    Obesity is characterized by the rapid expansion of visceral adipose tissue, resulting in a hypoxic environment in adipose tissue which leads to a profound change of gene expression in adipocytes. As a consequence, there is a dysregulation of metabolism and adipokine secretion in adipose tissue leading to the development of systemic inflammation and finally resulting in the onset of metabolic diseases. The flavonoid quercetin as well as other secondary plant metabolites also referred to as phytochemicals have anti-oxidant, anti-inflammatory, and anti-diabetic effects known to be protective in view of obesity-related-diseases. Nevertheless, its underlying molecular mechanism is still obscure and thus the focus of this study was to explore the influence of quercetin on human SGBS (Simpson Golabi Behmel Syndrome) adipocytes' gene expression. We revealed for the first time that quercetin significantly changed expression of adipokine (Angptl4, adipsin, irisin and PAI-1) and glycolysis-involved (ENO2, PFKP and PFKFB4) genes, and that this effect not only antagonized but in part even overcompensated the effect mediated by hypoxia in adipocytes. Thus, these results are explained by the recently proposed hypothesis that the protective effect of quercetin is not solely due to its free radical-scavenging activity but also to a direct effect on mitochondrial processes, and they demonstrate that quercetin might have the potential to counteract the development of obesity-associated complications.

  10. Structural insights into the polypharmacological activity of quercetin on serine/threonine kinases

    PubMed Central

    Baby, Bincy; Antony, Priya; Al Halabi, Walaa; Al Homedi, Zahrah; Vijayan, Ranjit

    2016-01-01

    Polypharmacology, the discovery or design of drug molecules that can simultaneously interact with multiple targets, is gaining interest in contemporary drug discovery. Serine/threonine kinases are attractive targets for therapeutic intervention in oncology due to their role in cellular phosphorylation and altered expression in cancer. Quercetin, a naturally occurring flavonoid, inhibits multiple cancer cell lines and is used as an anticancer drug in Phase I clinical trial. Quercetin glycosides have also received some attention due to their high bioavailability and activity against various diseases including cancer. However, these have been studied to a lesser extent. In this study, the structural basis of the multitarget inhibitory activity of quercetin and isoquercitrin, a glycoside derivative, on serine/threonine kinases using molecular modeling was explored. Structural analysis showed that both quercetin and isoquercitrin exhibited good binding energies and interacted with aspartate in the highly conserved Asp–Phe–Gly motif. The results indicate that isoquercitrin could be a more potent inhibitor of several members of the serine/threonine kinase family. In summary, the current structural evaluation highlights the multitarget inhibitory property of quercetin and its potential to be a chemical platform for oncological polypharmacology. PMID:27729770

  11. Quercetin-induced benzophenanthridine alkaloid production in suspension cell cultures of Sanguinaria canadensis.

    PubMed

    Mahady, G B; Beecher, C W

    1994-12-01

    Addition of micromolar concentrations of quercetin or rutin to suspension cell cultures of Sanguinaria canadensis L. (bloodroot) induced the biosynthesis of sanguinarine and chelerythrine in a dose-dependent manner. In contrast, related compounds: baicalein, naringin, naringenin, catechin, caffeic acid and benzoic acid displayed very weak inductive activity. Of the two active flavonoids, quercetin was the most effective for inducing benzophenanthridine alkaloid biosynthesis, with doses of 100 microM increasing alkaloid production over 375% as compared to negative controls. Quercetin's inductive effects were similar to that of an elicitor derived from fungus Penicillium expansum (PE-elicitor). Suppression of quercetin and PE-induced alkaloid biosynthesis by low doses of actinomycin D (5 micrograms/ml, alpha-amanitin (20 micrograms/ml), or cycloheximide (1 microgram/ml) demonstrate a requirement for both RNA and de novo cytoplasmic protein synthesis and suggest that alterations in gene expression are involved in the inductive mechanism. Furthermore, quercetin-induced alkaloid biosynthesis was significantly reduced by pretreatment of the cells with the calcium chelator, EGTA (3 mM), or the calcium channel inhibitor, verapamil (100 microM), suggesting that this process was calcium dependent.

  12. Quercetin Impacts Expression of Metabolism- and Obesity-Associated Genes in SGBS Adipocytes

    PubMed Central

    Leiherer, Andreas; Stoemmer, Kathrin; Muendlein, Axel; Saely, Christoph H.; Kinz, Elena; Brandtner, Eva M.; Fraunberger, Peter; Drexel, Heinz

    2016-01-01

    Obesity is characterized by the rapid expansion of visceral adipose tissue, resulting in a hypoxic environment in adipose tissue which leads to a profound change of gene expression in adipocytes. As a consequence, there is a dysregulation of metabolism and adipokine secretion in adipose tissue leading to the development of systemic inflammation and finally resulting in the onset of metabolic diseases. The flavonoid quercetin as well as other secondary plant metabolites also referred to as phytochemicals have anti-oxidant, anti-inflammatory, and anti-diabetic effects known to be protective in view of obesity-related-diseases. Nevertheless, its underlying molecular mechanism is still obscure and thus the focus of this study was to explore the influence of quercetin on human SGBS (Simpson Golabi Behmel Syndrome) adipocytes’ gene expression. We revealed for the first time that quercetin significantly changed expression of adipokine (Angptl4, adipsin, irisin and PAI-1) and glycolysis-involved (ENO2, PFKP and PFKFB4) genes, and that this effect not only antagonized but in part even overcompensated the effect mediated by hypoxia in adipocytes. Thus, these results are explained by the recently proposed hypothesis that the protective effect of quercetin is not solely due to its free radical-scavenging activity but also to a direct effect on mitochondrial processes, and they demonstrate that quercetin might have the potential to counteract the development of obesity-associated complications. PMID:27187453

  13. Evaluation of antigenotoxic effects of plant flavonoids quercetin and rutin on HepG2 cells.

    PubMed

    Barcelos, Gustavo R M; Grotto, Denise; Angeli, José Pedro F; Serpeloni, Juliana M; Rocha, Bruno A; Bastos, Jairo K; Barbosa, Fernando

    2011-09-01

    The flavonoid quercetin and its derivative rutin were investigated for genotoxicity/antigenotoxicity activity in human hepatoma HepG2 cells using the comet assay. The extract cytotoxicity was evaluated using the trypan blue exclusion dye method with quercetin and rutin concentrations ranging from 0.1 to 200.0 μg/mL of culture medium. Three minor non-cytotoxic concentrations were chosen to evaluate the genotoxicity and antigenotoxicity of the flavonoids (0.1, 1.0 and 5.0 μg/mL) through comet assay. The cultures were treated with three different concentrations of rutin or quercetin (genotoxicity) or their association with Aflatoxin B1 (AFB1), methyl methanesulfonate (MMS) or doxorubicin (DXR) (antigenotoxicity test) in three protocols: pre-treatment, simultaneous treatment and post-treatment. The cell cultures were also treated with 1% DMSO (control group), AFB1, MMS and DXR (positive-control). Statistical analyses were performed using ANOVA and Dunnett's test (p ≤ 0.05). Quercetin at concentrations higher than 10.0 μg/mL or rutin higher than 50.0 μg/mL exhibited a cytotoxic effect on the cells, showing that quercetin is more cytotoxic than rutin. Furthermore, neither compound was able to induce genotoxicity in the concentrations evaluated. On the other hand, both flavonoids reduced DNA damage induced by AFB1, MMS and DXR in all treatment protocols.

  14. Quercetin ameliorates polychlorinated biphenyls-induced testicular DNA damage in rats.

    PubMed

    Lovato, F L; de Oliveira, C R; Adedara, I A; Barbisan, F; Moreira, K L S; Dalberto, M; da Rocha, M I U M; Marroni, N P; da Cruz, I B; Costabeber, I B

    2016-02-01

    Polychlorinated biphenyls (PCBs) are a group of environmental contaminants widely reported to cause gonadal toxicity in both humans and animals. This study investigated the amelioratory role of quercetin in PCBs-induced DNA damage in male Wistar rats. Polychlorinated biphenyls were administered intraperitoneally at a dose of 2 mg kg(-1) alone or in combination with quercetin (orally) at 50 mg kg(-1) for 25 days. Quercetin modulation of PCBs-induced gonadal toxicity was evaluated using selected oxidative stress indices, comet assay, measurement of DNA concentration and histology of the testes. Administration of PCBs alone caused a significant (P < 0.05) depletion in the total thiol level in testes of treated rats. Conversely, the levels of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) production were markedly elevated in testes of PCBs-treated rats compared with control. Further, PCBs exposure produced statistically significant increases in DNA tail migration, degraded double-stranded DNA (dsDNA) concentration and histological alterations of testes of the treated rats compared to control. Quercetin cotreatment significantly improved the testicular antioxidant status, decreased DNA fragmentation and restored the testicular histology, thus demonstrating the protective effect of quercetin in PCBs-treated rats.

  15. Mesoporous silica as topical nanocarriers for quercetin: characterization and in vitro studies.

    PubMed

    Sapino, Simona; Ugazio, Elena; Gastaldi, Lucia; Miletto, Ivana; Berlier, Gloria; Zonari, Daniele; Oliaro-Bosso, Simonetta

    2015-01-01

    The flavonoid quercetin is extensively studied for its antioxidant and chemopreventive properties. However the poor water-solubility, low stability and short half-life could restrict its use in skin care products and therapy. The present study was aimed to evaluate the potential of aminopropyl functionalized mesoporous silica nanoparticles (NH2-MSN) as topical carrier system for quercetin delivery. Thermo gravimetric analysis, X-ray diffraction, high resolution transmission electron microscopy, nitrogen adsorption isotherms, FT-IR spectroscopy, zeta potential measurements and differential scanning calorimetry allowed analyzing with great detail the organic-inorganic molecular interaction. The protective effect of this vehicle on UV-induced degradation of the flavonoid was investigated revealing a certain positive influence of the inclusion on the photostability over time. Epidermal accumulation and transdermal permeation of this molecule were ex vivo evaluated using porcine skin mounted on Franz diffusion cells. The inclusion complexation with the inorganic nanoparticles increased the penetration of quercetin into the skin after 24h post-application without transdermal delivery. The effect of quercetin alone or given as complex with NH2-MSN on proliferation of JR8 human melanoma cells was evaluated by sulforhodamine B colorimetric proliferation assay. At a concentration 60 μM the complex with NH2-MSN was more effective than quercetin alone, causing about 50% inhibition of cell proliferation.

  16. Synergy and Mode of Action of Ceftazidime plus Quercetin or Luteolin on Streptococcus pyogenes

    PubMed Central

    Siriwong, Supatcharee; Thumanu, Kanjana; Hengpratom, Tanaporn; Eumkeb, Griangsak

    2015-01-01

    Streptococcus pyogenes causes streptococcal toxic shock syndrome. The recommended therapy has been often failure through the interfering of beta-lactamase-producing bacteria (BLPB). The present study was to investigate antibacterial activity, synergy, and modes of action of luteolin and quercetin using alone and plus ceftazidime against S. pyogenes. The MICs of ceftazidime, luteolin, and quercetin against all S. pyogenes were 0.50, 128, and 128 µg mL−1, respectively. A synergistic effect was exhibited on luteolin and quercetin plus ceftazidime against these strains at fractional inhibitory concentration indices 0.37 and 0.27, respectively, and was confirmed by the viable count. These combinations increased cytoplasmic membrane (CM) permeability, caused irregular cell shape, peptidoglycan, and CM damage, and decreased nucleic acid but increased proteins in bacterial cells. Enzyme assay demonstrated that these flavonoids had an inhibitory activity against β-lactamase. In summary, this study provides evidence that the inhibitory mode of action of luteolin and quercetin may be mediated via three mechanisms: (1) inhibiting of peptidoglycan synthesis, (2) increasing CM permeability, and (3) decreasing nucleic acid but increasing the protein contents of bacterial cells. So, luteolin and quercetin propose the high potential to develop adjunct to ceftazidime for the treatment of coexistence of the BLPB and S. pyogenes infections. PMID:26576195

  17. Hyaluronic acid-quercetin conjugate micelles: synthesis, characterization, in vitro and in vivo evaluation.

    PubMed

    Pang, Xin; Lu, Zhen; Du, Hongliang; Yang, Xiaoye; Zhai, Guangxi

    2014-11-01

    A tumor cell-targeted prodrug was developed for quercetin, using hyaluronic acid as polymeric carrier. Hyaluronic acid-quercetin (HA-QT) bioconjugates were synthesized by linking the hydroxy of quercetin via a succinate ester to adipic dihydrazide-modified hyaluronic acid. The mirco-morphology demonstrated that the prepared prodrug could form self-assembled micelles possessing spherical shape, 172.1 nm average diameter and -20.30 mV surface potential. The HA-QT micelles exhibited significant sustained and pH-dependent drug release behaviors without dramatic initial burst. Compared to free quercetin solution, the HA-QT micelles were found a 4 times increase in cytotoxicity on MCF-7 cells (CD44-overexpressing cell lines), while weak enhancement in inhibitory activity was observed towards L929 cells (CD44 deficient cell lines). Promisingly, 20.1-fold increase in the half-life and 4.9-fold increase in the area-under-the-curve (AUC) of quercetin were achieved for the HA-QT micelles compared with the parent drug. In addition, the HA-QT micelles also showed excellent inhibition effect on tumor growth in H22 tumor-bearing mice. Hemolytic toxicity and vein irritation assay further suggested that the HA-QT micelles were a safe and potent drug delivery system for targeted antitumor therapy. PMID:25454664

  18. Quercetin induces bladder cancer cells apoptosis by activation of AMPK signaling pathway

    PubMed Central

    Su, Qiongli; Peng, Mei; Zhang, Yuqing; Xu, Wanjun; Darko, Kwame Oteng; Tao, Ting; Huang, Yanjun; Tao, Xiaojun; Yang, Xiaoping

    2016-01-01

    Quercetin, a natural existing polyphenol compound, has shown anticancer capacity for liver, breast, nasopharyngeal and prostate carcinoma but has not been clinically approved yet. This might be due to lack of clear mechanistic picture. Bladder cancer is one of the most common cancers of the urinary tract in the world. In China, bladder cancer has the highest rate of incidence out of all malignancies of the urinary system. The anticancer application of quercetin on bladder cancer has not been investigated either. This study was aimed to examine the mechanisms of quercetin on inhibition of bladder cancer. First, two human and one murine bladder cancer cell lines were tested in vitro for inhibitory sensitivity by MTT and cologenic assays. Second, AMPK pathway including 4E-BP1 and S6K were examined by western blot. Quercetin induces apoptosis and inhibits migration. We are the first to show that quercetin displays potent inhibition on bladder cancer cells via activation of AMPK pathway. PMID:27186419

  19. HEPATIC VISCERAL LARVA MIGRANS DUE TO TOXOCARA CANIS IN A 72-YEAR-OLD MAN.

    PubMed

    Ko, Ki Dong; Lee, Jae Joon; Kim, Kyoung Kon; Suh, Heuy Sun; Hwang, In Cheol; Choi, Seung Joon

    2015-03-01

    Hepatic toxocariasis is visceral larva migrans caused by Toxocara. We report a case of hepatic toxocariasis detected incidentally during a health checkup. The patient had elevated levels of eosinophils, total IgE, and anti-Toxocara IgG antibodies. On contrast-enhanced computed tomography (CT) imaging he had a single, 2.16 cm, oval, ill-defined, low-attenuation hepatic nodule which was best appreciated during the portal venous phase of the scan. Clinicians should consider hepatic toxocariasis as a possible diagnosis in any individual who presents with eosinophilia of unknown etiology and an ill-defined hepatic lesion on CT imaging. PMID:26513919

  20. A bioinformatic and mechanistic study elicits the antifibrotic effect of ursolic acid through the attenuation of oxidative stress with the involvement of ERK, PI3K/Akt, and p38 MAPK signaling pathways in human hepatic stellate cells and rat liver

    PubMed Central

    He, Wenhua; Shi, Feng; Zhou, Zhi-Wei; Li, Bimin; Zhang, Kunhe; Zhang, Xinhua; Ouyang, Canhui; Zhou, Shu-Feng; Zhu, Xuan

    2015-01-01

    NADPH oxidases (NOXs) are a predominant mediator of redox homeostasis in hepatic stellate cells (HSCs), and oxidative stress plays an important role in the pathogenesis of liver fibrosis. Ursolic acid (UA) is a pentacyclic triterpenoid with various pharmacological activities, but the molecular targets and underlying mechanisms for its antifibrotic effect in the liver remain elusive. This study aimed to computationally predict the molecular interactome and mechanistically investigate the antifibrotic effect of UA on oxidative stress, with a focus on NOX4 activity and cross-linked signaling pathways in human HSCs and rat liver. Drug–drug interaction via chemical–protein interactome tool, a server that can predict drug–drug interaction via chemical–protein interactome, was used to predict the molecular targets of UA, and Database for Annotation, Visualization, and Integrated Discovery was employed to analyze the signaling pathways of the predicted targets of UA. The bioinformatic data showed that there were 611 molecular proteins possibly interacting with UA and that there were over 49 functional clusters responding to UA. The subsequential benchmarking data showed that UA significantly reduced the accumulation of type I collagen in HSCs in rat liver, increased the expression level of MMP-1, but decreased the expression level of TIMP-1 in HSC-T6 cells. UA also remarkably reduced the gene expression level of type I collagen in HSC-T6 cells. Furthermore, UA remarkably attenuated oxidative stress via negative regulation of NOX4 activity and expression in HSC-T6 cells. The employment of specific chemical inhibitors, SB203580, LY294002, PD98059, and AG490, demonstrated the involvement of ERK, PI3K/Akt, and p38 MAPK signaling pathways in the regulatory effect of UA on NOX4 activity and expression. Collectively, the antifibrotic effect of UA is partially due to the oxidative stress attenuating effect through manipulating NOX4 activity and expression. The results

  1. A bioinformatic and mechanistic study elicits the antifibrotic effect of ursolic acid through the attenuation of oxidative stress with the involvement of ERK, PI3K/Akt, and p38 MAPK signaling pathways in human hepatic stellate cells and rat liver.

    PubMed

    He, Wenhua; Shi, Feng; Zhou, Zhi-Wei; Li, Bimin; Zhang, Kunhe; Zhang, Xinhua; Ouyang, Canhui; Zhou, Shu-Feng; Zhu, Xuan

    2015-01-01

    NADPH oxidases (NOXs) are a predominant mediator of redox homeostasis in hepatic stellate cells (HSCs), and oxidative stress plays an important role in the pathogenesis of liver fibrosis. Ursolic acid (UA) is a pentacyclic triterpenoid with various pharmacological activities, but the molecular targets and underlying mechanisms for its antifibrotic effect in the liver remain elusive. This study aimed to computationally predict the molecular interactome and mechanistically investigate the antifibrotic effect of UA on oxidative stress, with a focus on NOX4 activity and cross-linked signaling pathways in human HSCs and rat liver. Drug-drug interaction via chemical-protein interactome tool, a server that can predict drug-drug interaction via chemical-protein interactome, was used to predict the molecular targets of UA, and Database for Annotation, Visualization, and Integrated Discovery was employed to analyze the signaling pathways of the predicted targets of UA. The bioinformatic data showed that there were 611 molecular proteins possibly interacting with UA and that there were over 49 functional clusters responding to UA. The subsequential benchmarking data showed that UA significantly reduced the accumulation of type I collagen in HSCs in rat liver, increased the expression level of MMP-1, but decreased the expression level of TIMP-1 in HSC-T6 cells. UA also remarkably reduced the gene expression level of type I collagen in HSC-T6 cells. Furthermore, UA remarkably attenuated oxidative stress via negative regulation of NOX4 activity and expression in HSC-T6 cells. The employment of specific chemical inhibitors, SB203580, LY294002, PD98059, and AG490, demonstrated the involvement of ERK, PI3K/Akt, and p38 MAPK signaling pathways in the regulatory effect of UA on NOX4 activity and expression. Collectively, the antifibrotic effect of UA is partially due to the oxidative stress attenuating effect through manipulating NOX4 activity and expression. The results suggest that

  2. Protective Effect of Quercetin against Oxidative Stress and Brain Edema in an Experimental Rat Model of Subarachnoid Hemorrhage

    PubMed Central

    Dong, Yu-shu; Wang, Ju-lei; Feng, Da-yun; Qin, Huai-zhou; Wen, Hua; Yin, Zhong-min; Gao, Guo-dong; Li, Chuan

    2014-01-01

    Quercetin has been demonstrated to play an important role in altering the progression of ischemic brain injuries and neurodegenerative diseases by protecting against oxidative stress. The effects of quercetin on brain damage after subarachnoid hemorrhage (SAH), however, have not been investigated. This study was designed to explore the effects of quercetin on oxidative stress and brain edema after experimental SAH using four equal groups (n = 16) of adult male Sprague-Dawley (SD) rats, including a sham group, an SAH + vehicle group, an SAH + quercetin10 group, and an SAH + quercetin50 group. The rat SAH model was induced by injection of 0.3 ml of non-heparinised arterial blood into the prechiasmatic cistern. In the SAH + quercetin10 and SAH + quercetin50 groups, doses of 10 mg/kg and 50 mg/kg quercetin, respectively, were directly administered by intraperitoneal injection at 30 min, 12 h, and 24 h after SAH induction. Cerebral tissue samples were extracted for enzymatic antioxidant determination, lipid peroxidation assay, caspase-3 activity and water content testing 48 h after SAH. Treatment with a high dose (50 mg/kg) of quercetin markedly enhanced the activities of copper/zinc superoxide dismutase (CuZn-SOD) and glutathione peroxidase (GSH-Px), and treatment with this dose significantly reduced the level of malondialdehyde (MDA). Caspase-3 and brain edema was ameliorated and neurobehavioral deficits improved in rats that received the high dose of quercetin. The findings suggest that the early administration of optimal dose of quercetin may ameliorate brain damage and provide neuroprotection in the SAH model, potentially by enhancing the activity of endogenous antioxidant enzymes and inhibiting free radical generation. PMID:24516353

  3. Hepatitis A: Old and New

    PubMed Central

    Cuthbert, Jennifer A.

    2001-01-01

    The hepatitis A virus (HAV), a picornavirus, is a common cause of hepatitis worldwide. Spread of infection is generally person to person or by oral intake after fecal contamination of skin or mucous membranes; less commonly, there is fecal contamination of food or water. Hepatitis A is endemic in developing countries, and most residents are exposed in childhood. In contrast, the adult population in developed countries demonstrates falling rates of exposure with improvements in hygiene and sanitation. The export of food that cannot be sterilized, from countries of high endemicity to areas with low rates of infection, is a potentially important source of infection. After ingestion and uptake from the gastrointestinal tract, the virus replicates in the liver and is excreted into the bile. Cellular immune responses to the virus lead to destruction of infected hepatocytes with consequent development of symptoms and signs of disease. Humoral immune responses are the basis for diagnostic serologic assays. Acute HAV infection is clinically indistinguishable from other causes of acute viral hepatitis. In young children the disease is often asymptomatic, whereas in older children and adults there may be a range of clinical manifestations from mild, anicteric infection to fulminant hepatic failure. Clinical variants include prolonged, relapsing, and cholestatic forms. Management of the acute illness is supportive, and complete recovery without sequelae is the usual outcome. Research efforts during World War II led to the development of passive immunoprophylaxis. Pooled immune serum globulin is efficacious in the prevention and attenuation of disease in exposed individuals. More recently, active immunoprophylaxis by vaccination has been accomplished. Future eradication of this disease can now be contemplated. PMID:11148002

  4. Docking and DFT studies on ligand binding to Quercetin 2,3-dioxygenase.

    PubMed

    Malkhasian, Aramice Y S; Howlin, Brendan J

    2016-11-01

    Simple molecular docking calculations on quercetin, kojic acid and diethylcarbamatodithoic acid using the software package MOE are shown to be close to the geometries reported in the X-ray crystal structures of the protein co-crystallized with the respective ligands. Furthermore, DFT optimization of the docked conformations is shown to reproduce the essential features of previous studies on quercetin, showing that docking can be used to provide good starting structures for mechanistic study. The flavone ligand, lacking the hydroxyl group of the quercetin is shown by docking to be unable to approach closely the copper atom, indicating the necessity of the presence of the hydroxyl group and providing a prediction of the likely binding environment of this ligand.

  5. Complex formation of quercetin with lanthanum enhances binding to plant viral satellite double stranded RNA.

    PubMed

    Rusak, Gordana; Piantanida, Ivo; Bretschneider, Sabine; Ludwig-Müller, Jutta

    2009-12-01

    Due to the broad spectrum of biological activities of flavonoids, their target molecules in the cell are intensively studied. We examined the interactions of the flavonoid quercetin (Q) and its lanthanum complex (QLa(3+)) with very recently isolated plant viral satellite (sat) dsRNA. Comparison of the cumulative binding affinity and the estimated intercalative binding constant pointed towards an additional binding mode of quercetin to exclusively viral dsRNA, which is not recorded for synthetic dsRNAs. The QLa(3+) showed significantly higher affinity toward viral dsRNA than Q and La(3+) alone, most likely as the consequence of quercetin intercalation accompanied by additional electrostatic interaction of La(3+) with the negatively charged viral RNA backbone.

  6. Effect of quercetin supplementation on lung antioxidants after experimental influenza virus infection.

    PubMed

    Kumar, Pankaj; Khanna, Madhu; Srivastava, Vikram; Tyagi, Yogesh Kumar; Raj, Hanumanthrao G; Ravi, K

    2005-06-01

    In the mice, instillation of influenza virus A/Udorn/317/72(H3N2) intranasally resulted in a significant decrease in the pulmonary concentrations of catalase, reduced glutathione, and superoxide dismutase. There was a decrease in vitamin E level also. These effects were observed on the 5th day after viral instillation. Oral supplementation with quercetin simultaneous with viral instillation produced significant increases in the pulmonary concentrations of catalase, reduced glutathione, and superoxide dismutase. However, quercetin did not reverse the fall in vitamin E level associated with the viral infection. It is concluded that during influenza virus infection, there is "oxidative stress." Because quercetin restored the concentrations of many antioxidants, it is proposed that it may be useful as a drug in protecting the lung from the deleterious effects of oxygen derived free radicals released during influenza virus infection.

  7. Preliminary study of quercetin affecting the hypothalamic-pituitary-gonadal axis on rat endometriosis model.

    PubMed

    Cao, Yang; Zhuang, Meng-Fei; Yang, Ying; Xie, Shu-Wu; Cui, Jin-Gang; Cao, Lin; Zhang, Ting-Ting; Zhu, Yan

    2014-01-01

    In this study, the endometriosis rats model was randomly divided into 6 groups: model control group, ovariectomized group, Gestrinone group, and quercetin high/medium/low dose group. Rats were killed after 3 weeks of administration. The expression levels of serum FSH and LH were detected by ELISA. The localizations and quantities of ERα, ERβ, and PR were detected by immunohistochemistry and western blot. The results showed that the mechanism of quercetin inhibiting the growth of ectopic endometrium on rat endometriosis model may be through the decreasing of serum FSH and LH levels and then reducing local estrogen content to make the ectopic endometrium atrophy. Quercetin can decrease the expression of ERα, ERβ, and PR in hypothalamus, pituitary, and endometrium, thereby inhibiting estrogen and progesterone binding to their receptors to play the role of antiestrogen and progesterone.

  8. Solid dispersion of quercetin in cellulose derivative matrices influences both solubility and stability.

    PubMed

    Li, Bin; Konecke, Stephanie; Harich, Kim; Wegiel, Lindsay; Taylor, Lynne S; Edgar, Kevin J

    2013-02-15

    Amorphous solid dispersions (ASD) of quercetin (Que) in cellulose derivative matrices, carboxymethylcellulose acetate butyrate (CMCAB), hydroxypropylmethylcellulose acetate succinate (HPMCAS), and cellulose acetate adipate propionate (CAAdP) were prepared with the goal of identifying an ASD that effectively increased Que aqueous solution concentration. Crystalline quercetin and Que/poly(vinylpyrrolidinone) (PVP) ASD were evaluated for comparison. Powder X-ray diffraction (XRPD) and differential scanning calorimetry (DSC) were used to examine the crystallinity of ASDs, physical mixtures (PM) and quercetin. ASDs were amorphous up to 50 wt% Que. Que stability against crystallization and solution concentrations from these ASDs were significantly higher than those observed for physical mixtures and crystalline Que. PVP stabilizes against both Que degradation and recrystallization; in contrast, these carboxylated cellulose derivatives inhibit recrystallization but release Que slowly. PVP ASDs afforded fast and complete drug release, while ASDs using these three cellulose derivatives provide slow, incomplete, pH-triggered drug release. PMID:23399255

  9. Preparation and optimization of quercetin-loaded liposomes for wound healing, using response surface methodology.

    PubMed

    Jangde, Rajendra; Singh, Deependra

    2016-01-01

    The basic objective of this study was to prepare quercetin-loaded liposomes by the thin film hydration method. The liposomal formulation was optimized using response surface methodology (RSM). A rotation speed of 75 rpm and a water bath temperature of 46°C were finalized as the best for optimized drug-loaded liposomal formulation. In vitro characterization of the quercetin-loaded liposomal formulation was done through some parameters including the entrapment efficiency (EE), drug release (DR), and mean particle size; the resulting values of 86.5 ± 0.42%, 76.5%, and146 nm were found to be standard characterized values respectively. It is concluded that quercetin-loaded liposomal formulations achieve sustained release of drug in wound areas. PMID:25375215

  10. Pharmacophore model of the quercetin binding site of the SIRT6 protein

    PubMed Central

    Ravichandran, S.; Singh, N.; Donnelly, D.; Migliore, M.; Johnson, P.; Fishwick, C.; Luke, Brian T.; Martin, B.; Maudsley, S.; Fugmann, S. D.; Moaddel, R.

    2014-01-01

    SIRT6 is a histone deacetylase that has been proposed as a potential therapeutic target for metabolic disorders and the prevention of age-associated diseases. We have previously reported on the identification of quercetin and vitexin as SIRT6 inhibitors, and studied structurally related flavonoids including luteolin, kaempferol, apigenin and naringenin. It was determined that the SIRT6 protein remained active after immobilization and that a single frontal displacement could correctly predict the functional activity of the immobilized enzyme. The previous study generated a preliminary pharmacophore for the quercetin binding site on SIRT6, containing 3 hydrogen bond donors and one hydrogen bond acceptor. In this study, we have generated a refined pharmacophore with an additional twelve quercetin analogs. The resulting model had a positive linear behavior between the experimental elution time verses the fit values obtained from the model with a correlation coefficient of 0.8456. PMID:24491483

  11. Relaxation behavior and nonlinear properties of thermally stable polymers based on glycidyl derivatives of quercetin

    NASA Astrophysics Data System (ADS)

    Mishurov, Dmytro; Voronkin, Andrii; Roshal, Alexander; Brovko, Oleksandr

    2016-07-01

    Cross-linked polymers on the basis of di-, tri and tetraglycidyl ethers of quercetin (3,3‧,4‧,5,7-pentahydroxyflavone) were synthesized, and then, poled in electrical field of corona discharge. Investigations of structural, thermal and optical parameters of the polymer films were carried out. It was found that the polymers obtained from di- and triglycidyl quercetin ethers had high values of macroscopic quadratic susceptibilities and substantial stability of nonlinear optical (NLO) properties after the poling. Tetraglycidyl ether of quercetin forms the polymer of lower quadratic susceptibility, which demonstrates noticeable relaxation process resulting in decrease of the NLO effect. It is supposed that the difference of the NLO properties is due to peculiarities of physical network of the polymers, namely to the ratio between numbers of hydrogen bonds formed by hydroxyl groups of chromophore fragments and by the ones of interfragmental parts of the polymeric chains.

  12. Efficient regioselective acylation of quercetin using Rhizopus oryzae lipase and its potential as antioxidant.

    PubMed

    Kumar, Vinod; Jahan, Firdaus; Mahajan, Richi V; Saxena, Rajendra Kumar

    2016-10-01

    The present investigation describes the regioselective enzymatic acylation of quercetin with ferulic acid using Rhizopus oryzae lipase. Optimization of reaction parameters resulted in 93.2% yield of the ester synthesized using 750IU of lipase in cyclo-octane at a temperature of 45°C. The reaction was successfully carried out upto 25g scale. The ester synthesized was analyzed by (1)H Nuclear magnetic resonance spectroscopy. The ester synthesized (quercetin ferulate) showed higher antiradical activity as compared to ascorbic acid using the 2,2-diphenyl-1-picrylhydrazyl radical method. These results on enzyme-catalyzed acylation of quercetin might be used to prepare and scale-up other flavonoids derivatives. PMID:27372535

  13. Efficient regioselective acylation of quercetin using Rhizopus oryzae lipase and its potential as antioxidant.

    PubMed

    Kumar, Vinod; Jahan, Firdaus; Mahajan, Richi V; Saxena, Rajendra Kumar

    2016-10-01

    The present investigation describes the regioselective enzymatic acylation of quercetin with ferulic acid using Rhizopus oryzae lipase. Optimization of reaction parameters resulted in 93.2% yield of the ester synthesized using 750IU of lipase in cyclo-octane at a temperature of 45°C. The reaction was successfully carried out upto 25g scale. The ester synthesized was analyzed by (1)H Nuclear magnetic resonance spectroscopy. The ester synthesized (quercetin ferulate) showed higher antiradical activity as compared to ascorbic acid using the 2,2-diphenyl-1-picrylhydrazyl radical method. These results on enzyme-catalyzed acylation of quercetin might be used to prepare and scale-up other flavonoids derivatives.

  14. Quercetin supplementation and upper respiratory tract infection: A randomized community clinical trial.

    PubMed

    Heinz, Serena A; Henson, Dru A; Austin, Melanie D; Jin, Fuxia; Nieman, David C

    2010-09-01

    Quercetin in culture with target cells and pathogens exerts anti-pathogenic activities against a wide variety of viruses and bacteria. A few small-scale human quercetin supplementation studies have produced conflicting results regarding quercetin's effects on upper respiratory tract infection rates, and little is known regarding the appropriate human dose. The purpose of this randomized, double-blinded, placebo-controlled trial was to measure the influence of two quercetin doses (500 and 1000 mg/day) compared to placebo on upper respiratory tract infection (URTI) rates in a large community group (N=1002) of subjects varying widely in age (18-85 years). Subjects ingested supplements for 12 weeks and logged URTI symptoms on a daily basis using the Wisconsin Upper Respiratory Symptom Survey (WURSS). No significant group differences were measured for URTI outcomes for all subjects combined, or when analyzing separately by gender, body mass index, and age categories. Regression analysis revealed that the strongest interaction effect with group status was self-reported fitness level. A separate analysis of subjects 40 years of age and older rating themselves in the top half of the entire group for fitness level (N=325) showed lower URTI severity (36% reduction, P=0.020) and URTI total sick days (31% reduction, P=0.048) for the Q-1000 group compared to placebo. In summary, for all subjects combined, quercetin supplementation over 12 weeks had no significant influence on URTI rates or symptomatology compared to placebo. A reduction in URTI total sick days and severity was noted in middle aged and older subjects ingesting 1000 mg quercetin/day for 12 weeks who rated themselves as physically fit.

  15. Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration

    SciTech Connect

    Michaud-Levesque, Jonathan; Bousquet-Gagnon, Nathalie; Beliveau, Richard

    2012-05-01

    Evidence has suggested that STAT3 functions as an oncogene in gliomagenesis. As a consequence, changes in the inflammatory microenvironment are thought to promote tumor development. Regardless of its origin, cancer-related inflammation has many tumor-promoting effects, such as the promotion of cell cycle progression, cell proliferation, cell migration and cell survival. Given that IL-6, a major cancer-related inflammatory cytokine, regulates STAT3 activation and is upregulated in glioblastoma, we sought to investigate the inhibitory effects of the chemopreventive flavonoid quercetin on glioblastoma cell proliferation and migration triggered by IL-6, and to determine the underlying mechanisms of action. In this study, we show that quercetin is a potent inhibitor of the IL-6-induced STAT3 signaling pathway in T98G and U87 glioblastoma cells. Exposure to quercetin resulted in the reduction of GP130, JAK1 and STAT3 activation by IL-6, as well as a marked decrease of the proliferative and migratory properties of glioblastoma cells induced by IL-6. Interestingly, quercetin also modulated the expression of two target genes regulated by STAT3, i.e. cyclin D1 and matrix metalloproteinase-2 (MMP-2). Moreover, quercetin reduced the recruitment of STAT3 at the cyclin D1 promoter and inhibited Rb phosphorylation in the presence of IL-6. Overall, these results provide new insight into the role of quercetin as a blocker of the STAT3 activation pathway stimulated by IL-6, with a potential role in the prevention and treatment of glioblastoma.

  16. Chronic administration of quercetin prevent spatial learning and memory deficits provoked by chronic stress in rats.

    PubMed

    Mohammadi, Hadis Said; Goudarzi, Iran; Lashkarbolouki, Taghi; Abrari, Kataneh; Elahdadi Salmani, Mahmoud

    2014-08-15

    There are several reports that cognitive impairment is observed in stress related disorders and chronic stress impairs learning and memory. However, very few studies have looked into the possible ways of preventing this stress-induced deficit. This research study was conducted to evaluate the effects of quercetin, a natural flavonoid, with strong antioxidant and free radical scavenger properties, on chronic stress induced learning and memory deficits and oxidative stress in hippocampus. For chronic stress, rats were restrained daily for 6h/day (from 9:00 to 15:00) for 21 days in well-ventilated plexiglass tubes without access to food and water. The animals were injected with quercetin or vehicle 60 min before restraint stress over a period of 21 days. Then, rats trained with six trials per day for 6 consecutive days in the water maze. On day 28, a probe test was done to measure memory retention. In addition, oxidative stress markers in the hippocampus were evaluated. Results of this study demonstrated that chronic stress exposure rats exhibited higher escape latency during training trials and reduced time spent in target quadrant, higher escape location latency and average proximity in probe trial test. Quercetin (50mg/kg) treatment during restraint stress (21 days) markedly decreased escape latency and increased time spent in target quadrant during Morris water maze task. In comparison to vehicle treated group, chronic-stress group had significantly higher malondialdehyde (MDA) levels, significantly higher superoxide dismutase (SOD) activity and significantly lower glutathione peroxidase (GPx) activity in the hippocampus. Quercetin treatment caused a significant decrease in the hippocampus MDA levels and improves SOD and GPx activities in stressed animals. Finally, quercetin significantly decreased plasma corticosterone levels in stressed animals. Based on results of this study, chronic stress has detrimental effects on learning and memory and quercetin treatment

  17. Beneficial effects of quercetin on renal injury and oxidative stress caused by ciprofloxacin in rats: A histological and biochemical study.

    PubMed

    Elbe, H; Dogan, Z; Taslidere, E; Cetin, A; Turkoz, Y

    2016-03-01

    Ciprofloxacin is a broad-spectrum quinolone antibiotic commonly used in clinical practice. Quercetin is an antioxidant belongs to flavonoid group. It inhibits the production of superoxide anion. In this study, we aimed to evaluate the effects of quercetin on renal injury and oxidative stress caused by ciprofloxacin. Twenty-eight female Wistar albino rats were divided into four groups: control, quercetin (20 mg kg(-1) day(-1) gavage for 21 days), ciprofloxacin (20 mg kg(-1) twice a day intraperitoneally for 10 days), and ciprofloxacin + quercetin. Samples were processed for histological and biochemical evaluations. Malondialdehyde (MDA) and glutathione (GSH) levels, superoxide dismutase (SOD), and catalase (CAT) activities were measured in kidney tissue. The ciprofloxacin group showed histopathological changes such as infiltration, dilatation in tubules, tubular atrophy, reduction of Bowman's space, congestion, hemorrhage, and necrosis. In the ciprofloxacin + quercetin group, these histopathological changes markedly reduced. MDA levels increased in the ciprofloxacin group and decreased in the ciptofloxacin + quercetin group. SOD and CAT activities and GSH levels significantly decreased in the ciprofloxacin group. On the other hand, in the ciprofloxacin + quercetin group, SOD and CAT activities and GSH levels significantly increased with regard to the ciprofloxacin group. We concluded that quercetin has antioxidative and therapeutic effects on renal injury and oxidative stress caused by ciprofloxacin in rats.

  18. Response of keloid fibroblasts to Vitamin D3 and quercetin treatment - in vitro study.

    PubMed

    Mathangi Ramakrishnan, K; Babu, M; Lakshmi Madhavi, M S

    2015-09-30

    Keloid scars continue to pose a challenge to clinicians as the treatment armamentarium lacks a formidable agent to tackle them. We have undertaken an in vitro study based on the mechanism of action of Vitamin D3 and quercetin on isolated keloid fibroblasts. Dose-dependent action on the reduction of cellular proliferation, collagen synthesis and induction of apoptosis by Vitamin D3 and quercetin are analyzed and probable mechanism of action is elaborated. This study thus opens up newer avenues in tackling keloid scars effectively. PMID:27279805

  19. Chromatographic separation and concentration of quercetin and (+)-catechin using mesoporous composites based on MCM-41

    NASA Astrophysics Data System (ADS)

    Karpov, S. I.; Belanova, N. A.; Korabel'nikova, E. O.; Nedosekina, I. V.; Roessner, F.; Selemenev, V. F.

    2015-05-01

    Data on chromatographic separation of quercetin and (+)-catechin-flavonoids with similar physicochemical (including sorption) properties—are presented. The highest efficiency of chromatographic process at high sorption capacity of the material with respect to quercetin and slightly lower capacity for (+)-catechin were observed when silylated composites of ordered MCM-41 type materials were used. The application of acetonitrile as a solvent increased the sorption capacity of the material and can be recommended for separation of related polyphenol substances and their determination using ordered MCM-41 modified with trimethylchlorosilane as a stationary phase in a chromatographic column.

  20. Response of keloid fibroblasts to Vitamin D3 and quercetin treatment - in vitro study

    PubMed Central

    Mathangi Ramakrishnan, K.; Babu, M.; Lakshmi Madhavi, M.S.

    2015-01-01

    Summary Keloid scars continue to pose a challenge to clinicians as the treatment armamentarium lacks a formidable agent to tackle them. We have undertaken an in vitro study based on the mechanism of action of Vitamin D3 and quercetin on isolated keloid fibroblasts. Dose-dependent action on the reduction of cellular proliferation, collagen synthesis and induction of apoptosis by Vitamin D3 and quercetin are analyzed and probable mechanism of action is elaborated. This study thus opens up newer avenues in tackling keloid scars effectively. PMID:27279805

  1. Hepatic glucose and lipid metabolism.

    PubMed

    Jones, John G

    2016-06-01

    The liver has a central role in the regulation of systemic glucose and lipid fluxes during feeding and fasting and also relies on these substrates for its own energy needs. These parallel requirements are met by coordinated control of carbohydrate and lipid fluxes into and out of the Krebs cycle, which is highly tuned to nutrient availability and heavily regulated by insulin and glucagon. During progression of type 2 diabetes, hepatic carbohydrate and lipid biosynthesis fluxes become elevated, thus contributing to hyperglycaemia and hypertriacylglycerolaemia. Over this interval there are also significant fluctuations in hepatic energy state. To date, it is not known to what extent abnormal glucose and lipid fluxes are causally linked to altered energy states. Recent evidence that the glucose-lowering effects of metformin appear to be mediated by attenuation of hepatic energy generation places an additional spotlight on the interdependence of hepatic biosynthetic and oxidative fluxes. The transition from fasting to feeding results in a significant re-direction of hepatic glucose and lipid fluxes and may also incur a temporary hepatic energy deficit. At present, it is not known to what extent these variables are additionally modified by type 2 diabetes and/or non-alcoholic fatty liver disease. Thus, there is a compelling need to measure fluxes through oxidative, gluconeogenic and lipogenic pathways and determine their relationship with hepatic energy state in both fasting and fed conditions. New magnetic resonance-based technologies allow these variables to be non-invasively studied in animal models and humans. This review summarises a presentation given at the symposium entitled 'The liver in focus' at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Kenneth Cusi, DOI: 10.1007/s00125-016-3952-1 , and by Hannele Yki-Järvinen, DOI: 10.1007/s00125-016-3944-1 ) and a commentary by the Session Chair, Michael

  2. [Hepatic encephalopathy].

    PubMed

    Festi, Davide; Marasco, Giovanni; Ravaioli, Federico; Colecchia, Antonio

    2016-07-01

    Hepatic encephalopathy (HE) is a common complication of liver cirrhosis and it can manifest with a broad spectrum of neuropsychiatric abnormalities of varying severity, acuity and time course with important clinical implications. According to recent guidelines, HE has been classified into different types, depending on the severity of hepatic dysfunction, the presence of porto-systemic shunts and the number of previous episodes or persistent manifestations. From a clinical point of view, HE can be recognized as unimpaired, covert (that deals with minimal and grade 1 according to the grading of mental state), and overt (that is categorized from grade 2 to grade 4). Different and only partially known pathogenic mechanisms have been identified, comprising ammonia, inflammatory cytokines, benzodiazepine-like compounds and manganese deposition. Different therapeutic strategies are available for treating HE, in particular the overt HE, since covert HE needs to be managed case by case. Recognition and treatment of precipitating factors represent fundamental part of the management. The more effective treatments, which can be performed separately or combined, are represented by non-absorbable disaccharides (lactulose and lactitol) and the topic antibiotic rifaximin; other possible therapies, mainly used in patients non responders to previous treatments, are represented by branched chain amino acids and metabolic ammonia scavengers. PMID:27571468

  3. Protect Yourself from Hepatitis

    MedlinePlus

    ... develop yellowish eyes and skin. All the hepatitis viruses can cause acute, or short-term, hepatitis. Some can also cause chronic hepatitis, in which the infection lasts a long time, sometimes for your whole life. Chronic hepatitis can eventually lead to scarring of ...

  4. Suppression of HSP27 increases the anti-tumor effects of quercetin in human leukemia U937 cells

    PubMed Central

    CHEN, XI; DONG, XIU-SHUAI; GAO, HAI-YAN; JIANG, YONG-FANG; JIN, YING-LAN; CHANG, YU-YING; CHEN, LI-YAN; WANG, JING-HUA

    2016-01-01

    Quercetin, a natural flavonoid, inhibits the growth of leukemia cells and induces apoptosis. Heat shock protein 27 (HSP27) has been reported to promote the development of leukemia by protecting tumor cells from apoptosis through various mechanisms. The present study investigated the effects of small hairpin (sh)RNA-mediated HSP27 knockdown on the anti-cancer effects of quercetin in U937 human leukemia cells. Cells were transfected with recombinant lentiviral vector pCMV-G-NR-U6-shHSP27 (shHSP27), which expressed shRNA specifically targeting the HSP27 gene, alone or in combination with quercetin. The results showed that shHSP27 and quercetin synergistically inhibited U937 cell proliferation and induced apoptosis by decreasing the Bcl2-to-Bax ratio. Furthermore, this combined treatment significantly suppressed the infiltration of tumor cells and the expression of angiogenesis-associated proteins HIF1α and VEGF. Compared with shHSP27 or quercetin alone, shHSP27 plus quercetin markedly decreased the protein expression of cyclinD1 and thus blocked the cell cycle at G1 phase. The Notch/AKT/mTOR signaling pathway is important in tumor aggressiveness; quercetin plus shHSP27 significantly decreased Notch 1 expression and the phosphorylation levels of the downstream signaling proteins AKT and mTOR. The inhibitory effects of quercetin plus shHSP27 on this pathway may thus have been responsible for the cell cycle arrest, inhibition of proliferations and infiltration as well as enhancement of apoptosis. Therefore, these findings collectively suggested that suppression of HSP27 expression amplified the anti-cancer effects of quercetin in U937 human leukemia cells, and that quercetin in combination with shHSP27 represents a promising therapeutic strategy for human leukemia. PMID:26648539

  5. Quercetin may suppress rat aberrant crypt foci formation by suppressing inflammatory mediators that influence proliferation and apoptosis.

    PubMed

    Warren, Cynthia A; Paulhill, Kimberly J; Davidson, Laurie A; Lupton, Joanne R; Taddeo, Stella S; Hong, Mee Young; Carroll, Raymond J; Chapkin, Robert S; Turner, Nancy D

    2009-01-01

    The flavonoid quercetin suppresses cell proliferation and enhances apoptosis in vitro. In this study, we determined whether quercetin protects against colon cancer by regulating the protein level of phosphatidylinositol 3-kinase (PI 3-kinase) and Akt or by suppressing the expression of proinflammatory mediators [cyclooxygenase (COX)-1, COX-2, inducible nitric oxide synthase (iNOS)] during the aberrant crypt (AC) stage. Forty male rats were randomly assigned to receive diets containing quercetin (0 or 4.5 g/kg) and injected subcutaneously with saline or azoxymethane (AOM; 2 times during wk 3 and 4). The colon was resected 4 wk after the last AOM injection and samples were used to determine high multiplicity AC foci (HMACF; foci with >4 AC) number, colonocyte proliferation and apoptosis by immunohistochemistry, expression of PI 3-kinase (p85 and p85alpha subunits) and Akt by immunoblotting, and COX-1, COX-2, and iNOS expression by real time RT-PCR. Quercetin-fed rats had fewer (P = 0.033) HMACF. Relative to the control diet, quercetin lowered the proliferative index (P = 0.035) regardless of treatment and diminished the AOM-induced elevation in crypt column cell number (P = 0.044) and expansion of the proliferative zone (P = 0.021). The proportion of apoptotic colonocytes in AOM-injected rats increased with quercetin treatment (P = 0.014). Levels of p85 and p85alpha subunits of PI 3-kinase and total Akt were unaffected by dietary quercetin. However, quercetin tended to suppress (P < 0.06) the expression of COX-1 and COX-2. Expression of iNOS was elevated by AOM injection (P = 0.0001). In conclusion, quercetin suppresses the formation of early preneoplastic lesions in colon carcinogenesis, which occurred in concert with reductions in proliferation and increases in apoptosis. It is possible the effects on proliferation and apoptosis resulted from the tendency for quercetin to suppress the expression of proinflammatory mediators.

  6. Quercetin metabolites inhibit MMP-2 expression in A549 lung cancer cells by PPAR-γ associated mechanisms.

    PubMed

    Chuang, Cheng-Hung; Yeh, Chiao-Lin; Yeh, Shu-Lan; Lin, En-Shyh; Wang, Li-Yu; Wang, Ying-Hsuna

    2016-07-01

    Our previous study demonstrated that quercetin-metabolite-enriched plasma (QP) but not quercetin itself upregulates peroxisome proliferator-activated receptor gamma (PPAR-γ) expression to induce G2/M arrest in A549 cells. In the present study, we incubated A549 cells with QP as well as quercetin-3-glucuronide (Q3G) and quercetin-3'-sulfate (Q3'S), two major metabolites of quercetin, to investigate the effects of quercetin metabolites on cell invasion and migration, the possible mechanisms and the role of PPAR-γ. We also compared the effects of QP with those of quercetin and troglitazone (TGZ), a PPAR-γ ligand. The results showed that QP significantly suppressed cell invasion and migration, as well as matrix metalloproteinases (MMPs)-2 activity and expression in a dose-dependent manner. The effects of 10% QP on those parameters were similar to those of 10μM quercetin and 20μM TGZ. However, QP and TGZ rather than quercetin itself increased the expressions of nm23-H1 and tissue inhibitor of metalloproteinase (TIMP-2). Furthermore, we demonstrated that Q3G and Q3'S also inhibited the protein expression of MMP-2. GW9662, a PPAR-γ antagonist, significantly diminished such an effect of Q3G and Q3'S. Silencing PPAR-γ expression in A549 cells also significantly diminished the suppression effect of Q3G and Q3'S on MMP-2 expression. Taken together, our study demonstrated that QP inhibited cell invasion and migration through nm23-H1/TIMP-2/MMP-2 associated mechanisms. The upregulation of PPAR-γ by quercetin metabolites such as Q3G and Q3'S could play an important role in the effects of QP. PMID:27260467

  7. Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats

    SciTech Connect

    Morales, Ana I.; Vicente-Sanchez, Cesar; Jerkic, Mirjana; Santiago, Jose M.; Sanchez-Gonzalez, Penelope D.; Perez-Barriocanal, Fernando; Lopez-Novoa, Jose M. . E-mail: jmlnovoa@usal.es

    2006-01-15

    Inflammation can play a key role in Cd-induced dysfunctions. Quercetin is a potent oxygen free radical scavenger and a metal chelator. Our aim was to study the effect of quercetin on Cd-induced kidney damage and metallothionein expression. The study was performed in Wistar rats that were administered during 9 weeks with either cadmium (1.2 mg Cd/kg/day, s.c.), quercetin (50 mg/kg/day, i.p.) or cadmium + quercetin. Renal toxicity was evaluated by measuring blood urea nitrogen concentration and urinary excretion of enzymes marker of tubular damage. Endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) renal expression were assessed by Western blot. Renal expression of metallothionein 1 and 2 (MT-1, MT-2) and eNOS mRNA was assessed by Northern blot. Our data demonstrated that Cd-induced renal toxicity was markedly reduced in rats that also received quercetin. MT-1 and MT-2 mRNA levels in kidney were substantially increased during treatment with Cd, being even higher when the animals received Cd and quercetin. Renal eNOS expression was significantly higher in rats receiving Cd and quercetin than in animals receiving Cd alone or in control rats. In the group that received Cd, COX-2 and iNOS expression was markedly higher than in control rats. In the group Cd + quercetin, no changes in COX-2 and iNOS expression were observed compared with the control group. Our results demonstrate that quercetin treatment prevents Cd-induced overexpression of iNOS and COX-2, and increases MT expression. These effects can explain the protection by quercetin of Cd-induced nephrotoxicity.

  8. Landing gear noise attenuation

    NASA Technical Reports Server (NTRS)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  9. RADIO FREQUENCY ATTENUATOR

    DOEpatents

    Giordano, S.

    1963-11-12

    A high peak power level r-f attenuator that is readily and easily insertable along a coaxial cable having an inner conductor and an outer annular conductor without breaking the ends thereof is presented. Spaced first and second flares in the outer conductor face each other with a slidable cylindrical outer conductor portion therebetween. Dielectric means, such as water, contact the cable between the flares to attenuate the radio-frequency energy received thereby. The cylindrical outer conductor portion is slidable to adjust the voltage standing wave ratio to a low level, and one of the flares is slidable to adjust the attenuation level. An integral dielectric container is also provided. (AFC)

  10. Hepatic Perfusion Therapy.

    PubMed

    Rajeev, Rahul; Gamblin, T Clark; Turaga, Kiran K

    2016-04-01

    Isolated hepatic perfusion uses the unique vascular supply of hepatic malignancies to deliver cytotoxic chemotherapy. The procedure involves vascular isolation of the liver and delivery of chemotherapy via the hepatic artery and extraction from retrohepatic vena cava. Benefits of hepatic perfusion have been observed in hepatic metastases of ocular melanoma and colorectal cancer and primary hepatocellular carcinoma. Percutaneous and prophylactic perfusions are avenues of ongoing research.

  11. Limited hepatitis B virus replication space in the chronically hepatitis C virus-infected liver.

    PubMed

    Wieland, S F; Asabe, S; Engle, R E; Purcell, R H; Chisari, F V

    2014-05-01

    We compared the kinetics and magnitude of hepatitis B virus (HBV) infection in hepatitis C virus (HCV)-naive and chronically HCV-infected chimpanzees in whose livers type I interferon-stimulated gene (ISG) expression is strongly induced. HBV infection was delayed and attenuated in the HCV-infected animals, and the number of HBV-infected hepatocytes was drastically reduced. These results suggest that establishment of HBV infection and its replication space is limited by the antiviral effects of type I interferon in the chronically HCV-infected liver.

  12. Ces3/TGH Deficiency Attenuates Steatohepatitis

    PubMed Central

    Lian, Jihong; Wei, Enhui; Groenendyk, Jody; Das, Subhash K.; Hermansson, Martin; Li, Lena; Watts, Russell; Thiesen, Aducio; Oudit, Gavin Y.; Michalak, Marek; Lehner, Richard

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease in developed countries. NAFLD describes a wide range of liver pathologies from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. NASH is distinguished from simple steatosis by inflammation, cell death and fibrosis. In this study we found that mice lacking triacylglycerol hydrolase (TGH, also known as carboxylesterase 3 or carboxylesterase 1d) are protected from high-fat diet (HFD) - induced hepatic steatosis via decreased lipogenesis, increased fatty acid oxidation and improved hepatic insulin sensitivity. To examine the effect of the loss of TGH function on the more severe NAFLD form NASH, we ablated Tgh expression in two independent NASH mouse models, Pemt−/− mice fed HFD and Ldlr−/− mice fed high-fat, high-cholesterol Western-type diet (WTD). TGH deficiency reduced liver inflammation, oxidative stress and fibrosis in Pemt−/− mice. TGH deficiency also decreased NASH in Ldlr−/− mice. Collectively, these findings indicate that TGH deficiency attenuated both simple hepatic steatosis and irreversible NASH. PMID:27181051

  13. Effects of O-methylated metabolites of quercetin on oxidative stress, thermotolerance, lifespan and bioavailability on Caenorhabditis elegans.

    PubMed

    Surco-Laos, Felipe; Cabello, Juan; Gómez-Orte, Eva; González-Manzano, Susana; González-Paramás, Ana M; Santos-Buelga, Celestino; Dueñas, Montserrat

    2011-08-01

    Quercetin is a major flavonoid in the human diet and the most commonly used in studies of biological activity. Most of the knowledge about its biological effects has originated from in vitro studies while in vivo data are scarce. Quercetin mostly occurs in foodstuffs as glycosides that are deglycosylated during absorption and further submitted to different conjugation reactions. Methylation to isorhamnetin (quercetin 3'-O-methylether) or tamarixetin (quercetin 4'-O-methylether) seems to be an important conjugation process in quercetin metabolism. In this work, the effects of quercetin and its 3'- and 4'-O-methylated metabolites on the phenotypic characteristics, stress oxidative resistance, thermotolerance and lifespan of the model organism Caenorhabditis elegans have been assessed. The three assayed flavonols significantly prolonged the lifespan of this nematode with an increase from 11% to 16% in the mean lifespan with respect to controls. However, only quercetin significantly increased the reproductive capacity of the worm and enlarged the body size. Exposure to the assayed flavonols also increased significantly the resistance against thermal and juglone-induced oxidative stress, although differences were found depending on the stage of development of the worm. Thus, quercetin offered greater protection when thermal stress was applied in the 1st day of adulthood, whereas tamarixetin was more efficient in worms submitted to stress in the 6th day of adulthood. Similarly, significantly greater protection was provided by quercetin than by its methylated derivatives at the 1st day of adulthood, whilst quercetin and isorhamnetin were equally efficient when the oxidative stress was induced in the 6th of day of adulthood. Further evidence of antioxidant protection was obtained checking the oxidation status of proteins by the OxyBlot™ detection kit. Analyses by HPLC-DAD-ESI/MS confirmed that the three flavonols were taken up by C. elegans leading to the formation of

  14. Age-related increases in F344 rat intestine microsomal quercetin glucuronidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to establish the extent age modifies intestinal quercetin glucuronidation capacity. Pooled microsomal fractions of three equidistant small intestine (SI) segments from 4, 12, 18, and 28 mo male F344 rats (n=8/group) were employed to model the enzyme kinetics of UDP-gl...

  15. Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry.

    PubMed

    Wu, Wenjiao; Li, Richan; Li, Xianglian; He, Jian; Jiang, Shibo; Liu, Shuwen; Yang, Jie

    2015-12-25

    Influenza A viruses (IAVs) cause seasonal pandemics and epidemics with high morbidity and mortality, which calls for effective anti-IAV agents. The glycoprotein hemagglutinin of influenza virus plays a crucial role in the initial stage of virus infection, making it a potential target for anti-influenza therapeutics development. Here we found that quercetin inhibited influenza infection with a wide spectrum of strains, including A/Puerto Rico/8/34 (H1N1), A/FM-1/47/1 (H1N1), and A/Aichi/2/68 (H3N2) with half maximal inhibitory concentration (IC50) of 7.756 ± 1.097, 6.225 ± 0.467, and 2.738 ± 1.931 μg/mL, respectively. Mechanism studies identified that quercetin showed interaction with the HA2 subunit. Moreover, quercetin could inhibit the entry of the H5N1 virus using the pseudovirus-based drug screening system. This study indicates that quercetin showing inhibitory activity in the early stage of influenza infection provides a future therapeutic option to develop effective, safe and affordable natural products for the treatment and prophylaxis of IAV infections.

  16. Arctigenin in combination with quercetin synergistically enhances the anti-proliferative effect in prostate cancer cells

    PubMed Central

    Wang, Piwen; Phan, Tien; Gordon, David; Chung, Seyung; Henning, Susanne M.; Vadgama, Jaydutt V.

    2014-01-01

    Scope We investigated whether a combination of two promising chemopreventive agents arctigenin and quercetin increases the anti-carcinogenic potency at lower concentrations than necessary when used individually in prostate cancer. Methods and results Androgen-dependent LAPC-4 and LNCaP prostate cancer cells were treated with low doses of arctigenin and quercetin alone or in combination for 48h. The anti-proliferative activity of arctigenin was 10-20 fold stronger than quercetin in both cell lines. Their combination synergistically enhanced the anti-proliferative effect, with a stronger effect in androgen receptor (AR) wild-type LAPC-4 cells than in AR mutated LNCaP cells. Arctigenin demonstrated a strong ability to inhibit AR protein expression in LAPC-4 cells. The combination treatment significantly inhibited both AR and PI3K/Akt pathways compared to control. A protein array analysis revealed that the mixture targets multiple pathways particularly in LAPC-4 cells including Stat3 pathway. The mixture significantly inhibited the expression of several oncogenic microRNAs including miR-21, miR-19b, and miR-148a compared to control. The mixture also enhanced the inhibition of cell migration in both cell lines compared to individual compounds tested. Conclusion The combination of arctigenin and quercetin, that target similar pathways, at low physiological doses, provides a novel regimen with enhanced chemoprevention in prostate cancer. PMID:25380086

  17. Preparation and characterization of lipid based nanosystems for topical delivery of quercetin.

    PubMed

    Bose, Sonali; Michniak-Kohn, Bozena

    2013-02-14

    The main objective of this study was to evaluate the potential of lipid nanosystems for topical delivery of the naturally occurring flavonoid quercetin. These lipid based nanosystems were manufactured using a solvent free probe ultrasonication process. Formulation factors such as the nature of the lipid (solid/combination of solid and liquid) in solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) systems and drug loading were evaluated to produce an optimum formulation with adequate physical stability for up to 14 weeks at 2-8°C. The mean particle size of the optimized formulation was around 282 nm, with a zeta potential value of -36.57 ± 2.67 mV, indicating the formation of a stable system. Release studies showed a biphasic release profile, characterized by an initial burst release followed by a more controlled release pattern from both SLN and NLC systems. The NLC system showed the highest improvement in topical delivery of quercetin manifested by the amount of quercetin retained in full thickness human skin, compared to a control formulation with similar composition and particle size in the micrometer range. This study demonstrated the feasibility of nanostructured lipid carrier systems for improved topical delivery of quercetin.