Sample records for query optimization techniques

  1. Enabling Incremental Query Re-Optimization.

    PubMed

    Liu, Mengmeng; Ives, Zachary G; Loo, Boon Thau

    2016-01-01

    As declarative query processing techniques expand to the Web, data streams, network routers, and cloud platforms, there is an increasing need to re-plan execution in the presence of unanticipated performance changes. New runtime information may affect which query plan we prefer to run. Adaptive techniques require innovation both in terms of the algorithms used to estimate costs , and in terms of the search algorithm that finds the best plan. We investigate how to build a cost-based optimizer that recomputes the optimal plan incrementally given new cost information, much as a stream engine constantly updates its outputs given new data. Our implementation especially shows benefits for stream processing workloads. It lays the foundations upon which a variety of novel adaptive optimization algorithms can be built. We start by leveraging the recently proposed approach of formulating query plan enumeration as a set of recursive datalog queries ; we develop a variety of novel optimization approaches to ensure effective pruning in both static and incremental cases. We further show that the lessons learned in the declarative implementation can be equally applied to more traditional optimizer implementations.

  2. Enabling Incremental Query Re-Optimization

    PubMed Central

    Liu, Mengmeng; Ives, Zachary G.; Loo, Boon Thau

    2017-01-01

    As declarative query processing techniques expand to the Web, data streams, network routers, and cloud platforms, there is an increasing need to re-plan execution in the presence of unanticipated performance changes. New runtime information may affect which query plan we prefer to run. Adaptive techniques require innovation both in terms of the algorithms used to estimate costs, and in terms of the search algorithm that finds the best plan. We investigate how to build a cost-based optimizer that recomputes the optimal plan incrementally given new cost information, much as a stream engine constantly updates its outputs given new data. Our implementation especially shows benefits for stream processing workloads. It lays the foundations upon which a variety of novel adaptive optimization algorithms can be built. We start by leveraging the recently proposed approach of formulating query plan enumeration as a set of recursive datalog queries; we develop a variety of novel optimization approaches to ensure effective pruning in both static and incremental cases. We further show that the lessons learned in the declarative implementation can be equally applied to more traditional optimizer implementations. PMID:28659658

  3. Mining Longitudinal Web Queries: Trends and Patterns.

    ERIC Educational Resources Information Center

    Wang, Peiling; Berry, Michael W.; Yang, Yiheng

    2003-01-01

    Analyzed user queries submitted to an academic Web site during a four-year period, using a relational database, to examine users' query behavior, to identify problems they encounter, and to develop techniques for optimizing query analysis and mining. Linguistic analyses focus on query structures, lexicon, and word associations using statistical…

  4. Query-Time Optimization Techniques for Structured Queries in Information Retrieval

    ERIC Educational Resources Information Center

    Cartright, Marc-Allen

    2013-01-01

    The use of information retrieval (IR) systems is evolving towards larger, more complicated queries. Both the IR industrial and research communities have generated significant evidence indicating that in order to continue improving retrieval effectiveness, increases in retrieval model complexity may be unavoidable. From an operational perspective,…

  5. A Framework for WWW Query Processing

    NASA Technical Reports Server (NTRS)

    Wu, Binghui Helen; Wharton, Stephen (Technical Monitor)

    2000-01-01

    Query processing is the most common operation in a DBMS. Sophisticated query processing has been mainly targeted at a single enterprise environment providing centralized control over data and metadata. Submitting queries by anonymous users on the web is different in such a way that load balancing or DBMS' accessing control becomes the key issue. This paper provides a solution by introducing a framework for WWW query processing. The success of this framework lies in the utilization of query optimization techniques and the ontological approach. This methodology has proved to be cost effective at the NASA Goddard Space Flight Center Distributed Active Archive Center (GDAAC).

  6. An incremental database access method for autonomous interoperable databases

    NASA Technical Reports Server (NTRS)

    Roussopoulos, Nicholas; Sellis, Timos

    1994-01-01

    We investigated a number of design and performance issues of interoperable database management systems (DBMS's). The major results of our investigation were obtained in the areas of client-server database architectures for heterogeneous DBMS's, incremental computation models, buffer management techniques, and query optimization. We finished a prototype of an advanced client-server workstation-based DBMS which allows access to multiple heterogeneous commercial DBMS's. Experiments and simulations were then run to compare its performance with the standard client-server architectures. The focus of this research was on adaptive optimization methods of heterogeneous database systems. Adaptive buffer management accounts for the random and object-oriented access methods for which no known characterization of the access patterns exists. Adaptive query optimization means that value distributions and selectives, which play the most significant role in query plan evaluation, are continuously refined to reflect the actual values as opposed to static ones that are computed off-line. Query feedback is a concept that was first introduced to the literature by our group. We employed query feedback for both adaptive buffer management and for computing value distributions and selectivities. For adaptive buffer management, we use the page faults of prior executions to achieve more 'informed' management decisions. For the estimation of the distributions of the selectivities, we use curve-fitting techniques, such as least squares and splines, for regressing on these values.

  7. Parasol: An Architecture for Cross-Cloud Federated Graph Querying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieberman, Michael; Choudhury, Sutanay; Hughes, Marisa

    2014-06-22

    Large scale data fusion of multiple datasets can often provide in- sights that examining datasets individually cannot. However, when these datasets reside in different data centers and cannot be collocated due to technical, administrative, or policy barriers, a unique set of problems arise that hamper querying and data fusion. To ad- dress these problems, a system and architecture named Parasol is presented that enables federated queries over graph databases residing in multiple clouds. Parasol’s design is flexible and requires only minimal assumptions for participant clouds. Query optimization techniques are also described that are compatible with Parasol’s lightweight architecture. Experiments onmore » a prototype implementation of Parasol indicate its suitability for cross-cloud federated graph queries.« less

  8. Heuristic query optimization for query multiple table and multiple clausa on mobile finance application

    NASA Astrophysics Data System (ADS)

    Indrayana, I. N. E.; P, N. M. Wirasyanti D.; Sudiartha, I. KG

    2018-01-01

    Mobile application allow many users to access data from the application without being limited to space, space and time. Over time the data population of this application will increase. Data access time will cause problems if the data record has reached tens of thousands to millions of records.The objective of this research is to maintain the performance of data execution for large data records. One effort to maintain data access time performance is to apply query optimization method. The optimization used in this research is query heuristic optimization method. The built application is a mobile-based financial application using MySQL database with stored procedure therein. This application is used by more than one business entity in one database, thus enabling rapid data growth. In this stored procedure there is an optimized query using heuristic method. Query optimization is performed on a “Select” query that involves more than one table with multiple clausa. Evaluation is done by calculating the average access time using optimized and unoptimized queries. Access time calculation is also performed on the increase of population data in the database. The evaluation results shown the time of data execution with query heuristic optimization relatively faster than data execution time without using query optimization.

  9. A Test of Genetic Algorithms in Relevance Feedback.

    ERIC Educational Resources Information Center

    Lopez-Pujalte, Cristina; Guerrero Bote, Vicente P.; Moya Anegon, Felix de

    2002-01-01

    Discussion of information retrieval, query optimization techniques, and relevance feedback focuses on genetic algorithms, which are derived from artificial intelligence techniques. Describes an evaluation of different genetic algorithms using a residual collection method and compares results with the Ide dec-hi method (Salton and Buckley, 1990…

  10. Calculation and application of activity discriminants in lead optimization.

    PubMed

    Luo, Xincai; Krumrine, Jennifer R; Shenvi, Ashok B; Pierson, M Edward; Bernstein, Peter R

    2010-11-01

    We present a technique for computing activity discriminants of in vitro (pharmacological, DMPK, and safety) assays and the application to the prediction of in vitro activities of proposed synthetic targets during the lead optimization phase of drug discovery projects. This technique emulates how medicinal chemists perform SAR analysis and activity prediction. The activity discriminants that are functions of 6 commonly used medicinal chemistry descriptors can be interpreted easily by medicinal chemists. Further, visualization with Spotfire allows medicinal chemists to analyze how the query molecule is related to compounds tested previously, and to evaluate easily the relevance of the activity discriminants to the activities of the query molecule. Validation with all compounds synthesized and tested in AstraZeneca Wilmington since 2006 demonstrates that this approach is useful for prioritizing new synthetic targets for synthesis. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Enhanced Approximate Nearest Neighbor via Local Area Focused Search.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzales, Antonio; Blazier, Nicholas Paul

    Approximate Nearest Neighbor (ANN) algorithms are increasingly important in machine learning, data mining, and image processing applications. There is a large family of space- partitioning ANN algorithms, such as randomized KD-Trees, that work well in practice but are limited by an exponential increase in similarity comparisons required to optimize recall. Additionally, they only support a small set of similarity metrics. We present Local Area Fo- cused Search (LAFS), a method that enhances the way queries are performed using an existing ANN index. Instead of a single query, LAFS performs a number of smaller (fewer similarity comparisons) queries and focuses onmore » a local neighborhood which is refined as candidates are identified. We show that our technique improves performance on several well known datasets and is easily extended to general similarity metrics using kernel projection techniques.« less

  12. Processing SPARQL queries with regular expressions in RDF databases

    PubMed Central

    2011-01-01

    Background As the Resource Description Framework (RDF) data model is widely used for modeling and sharing a lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf) or Bio2RDF (bio2rdf.org), SPARQL - a W3C recommendation query for RDF databases - has become an important query language for querying the bioinformatics knowledge bases. Moreover, due to the diversity of users’ requests for extracting information from the RDF data as well as the lack of users’ knowledge about the exact value of each fact in the RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data. To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for querying a text corpus, or only for supporting the matching over the paths in an RDF graph. Results In this paper, we propose a novel framework for supporting regular expression processing in SPARQL query. Our contributions can be summarized as follows. 1) We propose an efficient framework for processing SPARQL queries with regular expression patterns in RDF databases. 2) We propose a cost model in order to adapt the proposed framework in the existing query optimizers. 3) We build a prototype for the proposed framework in C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique. Conclusions Experiments with a full-blown RDF engine show that our framework outperforms the existing ones by up to two orders of magnitude in processing SPARQL queries with regular expression patterns. PMID:21489225

  13. Processing SPARQL queries with regular expressions in RDF databases.

    PubMed

    Lee, Jinsoo; Pham, Minh-Duc; Lee, Jihwan; Han, Wook-Shin; Cho, Hune; Yu, Hwanjo; Lee, Jeong-Hoon

    2011-03-29

    As the Resource Description Framework (RDF) data model is widely used for modeling and sharing a lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf) or Bio2RDF (bio2rdf.org), SPARQL - a W3C recommendation query for RDF databases - has become an important query language for querying the bioinformatics knowledge bases. Moreover, due to the diversity of users' requests for extracting information from the RDF data as well as the lack of users' knowledge about the exact value of each fact in the RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data. To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for querying a text corpus, or only for supporting the matching over the paths in an RDF graph. In this paper, we propose a novel framework for supporting regular expression processing in SPARQL query. Our contributions can be summarized as follows. 1) We propose an efficient framework for processing SPARQL queries with regular expression patterns in RDF databases. 2) We propose a cost model in order to adapt the proposed framework in the existing query optimizers. 3) We build a prototype for the proposed framework in C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique. Experiments with a full-blown RDF engine show that our framework outperforms the existing ones by up to two orders of magnitude in processing SPARQL queries with regular expression patterns.

  14. Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes

    NASA Astrophysics Data System (ADS)

    Ianni, Giovambattista; Krennwallner, Thomas; Martello, Alessandra; Polleres, Axel

    RDF Schema (RDFS) as a lightweight ontology language is gaining popularity and, consequently, tools for scalable RDFS inference and querying are needed. SPARQL has become recently a W3C standard for querying RDF data, but it mostly provides means for querying simple RDF graphs only, whereas querying with respect to RDFS or other entailment regimes is left outside the current specification. In this paper, we show that SPARQL faces certain unwanted ramifications when querying ontologies in conjunction with RDF datasets that comprise multiple named graphs, and we provide an extension for SPARQL that remedies these effects. Moreover, since RDFS inference has a close relationship with logic rules, we generalize our approach to select a custom ruleset for specifying inferences to be taken into account in a SPARQL query. We show that our extensions are technically feasible by providing benchmark results for RDFS querying in our prototype system GiaBATA, which uses Datalog coupled with a persistent Relational Database as a back-end for implementing SPARQL with dynamic rule-based inference. By employing different optimization techniques like magic set rewriting our system remains competitive with state-of-the-art RDFS querying systems.

  15. Evolution of Query Optimization Methods

    NASA Astrophysics Data System (ADS)

    Hameurlain, Abdelkader; Morvan, Franck

    Query optimization is the most critical phase in query processing. In this paper, we try to describe synthetically the evolution of query optimization methods from uniprocessor relational database systems to data Grid systems through parallel, distributed and data integration systems. We point out a set of parameters to characterize and compare query optimization methods, mainly: (i) size of the search space, (ii) type of method (static or dynamic), (iii) modification types of execution plans (re-optimization or re-scheduling), (iv) level of modification (intra-operator and/or inter-operator), (v) type of event (estimation errors, delay, user preferences), and (vi) nature of decision-making (centralized or decentralized control).

  16. Multidimensional indexing structure for use with linear optimization queries

    NASA Technical Reports Server (NTRS)

    Bergman, Lawrence David (Inventor); Castelli, Vittorio (Inventor); Chang, Yuan-Chi (Inventor); Li, Chung-Sheng (Inventor); Smith, John Richard (Inventor)

    2002-01-01

    Linear optimization queries, which usually arise in various decision support and resource planning applications, are queries that retrieve top N data records (where N is an integer greater than zero) which satisfy a specific optimization criterion. The optimization criterion is to either maximize or minimize a linear equation. The coefficients of the linear equation are given at query time. Methods and apparatus are disclosed for constructing, maintaining and utilizing a multidimensional indexing structure of database records to improve the execution speed of linear optimization queries. Database records with numerical attributes are organized into a number of layers and each layer represents a geometric structure called convex hull. Such linear optimization queries are processed by searching from the outer-most layer of this multi-layer indexing structure inwards. At least one record per layer will satisfy the query criterion and the number of layers needed to be searched depends on the spatial distribution of records, the query-issued linear coefficients, and N, the number of records to be returned. When N is small compared to the total size of the database, answering the query typically requires searching only a small fraction of all relevant records, resulting in a tremendous speedup as compared to linearly scanning the entire dataset.

  17. Comparative Analysis of Rank Aggregation Techniques for Metasearch Using Genetic Algorithm

    ERIC Educational Resources Information Center

    Kaur, Parneet; Singh, Manpreet; Singh Josan, Gurpreet

    2017-01-01

    Rank Aggregation techniques have found wide applications for metasearch along with other streams such as Sports, Voting System, Stock Markets, and Reduction in Spam. This paper presents the optimization of rank lists for web queries put by the user on different MetaSearch engines. A metaheuristic approach such as Genetic algorithm based rank…

  18. Optimizing a Query by Transformation and Expansion.

    PubMed

    Glocker, Katrin; Knurr, Alexander; Dieter, Julia; Dominick, Friederike; Forche, Melanie; Koch, Christian; Pascoe Pérez, Analie; Roth, Benjamin; Ückert, Frank

    2017-01-01

    In the biomedical sector not only the amount of information produced and uploaded into the web is enormous, but also the number of sources where these data can be found. Clinicians and researchers spend huge amounts of time on trying to access this information and to filter the most important answers to a given question. As the formulation of these queries is crucial, automated query expansion is an effective tool to optimize a query and receive the best possible results. In this paper we introduce the concept of a workflow for an optimization of queries in the medical and biological sector by using a series of tools for expansion and transformation of the query. After the definition of attributes by the user, the query string is compared to previous queries in order to add semantic co-occurring terms to the query. Additionally, the query is enlarged by an inclusion of synonyms. The translation into database specific ontologies ensures the optimal query formulation for the chosen database(s). As this process can be performed in various databases at once, the results are ranked and normalized in order to achieve a comparable list of answers for a question.

  19. Guided Iterative Substructure Search (GI-SSS) - A New Trick for an Old Dog.

    PubMed

    Weskamp, Nils

    2016-07-01

    Substructure search (SSS) is a fundamental technique supported by various chemical information systems. Many users apply it in an iterative manner: they modify their queries to shape the composition of the retrieved hit sets according to their needs. We propose and evaluate two heuristic extensions of SSS aimed at simplifying these iterative query modifications by collecting additional information during query processing and visualizing this information in an intuitive way. This gives the user a convenient feedback on how certain changes to the query would affect the retrieved hit set and reduces the number of trial-and-error cycles needed to generate an optimal search result. The proposed heuristics are simple, yet surprisingly effective and can be easily added to existing SSS implementations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A novel adaptive Cuckoo search for optimal query plan generation.

    PubMed

    Gomathi, Ramalingam; Sharmila, Dhandapani

    2014-01-01

    The emergence of multiple web pages day by day leads to the development of the semantic web technology. A World Wide Web Consortium (W3C) standard for storing semantic web data is the resource description framework (RDF). To enhance the efficiency in the execution time for querying large RDF graphs, the evolving metaheuristic algorithms become an alternate to the traditional query optimization methods. This paper focuses on the problem of query optimization of semantic web data. An efficient algorithm called adaptive Cuckoo search (ACS) for querying and generating optimal query plan for large RDF graphs is designed in this research. Experiments were conducted on different datasets with varying number of predicates. The experimental results have exposed that the proposed approach has provided significant results in terms of query execution time. The extent to which the algorithm is efficient is tested and the results are documented.

  1. Distributed query plan generation using multiobjective genetic algorithm.

    PubMed

    Panicker, Shina; Kumar, T V Vijay

    2014-01-01

    A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability.

  2. Distributed Query Plan Generation Using Multiobjective Genetic Algorithm

    PubMed Central

    Panicker, Shina; Vijay Kumar, T. V.

    2014-01-01

    A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability. PMID:24963513

  3. RCQ-GA: RDF Chain Query Optimization Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Hogenboom, Alexander; Milea, Viorel; Frasincar, Flavius; Kaymak, Uzay

    The application of Semantic Web technologies in an Electronic Commerce environment implies a need for good support tools. Fast query engines are needed for efficient querying of large amounts of data, usually represented using RDF. We focus on optimizing a special class of SPARQL queries, the so-called RDF chain queries. For this purpose, we devise a genetic algorithm called RCQ-GA that determines the order in which joins need to be performed for an efficient evaluation of RDF chain queries. The approach is benchmarked against a two-phase optimization algorithm, previously proposed in literature. The more complex a query is, the more RCQ-GA outperforms the benchmark in solution quality, execution time needed, and consistency of solution quality. When the algorithms are constrained by a time limit, the overall performance of RCQ-GA compared to the benchmark further improves.

  4. Applications of Derandomization Theory in Coding

    NASA Astrophysics Data System (ADS)

    Cheraghchi, Mahdi

    2011-07-01

    Randomized techniques play a fundamental role in theoretical computer science and discrete mathematics, in particular for the design of efficient algorithms and construction of combinatorial objects. The basic goal in derandomization theory is to eliminate or reduce the need for randomness in such randomized constructions. In this thesis, we explore some applications of the fundamental notions in derandomization theory to problems outside the core of theoretical computer science, and in particular, certain problems related to coding theory. First, we consider the wiretap channel problem which involves a communication system in which an intruder can eavesdrop a limited portion of the transmissions, and construct efficient and information-theoretically optimal communication protocols for this model. Then we consider the combinatorial group testing problem. In this classical problem, one aims to determine a set of defective items within a large population by asking a number of queries, where each query reveals whether a defective item is present within a specified group of items. We use randomness condensers to explicitly construct optimal, or nearly optimal, group testing schemes for a setting where the query outcomes can be highly unreliable, as well as the threshold model where a query returns positive if the number of defectives pass a certain threshold. Finally, we design ensembles of error-correcting codes that achieve the information-theoretic capacity of a large class of communication channels, and then use the obtained ensembles for construction of explicit capacity achieving codes. [This is a shortened version of the actual abstract in the thesis.

  5. Big Data Analytics with Datalog Queries on Spark.

    PubMed

    Shkapsky, Alexander; Yang, Mohan; Interlandi, Matteo; Chiu, Hsuan; Condie, Tyson; Zaniolo, Carlo

    2016-01-01

    There is great interest in exploiting the opportunity provided by cloud computing platforms for large-scale analytics. Among these platforms, Apache Spark is growing in popularity for machine learning and graph analytics. Developing efficient complex analytics in Spark requires deep understanding of both the algorithm at hand and the Spark API or subsystem APIs (e.g., Spark SQL, GraphX). Our BigDatalog system addresses the problem by providing concise declarative specification of complex queries amenable to efficient evaluation. Towards this goal, we propose compilation and optimization techniques that tackle the important problem of efficiently supporting recursion in Spark. We perform an experimental comparison with other state-of-the-art large-scale Datalog systems and verify the efficacy of our techniques and effectiveness of Spark in supporting Datalog-based analytics.

  6. Big Data Analytics with Datalog Queries on Spark

    PubMed Central

    Shkapsky, Alexander; Yang, Mohan; Interlandi, Matteo; Chiu, Hsuan; Condie, Tyson; Zaniolo, Carlo

    2017-01-01

    There is great interest in exploiting the opportunity provided by cloud computing platforms for large-scale analytics. Among these platforms, Apache Spark is growing in popularity for machine learning and graph analytics. Developing efficient complex analytics in Spark requires deep understanding of both the algorithm at hand and the Spark API or subsystem APIs (e.g., Spark SQL, GraphX). Our BigDatalog system addresses the problem by providing concise declarative specification of complex queries amenable to efficient evaluation. Towards this goal, we propose compilation and optimization techniques that tackle the important problem of efficiently supporting recursion in Spark. We perform an experimental comparison with other state-of-the-art large-scale Datalog systems and verify the efficacy of our techniques and effectiveness of Spark in supporting Datalog-based analytics. PMID:28626296

  7. Solutions for medical databases optimal exploitation.

    PubMed

    Branescu, I; Purcarea, V L; Dobrescu, R

    2014-03-15

    The paper discusses the methods to apply OLAP techniques for multidimensional databases that leverage the existing, performance-enhancing technique, known as practical pre-aggregation, by making this technique relevant to a much wider range of medical applications, as a logistic support to the data warehousing techniques. The transformations have practically low computational complexity and they may be implemented using standard relational database technology. The paper also describes how to integrate the transformed hierarchies in current OLAP systems, transparently to the user and proposes a flexible, "multimodel" federated system for extending OLAP querying to external object databases.

  8. PARLO: PArallel Run-Time Layout Optimization for Scientific Data Explorations with Heterogeneous Access Pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Zhenhuan; Boyuka, David; Zou, X

    Download Citation Email Print Request Permissions Save to Project The size and scope of cutting-edge scientific simulations are growing much faster than the I/O and storage capabilities of their run-time environments. The growing gap is exacerbated by exploratory, data-intensive analytics, such as querying simulation data with multivariate, spatio-temporal constraints, which induces heterogeneous access patterns that stress the performance of the underlying storage system. Previous work addresses data layout and indexing techniques to improve query performance for a single access pattern, which is not sufficient for complex analytics jobs. We present PARLO a parallel run-time layout optimization framework, to achieve multi-levelmore » data layout optimization for scientific applications at run-time before data is written to storage. The layout schemes optimize for heterogeneous access patterns with user-specified priorities. PARLO is integrated with ADIOS, a high-performance parallel I/O middleware for large-scale HPC applications, to achieve user-transparent, light-weight layout optimization for scientific datasets. It offers simple XML-based configuration for users to achieve flexible layout optimization without the need to modify or recompile application codes. Experiments show that PARLO improves performance by 2 to 26 times for queries with heterogeneous access patterns compared to state-of-the-art scientific database management systems. Compared to traditional post-processing approaches, its underlying run-time layout optimization achieves a 56% savings in processing time and a reduction in storage overhead of up to 50%. PARLO also exhibits a low run-time resource requirement, while also limiting the performance impact on running applications to a reasonable level.« less

  9. Heterogeneous database integration in biomedicine.

    PubMed

    Sujansky, W

    2001-08-01

    The rapid expansion of biomedical knowledge, reduction in computing costs, and spread of internet access have created an ocean of electronic data. The decentralized nature of our scientific community and healthcare system, however, has resulted in a patchwork of diverse, or heterogeneous, database implementations, making access to and aggregation of data across databases very difficult. The database heterogeneity problem applies equally to clinical data describing individual patients and biological data characterizing our genome. Specifically, databases are highly heterogeneous with respect to the data models they employ, the data schemas they specify, the query languages they support, and the terminologies they recognize. Heterogeneous database systems attempt to unify disparate databases by providing uniform conceptual schemas that resolve representational heterogeneities, and by providing querying capabilities that aggregate and integrate distributed data. Research in this area has applied a variety of database and knowledge-based techniques, including semantic data modeling, ontology definition, query translation, query optimization, and terminology mapping. Existing systems have addressed heterogeneous database integration in the realms of molecular biology, hospital information systems, and application portability.

  10. Optimization of the Controlled Evaluation of Closed Relational Queries

    NASA Astrophysics Data System (ADS)

    Biskup, Joachim; Lochner, Jan-Hendrik; Sonntag, Sebastian

    For relational databases, controlled query evaluation is an effective inference control mechanism preserving confidentiality regarding a previously declared confidentiality policy. Implementations of controlled query evaluation usually lack efficiency due to costly theorem prover calls. Suitably constrained controlled query evaluation can be implemented efficiently, but is not flexible enough from the perspective of database users and security administrators. In this paper, we propose an optimized framework for controlled query evaluation in relational databases, being efficiently implementable on the one hand and relaxing the constraints of previous approaches on the other hand.

  11. Solutions for medical databases optimal exploitation

    PubMed Central

    Branescu, I; Purcarea, VL; Dobrescu, R

    2014-01-01

    The paper discusses the methods to apply OLAP techniques for multidimensional databases that leverage the existing, performance-enhancing technique, known as practical pre-aggregation, by making this technique relevant to a much wider range of medical applications, as a logistic support to the data warehousing techniques. The transformations have practically low computational complexity and they may be implemented using standard relational database technology. The paper also describes how to integrate the transformed hierarchies in current OLAP systems, transparently to the user and proposes a flexible, “multimodel" federated system for extending OLAP querying to external object databases. PMID:24653769

  12. Concept locator: a client-server application for retrieval of UMLS metathesaurus concepts through complex boolean query.

    PubMed

    Nadkarni, P M

    1997-08-01

    Concept Locator (CL) is a client-server application that accesses a Sybase relational database server containing a subset of the UMLS Metathesaurus for the purpose of retrieval of concepts corresponding to one or more query expressions supplied to it. CL's query grammar permits complex Boolean expressions, wildcard patterns, and parenthesized (nested) subexpressions. CL translates the query expressions supplied to it into one or more SQL statements that actually perform the retrieval. The generated SQL is optimized by the client to take advantage of the strengths of the server's query optimizer, and sidesteps its weaknesses, so that execution is reasonably efficient.

  13. Applying Semantic Web Concepts to Support Net-Centric Warfare Using the Tactical Assessment Markup Language (TAML)

    DTIC Science & Technology

    2006-06-01

    SPARQL SPARQL Protocol and RDF Query Language SQL Structured Query Language SUMO Suggested Upper Merged Ontology SW... Query optimization algorithms are implemented in the Pellet reasoner in order to ensure querying a knowledge base is efficient . These algorithms...memory as a treelike structure in order for the data to be queried . XML Query (XQuery) is the standard language used when querying XML

  14. Multiple Query Evaluation Based on an Enhanced Genetic Algorithm.

    ERIC Educational Resources Information Center

    Tamine, Lynda; Chrisment, Claude; Boughanem, Mohand

    2003-01-01

    Explains the use of genetic algorithms to combine results from multiple query evaluations to improve relevance in information retrieval. Discusses niching techniques, relevance feedback techniques, and evolution heuristics, and compares retrieval results obtained by both genetic multiple query evaluation and classical single query evaluation…

  15. Probabilistic and machine learning-based retrieval approaches for biomedical dataset retrieval

    PubMed Central

    Karisani, Payam; Qin, Zhaohui S; Agichtein, Eugene

    2018-01-01

    Abstract The bioCADDIE dataset retrieval challenge brought together different approaches to retrieval of biomedical datasets relevant to a user’s query, expressed as a text description of a needed dataset. We describe experiments in applying a data-driven, machine learning-based approach to biomedical dataset retrieval as part of this challenge. We report on a series of experiments carried out to evaluate the performance of both probabilistic and machine learning-driven techniques from information retrieval, as applied to this challenge. Our experiments with probabilistic information retrieval methods, such as query term weight optimization, automatic query expansion and simulated user relevance feedback, demonstrate that automatically boosting the weights of important keywords in a verbose query is more effective than other methods. We also show that although there is a rich space of potential representations and features available in this domain, machine learning-based re-ranking models are not able to improve on probabilistic information retrieval techniques with the currently available training data. The models and algorithms presented in this paper can serve as a viable implementation of a search engine to provide access to biomedical datasets. The retrieval performance is expected to be further improved by using additional training data that is created by expert annotation, or gathered through usage logs, clicks and other processes during natural operation of the system. Database URL: https://github.com/emory-irlab/biocaddie PMID:29688379

  16. a Spatiotemporal Aggregation Query Method Using Multi-Thread Parallel Technique Based on Regional Division

    NASA Astrophysics Data System (ADS)

    Liao, S.; Chen, L.; Li, J.; Xiong, W.; Wu, Q.

    2015-07-01

    Existing spatiotemporal database supports spatiotemporal aggregation query over massive moving objects datasets. Due to the large amounts of data and single-thread processing method, the query speed cannot meet the application requirements. On the other hand, the query efficiency is more sensitive to spatial variation then temporal variation. In this paper, we proposed a spatiotemporal aggregation query method using multi-thread parallel technique based on regional divison and implemented it on the server. Concretely, we divided the spatiotemporal domain into several spatiotemporal cubes, computed spatiotemporal aggregation on all cubes using the technique of multi-thread parallel processing, and then integrated the query results. By testing and analyzing on the real datasets, this method has improved the query speed significantly.

  17. Pulsed coherent population trapping with repeated queries for producing single-peaked high contrast Ramsey interference

    NASA Astrophysics Data System (ADS)

    Warren, Z.; Shahriar, M. S.; Tripathi, R.; Pati, G. S.

    2018-02-01

    A repeated query technique has been demonstrated as a new interrogation method in pulsed coherent population trapping for producing single-peaked Ramsey interference with high contrast. This technique enhances the contrast of the central Ramsey fringe by nearly 1.5 times and significantly suppresses the side fringes by using more query pulses ( >10) in the pulse cycle. Theoretical models have been developed to simulate Ramsey interference and analyze the characteristics of the Ramsey spectrum produced by the repeated query technique. Experiments have also been carried out employing a repeated query technique in a prototype rubidium clock to study its frequency stability performance.

  18. Query construction, entropy, and generalization in neural-network models

    NASA Astrophysics Data System (ADS)

    Sollich, Peter

    1994-05-01

    We study query construction algorithms, which aim at improving the generalization ability of systems that learn from examples by choosing optimal, nonredundant training sets. We set up a general probabilistic framework for deriving such algorithms from the requirement of optimizing a suitable objective function; specifically, we consider the objective functions entropy (or information gain) and generalization error. For two learning scenarios, the high-low game and the linear perceptron, we evaluate the generalization performance obtained by applying the corresponding query construction algorithms and compare it to training on random examples. We find qualitative differences between the two scenarios due to the different structure of the underlying rules (nonlinear and ``noninvertible'' versus linear); in particular, for the linear perceptron, random examples lead to the same generalization ability as a sequence of queries in the limit of an infinite number of examples. We also investigate learning algorithms which are ill matched to the learning environment and find that, in this case, minimum entropy queries can in fact yield a lower generalization ability than random examples. Finally, we study the efficiency of single queries and its dependence on the learning history, i.e., on whether the previous training examples were generated randomly or by querying, and the difference between globally and locally optimal query construction.

  19. Evolutionary Multiobjective Query Workload Optimization of Cloud Data Warehouses

    PubMed Central

    Dokeroglu, Tansel; Sert, Seyyit Alper; Cinar, Muhammet Serkan

    2014-01-01

    With the advent of Cloud databases, query optimizers need to find paretooptimal solutions in terms of response time and monetary cost. Our novel approach minimizes both objectives by deploying alternative virtual resources and query plans making use of the virtual resource elasticity of the Cloud. We propose an exact multiobjective branch-and-bound and a robust multiobjective genetic algorithm for the optimization of distributed data warehouse query workloads on the Cloud. In order to investigate the effectiveness of our approach, we incorporate the devised algorithms into a prototype system. Finally, through several experiments that we have conducted with different workloads and virtual resource configurations, we conclude remarkable findings of alternative deployments as well as the advantages and disadvantages of the multiobjective algorithms we propose. PMID:24892048

  20. muBLASTP: database-indexed protein sequence search on multicore CPUs.

    PubMed

    Zhang, Jing; Misra, Sanchit; Wang, Hao; Feng, Wu-Chun

    2016-11-04

    The Basic Local Alignment Search Tool (BLAST) is a fundamental program in the life sciences that searches databases for sequences that are most similar to a query sequence. Currently, the BLAST algorithm utilizes a query-indexed approach. Although many approaches suggest that sequence search with a database index can achieve much higher throughput (e.g., BLAT, SSAHA, and CAFE), they cannot deliver the same level of sensitivity as the query-indexed BLAST, i.e., NCBI BLAST, or they can only support nucleotide sequence search, e.g., MegaBLAST. Due to different challenges and characteristics between query indexing and database indexing, the existing techniques for query-indexed search cannot be used into database indexed search. muBLASTP, a novel database-indexed BLAST for protein sequence search, delivers identical hits returned to NCBI BLAST. On Intel Haswell multicore CPUs, for a single query, the single-threaded muBLASTP achieves up to a 4.41-fold speedup for alignment stages, and up to a 1.75-fold end-to-end speedup over single-threaded NCBI BLAST. For a batch of queries, the multithreaded muBLASTP achieves up to a 5.7-fold speedups for alignment stages, and up to a 4.56-fold end-to-end speedup over multithreaded NCBI BLAST. With a newly designed index structure for protein database and associated optimizations in BLASTP algorithm, we re-factored BLASTP algorithm for modern multicore processors that achieves much higher throughput with acceptable memory footprint for the database index.

  1. Ontology-Driven Provenance Management in eScience: An Application in Parasite Research

    NASA Astrophysics Data System (ADS)

    Sahoo, Satya S.; Weatherly, D. Brent; Mutharaju, Raghava; Anantharam, Pramod; Sheth, Amit; Tarleton, Rick L.

    Provenance, from the French word "provenir", describes the lineage or history of a data entity. Provenance is critical information in scientific applications to verify experiment process, validate data quality and associate trust values with scientific results. Current industrial scale eScience projects require an end-to-end provenance management infrastructure. This infrastructure needs to be underpinned by formal semantics to enable analysis of large scale provenance information by software applications. Further, effective analysis of provenance information requires well-defined query mechanisms to support complex queries over large datasets. This paper introduces an ontology-driven provenance management infrastructure for biology experiment data, as part of the Semantic Problem Solving Environment (SPSE) for Trypanosoma cruzi (T.cruzi). This provenance infrastructure, called T.cruzi Provenance Management System (PMS), is underpinned by (a) a domain-specific provenance ontology called Parasite Experiment ontology, (b) specialized query operators for provenance analysis, and (c) a provenance query engine. The query engine uses a novel optimization technique based on materialized views called materialized provenance views (MPV) to scale with increasing data size and query complexity. This comprehensive ontology-driven provenance infrastructure not only allows effective tracking and management of ongoing experiments in the Tarleton Research Group at the Center for Tropical and Emerging Global Diseases (CTEGD), but also enables researchers to retrieve the complete provenance information of scientific results for publication in literature.

  2. LETTER TO THE EDITOR: Constant-time solution to the global optimization problem using Brüschweiler's ensemble search algorithm

    NASA Astrophysics Data System (ADS)

    Protopopescu, V.; D'Helon, C.; Barhen, J.

    2003-06-01

    A constant-time solution of the continuous global optimization problem (GOP) is obtained by using an ensemble algorithm. We show that under certain assumptions, the solution can be guaranteed by mapping the GOP onto a discrete unsorted search problem, whereupon Brüschweiler's ensemble search algorithm is applied. For adequate sensitivities of the measurement technique, the query complexity of the ensemble search algorithm depends linearly on the size of the function's domain. Advantages and limitations of an eventual NMR implementation are discussed.

  3. Local classifier weighting by quadratic programming.

    PubMed

    Cevikalp, Hakan; Polikar, Robi

    2008-10-01

    It has been widely accepted that the classification accuracy can be improved by combining outputs of multiple classifiers. However, how to combine multiple classifiers with various (potentially conflicting) decisions is still an open problem. A rich collection of classifier combination procedures -- many of which are heuristic in nature -- have been developed for this goal. In this brief, we describe a dynamic approach to combine classifiers that have expertise in different regions of the input space. To this end, we use local classifier accuracy estimates to weight classifier outputs. Specifically, we estimate local recognition accuracies of classifiers near a query sample by utilizing its nearest neighbors, and then use these estimates to find the best weights of classifiers to label the query. The problem is formulated as a convex quadratic optimization problem, which returns optimal nonnegative classifier weights with respect to the chosen objective function, and the weights ensure that locally most accurate classifiers are weighted more heavily for labeling the query sample. Experimental results on several data sets indicate that the proposed weighting scheme outperforms other popular classifier combination schemes, particularly on problems with complex decision boundaries. Hence, the results indicate that local classification-accuracy-based combination techniques are well suited for decision making when the classifiers are trained by focusing on different regions of the input space.

  4. Clustering and Flow Conservation Monitoring Tool for Software Defined Networks.

    PubMed

    Puente Fernández, Jesús Antonio; García Villalba, Luis Javier; Kim, Tai-Hoon

    2018-04-03

    Prediction systems present some challenges on two fronts: the relation between video quality and observed session features and on the other hand, dynamics changes on the video quality. Software Defined Networks (SDN) is a new concept of network architecture that provides the separation of control plane (controller) and data plane (switches) in network devices. Due to the existence of the southbound interface, it is possible to deploy monitoring tools to obtain the network status and retrieve a statistics collection. Therefore, achieving the most accurate statistics depends on a strategy of monitoring and information requests of network devices. In this paper, we propose an enhanced algorithm for requesting statistics to measure the traffic flow in SDN networks. Such an algorithm is based on grouping network switches in clusters focusing on their number of ports to apply different monitoring techniques. Such grouping occurs by avoiding monitoring queries in network switches with common characteristics and then, by omitting redundant information. In this way, the present proposal decreases the number of monitoring queries to switches, improving the network traffic and preventing the switching overload. We have tested our optimization in a video streaming simulation using different types of videos. The experiments and comparison with traditional monitoring techniques demonstrate the feasibility of our proposal maintaining similar values decreasing the number of queries to the switches.

  5. Using Generalized Annotated Programs to Solve Social Network Diffusion Optimization Problems

    DTIC Science & Technology

    2013-01-01

    as follows: —Let kall be the k value for the SNDOP-ALL query and for each SNDOP query i, let ki be the k for that query. For each query i, set ki... kall − 1. —Number each element of vi ∈ V such that gI(vi) and V C(vi) are true. For the ith SNDOP query, let vi be the corresponding element of V —Let...vertices of S. PROOF. We set up |V | SNDOP-queries as follows: —Let kall be the k value for the SNDOP-ALL query and and for each SNDOP-query i, let ki be

  6. A Lightweight I/O Scheme to Facilitate Spatial and Temporal Queries of Scientific Data Analytics

    NASA Technical Reports Server (NTRS)

    Tian, Yuan; Liu, Zhuo; Klasky, Scott; Wang, Bin; Abbasi, Hasan; Zhou, Shujia; Podhorszki, Norbert; Clune, Tom; Logan, Jeremy; Yu, Weikuan

    2013-01-01

    In the era of petascale computing, more scientific applications are being deployed on leadership scale computing platforms to enhance the scientific productivity. Many I/O techniques have been designed to address the growing I/O bottleneck on large-scale systems by handling massive scientific data in a holistic manner. While such techniques have been leveraged in a wide range of applications, they have not been shown as adequate for many mission critical applications, particularly in data post-processing stage. One of the examples is that some scientific applications generate datasets composed of a vast amount of small data elements that are organized along many spatial and temporal dimensions but require sophisticated data analytics on one or more dimensions. Including such dimensional knowledge into data organization can be beneficial to the efficiency of data post-processing, which is often missing from exiting I/O techniques. In this study, we propose a novel I/O scheme named STAR (Spatial and Temporal AggRegation) to enable high performance data queries for scientific analytics. STAR is able to dive into the massive data, identify the spatial and temporal relationships among data variables, and accordingly organize them into an optimized multi-dimensional data structure before storing to the storage. This technique not only facilitates the common access patterns of data analytics, but also further reduces the application turnaround time. In particular, STAR is able to enable efficient data queries along the time dimension, a practice common in scientific analytics but not yet supported by existing I/O techniques. In our case study with a critical climate modeling application GEOS-5, the experimental results on Jaguar supercomputer demonstrate an improvement up to 73 times for the read performance compared to the original I/O method.

  7. Optimizability of OGC Standards Implementations - a Case Study

    NASA Astrophysics Data System (ADS)

    Misev, D.; Baumann, P.

    2012-04-01

    Why do we shop at Amazon? Because they have a unique offering that is nowhere else available? Certainly not. Rather, Amazon offers (i) simple, yet effective search; (ii) very simple payment; (iii) extremely rapid delivery. This is how scientific services will be distinguished in future: not for their data holding (there will be manifold choice), but for their service quality. We are facing the transition from data stewardship to service stewardship. One of the OGC standards which particularly enables flexible retrieval is the Web Coverage Processing Service (WCPS). It defines a high-level query language on large, multi-dimensional raster data, such as 1D timeseries, 2D EO imagery, 3D x/y/t image time series and x/y/z geophysical data, 4D x/y/z/t climate and ocean data. We have implemented WCPS based on an Array Database Management System, rasdaman, which is available in open source. In this demonstration, we study WCPS queries on 2D, 3D, and 4D data sets. Particular emphasis is placed on the computational load queries generate in such on-demand processing and filtering. We look at different techniques and their impact on performance, such as adaptive storage partitioning, query rewriting, and just-in-time compilation. Results show that there is significant potential for effective server-side optimization once a query language is sufficiently high-level and declarative.

  8. Visualizing whole-brain DTI tractography with GPU-based Tuboids and LoD management.

    PubMed

    Petrovic, Vid; Fallon, James; Kuester, Falko

    2007-01-01

    Diffusion Tensor Imaging (DTI) of the human brain, coupled with tractography techniques, enable the extraction of large-collections of three-dimensional tract pathways per subject. These pathways and pathway bundles represent the connectivity between different brain regions and are critical for the understanding of brain related diseases. A flexible and efficient GPU-based rendering technique for DTI tractography data is presented that addresses common performance bottlenecks and image-quality issues, allowing interactive render rates to be achieved on commodity hardware. An occlusion query-based pathway LoD management system for streamlines/streamtubes/tuboids is introduced that optimizes input geometry, vertex processing, and fragment processing loads, and helps reduce overdraw. The tuboid, a fully-shaded streamtube impostor constructed entirely on the GPU from streamline vertices, is also introduced. Unlike full streamtubes and other impostor constructs, tuboids require little to no preprocessing or extra space over the original streamline data. The supported fragment processing levels of detail range from texture-based draft shading to full raycast normal computation, Phong shading, environment mapping, and curvature-correct text labeling. The presented text labeling technique for tuboids provides adaptive, aesthetically pleasing labels that appear attached to the surface of the tubes. Furthermore, an occlusion query aggregating and scheduling scheme for tuboids is described that reduces the query overhead. Results for a tractography dataset are presented, and demonstrate that LoD-managed tuboids offer benefits over traditional streamtubes both in performance and appearance.

  9. Query Auto-Completion Based on Word2vec Semantic Similarity

    NASA Astrophysics Data System (ADS)

    Shao, Taihua; Chen, Honghui; Chen, Wanyu

    2018-04-01

    Query auto-completion (QAC) is the first step of information retrieval, which helps users formulate the entire query after inputting only a few prefixes. Regarding the models of QAC, the traditional method ignores the contribution from the semantic relevance between queries. However, similar queries always express extremely similar search intention. In this paper, we propose a hybrid model FS-QAC based on query semantic similarity as well as the query frequency. We choose word2vec method to measure the semantic similarity between intended queries and pre-submitted queries. By combining both features, our experiments show that FS-QAC model improves the performance when predicting the user’s query intention and helping formulate the right query. Our experimental results show that the optimal hybrid model contributes to a 7.54% improvement in terms of MRR against a state-of-the-art baseline using the public AOL query logs.

  10. Estimating Influenza Outbreaks Using Both Search Engine Query Data and Social Media Data in South Korea.

    PubMed

    Woo, Hyekyung; Cho, Youngtae; Shim, Eunyoung; Lee, Jong-Koo; Lee, Chang-Gun; Kim, Seong Hwan

    2016-07-04

    As suggested as early as in 2006, logs of queries submitted to search engines seeking information could be a source for detection of emerging influenza epidemics if changes in the volume of search queries are monitored (infodemiology). However, selecting queries that are most likely to be associated with influenza epidemics is a particular challenge when it comes to generating better predictions. In this study, we describe a methodological extension for detecting influenza outbreaks using search query data; we provide a new approach for query selection through the exploration of contextual information gleaned from social media data. Additionally, we evaluate whether it is possible to use these queries for monitoring and predicting influenza epidemics in South Korea. Our study was based on freely available weekly influenza incidence data and query data originating from the search engine on the Korean website Daum between April 3, 2011 and April 5, 2014. To select queries related to influenza epidemics, several approaches were applied: (1) exploring influenza-related words in social media data, (2) identifying the chief concerns related to influenza, and (3) using Web query recommendations. Optimal feature selection by least absolute shrinkage and selection operator (Lasso) and support vector machine for regression (SVR) were used to construct a model predicting influenza epidemics. In total, 146 queries related to influenza were generated through our initial query selection approach. A considerable proportion of optimal features for final models were derived from queries with reference to the social media data. The SVR model performed well: the prediction values were highly correlated with the recent observed influenza-like illness (r=.956; P<.001) and virological incidence rate (r=.963; P<.001). These results demonstrate the feasibility of using search queries to enhance influenza surveillance in South Korea. In addition, an approach for query selection using social media data seems ideal for supporting influenza surveillance based on search query data.

  11. Estimating Influenza Outbreaks Using Both Search Engine Query Data and Social Media Data in South Korea

    PubMed Central

    Woo, Hyekyung; Shim, Eunyoung; Lee, Jong-Koo; Lee, Chang-Gun; Kim, Seong Hwan

    2016-01-01

    Background As suggested as early as in 2006, logs of queries submitted to search engines seeking information could be a source for detection of emerging influenza epidemics if changes in the volume of search queries are monitored (infodemiology). However, selecting queries that are most likely to be associated with influenza epidemics is a particular challenge when it comes to generating better predictions. Objective In this study, we describe a methodological extension for detecting influenza outbreaks using search query data; we provide a new approach for query selection through the exploration of contextual information gleaned from social media data. Additionally, we evaluate whether it is possible to use these queries for monitoring and predicting influenza epidemics in South Korea. Methods Our study was based on freely available weekly influenza incidence data and query data originating from the search engine on the Korean website Daum between April 3, 2011 and April 5, 2014. To select queries related to influenza epidemics, several approaches were applied: (1) exploring influenza-related words in social media data, (2) identifying the chief concerns related to influenza, and (3) using Web query recommendations. Optimal feature selection by least absolute shrinkage and selection operator (Lasso) and support vector machine for regression (SVR) were used to construct a model predicting influenza epidemics. Results In total, 146 queries related to influenza were generated through our initial query selection approach. A considerable proportion of optimal features for final models were derived from queries with reference to the social media data. The SVR model performed well: the prediction values were highly correlated with the recent observed influenza-like illness (r=.956; P<.001) and virological incidence rate (r=.963; P<.001). Conclusions These results demonstrate the feasibility of using search queries to enhance influenza surveillance in South Korea. In addition, an approach for query selection using social media data seems ideal for supporting influenza surveillance based on search query data. PMID:27377323

  12. Array Databases: Agile Analytics (not just) for the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Baumann, P.; Misev, D.

    2015-12-01

    Gridded data, such as images, image timeseries, and climate datacubes, today are managed separately from the metadata, and with different, restricted retrieval capabilities. While databases are good at metadata modelled in tables, XML hierarchies, or RDF graphs, they traditionally do not support multi-dimensional arrays.This gap is being closed by Array Databases, pioneered by the scalable rasdaman ("raster data manager") array engine. Its declarative query language, rasql, extends SQL with array operators which are optimized and parallelized on server side. Installations can easily be mashed up securely, thereby enabling large-scale location-transparent query processing in federations. Domain experts value the integration with their commonly used tools leading to a quick learning curve.Earth, Space, and Life sciences, but also Social sciences as well as business have massive amounts of data and complex analysis challenges that are answered by rasdaman. As of today, rasdaman is mature and in operational use on hundreds of Terabytes of timeseries datacubes, with transparent query distribution across more than 1,000 nodes. Additionally, its concepts have shaped international Big Data standards in the field, including the forthcoming array extension to ISO SQL, many of which are supported by both open-source and commercial systems meantime. In the geo field, rasdaman is reference implementation for the Open Geospatial Consortium (OGC) Big Data standard, WCS, now also under adoption by ISO. Further, rasdaman is in the final stage of OSGeo incubation.In this contribution we present array queries a la rasdaman, describe the architecture and novel optimization and parallelization techniques introduced in 2015, and put this in context of the intercontinental EarthServer initiative which utilizes rasdaman for enabling agile analytics on Petascale datacubes.

  13. Agent-Based Framework for Discrete Entity Simulations

    DTIC Science & Technology

    2006-11-01

    Postgres database server for environment queries of neighbors and continuum data. As expected for raw database queries (no database optimizations in...form. Eventually the code was ported to GNU C++ on the same single Intel Pentium 4 CPU running RedHat Linux 9.0 and Postgres database server...Again Postgres was used for environmental queries, and the tool remained relatively slow because of the immense number of queries necessary to assess

  14. Querying clinical data in HL7 RIM based relational model with morph-RDB.

    PubMed

    Priyatna, Freddy; Alonso-Calvo, Raul; Paraiso-Medina, Sergio; Corcho, Oscar

    2017-10-05

    Semantic interoperability is essential when carrying out post-genomic clinical trials where several institutions collaborate, since researchers and developers need to have an integrated view and access to heterogeneous data sources. One possible approach to accommodate this need is to use RDB2RDF systems that provide RDF datasets as the unified view. These RDF datasets may be materialized and stored in a triple store, or transformed into RDF in real time, as virtual RDF data sources. Our previous efforts involved materialized RDF datasets, hence losing data freshness. In this paper we present a solution that uses an ontology based on the HL7 v3 Reference Information Model and a set of R2RML mappings that relate this ontology to an underlying relational database implementation, and where morph-RDB is used to expose a virtual, non-materialized SPARQL endpoint over the data. By applying a set of optimization techniques on the SPARQL-to-SQL query translation algorithm, we can now issue SPARQL queries to the underlying relational data with generally acceptable performance.

  15. Clustering and Flow Conservation Monitoring Tool for Software Defined Networks

    PubMed Central

    Puente Fernández, Jesús Antonio

    2018-01-01

    Prediction systems present some challenges on two fronts: the relation between video quality and observed session features and on the other hand, dynamics changes on the video quality. Software Defined Networks (SDN) is a new concept of network architecture that provides the separation of control plane (controller) and data plane (switches) in network devices. Due to the existence of the southbound interface, it is possible to deploy monitoring tools to obtain the network status and retrieve a statistics collection. Therefore, achieving the most accurate statistics depends on a strategy of monitoring and information requests of network devices. In this paper, we propose an enhanced algorithm for requesting statistics to measure the traffic flow in SDN networks. Such an algorithm is based on grouping network switches in clusters focusing on their number of ports to apply different monitoring techniques. Such grouping occurs by avoiding monitoring queries in network switches with common characteristics and then, by omitting redundant information. In this way, the present proposal decreases the number of monitoring queries to switches, improving the network traffic and preventing the switching overload. We have tested our optimization in a video streaming simulation using different types of videos. The experiments and comparison with traditional monitoring techniques demonstrate the feasibility of our proposal maintaining similar values decreasing the number of queries to the switches. PMID:29614049

  16. Mirador: A Simple, Fast Search Interface for Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Strub, Richard; Seiler, Edward; Joshi, Talak; MacHarrie, Peter

    2008-01-01

    A major challenge for remote sensing science researchers is searching and acquiring relevant data files for their research projects based on content, space and time constraints. Several structured query (SQ) and hierarchical navigation (HN) search interfaces have been develop ed to satisfy this requirement, yet the dominant search engines in th e general domain are based on free-text search. The Goddard Earth Sci ences Data and Information Services Center has developed a free-text search interface named Mirador that supports space-time queries, inc luding a gazetteer and geophysical event gazetteer. In order to compe nsate for a slightly reduced search precision relative to SQ and HN t echniques, Mirador uses several search optimizations to return result s quickly. The quick response enables a more iterative search strateg y than is available with many SQ and HN techniques.

  17. Improving biomedical information retrieval by linear combinations of different query expansion techniques.

    PubMed

    Abdulla, Ahmed AbdoAziz Ahmed; Lin, Hongfei; Xu, Bo; Banbhrani, Santosh Kumar

    2016-07-25

    Biomedical literature retrieval is becoming increasingly complex, and there is a fundamental need for advanced information retrieval systems. Information Retrieval (IR) programs scour unstructured materials such as text documents in large reserves of data that are usually stored on computers. IR is related to the representation, storage, and organization of information items, as well as to access. In IR one of the main problems is to determine which documents are relevant and which are not to the user's needs. Under the current regime, users cannot precisely construct queries in an accurate way to retrieve particular pieces of data from large reserves of data. Basic information retrieval systems are producing low-quality search results. In our proposed system for this paper we present a new technique to refine Information Retrieval searches to better represent the user's information need in order to enhance the performance of information retrieval by using different query expansion techniques and apply a linear combinations between them, where the combinations was linearly between two expansion results at one time. Query expansions expand the search query, for example, by finding synonyms and reweighting original terms. They provide significantly more focused, particularized search results than do basic search queries. The retrieval performance is measured by some variants of MAP (Mean Average Precision) and according to our experimental results, the combination of best results of query expansion is enhanced the retrieved documents and outperforms our baseline by 21.06 %, even it outperforms a previous study by 7.12 %. We propose several query expansion techniques and their combinations (linearly) to make user queries more cognizable to search engines and to produce higher-quality search results.

  18. Querying and Ranking XML Documents.

    ERIC Educational Resources Information Center

    Schlieder, Torsten; Meuss, Holger

    2002-01-01

    Discussion of XML, information retrieval, precision, and recall focuses on a retrieval technique that adopts the similarity measure of the vector space model, incorporates the document structure, and supports structured queries. Topics include a query model based on tree matching; structured queries and term-based ranking; and term frequency and…

  19. A New Framework for Textual Information Mining over Parse Trees. CRESST Report 805

    ERIC Educational Resources Information Center

    Mousavi, Hamid; Kerr, Deirdre; Iseli, Markus R.

    2011-01-01

    Textual information mining is a challenging problem that has resulted in the creation of many different rule-based linguistic query languages. However, these languages generally are not optimized for the purpose of text mining. In other words, they usually consider queries as individuals and only return raw results for each query. Moreover they…

  20. Cognitive issues in searching images with visual queries

    NASA Astrophysics Data System (ADS)

    Yu, ByungGu; Evens, Martha W.

    1999-01-01

    In this paper, we propose our image indexing technique and visual query processing technique. Our mental images are different from the actual retinal images and many things, such as personal interests, personal experiences, perceptual context, the characteristics of spatial objects, and so on, affect our spatial perception. These private differences are propagated into our mental images and so our visual queries become different from the real images that we want to find. This is a hard problem and few people have tried to work on it. In this paper, we survey the human mental imagery system, the human spatial perception, and discuss several kinds of visual queries. Also, we propose our own approach to visual query interpretation and processing.

  1. Facilitating Cohort Discovery by Enhancing Ontology Exploration, Query Management and Query Sharing for Large Clinical Data Repositories.

    PubMed

    Tao, Shiqiang; Cui, Licong; Wu, Xi; Zhang, Guo-Qiang

    2017-01-01

    To help researchers better access clinical data, we developed a prototype query engine called DataSphere for exploring large-scale integrated clinical data repositories. DataSphere expedites data importing using a NoSQL data management system and dynamically renders its user interface for concept-based querying tasks. DataSphere provides an interactive query-building interface together with query translation and optimization strategies, which enable users to build and execute queries effectively and efficiently. We successfully loaded a dataset of one million patients for University of Kentucky (UK) Healthcare into DataSphere with more than 300 million clinical data records. We evaluated DataSphere by comparing it with an instance of i2b2 deployed at UK Healthcare, demonstrating that DataSphere provides enhanced user experience for both query building and execution.

  2. Facilitating Cohort Discovery by Enhancing Ontology Exploration, Query Management and Query Sharing for Large Clinical Data Repositories

    PubMed Central

    Tao, Shiqiang; Cui, Licong; Wu, Xi; Zhang, Guo-Qiang

    2017-01-01

    To help researchers better access clinical data, we developed a prototype query engine called DataSphere for exploring large-scale integrated clinical data repositories. DataSphere expedites data importing using a NoSQL data management system and dynamically renders its user interface for concept-based querying tasks. DataSphere provides an interactive query-building interface together with query translation and optimization strategies, which enable users to build and execute queries effectively and efficiently. We successfully loaded a dataset of one million patients for University of Kentucky (UK) Healthcare into DataSphere with more than 300 million clinical data records. We evaluated DataSphere by comparing it with an instance of i2b2 deployed at UK Healthcare, demonstrating that DataSphere provides enhanced user experience for both query building and execution. PMID:29854239

  3. Hierarchical classification method and its application in shape representation

    NASA Astrophysics Data System (ADS)

    Ireton, M. A.; Oakley, John P.; Xydeas, Costas S.

    1992-04-01

    In this paper we describe a technique for performing shaped-based content retrieval of images from a large database. In order to be able to formulate such user-generated queries about visual objects, we have developed an hierarchical classification technique. This hierarchical classification technique enables similarity matching between objects, with the position in the hierarchy signifying the level of generality to be used in the query. The classification technique is unsupervised, robust, and general; it can be applied to any suitable parameter set. To establish the potential of this classifier for aiding visual querying, we have applied it to the classification of the 2-D outlines of leaves.

  4. Incremental Query Rewriting with Resolution

    NASA Astrophysics Data System (ADS)

    Riazanov, Alexandre; Aragão, Marcelo A. T.

    We address the problem of semantic querying of relational databases (RDB) modulo knowledge bases using very expressive knowledge representation formalisms, such as full first-order logic or its various fragments. We propose to use a resolution-based first-order logic (FOL) reasoner for computing schematic answers to deductive queries, with the subsequent translation of these schematic answers to SQL queries which are evaluated using a conventional relational DBMS. We call our method incremental query rewriting, because an original semantic query is rewritten into a (potentially infinite) series of SQL queries. In this chapter, we outline the main idea of our technique - using abstractions of databases and constrained clauses for deriving schematic answers, and provide completeness and soundness proofs to justify the applicability of this technique to the case of resolution for FOL without equality. The proposed method can be directly used with regular RDBs, including legacy databases. Moreover, we propose it as a potential basis for an efficient Web-scale semantic search technology.

  5. Query optimization for graph analytics on linked data using SPARQL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Seokyong; Lee, Sangkeun; Lim, Seung -Hwan

    2015-07-01

    Triplestores that support query languages such as SPARQL are emerging as the preferred and scalable solution to represent data and meta-data as massive heterogeneous graphs using Semantic Web standards. With increasing adoption, the desire to conduct graph-theoretic mining and exploratory analysis has also increased. Addressing that desire, this paper presents a solution that is the marriage of Graph Theory and the Semantic Web. We present software that can analyze Linked Data using graph operations such as counting triangles, finding eccentricity, testing connectedness, and computing PageRank directly on triple stores via the SPARQL interface. We describe the process of optimizing performancemore » of the SPARQL-based implementation of such popular graph algorithms by reducing the space-overhead, simplifying iterative complexity and removing redundant computations by understanding query plans. Our optimized approach shows significant performance gains on triplestores hosted on stand-alone workstations as well as hardware-optimized scalable supercomputers such as the Cray XMT.« less

  6. Pse-Analysis: a python package for DNA/RNA and protein/ peptide sequence analysis based on pseudo components and kernel methods.

    PubMed

    Liu, Bin; Wu, Hao; Zhang, Deyuan; Wang, Xiaolong; Chou, Kuo-Chen

    2017-02-21

    To expedite the pace in conducting genome/proteome analysis, we have developed a Python package called Pse-Analysis. The powerful package can automatically complete the following five procedures: (1) sample feature extraction, (2) optimal parameter selection, (3) model training, (4) cross validation, and (5) evaluating prediction quality. All the work a user needs to do is to input a benchmark dataset along with the query biological sequences concerned. Based on the benchmark dataset, Pse-Analysis will automatically construct an ideal predictor, followed by yielding the predicted results for the submitted query samples. All the aforementioned tedious jobs can be automatically done by the computer. Moreover, the multiprocessing technique was adopted to enhance computational speed by about 6 folds. The Pse-Analysis Python package is freely accessible to the public at http://bioinformatics.hitsz.edu.cn/Pse-Analysis/, and can be directly run on Windows, Linux, and Unix.

  7. Optimizing Interactive Development of Data-Intensive Applications

    PubMed Central

    Interlandi, Matteo; Tetali, Sai Deep; Gulzar, Muhammad Ali; Noor, Joseph; Condie, Tyson; Kim, Miryung; Millstein, Todd

    2017-01-01

    Modern Data-Intensive Scalable Computing (DISC) systems are designed to process data through batch jobs that execute programs (e.g., queries) compiled from a high-level language. These programs are often developed interactively by posing ad-hoc queries over the base data until a desired result is generated. We observe that there can be significant overlap in the structure of these queries used to derive the final program. Yet, each successive execution of a slightly modified query is performed anew, which can significantly increase the development cycle. Vega is an Apache Spark framework that we have implemented for optimizing a series of similar Spark programs, likely originating from a development or exploratory data analysis session. Spark developers (e.g., data scientists) can leverage Vega to significantly reduce the amount of time it takes to re-execute a modified Spark program, reducing the overall time to market for their Big Data applications. PMID:28405637

  8. Expediting Scientific Data Analysis with Reorganization of Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byna, Surendra; Wu, Kesheng

    2013-08-19

    Data producers typically optimize the layout of data files to minimize the write time. In most cases, data analysis tasks read these files in access patterns different from the write patterns causing poor read performance. In this paper, we introduce Scientific Data Services (SDS), a framework for bridging the performance gap between writing and reading scientific data. SDS reorganizes data to match the read patterns of analysis tasks and enables transparent data reads from the reorganized data. We implemented a HDF5 Virtual Object Layer (VOL) plugin to redirect the HDF5 dataset read calls to the reorganized data. To demonstrate themore » effectiveness of SDS, we applied two parallel data organization techniques: a sort-based organization on a plasma physics data and a transpose-based organization on mass spectrometry imaging data. We also extended the HDF5 data access API to allow selection of data based on their values through a query interface, called SDS Query. We evaluated the execution time in accessing various subsets of data through existing HDF5 Read API and SDS Query. We showed that reading the reorganized data using SDS is up to 55X faster than reading the original data.« less

  9. Query Optimization by Semantic Reasoning.

    DTIC Science & Technology

    1981-05-01

    condition holds, then formulas X and Y are said to be ,nerge-compatible. Let xi be the variable in X that corresponds to variable yj in Y (x is not...Davidson, Ramez EI-Masri, Sheldon Finkelstein, Hector Garcia, Mohammed Olumi, Tom Rogers, Neil Rowe, David Shaw, and Kyu-Young Whang . Special credit...for the simple queries, along with cost formulas and applicability conditions for the methods. Most recently has come the development of optimizers for

  10. Generalized query-based active learning to identify differentially methylated regions in DNA.

    PubMed

    Haque, Md Muksitul; Holder, Lawrence B; Skinner, Michael K; Cook, Diane J

    2013-01-01

    Active learning is a supervised learning technique that reduces the number of examples required for building a successful classifier, because it can choose the data it learns from. This technique holds promise for many biological domains in which classified examples are expensive and time-consuming to obtain. Most traditional active learning methods ask very specific queries to the Oracle (e.g., a human expert) to label an unlabeled example. The example may consist of numerous features, many of which are irrelevant. Removing such features will create a shorter query with only relevant features, and it will be easier for the Oracle to answer. We propose a generalized query-based active learning (GQAL) approach that constructs generalized queries based on multiple instances. By constructing appropriately generalized queries, we can achieve higher accuracy compared to traditional active learning methods. We apply our active learning method to find differentially DNA methylated regions (DMRs). DMRs are DNA locations in the genome that are known to be involved in tissue differentiation, epigenetic regulation, and disease. We also apply our method on 13 other data sets and show that our method is better than another popular active learning technique.

  11. Parallel multi-join query optimization algorithm for distributed sensor network in the internet of things

    NASA Astrophysics Data System (ADS)

    Zheng, Yan

    2015-03-01

    Internet of things (IoT), focusing on providing users with information exchange and intelligent control, attracts a lot of attention of researchers from all over the world since the beginning of this century. IoT is consisted of large scale of sensor nodes and data processing units, and the most important features of IoT can be illustrated as energy confinement, efficient communication and high redundancy. With the sensor nodes increment, the communication efficiency and the available communication band width become bottle necks. Many research work is based on the instance which the number of joins is less. However, it is not proper to the increasing multi-join query in whole internet of things. To improve the communication efficiency between parallel units in the distributed sensor network, this paper proposed parallel query optimization algorithm based on distribution attributes cost graph. The storage information relations and the network communication cost are considered in this algorithm, and an optimized information changing rule is established. The experimental result shows that the algorithm has good performance, and it would effectively use the resource of each node in the distributed sensor network. Therefore, executive efficiency of multi-join query between different nodes could be improved.

  12. Content-Aware DataGuide with Incremental Index Update using Frequently Used Paths

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Duhan, Neelam; Khattar, Priyanka

    2010-11-01

    Size of the WWW is increasing day by day. Due to the absence of structured data on the Web, it becomes very difficult for information retrieval tools to fully utilize the Web information. As a solution to this problem, XML pages come into play, which provide structural information to the users to some extent. Without efficient indexes, query processing can be quite inefficient due to an exhaustive traversal on XML data. In this paper an improved content-centric approach of Content-Aware DataGuide, which is an indexing technique for XML databases, is being proposed that uses frequently used paths from historical query logs to improve query performance. The index can be updated incrementally according to the changes in query workload and thus, the overhead of reconstruction can be minimized. Frequently used paths are extracted using any Sequential Pattern mining algorithm on subsequent queries in the query workload. After this, the data structures are incrementally updated. This indexing technique proves to be efficient as partial matching queries can be executed efficiently and users can now get the more relevant documents in results.

  13. Venom immunotherapy: an updated review.

    PubMed

    Antolín-Amérigo, Darío; Moreno Aguilar, Carmen; Vega, Arantza; Alvarez-Mon, Melchor

    2014-07-01

    Venom immunotherapy (VIT) is the most effective form of specific immunotherapy to date. Hitherto, several relevant queries remain unanswered, namely optimal doses, duration, and means of assessment. Important progress has been lately made in terms of diagnosis by means of component-resolved diagnosis. Moreover, basophil activation test results in patients with negative serum immunoglobulin E (IgE) and skin prick test confer this technique a promising future, although these outcomes shall be considered with caution. This review aims to unravel the important advances made on diagnosis, management, and prognosis and also focuses on several undetermined aspects of VIT.

  14. Artificial intelligence techniques for modeling database user behavior

    NASA Technical Reports Server (NTRS)

    Tanner, Steve; Graves, Sara J.

    1990-01-01

    The design and development of the adaptive modeling system is described. This system models how a user accesses a relational database management system in order to improve its performance by discovering use access patterns. In the current system, these patterns are used to improve the user interface and may be used to speed data retrieval, support query optimization and support a more flexible data representation. The system models both syntactic and semantic information about the user's access and employs both procedural and rule-based logic to manipulate the model.

  15. Interactive Querying Techniques for an Office Filing Facility.

    ERIC Educational Resources Information Center

    Morrissey, J. M.; And Others

    1986-01-01

    Proposes a "Model of Querying" for users of office filing facilities and discusses its motivation, aspects, attributes, and advantages. A review of current information systems and attempts to combine information retrieval, artificial intelligence, and database management techniques leads to conclusion that no resultant system is adequate…

  16. Adaptation of machine translation for multilingual information retrieval in the medical domain.

    PubMed

    Pecina, Pavel; Dušek, Ondřej; Goeuriot, Lorraine; Hajič, Jan; Hlaváčová, Jaroslava; Jones, Gareth J F; Kelly, Liadh; Leveling, Johannes; Mareček, David; Novák, Michal; Popel, Martin; Rosa, Rudolf; Tamchyna, Aleš; Urešová, Zdeňka

    2014-07-01

    We investigate machine translation (MT) of user search queries in the context of cross-lingual information retrieval (IR) in the medical domain. The main focus is on techniques to adapt MT to increase translation quality; however, we also explore MT adaptation to improve effectiveness of cross-lingual IR. Our MT system is Moses, a state-of-the-art phrase-based statistical machine translation system. The IR system is based on the BM25 retrieval model implemented in the Lucene search engine. The MT techniques employed in this work include in-domain training and tuning, intelligent training data selection, optimization of phrase table configuration, compound splitting, and exploiting synonyms as translation variants. The IR methods include morphological normalization and using multiple translation variants for query expansion. The experiments are performed and thoroughly evaluated on three language pairs: Czech-English, German-English, and French-English. MT quality is evaluated on data sets created within the Khresmoi project and IR effectiveness is tested on the CLEF eHealth 2013 data sets. The search query translation results achieved in our experiments are outstanding - our systems outperform not only our strong baselines, but also Google Translate and Microsoft Bing Translator in direct comparison carried out on all the language pairs. The baseline BLEU scores increased from 26.59 to 41.45 for Czech-English, from 23.03 to 40.82 for German-English, and from 32.67 to 40.82 for French-English. This is a 55% improvement on average. In terms of the IR performance on this particular test collection, a significant improvement over the baseline is achieved only for French-English. For Czech-English and German-English, the increased MT quality does not lead to better IR results. Most of the MT techniques employed in our experiments improve MT of medical search queries. Especially the intelligent training data selection proves to be very successful for domain adaptation of MT. Certain improvements are also obtained from German compound splitting on the source language side. Translation quality, however, does not appear to correlate with the IR performance - better translation does not necessarily yield better retrieval. We discuss in detail the contribution of the individual techniques and state-of-the-art features and provide future research directions. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. QRFXFreeze: Queryable Compressor for RFX.

    PubMed

    Senthilkumar, Radha; Nandagopal, Gomathi; Ronald, Daphne

    2015-01-01

    The verbose nature of XML has been mulled over again and again and many compression techniques for XML data have been excogitated over the years. Some of the techniques incorporate support for querying the XML database in its compressed format while others have to be decompressed before they can be queried. XML compression in which querying is directly supported instantaneously with no compromise over time is forced to compromise over space. In this paper, we propose the compressor, QRFXFreeze, which not only reduces the space of storage but also supports efficient querying. The compressor does this without decompressing the compressed XML file. The compressor supports all kinds of XML documents along with insert, update, and delete operations. The forte of QRFXFreeze is that the textual data are semantically compressed and are indexed to reduce the querying time. Experimental results show that the proposed compressor performs much better than other well-known compressors.

  18. Objective and automated protocols for the evaluation of biomedical search engines using No Title Evaluation protocols.

    PubMed

    Campagne, Fabien

    2008-02-29

    The evaluation of information retrieval techniques has traditionally relied on human judges to determine which documents are relevant to a query and which are not. This protocol is used in the Text Retrieval Evaluation Conference (TREC), organized annually for the past 15 years, to support the unbiased evaluation of novel information retrieval approaches. The TREC Genomics Track has recently been introduced to measure the performance of information retrieval for biomedical applications. We describe two protocols for evaluating biomedical information retrieval techniques without human relevance judgments. We call these protocols No Title Evaluation (NT Evaluation). The first protocol measures performance for focused searches, where only one relevant document exists for each query. The second protocol measures performance for queries expected to have potentially many relevant documents per query (high-recall searches). Both protocols take advantage of the clear separation of titles and abstracts found in Medline. We compare the performance obtained with these evaluation protocols to results obtained by reusing the relevance judgments produced in the 2004 and 2005 TREC Genomics Track and observe significant correlations between performance rankings generated by our approach and TREC. Spearman's correlation coefficients in the range of 0.79-0.92 are observed comparing bpref measured with NT Evaluation or with TREC evaluations. For comparison, coefficients in the range 0.86-0.94 can be observed when evaluating the same set of methods with data from two independent TREC Genomics Track evaluations. We discuss the advantages of NT Evaluation over the TRels and the data fusion evaluation protocols introduced recently. Our results suggest that the NT Evaluation protocols described here could be used to optimize some search engine parameters before human evaluation. Further research is needed to determine if NT Evaluation or variants of these protocols can fully substitute for human evaluations.

  19. Demonstration of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce.

    PubMed

    Aji, Ablimit; Sun, Xiling; Vo, Hoang; Liu, Qioaling; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel; Wang, Fusheng

    2013-11-01

    The proliferation of GPS-enabled devices, and the rapid improvement of scientific instruments have resulted in massive amounts of spatial data in the last decade. Support of high performance spatial queries on large volumes data has become increasingly important in numerous fields, which requires a scalable and efficient spatial data warehousing solution as existing approaches exhibit scalability limitations and efficiency bottlenecks for large scale spatial applications. In this demonstration, we present Hadoop-GIS - a scalable and high performance spatial query system over MapReduce. Hadoop-GIS provides an efficient spatial query engine to process spatial queries, data and space based partitioning, and query pipelines that parallelize queries implicitly on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spatial query language for workload specification. We will demonstrate how spatial queries are expressed in spatially extended SQL queries, and submitted through a command line/web interface for execution. Parallel to our system demonstration, we explain the system architecture and details on how queries are translated to MapReduce operators, optimized, and executed on Hadoop. In addition, we will showcase how the system can be used to support two representative real world use cases: large scale pathology analytical imaging, and geo-spatial data warehousing.

  20. FPGA-based protein sequence alignment : A review

    NASA Astrophysics Data System (ADS)

    Isa, Mohd. Nazrin Md.; Muhsen, Ku Noor Dhaniah Ku; Saiful Nurdin, Dayana; Ahmad, Muhammad Imran; Anuar Zainol Murad, Sohiful; Nizam Mohyar, Shaiful; Harun, Azizi; Hussin, Razaidi

    2017-11-01

    Sequence alignment have been optimized using several techniques in order to accelerate the computation time to obtain the optimal score by implementing DP-based algorithm into hardware such as FPGA-based platform. During hardware implementation, there will be performance challenges such as the frequent memory access and highly data dependent in computation process. Therefore, investigation in processing element (PE) configuration where involves more on memory access in load or access the data (substitution matrix, query sequence character) and the PE configuration time will be the main focus in this paper. There are various approaches to enhance the PE configuration performance that have been done in previous works such as by using serial configuration chain and parallel configuration chain i.e. the configuration data will be loaded into each PEs sequentially and simultaneously respectively. Some researchers have proven that the performance using parallel configuration chain has optimized both the configuration time and area.

  1. Information Landscaping: Information Mapping, Charting, Querying and Reporting Techniques for Total Quality Knowledge Management.

    ERIC Educational Resources Information Center

    Tsai, Bor-sheng

    2003-01-01

    Total quality management and knowledge management are merged and used as a conceptual model to direct and develop information landscaping techniques through the coordination of information mapping, charting, querying, and reporting. Goals included: merge citation analysis and data mining, and apply data visualization and information architecture…

  2. Archival Research Capabilities of the WFIRST Data Set

    NASA Astrophysics Data System (ADS)

    Szalay, Alexander

    WFIRST's unique combination of a large (~0.3 deg2) field of view and HST-like angular resolution and sensitivity in the near infrared will produce spectacular new insights into the origins of stars, galaxies, and structure in the cosmos. We propose a WFIRST Archive Science Investigation Team (SIT-F) to define an archival, query, and analysis system that will enable scientific discovery in all relevant areas of astrophysics and maximize the overall scientific yield of the mission. Guest investigators (GIs), guest observers (GOs), the WFIRST SIT's, WFIRST Science Center(s), and astronomers using data from other surveys will all benefit from the extensive, easy, fast and reliable use of the WFIRST archives. We propose to develop the science requirements for the archive and work to understand its interactions with other elements of the WFIRST mission. To accomplish this, we will conduct case studies to derive performance requirements for the WFIRST archives. These will clarify what is needed for GIs to make important scientific discoveries across a broad range of astrophysics. While other SITs will primarily address the science capabilities of the WFIRST instruments, we will look ahead to the science enabling capabilities of the WFIRST archives. We will demonstrate how the archive can be optimized to take advantage of the extraordinary science capabilities of the WFIRST instruments as well as major space and ground observatories to maximize the science return of the mission. We will use the "20 queries" methodology, formulated by Jim Gray, to cover the most important science analysis patterns and use these to establish the performance required of the WFIRST archive. The case studies will be centered on studying galaxy evolution as a function of cosmic time, environment and intrinsic properties. The analyses will require massive angular and spatial cross correlations between key galaxy properties to search for new fundamental scaling relations that may only become apparent when exploring a database of 108 galaxies with multiband photometry and grism spectroscopy. The case studies will require (i) the creation of a unified WFIRST object catalog consisting of data cross-matched to external catalogs, (ii) an easy-to-access, scalable database, utilizing the latest data discovery and querying techniques, (iii) in situ analyses of large and/or complex data, (iv) identification of links to supporting data and enabling queries spanning WFIRST and other databases, (v) combining simulations with modeling software. To accomplish these objectives, we will prototype a system capable of executing complex user-defined scripts including database access to a shared computational facility with tools for joining WFIRST to other surveys, also enabling comparisons to physical models. Our organizational plan divides the work into several general areas where our team members have specific expertise: (a) apply the 20 queries methodology to derive performance and functionality requirements, (b) develop a practical interactive server-side query system, built on our SDSS experience, (c) apply advanced cross-matching techniques, (d) create mock WFIRST imaging and grism data, (e) develop high level cross correlation tools, (e) optimize scripting systems using high-level languages (iPython), (f) perform close integration of cosmological simulations with observational data, (g) apply advanced machine learning techniques. Our efforts will be coordinated with the WFIRST Science Center (WSC), the other SITs, and the broader community in a manner consistent with direction and review of the Project Office. We will publish our results as milestones are reached, and issue progress reports on a regular basis. We will represent SIT-F at all relevant meetings including meetings of the other SITs (SITs A-E), and participate in "Big Data" conferences to interact with others in the field and learn new techniques that might be applicable to WFIRST.

  3. A novel methodology for querying web images

    NASA Astrophysics Data System (ADS)

    Prabhakara, Rashmi; Lee, Ching Cheng

    2005-01-01

    Ever since the advent of Internet, there has been an immense growth in the amount of image data that is available on the World Wide Web. With such a magnitude of image availability, an efficient and effective image retrieval system is required to make use of this information. This research presents an effective image matching and indexing technique that improvises on existing integrated image retrieval methods. The proposed technique follows a two-phase approach, integrating query by topic and query by example specification methods. The first phase consists of topic-based image retrieval using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. It consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. The second phase uses the query by example specification to perform a low-level content-based image match for the retrieval of smaller and relatively closer results of the example image. Information related to the image feature is automatically extracted from the query image by the image processing system. A technique that is not computationally intensive based on color feature is used to perform content-based matching of images. The main goal is to develop a functional image search and indexing system and to demonstrate that better retrieval results can be achieved with this proposed hybrid search technique.

  4. A novel methodology for querying web images

    NASA Astrophysics Data System (ADS)

    Prabhakara, Rashmi; Lee, Ching Cheng

    2004-12-01

    Ever since the advent of Internet, there has been an immense growth in the amount of image data that is available on the World Wide Web. With such a magnitude of image availability, an efficient and effective image retrieval system is required to make use of this information. This research presents an effective image matching and indexing technique that improvises on existing integrated image retrieval methods. The proposed technique follows a two-phase approach, integrating query by topic and query by example specification methods. The first phase consists of topic-based image retrieval using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. It consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. The second phase uses the query by example specification to perform a low-level content-based image match for the retrieval of smaller and relatively closer results of the example image. Information related to the image feature is automatically extracted from the query image by the image processing system. A technique that is not computationally intensive based on color feature is used to perform content-based matching of images. The main goal is to develop a functional image search and indexing system and to demonstrate that better retrieval results can be achieved with this proposed hybrid search technique.

  5. How Do Children Reformulate Their Search Queries?

    ERIC Educational Resources Information Center

    Rutter, Sophie; Ford, Nigel; Clough, Paul

    2015-01-01

    Introduction: This paper investigates techniques used by children in year 4 (age eight to nine) of a UK primary school to reformulate their queries, and how they use information retrieval systems to support query reformulation. Method: An in-depth study analysing the interactions of twelve children carrying out search tasks in a primary school…

  6. New Developments in CRISPR Technology: Improvements in Specificity and Efficiency.

    PubMed

    Safari, Fatemeh; Farajnia, Safar; Ghasemi, Younes; Zarghami, Nosratollah

    2017-01-01

    RNA-guided endonuclease as a versatile genome editing technology opened new windows in various fields of biology. The simplicity of this revolutionary technique provides a promising future for its application in a broad range of approaches from functional annotation of genes to diseases, to genetic manipulation and gene therapy. Besides the site-specific activity of Cas9 endonuclease, the unintended cleavage known as off-target effect is still a major challenge for this genome editing technique. Various strategies have been developed to resolve this bottleneck including development of new softwares for designing optimized guide RNA (gRNA), engineering Cas9 enzyme, improvement in off-target detection assays, etc. Results: This review dedicated to discuss on methods that have been used for optimizing Cas9, specificity with the aim of improving this technology for therapeutic applications. In addition, the applications and novel breakthroughs in the field of CRISPR technology will be described. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Usage of the Jess Engine, Rules and Ontology to Query a Relational Database

    NASA Astrophysics Data System (ADS)

    Bak, Jaroslaw; Jedrzejek, Czeslaw; Falkowski, Maciej

    We present a prototypical implementation of a library tool, the Semantic Data Library (SDL), which integrates the Jess (Java Expert System Shell) engine, rules and ontology to query a relational database. The tool extends functionalities of previous OWL2Jess with SWRL implementations and takes full advantage of the Jess engine, by separating forward and backward reasoning. The optimization of integration of all these technologies is an advancement over previous tools. We discuss the complexity of the query algorithm. As a demonstration of capability of the SDL library, we execute queries using crime ontology which is being developed in the Polish PPBW project.

  8. Functional annotation by sequence-weighted structure alignments: statistical analysis and case studies from the Protein 3000 structural genomics project in Japan.

    PubMed

    Standley, Daron M; Toh, Hiroyuki; Nakamura, Haruki

    2008-09-01

    A method to functionally annotate structural genomics targets, based on a novel structural alignment scoring function, is proposed. In the proposed score, position-specific scoring matrices are used to weight structurally aligned residue pairs to highlight evolutionarily conserved motifs. The functional form of the score is first optimized for discriminating domains belonging to the same Pfam family from domains belonging to different families but the same CATH or SCOP superfamily. In the optimization stage, we consider four standard weighting functions as well as our own, the "maximum substitution probability," and combinations of these functions. The optimized score achieves an area of 0.87 under the receiver-operating characteristic curve with respect to identifying Pfam families within a sequence-unique benchmark set of domain pairs. Confidence measures are then derived from the benchmark distribution of true-positive scores. The alignment method is next applied to the task of functionally annotating 230 query proteins released to the public as part of the Protein 3000 structural genomics project in Japan. Of these queries, 78 were found to align to templates with the same Pfam family as the query or had sequence identities > or = 30%. Another 49 queries were found to match more distantly related templates. Within this group, the template predicted by our method to be the closest functional relative was often not the most structurally similar. Several nontrivial cases are discussed in detail. Finally, 103 queries matched templates at the fold level, but not the family or superfamily level, and remain functionally uncharacterized. 2008 Wiley-Liss, Inc.

  9. User Feedback Procedures; Part III of Scientific Report No. ISR-18, Information Storage and Retrieval...

    ERIC Educational Resources Information Center

    Cornell Univ., Ithaca, NY. Dept. of Computer Science.

    Part Three of this five part report on Salton's Magical Automatic Retriever of Texts (SMART) project contains four papers. The first: "Variations on the Query Splitting Technique with Relevance Feedback" by T. P. Baker discusses some experiments in relevance feedback performed with variations on the technique of query splitting. The…

  10. In-context query reformulation for failing SPARQL queries

    NASA Astrophysics Data System (ADS)

    Viswanathan, Amar; Michaelis, James R.; Cassidy, Taylor; de Mel, Geeth; Hendler, James

    2017-05-01

    Knowledge bases for decision support systems are growing increasingly complex, through continued advances in data ingest and management approaches. However, humans do not possess the cognitive capabilities to retain a bird's-eyeview of such knowledge bases, and may end up issuing unsatisfiable queries to such systems. This work focuses on the implementation of a query reformulation approach for graph-based knowledge bases, specifically designed to support the Resource Description Framework (RDF). The reformulation approach presented is instance-and schema-aware. Thus, in contrast to relaxation techniques found in the state-of-the-art, the presented approach produces in-context query reformulation.

  11. Demonstration of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce

    PubMed Central

    Aji, Ablimit; Sun, Xiling; Vo, Hoang; Liu, Qioaling; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel; Wang, Fusheng

    2016-01-01

    The proliferation of GPS-enabled devices, and the rapid improvement of scientific instruments have resulted in massive amounts of spatial data in the last decade. Support of high performance spatial queries on large volumes data has become increasingly important in numerous fields, which requires a scalable and efficient spatial data warehousing solution as existing approaches exhibit scalability limitations and efficiency bottlenecks for large scale spatial applications. In this demonstration, we present Hadoop-GIS – a scalable and high performance spatial query system over MapReduce. Hadoop-GIS provides an efficient spatial query engine to process spatial queries, data and space based partitioning, and query pipelines that parallelize queries implicitly on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spatial query language for workload specification. We will demonstrate how spatial queries are expressed in spatially extended SQL queries, and submitted through a command line/web interface for execution. Parallel to our system demonstration, we explain the system architecture and details on how queries are translated to MapReduce operators, optimized, and executed on Hadoop. In addition, we will showcase how the system can be used to support two representative real world use cases: large scale pathology analytical imaging, and geo-spatial data warehousing. PMID:27617325

  12. Querying graphs in protein-protein interactions networks using feedback vertex set.

    PubMed

    Blin, Guillaume; Sikora, Florian; Vialette, Stéphane

    2010-01-01

    Recent techniques increase rapidly the amount of our knowledge on interactions between proteins. The interpretation of these new information depends on our ability to retrieve known substructures in the data, the Protein-Protein Interactions (PPIs) networks. In an algorithmic point of view, it is an hard task since it often leads to NP-hard problems. To overcome this difficulty, many authors have provided tools for querying patterns with a restricted topology, i.e., paths or trees in PPI networks. Such restriction leads to the development of fixed parameter tractable (FPT) algorithms, which can be practicable for restricted sizes of queries. Unfortunately, Graph Homomorphism is a W[1]-hard problem, and hence, no FPT algorithm can be found when patterns are in the shape of general graphs. However, Dost et al. gave an algorithm (which is not implemented) to query graphs with a bounded treewidth in PPI networks (the treewidth of the query being involved in the time complexity). In this paper, we propose another algorithm for querying pattern in the shape of graphs, also based on dynamic programming and the color-coding technique. To transform graphs queries into trees without loss of informations, we use feedback vertex set coupled to a node duplication mechanism. Hence, our algorithm is FPT for querying graphs with a bounded size of their feedback vertex set. It gives an alternative to the treewidth parameter, which can be better or worst for a given query. We provide a python implementation which allows us to validate our implementation on real data. Especially, we retrieve some human queries in the shape of graphs into the fly PPI network.

  13. Developing A Web-based User Interface for Semantic Information Retrieval

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Keller, Richard M.

    2003-01-01

    While there are now a number of languages and frameworks that enable computer-based systems to search stored data semantically, the optimal design for effective user interfaces for such systems is still uncle ar. Such interfaces should mask unnecessary query detail from users, yet still allow them to build queries of arbitrary complexity without significant restrictions. We developed a user interface supporting s emantic query generation for Semanticorganizer, a tool used by scient ists and engineers at NASA to construct networks of knowledge and dat a. Through this interface users can select node types, node attribute s and node links to build ad-hoc semantic queries for searching the S emanticOrganizer network.

  14. Web image retrieval using an effective topic and content-based technique

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Cheng; Prabhakara, Rashmi

    2005-03-01

    There has been an exponential growth in the amount of image data that is available on the World Wide Web since the early development of Internet. With such a large amount of information and image available and its usefulness, an effective image retrieval system is thus greatly needed. In this paper, we present an effective approach with both image matching and indexing techniques that improvise on existing integrated image retrieval methods. This technique follows a two-phase approach, integrating query by topic and query by example specification methods. In the first phase, The topic-based image retrieval is performed by using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. This technique consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. In the second phase, we use query by example specification to perform a low-level content-based image match in order to retrieve smaller and relatively closer results of the example image. From this, information related to the image feature is automatically extracted from the query image. The main objective of our approach is to develop a functional image search and indexing technique and to demonstrate that better retrieval results can be achieved.

  15. The Localized Discovery and Recovery for Query Packet Losses in Wireless Sensor Networks with Distributed Detector Clusters

    PubMed Central

    Teng, Rui; Leibnitz, Kenji; Miura, Ryu

    2013-01-01

    An essential application of wireless sensor networks is to successfully respond to user queries. Query packet losses occur in the query dissemination due to wireless communication problems such as interference, multipath fading, packet collisions, etc. The losses of query messages at sensor nodes result in the failure of sensor nodes reporting the requested data. Hence, the reliable and successful dissemination of query messages to sensor nodes is a non-trivial problem. The target of this paper is to enable highly successful query delivery to sensor nodes by localized and energy-efficient discovery, and recovery of query losses. We adopt local and collective cooperation among sensor nodes to increase the success rate of distributed discoveries and recoveries. To enable the scalability in the operations of discoveries and recoveries, we employ a distributed name resolution mechanism at each sensor node to allow sensor nodes to self-detect the correlated queries and query losses, and then efficiently locally respond to the query losses. We prove that the collective discovery of query losses has a high impact on the success of query dissemination and reveal that scalability can be achieved by using the proposed approach. We further study the novel features of the cooperation and competition in the collective recovery at PHY and MAC layers, and show that the appropriate number of detectors can achieve optimal successful recovery rate. We evaluate the proposed approach with both mathematical analyses and computer simulations. The proposed approach enables a high rate of successful delivery of query messages and it results in short route lengths to recover from query losses. The proposed approach is scalable and operates in a fully distributed manner. PMID:23748172

  16. Optimizing Maintenance of Constraint-Based Database Caches

    NASA Astrophysics Data System (ADS)

    Klein, Joachim; Braun, Susanne

    Caching data reduces user-perceived latency and often enhances availability in case of server crashes or network failures. DB caching aims at local processing of declarative queries in a DBMS-managed cache close to the application. Query evaluation must produce the same results as if done at the remote database backend, which implies that all data records needed to process such a query must be present and controlled by the cache, i. e., to achieve “predicate-specific” loading and unloading of such record sets. Hence, cache maintenance must be based on cache constraints such that “predicate completeness” of the caching units currently present can be guaranteed at any point in time. We explore how cache groups can be maintained to provide the data currently needed. Moreover, we design and optimize loading and unloading algorithms for sets of records keeping the caching units complete, before we empirically identify the costs involved in cache maintenance.

  17. Spatial aggregation query in dynamic geosensor networks

    NASA Astrophysics Data System (ADS)

    Yi, Baolin; Feng, Dayang; Xiao, Shisong; Zhao, Erdun

    2007-11-01

    Wireless sensor networks have been widely used for civilian and military applications, such as environmental monitoring and vehicle tracking. In many of these applications, the researches mainly aim at building sensor network based systems to leverage the sensed data to applications. However, the existing works seldom exploited spatial aggregation query considering the dynamic characteristics of sensor networks. In this paper, we investigate how to process spatial aggregation query over dynamic geosensor networks where both the sink node and sensor nodes are mobile and propose several novel improvements on enabling techniques. The mobility of sensors makes the existing routing protocol based on information of fixed framework or the neighborhood infeasible. We present an improved location-based stateless implicit geographic forwarding (IGF) protocol for routing a query toward the area specified by query window, a diameter-based window aggregation query (DWAQ) algorithm for query propagation and data aggregation in the query window, finally considering the location changing of the sink node, we present two schemes to forward the result to the sink node. Simulation results show that the proposed algorithms can improve query latency and query accuracy.

  18. Efficient Execution Methods of Pivoting for Bulk Extraction of Entity-Attribute-Value-Modeled Data

    PubMed Central

    Luo, Gang; Frey, Lewis J.

    2017-01-01

    Entity-attribute-value (EAV) tables are widely used to store data in electronic medical records and clinical study data management systems. Before they can be used by various analytical (e.g., data mining and machine learning) programs, EAV-modeled data usually must be transformed into conventional relational table format through pivot operations. This time-consuming and resource-intensive process is often performed repeatedly on a regular basis, e.g., to provide a daily refresh of the content in a clinical data warehouse. Thus, it would be beneficial to make pivot operations as efficient as possible. In this paper, we present three techniques for improving the efficiency of pivot operations: 1) filtering out EAV tuples related to unneeded clinical parameters early on; 2) supporting pivoting across multiple EAV tables; and 3) conducting multi-query optimization. We demonstrate the effectiveness of our techniques through implementation. We show that our optimized execution method of pivoting using these techniques significantly outperforms the current basic execution method of pivoting. Our techniques can be used to build a data extraction tool to simplify the specification of and improve the efficiency of extracting data from the EAV tables in electronic medical records and clinical study data management systems. PMID:25608318

  19. Contingency Contractor Optimization Phase 3 Sustainment Database Design Document - Contingency Contractor Optimization Tool - Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frazier, Christopher Rawls; Durfee, Justin David; Bandlow, Alisa

    The Contingency Contractor Optimization Tool – Prototype (CCOT-P) database is used to store input and output data for the linear program model described in [1]. The database allows queries to retrieve this data and updating and inserting new input data.

  20. RiPPAS: A Ring-Based Privacy-Preserving Aggregation Scheme in Wireless Sensor Networks

    PubMed Central

    Zhang, Kejia; Han, Qilong; Cai, Zhipeng; Yin, Guisheng

    2017-01-01

    Recently, data privacy in wireless sensor networks (WSNs) has been paid increased attention. The characteristics of WSNs determine that users’ queries are mainly aggregation queries. In this paper, the problem of processing aggregation queries in WSNs with data privacy preservation is investigated. A Ring-based Privacy-Preserving Aggregation Scheme (RiPPAS) is proposed. RiPPAS adopts ring structure to perform aggregation. It uses pseudonym mechanism for anonymous communication and uses homomorphic encryption technique to add noise to the data easily to be disclosed. RiPPAS can handle both sum() queries and min()/max() queries, while the existing privacy-preserving aggregation methods can only deal with sum() queries. For processing sum() queries, compared with the existing methods, RiPPAS has advantages in the aspects of privacy preservation and communication efficiency, which can be proved by theoretical analysis and simulation results. For processing min()/max() queries, RiPPAS provides effective privacy preservation and has low communication overhead. PMID:28178197

  1. YAHA: fast and flexible long-read alignment with optimal breakpoint detection.

    PubMed

    Faust, Gregory G; Hall, Ira M

    2012-10-01

    With improved short-read assembly algorithms and the recent development of long-read sequencers, split mapping will soon be the preferred method for structural variant (SV) detection. Yet, current alignment tools are not well suited for this. We present YAHA, a fast and flexible hash-based aligner. YAHA is as fast and accurate as BWA-SW at finding the single best alignment per query and is dramatically faster and more sensitive than both SSAHA2 and MegaBLAST at finding all possible alignments. Unlike other aligners that report all, or one, alignment per query, or that use simple heuristics to select alignments, YAHA uses a directed acyclic graph to find the optimal set of alignments that cover a query using a biologically relevant breakpoint penalty. YAHA can also report multiple mappings per defined segment of the query. We show that YAHA detects more breakpoints in less time than BWA-SW across all SV classes, and especially excels at complex SVs comprising multiple breakpoints. YAHA is currently supported on 64-bit Linux systems. Binaries and sample data are freely available for download from http://faculty.virginia.edu/irahall/YAHA. imh4y@virginia.edu.

  2. Federated queries of clinical data repositories: the sum of the parts does not equal the whole

    PubMed Central

    Weber, Griffin M

    2013-01-01

    Background and objective In 2008 we developed a shared health research information network (SHRINE), which for the first time enabled research queries across the full patient populations of four Boston hospitals. It uses a federated architecture, where each hospital returns only the aggregate count of the number of patients who match a query. This allows hospitals to retain control over their local databases and comply with federal and state privacy laws. However, because patients may receive care from multiple hospitals, the result of a federated query might differ from what the result would be if the query were run against a single central repository. This paper describes the situations when this happens and presents a technique for correcting these errors. Methods We use a one-time process of identifying which patients have data in multiple repositories by comparing one-way hash values of patient demographics. This enables us to partition the local databases such that all patients within a given partition have data at the same subset of hospitals. Federated queries are then run separately on each partition independently, and the combined results are presented to the user. Results Using theoretical bounds and simulated hospital networks, we demonstrate that once the partitions are made, SHRINE can produce more precise estimates of the number of patients matching a query. Conclusions Uncertainty in the overlap of patient populations across hospitals limits the effectiveness of SHRINE and other federated query tools. Our technique reduces this uncertainty while retaining an aggregate federated architecture. PMID:23349080

  3. A two-level cache for distributed information retrieval in search engines.

    PubMed

    Zhang, Weizhe; He, Hui; Ye, Jianwei

    2013-01-01

    To improve the performance of distributed information retrieval in search engines, we propose a two-level cache structure based on the queries of the users' logs. We extract the highest rank queries of users from the static cache, in which the queries are the most popular. We adopt the dynamic cache as an auxiliary to optimize the distribution of the cache data. We propose a distribution strategy of the cache data. The experiments prove that the hit rate, the efficiency, and the time consumption of the two-level cache have advantages compared with other structures of cache.

  4. A Two-Level Cache for Distributed Information Retrieval in Search Engines

    PubMed Central

    Zhang, Weizhe; He, Hui; Ye, Jianwei

    2013-01-01

    To improve the performance of distributed information retrieval in search engines, we propose a two-level cache structure based on the queries of the users' logs. We extract the highest rank queries of users from the static cache, in which the queries are the most popular. We adopt the dynamic cache as an auxiliary to optimize the distribution of the cache data. We propose a distribution strategy of the cache data. The experiments prove that the hit rate, the efficiency, and the time consumption of the two-level cache have advantages compared with other structures of cache. PMID:24363621

  5. Integrating unified medical language system and association mining techniques into relevance feedback for biomedical literature search.

    PubMed

    Ji, Yanqing; Ying, Hao; Tran, John; Dews, Peter; Massanari, R Michael

    2016-07-19

    Finding highly relevant articles from biomedical databases is challenging not only because it is often difficult to accurately express a user's underlying intention through keywords but also because a keyword-based query normally returns a long list of hits with many citations being unwanted by the user. This paper proposes a novel biomedical literature search system, called BiomedSearch, which supports complex queries and relevance feedback. The system employed association mining techniques to build a k-profile representing a user's relevance feedback. More specifically, we developed a weighted interest measure and an association mining algorithm to find the strength of association between a query and each concept in the article(s) selected by the user as feedback. The top concepts were utilized to form a k-profile used for the next-round search. BiomedSearch relies on Unified Medical Language System (UMLS) knowledge sources to map text files to standard biomedical concepts. It was designed to support queries with any levels of complexity. A prototype of BiomedSearch software was made and it was preliminarily evaluated using the Genomics data from TREC (Text Retrieval Conference) 2006 Genomics Track. Initial experiment results indicated that BiomedSearch increased the mean average precision (MAP) for a set of queries. With UMLS and association mining techniques, BiomedSearch can effectively utilize users' relevance feedback to improve the performance of biomedical literature search.

  6. Towards Hybrid Online On-Demand Querying of Realtime Data with Stateful Complex Event Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qunzhi; Simmhan, Yogesh; Prasanna, Viktor K.

    Emerging Big Data applications in areas like e-commerce and energy industry require both online and on-demand queries to be performed over vast and fast data arriving as streams. These present novel challenges to Big Data management systems. Complex Event Processing (CEP) is recognized as a high performance online query scheme which in particular deals with the velocity aspect of the 3-V’s of Big Data. However, traditional CEP systems do not consider data variety and lack the capability to embed ad hoc queries over the volume of data streams. In this paper, we propose H2O, a stateful complex event processing framework,more » to support hybrid online and on-demand queries over realtime data. We propose a semantically enriched event and query model to address data variety. A formal query algebra is developed to precisely capture the stateful and containment semantics of online and on-demand queries. We describe techniques to achieve the interactive query processing over realtime data featured by efficient online querying, dynamic stream data persistence and on-demand access. The system architecture is presented and the current implementation status reported.« less

  7. DISPAQ: Distributed Profitable-Area Query from Big Taxi Trip Data.

    PubMed

    Putri, Fadhilah Kurnia; Song, Giltae; Kwon, Joonho; Rao, Praveen

    2017-09-25

    One of the crucial problems for taxi drivers is to efficiently locate passengers in order to increase profits. The rapid advancement and ubiquitous penetration of Internet of Things (IoT) technology into transportation industries enables us to provide taxi drivers with locations that have more potential passengers (more profitable areas) by analyzing and querying taxi trip data. In this paper, we propose a query processing system, called Distributed Profitable-Area Query ( DISPAQ ) which efficiently identifies profitable areas by exploiting the Apache Software Foundation's Spark framework and a MongoDB database. DISPAQ first maintains a profitable-area query index (PQ-index) by extracting area summaries and route summaries from raw taxi trip data. It then identifies candidate profitable areas by searching the PQ-index during query processing. Then, it exploits a Z-Skyline algorithm, which is an extension of skyline processing with a Z-order space filling curve, to quickly refine the candidate profitable areas. To improve the performance of distributed query processing, we also propose local Z-Skyline optimization, which reduces the number of dominant tests by distributing killer profitable areas to each cluster node. Through extensive evaluation with real datasets, we demonstrate that our DISPAQ system provides a scalable and efficient solution for processing profitable-area queries from huge amounts of big taxi trip data.

  8. A Novel Two-Tier Cooperative Caching Mechanism for the Optimization of Multi-Attribute Periodic Queries in Wireless Sensor Networks

    PubMed Central

    Zhou, ZhangBing; Zhao, Deng; Shu, Lei; Tsang, Kim-Fung

    2015-01-01

    Wireless sensor networks, serving as an important interface between physical environments and computational systems, have been used extensively for supporting domain applications, where multiple-attribute sensory data are queried from the network continuously and periodically. Usually, certain sensory data may not vary significantly within a certain time duration for certain applications. In this setting, sensory data gathered at a certain time slot can be used for answering concurrent queries and may be reused for answering the forthcoming queries when the variation of these data is within a certain threshold. To address this challenge, a popularity-based cooperative caching mechanism is proposed in this article, where the popularity of sensory data is calculated according to the queries issued in recent time slots. This popularity reflects the possibility that sensory data are interested in the forthcoming queries. Generally, sensory data with the highest popularity are cached at the sink node, while sensory data that may not be interested in the forthcoming queries are cached in the head nodes of divided grid cells. Leveraging these cooperatively cached sensory data, queries are answered through composing these two-tier cached data. Experimental evaluation shows that this approach can reduce the network communication cost significantly and increase the network capability. PMID:26131665

  9. DISPAQ: Distributed Profitable-Area Query from Big Taxi Trip Data †

    PubMed Central

    Putri, Fadhilah Kurnia; Song, Giltae; Rao, Praveen

    2017-01-01

    One of the crucial problems for taxi drivers is to efficiently locate passengers in order to increase profits. The rapid advancement and ubiquitous penetration of Internet of Things (IoT) technology into transportation industries enables us to provide taxi drivers with locations that have more potential passengers (more profitable areas) by analyzing and querying taxi trip data. In this paper, we propose a query processing system, called Distributed Profitable-Area Query (DISPAQ) which efficiently identifies profitable areas by exploiting the Apache Software Foundation’s Spark framework and a MongoDB database. DISPAQ first maintains a profitable-area query index (PQ-index) by extracting area summaries and route summaries from raw taxi trip data. It then identifies candidate profitable areas by searching the PQ-index during query processing. Then, it exploits a Z-Skyline algorithm, which is an extension of skyline processing with a Z-order space filling curve, to quickly refine the candidate profitable areas. To improve the performance of distributed query processing, we also propose local Z-Skyline optimization, which reduces the number of dominant tests by distributing killer profitable areas to each cluster node. Through extensive evaluation with real datasets, we demonstrate that our DISPAQ system provides a scalable and efficient solution for processing profitable-area queries from huge amounts of big taxi trip data. PMID:28946679

  10. Efficient Queries of Stand-off Annotations for Natural Language Processing on Electronic Medical Records.

    PubMed

    Luo, Yuan; Szolovits, Peter

    2016-01-01

    In natural language processing, stand-off annotation uses the starting and ending positions of an annotation to anchor it to the text and stores the annotation content separately from the text. We address the fundamental problem of efficiently storing stand-off annotations when applying natural language processing on narrative clinical notes in electronic medical records (EMRs) and efficiently retrieving such annotations that satisfy position constraints. Efficient storage and retrieval of stand-off annotations can facilitate tasks such as mapping unstructured text to electronic medical record ontologies. We first formulate this problem into the interval query problem, for which optimal query/update time is in general logarithm. We next perform a tight time complexity analysis on the basic interval tree query algorithm and show its nonoptimality when being applied to a collection of 13 query types from Allen's interval algebra. We then study two closely related state-of-the-art interval query algorithms, proposed query reformulations, and augmentations to the second algorithm. Our proposed algorithm achieves logarithmic time stabbing-max query time complexity and solves the stabbing-interval query tasks on all of Allen's relations in logarithmic time, attaining the theoretic lower bound. Updating time is kept logarithmic and the space requirement is kept linear at the same time. We also discuss interval management in external memory models and higher dimensions.

  11. Efficient Queries of Stand-off Annotations for Natural Language Processing on Electronic Medical Records

    PubMed Central

    Luo, Yuan; Szolovits, Peter

    2016-01-01

    In natural language processing, stand-off annotation uses the starting and ending positions of an annotation to anchor it to the text and stores the annotation content separately from the text. We address the fundamental problem of efficiently storing stand-off annotations when applying natural language processing on narrative clinical notes in electronic medical records (EMRs) and efficiently retrieving such annotations that satisfy position constraints. Efficient storage and retrieval of stand-off annotations can facilitate tasks such as mapping unstructured text to electronic medical record ontologies. We first formulate this problem into the interval query problem, for which optimal query/update time is in general logarithm. We next perform a tight time complexity analysis on the basic interval tree query algorithm and show its nonoptimality when being applied to a collection of 13 query types from Allen’s interval algebra. We then study two closely related state-of-the-art interval query algorithms, proposed query reformulations, and augmentations to the second algorithm. Our proposed algorithm achieves logarithmic time stabbing-max query time complexity and solves the stabbing-interval query tasks on all of Allen’s relations in logarithmic time, attaining the theoretic lower bound. Updating time is kept logarithmic and the space requirement is kept linear at the same time. We also discuss interval management in external memory models and higher dimensions. PMID:27478379

  12. The role of economics in the QUERI program: QUERI Series

    PubMed Central

    Smith, Mark W; Barnett, Paul G

    2008-01-01

    Background The United States (U.S.) Department of Veterans Affairs (VA) Quality Enhancement Research Initiative (QUERI) has implemented economic analyses in single-site and multi-site clinical trials. To date, no one has reviewed whether the QUERI Centers are taking an optimal approach to doing so. Consistent with the continuous learning culture of the QUERI Program, this paper provides such a reflection. Methods We present a case study of QUERI as an example of how economic considerations can and should be integrated into implementation research within both single and multi-site studies. We review theoretical and applied cost research in implementation studies outside and within VA. We also present a critique of the use of economic research within the QUERI program. Results Economic evaluation is a key element of implementation research. QUERI has contributed many developments in the field of implementation but has only recently begun multi-site implementation trials across multiple regions within the national VA healthcare system. These trials are unusual in their emphasis on developing detailed costs of implementation, as well as in the use of business case analyses (budget impact analyses). Conclusion Economics appears to play an important role in QUERI implementation studies, only after implementation has reached the stage of multi-site trials. Economic analysis could better inform the choice of which clinical best practices to implement and the choice of implementation interventions to employ. QUERI economics also would benefit from research on costing methods and development of widely accepted international standards for implementation economics. PMID:18430199

  13. The role of economics in the QUERI program: QUERI Series.

    PubMed

    Smith, Mark W; Barnett, Paul G

    2008-04-22

    The United States (U.S.) Department of Veterans Affairs (VA) Quality Enhancement Research Initiative (QUERI) has implemented economic analyses in single-site and multi-site clinical trials. To date, no one has reviewed whether the QUERI Centers are taking an optimal approach to doing so. Consistent with the continuous learning culture of the QUERI Program, this paper provides such a reflection. We present a case study of QUERI as an example of how economic considerations can and should be integrated into implementation research within both single and multi-site studies. We review theoretical and applied cost research in implementation studies outside and within VA. We also present a critique of the use of economic research within the QUERI program. Economic evaluation is a key element of implementation research. QUERI has contributed many developments in the field of implementation but has only recently begun multi-site implementation trials across multiple regions within the national VA healthcare system. These trials are unusual in their emphasis on developing detailed costs of implementation, as well as in the use of business case analyses (budget impact analyses). Economics appears to play an important role in QUERI implementation studies, only after implementation has reached the stage of multi-site trials. Economic analysis could better inform the choice of which clinical best practices to implement and the choice of implementation interventions to employ. QUERI economics also would benefit from research on costing methods and development of widely accepted international standards for implementation economics.

  14. HodDB: Design and Analysis of a Query Processor for Brick.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fierro, Gabriel; Culler, David

    Brick is a recently proposed metadata schema and ontology for describing building components and the relationships between them. It represents buildings as directed labeled graphs using the RDF data model. Using the SPARQL query language, building-agnostic applications query a Brick graph to discover the set of resources and relationships they require to operate. Latency-sensitive applications, such as user interfaces, demand response and modelpredictive control, require fast queries — conventionally less than 100ms. We benchmark a set of popular open-source and commercial SPARQL databases against three real Brick models using seven application queries and find that none of them meet thismore » performance target. This lack of performance can be attributed to design decisions that optimize for queries over large graphs consisting of billions of triples, but give poor spatial locality and join performance on the small dense graphs typical of Brick. We present the design and evaluation of HodDB, a RDF/SPARQL database for Brick built over a node-based index structure. HodDB performs Brick queries 3-700x faster than leading SPARQL databases and consistently meets the 100ms threshold, enabling the portability of important latency-sensitive building applications.« less

  15. LETTER TO THE EDITOR: Optimization of partial search

    NASA Astrophysics Data System (ADS)

    Korepin, Vladimir E.

    2005-11-01

    A quantum Grover search algorithm can find a target item in a database faster than any classical algorithm. One can trade accuracy for speed and find a part of the database (a block) containing the target item even faster; this is partial search. A partial search algorithm was recently suggested by Grover and Radhakrishnan. Here we optimize it. Efficiency of the search algorithm is measured by the number of queries to the oracle. The author suggests a new version of the Grover-Radhakrishnan algorithm which uses a minimal number of such queries. The algorithm can run on the same hardware that is used for the usual Grover algorithm.

  16. Experiments on Interfaces To Support Query Expansion.

    ERIC Educational Resources Information Center

    Beaulieu, M.

    1997-01-01

    Focuses on the user and human-computer interaction aspects of the research based on the Okapi text retrieval system. Three experiments implementing different approaches to query expansion are described, including the use of graphical user interfaces with different windowing techniques. (Author/LRW)

  17. Geometric Representations of Condition Queries on Three-Dimensional Vector Fields

    NASA Technical Reports Server (NTRS)

    Henze, Chris

    1999-01-01

    Condition queries on distributed data ask where particular conditions are satisfied. It is possible to represent condition queries as geometric objects by plotting field data in various spaces derived from the data, and by selecting loci within these derived spaces which signify the desired conditions. Rather simple geometric partitions of derived spaces can represent complex condition queries because much complexity can be encapsulated in the derived space mapping itself A geometric view of condition queries provides a useful conceptual unification, allowing one to intuitively understand many existing vector field feature detection algorithms -- and to design new ones -- as variations on a common theme. A geometric representation of condition queries also provides a simple and coherent basis for computer implementation, reducing a wide variety of existing and potential vector field feature detection techniques to a few simple geometric operations.

  18. Hybrid Schema Matching for Deep Web

    NASA Astrophysics Data System (ADS)

    Chen, Kerui; Zuo, Wanli; He, Fengling; Chen, Yongheng

    Schema matching is the process of identifying semantic mappings, or correspondences, between two or more schemas. Schema matching is a first step and critical part of data integration. For schema matching of deep web, most researches only interested in query interface, while rarely pay attention to abundant schema information contained in query result pages. This paper proposed a mixed schema matching technique, which combines attributes that appeared in query structures and query results of different data sources, and mines the matched schemas inside. Experimental results prove the effectiveness of this method for improving the accuracy of schema matching.

  19. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data.

    PubMed

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H

    2012-11-06

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the "big data" challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce.

  20. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data

    PubMed Central

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H.

    2013-01-01

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the “big data” challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce. PMID:24501719

  1. Artemis: Integrating Scientific Data on the Grid (Preprint)

    DTIC Science & Technology

    2004-07-01

    Theseus execution engine [Barish and Knoblock 03] to efficiently execute the generated datalog program. The Theseus execution engine has a wide...variety of operations to query databases, web sources, and web services. Theseus also contains a wide variety of relational operations, such as...selection, union, or projection. Furthermore, Theseus optimizes the execution of an integration plan by querying several data sources in parallel and

  2. A Priority Fuzzy Logic Extension of the XQuery Language

    NASA Astrophysics Data System (ADS)

    Škrbić, Srdjan; Wettayaprasit, Wiphada; Saeueng, Pannipa

    2011-09-01

    In recent years there have been significant research findings in flexible XML querying techniques using fuzzy set theory. Many types of fuzzy extensions to XML data model and XML query languages have been proposed. In this paper, we introduce priority fuzzy logic extensions to XQuery language. Describing these extensions we introduce a new query language. Moreover, we describe a way to implement an interpreter for this language using an existing XML native database.

  3. Evaluation methodology for query-based scene understanding systems

    NASA Astrophysics Data System (ADS)

    Huster, Todd P.; Ross, Timothy D.; Culbertson, Jared L.

    2015-05-01

    In this paper, we are proposing a method for the principled evaluation of scene understanding systems in a query-based framework. We can think of a query-based scene understanding system as a generalization of typical sensor exploitation systems where instead of performing a narrowly defined task (e.g., detect, track, classify, etc.), the system can perform general user-defined tasks specified in a query language. Examples of this type of system have been developed as part of DARPA's Mathematics of Sensing, Exploitation, and Execution (MSEE) program. There is a body of literature on the evaluation of typical sensor exploitation systems, but the open-ended nature of the query interface introduces new aspects to the evaluation problem that have not been widely considered before. In this paper, we state the evaluation problem and propose an approach to efficiently learn about the quality of the system under test. We consider the objective of the evaluation to be to build a performance model of the system under test, and we rely on the principles of Bayesian experiment design to help construct and select optimal queries for learning about the parameters of that model.

  4. FastBit Reference Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kesheng

    2007-08-02

    An index in a database system is a data structure that utilizes redundant information about the base data to speed up common searching and retrieval operations. Most commonly used indexes are variants of B-trees, such as B+-tree and B*-tree. FastBit implements a set of alternative indexes call compressed bitmap indexes. Compared with B-tree variants, these indexes provide very efficient searching and retrieval operations by sacrificing the efficiency of updating the indexes after the modification of an individual record. In addition to the well-known strengths of bitmap indexes, FastBit has a special strength stemming from the bitmap compression scheme used. Themore » compression method is called the Word-Aligned Hybrid (WAH) code. It reduces the bitmap indexes to reasonable sizes and at the same time allows very efficient bitwise logical operations directly on the compressed bitmaps. Compared with the well-known compression methods such as LZ77 and Byte-aligned Bitmap code (BBC), WAH sacrifices some space efficiency for a significant improvement in operational efficiency. Since the bitwise logical operations are the most important operations needed to answer queries, using WAH compression has been shown to answer queries significantly faster than using other compression schemes. Theoretical analyses showed that WAH compressed bitmap indexes are optimal for one-dimensional range queries. Only the most efficient indexing schemes such as B+-tree and B*-tree have this optimality property. However, bitmap indexes are superior because they can efficiently answer multi-dimensional range queries by combining the answers to one-dimensional queries.« less

  5. Datacube Services in Action, Using Open Source and Open Standards

    NASA Astrophysics Data System (ADS)

    Baumann, P.; Misev, D.

    2016-12-01

    Array Databases comprise novel, promising technology for massive spatio-temporal datacubes, extending the SQL paradigm of "any query, anytime" to n-D arrays. On server side, such queries can be optimized, parallelized, and distributed based on partitioned array storage. The rasdaman ("raster data manager") system, which has pioneered Array Databases, is available in open source on www.rasdaman.org. Its declarative query language extends SQL with array operators which are optimized and parallelized on server side. The rasdaman engine, which is part of OSGeo Live, is mature and in operational use databases individually holding dozens of Terabytes. Further, the rasdaman concepts have strongly impacted international Big Data standards in the field, including the forthcoming MDA ("Multi-Dimensional Array") extension to ISO SQL, the OGC Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS) standards, and the forthcoming INSPIRE WCS/WCPS; in both OGC and INSPIRE, OGC is WCS Core Reference Implementation. In our talk we present concepts, architecture, operational services, and standardization impact of open-source rasdaman, as well as experiences made.

  6. Queries over Unstructured Data: Probabilistic Methods to the Rescue

    NASA Astrophysics Data System (ADS)

    Sarawagi, Sunita

    Unstructured data like emails, addresses, invoices, call transcripts, reviews, and press releases are now an integral part of any large enterprise. A challenge of modern business intelligence applications is analyzing and querying data seamlessly across structured and unstructured sources. This requires the development of automated techniques for extracting structured records from text sources and resolving entity mentions in data from various sources. The success of any automated method for extraction and integration depends on how effectively it unifies diverse clues in the unstructured source and in existing structured databases. We argue that statistical learning techniques like Conditional Random Fields (CRFs) provide a accurate, elegant and principled framework for tackling these tasks. Given the inherent noise in real-world sources, it is important to capture the uncertainty of the above operations via imprecise data models. CRFs provide a sound probability distribution over extractions but are not easy to represent and query in a relational framework. We present methods of approximating this distribution to query-friendly row and column uncertainty models. Finally, we present models for representing the uncertainty of de-duplication and algorithms for various Top-K count queries on imprecise duplicates.

  7. Mining the SDSS SkyServer SQL queries log

    NASA Astrophysics Data System (ADS)

    Hirota, Vitor M.; Santos, Rafael; Raddick, Jordan; Thakar, Ani

    2016-05-01

    SkyServer, the Internet portal for the Sloan Digital Sky Survey (SDSS) astronomic catalog, provides a set of tools that allows data access for astronomers and scientific education. One of SkyServer data access interfaces allows users to enter ad-hoc SQL statements to query the catalog. SkyServer also presents some template queries that can be used as basis for more complex queries. This interface has logged over 330 million queries submitted since 2001. It is expected that analysis of this data can be used to investigate usage patterns, identify potential new classes of queries, find similar queries, etc. and to shed some light on how users interact with the Sloan Digital Sky Survey data and how scientists have adopted the new paradigm of e-Science, which could in turn lead to enhancements on the user interfaces and experience in general. In this paper we review some approaches to SQL query mining, apply the traditional techniques used in the literature and present lessons learned, namely, that the general text mining approach for feature extraction and clustering does not seem to be adequate for this type of data, and, most importantly, we find that this type of analysis can result in very different queries being clustered together.

  8. Advanced Feedback Methods in Information Retrieval.

    ERIC Educational Resources Information Center

    Salton, G.; And Others

    1985-01-01

    In this study, automatic feedback techniques are applied to Boolean query statements in online information retrieval to generate improved query statements based on information contained in previously retrieved documents. Feedback operations are carried out using conventional Boolean logic and extended logic. Experimental output is included to…

  9. A Review of Statistical Disclosure Control Techniques Employed by Web-Based Data Query Systems.

    PubMed

    Matthews, Gregory J; Harel, Ofer; Aseltine, Robert H

    We systematically reviewed the statistical disclosure control techniques employed for releasing aggregate data in Web-based data query systems listed in the National Association for Public Health Statistics and Information Systems (NAPHSIS). Each Web-based data query system was examined to see whether (1) it employed any type of cell suppression, (2) it used secondary cell suppression, and (3) suppressed cell counts could be calculated. No more than 30 minutes was spent on each system. Of the 35 systems reviewed, no suppression was observed in more than half (n = 18); observed counts below the threshold were observed in 2 sites; and suppressed values were recoverable in 9 sites. Six sites effectively suppressed small counts. This inquiry has revealed substantial weaknesses in the protective measures used in data query systems containing sensitive public health data. Many systems utilized no disclosure control whatsoever, and the vast majority of those that did deployed it inconsistently or inadequately.

  10. Web page sorting algorithm based on query keyword distance relation

    NASA Astrophysics Data System (ADS)

    Yang, Han; Cui, Hong Gang; Tang, Hao

    2017-08-01

    In order to optimize the problem of page sorting, according to the search keywords in the web page in the relationship between the characteristics of the proposed query keywords clustering ideas. And it is converted into the degree of aggregation of the search keywords in the web page. Based on the PageRank algorithm, the clustering degree factor of the query keyword is added to make it possible to participate in the quantitative calculation. This paper proposes an improved algorithm for PageRank based on the distance relation between search keywords. The experimental results show the feasibility and effectiveness of the method.

  11. Intraoperative virtual brain counseling

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaowei; Grosky, William I.; Zamorano, Lucia J.; Muzik, Otto; Diaz, Fernando

    1997-06-01

    Our objective is to offer online real-tim e intelligent guidance to the neurosurgeon. Different from traditional image-guidance technologies that offer intra-operative visualization of medical images or atlas images, virtual brain counseling goes one step further. It can distinguish related brain structures and provide information about them intra-operatively. Virtual brain counseling is the foundation for surgical planing optimization and on-line surgical reference. It can provide a warning system that alerts the neurosurgeon if the chosen trajectory will pass through eloquent brain areas. In order to fulfill this objective, tracking techniques are involved for intra- operativity. Most importantly, a 3D virtual brian environment, different from traditional 3D digitized atlases, is an object-oriented model of the brain that stores information about different brain structures together with their elated information. An object-oriented hierarchical hyper-voxel space (HHVS) is introduced to integrate anatomical and functional structures. Spatial queries based on position of interest, line segment of interest, and volume of interest are introduced in this paper. The virtual brain environment is integrated with existing surgical pre-planning and intra-operative tracking systems to provide information for planning optimization and on-line surgical guidance. The neurosurgeon is alerted automatically if the planned treatment affects any critical structures. Architectures such as HHVS and algorithms, such as spatial querying, normalizing, and warping are presented in the paper. A prototype has shown that the virtual brain is intuitive in its hierarchical 3D appearance. It also showed that HHVS, as the key structure for virtual brain counseling, efficiently integrates multi-scale brain structures based on their spatial relationships.This is a promising development for optimization of treatment plans and online surgical intelligent guidance.

  12. Foundations of RDF Databases

    NASA Astrophysics Data System (ADS)

    Arenas, Marcelo; Gutierrez, Claudio; Pérez, Jorge

    The goal of this paper is to give an overview of the basics of the theory of RDF databases. We provide a formal definition of RDF that includes the features that distinguish this model from other graph data models. We then move into the fundamental issue of querying RDF data. We start by considering the RDF query language SPARQL, which is a W3C Recommendation since January 2008. We provide an algebraic syntax and a compositional semantics for this language, study the complexity of the evaluation problem for different fragments of SPARQL, and consider the problem of optimizing the evaluation of SPARQL queries, showing that a natural fragment of this language has some good properties in this respect. We furthermore study the expressive power of SPARQL, by comparing it with some well-known query languages such as relational algebra. We conclude by considering the issue of querying RDF data in the presence of RDFS vocabulary. In particular, we present a recently proposed extension of SPARQL with navigational capabilities.

  13. A Queueing Approach to Optimal Resource Replication in Wireless Sensor Networks

    DTIC Science & Technology

    2009-04-29

    network (an energy- centric approach) or to ensure the proportion of query failures does not exceed a predetermined threshold (a failure- centric ...replication strategies in wireless sensor networks. The model can be used to minimize either the total transmission rate of the network (an energy- centric ...approach) or to ensure the proportion of query failures does not exceed a predetermined threshold (a failure- centric approach). The model explicitly

  14. Optimization of Extended Relational Database Systems

    DTIC Science & Technology

    1986-07-23

    control functions are integrated into a single system in a homogeneoua way. As a first exam - ple, consider previous work in supporting various semantic...sizes are reduced and, wnk? quently, the number of materializations that will be needed is aba lower. For exam - pie, in the above query tuple...retrieve (EMP.name) where EMP hobbies instrument = ’ violin ’ When the various entries in the hobbies field are materialized, only those queries that

  15. Entity Bases: Large-Scale Knowledgebases for Intelligence Data

    DTIC Science & Technology

    2009-02-01

    declaratively expressed as Datalog rules . The EntityBase supports two query scenarios: • Free-Form Querying: A human analyst or a client program can pose...integration, Prometheus follows the Inverse Rules algo- rithm (Duschka 1997) with additional optimizations (Thakkar et al. 2005). We use the mediator...Discovery and Data Mining (PAKDD󈧈), Sydney, Australia. Crammer , K., Dekel, O., Keshet, J., Shalev-Shwartz, S., and Singer, Y. (2006). Online passive

  16. Melody Alignment and Similarity Metric for Content-Based Music Retrieval

    NASA Astrophysics Data System (ADS)

    Zhu, Yongwei; Kankanhalli, Mohan S.

    2003-01-01

    Music query-by-humming has attracted much research interest recently. It is a challenging problem since the hummed query inevitably contains much variation and inaccuracy. Furthermore, the similarity computation between the query tune and the reference melody is not easy due to the difficulty in ensuring proper alignment. This is because the query tune can be rendered at an unknown speed and it is usually an arbitrary subsequence of the target reference melody. Many of the previous methods, which adopt note segmentation and string matching, suffer drastically from the errors in the note segmentation, which affects retrieval accuracy and efficiency. Some methods solve the alignment issue by controlling the speed of the articulation of queries, which is inconvenient because it forces users to hum along a metronome. Some other techniques introduce arbitrary rescaling in time but this is computationally very inefficient. In this paper, we introduce a melody alignment technique, which addresses the robustness and efficiency issues. We also present a new melody similarity metric, which is performed directly on melody contours of the query data. This approach cleanly separates the alignment and similarity measurement in the search process. We show how to robustly and efficiently align the query melody with the reference melodies and how to measure the similarity subsequently. We have carried out extensive experiments. Our melody alignment method can reduce the matching candidate to 1.7% with 95% correct alignment rate. The overall retrieval system achieved 80% recall in the top 10 rank list. The results demonstrate the robustness and effectiveness the proposed methods.

  17. Experiments in Multi-Lingual Information Retrieval.

    ERIC Educational Resources Information Center

    Salton, Gerard

    A comparison was made of the performance in an automatic information retrieval environment of user queries and document abstracts available in natural language form in both English and French. The results obtained indicate that the automatic indexing and retrieval techniques actually used appear equally effective in handling the query and document…

  18. Iterative Exploration, Design and Evaluation of Support for Query Reformulation in Interactive Information Retrieval.

    ERIC Educational Resources Information Center

    Belkin, N. J.; Cool, C.; Kelly, D.; Lin, S. -J.; Park, S. Y.; Perez-Carballo, J.; Sikora, C.

    2001-01-01

    Reports on the progressive investigation of techniques for supporting interactive query reformulation in the TREC (Text Retrieval Conference) Interactive Track. Highlights include methods of term suggestion; interface design to support different system functionalities; an overview of each year's TREC investigation; and relevance to the development…

  19. Comprehensive Optimal Manpower and Personnel Analytic Simulation System (COMPASS)

    DTIC Science & Technology

    2009-10-01

    4 The EDB consists of 4 major components (some of which are re-usable): 1. Metadata Editor ( MDE ): Also considered a leaf node, the metadata...end-user queries via the QB. The EDB supports multiple instances of the MDE , although currently, only a single instance is recommended. 2 Query...the MSB is a central collection of web services, responsible for the authentication and authorization of users, maintenance of the EDB metadata

  20. LSD: Large Survey Database framework

    NASA Astrophysics Data System (ADS)

    Juric, Mario

    2012-09-01

    The Large Survey Database (LSD) is a Python framework and DBMS for distributed storage, cross-matching and querying of large survey catalogs (>10^9 rows, >1 TB). The primary driver behind its development is the analysis of Pan-STARRS PS1 data. It is specifically optimized for fast queries and parallel sweeps of positionally and temporally indexed datasets. It transparently scales to more than >10^2 nodes, and can be made to function in "shared nothing" architectures.

  1. Analytics-Driven Lossless Data Compression for Rapid In-situ Indexing, Storing, and Querying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, John; Arkatkar, Isha; Lakshminarasimhan, Sriram

    2013-01-01

    The analysis of scientific simulations is highly data-intensive and is becoming an increasingly important challenge. Peta-scale data sets require the use of light-weight query-driven analysis methods, as opposed to heavy-weight schemes that optimize for speed at the expense of size. This paper is an attempt in the direction of query processing over losslessly compressed scientific data. We propose a co-designed double-precision compression and indexing methodology for range queries by performing unique-value-based binning on the most significant bytes of double precision data (sign, exponent, and most significant mantissa bits), and inverting the resulting metadata to produce an inverted index over amore » reduced data representation. Without the inverted index, our method matches or improves compression ratios over both general-purpose and floating-point compression utilities. The inverted index is light-weight, and the overall storage requirement for both reduced column and index is less than 135%, whereas existing DBMS technologies can require 200-400%. As a proof-of-concept, we evaluate univariate range queries that additionally return column values, a critical component of data analytics, against state-of-the-art bitmap indexing technology, showing multi-fold query performance improvements.« less

  2. LAILAPS-QSM: A RESTful API and JAVA library for semantic query suggestions.

    PubMed

    Chen, Jinbo; Scholz, Uwe; Zhou, Ruonan; Lange, Matthias

    2018-03-01

    In order to access and filter content of life-science databases, full text search is a widely applied query interface. But its high flexibility and intuitiveness is paid for with potentially imprecise and incomplete query results. To reduce this drawback, query assistance systems suggest those combinations of keywords with the highest potential to match most of the relevant data records. Widespread approaches are syntactic query corrections that avoid misspelling and support expansion of words by suffixes and prefixes. Synonym expansion approaches apply thesauri, ontologies, and query logs. All need laborious curation and maintenance. Furthermore, access to query logs is in general restricted. Approaches that infer related queries by their query profile like research field, geographic location, co-authorship, affiliation etc. require user's registration and its public accessibility that contradict privacy concerns. To overcome these drawbacks, we implemented LAILAPS-QSM, a machine learning approach that reconstruct possible linguistic contexts of a given keyword query. The context is referred from the text records that are stored in the databases that are going to be queried or extracted for a general purpose query suggestion from PubMed abstracts and UniProt data. The supplied tool suite enables the pre-processing of these text records and the further computation of customized distributed word vectors. The latter are used to suggest alternative keyword queries. An evaluated of the query suggestion quality was done for plant science use cases. Locally present experts enable a cost-efficient quality assessment in the categories trait, biological entity, taxonomy, affiliation, and metabolic function which has been performed using ontology term similarities. LAILAPS-QSM mean information content similarity for 15 representative queries is 0.70, whereas 34% have a score above 0.80. In comparison, the information content similarity for human expert made query suggestions is 0.90. The software is either available as tool set to build and train dedicated query suggestion services or as already trained general purpose RESTful web service. The service uses open interfaces to be seamless embeddable into database frontends. The JAVA implementation uses highly optimized data structures and streamlined code to provide fast and scalable response for web service calls. The source code of LAILAPS-QSM is available under GNU General Public License version 2 in Bitbucket GIT repository: https://bitbucket.org/ipk_bit_team/bioescorte-suggestion.

  3. A similarity-based data warehousing environment for medical images.

    PubMed

    Teixeira, Jefferson William; Annibal, Luana Peixoto; Felipe, Joaquim Cezar; Ciferri, Ricardo Rodrigues; Ciferri, Cristina Dutra de Aguiar

    2015-11-01

    A core issue of the decision-making process in the medical field is to support the execution of analytical (OLAP) similarity queries over images in data warehousing environments. In this paper, we focus on this issue. We propose imageDWE, a non-conventional data warehousing environment that enables the storage of intrinsic features taken from medical images in a data warehouse and supports OLAP similarity queries over them. To comply with this goal, we introduce the concept of perceptual layer, which is an abstraction used to represent an image dataset according to a given feature descriptor in order to enable similarity search. Based on this concept, we propose the imageDW, an extended data warehouse with dimension tables specifically designed to support one or more perceptual layers. We also detail how to build an imageDW and how to load image data into it. Furthermore, we show how to process OLAP similarity queries composed of a conventional predicate and a similarity search predicate that encompasses the specification of one or more perceptual layers. Moreover, we introduce an index technique to improve the OLAP query processing over images. We carried out performance tests over a data warehouse environment that consolidated medical images from exams of several modalities. The results demonstrated the feasibility and efficiency of our proposed imageDWE to manage images and to process OLAP similarity queries. The results also demonstrated that the use of the proposed index technique guaranteed a great improvement in query processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Querying Archetype-Based Electronic Health Records Using Hadoop and Dewey Encoding of openEHR Models.

    PubMed

    Sundvall, Erik; Wei-Kleiner, Fang; Freire, Sergio M; Lambrix, Patrick

    2017-01-01

    Archetype-based Electronic Health Record (EHR) systems using generic reference models from e.g. openEHR, ISO 13606 or CIMI should be easy to update and reconfigure with new types (or versions) of data models or entries, ideally with very limited programming or manual database tweaking. Exploratory research (e.g. epidemiology) leading to ad-hoc querying on a population-wide scale can be a challenge in such environments. This publication describes implementation and test of an archetype-aware Dewey encoding optimization that can be used to produce such systems in environments supporting relational operations, e.g. RDBMs and distributed map-reduce frameworks like Hadoop. Initial testing was done using a nine-node 2.2 GHz quad-core Hadoop cluster querying a dataset consisting of targeted extracts from 4+ million real patient EHRs, query results with sub-minute response time were obtained.

  5. Document image retrieval through word shape coding.

    PubMed

    Lu, Shijian; Li, Linlin; Tan, Chew Lim

    2008-11-01

    This paper presents a document retrieval technique that is capable of searching document images without OCR (optical character recognition). The proposed technique retrieves document images by a new word shape coding scheme, which captures the document content through annotating each word image by a word shape code. In particular, we annotate word images by using a set of topological shape features including character ascenders/descenders, character holes, and character water reservoirs. With the annotated word shape codes, document images can be retrieved by either query keywords or a query document image. Experimental results show that the proposed document image retrieval technique is fast, efficient, and tolerant to various types of document degradation.

  6. Near-optimal quantum circuit for Grover's unstructured search using a transverse field

    NASA Astrophysics Data System (ADS)

    Jiang, Zhang; Rieffel, Eleanor G.; Wang, Zhihui

    2017-06-01

    Inspired by a class of algorithms proposed by Farhi et al. (arXiv:1411.4028), namely, the quantum approximate optimization algorithm (QAOA), we present a circuit-based quantum algorithm to search for a needle in a haystack, obtaining the same quadratic speedup achieved by Grover's original algorithm. In our algorithm, the problem Hamiltonian (oracle) and a transverse field are applied alternately to the system in a periodic manner. We introduce a technique, based on spin-coherent states, to analyze the composite unitary in a single period. This composite unitary drives a closed transition between two states that have high degrees of overlap with the initial state and the target state, respectively. The transition rate in our algorithm is of order Θ (1 /√{N }) , and the overlaps are of order Θ (1 ) , yielding a nearly optimal query complexity of T ≃√{N }(π /2 √{2 }) . Our algorithm is a QAOA circuit that demonstrates a quantum advantage with a large number of iterations that is not derived from Trotterization of an adiabatic quantum optimization (AQO) algorithm. It also suggests that the analysis required to understand QAOA circuits involves a very different process from estimating the energy gap of a Hamiltonian in AQO.

  7. ProBiS-CHARMMing: Web Interface for Prediction and Optimization of Ligands in Protein Binding Sites.

    PubMed

    Konc, Janez; Miller, Benjamin T; Štular, Tanja; Lešnik, Samo; Woodcock, H Lee; Brooks, Bernard R; Janežič, Dušanka

    2015-11-23

    Proteins often exist only as apo structures (unligated) in the Protein Data Bank, with their corresponding holo structures (with ligands) unavailable. However, apoproteins may not represent the amino-acid residue arrangement upon ligand binding well, which is especially problematic for molecular docking. We developed the ProBiS-CHARMMing web interface by connecting the ProBiS ( http://probis.cmm.ki.si ) and CHARMMing ( http://www.charmming.org ) web servers into one functional unit that enables prediction of protein-ligand complexes and allows for their geometry optimization and interaction energy calculation. The ProBiS web server predicts ligands (small compounds, proteins, nucleic acids, and single-atom ligands) that may bind to a query protein. This is achieved by comparing its surface structure against a nonredundant database of protein structures and finding those that have binding sites similar to that of the query protein. Existing ligands found in the similar binding sites are then transposed to the query according to predictions from ProBiS. The CHARMMing web server enables, among other things, minimization and potential energy calculation for a wide variety of biomolecular systems, and it is used here to optimize the geometry of the predicted protein-ligand complex structures using the CHARMM force field and to calculate their interaction energies with the corresponding query proteins. We show how ProBiS-CHARMMing can be used to predict ligands and their poses for a particular binding site, and minimize the predicted protein-ligand complexes to obtain representations of holoproteins. The ProBiS-CHARMMing web interface is freely available for academic users at http://probis.nih.gov.

  8. Time and Space Efficient Algorithms for Two-Party Authenticated Data Structures

    NASA Astrophysics Data System (ADS)

    Papamanthou, Charalampos; Tamassia, Roberto

    Authentication is increasingly relevant to data management. Data is being outsourced to untrusted servers and clients want to securely update and query their data. For example, in database outsourcing, a client's database is stored and maintained by an untrusted server. Also, in simple storage systems, clients can store very large amounts of data but at the same time, they want to assure their integrity when they retrieve them. In this paper, we present a model and protocol for two-party authentication of data structures. Namely, a client outsources its data structure and verifies that the answers to the queries have not been tampered with. We provide efficient algorithms to securely outsource a skip list with logarithmic time overhead at the server and client and logarithmic communication cost, thus providing an efficient authentication primitive for outsourced data, both structured (e.g., relational databases) and semi-structured (e.g., XML documents). In our technique, the client stores only a constant amount of space, which is optimal. Our two-party authentication framework can be deployed on top of existing storage applications, thus providing an efficient authentication service. Finally, we present experimental results that demonstrate the practical efficiency and scalability of our scheme.

  9. A Probabilistic Feature Map-Based Localization System Using a Monocular Camera.

    PubMed

    Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun

    2015-08-31

    Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments.

  10. A Probabilistic Feature Map-Based Localization System Using a Monocular Camera

    PubMed Central

    Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun

    2015-01-01

    Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments. PMID:26404284

  11. Projections for fast protein structure retrieval

    PubMed Central

    Bhattacharya, Sourangshu; Bhattacharyya, Chiranjib; Chandra, Nagasuma R

    2006-01-01

    Background In recent times, there has been an exponential rise in the number of protein structures in databases e.g. PDB. So, design of fast algorithms capable of querying such databases is becoming an increasingly important research issue. This paper reports an algorithm, motivated from spectral graph matching techniques, for retrieving protein structures similar to a query structure from a large protein structure database. Each protein structure is specified by the 3D coordinates of residues of the protein. The algorithm is based on a novel characterization of the residues, called projections, leading to a similarity measure between the residues of the two proteins. This measure is exploited to efficiently compute the optimal equivalences. Results Experimental results show that, the current algorithm outperforms the state of the art on benchmark datasets in terms of speed without losing accuracy. Search results on SCOP 95% nonredundant database, for fold similarity with 5 proteins from different SCOP classes show that the current method performs competitively with the standard algorithm CE. The algorithm is also capable of detecting non-topological similarities between two proteins which is not possible with most of the state of the art tools like Dali. PMID:17254310

  12. Improving 3d Spatial Queries Search: Newfangled Technique of Space Filling Curves in 3d City Modeling

    NASA Astrophysics Data System (ADS)

    Uznir, U.; Anton, F.; Suhaibah, A.; Rahman, A. A.; Mioc, D.

    2013-09-01

    The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc.. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using web standards. However, these 3D city models consume much more storage compared to two dimensional (2D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects. In this research, we propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA) or Hilbert mappings, in this research, we extend the Hilbert space-filling curve to one higher dimension for 3D city model data implementations. The query performance was tested using a CityGML dataset of 1,000 building blocks and the results are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a subinterval of the [0, 1] interval to the corresponding portion of the d-dimensional Hilbert's curve, preserves the Lebesgue measure and is Lipschitz continuous. Depending on the applications, several alternatives are possible in order to cluster spatial data together in the third dimension compared to its clustering in 2D.

  13. Shark: SQL and Analytics with Cost-Based Query Optimization on Coarse-Grained Distributed Memory

    DTIC Science & Technology

    2014-01-13

    RDBMS and contains a database (often MySQL or Derby) with a namespace for tables, table metadata and partition information. Table data is stored in an...serialization/deserialization) Java interface implementations with corresponding object inspectors. The Hive driver controls the processing of queries, coordinat...native API, RDD operations are invoked through a functional interface similar to DryadLINQ [32] in Scala, Java or Python. For example, the Scala code for

  14. Optimal Chunking of Large Multidimensional Arrays for Data Warehousing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otoo, Ekow J; Otoo, Ekow J.; Rotem, Doron

    2008-02-15

    Very large multidimensional arrays are commonly used in data intensive scientific computations as well as on-line analytical processingapplications referred to as MOLAP. The storage organization of such arrays on disks is done by partitioning the large global array into fixed size sub-arrays called chunks or tiles that form the units of data transfer between disk and memory. Typical queries involve the retrieval of sub-arrays in a manner that access all chunks that overlap the query results. An important metric of the storage efficiency is the expected number of chunks retrieved over all such queries. The question that immediately arises is"whatmore » shapes of array chunks give the minimum expected number of chunks over a query workload?" The problem of optimal chunking was first introduced by Sarawagi and Stonebraker who gave an approximate solution. In this paper we develop exact mathematical models of the problem and provide exact solutions using steepest descent and geometric programming methods. Experimental results, using synthetic and real life workloads, show that our solutions are consistently within than 2.0percent of the true number of chunks retrieved for any number of dimensions. In contrast, the approximate solution of Sarawagi and Stonebraker can deviate considerably from the true result with increasing number of dimensions and also may lead to suboptimal chunk shapes.« less

  15. Monitoring of bacteria growth using a wireless, remote query resonant-circuit sensor: application to environmental sensing

    NASA Technical Reports Server (NTRS)

    Ong, K. G.; Wang, J.; Singh, R. S.; Bachas, L. G.; Grimes, C. A.; Daunert, S. (Principal Investigator)

    2001-01-01

    A new technique is presented for in-vivo remote query measurement of the complex permittivity spectra of a biological culture solution. A sensor comprised of a printed inductor-capacitor resonant-circuit is placed within the culture solution of interest, with the impedance spectrum of the sensor measured using a remotely located loop antenna; the complex permittivity spectra of the culture is calculated from the measured impedance spectrum. The remote query nature of the sensor platform enables, for example, the in-vivo real-time monitoring of bacteria or yeast growth from within sealed opaque containers. The wireless monitoring technique does not require a specific alignment between sensor and antenna. Results are presented for studies conducted on laboratory strains of Bacillus subtilis, Escherichia coli JM109, Pseudomonas putida and Saccharomyces cerevisiae.

  16. High dimensional biological data retrieval optimization with NoSQL technology.

    PubMed

    Wang, Shicai; Pandis, Ioannis; Wu, Chao; He, Sijin; Johnson, David; Emam, Ibrahim; Guitton, Florian; Guo, Yike

    2014-01-01

    High-throughput transcriptomic data generated by microarray experiments is the most abundant and frequently stored kind of data currently used in translational medicine studies. Although microarray data is supported in data warehouses such as tranSMART, when querying relational databases for hundreds of different patient gene expression records queries are slow due to poor performance. Non-relational data models, such as the key-value model implemented in NoSQL databases, hold promise to be more performant solutions. Our motivation is to improve the performance of the tranSMART data warehouse with a view to supporting Next Generation Sequencing data. In this paper we introduce a new data model better suited for high-dimensional data storage and querying, optimized for database scalability and performance. We have designed a key-value pair data model to support faster queries over large-scale microarray data and implemented the model using HBase, an implementation of Google's BigTable storage system. An experimental performance comparison was carried out against the traditional relational data model implemented in both MySQL Cluster and MongoDB, using a large publicly available transcriptomic data set taken from NCBI GEO concerning Multiple Myeloma. Our new key-value data model implemented on HBase exhibits an average 5.24-fold increase in high-dimensional biological data query performance compared to the relational model implemented on MySQL Cluster, and an average 6.47-fold increase on query performance on MongoDB. The performance evaluation found that the new key-value data model, in particular its implementation in HBase, outperforms the relational model currently implemented in tranSMART. We propose that NoSQL technology holds great promise for large-scale data management, in particular for high-dimensional biological data such as that demonstrated in the performance evaluation described in this paper. We aim to use this new data model as a basis for migrating tranSMART's implementation to a more scalable solution for Big Data.

  17. High dimensional biological data retrieval optimization with NoSQL technology

    PubMed Central

    2014-01-01

    Background High-throughput transcriptomic data generated by microarray experiments is the most abundant and frequently stored kind of data currently used in translational medicine studies. Although microarray data is supported in data warehouses such as tranSMART, when querying relational databases for hundreds of different patient gene expression records queries are slow due to poor performance. Non-relational data models, such as the key-value model implemented in NoSQL databases, hold promise to be more performant solutions. Our motivation is to improve the performance of the tranSMART data warehouse with a view to supporting Next Generation Sequencing data. Results In this paper we introduce a new data model better suited for high-dimensional data storage and querying, optimized for database scalability and performance. We have designed a key-value pair data model to support faster queries over large-scale microarray data and implemented the model using HBase, an implementation of Google's BigTable storage system. An experimental performance comparison was carried out against the traditional relational data model implemented in both MySQL Cluster and MongoDB, using a large publicly available transcriptomic data set taken from NCBI GEO concerning Multiple Myeloma. Our new key-value data model implemented on HBase exhibits an average 5.24-fold increase in high-dimensional biological data query performance compared to the relational model implemented on MySQL Cluster, and an average 6.47-fold increase on query performance on MongoDB. Conclusions The performance evaluation found that the new key-value data model, in particular its implementation in HBase, outperforms the relational model currently implemented in tranSMART. We propose that NoSQL technology holds great promise for large-scale data management, in particular for high-dimensional biological data such as that demonstrated in the performance evaluation described in this paper. We aim to use this new data model as a basis for migrating tranSMART's implementation to a more scalable solution for Big Data. PMID:25435347

  18. Analysis of queries sent to PubMed at the point of care: Observation of search behaviour in a medical teaching hospital

    PubMed Central

    Hoogendam, Arjen; Stalenhoef, Anton FH; Robbé, Pieter F de Vries; Overbeke, A John PM

    2008-01-01

    Background The use of PubMed to answer daily medical care questions is limited because it is challenging to retrieve a small set of relevant articles and time is restricted. Knowing what aspects of queries are likely to retrieve relevant articles can increase the effectiveness of PubMed searches. The objectives of our study were to identify queries that are likely to retrieve relevant articles by relating PubMed search techniques and tools to the number of articles retrieved and the selection of articles for further reading. Methods This was a prospective observational study of queries regarding patient-related problems sent to PubMed by residents and internists in internal medicine working in an Academic Medical Centre. We analyzed queries, search results, query tools (Mesh, Limits, wildcards, operators), selection of abstract and full-text for further reading, using a portal that mimics PubMed. Results PubMed was used to solve 1121 patient-related problems, resulting in 3205 distinct queries. Abstracts were viewed in 999 (31%) of these queries, and in 126 (39%) of 321 queries using query tools. The average term count per query was 2.5. Abstracts were selected in more than 40% of queries using four or five terms, increasing to 63% if the use of four or five terms yielded 2–161 articles. Conclusion Queries sent to PubMed by physicians at our hospital during daily medical care contain fewer than three terms. Queries using four to five terms, retrieving less than 161 article titles, are most likely to result in abstract viewing. PubMed search tools are used infrequently by our population and are less effective than the use of four or five terms. Methods to facilitate the formulation of precise queries, using more relevant terms, should be the focus of education and research. PMID:18816391

  19. Formulation and Optimization of Candesartan Cilexetil Nano Lipid Carrier: In Vitro and In Vivo Evaluation.

    PubMed

    Paudel, Anjan; Ameeduzzafar; Imam, Syed Sarim; Fazil, Mohd; Khan, Shahroz; Hafeez, Abdul; Ahmad, Farhan Jalees; Ali, Asgar

    2017-01-01

    The objective of this study was to formulate and optimize Candesartan Cilexetil (CC) loaded nanostructured lipid carriers (NLCs) for enhanced oral bioavailability. Glycerol monostearate (GMS), Oleic acid, Tween 80 and Span 40 were selected as a solid lipid, liquid lipid, surfactant and co- surfactant, respectively. The CC-NLCs were prepared by hot emulsion probe sonication technique and optimized using experimental design approach. The formulated CC-NLCs were evaluated for various physicochemical parameters and further optimized formulation (CC-NLC-Opt) was assessed for in vivo pharmacokinetic and pharmacodynamic activity. The optimized formulation (CC-NLC-Opt) showed particle size (183.5±5.89nm), PDI (0.228±0.13), zeta potential (-28.2±0.99mV), and entrapment efficiency (88.9±3.69%). The comparative in vitro release study revealed that CC-NLC-Opt showed significantly better (p<0.05) release and enhanced permeation as compared to CC-suspension. The in vivo pharmacokinetic study gave many folds increase in oral bioavailability than CC suspension, which was further confirmed by antihypertensive activity in a murine model. Thus, the results of ex vivo permeation, pharmacokinetic study and pharmacodynamics study suggest the potential of CC-NLCs for improved oral delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. An intelligent user interface for browsing satellite data catalogs

    NASA Technical Reports Server (NTRS)

    Cromp, Robert F.; Crook, Sharon

    1989-01-01

    A large scale domain-independent spatial data management expert system that serves as a front-end to databases containing spatial data is described. This system is unique for two reasons. First, it uses spatial search techniques to generate a list of all the primary keys that fall within a user's spatial constraints prior to invoking the database management system, thus substantially decreasing the amount of time required to answer a user's query. Second, a domain-independent query expert system uses a domain-specific rule base to preprocess the user's English query, effectively mapping a broad class of queries into a smaller subset that can be handled by a commercial natural language processing system. The methods used by the spatial search module and the query expert system are explained, and the system architecture for the spatial data management expert system is described. The system is applied to data from the International Ultraviolet Explorer (IUE) satellite, and results are given.

  1. Federated ontology-based queries over cancer data

    PubMed Central

    2012-01-01

    Background Personalised medicine provides patients with treatments that are specific to their genetic profiles. It requires efficient data sharing of disparate data types across a variety of scientific disciplines, such as molecular biology, pathology, radiology and clinical practice. Personalised medicine aims to offer the safest and most effective therapeutic strategy based on the gene variations of each subject. In particular, this is valid in oncology, where knowledge about genetic mutations has already led to new therapies. Current molecular biology techniques (microarrays, proteomics, epigenetic technology and improved DNA sequencing technology) enable better characterisation of cancer tumours. The vast amounts of data, however, coupled with the use of different terms - or semantic heterogeneity - in each discipline makes the retrieval and integration of information difficult. Results Existing software infrastructures for data-sharing in the cancer domain, such as caGrid, support access to distributed information. caGrid follows a service-oriented model-driven architecture. Each data source in caGrid is associated with metadata at increasing levels of abstraction, including syntactic, structural, reference and domain metadata. The domain metadata consists of ontology-based annotations associated with the structural information of each data source. However, caGrid's current querying functionality is given at the structural metadata level, without capitalising on the ontology-based annotations. This paper presents the design of and theoretical foundations for distributed ontology-based queries over cancer research data. Concept-based queries are reformulated to the target query language, where join conditions between multiple data sources are found by exploiting the semantic annotations. The system has been implemented, as a proof of concept, over the caGrid infrastructure. The approach is applicable to other model-driven architectures. A graphical user interface has been developed, supporting ontology-based queries over caGrid data sources. An extensive evaluation of the query reformulation technique is included. Conclusions To support personalised medicine in oncology, it is crucial to retrieve and integrate molecular, pathology, radiology and clinical data in an efficient manner. The semantic heterogeneity of the data makes this a challenging task. Ontologies provide a formal framework to support querying and integration. This paper provides an ontology-based solution for querying distributed databases over service-oriented, model-driven infrastructures. PMID:22373043

  2. Benchmarking distributed data warehouse solutions for storing genomic variant information

    PubMed Central

    Wiewiórka, Marek S.; Wysakowicz, Dawid P.; Okoniewski, Michał J.

    2017-01-01

    Abstract Genomic-based personalized medicine encompasses storing, analysing and interpreting genomic variants as its central issues. At a time when thousands of patientss sequenced exomes and genomes are becoming available, there is a growing need for efficient database storage and querying. The answer could be the application of modern distributed storage systems and query engines. However, the application of large genomic variant databases to this problem has not been sufficiently far explored so far in the literature. To investigate the effectiveness of modern columnar storage [column-oriented Database Management System (DBMS)] and query engines, we have developed a prototypic genomic variant data warehouse, populated with large generated content of genomic variants and phenotypic data. Next, we have benchmarked performance of a number of combinations of distributed storages and query engines on a set of SQL queries that address biological questions essential for both research and medical applications. In addition, a non-distributed, analytical database (MonetDB) has been used as a baseline. Comparison of query execution times confirms that distributed data warehousing solutions outperform classic relational DBMSs. Moreover, pre-aggregation and further denormalization of data, which reduce the number of distributed join operations, significantly improve query performance by several orders of magnitude. Most of distributed back-ends offer a good performance for complex analytical queries, while the Optimized Row Columnar (ORC) format paired with Presto and Parquet with Spark 2 query engines provide, on average, the lowest execution times. Apache Kudu on the other hand, is the only solution that guarantees a sub-second performance for simple genome range queries returning a small subset of data, where low-latency response is expected, while still offering decent performance for running analytical queries. In summary, research and clinical applications that require the storage and analysis of variants from thousands of samples can benefit from the scalability and performance of distributed data warehouse solutions. Database URL: https://github.com/ZSI-Bio/variantsdwh PMID:29220442

  3. Constraint-based Data Mining

    NASA Astrophysics Data System (ADS)

    Boulicaut, Jean-Francois; Jeudy, Baptiste

    Knowledge Discovery in Databases (KDD) is a complex interactive process. The promising theoretical framework of inductive databases considers this is essentially a querying process. It is enabled by a query language which can deal either with raw data or patterns which hold in the data. Mining patterns turns to be the so-called inductive query evaluation process for which constraint-based Data Mining techniques have to be designed. An inductive query specifies declaratively the desired constraints and algorithms are used to compute the patterns satisfying the constraints in the data. We survey important results of this active research domain. This chapter emphasizes a real breakthrough for hard problems concerning local pattern mining under various constraints and it points out the current directions of research as well.

  4. Learning Extended Finite State Machines

    NASA Technical Reports Server (NTRS)

    Cassel, Sofia; Howar, Falk; Jonsson, Bengt; Steffen, Bernhard

    2014-01-01

    We present an active learning algorithm for inferring extended finite state machines (EFSM)s, combining data flow and control behavior. Key to our learning technique is a novel learning model based on so-called tree queries. The learning algorithm uses the tree queries to infer symbolic data constraints on parameters, e.g., sequence numbers, time stamps, identifiers, or even simple arithmetic. We describe sufficient conditions for the properties that the symbolic constraints provided by a tree query in general must have to be usable in our learning model. We have evaluated our algorithm in a black-box scenario, where tree queries are realized through (black-box) testing. Our case studies include connection establishment in TCP and a priority queue from the Java Class Library.

  5. Spatial information semantic query based on SPARQL

    NASA Astrophysics Data System (ADS)

    Xiao, Zhifeng; Huang, Lei; Zhai, Xiaofang

    2009-10-01

    How can the efficiency of spatial information inquiries be enhanced in today's fast-growing information age? We are rich in geospatial data but poor in up-to-date geospatial information and knowledge that are ready to be accessed by public users. This paper adopts an approach for querying spatial semantic by building an Web Ontology language(OWL) format ontology and introducing SPARQL Protocol and RDF Query Language(SPARQL) to search spatial semantic relations. It is important to establish spatial semantics that support for effective spatial reasoning for performing semantic query. Compared to earlier keyword-based and information retrieval techniques that rely on syntax, we use semantic approaches in our spatial queries system. Semantic approaches need to be developed by ontology, so we use OWL to describe spatial information extracted by the large-scale map of Wuhan. Spatial information expressed by ontology with formal semantics is available to machines for processing and to people for understanding. The approach is illustrated by introducing a case study for using SPARQL to query geo-spatial ontology instances of Wuhan. The paper shows that making use of SPARQL to search OWL ontology instances can ensure the result's accuracy and applicability. The result also indicates constructing a geo-spatial semantic query system has positive efforts on forming spatial query and retrieval.

  6. Quantum algorithms on Walsh transform and Hamming distance for Boolean functions

    NASA Astrophysics Data System (ADS)

    Xie, Zhengwei; Qiu, Daowen; Cai, Guangya

    2018-06-01

    Walsh spectrum or Walsh transform is an alternative description of Boolean functions. In this paper, we explore quantum algorithms to approximate the absolute value of Walsh transform W_f at a single point z0 (i.e., |W_f(z0)|) for n-variable Boolean functions with probability at least 8/π 2 using the number of O(1/|W_f(z_{0)|ɛ }) queries, promised that the accuracy is ɛ , while the best known classical algorithm requires O(2n) queries. The Hamming distance between Boolean functions is used to study the linearity testing and other important problems. We take advantage of Walsh transform to calculate the Hamming distance between two n-variable Boolean functions f and g using O(1) queries in some cases. Then, we exploit another quantum algorithm which converts computing Hamming distance between two Boolean functions to quantum amplitude estimation (i.e., approximate counting). If Ham(f,g)=t≠0, we can approximately compute Ham( f, g) with probability at least 2/3 by combining our algorithm and {Approx-Count(f,ɛ ) algorithm} using the expected number of Θ( √{N/(\\lfloor ɛ t\\rfloor +1)}+√{t(N-t)}/\\lfloor ɛ t\\rfloor +1) queries, promised that the accuracy is ɛ . Moreover, our algorithm is optimal, while the exact query complexity for the above problem is Θ(N) and the query complexity with the accuracy ɛ is O(1/ɛ 2N/(t+1)) in classical algorithm, where N=2n. Finally, we present three exact quantum query algorithms for two promise problems on Hamming distance using O(1) queries, while any classical deterministic algorithm solving the problem uses Ω(2n) queries.

  7. Query Processing for Probabilistic State Diagrams Describing Multiple Robot Navigation in an Indoor Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czejdo, Bogdan; Bhattacharya, Sambit; Ferragut, Erik M

    2012-01-01

    This paper describes the syntax and semantics of multi-level state diagrams to support probabilistic behavior of cooperating robots. The techniques are presented to analyze these diagrams by querying combined robots behaviors. It is shown how to use state abstraction and transition abstraction to create, verify and process large probabilistic state diagrams.

  8. An Active RBSE Framework to Generate Optimal Stimulus Sequences in a BCI for Spelling

    NASA Astrophysics Data System (ADS)

    Moghadamfalahi, Mohammad; Akcakaya, Murat; Nezamfar, Hooman; Sourati, Jamshid; Erdogmus, Deniz

    2017-10-01

    A class of brain computer interfaces (BCIs) employs noninvasive recordings of electroencephalography (EEG) signals to enable users with severe speech and motor impairments to interact with their environment and social network. For example, EEG based BCIs for typing popularly utilize event related potentials (ERPs) for inference. Presentation paradigm design in current ERP-based letter by letter typing BCIs typically query the user with an arbitrary subset characters. However, the typing accuracy and also typing speed can potentially be enhanced with more informed subset selection and flash assignment. In this manuscript, we introduce the active recursive Bayesian state estimation (active-RBSE) framework for inference and sequence optimization. Prior to presentation in each iteration, rather than showing a subset of randomly selected characters, the developed framework optimally selects a subset based on a query function. Selected queries are made adaptively specialized for users during each intent detection. Through a simulation-based study, we assess the effect of active-RBSE on the performance of a language-model assisted typing BCI in terms of typing speed and accuracy. To provide a baseline for comparison, we also utilize standard presentation paradigms namely, row and column matrix presentation paradigm and also random rapid serial visual presentation paradigms. The results show that utilization of active-RBSE can enhance the online performance of the system, both in terms of typing accuracy and speed.

  9. Query by example video based on fuzzy c-means initialized by fixed clustering center

    NASA Astrophysics Data System (ADS)

    Hou, Sujuan; Zhou, Shangbo; Siddique, Muhammad Abubakar

    2012-04-01

    Currently, the high complexity of video contents has posed the following major challenges for fast retrieval: (1) efficient similarity measurements, and (2) efficient indexing on the compact representations. A video-retrieval strategy based on fuzzy c-means (FCM) is presented for querying by example. Initially, the query video is segmented and represented by a set of shots, each shot can be represented by a key frame, and then we used video processing techniques to find visual cues to represent the key frame. Next, because the FCM algorithm is sensitive to the initializations, here we initialized the cluster center by the shots of query video so that users could achieve appropriate convergence. After an FCM cluster was initialized by the query video, each shot of query video was considered a benchmark point in the aforesaid cluster, and each shot in the database possessed a class label. The similarity between the shots in the database with the same class label and benchmark point can be transformed into the distance between them. Finally, the similarity between the query video and the video in database was transformed into the number of similar shots. Our experimental results demonstrated the performance of this proposed approach.

  10. Optimal Weight Assignment for a Chinese Signature File.

    ERIC Educational Resources Information Center

    Liang, Tyne; And Others

    1996-01-01

    Investigates the performance of a character-based Chinese text retrieval scheme in which monogram keys and bigram keys are encoded into document signatures. Tests and verifies the theoretical predictions of the optimal weight assignments and the minimal false hit rate in experiments using a real Chinese corpus for disyllabic queries of different…

  11. Privacy-preserving search for chemical compound databases.

    PubMed

    Shimizu, Kana; Nuida, Koji; Arai, Hiromi; Mitsunari, Shigeo; Attrapadung, Nuttapong; Hamada, Michiaki; Tsuda, Koji; Hirokawa, Takatsugu; Sakuma, Jun; Hanaoka, Goichiro; Asai, Kiyoshi

    2015-01-01

    Searching for similar compounds in a database is the most important process for in-silico drug screening. Since a query compound is an important starting point for the new drug, a query holder, who is afraid of the query being monitored by the database server, usually downloads all the records in the database and uses them in a closed network. However, a serious dilemma arises when the database holder also wants to output no information except for the search results, and such a dilemma prevents the use of many important data resources. In order to overcome this dilemma, we developed a novel cryptographic protocol that enables database searching while keeping both the query holder's privacy and database holder's privacy. Generally, the application of cryptographic techniques to practical problems is difficult because versatile techniques are computationally expensive while computationally inexpensive techniques can perform only trivial computation tasks. In this study, our protocol is successfully built only from an additive-homomorphic cryptosystem, which allows only addition performed on encrypted values but is computationally efficient compared with versatile techniques such as general purpose multi-party computation. In an experiment searching ChEMBL, which consists of more than 1,200,000 compounds, the proposed method was 36,900 times faster in CPU time and 12,000 times as efficient in communication size compared with general purpose multi-party computation. We proposed a novel privacy-preserving protocol for searching chemical compound databases. The proposed method, easily scaling for large-scale databases, may help to accelerate drug discovery research by making full use of unused but valuable data that includes sensitive information.

  12. Privacy-preserving search for chemical compound databases

    PubMed Central

    2015-01-01

    Background Searching for similar compounds in a database is the most important process for in-silico drug screening. Since a query compound is an important starting point for the new drug, a query holder, who is afraid of the query being monitored by the database server, usually downloads all the records in the database and uses them in a closed network. However, a serious dilemma arises when the database holder also wants to output no information except for the search results, and such a dilemma prevents the use of many important data resources. Results In order to overcome this dilemma, we developed a novel cryptographic protocol that enables database searching while keeping both the query holder's privacy and database holder's privacy. Generally, the application of cryptographic techniques to practical problems is difficult because versatile techniques are computationally expensive while computationally inexpensive techniques can perform only trivial computation tasks. In this study, our protocol is successfully built only from an additive-homomorphic cryptosystem, which allows only addition performed on encrypted values but is computationally efficient compared with versatile techniques such as general purpose multi-party computation. In an experiment searching ChEMBL, which consists of more than 1,200,000 compounds, the proposed method was 36,900 times faster in CPU time and 12,000 times as efficient in communication size compared with general purpose multi-party computation. Conclusion We proposed a novel privacy-preserving protocol for searching chemical compound databases. The proposed method, easily scaling for large-scale databases, may help to accelerate drug discovery research by making full use of unused but valuable data that includes sensitive information. PMID:26678650

  13. Asymmetric distances for binary embeddings.

    PubMed

    Gordo, Albert; Perronnin, Florent; Gong, Yunchao; Lazebnik, Svetlana

    2014-01-01

    In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes that binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances that are applicable to a wide variety of embedding techniques including locality sensitive hashing (LSH), locality sensitive binary codes (LSBC), spectral hashing (SH), PCA embedding (PCAE), PCAE with random rotations (PCAE-RR), and PCAE with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques.

  14. Semiautomated head-and-neck IMRT planning using dose warping and scaling to robustly adapt plans in a knowledge database containing potentially suboptimal plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Matthew, E-mail: matthew.schmidt@varian.com; Grzetic, Shelby; Lo, Joseph Y.

    Purpose: Prior work by the authors and other groups has studied the creation of automated intensity modulated radiotherapy (IMRT) plans of equivalent quality to those in a patient database of manually created clinical plans; those database plans provided guidance on the achievable sparing to organs-at-risk (OARs). However, in certain sites, such as head-and-neck, the clinical plans may not be sufficiently optimized because of anatomical complexity and clinical time constraints. This could lead to automated plans that suboptimally exploit OAR sparing. This work investigates a novel dose warping and scaling scheme that attempts to reduce effects of suboptimal sparing in clinicalmore » database plans, thus improving the quality of semiautomated head-and-neck cancer (HNC) plans. Methods: Knowledge-based radiotherapy (KBRT) plans for each of ten “query” patients were semiautomatically generated by identifying the most similar “match” patient in a database of 103 clinical manually created patient plans. The match patient’s plans were adapted to the query case by: (1) deforming the match beam fluences to suit the query target volume and (2) warping the match primary/boost dose distribution to suit the query geometry and using the warped distribution to generate query primary/boost optimization dose-volume constraints. Item (2) included a distance scaling factor to improve query OAR dose sparing with respect to the possibly suboptimal clinical match plan. To further compensate for a component plan of the match case (primary/boost) not optimally sparing OARs, the query dose volume constraints were reduced using a dose scaling factor to be the minimum from either (a) the warped component plan (primary or boost) dose distribution or (b) the warped total plan dose distribution (primary + boost) scaled in proportion to the ratio of component prescription dose to total prescription dose. The dose-volume constraints were used to plan the query case with no human intervention to adjust constraints during plan optimization. Results: KBRT and original clinical plans were dosimetrically equivalent for parotid glands (mean/median doses), spinal cord, and brainstem (maximum doses). KBRT plans significantly reduced larynx median doses (21.5 ± 6.6 Gy to 17.9 ± 3.9 Gy), and oral cavity mean (32.3 ± 6.2 Gy to 28.9 ± 5.4 Gy) and median (28.7 ± 5.7 Gy to 23.2 ± 5.3 Gy) doses. Doses to ipsilateral parotid gland, larynx, oral cavity, and brainstem were lower or equivalent in the KBRT plans for the majority of cases. By contrast, KBRT plans generated without the dose warping and dose scaling steps were not significantly different from the clinical plans. Conclusions: Fast, semiautomatically generated HNC IMRT plans adapted from existing plans in a clinical database can be of equivalent or better quality than manually created plans. The reductions in OAR doses in the semiautomated plans, compared to the clinical plans, indicate that the proposed dose warping and scaling method shows promise in mitigating the impact of suboptimal clinical plans.« less

  15. Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol

    NASA Astrophysics Data System (ADS)

    Wei, Chun-Yan; Gao, Fei; Wen, Qiao-Yan; Wang, Tian-Yin

    2014-12-01

    Until now, the only kind of practical quantum private query (QPQ), quantum-key-distribution (QKD)-based QPQ, focuses on the retrieval of a single bit. In fact, meaningful message is generally composed of multiple adjacent bits (i.e., a multi-bit block). To obtain a message from database, the user Alice has to query l times to get each ai. In this condition, the server Bob could gain Alice's privacy once he obtains the address she queried in any of the l queries, since each ai contributes to the message Alice retrieves. Apparently, the longer the retrieved message is, the worse the user privacy becomes. To solve this problem, via an unbalanced-state technique and based on a variant of multi-level BB84 protocol, we present a protocol for QPQ of blocks, which allows the user to retrieve a multi-bit block from database in one query. Our protocol is somewhat like the high-dimension version of the first QKD-based QPQ protocol proposed by Jacobi et al., but some nontrivial modifications are necessary.

  16. Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol

    PubMed Central

    Wei, Chun-Yan; Gao, Fei; Wen, Qiao-Yan; Wang, Tian-Yin

    2014-01-01

    Until now, the only kind of practical quantum private query (QPQ), quantum-key-distribution (QKD)-based QPQ, focuses on the retrieval of a single bit. In fact, meaningful message is generally composed of multiple adjacent bits (i.e., a multi-bit block). To obtain a message from database, the user Alice has to query l times to get each ai. In this condition, the server Bob could gain Alice's privacy once he obtains the address she queried in any of the l queries, since each ai contributes to the message Alice retrieves. Apparently, the longer the retrieved message is, the worse the user privacy becomes. To solve this problem, via an unbalanced-state technique and based on a variant of multi-level BB84 protocol, we present a protocol for QPQ of blocks, which allows the user to retrieve a multi-bit block from database in one query. Our protocol is somewhat like the high-dimension version of the first QKD-based QPQ protocol proposed by Jacobi et al., but some nontrivial modifications are necessary. PMID:25518810

  17. Design of a Low-Cost Adaptive Question Answering System for Closed Domain Factoid Queries

    ERIC Educational Resources Information Center

    Toh, Huey Ling

    2010-01-01

    Closed domain question answering (QA) systems achieve precision and recall at the cost of complex language processing techniques to parse the answer corpus. We propose a "query-based" model for indexing answers in a closed domain factoid QA system. Further, we use a phrase term inference method for improving the ranking order of related questions.…

  18. EmptyHeaded: A Relational Engine for Graph Processing

    PubMed Central

    Aberger, Christopher R.; Tu, Susan; Olukotun, Kunle; Ré, Christopher

    2016-01-01

    There are two types of high-performance graph processing engines: low- and high-level engines. Low-level engines (Galois, PowerGraph, Snap) provide optimized data structures and computation models but require users to write low-level imperative code, hence ensuring that efficiency is the burden of the user. In high-level engines, users write in query languages like datalog (SociaLite) or SQL (Grail). High-level engines are easier to use but are orders of magnitude slower than the low-level graph engines. We present EmptyHeaded, a high-level engine that supports a rich datalog-like query language and achieves performance comparable to that of low-level engines. At the core of EmptyHeaded’s design is a new class of join algorithms that satisfy strong theoretical guarantees but have thus far not achieved performance comparable to that of specialized graph processing engines. To achieve high performance, EmptyHeaded introduces a new join engine architecture, including a novel query optimizer and data layouts that leverage single-instruction multiple data (SIMD) parallelism. With this architecture, EmptyHeaded outperforms high-level approaches by up to three orders of magnitude on graph pattern queries, PageRank, and Single-Source Shortest Paths (SSSP) and is an order of magnitude faster than many low-level baselines. We validate that EmptyHeaded competes with the best-of-breed low-level engine (Galois), achieving comparable performance on PageRank and at most 3× worse performance on SSSP. PMID:28077912

  19. Database technology and the management of multimedia data in the Mirror project

    NASA Astrophysics Data System (ADS)

    de Vries, Arjen P.; Blanken, H. M.

    1998-10-01

    Multimedia digital libraries require an open distributed architecture instead of a monolithic database system. In the Mirror project, we use the Monet extensible database kernel to manage different representation of multimedia objects. To maintain independence between content, meta-data, and the creation of meta-data, we allow distribution of data and operations using CORBA. This open architecture introduces new problems for data access. From an end user's perspective, the problem is how to search the available representations to fulfill an actual information need; the conceptual gap between human perceptual processes and the meta-data is too large. From a system's perspective, several representations of the data may semantically overlap or be irrelevant. We address these problems with an iterative query process and active user participating through relevance feedback. A retrieval model based on inference networks assists the user with query formulation. The integration of this model into the database design has two advantages. First, the user can query both the logical and the content structure of multimedia objects. Second, the use of different data models in the logical and the physical database design provides data independence and allows algebraic query optimization. We illustrate query processing with a music retrieval application.

  20. Element distinctness revisited

    NASA Astrophysics Data System (ADS)

    Portugal, Renato

    2018-07-01

    The element distinctness problem is the problem of determining whether the elements of a list are distinct, that is, if x=(x_1,\\ldots ,x_N) is a list with N elements, we ask whether the elements of x are distinct or not. The solution in a classical computer requires N queries because it uses sorting to check whether there are equal elements. In the quantum case, it is possible to solve the problem in O(N^{2/3}) queries. There is an extension which asks whether there are k colliding elements, known as element k-distinctness problem. This work obtains optimal values of two critical parameters of Ambainis' seminal quantum algorithm (SIAM J Comput 37(1):210-239, 2007). The first critical parameter is the number of repetitions of the algorithm's main block, which inverts the phase of the marked elements and calls a subroutine. The second parameter is the number of quantum walk steps interlaced by oracle queries. We show that, when the optimal values of the parameters are used, the algorithm's success probability is 1-O(N^{1/(k+1)}), quickly approaching 1. The specification of the exact running time and success probability is important in practical applications of this algorithm.

  1. Value Driven Information Processing and Fusion

    DTIC Science & Technology

    2016-03-01

    consensus approach allows a decentralized approach to achieve the optimal error exponent of the centralized counterpart, a conclusion that is signifi...SECURITY CLASSIFICATION OF: The objective of the project is to develop a general framework for value driven decentralized information processing...including: optimal data reduction in a network setting for decentralized inference with quantization constraint; interactive fusion that allows queries and

  2. Efficient privacy-preserving string search and an application in genomics.

    PubMed

    Shimizu, Kana; Nuida, Koji; Rätsch, Gunnar

    2016-06-01

    Personal genomes carry inherent privacy risks and protecting privacy poses major social and technological challenges. We consider the case where a user searches for genetic information (e.g. an allele) on a server that stores a large genomic database and aims to receive allele-associated information. The user would like to keep the query and result private and the server the database. We propose a novel approach that combines efficient string data structures such as the Burrows-Wheeler transform with cryptographic techniques based on additive homomorphic encryption. We assume that the sequence data is searchable in efficient iterative query operations over a large indexed dictionary, for instance, from large genome collections and employing the (positional) Burrows-Wheeler transform. We use a technique called oblivious transfer that is based on additive homomorphic encryption to conceal the sequence query and the genomic region of interest in positional queries. We designed and implemented an efficient algorithm for searching sequences of SNPs in large genome databases. During search, the user can only identify the longest match while the server does not learn which sequence of SNPs the user queried. In an experiment based on 2184 aligned haploid genomes from the 1000 Genomes Project, our algorithm was able to perform typical queries within [Formula: see text] 4.6 s and [Formula: see text] 10.8 s for client and server side, respectively, on laptop computers. The presented algorithm is at least one order of magnitude faster than an exhaustive baseline algorithm. https://github.com/iskana/PBWT-sec and https://github.com/ratschlab/PBWT-sec shimizu-kana@aist.go.jp or Gunnar.Ratsch@ratschlab.org Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  3. Efficient privacy-preserving string search and an application in genomics

    PubMed Central

    Shimizu, Kana; Nuida, Koji; Rätsch, Gunnar

    2016-01-01

    Motivation: Personal genomes carry inherent privacy risks and protecting privacy poses major social and technological challenges. We consider the case where a user searches for genetic information (e.g. an allele) on a server that stores a large genomic database and aims to receive allele-associated information. The user would like to keep the query and result private and the server the database. Approach: We propose a novel approach that combines efficient string data structures such as the Burrows–Wheeler transform with cryptographic techniques based on additive homomorphic encryption. We assume that the sequence data is searchable in efficient iterative query operations over a large indexed dictionary, for instance, from large genome collections and employing the (positional) Burrows–Wheeler transform. We use a technique called oblivious transfer that is based on additive homomorphic encryption to conceal the sequence query and the genomic region of interest in positional queries. Results: We designed and implemented an efficient algorithm for searching sequences of SNPs in large genome databases. During search, the user can only identify the longest match while the server does not learn which sequence of SNPs the user queried. In an experiment based on 2184 aligned haploid genomes from the 1000 Genomes Project, our algorithm was able to perform typical queries within ≈ 4.6 s and ≈ 10.8 s for client and server side, respectively, on laptop computers. The presented algorithm is at least one order of magnitude faster than an exhaustive baseline algorithm. Availability and implementation: https://github.com/iskana/PBWT-sec and https://github.com/ratschlab/PBWT-sec. Contacts: shimizu-kana@aist.go.jp or Gunnar.Ratsch@ratschlab.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153731

  4. The Analysis of RDF Semantic Data Storage Optimization in Large Data Era

    NASA Astrophysics Data System (ADS)

    He, Dandan; Wang, Lijuan; Wang, Can

    2018-03-01

    With the continuous development of information technology and network technology in China, the Internet has also ushered in the era of large data. In order to obtain the effective acquisition of information in the era of large data, it is necessary to optimize the existing RDF semantic data storage and realize the effective query of various data. This paper discusses the storage optimization of RDF semantic data under large data.

  5. miBLAST: scalable evaluation of a batch of nucleotide sequence queries with BLAST

    PubMed Central

    Kim, You Jung; Boyd, Andrew; Athey, Brian D.; Patel, Jignesh M.

    2005-01-01

    A common task in many modern bioinformatics applications is to match a set of nucleotide query sequences against a large sequence dataset. Exis-ting tools, such as BLAST, are designed to evaluate a single query at a time and can be unacceptably slow when the number of sequences in the query set is large. In this paper, we present a new algorithm, called miBLAST, that evaluates such batch workloads efficiently. At the core, miBLAST employs a q-gram filtering and an index join for efficiently detecting similarity between the query sequences and database sequences. This set-oriented technique, which indexes both the query and the database sets, results in substantial performance improvements over existing methods. Our results show that miBLAST is significantly faster than BLAST in many cases. For example, miBLAST aligned 247 965 oligonucleotide sequences in the Affymetrix probe set against the Human UniGene in 1.26 days, compared with 27.27 days with BLAST (an improvement by a factor of 22). The relative performance of miBLAST increases for larger word sizes; however, it decreases for longer queries. miBLAST employs the familiar BLAST statistical model and output format, guaranteeing the same accuracy as BLAST and facilitating a seamless transition for existing BLAST users. PMID:16061938

  6. VIGOR: Interactive Visual Exploration of Graph Query Results.

    PubMed

    Pienta, Robert; Hohman, Fred; Endert, Alex; Tamersoy, Acar; Roundy, Kevin; Gates, Chris; Navathe, Shamkant; Chau, Duen Horng

    2018-01-01

    Finding patterns in graphs has become a vital challenge in many domains from biological systems, network security, to finance (e.g., finding money laundering rings of bankers and business owners). While there is significant interest in graph databases and querying techniques, less research has focused on helping analysts make sense of underlying patterns within a group of subgraph results. Visualizing graph query results is challenging, requiring effective summarization of a large number of subgraphs, each having potentially shared node-values, rich node features, and flexible structure across queries. We present VIGOR, a novel interactive visual analytics system, for exploring and making sense of query results. VIGOR uses multiple coordinated views, leveraging different data representations and organizations to streamline analysts sensemaking process. VIGOR contributes: (1) an exemplar-based interaction technique, where an analyst starts with a specific result and relaxes constraints to find other similar results or starts with only the structure (i.e., without node value constraints), and adds constraints to narrow in on specific results; and (2) a novel feature-aware subgraph result summarization. Through a collaboration with Symantec, we demonstrate how VIGOR helps tackle real-world problems through the discovery of security blindspots in a cybersecurity dataset with over 11,000 incidents. We also evaluate VIGOR with a within-subjects study, demonstrating VIGOR's ease of use over a leading graph database management system, and its ability to help analysts understand their results at higher speed and make fewer errors.

  7. Spatial Query for Planetary Data

    NASA Technical Reports Server (NTRS)

    Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.

    2011-01-01

    Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.

  8. Fast Inbound Top-K Query for Random Walk with Restart.

    PubMed

    Zhang, Chao; Jiang, Shan; Chen, Yucheng; Sun, Yidan; Han, Jiawei

    2015-09-01

    Random walk with restart (RWR) is widely recognized as one of the most important node proximity measures for graphs, as it captures the holistic graph structure and is robust to noise in the graph. In this paper, we study a novel query based on the RWR measure, called the inbound top-k (Ink) query. Given a query node q and a number k , the Ink query aims at retrieving k nodes in the graph that have the largest weighted RWR scores to q . Ink queries can be highly useful for various applications such as traffic scheduling, disease treatment, and targeted advertising. Nevertheless, none of the existing RWR computation techniques can accurately and efficiently process the Ink query in large graphs. We propose two algorithms, namely Squeeze and Ripple, both of which can accurately answer the Ink query in a fast and incremental manner. To identify the top- k nodes, Squeeze iteratively performs matrix-vector multiplication and estimates the lower and upper bounds for all the nodes in the graph. Ripple employs a more aggressive strategy by only estimating the RWR scores for the nodes falling in the vicinity of q , the nodes outside the vicinity do not need to be evaluated because their RWR scores are propagated from the boundary of the vicinity and thus upper bounded. Ripple incrementally expands the vicinity until the top- k result set can be obtained. Our extensive experiments on real-life graph data sets show that Ink queries can retrieve interesting results, and the proposed algorithms are orders of magnitude faster than state-of-the-art method.

  9. Agile Datacube Analytics (not just) for the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Misev, Dimitar; Merticariu, Vlad; Baumann, Peter

    2017-04-01

    Metadata are considered small, smart, and queryable; data, on the other hand, are known as big, clumsy, hard to analyze. Consequently, gridded data - such as images, image timeseries, and climate datacubes - are managed separately from the metadata, and with different, restricted retrieval capabilities. One reason for this silo approach is that databases, while good at tables, XML hierarchies, RDF graphs, etc., traditionally do not support multi-dimensional arrays well. This gap is being closed by Array Databases which extend the SQL paradigm of "any query, anytime" to NoSQL arrays. They introduce semantically rich modelling combined with declarative, high-level query languages on n-D arrays. On Server side, such queries can be optimized, parallelized, and distributed based on partitioned array storage. This way, they offer new vistas in flexibility, scalability, performance, and data integration. In this respect, the forthcoming ISO SQL extension MDA ("Multi-dimensional Arrays") will be a game changer in Big Data Analytics. We introduce concepts and opportunities through the example of rasdaman ("raster data manager") which in fact has pioneered the field of Array Databases and forms the blueprint for ISO SQL/MDA and further Big Data standards, such as OGC WCPS for querying spatio-temporal Earth datacubes. With operational installations exceeding 140 TB queries have been split across more than one thousand cloud nodes, using CPUs as well as GPUs. Installations can easily be mashed up securely, enabling large-scale location-transparent query processing in federations. Federation queries have been demonstrated live at EGU 2016 spanning Europe and Australia in the context of the intercontinental EarthServer initiative, visualized through NASA WorldWind.

  10. Agile Datacube Analytics (not just) for the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Baumann, P.

    2016-12-01

    Metadata are considered small, smart, and queryable; data, on the other hand, are known as big, clumsy, hard to analyze. Consequently, gridded data - such as images, image timeseries, and climate datacubes - are managed separately from the metadata, and with different, restricted retrieval capabilities. One reason for this silo approach is that databases, while good at tables, XML hierarchies, RDF graphs, etc., traditionally do not support multi-dimensional arrays well.This gap is being closed by Array Databases which extend the SQL paradigm of "any query, anytime" to NoSQL arrays. They introduce semantically rich modelling combined with declarative, high-level query languages on n-D arrays. On Server side, such queries can be optimized, parallelized, and distributed based on partitioned array storage. This way, they offer new vistas in flexibility, scalability, performance, and data integration. In this respect, the forthcoming ISO SQL extension MDA ("Multi-dimensional Arrays") will be a game changer in Big Data Analytics.We introduce concepts and opportunities through the example of rasdaman ("raster data manager") which in fact has pioneered the field of Array Databases and forms the blueprint for ISO SQL/MDA and further Big Data standards, such as OGC WCPS for querying spatio-temporal Earth datacubes. With operational installations exceeding 140 TB queries have been split across more than one thousand cloud nodes, using CPUs as well as GPUs. Installations can easily be mashed up securely, enabling large-scale location-transparent query processing in federations. Federation queries have been demonstrated live at EGU 2016 spanning Europe and Australia in the context of the intercontinental EarthServer initiative, visualized through NASA WorldWind.

  11. Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol.

    PubMed

    Wei, Chun-Yan; Gao, Fei; Wen, Qiao-Yan; Wang, Tian-Yin

    2014-12-18

    Until now, the only kind of practical quantum private query (QPQ), quantum-key-distribution (QKD)-based QPQ, focuses on the retrieval of a single bit. In fact, meaningful message is generally composed of multiple adjacent bits (i.e., a multi-bit block). To obtain a message a1a2···al from database, the user Alice has to query l times to get each ai. In this condition, the server Bob could gain Alice's privacy once he obtains the address she queried in any of the l queries, since each a(i) contributes to the message Alice retrieves. Apparently, the longer the retrieved message is, the worse the user privacy becomes. To solve this problem, via an unbalanced-state technique and based on a variant of multi-level BB84 protocol, we present a protocol for QPQ of blocks, which allows the user to retrieve a multi-bit block from database in one query. Our protocol is somewhat like the high-dimension version of the first QKD-based QPQ protocol proposed by Jacobi et al., but some nontrivial modifications are necessary.

  12. Image correlation method for DNA sequence alignment.

    PubMed

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.

  13. Fast 3D shape screening of large chemical databases through alignment-recycling

    PubMed Central

    Fontaine, Fabien; Bolton, Evan; Borodina, Yulia; Bryant, Stephen H

    2007-01-01

    Background Large chemical databases require fast, efficient, and simple ways of looking for similar structures. Although such tasks are now fairly well resolved for graph-based similarity queries, they remain an issue for 3D approaches, particularly for those based on 3D shape overlays. Inspired by a recent technique developed to compare molecular shapes, we designed a hybrid methodology, alignment-recycling, that enables efficient retrieval and alignment of structures with similar 3D shapes. Results Using a dataset of more than one million PubChem compounds of limited size (< 28 heavy atoms) and flexibility (< 6 rotatable bonds), we obtained a set of a few thousand diverse structures covering entirely the 3D shape space of the conformers of the dataset. Transformation matrices gathered from the overlays between these diverse structures and the 3D conformer dataset allowed us to drastically (100-fold) reduce the CPU time required for shape overlay. The alignment-recycling heuristic produces results consistent with de novo alignment calculation, with better than 80% hit list overlap on average. Conclusion Overlay-based 3D methods are computationally demanding when searching large databases. Alignment-recycling reduces the CPU time to perform shape similarity searches by breaking the alignment problem into three steps: selection of diverse shapes to describe the database shape-space; overlay of the database conformers to the diverse shapes; and non-optimized overlay of query and database conformers using common reference shapes. The precomputation, required by the first two steps, is a significant cost of the method; however, once performed, querying is two orders of magnitude faster. Extensions and variations of this methodology, for example, to handle more flexible and larger small-molecules are discussed. PMID:17880744

  14. Secure image retrieval with multiple keys

    NASA Astrophysics Data System (ADS)

    Liang, Haihua; Zhang, Xinpeng; Wei, Qiuhan; Cheng, Hang

    2018-03-01

    This article proposes a secure image retrieval scheme under a multiuser scenario. In this scheme, the owner first encrypts and uploads images and their corresponding features to the cloud; then, the user submits the encrypted feature of the query image to the cloud; next, the cloud compares the encrypted features and returns encrypted images with similar content to the user. To find the nearest neighbor in the encrypted features, an encryption with multiple keys is proposed, in which the query feature of each user is encrypted by his/her own key. To improve the key security and space utilization, global optimization and Gaussian distribution are, respectively, employed to generate multiple keys. The experiments show that the proposed encryption can provide effective and secure image retrieval for each user and ensure confidentiality of the query feature of each user.

  15. Effective Multi-Query Expansions: Collaborative Deep Networks for Robust Landmark Retrieval.

    PubMed

    Wang, Yang; Lin, Xuemin; Wu, Lin; Zhang, Wenjie

    2017-03-01

    Given a query photo issued by a user (q-user), the landmark retrieval is to return a set of photos with their landmarks similar to those of the query, while the existing studies on the landmark retrieval focus on exploiting geometries of landmarks for similarity matches between candidate photos and a query photo. We observe that the same landmarks provided by different users over social media community may convey different geometry information depending on the viewpoints and/or angles, and may, subsequently, yield very different results. In fact, dealing with the landmarks with low quality shapes caused by the photography of q-users is often nontrivial and has seldom been studied. In this paper, we propose a novel framework, namely, multi-query expansions, to retrieve semantically robust landmarks by two steps. First, we identify the top- k photos regarding the latent topics of a query landmark to construct multi-query set so as to remedy its possible low quality shape. For this purpose, we significantly extend the techniques of Latent Dirichlet Allocation. Then, motivated by the typical collaborative filtering methods, we propose to learn a collaborative deep networks-based semantically, nonlinear, and high-level features over the latent factor for landmark photo as the training set, which is formed by matrix factorization over collaborative user-photo matrix regarding the multi-query set. The learned deep network is further applied to generate the features for all the other photos, meanwhile resulting into a compact multi-query set within such space. Then, the final ranking scores are calculated over the high-level feature space between the multi-query set and all other photos, which are ranked to serve as the final ranking list of landmark retrieval. Extensive experiments are conducted on real-world social media data with both landmark photos together with their user information to show the superior performance over the existing methods, especially our recently proposed multi-query based mid-level pattern representation method [1].

  16. Query-Adaptive Reciprocal Hash Tables for Nearest Neighbor Search.

    PubMed

    Liu, Xianglong; Deng, Cheng; Lang, Bo; Tao, Dacheng; Li, Xuelong

    2016-02-01

    Recent years have witnessed the success of binary hashing techniques in approximate nearest neighbor search. In practice, multiple hash tables are usually built using hashing to cover more desired results in the hit buckets of each table. However, rare work studies the unified approach to constructing multiple informative hash tables using any type of hashing algorithms. Meanwhile, for multiple table search, it also lacks of a generic query-adaptive and fine-grained ranking scheme that can alleviate the binary quantization loss suffered in the standard hashing techniques. To solve the above problems, in this paper, we first regard the table construction as a selection problem over a set of candidate hash functions. With the graph representation of the function set, we propose an efficient solution that sequentially applies normalized dominant set to finding the most informative and independent hash functions for each table. To further reduce the redundancy between tables, we explore the reciprocal hash tables in a boosting manner, where the hash function graph is updated with high weights emphasized on the misclassified neighbor pairs of previous hash tables. To refine the ranking of the retrieved buckets within a certain Hamming radius from the query, we propose a query-adaptive bitwise weighting scheme to enable fine-grained bucket ranking in each hash table, exploiting the discriminative power of its hash functions and their complement for nearest neighbor search. Moreover, we integrate such scheme into the multiple table search using a fast, yet reciprocal table lookup algorithm within the adaptive weighted Hamming radius. In this paper, both the construction method and the query-adaptive search method are general and compatible with different types of hashing algorithms using different feature spaces and/or parameter settings. Our extensive experiments on several large-scale benchmarks demonstrate that the proposed techniques can significantly outperform both the naive construction methods and the state-of-the-art hashing algorithms.

  17. Petaminer: Using ROOT for efficient data storage in MySQL database

    NASA Astrophysics Data System (ADS)

    Cranshaw, J.; Malon, D.; Vaniachine, A.; Fine, V.; Lauret, J.; Hamill, P.

    2010-04-01

    High Energy and Nuclear Physics (HENP) experiments store Petabytes of event data and Terabytes of calibration data in ROOT files. The Petaminer project is developing a custom MySQL storage engine to enable the MySQL query processor to directly access experimental data stored in ROOT files. Our project is addressing the problem of efficient navigation to PetaBytes of HENP experimental data described with event-level TAG metadata, which is required by data intensive physics communities such as the LHC and RHIC experiments. Physicists need to be able to compose a metadata query and rapidly retrieve the set of matching events, where improved efficiency will facilitate the discovery process by permitting rapid iterations of data evaluation and retrieval. Our custom MySQL storage engine enables the MySQL query processor to directly access TAG data stored in ROOT TTrees. As ROOT TTrees are column-oriented, reading them directly provides improved performance over traditional row-oriented TAG databases. Leveraging the flexible and powerful SQL query language to access data stored in ROOT TTrees, the Petaminer approach enables rich MySQL index-building capabilities for further performance optimization.

  18. Searching for cancer information on the internet: analyzing natural language search queries.

    PubMed

    Bader, Judith L; Theofanos, Mary Frances

    2003-12-11

    Searching for health information is one of the most-common tasks performed by Internet users. Many users begin searching on popular search engines rather than on prominent health information sites. We know that many visitors to our (National Cancer Institute) Web site, cancer.gov, arrive via links in search engine result. To learn more about the specific needs of our general-public users, we wanted to understand what lay users really wanted to know about cancer, how they phrased their questions, and how much detail they used. The National Cancer Institute partnered with AskJeeves, Inc to develop a methodology to capture, sample, and analyze 3 months of cancer-related queries on the Ask.com Web site, a prominent United States consumer search engine, which receives over 35 million queries per week. Using a benchmark set of 500 terms and word roots supplied by the National Cancer Institute, AskJeeves identified a test sample of cancer queries for 1 week in August 2001. From these 500 terms only 37 appeared >or= 5 times/day over the trial test week in 17208 queries. Using these 37 terms, 204165 instances of cancer queries were found in the Ask.com query logs for the actual test period of June-August 2001. Of these, 7500 individual user questions were randomly selected for detailed analysis and assigned to appropriate categories. The exact language of sample queries is presented. Considering multiples of the same questions, the sample of 7500 individual user queries represented 76077 queries (37% of the total 3-month pool). Overall 78.37% of sampled Cancer queries asked about 14 specific cancer types. Within each cancer type, queries were sorted into appropriate subcategories including at least the following: General Information, Symptoms, Diagnosis and Testing, Treatment, Statistics, Definition, and Cause/Risk/Link. The most-common specific cancer types mentioned in queries were Digestive/Gastrointestinal/Bowel (15.0%), Breast (11.7%), Skin (11.3%), and Genitourinary (10.5%). Additional subcategories of queries about specific cancer types varied, depending on user input. Queries that were not specific to a cancer type were also tracked and categorized. Natural-language searching affords users the opportunity to fully express their information needs and can aid users naïve to the content and vocabulary. The specific queries analyzed for this study reflect news and research studies reported during the study dates and would surely change with different study dates. Analyzing queries from search engines represents one way of knowing what kinds of content to provide to users of a given Web site. Users ask questions using whole sentences and keywords, often misspelling words. Providing the option for natural-language searching does not obviate the need for good information architecture, usability engineering, and user testing in order to optimize user experience.

  19. Searching for Cancer Information on the Internet: Analyzing Natural Language Search Queries

    PubMed Central

    Theofanos, Mary Frances

    2003-01-01

    Background Searching for health information is one of the most-common tasks performed by Internet users. Many users begin searching on popular search engines rather than on prominent health information sites. We know that many visitors to our (National Cancer Institute) Web site, cancer.gov, arrive via links in search engine result. Objective To learn more about the specific needs of our general-public users, we wanted to understand what lay users really wanted to know about cancer, how they phrased their questions, and how much detail they used. Methods The National Cancer Institute partnered with AskJeeves, Inc to develop a methodology to capture, sample, and analyze 3 months of cancer-related queries on the Ask.com Web site, a prominent United States consumer search engine, which receives over 35 million queries per week. Using a benchmark set of 500 terms and word roots supplied by the National Cancer Institute, AskJeeves identified a test sample of cancer queries for 1 week in August 2001. From these 500 terms only 37 appeared ≥ 5 times/day over the trial test week in 17208 queries. Using these 37 terms, 204165 instances of cancer queries were found in the Ask.com query logs for the actual test period of June-August 2001. Of these, 7500 individual user questions were randomly selected for detailed analysis and assigned to appropriate categories. The exact language of sample queries is presented. Results Considering multiples of the same questions, the sample of 7500 individual user queries represented 76077 queries (37% of the total 3-month pool). Overall 78.37% of sampled Cancer queries asked about 14 specific cancer types. Within each cancer type, queries were sorted into appropriate subcategories including at least the following: General Information, Symptoms, Diagnosis and Testing, Treatment, Statistics, Definition, and Cause/Risk/Link. The most-common specific cancer types mentioned in queries were Digestive/Gastrointestinal/Bowel (15.0%), Breast (11.7%), Skin (11.3%), and Genitourinary (10.5%). Additional subcategories of queries about specific cancer types varied, depending on user input. Queries that were not specific to a cancer type were also tracked and categorized. Conclusions Natural-language searching affords users the opportunity to fully express their information needs and can aid users naïve to the content and vocabulary. The specific queries analyzed for this study reflect news and research studies reported during the study dates and would surely change with different study dates. Analyzing queries from search engines represents one way of knowing what kinds of content to provide to users of a given Web site. Users ask questions using whole sentences and keywords, often misspelling words. Providing the option for natural-language searching does not obviate the need for good information architecture, usability engineering, and user testing in order to optimize user experience. PMID:14713659

  20. WORDGRAPH: Keyword-in-Context Visualization for NETSPEAK's Wildcard Search.

    PubMed

    Riehmann, Patrick; Gruendl, Henning; Potthast, Martin; Trenkmann, Martin; Stein, Benno; Froehlich, Benno

    2012-09-01

    The WORDGRAPH helps writers in visually choosing phrases while writing a text. It checks for the commonness of phrases and allows for the retrieval of alternatives by means of wildcard queries. To support such queries, we implement a scalable retrieval engine, which returns high-quality results within milliseconds using a probabilistic retrieval strategy. The results are displayed as WORDGRAPH visualization or as a textual list. The graphical interface provides an effective means for interactive exploration of search results using filter techniques, query expansion, and navigation. Our observations indicate that, of three investigated retrieval tasks, the textual interface is sufficient for the phrase verification task, wherein both interfaces support context-sensitive word choice, and the WORDGRAPH best supports the exploration of a phrase's context or the underlying corpus. Our user study confirms these observations and shows that WORDGRAPH is generally the preferred interface over the textual result list for queries containing multiple wildcards.

  1. Comparing the performance of two CBIRS indexing schemes

    NASA Astrophysics Data System (ADS)

    Mueller, Wolfgang; Robbert, Guenter; Henrich, Andreas

    2003-01-01

    Content based image retrieval (CBIR) as it is known today has to deal with a number of challenges. Quickly summarized, the main challenges are firstly, to bridge the semantic gap between high-level concepts and low-level features using feedback, secondly to provide performance under adverse conditions. High-dimensional spaces, as well as a demanding machine learning task make the right way of indexing an important issue. When indexing multimedia data, most groups opt for extraction of high-dimensional feature vectors from the data, followed by dimensionality reduction like PCA (Principal Components Analysis) or LSI (Latent Semantic Indexing). The resulting vectors are indexed using spatial indexing structures such as kd-trees or R-trees, for example. Other projects, such as MARS and Viper propose the adaptation of text indexing techniques, notably the inverted file. Here, the Viper system is the most direct adaptation of text retrieval techniques to quantized vectors. However, while the Viper query engine provides decent performance together with impressive user-feedback behavior, as well as the possibility for easy integration of long-term learning algorithms, and support for potentially infinite feature vectors, there has been no comparison of vector-based methods and inverted-file-based methods under similar conditions. In this publication, we compare a CBIR query engine that uses inverted files (Bothrops, a rewrite of the Viper query engine based on a relational database), and a CBIR query engine based on LSD (Local Split Decision) trees for spatial indexing using the same feature sets. The Benchathlon initiative works on providing a set of images and ground truth for simulating image queries by example and corresponding user feedback. When performing the Benchathlon benchmark on a CBIR system (the System Under Test, SUT), a benchmarking harness connects over internet to the SUT, performing a number of queries using an agreed-upon protocol, the multimedia retrieval markup language (MRML). Using this benchmark one can measure the quality of retrieval, as well as the overall (speed) performance of the benchmarked system. Our Benchmarks will draw on the Benchathlon"s work for documenting the retrieval performance of both inverted file-based and LSD tree based techniques. However in addition to these results, we will present statistics, that can be obtained only inside the system under test. These statistics will include the number of complex mathematical operations, as well as the amount of data that has to be read from disk during operation of a query.

  2. SIMS: addressing the problem of heterogeneity in databases

    NASA Astrophysics Data System (ADS)

    Arens, Yigal

    1997-02-01

    The heterogeneity of remotely accessible databases -- with respect to contents, query language, semantics, organization, etc. -- presents serious obstacles to convenient querying. The SIMS (single interface to multiple sources) system addresses this global integration problem. It does so by defining a single language for describing the domain about which information is stored in the databases and using this language as the query language. Each database to which SIMS is to provide access is modeled using this language. The model describes a database's contents, organization, and other relevant features. SIMS uses these models, together with a planning system drawing on techniques from artificial intelligence, to decompose a given user's high-level query into a series of queries against the databases and other data manipulation steps. The retrieval plan is constructed so as to minimize data movement over the network and maximize parallelism to increase execution speed. SIMS can recover from network failures during plan execution by obtaining data from alternate sources, when possible. SIMS has been demonstrated in the domains of medical informatics and logistics, using real databases.

  3. Analysis of Technique to Extract Data from the Web for Improved Performance

    NASA Astrophysics Data System (ADS)

    Gupta, Neena; Singh, Manish

    2010-11-01

    The World Wide Web rapidly guides the world into a newly amazing electronic world, where everyone can publish anything in electronic form and extract almost all the information. Extraction of information from semi structured or unstructured documents, such as web pages, is a useful yet complex task. Data extraction, which is important for many applications, extracts the records from the HTML files automatically. Ontologies can achieve a high degree of accuracy in data extraction. We analyze method for data extraction OBDE (Ontology-Based Data Extraction), which automatically extracts the query result records from the web with the help of agents. OBDE first constructs an ontology for a domain according to information matching between the query interfaces and query result pages from different web sites within the same domain. Then, the constructed domain ontology is used during data extraction to identify the query result section in a query result page and to align and label the data values in the extracted records. The ontology-assisted data extraction method is fully automatic and overcomes many of the deficiencies of current automatic data extraction methods.

  4. Using Concept Relations to Improve Ranking in Information Retrieval

    PubMed Central

    Price, Susan L.; Delcambre, Lois M.

    2005-01-01

    Despite improved search engine technology, most searches return numerous documents not directly related to the query. This problem is mitigated if relevant documents appear high on a ranked list of search results. We propose that some queries and the underlying information needs can be modeled as relationships between concepts (relations), and we match relations in queries to relations in documents to try to improve ranking of search results. We investigate four techniques to identify two relationships important in medicine, causes and treats, to improve the ranking of medical text documents relevant to clinical questions about causation and treatment. Preliminary results suggest that identifying relation instances can improve the ranking of search results. PMID:16779114

  5. Effective Filtering of Query Results on Updated User Behavioral Profiles in Web Mining

    PubMed Central

    Sadesh, S.; Suganthe, R. C.

    2015-01-01

    Web with tremendous volume of information retrieves result for user related queries. With the rapid growth of web page recommendation, results retrieved based on data mining techniques did not offer higher performance filtering rate because relationships between user profile and queries were not analyzed in an extensive manner. At the same time, existing user profile based prediction in web data mining is not exhaustive in producing personalized result rate. To improve the query result rate on dynamics of user behavior over time, Hamilton Filtered Regime Switching User Query Probability (HFRS-UQP) framework is proposed. HFRS-UQP framework is split into two processes, where filtering and switching are carried out. The data mining based filtering in our research work uses the Hamilton Filtering framework to filter user result based on personalized information on automatic updated profiles through search engine. Maximized result is fetched, that is, filtered out with respect to user behavior profiles. The switching performs accurate filtering updated profiles using regime switching. The updating in profile change (i.e., switches) regime in HFRS-UQP framework identifies the second- and higher-order association of query result on the updated profiles. Experiment is conducted on factors such as personalized information search retrieval rate, filtering efficiency, and precision ratio. PMID:26221626

  6. Evaluation of an ontological resource for pharmacovigilance.

    PubMed

    Jaulent, Marie-Christine; Alecu, Iulian

    2009-01-01

    In this work, we present a methodology for evaluating an ontology designed in a previous study to describe adverse drug reactions. We evaluate it in term of its fitness for grouping cases in pharmacovigilance. We define as gold standard the Standardized MedDRA Queries (SMQs) developed manually to group terms representing similar medical conditions. We perform an automatic search in the ontology in order to retrieve concepts related to the medical conditions. An optimal query is built for each medical condition. The evaluation relies on the comparison between the terms in the SMQ and the terms subsumed by the query. The result is quantified by sensitivity and specificity. We applied this methodology for 24 SMQs and we obtain a mean sensitivity of 0.82. This work allows validating the semantic resource and provides, in perspective, tools to maintain the ontology while the knowledge is evolving.

  7. ASSET Queries: A Set-Oriented and Column-Wise Approach to Modern OLAP

    NASA Astrophysics Data System (ADS)

    Chatziantoniou, Damianos; Sotiropoulos, Yannis

    Modern data analysis has given birth to numerous grouping constructs and programming paradigms, way beyond the traditional group by. Applications such as data warehousing, web log analysis, streams monitoring and social networks understanding necessitated the use of data cubes, grouping variables, windows and MapReduce. In this paper we review the associated set (ASSET) concept and discuss its applicability in both continuous and traditional data settings. Given a set of values B, an associated set over B is just a collection of annotated data multisets, one for each b(B. The goal is to efficiently compute aggregates over these data sets. An ASSET query consists of repeated definitions of associated sets and aggregates of these, possibly correlated, resembling a spreadsheet document. We review systems implementing ASSET queries both in continuous and persistent contexts and argue for associated sets' analytical abilities and optimization opportunities.

  8. Calculating Water Thermodynamics in the Binding Site of Proteins - Applications of WaterMap to Drug Discovery.

    PubMed

    Cappel, Daniel; Sherman, Woody; Beuming, Thijs

    2017-01-01

    The ability to accurately characterize the solvation properties (water locations and thermodynamics) of biomolecules is of great importance to drug discovery. While crystallography, NMR, and other experimental techniques can assist in determining the structure of water networks in proteins and protein-ligand complexes, most water molecules are not fully resolved and accurately placed. Furthermore, understanding the energetic effects of solvation and desolvation on binding requires an analysis of the thermodynamic properties of solvent involved in the interaction between ligands and proteins. WaterMap is a molecular dynamics-based computational method that uses statistical mechanics to describe the thermodynamic properties (entropy, enthalpy, and free energy) of water molecules at the surface of proteins. This method can be used to assess the solvent contributions to ligand binding affinity and to guide lead optimization. In this review, we provide a comprehensive summary of published uses of WaterMap, including applications to lead optimization, virtual screening, selectivity analysis, ligand pose prediction, and druggability assessment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. OASIS: A Data Fusion System Optimized for Access to Distributed Archives

    NASA Astrophysics Data System (ADS)

    Berriman, G. B.; Kong, M.; Good, J. C.

    2002-05-01

    The On-Line Archive Science Information Services (OASIS) is accessible as a java applet through the NASA/IPAC Infrared Science Archive home page. It uses Geographical Information System (GIS) technology to provide data fusion and interaction services for astronomers. These services include the ability to process and display arbitrarily large image files, and user-controlled contouring, overlay regeneration and multi-table/image interactions. OASIS has been optimized for access to distributed archives and data sets. Its second release (June 2002) provides a mechanism that enables access to OASIS from "third-party" services and data providers. That is, any data provider who creates a query form to an archive containing a collection of data (images, catalogs, spectra) can direct the result files from the query into OASIS. Similarly, data providers who serve links to datasets or remote services on a web page can access all of these data with one instance of OASIS. In this was any data or service provider is given access to the full suite of capabilites of OASIS. We illustrate the "third-party" access feature with two examples: queries to the high-energy image datasets accessible from GSFC SkyView, and links to data that are returned from a target-based query to the NASA Extragalactic Database (NED). The second release of OASIS also includes a file-transfer manager that reports the status of multiple data downloads from remote sources to the client machine. It is a prototype for a request management system that will ultimately control and manage compute-intensive jobs submitted through OASIS to computing grids, such as request for large scale image mosaics and bulk statistical analysis.

  10. Learning for Semantic Parsing and Natural Language Generation Using Statistical Machine Translation Techniques

    DTIC Science & Technology

    2007-08-01

    In this domain, queries typically show a deeply nested structure, which makes the semantic parsing task rather challenging , e.g.: What states border...only 80% of the GEOQUERY queries are semantically tractable, which shows that GEOQUERY is indeed a more challenging domain than ATIS. Note that none...a particularly challenging task, because of the inherent ambiguity of natural languages on both sides. It has inspired a large body of research. In

  11. Of Ivory and Smurfs: Loxodontan MapReduce Experiments for Web Search

    DTIC Science & Technology

    2009-11-01

    i.e., index construction may involve multiple flushes to local disk and on-disk merge sorts outside of MapReduce). Once the local indexes have been...contained 198 cores, which, with current dual -processor quad-core con- figurations, could fit into 25 machines—a far more modest cluster with today’s...signifi- cant impact on effectiveness. Our simple pruning technique was performed at query time and hence could be adapted to query-dependent

  12. A Query Expansion Framework in Image Retrieval Domain Based on Local and Global Analysis

    PubMed Central

    Rahman, M. M.; Antani, S. K.; Thoma, G. R.

    2011-01-01

    We present an image retrieval framework based on automatic query expansion in a concept feature space by generalizing the vector space model of information retrieval. In this framework, images are represented by vectors of weighted concepts similar to the keyword-based representation used in text retrieval. To generate the concept vocabularies, a statistical model is built by utilizing Support Vector Machine (SVM)-based classification techniques. The images are represented as “bag of concepts” that comprise perceptually and/or semantically distinguishable color and texture patches from local image regions in a multi-dimensional feature space. To explore the correlation between the concepts and overcome the assumption of feature independence in this model, we propose query expansion techniques in the image domain from a new perspective based on both local and global analysis. For the local analysis, the correlations between the concepts based on the co-occurrence pattern, and the metrical constraints based on the neighborhood proximity between the concepts in encoded images, are analyzed by considering local feedback information. We also analyze the concept similarities in the collection as a whole in the form of a similarity thesaurus and propose an efficient query expansion based on the global analysis. The experimental results on a photographic collection of natural scenes and a biomedical database of different imaging modalities demonstrate the effectiveness of the proposed framework in terms of precision and recall. PMID:21822350

  13. Do not hesitate to use Tversky-and other hints for successful active analogue searches with feature count descriptors.

    PubMed

    Horvath, Dragos; Marcou, Gilles; Varnek, Alexandre

    2013-07-22

    This study is an exhaustive analysis of the neighborhood behavior over a large coherent data set (ChEMBL target/ligand pairs of known Ki, for 165 targets with >50 associated ligands each). It focuses on similarity-based virtual screening (SVS) success defined by the ascertained optimality index. This is a weighted compromise between purity and retrieval rate of active hits in the neighborhood of an active query. One key issue addressed here is the impact of Tversky asymmetric weighing of query vs candidate features (represented as integer-value ISIDA colored fragment/pharmacophore triplet count descriptor vectors). The nearly a 3/4 million independent SVS runs showed that Tversky scores with a strong bias in favor of query-specific features are, by far, the most successful and the least failure-prone out of a set of nine other dissimilarity scores. These include classical Tanimoto, which failed to defend its privileged status in practical SVS applications. Tversky performance is not significantly conditioned by tuning of its bias parameter α. Both initial "guesses" of α = 0.9 and 0.7 were more successful than Tanimoto (at its turn, better than Euclid). Tversky was eventually tested in exhaustive similarity searching within the library of 1.6 M commercial + bioactive molecules at http://infochim.u-strasbg.fr/webserv/VSEngine.html , comparing favorably to Tanimoto in terms of "scaffold hopping" propensity. Therefore, it should be used at least as often as, perhaps in parallel to Tanimoto in SVS. Analysis with respect to query subclasses highlighted relationships of query complexity (simply expressed in terms of pharmacophore pattern counts) and/or target nature vs SVS success likelihood. SVS using more complex queries are more robust with respect to the choice of their operational premises (descriptors, metric). Yet, they are best handled by "pro-query" Tversky scores at α > 0.5. Among simpler queries, one may distinguish between "growable" (allowing for active analogs with additional features), and a few "conservative" queries not allowing any growth. These (typically bioactive amine transporter ligands) form the specific application domain of "pro-candidate" biased Tversky scores at α < 0.5.

  14. On describing human white matter anatomy: the white matter query language.

    PubMed

    Wassermann, Demian; Makris, Nikos; Rathi, Yogesh; Shenton, Martha; Kikinis, Ron; Kubicki, Marek; Westin, Carl-Fredrik

    2013-01-01

    The main contribution of this work is the careful syntactical definition of major white matter tracts in the human brain based on a neuroanatomist's expert knowledge. We present a technique to formally describe white matter tracts and to automatically extract them from diffusion MRI data. The framework is based on a novel query language with a near-to-English textual syntax. This query language allows us to construct a dictionary of anatomical definitions describing white matter tracts. The definitions include adjacent gray and white matter regions, and rules for spatial relations. This enables automated coherent labeling of white matter anatomy across subjects. We use our method to encode anatomical knowledge in human white matter describing 10 association and 8 projection tracts per hemisphere and 7 commissural tracts. The technique is shown to be comparable in accuracy to manual labeling. We present results applying this framework to create a white matter atlas from 77 healthy subjects, and we use this atlas in a proof-of-concept study to detect tract changes specific to schizophrenia.

  15. Query-based learning for aerospace applications.

    PubMed

    Saad, E W; Choi, J J; Vian, J L; Wunsch, D C Ii

    2003-01-01

    Models of real-world applications often include a large number of parameters with a wide dynamic range, which contributes to the difficulties of neural network training. Creating the training data set for such applications becomes costly, if not impossible. In order to overcome the challenge, one can employ an active learning technique known as query-based learning (QBL) to add performance-critical data to the training set during the learning phase, thereby efficiently improving the overall learning/generalization. The performance-critical data can be obtained using an inverse mapping called network inversion (discrete network inversion and continuous network inversion) followed by oracle query. This paper investigates the use of both inversion techniques for QBL learning, and introduces an original heuristic to select the inversion target values for continuous network inversion method. Efficiency and generalization was further enhanced by employing node decoupled extended Kalman filter (NDEKF) training and a causality index (CI) as a means to reduce the input search dimensionality. The benefits of the overall QBL approach are experimentally demonstrated in two aerospace applications: a classification problem with large input space and a control distribution problem.

  16. An end user evaluation of query formulation and results review tools in three medical meta-search engines.

    PubMed

    Leroy, Gondy; Xu, Jennifer; Chung, Wingyan; Eggers, Shauna; Chen, Hsinchun

    2007-01-01

    Retrieving sufficient relevant information online is difficult for many people because they use too few keywords to search and search engines do not provide many support tools. To further complicate the search, users often ignore support tools when available. Our goal is to evaluate in a realistic setting when users use support tools and how they perceive these tools. We compared three medical search engines with support tools that require more or less effort from users to form a query and evaluate results. We carried out an end user study with 23 users who were asked to find information, i.e., subtopics and supporting abstracts, for a given theme. We used a balanced within-subjects design and report on the effectiveness, efficiency and usability of the support tools from the end user perspective. We found significant differences in efficiency but did not find significant differences in effectiveness between the three search engines. Dynamic user support tools requiring less effort led to higher efficiency. Fewer searches were needed and more documents were found per search when both query reformulation and result review tools dynamically adjust to the user query. The query reformulation tool that provided a long list of keywords, dynamically adjusted to the user query, was used most often and led to more subtopics. As hypothesized, the dynamic result review tools were used more often and led to more subtopics than static ones. These results were corroborated by the usability questionnaires, which showed that support tools that dynamically optimize output were preferred.

  17. A Survey in Indexing and Searching XML Documents.

    ERIC Educational Resources Information Center

    Luk, Robert W. P.; Leong, H. V.; Dillon, Tharam S.; Chan, Alvin T. S.; Croft, W. Bruce; Allan, James

    2002-01-01

    Discussion of XML focuses on indexing techniques for XML documents, grouping them into flat-file, semistructured, and structured indexing paradigms. Highlights include searching techniques, including full text search and multistage search; search result presentations; database and information retrieval system integration; XML query languages; and…

  18. Research and development of web oriented remote sensing image publication system based on Servlet technique

    NASA Astrophysics Data System (ADS)

    Juanle, Wang; Shuang, Li; Yunqiang, Zhu

    2005-10-01

    According to the requirements of China National Scientific Data Sharing Program (NSDSP), the research and development of web oriented RS Image Publication System (RSIPS) is based on Java Servlet technique. The designing of RSIPS framework is composed of 3 tiers, which is Presentation Tier, Application Service Tier and Data Resource Tier. Presentation Tier provides user interface for data query, review and download. For the convenience of users, visual spatial query interface is included. Served as a middle tier, Application Service Tier controls all actions between users and databases. Data Resources Tier stores RS images in file and relationship databases. RSIPS is developed with cross platform programming based on Java Servlet tools, which is one of advanced techniques in J2EE architecture. RSIPS's prototype has been developed and applied in the geosciences clearinghouse practice which is among the experiment units of NSDSP in China.

  19. StarView: The object oriented design of the ST DADS user interface

    NASA Technical Reports Server (NTRS)

    Williams, J. D.; Pollizzi, J. A.

    1992-01-01

    StarView is the user interface being developed for the Hubble Space Telescope Data Archive and Distribution Service (ST DADS). ST DADS is the data archive for HST observations and a relational database catalog describing the archived data. Users will use StarView to query the catalog and select appropriate datasets for study. StarView sends requests for archived datasets to ST DADS which processes the requests and returns the database to the user. StarView is designed to be a powerful and extensible user interface. Unique features include an internal relational database to navigate query results, a form definition language that will work with both CRT and X interfaces, a data definition language that will allow StarView to work with any relational database, and the ability to generate adhoc queries without requiring the user to understand the structure of the ST DADS catalog. Ultimately, StarView will allow the user to refine queries in the local database for improved performance and merge in data from external sources for correlation with other query results. The user will be able to create a query from single or multiple forms, merging the selected attributes into a single query. Arbitrary selection of attributes for querying is supported. The user will be able to select how query results are viewed. A standard form or table-row format may be used. Navigation capabilities are provided to aid the user in viewing query results. Object oriented analysis and design techniques were used in the design of StarView to support the mechanisms and concepts required to implement these features. One such mechanism is the Model-View-Controller (MVC) paradigm. The MVC allows the user to have multiple views of the underlying database, while providing a consistent mechanism for interaction regardless of the view. This approach supports both CRT and X interfaces while providing a common mode of user interaction. Another powerful abstraction is the concept of a Query Model. This concept allows a single query to be built form a single or multiple forms before it is submitted to ST DADS. Supporting this concept is the adhoc query generator which allows the user to select and qualify an indeterminate number attributes from the database. The user does not need any knowledge of how the joins across various tables are to be resolved. The adhoc generator calculates the joins automatically and generates the correct SQL query.

  20. Self-adaptive relevance feedback based on multilevel image content analysis

    NASA Astrophysics Data System (ADS)

    Gao, Yongying; Zhang, Yujin; Fu, Yu

    2001-01-01

    In current content-based image retrieval systems, it is generally accepted that obtaining high-level image features is a key to improve the querying. Among the related techniques, relevance feedback has become a hot research aspect because it combines the information from the user to refine the querying results. In practice, many methods have been proposed to achieve the goal of relevance feedback. In this paper, a new scheme for relevance feedback is proposed. Unlike previous methods for relevance feedback, our scheme provides a self-adaptive operation. First, based on multi- level image content analysis, the relevant images from the user could be automatically analyzed in different levels and the querying could be modified in terms of different analysis results. Secondly, to make it more convenient to the user, the procedure of relevance feedback could be led with memory or without memory. To test the performance of the proposed method, a practical semantic-based image retrieval system has been established, and the querying results gained by our self-adaptive relevance feedback are given.

  1. Self-adaptive relevance feedback based on multilevel image content analysis

    NASA Astrophysics Data System (ADS)

    Gao, Yongying; Zhang, Yujin; Fu, Yu

    2000-12-01

    In current content-based image retrieval systems, it is generally accepted that obtaining high-level image features is a key to improve the querying. Among the related techniques, relevance feedback has become a hot research aspect because it combines the information from the user to refine the querying results. In practice, many methods have been proposed to achieve the goal of relevance feedback. In this paper, a new scheme for relevance feedback is proposed. Unlike previous methods for relevance feedback, our scheme provides a self-adaptive operation. First, based on multi- level image content analysis, the relevant images from the user could be automatically analyzed in different levels and the querying could be modified in terms of different analysis results. Secondly, to make it more convenient to the user, the procedure of relevance feedback could be led with memory or without memory. To test the performance of the proposed method, a practical semantic-based image retrieval system has been established, and the querying results gained by our self-adaptive relevance feedback are given.

  2. Monitoring Influenza Epidemics in China with Search Query from Baidu

    PubMed Central

    Lv, Benfu; Peng, Geng; Chunara, Rumi; Brownstein, John S.

    2013-01-01

    Several approaches have been proposed for near real-time detection and prediction of the spread of influenza. These include search query data for influenza-related terms, which has been explored as a tool for augmenting traditional surveillance methods. In this paper, we present a method that uses Internet search query data from Baidu to model and monitor influenza activity in China. The objectives of the study are to present a comprehensive technique for: (i) keyword selection, (ii) keyword filtering, (iii) index composition and (iv) modeling and detection of influenza activity in China. Sequential time-series for the selected composite keyword index is significantly correlated with Chinese influenza case data. In addition, one-month ahead prediction of influenza cases for the first eight months of 2012 has a mean absolute percent error less than 11%. To our knowledge, this is the first study on the use of search query data from Baidu in conjunction with this approach for estimation of influenza activity in China. PMID:23750192

  3. Semantic photo synthesis

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew; Brostow, G. J.; Shotton, J.; Kwatra, V.; Cipolla, R.

    2007-02-01

    Composite images are synthesized from existing photographs by artists who make concept art, e.g. storyboards for movies or architectural planning. Current techniques allow an artist to fabricate such an image by digitally splicing parts of stock photographs. While these images serve mainly to "quickly" convey how a scene should look, their production is laborious. We propose a technique that allows a person to design a new photograph with substantially less effort. This paper presents a method that generates a composite image when a user types in nouns, such as "boat" and "sand." The artist can optionally design an intended image by specifying other constraints. Our algorithm formulates the constraints as queries to search an automatically annotated image database. The desired photograph, not a collage, is then synthesized using graph-cut optimization, optionally allowing for further user interaction to edit or choose among alternative generated photos. Our results demonstrate our contributions of (1) a method of creating specific images with minimal human effort, and (2) a combined algorithm for automatically building an image library with semantic annotations from any photo collection.

  4. Bilastine in allergic rhinoconjunctivitis and urticaria: a practical approach to treatment decisions based on queries received by the medical information department

    PubMed Central

    Leceta, Amalia; Sologuren, Ander; Valiente, Román; Campo, Cristina; Labeaga, Luis

    2017-01-01

    Background Bilastine is a safe and effective commonly prescribed non-sedating H1-antihistamine approved for symptomatic treatment in patients with allergic disorders such as rhinoconjunctivitis and urticaria. It was evaluated in many patients throughout the clinical development required for its approval, but clinical trials generally exclude many patients who will benefit in everyday clinical practice (especially those with coexisting diseases and/or being treated with concomitant drugs). Following its introduction into clinical practice, the Medical Information Specialists at Faes Farma have received many practical queries regarding the optimal use of bilastine in different circumstances. Data sources and methods Queries received by the Medical Information Department and the responses provided to senders of these queries. Results The most frequent questions received by the Medical Information Department included the potential for drug-drug interactions with bilastine and commonly used agents such as anticoagulants (including the novel oral anticoagulants), antiretrovirals, antituberculosis regimens, corticosteroids, digoxin, oral contraceptives, and proton pump inhibitors. Most of these medicines are not usually allowed in clinical trials, and so advice needs to be based upon the pharmacological profiles of the drugs involved and expert opinion. The pharmacokinetic profile of bilastine appears favourable since it undergoes negligible metabolism and is almost exclusively eliminated via renal excretion, and it neither induces nor inhibits the activity of several isoenzymes from the CYP 450 system. Consequently, bilastine does not interact with cytochrome metabolic pathways. Other queries involved specific patient groups such as subjects with renal impairment, women who are breastfeeding or who are trying to become pregnant, and patients with other concomitant diseases. Interestingly, several questions related to topics that are well covered in the Summary of Product Characteristics (SmPC), which suggests that this resource is not being well used. Conclusions Overall, this analysis highlights gaps in our knowledge regarding the optimal use of bilastine. Expert opinion based upon an understanding of the science can help in the decision-making, but more research is needed to provide evidence-based answers in certain circumstances. PMID:28210286

  5. Bilastine in allergic rhinoconjunctivitis and urticaria: a practical approach to treatment decisions based on queries received by the medical information department.

    PubMed

    Leceta, Amalia; Sologuren, Ander; Valiente, Román; Campo, Cristina; Labeaga, Luis

    2017-01-01

    Bilastine is a safe and effective commonly prescribed non-sedating H 1 -antihistamine approved for symptomatic treatment in patients with allergic disorders such as rhinoconjunctivitis and urticaria. It was evaluated in many patients throughout the clinical development required for its approval, but clinical trials generally exclude many patients who will benefit in everyday clinical practice (especially those with coexisting diseases and/or being treated with concomitant drugs). Following its introduction into clinical practice, the Medical Information Specialists at Faes Farma have received many practical queries regarding the optimal use of bilastine in different circumstances. Queries received by the Medical Information Department and the responses provided to senders of these queries. The most frequent questions received by the Medical Information Department included the potential for drug-drug interactions with bilastine and commonly used agents such as anticoagulants (including the novel oral anticoagulants), antiretrovirals, antituberculosis regimens, corticosteroids, digoxin, oral contraceptives, and proton pump inhibitors. Most of these medicines are not usually allowed in clinical trials, and so advice needs to be based upon the pharmacological profiles of the drugs involved and expert opinion. The pharmacokinetic profile of bilastine appears favourable since it undergoes negligible metabolism and is almost exclusively eliminated via renal excretion, and it neither induces nor inhibits the activity of several isoenzymes from the CYP 450 system. Consequently, bilastine does not interact with cytochrome metabolic pathways. Other queries involved specific patient groups such as subjects with renal impairment, women who are breastfeeding or who are trying to become pregnant, and patients with other concomitant diseases. Interestingly, several questions related to topics that are well covered in the Summary of Product Characteristics (SmPC), which suggests that this resource is not being well used. Overall, this analysis highlights gaps in our knowledge regarding the optimal use of bilastine. Expert opinion based upon an understanding of the science can help in the decision-making, but more research is needed to provide evidence-based answers in certain circumstances.

  6. Microscopy as a statistical, Rényi-Ulam, half-lie game: a new heuristic search strategy to accelerate imaging.

    PubMed

    Drumm, Daniel W; Greentree, Andrew D

    2017-11-07

    Finding a fluorescent target in a biological environment is a common and pressing microscopy problem. This task is formally analogous to the canonical search problem. In ideal (noise-free, truthful) search problems, the well-known binary search is optimal. The case of half-lies, where one of two responses to a search query may be deceptive, introduces a richer, Rényi-Ulam problem and is particularly relevant to practical microscopy. We analyse microscopy in the contexts of Rényi-Ulam games and half-lies, developing a new family of heuristics. We show the cost of insisting on verification by positive result in search algorithms; for the zero-half-lie case bisectioning with verification incurs a 50% penalty in the average number of queries required. The optimal partitioning of search spaces directly following verification in the presence of random half-lies is determined. Trisectioning with verification is shown to be the most efficient heuristic of the family in a majority of cases.

  7. START: a system for flexible analysis of hundreds of genomic signal tracks in few lines of SQL-like queries.

    PubMed

    Zhu, Xinjie; Zhang, Qiang; Ho, Eric Dun; Yu, Ken Hung-On; Liu, Chris; Huang, Tim H; Cheng, Alfred Sze-Lok; Kao, Ben; Lo, Eric; Yip, Kevin Y

    2017-09-22

    A genomic signal track is a set of genomic intervals associated with values of various types, such as measurements from high-throughput experiments. Analysis of signal tracks requires complex computational methods, which often make the analysts focus too much on the detailed computational steps rather than on their biological questions. Here we propose Signal Track Query Language (STQL) for simple analysis of signal tracks. It is a Structured Query Language (SQL)-like declarative language, which means one only specifies what computations need to be done but not how these computations are to be carried out. STQL provides a rich set of constructs for manipulating genomic intervals and their values. To run STQL queries, we have developed the Signal Track Analytical Research Tool (START, http://yiplab.cse.cuhk.edu.hk/start/ ), a system that includes a Web-based user interface and a back-end execution system. The user interface helps users select data from our database of around 10,000 commonly-used public signal tracks, manage their own tracks, and construct, store and share STQL queries. The back-end system automatically translates STQL queries into optimized low-level programs and runs them on a computer cluster in parallel. We use STQL to perform 14 representative analytical tasks. By repeating these analyses using bedtools, Galaxy and custom Python scripts, we show that the STQL solution is usually the simplest, and the parallel execution achieves significant speed-up with large data files. Finally, we describe how a biologist with minimal formal training in computer programming self-learned STQL to analyze DNA methylation data we produced from 60 pairs of hepatocellular carcinoma (HCC) samples. Overall, STQL and START provide a generic way for analyzing a large number of genomic signal tracks in parallel easily.

  8. Selecting materialized views using random algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Lijuan; Hao, Zhongxiao; Liu, Chi

    2007-04-01

    The data warehouse is a repository of information collected from multiple possibly heterogeneous autonomous distributed databases. The information stored at the data warehouse is in form of views referred to as materialized views. The selection of the materialized views is one of the most important decisions in designing a data warehouse. Materialized views are stored in the data warehouse for the purpose of efficiently implementing on-line analytical processing queries. The first issue for the user to consider is query response time. So in this paper, we develop algorithms to select a set of views to materialize in data warehouse in order to minimize the total view maintenance cost under the constraint of a given query response time. We call it query_cost view_ selection problem. First, cost graph and cost model of query_cost view_ selection problem are presented. Second, the methods for selecting materialized views by using random algorithms are presented. The genetic algorithm is applied to the materialized views selection problem. But with the development of genetic process, the legal solution produced become more and more difficult, so a lot of solutions are eliminated and producing time of the solutions is lengthened in genetic algorithm. Therefore, improved algorithm has been presented in this paper, which is the combination of simulated annealing algorithm and genetic algorithm for the purpose of solving the query cost view selection problem. Finally, in order to test the function and efficiency of our algorithms experiment simulation is adopted. The experiments show that the given methods can provide near-optimal solutions in limited time and works better in practical cases. Randomized algorithms will become invaluable tools for data warehouse evolution.

  9. Scalable and responsive event processing in the cloud

    PubMed Central

    Suresh, Visalakshmi; Ezhilchelvan, Paul; Watson, Paul

    2013-01-01

    Event processing involves continuous evaluation of queries over streams of events. Response-time optimization is traditionally done over a fixed set of nodes and/or by using metrics measured at query-operator levels. Cloud computing makes it easy to acquire and release computing nodes as required. Leveraging this flexibility, we propose a novel, queueing-theory-based approach for meeting specified response-time targets against fluctuating event arrival rates by drawing only the necessary amount of computing resources from a cloud platform. In the proposed approach, the entire processing engine of a distinct query is modelled as an atomic unit for predicting response times. Several such units hosted on a single node are modelled as a multiple class M/G/1 system. These aspects eliminate intrusive, low-level performance measurements at run-time, and also offer portability and scalability. Using model-based predictions, cloud resources are efficiently used to meet response-time targets. The efficacy of the approach is demonstrated through cloud-based experiments. PMID:23230164

  10. Data Sharing in DHT Based P2P Systems

    NASA Astrophysics Data System (ADS)

    Roncancio, Claudia; Del Pilar Villamil, María; Labbé, Cyril; Serrano-Alvarado, Patricia

    The evolution of peer-to-peer (P2P) systems triggered the building of large scale distributed applications. The main application domain is data sharing across a very large number of highly autonomous participants. Building such data sharing systems is particularly challenging because of the “extreme” characteristics of P2P infrastructures: massive distribution, high churn rate, no global control, potentially untrusted participants... This article focuses on declarative querying support, query optimization and data privacy on a major class of P2P systems, that based on Distributed Hash Table (P2P DHT). The usual approaches and the algorithms used by classic distributed systems and databases for providing data privacy and querying services are not well suited to P2P DHT systems. A considerable amount of work was required to adapt them for the new challenges such systems present. This paper describes the most important solutions found. It also identifies important future research trends in data management in P2P DHT systems.

  11. Grid Based Technologies for in silico Screening and Drug Design.

    PubMed

    Potemkin, Vladimir; Grishina, Maria

    2018-03-08

    Various techniques for rational drug design are presented in the paper. The methods are based on a substitution of antipharmacophore atoms of the molecules of training dataset by new atoms and/or group of atoms increasing the atomic bioactivity increments obtained at a SAR study. Furthermore, a design methodology based on the genetic algorithm DesPot for discrete optimization and generation of new drug candidate structures is described. Additionally, wide spectra of SAR approaches (3D/4D QSAR interior and exterior-based methods - BiS, CiS, ConGO, CoMIn, high-quality docking method - ReDock) using MERA force field and/or AlteQ quantum chemical method for correct prognosis of bioactivity and bioactive probability is described. The design methods are implemented now at www.chemosophia.com web-site for online computational services. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Research on B Cell Algorithm for Learning to Rank Method Based on Parallel Strategy.

    PubMed

    Tian, Yuling; Zhang, Hongxian

    2016-01-01

    For the purposes of information retrieval, users must find highly relevant documents from within a system (and often a quite large one comprised of many individual documents) based on input query. Ranking the documents according to their relevance within the system to meet user needs is a challenging endeavor, and a hot research topic-there already exist several rank-learning methods based on machine learning techniques which can generate ranking functions automatically. This paper proposes a parallel B cell algorithm, RankBCA, for rank learning which utilizes a clonal selection mechanism based on biological immunity. The novel algorithm is compared with traditional rank-learning algorithms through experimentation and shown to outperform the others in respect to accuracy, learning time, and convergence rate; taken together, the experimental results show that the proposed algorithm indeed effectively and rapidly identifies optimal ranking functions.

  13. Research on B Cell Algorithm for Learning to Rank Method Based on Parallel Strategy

    PubMed Central

    Tian, Yuling; Zhang, Hongxian

    2016-01-01

    For the purposes of information retrieval, users must find highly relevant documents from within a system (and often a quite large one comprised of many individual documents) based on input query. Ranking the documents according to their relevance within the system to meet user needs is a challenging endeavor, and a hot research topic–there already exist several rank-learning methods based on machine learning techniques which can generate ranking functions automatically. This paper proposes a parallel B cell algorithm, RankBCA, for rank learning which utilizes a clonal selection mechanism based on biological immunity. The novel algorithm is compared with traditional rank-learning algorithms through experimentation and shown to outperform the others in respect to accuracy, learning time, and convergence rate; taken together, the experimental results show that the proposed algorithm indeed effectively and rapidly identifies optimal ranking functions. PMID:27487242

  14. A Bayesian Approach to Interactive Retrieval

    ERIC Educational Resources Information Center

    Tague, Jean M.

    1973-01-01

    A probabilistic model for interactive retrieval is presented. Bayesian statistical decision theory principles are applied: use of prior and sample information about the relationship of document descriptions to query relevance; maximization of expected value of a utility function, to the problem of optimally restructuring search strategies in an…

  15. An efficient compression scheme for bitmap indices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kesheng; Otoo, Ekow J.; Shoshani, Arie

    2004-04-13

    When using an out-of-core indexing method to answer a query, it is generally assumed that the I/O cost dominates the overall query response time. Because of this, most research on indexing methods concentrate on reducing the sizes of indices. For bitmap indices, compression has been used for this purpose. However, in most cases, operations on these compressed bitmaps, mostly bitwise logical operations such as AND, OR, and NOT, spend more time in CPU than in I/O. To speedup these operations, a number of specialized bitmap compression schemes have been developed; the best known of which is the byte-aligned bitmap codemore » (BBC). They are usually faster in performing logical operations than the general purpose compression schemes, but, the time spent in CPU still dominates the total query response time. To reduce the query response time, we designed a CPU-friendly scheme named the word-aligned hybrid (WAH) code. In this paper, we prove that the sizes of WAH compressed bitmap indices are about two words per row for large range of attributes. This size is smaller than typical sizes of commonly used indices, such as a B-tree. Therefore, WAH compressed indices are not only appropriate for low cardinality attributes but also for high cardinality attributes.In the worst case, the time to operate on compressed bitmaps is proportional to the total size of the bitmaps involved. The total size of the bitmaps required to answer a query on one attribute is proportional to the number of hits. These indicate that WAH compressed bitmap indices are optimal. To verify their effectiveness, we generated bitmap indices for four different datasets and measured the response time of many range queries. Tests confirm that sizes of compressed bitmap indices are indeed smaller than B-tree indices, and query processing with WAH compressed indices is much faster than with BBC compressed indices, projection indices and B-tree indices. In addition, we also verified that the average query response time is proportional to the index size. This indicates that the compressed bitmap indices are efficient for very large datasets.« less

  16. Content-based retrieval of historical Ottoman documents stored as textual images.

    PubMed

    Saykol, Ediz; Sinop, Ali Kemal; Güdükbay, Ugur; Ulusoy, Ozgür; Cetin, A Enis

    2004-03-01

    There is an accelerating demand to access the visual content of documents stored in historical and cultural archives. Availability of electronic imaging tools and effective image processing techniques makes it feasible to process the multimedia data in large databases. In this paper, a framework for content-based retrieval of historical documents in the Ottoman Empire archives is presented. The documents are stored as textual images, which are compressed by constructing a library of symbols occurring in a document, and the symbols in the original image are then replaced with pointers into the codebook to obtain a compressed representation of the image. The features in wavelet and spatial domain based on angular and distance span of shapes are used to extract the symbols. In order to make content-based retrieval in historical archives, a query is specified as a rectangular region in an input image and the same symbol-extraction process is applied to the query region. The queries are processed on the codebook of documents and the query images are identified in the resulting documents using the pointers in textual images. The querying process does not require decompression of images. The new content-based retrieval framework is also applicable to many other document archives using different scripts.

  17. A Layered Searchable Encryption Scheme with Functional Components Independent of Encryption Methods

    PubMed Central

    Luo, Guangchun; Qin, Ke

    2014-01-01

    Searchable encryption technique enables the users to securely store and search their documents over the remote semitrusted server, which is especially suitable for protecting sensitive data in the cloud. However, various settings (based on symmetric or asymmetric encryption) and functionalities (ranked keyword query, range query, phrase query, etc.) are often realized by different methods with different searchable structures that are generally not compatible with each other, which limits the scope of application and hinders the functional extensions. We prove that asymmetric searchable structure could be converted to symmetric structure, and functions could be modeled separately apart from the core searchable structure. Based on this observation, we propose a layered searchable encryption (LSE) scheme, which provides compatibility, flexibility, and security for various settings and functionalities. In this scheme, the outputs of the core searchable component based on either symmetric or asymmetric setting are converted to some uniform mappings, which are then transmitted to loosely coupled functional components to further filter the results. In such a way, all functional components could directly support both symmetric and asymmetric settings. Based on LSE, we propose two representative and novel constructions for ranked keyword query (previously only available in symmetric scheme) and range query (previously only available in asymmetric scheme). PMID:24719565

  18. Secure quantum private information retrieval using phase-encoded queries

    NASA Astrophysics Data System (ADS)

    Olejnik, Lukasz

    2011-08-01

    We propose a quantum solution to the classical private information retrieval (PIR) problem, which allows one to query a database in a private manner. The protocol offers privacy thresholds and allows the user to obtain information from a database in a way that offers the potential adversary, in this model the database owner, no possibility of deterministically establishing the query contents. This protocol may also be viewed as a solution to the symmetrically private information retrieval problem in that it can offer database security (inability for a querying user to steal its contents). Compared to classical solutions, the protocol offers substantial improvement in terms of communication complexity. In comparison with the recent quantum private queries [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.230502 100, 230502 (2008)] protocol, it is more efficient in terms of communication complexity and the number of rounds, while offering a clear privacy parameter. We discuss the security of the protocol and analyze its strengths and conclude that using this technique makes it challenging to obtain the unconditional (in the information-theoretic sense) privacy degree; nevertheless, in addition to being simple, the protocol still offers a privacy level. The oracle used in the protocol is inspired both by the classical computational PIR solutions as well as the Deutsch-Jozsa oracle.

  19. Secure quantum private information retrieval using phase-encoded queries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olejnik, Lukasz

    We propose a quantum solution to the classical private information retrieval (PIR) problem, which allows one to query a database in a private manner. The protocol offers privacy thresholds and allows the user to obtain information from a database in a way that offers the potential adversary, in this model the database owner, no possibility of deterministically establishing the query contents. This protocol may also be viewed as a solution to the symmetrically private information retrieval problem in that it can offer database security (inability for a querying user to steal its contents). Compared to classical solutions, the protocol offersmore » substantial improvement in terms of communication complexity. In comparison with the recent quantum private queries [Phys. Rev. Lett. 100, 230502 (2008)] protocol, it is more efficient in terms of communication complexity and the number of rounds, while offering a clear privacy parameter. We discuss the security of the protocol and analyze its strengths and conclude that using this technique makes it challenging to obtain the unconditional (in the information-theoretic sense) privacy degree; nevertheless, in addition to being simple, the protocol still offers a privacy level. The oracle used in the protocol is inspired both by the classical computational PIR solutions as well as the Deutsch-Jozsa oracle.« less

  20. Geographic Video 3d Data Model And Retrieval

    NASA Astrophysics Data System (ADS)

    Han, Z.; Cui, C.; Kong, Y.; Wu, H.

    2014-04-01

    Geographic video includes both spatial and temporal geographic features acquired through ground-based or non-ground-based cameras. With the popularity of video capture devices such as smartphones, the volume of user-generated geographic video clips has grown significantly and the trend of this growth is quickly accelerating. Such a massive and increasing volume poses a major challenge to efficient video management and query. Most of the today's video management and query techniques are based on signal level content extraction. They are not able to fully utilize the geographic information of the videos. This paper aimed to introduce a geographic video 3D data model based on spatial information. The main idea of the model is to utilize the location, trajectory and azimuth information acquired by sensors such as GPS receivers and 3D electronic compasses in conjunction with video contents. The raw spatial information is synthesized to point, line, polygon and solid according to the camcorder parameters such as focal length and angle of view. With the video segment and video frame, we defined the three categories geometry object using the geometry model of OGC Simple Features Specification for SQL. We can query video through computing the spatial relation between query objects and three categories geometry object such as VFLocation, VSTrajectory, VSFOView and VFFovCone etc. We designed the query methods using the structured query language (SQL) in detail. The experiment indicate that the model is a multiple objective, integration, loosely coupled, flexible and extensible data model for the management of geographic stereo video.

  1. A rank-based Prediction Algorithm of Learning User's Intention

    NASA Astrophysics Data System (ADS)

    Shen, Jie; Gao, Ying; Chen, Cang; Gong, HaiPing

    Internet search has become an important part in people's daily life. People can find many types of information to meet different needs through search engines on the Internet. There are two issues for the current search engines: first, the users should predetermine the types of information they want and then change to the appropriate types of search engine interfaces. Second, most search engines can support multiple kinds of search functions, each function has its own separate search interface. While users need different types of information, they must switch between different interfaces. In practice, most queries are corresponding to various types of information results. These queries can search the relevant results in various search engines, such as query "Palace" contains the websites about the introduction of the National Palace Museum, blog, Wikipedia, some pictures and video information. This paper presents a new aggregative algorithm for all kinds of search results. It can filter and sort the search results by learning three aspects about the query words, search results and search history logs to achieve the purpose of detecting user's intention. Experiments demonstrate that this rank-based method for multi-types of search results is effective. It can meet the user's search needs well, enhance user's satisfaction, provide an effective and rational model for optimizing search engines and improve user's search experience.

  2. Perspectives on Peace.

    ERIC Educational Resources Information Center

    Bents, Richard; Trygestad, JoAnn

    Students assessed as having different personality types were queried concerning their perspectives on peace. Two hundred seventy-five students (ages 14-18) from Poland, West Germany, and the United States defined peace and indicated the degree of influence they felt they have on the future. Differences in definitions of peace, optimism, and degree…

  3. Matching health information seekers' queries to medical terms

    PubMed Central

    2012-01-01

    Background The Internet is a major source of health information but most seekers are not familiar with medical vocabularies. Hence, their searches fail due to bad query formulation. Several methods have been proposed to improve information retrieval: query expansion, syntactic and semantic techniques or knowledge-based methods. However, it would be useful to clean those queries which are misspelled. In this paper, we propose a simple yet efficient method in order to correct misspellings of queries submitted by health information seekers to a medical online search tool. Methods In addition to query normalizations and exact phonetic term matching, we tested two approximate string comparators: the similarity score function of Stoilos and the normalized Levenshtein edit distance. We propose here to combine them to increase the number of matched medical terms in French. We first took a sample of query logs to determine the thresholds and processing times. In the second run, at a greater scale we tested different combinations of query normalizations before or after misspelling correction with the retained thresholds in the first run. Results According to the total number of suggestions (around 163, the number of the first sample of queries), at a threshold comparator score of 0.3, the normalized Levenshtein edit distance gave the highest F-Measure (88.15%) and at a threshold comparator score of 0.7, the Stoilos function gave the highest F-Measure (84.31%). By combining Levenshtein and Stoilos, the highest F-Measure (80.28%) is obtained with 0.2 and 0.7 thresholds respectively. However, queries are composed by several terms that may be combination of medical terms. The process of query normalization and segmentation is thus required. The highest F-Measure (64.18%) is obtained when this process is realized before spelling-correction. Conclusions Despite the widely known high performance of the normalized edit distance of Levenshtein, we show in this paper that its combination with the Stoilos algorithm improved the results for misspelling correction of user queries. Accuracy is improved by combining spelling, phoneme-based information and string normalizations and segmentations into medical terms. These encouraging results have enabled the integration of this method into two projects funded by the French National Research Agency-Technologies for Health Care. The first aims to facilitate the coding process of clinical free texts contained in Electronic Health Records and discharge summaries, whereas the second aims at improving information retrieval through Electronic Health Records. PMID:23095521

  4. A Pathological Brain Detection System based on Extreme Learning Machine Optimized by Bat Algorithm.

    PubMed

    Lu, Siyuan; Qiu, Xin; Shi, Jianping; Li, Na; Lu, Zhi-Hai; Chen, Peng; Yang, Meng-Meng; Liu, Fang-Yuan; Jia, Wen-Juan; Zhang, Yudong

    2017-01-01

    It is beneficial to classify brain images as healthy or pathological automatically, because 3D brain images can generate so much information which is time consuming and tedious for manual analysis. Among various 3D brain imaging techniques, magnetic resonance (MR) imaging is the most suitable for brain, and it is now widely applied in hospitals, because it is helpful in the four ways of diagnosis, prognosis, pre-surgical, and postsurgical procedures. There are automatic detection methods; however they suffer from low accuracy. Therefore, we proposed a novel approach which employed 2D discrete wavelet transform (DWT), and calculated the entropies of the subbands as features. Then, a bat algorithm optimized extreme learning machine (BA-ELM) was trained to identify pathological brains from healthy controls. A 10x10-fold cross validation was performed to evaluate the out-of-sample performance. The method achieved a sensitivity of 99.04%, a specificity of 93.89%, and an overall accuracy of 98.33% over 132 MR brain images. The experimental results suggest that the proposed approach is accurate and robust in pathological brain detection. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Research-IQ: Development and Evaluation of an Ontology-anchored Integrative Query Tool

    PubMed Central

    Borlawsky, Tara B.; Lele, Omkar; Payne, Philip R. O.

    2011-01-01

    Investigators in the translational research and systems medicine domains require highly usable, efficient and integrative tools and methods that allow for the navigation of and reasoning over emerging large-scale data sets. Such resources must cover a spectrum of granularity from bio-molecules to population phenotypes. Given such information needs, we report upon the initial design and evaluation of an ontology-anchored integrative query tool, Research-IQ, which employs a combination of conceptual knowledge engineering and information retrieval techniques to enable the intuitive and rapid construction of queries, in terms of semi-structured textual propositions, that can subsequently be applied to integrative data sets. Our initial results, based upon both quantitative and qualitative evaluations of the efficacy and usability of Research-IQ, demonstrate its potential to increase clinical and translational research throughput. PMID:21821150

  6. Framing Electronic Medical Records as Polylingual Documents in Query Expansion

    PubMed Central

    Huang, Edward W; Wang, Sheng; Lee, Doris Jung-Lin; Zhang, Runshun; Liu, Baoyan; Zhou, Xuezhong; Zhai, ChengXiang

    2017-01-01

    We present a study of electronic medical record (EMR) retrieval that emulates situations in which a doctor treats a new patient. Given a query consisting of a new patient’s symptoms, the retrieval system returns the set of most relevant records of previously treated patients. However, due to semantic, functional, and treatment synonyms in medical terminology, queries are often incomplete and thus require enhancement. In this paper, we present a topic model that frames symptoms and treatments as separate languages. Our experimental results show that this method improves retrieval performance over several baselines with statistical significance. These baselines include methods used in prior studies as well as state-of-the-art embedding techniques. Finally, we show that our proposed topic model discovers all three types of synonyms to improve medical record retrieval. PMID:29854161

  7. Optimizing the NASA Technical Report Server

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Maa, Ming-Hokng

    1996-01-01

    The NASA Technical Report Server (NTRS), a World Wide Web report distribution NASA technical publications service, is modified for performance enhancement, greater protocol support, and human interface optimization. Results include: Parallel database queries, significantly decreasing user access times by an average factor of 2.3; access from clients behind firewalls and/ or proxies which truncate excessively long Uniform Resource Locators (URLs); access to non-Wide Area Information Server (WAIS) databases and compatibility with the 239-50.3 protocol; and a streamlined user interface.

  8. Forecasting influenza outbreak dynamics in Melbourne from Internet search query surveillance data.

    PubMed

    Moss, Robert; Zarebski, Alexander; Dawson, Peter; McCaw, James M

    2016-07-01

    Accurate forecasting of seasonal influenza epidemics is of great concern to healthcare providers in temperate climates, as these epidemics vary substantially in their size, timing and duration from year to year, making it a challenge to deliver timely and proportionate responses. Previous studies have shown that Bayesian estimation techniques can accurately predict when an influenza epidemic will peak many weeks in advance, using existing surveillance data, but these methods must be tailored both to the target population and to the surveillance system. Our aim was to evaluate whether forecasts of similar accuracy could be obtained for metropolitan Melbourne (Australia). We used the bootstrap particle filter and a mechanistic infection model to generate epidemic forecasts for metropolitan Melbourne (Australia) from weekly Internet search query surveillance data reported by Google Flu Trends for 2006-14. Optimal observation models were selected from hundreds of candidates using a novel approach that treats forecasts akin to receiver operating characteristic (ROC) curves. We show that the timing of the epidemic peak can be accurately predicted 4-6 weeks in advance, but that the magnitude of the epidemic peak and the overall burden are much harder to predict. We then discuss how the infection and observation models and the filtering process may be refined to improve forecast robustness, thereby improving the utility of these methods for healthcare decision support. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  9. Spatial coding-based approach for partitioning big spatial data in Hadoop

    NASA Astrophysics Data System (ADS)

    Yao, Xiaochuang; Mokbel, Mohamed F.; Alarabi, Louai; Eldawy, Ahmed; Yang, Jianyu; Yun, Wenju; Li, Lin; Ye, Sijing; Zhu, Dehai

    2017-09-01

    Spatial data partitioning (SDP) plays a powerful role in distributed storage and parallel computing for spatial data. However, due to skew distribution of spatial data and varying volume of spatial vector objects, it leads to a significant challenge to ensure both optimal performance of spatial operation and data balance in the cluster. To tackle this problem, we proposed a spatial coding-based approach for partitioning big spatial data in Hadoop. This approach, firstly, compressed the whole big spatial data based on spatial coding matrix to create a sensing information set (SIS), including spatial code, size, count and other information. SIS was then employed to build spatial partitioning matrix, which was used to spilt all spatial objects into different partitions in the cluster finally. Based on our approach, the neighbouring spatial objects can be partitioned into the same block. At the same time, it also can minimize the data skew in Hadoop distributed file system (HDFS). The presented approach with a case study in this paper is compared against random sampling based partitioning, with three measurement standards, namely, the spatial index quality, data skew in HDFS, and range query performance. The experimental results show that our method based on spatial coding technique can improve the query performance of big spatial data, as well as the data balance in HDFS. We implemented and deployed this approach in Hadoop, and it is also able to support efficiently any other distributed big spatial data systems.

  10. A systematic comparison of the closed shoulder reduction techniques.

    PubMed

    Alkaduhimi, H; van der Linde, J A; Willigenburg, N W; van Deurzen, D F P; van den Bekerom, M P J

    2017-05-01

    To identify the optimal technique for closed reduction for shoulder instability, based on success rates, reduction time, complication risks, and pain level. A PubMed and EMBASE query was performed, screening all relevant literature of closed reduction techniques mentioning the success rate written in English, Dutch, German, and Arabic. Studies with a fracture dislocation or lacking information on success rates for closed reduction techniques were excluded. We used the modified Coleman Methodology Score (CMS) to assess the quality of included studies and excluded studies with a poor methodological quality (CMS < 50). Finally, a meta-analysis was performed on the data from all studies combined. 2099 studies were screened for their title and abstract, of which 217 studies were screened full-text and finally 13 studies were included. These studies included 9 randomized controlled trials, 2 retrospective comparative studies, and 2 prospective non-randomized comparative studies. A combined analysis revealed that the scapular manipulation is the most successful (97%), fastest (1.75 min), and least painful reduction technique (VAS 1,47); the "Fast, Reliable, and Safe" (FARES) method also scores high in terms of successful reduction (92%), reduction time (2.24 min), and intra-reduction pain (VAS 1.59); the traction-countertraction technique is highly successful (95%), but slower (6.05 min) and more painful (VAS 4.75). For closed reduction of anterior shoulder dislocations, the combined data from the selected studies indicate that scapular manipulation is the most successful and fastest technique, with the shortest mean hospital stay and least pain during reduction. The FARES method seems the best alternative.

  11. Language-concordant automated telephone queries to assess medication adherence in a diverse population: a cross-sectional analysis of convergent validity with pharmacy claims.

    PubMed

    Ratanawongsa, Neda; Quan, Judy; Handley, Margaret A; Sarkar, Urmimala; Schillinger, Dean

    2018-04-06

    Clinicians have difficulty accurately assessing medication non-adherence within chronic disease care settings. Health information technology (HIT) could offer novel tools to assess medication adherence in diverse populations outside of usual health care settings. In a multilingual urban safety net population, we examined the validity of assessing adherence using automated telephone self-management (ATSM) queries, when compared with non-adherence using continuous medication gap (CMG) on pharmacy claims. We hypothesized that patients reporting greater days of missed pills to ATSM queries would have higher rates of non-adherence as measured by CMG, and that ATSM adherence assessments would perform as well as structured interview assessments. As part of an ATSM-facilitated diabetes self-management program, low-income health plan members typed numeric responses to rotating weekly ATSM queries: "In the last 7 days, how many days did you MISS taking your …" diabetes, blood pressure, or cholesterol pill. Research assistants asked similar questions in computer-assisted structured telephone interviews. We measured continuous medication gap (CMG) by claims over 12 preceding months. To evaluate convergent validity, we compared rates of optimal adherence (CMG ≤ 20%) across respondents reporting 0, 1, and ≥ 2 missed pill days on ATSM and on structured interview. Among 210 participants, 46% had limited health literacy, 57% spoke Cantonese, and 19% Spanish. ATSM respondents reported ≥1 missed day for diabetes (33%), blood pressure (19%), and cholesterol (36%) pills. Interview respondents reported ≥1 missed day for diabetes (28%), blood pressure (21%), and cholesterol (26%) pills. Optimal adherence rates by CMG were lower among ATSM respondents reporting more missed days for blood pressure (p = 0.02) and cholesterol (p < 0.01); by interview, differences were significant for cholesterol (p = 0.01). Language-concordant ATSM demonstrated modest potential for assessing adherence. Studies should evaluate HIT assessments of medication beliefs and concerns in diverse populations. NCT00683020 , registered May 21, 2008.

  12. Common aspects influencing the translocation of SERS to Biomedicine.

    PubMed

    Gil, Pilar Rivera; Tsouts, Dionysia; Sanles-Sobrido, Marcos; Cabo, Andreu

    2018-01-04

    In this review, we introduce the reader the analytical technique, surface-enhanced Raman scattering motivated by the great potential we believe this technique have in biomedicine. We present the advantages and limitations of this technique relevant for bioanalysis in vitro and in vivo and how this technique goes beyond the state of the art of traditional analytical, labelling and healthcare diagnosis technologies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. A Querying Method over RDF-ized Health Level Seven v2.5 Messages Using Life Science Knowledge Resources.

    PubMed

    Kawazoe, Yoshimasa; Imai, Takeshi; Ohe, Kazuhiko

    2016-04-05

    Health level seven version 2.5 (HL7 v2.5) is a widespread messaging standard for information exchange between clinical information systems. By applying Semantic Web technologies for handling HL7 v2.5 messages, it is possible to integrate large-scale clinical data with life science knowledge resources. Showing feasibility of a querying method over large-scale resource description framework (RDF)-ized HL7 v2.5 messages using publicly available drug databases. We developed a method to convert HL7 v2.5 messages into the RDF. We also converted five kinds of drug databases into RDF and provided explicit links between the corresponding items among them. With those linked drug data, we then developed a method for query expansion to search the clinical data using semantic information on drug classes along with four types of temporal patterns. For evaluation purpose, medication orders and laboratory test results for a 3-year period at the University of Tokyo Hospital were used, and the query execution times were measured. Approximately 650 million RDF triples for medication orders and 790 million RDF triples for laboratory test results were converted. Taking three types of query in use cases for detecting adverse events of drugs as an example, we confirmed these queries were represented in SPARQL Protocol and RDF Query Language (SPARQL) using our methods and comparison with conventional query expressions were performed. The measurement results confirm that the query time is feasible and increases logarithmically or linearly with the amount of data and without diverging. The proposed methods enabled query expressions that separate knowledge resources and clinical data, thereby suggesting the feasibility for improving the usability of clinical data by enhancing the knowledge resources. We also demonstrate that when HL7 v2.5 messages are automatically converted into RDF, searches are still possible through SPARQL without modifying the structure. As such, the proposed method benefits not only our hospitals, but also numerous hospitals that handle HL7 v2.5 messages. Our approach highlights a potential of large-scale data federation techniques to retrieve clinical information, which could be applied as applications of clinical intelligence to improve clinical practices, such as adverse drug event monitoring and cohort selection for a clinical study as well as discovering new knowledge from clinical information.

  14. Trails research: where do we go from here?

    Treesearch

    Michael A. Schuett; Patricia Seiser

    2002-01-01

    This paper describes a recent study focusing on trails research needs. This study was supported by American Trails. Using a Delphi technique, 86 trails experts representing a variety of federal, state and local agencies, nonprofits, and trail uses were queried by email on trails research needs. A Delphi technique is a prognostic tool for dealing with complex problems...

  15. A database de-identification framework to enable direct queries on medical data for secondary use.

    PubMed

    Erdal, B S; Liu, J; Ding, J; Chen, J; Marsh, C B; Kamal, J; Clymer, B D

    2012-01-01

    To qualify the use of patient clinical records as non-human-subject for research purpose, electronic medical record data must be de-identified so there is minimum risk to protected health information exposure. This study demonstrated a robust framework for structured data de-identification that can be applied to any relational data source that needs to be de-identified. Using a real world clinical data warehouse, a pilot implementation of limited subject areas were used to demonstrate and evaluate this new de-identification process. Query results and performances are compared between source and target system to validate data accuracy and usability. The combination of hashing, pseudonyms, and session dependent randomizer provides a rigorous de-identification framework to guard against 1) source identifier exposure; 2) internal data analyst manually linking to source identifiers; and 3) identifier cross-link among different researchers or multiple query sessions by the same researcher. In addition, a query rejection option is provided to refuse queries resulting in less than preset numbers of subjects and total records to prevent users from accidental subject identification due to low volume of data. This framework does not prevent subject re-identification based on prior knowledge and sequence of events. Also, it does not deal with medical free text de-identification, although text de-identification using natural language processing can be included due its modular design. We demonstrated a framework resulting in HIPAA Compliant databases that can be directly queried by researchers. This technique can be augmented to facilitate inter-institutional research data sharing through existing middleware such as caGrid.

  16. Fixing Dataset Search

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris

    2014-01-01

    Three current search engines are queried for ozone data at the GES DISC. The results range from sub-optimal to counter-intuitive. We propose a method to fix dataset search by implementing a robust relevancy ranking scheme. The relevancy ranking scheme is based on several heuristics culled from more than 20 years of helping users select datasets.

  17. Designing Websites for Displaying Large Data Sets and Images on Multiple Platforms

    NASA Astrophysics Data System (ADS)

    Anderson, A.; Wolf, V. G.; Garron, J.; Kirschner, M.

    2012-12-01

    The desire to build websites to analyze and display ever increasing amounts of scientific data and images pushes for web site designs which utilize large displays, and to use the display area as efficiently as possible. Yet, scientists and users of their data are increasingly wishing to access these websites in the field and on mobile devices. This results in the need to develop websites that can support a wide range of devices and screen sizes, and to optimally use whatever display area is available. Historically, designers have addressed this issue by building two websites; one for mobile devices, and one for desktop environments, resulting in increased cost, duplicity of work, and longer development times. Recent advancements in web design technology and techniques have evolved which allow for the development of a single website that dynamically adjusts to the type of device being used to browse the website (smartphone, tablet, desktop). In addition they provide the opportunity to truly optimize whatever display area is available. HTML5 and CSS3 give web designers media query statements which allow design style sheets to be aware of the size of the display being used, and to format web content differently based upon the queried response. Web elements can be rendered in a different size, position, or even removed from the display entirely, based upon the size of the display area. Using HTML5/CSS3 media queries in this manner is referred to as "Responsive Web Design" (RWD). RWD in combination with technologies such as LESS and Twitter Bootstrap allow the web designer to build web sites which not only dynamically respond to the browser display size being used, but to do so in very controlled and intelligent ways, ensuring that good layout and graphic design principles are followed while doing so. At the University of Alaska Fairbanks, the Alaska Satellite Facility SAR Data Center (ASF) recently redesigned their popular Vertex application and converted it from a traditional, fixed-layout website into a RWD site built on HTML5, LESS and Twitter Bootstrap. Vertex is a data portal for remotely sensed imagery of the earth, offering Synthetic Aperture Radar (SAR) data products from the global ASF archive. By using Responsive Web Design, ASF is able to provide access to a massive collection of SAR imagery and allow the user to use mobile devices and desktops to maximum advantage. ASF's Vertex web site demonstrates that with increased interface flexibility, scientists, managers and users can increase their personal effectiveness by accessing data portals from their preferred device as their science dictates.

  18. Distributed Efficient Similarity Search Mechanism in Wireless Sensor Networks

    PubMed Central

    Ahmed, Khandakar; Gregory, Mark A.

    2015-01-01

    The Wireless Sensor Network similarity search problem has received considerable research attention due to sensor hardware imprecision and environmental parameter variations. Most of the state-of-the-art distributed data centric storage (DCS) schemes lack optimization for similarity queries of events. In this paper, a DCS scheme with metric based similarity searching (DCSMSS) is proposed. DCSMSS takes motivation from vector distance index, called iDistance, in order to transform the issue of similarity searching into the problem of an interval search in one dimension. In addition, a sector based distance routing algorithm is used to efficiently route messages. Extensive simulation results reveal that DCSMSS is highly efficient and significantly outperforms previous approaches in processing similarity search queries. PMID:25751081

  19. Biotea: semantics for Pubmed Central.

    PubMed

    Garcia, Alexander; Lopez, Federico; Garcia, Leyla; Giraldo, Olga; Bucheli, Victor; Dumontier, Michel

    2018-01-01

    A significant portion of biomedical literature is represented in a manner that makes it difficult for consumers to find or aggregate content through a computational query. One approach to facilitate reuse of the scientific literature is to structure this information as linked data using standardized web technologies. In this paper we present the second version of Biotea, a semantic, linked data version of the open-access subset of PubMed Central that has been enhanced with specialized annotation pipelines that uses existing infrastructure from the National Center for Biomedical Ontology. We expose our models, services, software and datasets. Our infrastructure enables manual and semi-automatic annotation, resulting data are represented as RDF-based linked data and can be readily queried using the SPARQL query language. We illustrate the utility of our system with several use cases. Our datasets, methods and techniques are available at http://biotea.github.io.

  20. Intelligent web image retrieval system

    NASA Astrophysics Data System (ADS)

    Hong, Sungyong; Lee, Chungwoo; Nah, Yunmook

    2001-07-01

    Recently, the web sites such as e-business sites and shopping mall sites deal with lots of image information. To find a specific image from these image sources, we usually use web search engines or image database engines which rely on keyword only retrievals or color based retrievals with limited search capabilities. This paper presents an intelligent web image retrieval system. We propose the system architecture, the texture and color based image classification and indexing techniques, and representation schemes of user usage patterns. The query can be given by providing keywords, by selecting one or more sample texture patterns, by assigning color values within positional color blocks, or by combining some or all of these factors. The system keeps track of user's preferences by generating user query logs and automatically add more search information to subsequent user queries. To show the usefulness of the proposed system, some experimental results showing recall and precision are also explained.

  1. Partial automation of database processing of simulation outputs from L-systems models of plant morphogenesis.

    PubMed

    Chen, Yi- Ping Phoebe; Hanan, Jim

    2002-01-01

    Models of plant architecture allow us to explore how genotype environment interactions effect the development of plant phenotypes. Such models generate masses of data organised in complex hierarchies. This paper presents a generic system for creating and automatically populating a relational database from data generated by the widely used L-system approach to modelling plant morphogenesis. Techniques from compiler technology are applied to generate attributes (new fields) in the database, to simplify query development for the recursively-structured branching relationship. Use of biological terminology in an interactive query builder contributes towards making the system biologist-friendly.

  2. A data analysis expert system for large established distributed databases

    NASA Technical Reports Server (NTRS)

    Gnacek, Anne-Marie; An, Y. Kim; Ryan, J. Patrick

    1987-01-01

    A design for a natural language database interface system, called the Deductively Augmented NASA Management Decision support System (DANMDS), is presented. The DANMDS system components have been chosen on the basis of the following considerations: maximal employment of the existing NASA IBM-PC computers and supporting software; local structuring and storing of external data via the entity-relationship model; a natural easy-to-use error-free database query language; user ability to alter query language vocabulary and data analysis heuristic; and significant artificial intelligence data analysis heuristic techniques that allow the system to become progressively and automatically more useful.

  3. Modelling the spatial distribution of Fasciola hepatica in bovines using decision tree, logistic regression and GIS query approaches for Brazil.

    PubMed

    Bennema, S C; Molento, M B; Scholte, R G; Carvalho, O S; Pritsch, I

    2017-11-01

    Fascioliasis is a condition caused by the trematode Fasciola hepatica. In this paper, the spatial distribution of F. hepatica in bovines in Brazil was modelled using a decision tree approach and a logistic regression, combined with a geographic information system (GIS) query. In the decision tree and the logistic model, isothermality had the strongest influence on disease prevalence. Also, the 50-year average precipitation in the warmest quarter of the year was included as a risk factor, having a negative influence on the parasite prevalence. The risk maps developed using both techniques, showed a predicted higher prevalence mainly in the South of Brazil. The prediction performance seemed to be high, but both techniques failed to reach a high accuracy in predicting the medium and high prevalence classes to the entire country. The GIS query map, based on the range of isothermality, minimum temperature of coldest month, precipitation of warmest quarter of the year, altitude and the average dailyland surface temperature, showed a possibility of presence of F. hepatica in a very large area. The risk maps produced using these methods can be used to focus activities of animal and public health programmes, even on non-evaluated F. hepatica areas.

  4. Integrating user profile in medical CBIR systems to answer perceptual similarity queries

    NASA Astrophysics Data System (ADS)

    Bugatti, Pedro H.; Kaster, Daniel S.; Ponciano-Silva, Marcelo; Traina, Agma J. M.; Traina, Caetano, Jr.

    2011-03-01

    Techniques for Content-Based Image Retrieval (CBIR) have been intensively explored due to the increase in the amount of captured images and the need of fast retrieval of them. The medical field is a specific example that generates a large flow of information, especially digital images employed for diagnosing. One issue that still remains unsolved deals with how to reach the perceptual similarity. That is, to achieve an effective retrieval, one must characterize and quantify the perceptual similarity regarding the specialist in the field. Therefore, the present paper was conceived to fill in this gap creating a consistent support to perform similarity queries over medical images, maintaining the semantics of a given query desired by the user. CBIR systems relying in relevance feedback techniques usually request the users to label relevant images. In this paper, we present a simple but highly effective strategy to survey user profiles, taking advantage of such labeling to implicitly gather the user perceptual similarity. The user profiles maintain the settings desired for each user, allowing tuning the similarity assessment, which encompasses dynamically changing the distance function employed through an interactive process. Experiments using computed tomography lung images show that the proposed approach is effective in capturing the users' perception.

  5. PIBAS FedSPARQL: a web-based platform for integration and exploration of bioinformatics datasets.

    PubMed

    Djokic-Petrovic, Marija; Cvjetkovic, Vladimir; Yang, Jeremy; Zivanovic, Marko; Wild, David J

    2017-09-20

    There are a huge variety of data sources relevant to chemical, biological and pharmacological research, but these data sources are highly siloed and cannot be queried together in a straightforward way. Semantic technologies offer the ability to create links and mappings across datasets and manage them as a single, linked network so that searching can be carried out across datasets, independently of the source. We have developed an application called PIBAS FedSPARQL that uses semantic technologies to allow researchers to carry out such searching across a vast array of data sources. PIBAS FedSPARQL is a web-based query builder and result set visualizer of bioinformatics data. As an advanced feature, our system can detect similar data items identified by different Uniform Resource Identifiers (URIs), using a text-mining algorithm based on the processing of named entities to be used in Vector Space Model and Cosine Similarity Measures. According to our knowledge, PIBAS FedSPARQL was unique among the systems that we found in that it allows detecting of similar data items. As a query builder, our system allows researchers to intuitively construct and run Federated SPARQL queries across multiple data sources, including global initiatives, such as Bio2RDF, Chem2Bio2RDF, EMBL-EBI, and one local initiative called CPCTAS, as well as additional user-specified data source. From the input topic, subtopic, template and keyword, a corresponding initial Federated SPARQL query is created and executed. Based on the data obtained, end users have the ability to choose the most appropriate data sources in their area of interest and exploit their Resource Description Framework (RDF) structure, which allows users to select certain properties of data to enhance query results. The developed system is flexible and allows intuitive creation and execution of queries for an extensive range of bioinformatics topics. Also, the novel "similar data items detection" algorithm can be particularly useful for suggesting new data sources and cost optimization for new experiments. PIBAS FedSPARQL can be expanded with new topics, subtopics and templates on demand, rendering information retrieval more robust.

  6. DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases

    NASA Astrophysics Data System (ADS)

    Bröcheler, Matthias; Pugliese, Andrea; Subrahmanian, V. S.

    RDF is an increasingly important paradigm for the representation of information on the Web. As RDF databases increase in size to approach tens of millions of triples, and as sophisticated graph matching queries expressible in languages like SPARQL become increasingly important, scalability becomes an issue. To date, there is no graph-based indexing method for RDF data where the index was designed in a way that makes it disk-resident. There is therefore a growing need for indexes that can operate efficiently when the index itself resides on disk. In this paper, we first propose the DOGMA index for fast subgraph matching on disk and then develop a basic algorithm to answer queries over this index. This algorithm is then significantly sped up via an optimized algorithm that uses efficient (but correct) pruning strategies when combined with two different extensions of the index. We have implemented a preliminary system and tested it against four existing RDF database systems developed by others. Our experiments show that our algorithm performs very well compared to these systems, with orders of magnitude improvements for complex graph queries.

  7. Query engine optimization for the EHR4CR protocol feasibility scenario.

    PubMed

    Soto-Rey, Iñaki; Bache, Richard; Dugas, Martin; Fritz, Fleur

    2013-01-01

    An essential step when recruiting patients for a Clinical Trial (CT) is to determine the number of patients that satisfy the Eligibility Criteria (ECs) for that trial. An innovative feature of the Electronic Health Records for Clinical Research (EHR4CR) platform is that when automatically determining patient counts, it also allows the user to view counts for subsets of the ECs. This is helpful because some combinations of ECs may be so restrictive that they yield very few or zero patients. If we wanted to show all possible combinations of ECs, the number of queries we would have to execute would be of 2n, where n is the total number of ECs. Assuming that an average study has between 20 and 30 ECs, the program would have to execute between 220 (1,048,576) and 230 (1,073,741,824) queries. This is not only computationally expensive but also impractical to visualise. The purpose of our research is to reduce possible combinationsto a manageable number.

  8. Toward An Unstructured Mesh Database

    NASA Astrophysics Data System (ADS)

    Rezaei Mahdiraji, Alireza; Baumann, Peter Peter

    2014-05-01

    Unstructured meshes are used in several application domains such as earth sciences (e.g., seismology), medicine, oceanography, cli- mate modeling, GIS as approximate representations of physical objects. Meshes subdivide a domain into smaller geometric elements (called cells) which are glued together by incidence relationships. The subdivision of a domain allows computational manipulation of complicated physical structures. For instance, seismologists model earthquakes using elastic wave propagation solvers on hexahedral meshes. The hexahedral con- tains several hundred millions of grid points and millions of hexahedral cells. Each vertex node in the hexahedrals stores a multitude of data fields. To run simulation on such meshes, one needs to iterate over all the cells, iterate over incident cells to a given cell, retrieve coordinates of cells, assign data values to cells, etc. Although meshes are used in many application domains, to the best of our knowledge there is no database vendor that support unstructured mesh features. Currently, the main tool for querying and manipulating unstructured meshes are mesh libraries, e.g., CGAL and GRAL. Mesh li- braries are dedicated libraries which includes mesh algorithms and can be run on mesh representations. The libraries do not scale with dataset size, do not have declarative query language, and need deep C++ knowledge for query implementations. Furthermore, due to high coupling between the implementations and input file structure, the implementations are less reusable and costly to maintain. A dedicated mesh database offers the following advantages: 1) declarative querying, 2) ease of maintenance, 3) hiding mesh storage structure from applications, and 4) transparent query optimization. To design a mesh database, the first challenge is to define a suitable generic data model for unstructured meshes. We proposed ImG-Complexes data model as a generic topological mesh data model which extends incidence graph model to multi-incidence relationships. We instrument ImG model with sets of optional and application-specific constraints which can be used to check validity of meshes for a specific class of object such as manifold, pseudo-manifold, and simplicial manifold. We conducted experiments to measure the performance of the graph database solution in processing mesh queries and compare it with GrAL mesh library and PostgreSQL database on synthetic and real mesh datasets. The experiments show that each system perform well on specific types of mesh queries, e.g., graph databases perform well on global path-intensive queries. In the future, we investigate database operations for the ImG model and design a mesh query language.

  9. A Deep Learning Method to Automatically Identify Reports of Scientifically Rigorous Clinical Research from the Biomedical Literature: Comparative Analytic Study.

    PubMed

    Del Fiol, Guilherme; Michelson, Matthew; Iorio, Alfonso; Cotoi, Chris; Haynes, R Brian

    2018-06-25

    A major barrier to the practice of evidence-based medicine is efficiently finding scientifically sound studies on a given clinical topic. To investigate a deep learning approach to retrieve scientifically sound treatment studies from the biomedical literature. We trained a Convolutional Neural Network using a noisy dataset of 403,216 PubMed citations with title and abstract as features. The deep learning model was compared with state-of-the-art search filters, such as PubMed's Clinical Query Broad treatment filter, McMaster's textword search strategy (no Medical Subject Heading, MeSH, terms), and Clinical Query Balanced treatment filter. A previously annotated dataset (Clinical Hedges) was used as the gold standard. The deep learning model obtained significantly lower recall than the Clinical Queries Broad treatment filter (96.9% vs 98.4%; P<.001); and equivalent recall to McMaster's textword search (96.9% vs 97.1%; P=.57) and Clinical Queries Balanced filter (96.9% vs 97.0%; P=.63). Deep learning obtained significantly higher precision than the Clinical Queries Broad filter (34.6% vs 22.4%; P<.001) and McMaster's textword search (34.6% vs 11.8%; P<.001), but was significantly lower than the Clinical Queries Balanced filter (34.6% vs 40.9%; P<.001). Deep learning performed well compared to state-of-the-art search filters, especially when citations were not indexed. Unlike previous machine learning approaches, the proposed deep learning model does not require feature engineering, or time-sensitive or proprietary features, such as MeSH terms and bibliometrics. Deep learning is a promising approach to identifying reports of scientifically rigorous clinical research. Further work is needed to optimize the deep learning model and to assess generalizability to other areas, such as diagnosis, etiology, and prognosis. ©Guilherme Del Fiol, Matthew Michelson, Alfonso Iorio, Chris Cotoi, R Brian Haynes. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 25.06.2018.

  10. Achieve Location Privacy-Preserving Range Query in Vehicular Sensing

    PubMed Central

    Lu, Rongxing; Ma, Maode; Bao, Haiyong

    2017-01-01

    Modern vehicles are equipped with a plethora of on-board sensors and large on-board storage, which enables them to gather and store various local-relevant data. However, the wide application of vehicular sensing has its own challenges, among which location-privacy preservation and data query accuracy are two critical problems. In this paper, we propose a novel range query scheme, which helps the data requester to accurately retrieve the sensed data from the distributive on-board storage in vehicular ad hoc networks (VANETs) with location privacy preservation. The proposed scheme exploits structured scalars to denote the locations of data requesters and vehicles, and achieves the privacy-preserving location matching with the homomorphic Paillier cryptosystem technique. Detailed security analysis shows that the proposed range query scheme can successfully preserve the location privacy of the involved data requesters and vehicles, and protect the confidentiality of the sensed data. In addition, performance evaluations are conducted to show the efficiency of the proposed scheme, in terms of computation delay and communication overhead. Specifically, the computation delay and communication overhead are not dependent on the length of the scalar, and they are only proportional to the number of vehicles. PMID:28786943

  11. Achieve Location Privacy-Preserving Range Query in Vehicular Sensing.

    PubMed

    Kong, Qinglei; Lu, Rongxing; Ma, Maode; Bao, Haiyong

    2017-08-08

    Modern vehicles are equipped with a plethora of on-board sensors and large on-board storage, which enables them to gather and store various local-relevant data. However, the wide application of vehicular sensing has its own challenges, among which location-privacy preservation and data query accuracy are two critical problems. In this paper, we propose a novel range query scheme, which helps the data requester to accurately retrieve the sensed data from the distributive on-board storage in vehicular ad hoc networks (VANETs) with location privacy preservation. The proposed scheme exploits structured scalars to denote the locations of data requesters and vehicles, and achieves the privacy-preserving location matching with the homomorphic Paillier cryptosystem technique. Detailed security analysis shows that the proposed range query scheme can successfully preserve the location privacy of the involved data requesters and vehicles, and protect the confidentiality of the sensed data. In addition, performance evaluations are conducted to show the efficiency of the proposed scheme, in terms of computation delay and communication overhead. Specifically, the computation delay and communication overhead are not dependent on the length of the scalar, and they are only proportional to the number of vehicles.

  12. Using string alignment in a query-by-humming system for real world applications

    NASA Astrophysics Data System (ADS)

    Sailer, Christian

    2005-09-01

    Though query by humming (i.e., retrieving music or information about music by singing a characteristic melody) has been a popular research topic during the past decade, few approaches have reached a level of usefulness beyond mere scientific interest. One of the main problems is the inherent contradiction between error tolerance and dicriminative power in conventional melody matching algorithms that rely on a melody contour approach to handle intonation or transcription errors. Adopting the string matching/alignment techniques from bioinformatics to melody sequences allows to directly assess the similarity between two melodies. This method takes an MPEG-7 compliant melody sequence (i.e., a list of note intervals and length ratios) as query and evaluates the steps necessary to transform it into the reference sequence. By introducing a musically founded cost-of-replace function and an adequate post processing, this method yields a measure for melodic similarity. Thus it is possible to construct a query by humming system that can properly discriminate between thousands of melodies and still be sufficiently error tolerant to be used by untrained singers. The robustness has been verified in extensive tests and real world applications.

  13. Balancing focused combinatorial libraries based on multiple GPCR ligands

    NASA Astrophysics Data System (ADS)

    Soltanshahi, Farhad; Mansley, Tamsin E.; Choi, Sun; Clark, Robert D.

    2006-08-01

    G-Protein coupled receptors (GPCRs) are important targets for drug discovery, and combinatorial chemistry is an important tool for pharmaceutical development. The absence of detailed structural information, however, limits the kinds of combinatorial design techniques that can be applied to GPCR targets. This is particularly problematic given the current emphasis on focused combinatorial libraries. By linking an incremental construction method (OptDesign) to the very fast shape-matching capability of ChemSpace, we have created an efficient method for designing targeted sublibraries that are topomerically similar to known actives. Multi-objective scoring allows consideration of multiple queries (actives) simultaneously. This can lead to a distribution of products skewed towards one particular query structure, however, particularly when the ligands of interest are quite dissimilar to one another. A novel pivoting technique is described which makes it possible to generate promising designs even under those circumstances. The approach is illustrated by application to some serotonergic agonists and chemokine antagonists.

  14. Active learning for semi-supervised clustering based on locally linear propagation reconstruction.

    PubMed

    Chang, Chin-Chun; Lin, Po-Yi

    2015-03-01

    The success of semi-supervised clustering relies on the effectiveness of side information. To get effective side information, a new active learner learning pairwise constraints known as must-link and cannot-link constraints is proposed in this paper. Three novel techniques are developed for learning effective pairwise constraints. The first technique is used to identify samples less important to cluster structures. This technique makes use of a kernel version of locally linear embedding for manifold learning. Samples neither important to locally linear propagation reconstructions of other samples nor on flat patches in the learned manifold are regarded as unimportant samples. The second is a novel criterion for query selection. This criterion considers not only the importance of a sample to expanding the space coverage of the learned samples but also the expected number of queries needed to learn the sample. To facilitate semi-supervised clustering, the third technique yields inferred must-links for passing information about flat patches in the learned manifold to semi-supervised clustering algorithms. Experimental results have shown that the learned pairwise constraints can capture the underlying cluster structures and proven the feasibility of the proposed approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Remote sensing and GIS integration: Towards intelligent imagery within a spatial data infrastructure

    NASA Astrophysics Data System (ADS)

    Abdelrahim, Mohamed Mahmoud Hosny

    2001-11-01

    In this research, an "Intelligent Imagery System Prototype" (IISP) was developed. IISP is an integration tool that facilitates the environment for active, direct, and on-the-fly usage of high resolution imagery, internally linked to hidden GIS vector layers, to query the real world phenomena and, consequently, to perform exploratory types of spatial analysis based on a clear/undisturbed image scene. The IISP was designed and implemented using the software components approach to verify the hypothesis that a fully rectified, partially rectified, or even unrectified digital image can be internally linked to a variety of different hidden vector databases/layers covering the end user area of interest, and consequently may be reliably used directly as a base for "on-the-fly" querying of real-world phenomena and for performing exploratory types of spatial analysis. Within IISP, differentially rectified, partially rectified (namely, IKONOS GEOCARTERRA(TM)), and unrectified imagery (namely, scanned aerial photographs and captured video frames) were investigated. The system was designed to handle four types of spatial functions, namely, pointing query, polygon/line-based image query, database query, and buffering. The system was developed using ESRI MapObjects 2.0a as the core spatial component within Visual Basic 6.0. When used to perform the pre-defined spatial queries using different combinations of image and vector data, the IISP provided the same results as those obtained by querying pre-processed vector layers even when the image used was not orthorectified and the vector layers had different parameters. In addition, the real-time pixel location orthorectification technique developed and presented within the IKONOS GEOCARTERRA(TM) case provided a horizontal accuracy (RMSE) of +/- 2.75 metres. This accuracy is very close to the accuracy level obtained when purchasing the orthorectified IKONOS PRECISION products (RMSE of +/- 1.9 metre). The latter cost approximately four times as much as the IKONOS GEOCARTERRA(TM) products. The developed IISP is a step closer towards the direct and active involvement of high-resolution remote sensing imagery in querying the real world and performing exploratory types of spatial analysis. (Abstract shortened by UMI.)

  16. An ontology-based comparative anatomy information system

    PubMed Central

    Travillian, Ravensara S.; Diatchka, Kremena; Judge, Tejinder K.; Wilamowska, Katarzyna; Shapiro, Linda G.

    2010-01-01

    Introduction This paper describes the design, implementation, and potential use of a comparative anatomy information system (CAIS) for querying on similarities and differences between homologous anatomical structures across species, the knowledge base it operates upon, the method it uses for determining the answers to the queries, and the user interface it employs to present the results. The relevant informatics contributions of our work include (1) the development and application of the structural difference method, a formalism for symbolically representing anatomical similarities and differences across species; (2) the design of the structure of a mapping between the anatomical models of two different species and its application to information about specific structures in humans, mice, and rats; and (3) the design of the internal syntax and semantics of the query language. These contributions provide the foundation for the development of a working system that allows users to submit queries about the similarities and differences between mouse, rat, and human anatomy; delivers result sets that describe those similarities and differences in symbolic terms; and serves as a prototype for the extension of the knowledge base to any number of species. Additionally, we expanded the domain knowledge by identifying medically relevant structural questions for the human, the mouse, and the rat, and made an initial foray into the validation of the application and its content by means of user questionnaires, software testing, and other feedback. Methods The anatomical structures of the species to be compared, as well as the mappings between species, are modeled on templates from the Foundational Model of Anatomy knowledge base, and compared using graph-matching techniques. A graphical user interface allows users to issue queries that retrieve information concerning similarities and differences between structures in the species being examined. Queries from diverse information sources, including domain experts, peer-reviewed articles, and reference books, have been used to test the system and to illustrate its potential use in comparative anatomy studies. Results 157 test queries were submitted to the CAIS system, and all of them were correctly answered. The interface was evaluated in terms of clarity and ease of use. This testing determined that the application works well, and is fairly intuitive to use, but users want to see more clarification of the meaning of the different types of possible queries. Some of the interface issues will naturally be resolved as we refine our conceptual model to deal with partial and complex homologies in the content. Conclusions The CAIS system and its associated methods are expected to be useful to biologists and translational medicine researchers. Possible applications range from supporting theoretical work in clarifying and modeling ontogenetic, physiological, pathological, and evolutionary transformations, to concrete techniques for improving the analysis of genotype–phenotype relationships among various animal models in support of a wide array of clinical and scientific initiatives. PMID:21146377

  17. Structuring Legacy Pathology Reports by openEHR Archetypes to Enable Semantic Querying.

    PubMed

    Kropf, Stefan; Krücken, Peter; Mueller, Wolf; Denecke, Kerstin

    2017-05-18

    Clinical information is often stored as free text, e.g. in discharge summaries or pathology reports. These documents are semi-structured using section headers, numbered lists, items and classification strings. However, it is still challenging to retrieve relevant documents since keyword searches applied on complete unstructured documents result in many false positive retrieval results. We are concentrating on the processing of pathology reports as an example for unstructured clinical documents. The objective is to transform reports semi-automatically into an information structure that enables an improved access and retrieval of relevant data. The data is expected to be stored in a standardized, structured way to make it accessible for queries that are applied to specific sections of a document (section-sensitive queries) and for information reuse. Our processing pipeline comprises information modelling, section boundary detection and section-sensitive queries. For enabling a focused search in unstructured data, documents are automatically structured and transformed into a patient information model specified through openEHR archetypes. The resulting XML-based pathology electronic health records (PEHRs) are queried by XQuery and visualized by XSLT in HTML. Pathology reports (PRs) can be reliably structured into sections by a keyword-based approach. The information modelling using openEHR allows saving time in the modelling process since many archetypes can be reused. The resulting standardized, structured PEHRs allow accessing relevant data by retrieving data matching user queries. Mapping unstructured reports into a standardized information model is a practical solution for a better access to data. Archetype-based XML enables section-sensitive retrieval and visualisation by well-established XML techniques. Focussing the retrieval to particular sections has the potential of saving retrieval time and improving the accuracy of the retrieval.

  18. Optimal image alignment with random projections of manifolds: algorithm and geometric analysis.

    PubMed

    Kokiopoulou, Effrosyni; Kressner, Daniel; Frossard, Pascal

    2011-06-01

    This paper addresses the problem of image alignment based on random measurements. Image alignment consists of estimating the relative transformation between a query image and a reference image. We consider the specific problem where the query image is provided in compressed form in terms of linear measurements captured by a vision sensor. We cast the alignment problem as a manifold distance minimization problem in the linear subspace defined by the measurements. The transformation manifold that represents synthesis of shift, rotation, and isotropic scaling of the reference image can be given in closed form when the reference pattern is sparsely represented over a parametric dictionary. We show that the objective function can then be decomposed as the difference of two convex functions (DC) in the particular case where the dictionary is built on Gaussian functions. Thus, the optimization problem becomes a DC program, which in turn can be solved globally by a cutting plane method. The quality of the solution is typically affected by the number of random measurements and the condition number of the manifold that describes the transformations of the reference image. We show that the curvature, which is closely related to the condition number, remains bounded in our image alignment problem, which means that the relative transformation between two images can be determined optimally in a reduced subspace.

  19. Clauser-Horne-Shimony-Holt versus three-party pseudo-telepathy: on the optimal number of samples in device-independent quantum private query

    NASA Astrophysics Data System (ADS)

    Basak, Jyotirmoy; Maitra, Subhamoy

    2018-04-01

    In device-independent (DI) paradigm, the trustful assumptions over the devices are removed and CHSH test is performed to check the functionality of the devices toward certifying the security of the protocol. The existing DI protocols consider infinite number of samples from theoretical point of view, though this is not practically implementable. For finite sample analysis of the existing DI protocols, we may also consider strategies for checking device independence other than the CHSH test. In this direction, here we present a comparative analysis between CHSH and three-party Pseudo-telepathy game for the quantum private query protocol in DI paradigm that appeared in Maitra et al. (Phys Rev A 95:042344, 2017) very recently.

  20. Dynamic Visualization of Co-expression in Systems Genetics Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    New, Joshua Ryan; Huang, Jian; Chesler, Elissa J

    2008-01-01

    Biologists hope to address grand scientific challenges by exploring the abundance of data made available through modern microarray technology and other high-throughput techniques. The impact of this data, however, is limited unless researchers can effectively assimilate such complex information and integrate it into their daily research; interactive visualization tools are called for to support the effort. Specifically, typical studies of gene co-expression require novel visualization tools that enable the dynamic formulation and fine-tuning of hypotheses to aid the process of evaluating sensitivity of key parameters. These tools should allow biologists to develop an intuitive understanding of the structure of biologicalmore » networks and discover genes which reside in critical positions in networks and pathways. By using a graph as a universal data representation of correlation in gene expression data, our novel visualization tool employs several techniques that when used in an integrated manner provide innovative analytical capabilities. Our tool for interacting with gene co-expression data integrates techniques such as: graph layout, qualitative subgraph extraction through a novel 2D user interface, quantitative subgraph extraction using graph-theoretic algorithms or by querying an optimized b-tree, dynamic level-of-detail graph abstraction, and template-based fuzzy classification using neural networks. We demonstrate our system using a real-world workflow from a large-scale, systems genetics study of mammalian gene co-expression.« less

  1. A Novel Scheme for an Energy Efficient Internet of Things Based on Wireless Sensor Networks.

    PubMed

    Rani, Shalli; Talwar, Rajneesh; Malhotra, Jyoteesh; Ahmed, Syed Hassan; Sarkar, Mahasweta; Song, Houbing

    2015-11-12

    One of the emerging networking standards that gap between the physical world and the cyber one is the Internet of Things. In the Internet of Things, smart objects communicate with each other, data are gathered and certain requests of users are satisfied by different queried data. The development of energy efficient schemes for the IoT is a challenging issue as the IoT becomes more complex due to its large scale the current techniques of wireless sensor networks cannot be applied directly to the IoT. To achieve the green networked IoT, this paper addresses energy efficiency issues by proposing a novel deployment scheme. This scheme, introduces: (1) a hierarchical network design; (2) a model for the energy efficient IoT; (3) a minimum energy consumption transmission algorithm to implement the optimal model. The simulation results show that the new scheme is more energy efficient and flexible than traditional WSN schemes and consequently it can be implemented for efficient communication in the IoT.

  2. A Novel Scheme for an Energy Efficient Internet of Things Based on Wireless Sensor Networks

    PubMed Central

    Rani, Shalli; Talwar, Rajneesh; Malhotra, Jyoteesh; Ahmed, Syed Hassan; Sarkar, Mahasweta; Song, Houbing

    2015-01-01

    One of the emerging networking standards that gap between the physical world and the cyber one is the Internet of Things. In the Internet of Things, smart objects communicate with each other, data are gathered and certain requests of users are satisfied by different queried data. The development of energy efficient schemes for the IoT is a challenging issue as the IoT becomes more complex due to its large scale the current techniques of wireless sensor networks cannot be applied directly to the IoT. To achieve the green networked IoT, this paper addresses energy efficiency issues by proposing a novel deployment scheme. This scheme, introduces: (1) a hierarchical network design; (2) a model for the energy efficient IoT; (3) a minimum energy consumption transmission algorithm to implement the optimal model. The simulation results show that the new scheme is more energy efficient and flexible than traditional WSN schemes and consequently it can be implemented for efficient communication in the IoT. PMID:26569260

  3. Weightbearing Versus Nonweightbearing After Meniscus Repair.

    PubMed

    VanderHave, Kelly L; Perkins, Crystal; Le, Michael

    2015-01-01

    Optimal rehabilitation after meniscal repair remains controversial. To review the current literature on weightbearing status after meniscal repairs and to provide evidence-based recommendations for postoperative rehabilitation. MEDLINE (January 1, 1993 to July 1, 2014) and Embase (January 1, 1993 to July 1, 2014) were queried with use of the terms meniscus OR/AND repair AND rehabilitation. Included studies were those with levels of evidence 1 through 4, with minimum 2 years follow-up and in an English publication. Systematic review. Level 4. Demographics and clinical and radiographic outcomes of meniscus repair at a minimum of 2 years follow-up were extracted. Successful clinical outcomes ranged from 70% to 94% with conservative rehabilitation. More recent studies using an accelerated rehabilitation protocol with full weightbearing and early range of motion reported 64% to 96% good results. Outcomes after both conservative (restricted weightbearing) protocols and accelerated rehabilitation (immediate weightbearing) yielded similar good to excellent results; however, lack of similar objective criteria and consistency among surgical techniques and existing studies makes direct comparison difficult. © 2015 The Author(s).

  4. Application of electronic medical record data for health outcomes research: a review of recent literature.

    PubMed

    Lin, Junji; Jiao, Tianze; Biskupiak, Joseph E; McAdam-Marx, Carrie

    2013-04-01

    Electronic medical records (EMRs) have become a common source of data for outcomes research. This review discusses trends in EMR data use for outcomes research as well as strengths and limitations, and likely future developments to help optimize value and use of EMR data for outcomes research. EMR-based studies reporting treatment outcomes published between 2007 and 2012 were predominantly from the USA and Europe. There has been a substantial increase in the number of EMR-based outcomes studies published from 2007-2008 (n = 28) to 2010-2011 (n = 55). Many studies evaluated biometric and laboratory test outcomes in common chronic conditions. However, researchers are expanding the scope of evaluated diseases and outcomes using advanced techniques, such as natural language processing and linking EMRs to other patient-level data to overcome issues with missing data or data that cannot be accessed using standard queries. These advances will help to expand the scope and sophistication of outcomes research in the coming years.

  5. Engineered Peptides for Applications in Cancer-Targeted Drug Delivery and Tumor Detection.

    PubMed

    Soudy, R; Byeon, N; Raghuwanshi, Y; Ahmed, S; Lavasanifar, A; Kaur, K

    2017-01-01

    Cancer-targeting peptides as ligands for targeted delivery of anticancer drugs or drug carriers have the potential to significantly enhance the selectivity and the therapeutic benefit of current chemotherapeutic agents. Identification of tumor-specific biomarkers like integrins, aminopeptidase N, and epidermal growth factor receptor as well as the popularity of phage display techniques along with synthetic combinatorial methods used for peptide design and structure optimization have fueled the advancement and application of peptide ligands for targeted drug delivery and tumor detection in cancer treatment, detection and guided therapy. Although considerable preclinical data have shown remarkable success in the use of tumor targeting peptides, peptides generally suffer from poor pharmacokinetics, enzymatic instability, and weak receptor affinity, and they need further structural modification before successful translation to clinics is possible. The current review gives an overview of the different engineering strategies that have been developed for peptide structure optimization to confer selectivity and stability. We also provide an update on the methods used for peptide ligand identification, and peptide- receptor interactions. Additionally, some applications for the use of peptides in targeted delivery of chemotherapeutics and diagnostics over the past 5 years are summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. ICTNET at Microblog Track TREC 2012

    DTIC Science & Technology

    2012-11-01

    Weight(T) = 1 _(()) ∗ ∑ () ∗ () ∑ ()∈ () In external expansion, we use Google ...based on language model, we choose stupid backoff as the smoothing technique and “queue” as the history retention technique[7].In the filter based on...is used in ICTWDSERUN2. In both ICTWDSERUN3 and ICTWDSERUN4, we use google search results as query expansion. RankSVMmethod is used in both

  7. GO2PUB: Querying PubMed with semantic expansion of gene ontology terms

    PubMed Central

    2012-01-01

    Background With the development of high throughput methods of gene analyses, there is a growing need for mining tools to retrieve relevant articles in PubMed. As PubMed grows, literature searches become more complex and time-consuming. Automated search tools with good precision and recall are necessary. We developed GO2PUB to automatically enrich PubMed queries with gene names, symbols and synonyms annotated by a GO term of interest or one of its descendants. Results GO2PUB enriches PubMed queries based on selected GO terms and keywords. It processes the result and displays the PMID, title, authors, abstract and bibliographic references of the articles. Gene names, symbols and synonyms that have been generated as extra keywords from the GO terms are also highlighted. GO2PUB is based on a semantic expansion of PubMed queries using the semantic inheritance between terms through the GO graph. Two experts manually assessed the relevance of GO2PUB, GoPubMed and PubMed on three queries about lipid metabolism. Experts’ agreement was high (kappa = 0.88). GO2PUB returned 69% of the relevant articles, GoPubMed: 40% and PubMed: 29%. GO2PUB and GoPubMed have 17% of their results in common, corresponding to 24% of the total number of relevant results. 70% of the articles returned by more than one tool were relevant. 36% of the relevant articles were returned only by GO2PUB, 17% only by GoPubMed and 14% only by PubMed. For determining whether these results can be generalized, we generated twenty queries based on random GO terms with a granularity similar to those of the first three queries and compared the proportions of GO2PUB and GoPubMed results. These were respectively of 77% and 40% for the first queries, and of 70% and 38% for the random queries. The two experts also assessed the relevance of seven of the twenty queries (the three related to lipid metabolism and four related to other domains). Expert agreement was high (0.93 and 0.8). GO2PUB and GoPubMed performances were similar to those of the first queries. Conclusions We demonstrated that the use of genes annotated by either GO terms of interest or a descendant of these GO terms yields some relevant articles ignored by other tools. The comparison of GO2PUB, based on semantic expansion, with GoPubMed, based on text mining techniques, showed that both tools are complementary. The analysis of the randomly-generated queries suggests that the results obtained about lipid metabolism can be generalized to other biological processes. GO2PUB is available at http://go2pub.genouest.org. PMID:22958570

  8. Adding Data Management Services to Parallel File Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Scott

    2015-03-04

    The objective of this project, called DAMASC for “Data Management in Scientific Computing”, is to coalesce data management with parallel file system management to present a declarative interface to scientists for managing, querying, and analyzing extremely large data sets efficiently and predictably. Managing extremely large data sets is a key challenge of exascale computing. The overhead, energy, and cost of moving massive volumes of data demand designs where computation is close to storage. In current architectures, compute/analysis clusters access data in a physically separate parallel file system and largely leave it scientist to reduce data movement. Over the past decadesmore » the high-end computing community has adopted middleware with multiple layers of abstractions and specialized file formats such as NetCDF-4 and HDF5. These abstractions provide a limited set of high-level data processing functions, but have inherent functionality and performance limitations: middleware that provides access to the highly structured contents of scientific data files stored in the (unstructured) file systems can only optimize to the extent that file system interfaces permit; the highly structured formats of these files often impedes native file system performance optimizations. We are developing Damasc, an enhanced high-performance file system with native rich data management services. Damasc will enable efficient queries and updates over files stored in their native byte-stream format while retaining the inherent performance of file system data storage via declarative queries and updates over views of underlying files. Damasc has four key benefits for the development of data-intensive scientific code: (1) applications can use important data-management services, such as declarative queries, views, and provenance tracking, that are currently available only within database systems; (2) the use of these services becomes easier, as they are provided within a familiar file-based ecosystem; (3) common optimizations, e.g., indexing and caching, are readily supported across several file formats, avoiding effort duplication; and (4) performance improves significantly, as data processing is integrated more tightly with data storage. Our key contributions are: SciHadoop which explores changes to MapReduce assumption by taking advantage of semantics of structured data while preserving MapReduce’s failure and resource management; DataMods which extends common abstractions of parallel file systems so they become programmable such that they can be extended to natively support a variety of data models and can be hooked into emerging distributed runtimes such as Stanford’s Legion; and Miso which combines Hadoop and relational data warehousing to minimize time to insight, taking into account the overhead of ingesting data into data warehousing.« less

  9. Informatics in radiology: use of CouchDB for document-based storage of DICOM objects.

    PubMed

    Rascovsky, Simón J; Delgado, Jorge A; Sanz, Alexander; Calvo, Víctor D; Castrillón, Gabriel

    2012-01-01

    Picture archiving and communication systems traditionally have depended on schema-based Structured Query Language (SQL) databases for imaging data management. To optimize database size and performance, many such systems store a reduced set of Digital Imaging and Communications in Medicine (DICOM) metadata, discarding informational content that might be needed in the future. As an alternative to traditional database systems, document-based key-value stores recently have gained popularity. These systems store documents containing key-value pairs that facilitate data searches without predefined schemas. Document-based key-value stores are especially suited to archive DICOM objects because DICOM metadata are highly heterogeneous collections of tag-value pairs conveying specific information about imaging modalities, acquisition protocols, and vendor-supported postprocessing options. The authors used an open-source document-based database management system (Apache CouchDB) to create and test two such databases; CouchDB was selected for its overall ease of use, capability for managing attachments, and reliance on HTTP and Representational State Transfer standards for accessing and retrieving data. A large database was created first in which the DICOM metadata from 5880 anonymized magnetic resonance imaging studies (1,949,753 images) were loaded by using a Ruby script. To provide the usual DICOM query functionality, several predefined "views" (standard queries) were created by using JavaScript. For performance comparison, the same queries were executed in both the CouchDB database and a SQL-based DICOM archive. The capabilities of CouchDB for attachment management and database replication were separately assessed in tests of a similar, smaller database. Results showed that CouchDB allowed efficient storage and interrogation of all DICOM objects; with the use of information retrieval algorithms such as map-reduce, all the DICOM metadata stored in the large database were searchable with only a minimal increase in retrieval time over that with the traditional database management system. Results also indicated possible uses for document-based databases in data mining applications such as dose monitoring, quality assurance, and protocol optimization. RSNA, 2012

  10. Completing the physical representation of quantum algorithms provides a retrocausal explanation of the speedup

    NASA Astrophysics Data System (ADS)

    Castagnoli, Giuseppe

    2017-05-01

    The usual representation of quantum algorithms, limited to the process of solving the problem, is physically incomplete as it lacks the initial measurement. We extend it to the process of setting the problem. An initial measurement selects a problem setting at random, and a unitary transformation sends it into the desired setting. The extended representation must be with respect to Bob, the problem setter, and any external observer. It cannot be with respect to Alice, the problem solver. It would tell her the problem setting and thus the solution of the problem implicit in it. In the representation to Alice, the projection of the quantum state due to the initial measurement should be postponed until the end of the quantum algorithm. In either representation, there is a unitary transformation between the initial and final measurement outcomes. As a consequence, the final measurement of any ℛ-th part of the solution could select back in time a corresponding part of the random outcome of the initial measurement; the associated projection of the quantum state should be advanced by the inverse of that unitary transformation. This, in the representation to Alice, would tell her, before she begins her problem solving action, that part of the solution. The quantum algorithm should be seen as a sum over classical histories in each of which Alice knows in advance one of the possible ℛ-th parts of the solution and performs the oracle queries still needed to find it - this for the value of ℛ that explains the algorithm's speedup. We have a relation between retrocausality ℛ and the number of oracle queries needed to solve an oracle problem quantumly. All the oracle problems examined can be solved with any value of ℛ up to an upper bound attained by the optimal quantum algorithm. This bound is always in the vicinity of 1/2 . Moreover, ℛ =1/2 always provides the order of magnitude of the number of queries needed to solve the problem in an optimal quantum way. If this were true for any oracle problem, as plausible, it would solve the quantum query complexity problem.

  11. Beyond Relational: A Database Architecture and Federated Query Optimization in a Multi-Modal Healthcare Environment

    ERIC Educational Resources Information Center

    Hylock, Ray Hales

    2013-01-01

    Over the past thirty years, clinical research has benefited substantially from the adoption of electronic medical record systems. As deployment has increased, so too has the number of researchers seeking to improve the overall analytical environment by way of tools and models. Although much work has been done, there are still many uninvestigated…

  12. Using structure to explore the sequence alignment space of remote homologs.

    PubMed

    Kuziemko, Andrew; Honig, Barry; Petrey, Donald

    2011-10-01

    Protein structure modeling by homology requires an accurate sequence alignment between the query protein and its structural template. However, sequence alignment methods based on dynamic programming (DP) are typically unable to generate accurate alignments for remote sequence homologs, thus limiting the applicability of modeling methods. A central problem is that the alignment that is "optimal" in terms of the DP score does not necessarily correspond to the alignment that produces the most accurate structural model. That is, the correct alignment based on structural superposition will generally have a lower score than the optimal alignment obtained from sequence. Variations of the DP algorithm have been developed that generate alternative alignments that are "suboptimal" in terms of the DP score, but these still encounter difficulties in detecting the correct structural alignment. We present here a new alternative sequence alignment method that relies heavily on the structure of the template. By initially aligning the query sequence to individual fragments in secondary structure elements and combining high-scoring fragments that pass basic tests for "modelability", we can generate accurate alignments within a small ensemble. Our results suggest that the set of sequences that can currently be modeled by homology can be greatly extended.

  13. Raising the IQ in full-text searching via intelligent querying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kero, R.; Russell, L.; Swietlik, C.

    1994-11-01

    Current Information Retrieval (IR) technologies allow for efficient access to relevant information, provided that user selected query terms coincide with the specific linguistical choices made by the authors whose works constitute the text-base. Therefore, the challenge is to enhance the limited searching capability of state-of-the-practice IR. This can be done either with augmented clients that overcome current server searching deficiencies, or with added capabilities that can augment searching algorithms on the servers. The technology being investigated is that of deductive databases, with a set of new techniques called cooperative answering. This technology utilizes semantic networks to allow for navigation betweenmore » possible query search term alternatives. The augmented search terms are passed to an IR engine and the results can be compared. The project utilizes the OSTI Environment, Safety and Health Thesaurus to populate the domain specific semantic network and the text base of ES&H related documents from the Facility Profile Information Management System as the domain specific search space.« less

  14. Image query and indexing for digital x rays

    NASA Astrophysics Data System (ADS)

    Long, L. Rodney; Thoma, George R.

    1998-12-01

    The web-based medical information retrieval system (WebMIRS) allows interned access to databases containing 17,000 digitized x-ray spine images and associated text data from National Health and Nutrition Examination Surveys (NHANES). WebMIRS allows SQL query of the text, and viewing of the returned text records and images using a standard browser. We are now working (1) to determine utility of data directly derived from the images in our databases, and (2) to investigate the feasibility of computer-assisted or automated indexing of the images to support image retrieval of images of interest to biomedical researchers in the field of osteoarthritis. To build an initial database based on image data, we are manually segmenting a subset of the vertebrae, using techniques from vertebral morphometry. From this, we will derive and add to the database vertebral features. This image-derived data will enhance the user's data access capability by enabling the creation of combined SQL/image-content queries.

  15. An interactive system for computer-aided diagnosis of breast masses.

    PubMed

    Wang, Xingwei; Li, Lihua; Liu, Wei; Xu, Weidong; Lederman, Dror; Zheng, Bin

    2012-10-01

    Although mammography is the only clinically accepted imaging modality for screening the general population to detect breast cancer, interpreting mammograms is difficult with lower sensitivity and specificity. To provide radiologists "a visual aid" in interpreting mammograms, we developed and tested an interactive system for computer-aided detection and diagnosis (CAD) of mass-like cancers. Using this system, an observer can view CAD-cued mass regions depicted on one image and then query any suspicious regions (either cued or not cued by CAD). CAD scheme automatically segments the suspicious region or accepts manually defined region and computes a set of image features. Using content-based image retrieval (CBIR) algorithm, CAD searches for a set of reference images depicting "abnormalities" similar to the queried region. Based on image retrieval results and a decision algorithm, a classification score is assigned to the queried region. In this study, a reference database with 1,800 malignant mass regions and 1,800 benign and CAD-generated false-positive regions was used. A modified CBIR algorithm with a new function of stretching the attributes in the multi-dimensional space and decision scheme was optimized using a genetic algorithm. Using a leave-one-out testing method to classify suspicious mass regions, we compared the classification performance using two CBIR algorithms with either equally weighted or optimally stretched attributes. Using the modified CBIR algorithm, the area under receiver operating characteristic curve was significantly increased from 0.865 ± 0.006 to 0.897 ± 0.005 (p < 0.001). This study demonstrated the feasibility of developing an interactive CAD system with a large reference database and achieving improved performance.

  16. Analyzing Document Retrievability in Patent Retrieval Settings

    NASA Astrophysics Data System (ADS)

    Bashir, Shariq; Rauber, Andreas

    Most information retrieval settings, such as web search, are typically precision-oriented, i.e. they focus on retrieving a small number of highly relevant documents. However, in specific domains, such as patent retrieval or law, recall becomes more relevant than precision: in these cases the goal is to find all relevant documents, requiring algorithms to be tuned more towards recall at the cost of precision. This raises important questions with respect to retrievability and search engine bias: depending on how the similarity between a query and documents is measured, certain documents may be more or less retrievable in certain systems, up to some documents not being retrievable at all within common threshold settings. Biases may be oriented towards popularity of documents (increasing weight of references), towards length of documents, favour the use of rare or common words; rely on structural information such as metadata or headings, etc. Existing accessibility measurement techniques are limited as they measure retrievability with respect to all possible queries. In this paper, we improve accessibility measurement by considering sets of relevant and irrelevant queries for each document. This simulates how recall oriented users create their queries when searching for relevant information. We evaluate retrievability scores using a corpus of patents from US Patent and Trademark Office.

  17. Visual information mining in remote sensing image archives

    NASA Astrophysics Data System (ADS)

    Pelizzari, Andrea; Descargues, Vincent; Datcu, Mihai P.

    2002-01-01

    The present article focuses on the development of interactive exploratory tools for visually mining the image content in large remote sensing archives. Two aspects are treated: the iconic visualization of the global information in the archive and the progressive visualization of the image details. The proposed methods are integrated in the Image Information Mining (I2M) system. The images and image structure in the I2M system are indexed based on a probabilistic approach. The resulting links are managed by a relational data base. Both the intrinsic complexity of the observed images and the diversity of user requests result in a great number of associations in the data base. Thus new tools have been designed to visualize, in iconic representation the relationships created during a query or information mining operation: the visualization of the query results positioned on the geographical map, quick-looks gallery, visualization of the measure of goodness of the query, visualization of the image space for statistical evaluation purposes. Additionally the I2M system is enhanced with progressive detail visualization in order to allow better access for operator inspection. I2M is a three-tier Java architecture and is optimized for the Internet.

  18. Automatic Detection of Galaxy Type From Datasets of Galaxies Image Based on Image Retrieval Approach.

    PubMed

    Abd El Aziz, Mohamed; Selim, I M; Xiong, Shengwu

    2017-06-30

    This paper presents a new approach for the automatic detection of galaxy morphology from datasets based on an image-retrieval approach. Currently, there are several classification methods proposed to detect galaxy types within an image. However, in some situations, the aim is not only to determine the type of galaxy within the queried image, but also to determine the most similar images for query image. Therefore, this paper proposes an image-retrieval method to detect the type of galaxies within an image and return with the most similar image. The proposed method consists of two stages, in the first stage, a set of features is extracted based on shape, color and texture descriptors, then a binary sine cosine algorithm selects the most relevant features. In the second stage, the similarity between the features of the queried galaxy image and the features of other galaxy images is computed. Our experiments were performed using the EFIGI catalogue, which contains about 5000 galaxies images with different types (edge-on spiral, spiral, elliptical and irregular). We demonstrate that our proposed approach has better performance compared with the particle swarm optimization (PSO) and genetic algorithm (GA) methods.

  19. Evaluation of poison information services provided by a new poison information center.

    PubMed

    Churi, Shobha; Abraham, Lovin; Ramesh, M; Narahari, M G

    2013-01-01

    The aim of this study is to assess the nature and quality of services provided by poison information center established at a tertiary-care teaching hospital, Mysore. This was a prospective observational study. The poison information center was officially established in September 2010 and began its functioning thereafter. The center is equipped with required resources and facility (e.g., text books, Poisindex, Drugdex, toll free telephone service, internet and online services) to provide poison information services. The poison information services provided by the center were recorded in documentation forms. The documentation form consists of numerous sections to collect information on: (a) Type of population (children, adult, elderly or pregnant) (b) poisoning agents (c) route of exposure (d) type of poisoning (intentional, accidental or environmental) (e) demographic details of patient (age, gender and bodyweight) (f) enquirer details (background, place of call and mode of request) (g) category and purpose of query and (h) details of provided service (information provided, mode of provision, time taken to provide information and references consulted). The nature and quality of poison information services provided was assessed using a quality assessment checklist developed in accordance with DSE/World Health Organization guidelines. Chi-Square test (χ(2)). A total of 419 queries were received by the center. A majority (n = 333; 79.5%) of the queries were asked by the doctors to provide optimal care (n = 400; 95.5%). Most of the queries were received during ward rounds (n = 201; 48.0%), followed by direct access (n = 147; 35.1%). The poison information services were predominantly provided through verbal communication (n = 352; 84.0%). Upon receipt of queries, the required service was provided immediately (n = 103; 24.6%) or within 10-20 min (n = 296; 70.6%). The queries were mainly related to intentional poisoning (n = 258; 64.5%), followed by accidental poisoning (n = 142; 35.5%). The most common poisoning agents were medicines (n = 124; 31.0%). The service provided was graded as "Excellent" for the majority of queries (n = 360; 86%; P < 0.001), followed by "Very Good" (n = 50; 12%) and "Good" (n = 9; 2%). The poison information center provided requested services in a skillful, efficient and evidence-based manner to meet the needs of the requestor. The enquiries and information provided is documented in a clear and systematic manner.

  20. Top-k similar graph matching using TraM in biological networks.

    PubMed

    Amin, Mohammad Shafkat; Finley, Russell L; Jamil, Hasan M

    2012-01-01

    Many emerging database applications entail sophisticated graph-based query manipulation, predominantly evident in large-scale scientific applications. To access the information embedded in graphs, efficient graph matching tools and algorithms have become of prime importance. Although the prohibitively expensive time complexity associated with exact subgraph isomorphism techniques has limited its efficacy in the application domain, approximate yet efficient graph matching techniques have received much attention due to their pragmatic applicability. Since public domain databases are noisy and incomplete in nature, inexact graph matching techniques have proven to be more promising in terms of inferring knowledge from numerous structural data repositories. In this paper, we propose a novel technique called TraM for approximate graph matching that off-loads a significant amount of its processing on to the database making the approach viable for large graphs. Moreover, the vector space embedding of the graphs and efficient filtration of the search space enables computation of approximate graph similarity at a throw-away cost. We annotate nodes of the query graphs by means of their global topological properties and compare them with neighborhood biased segments of the datagraph for proper matches. We have conducted experiments on several real data sets, and have demonstrated the effectiveness and efficiency of the proposed method

  1. RDFBuilder: a tool to automatically build RDF-based interfaces for MAGE-OM microarray data sources.

    PubMed

    Anguita, Alberto; Martin, Luis; Garcia-Remesal, Miguel; Maojo, Victor

    2013-07-01

    This paper presents RDFBuilder, a tool that enables RDF-based access to MAGE-ML-compliant microarray databases. We have developed a system that automatically transforms the MAGE-OM model and microarray data stored in the ArrayExpress database into RDF format. Additionally, the system automatically enables a SPARQL endpoint. This allows users to execute SPARQL queries for retrieving microarray data, either from specific experiments or from more than one experiment at a time. Our system optimizes response times by caching and reusing information from previous queries. In this paper, we describe our methods for achieving this transformation. We show that our approach is complementary to other existing initiatives, such as Bio2RDF, for accessing and retrieving data from the ArrayExpress database. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. An evaluation of multi-probe locality sensitive hashing for computing similarities over web-scale query logs.

    PubMed

    Cormode, Graham; Dasgupta, Anirban; Goyal, Amit; Lee, Chi Hoon

    2018-01-01

    Many modern applications of AI such as web search, mobile browsing, image processing, and natural language processing rely on finding similar items from a large database of complex objects. Due to the very large scale of data involved (e.g., users' queries from commercial search engines), computing such near or nearest neighbors is a non-trivial task, as the computational cost grows significantly with the number of items. To address this challenge, we adopt Locality Sensitive Hashing (a.k.a, LSH) methods and evaluate four variants in a distributed computing environment (specifically, Hadoop). We identify several optimizations which improve performance, suitable for deployment in very large scale settings. The experimental results demonstrate our variants of LSH achieve the robust performance with better recall compared with "vanilla" LSH, even when using the same amount of space.

  3. Development of an autonomous treatment planning strategy for radiation therapy with effective use of population-based prior data.

    PubMed

    Wang, Huan; Dong, Peng; Liu, Hongcheng; Xing, Lei

    2017-02-01

    Current treatment planning remains a costly and labor intensive procedure and requires multiple trial-and-error adjustments of system parameters such as the weighting factors and prescriptions. The purpose of this work is to develop an autonomous treatment planning strategy with effective use of prior knowledge and in a clinically realistic treatment planning platform to facilitate radiation therapy workflow. Our technique consists of three major components: (i) a clinical treatment planning system (TPS); (ii) a formulation of decision-function constructed using an assemble of prior treatment plans; (iii) a plan evaluator or decision-function and an outer-loop optimization independent of the clinical TPS to assess the TPS-generated plan and to drive the search toward a solution optimizing the decision-function. Microsoft (MS) Visual Studio Coded UI is applied to record some common planner-TPS interactions as subroutines for querying and interacting with the TPS. These subroutines are called back in the outer-loop optimization program to navigate the plan selection process through the solution space iteratively. The utility of the approach is demonstrated by using clinical prostate and head-and-neck cases. An autonomous treatment planning technique with effective use of an assemble of prior treatment plans is developed to automatically maneuver the clinical treatment planning process in the platform of a commercial TPS. The process mimics the decision-making process of a human planner and provides a clinically sensible treatment plan automatically, thus reducing/eliminating the tedious manual trial-and-errors of treatment planning. It is found that the prostate and head-and-neck treatment plans generated using the approach compare favorably with that used for the patients' actual treatments. Clinical inverse treatment planning process can be automated effectively with the guidance of an assemble of prior treatment plans. The approach has the potential to significantly improve the radiation therapy workflow. © 2016 American Association of Physicists in Medicine.

  4. Secure searching of biomarkers through hybrid homomorphic encryption scheme.

    PubMed

    Kim, Miran; Song, Yongsoo; Cheon, Jung Hee

    2017-07-26

    As genome sequencing technology develops rapidly, there has lately been an increasing need to keep genomic data secure even when stored in the cloud and still used for research. We are interested in designing a protocol for the secure outsourcing matching problem on encrypted data. We propose an efficient method to securely search a matching position with the query data and extract some information at the position. After decryption, only a small amount of comparisons with the query information should be performed in plaintext state. We apply this method to find a set of biomarkers in encrypted genomes. The important feature of our method is to encode a genomic database as a single element of polynomial ring. Since our method requires a single homomorphic multiplication of hybrid scheme for query computation, it has the advantage over the previous methods in parameter size, computation complexity, and communication cost. In particular, the extraction procedure not only prevents leakage of database information that has not been queried by user but also reduces the communication cost by half. We evaluate the performance of our method and verify that the computation on large-scale personal data can be securely and practically outsourced to a cloud environment during data analysis. It takes about 3.9 s to search-and-extract the reference and alternate sequences at the queried position in a database of size 4M. Our solution for finding a set of biomarkers in DNA sequences shows the progress of cryptographic techniques in terms of their capability can support real-world genome data analysis in a cloud environment.

  5. A novel content-based medical image retrieval method based on query topic dependent image features (QTDIF)

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Qiu, Bo; Tian, Qi; Mueller, Henning; Xu, Changsheng

    2005-04-01

    Medical image retrieval is still mainly a research domain with a large variety of applications and techniques. With the ImageCLEF 2004 benchmark, an evaluation framework has been created that includes a database, query topics and ground truth data. Eleven systems (with a total of more than 50 runs) compared their performance in various configurations. The results show that there is not any one feature that performs well on all query tasks. Key to successful retrieval is rather the selection of features and feature weights based on a specific set of input features, thus on the query task. In this paper we propose a novel method based on query topic dependent image features (QTDIF) for content-based medical image retrieval. These feature sets are designed to capture both inter-category and intra-category statistical variations to achieve good retrieval performance in terms of recall and precision. We have used Gaussian Mixture Models (GMM) and blob representation to model medical images and construct the proposed novel QTDIF for CBIR. Finally, trained multi-class support vector machines (SVM) are used for image similarity ranking. The proposed methods have been tested over the Casimage database with around 9000 images, for the given 26 image topics, used for imageCLEF 2004. The retrieval performance has been compared with the medGIFT system, which is based on the GNU Image Finding Tool (GIFT). The experimental results show that the proposed QTDIF-based CBIR can provide significantly better performance than systems based general features only.

  6. Aripiprazole-Loaded Polymeric Micelles: Fabrication, Optimization and Evaluation using Response Surface Method.

    PubMed

    Patil, Payal Hasmukhlal; Wankhede, Pooja R; Mahajan, H S; Zawar, Laxmikant

    2018-01-04

    The fundamental objective of current study was to encapsulate Ari-piprazole (ARP) within Pluronic F127 micelles to improve its aqueous solubility. The recent patents on Ar-ipiprazole (JP2013136621) and micelles (WO2016004369A1) facilitated selection of drug and polymer. The drug-laden micelles were fabricated using thin-film hydration technique. Optimization of the micellar formulation was done by using response surface method (RSM). The Pluronic F127 concentration of 150 mg and 75 rpm rotational speed of rotary evaporator were found to be optimized conditions for formulating micelles. The prepared batches were further characterized for PDI (polydispersity index), zeta potential, % DLC (% Drug loading content), % EE (% Entrapment Efficiency) and % drug release study; results of these parameters were found to be 0.228, −4.04 mV and 76.50 % and 18.56 % respectively. It was observed from the In vitro release study that 97.37 ± 1.81 % drug had released from micelles after 20 hrs which were found about thrice as compared to that of pure drug. The optimized ARP micellar for-mulation was characterized using DSC (Differential Scanning Colorimetry), FT-IR (Fourier Trans-formed Infrared Spectroscopy), P-XRD (Powdered X-ray Diffraction Study) and TEM (Transmission Electronic Microscopy) studies. ARP-loaded micelles displayed a hydrodynamic diameter of 170.3 nm and a sphere-shaped morphology as determined by dynamic light scattering as well as TEM study. It is concluded that the prepared polymeric micellar system has an excellent potential to be used as a delivery carrier for Aripiprazole with increased solubility. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Hybrid Quantum-Classical Approach to Quantum Optimal Control.

    PubMed

    Li, Jun; Yang, Xiaodong; Peng, Xinhua; Sun, Chang-Pu

    2017-04-14

    A central challenge in quantum computing is to identify more computational problems for which utilization of quantum resources can offer significant speedup. Here, we propose a hybrid quantum-classical scheme to tackle the quantum optimal control problem. We show that the most computationally demanding part of gradient-based algorithms, namely, computing the fitness function and its gradient for a control input, can be accomplished by the process of evolution and measurement on a quantum simulator. By posing queries to and receiving answers from the quantum simulator, classical computing devices update the control parameters until an optimal control solution is found. To demonstrate the quantum-classical scheme in experiment, we use a seven-qubit nuclear magnetic resonance system, on which we have succeeded in optimizing state preparation without involving classical computation of the large Hilbert space evolution.

  8. An Expertise Recommender using Web Mining

    NASA Technical Reports Server (NTRS)

    Joshi, Anupam; Chandrasekaran, Purnima; ShuYang, Michelle; Ramakrishnan, Ramya

    2001-01-01

    This report explored techniques to mine web pages of scientists to extract information regarding their expertise, build expertise chains and referral webs, and semi automatically combine this information with directory information services to create a recommender system that permits query by expertise. The approach included experimenting with existing techniques that have been reported in research literature in recent past , and adapted them as needed. In addition, software tools were developed to capture and use this information.

  9. Novel Visualization of Large Health Related Data Sets

    DTIC Science & Technology

    2014-03-01

    demonstration of the visualization techniques and results from our earliest visualization, which used counts of the various data elements queried using...locations (e.g. areas with high pollen that increases the need for more intensive health care for people with asthma) and save millions of dollars

  10. 41. DISCOVERY, SEARCH, AND COMMUNICATION OF TEXTUAL KNOWLEDGE RESOURCES IN DISTRIBUTED SYSTEMS a. Discovering and Utilizing Knowledge Sources for Metasearch Knowledge Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamora, Antonio

    Advanced Natural Language Processing Tools for Web Information Retrieval, Content Analysis, and Synthesis. The goal of this SBIR was to implement and evaluate several advanced Natural Language Processing (NLP) tools and techniques to enhance the precision and relevance of search results by analyzing and augmenting search queries and by helping to organize the search output obtained from heterogeneous databases and web pages containing textual information of interest to DOE and the scientific-technical user communities in general. The SBIR investigated 1) the incorporation of spelling checkers in search applications, 2) identification of significant phrases and concepts using a combination of linguisticmore » and statistical techniques, and 3) enhancement of the query interface and search retrieval results through the use of semantic resources, such as thesauri. A search program with a flexible query interface was developed to search reference databases with the objective of enhancing search results from web queries or queries of specialized search systems such as DOE's Information Bridge. The DOE ETDE/INIS Joint Thesaurus was processed to create a searchable database. Term frequencies and term co-occurrences were used to enhance the web information retrieval by providing algorithmically-derived objective criteria to organize relevant documents into clusters containing significant terms. A thesaurus provides an authoritative overview and classification of a field of knowledge. By organizing the results of a search using the thesaurus terminology, the output is more meaningful than when the results are just organized based on the terms that co-occur in the retrieved documents, some of which may not be significant. An attempt was made to take advantage of the hierarchy provided by broader and narrower terms, as well as other field-specific information in the thesauri. The search program uses linguistic morphological routines to find relevant entries regardless of whether terms are stored in singular or plural form. Implementation of additional inflectional morphology processes for verbs can enhance retrieval further, but this has to be balanced by the possibility of broadening the results too much. In addition to the DOE energy thesaurus, other sources of specialized organized knowledge such as the Medical Subject Headings (MeSH), the Unified Medical Language System (UMLS), and Wikipedia were investigated. The supporting role of the NLP thesaurus search program was enhanced by incorporating spelling aid and a part-of-speech tagger to cope with misspellings in the queries and to determine the grammatical roles of the query words and identify nouns for special processing. To improve precision, multiple modes of searching were implemented including Boolean operators, and field-specific searches. Programs to convert a thesaurus or reference file into searchable support files can be deployed easily, and the resulting files are immediately searchable to produce relevance-ranked results with builtin spelling aid, morphological processing, and advanced search logic. Demonstration systems were built for several databases, including the DOE energy thesaurus.« less

  11. TopFed: TCGA tailored federated query processing and linking to LOD.

    PubMed

    Saleem, Muhammad; Padmanabhuni, Shanmukha S; Ngomo, Axel-Cyrille Ngonga; Iqbal, Aftab; Almeida, Jonas S; Decker, Stefan; Deus, Helena F

    2014-01-01

    The Cancer Genome Atlas (TCGA) is a multidisciplinary, multi-institutional effort to catalogue genetic mutations responsible for cancer using genome analysis techniques. One of the aims of this project is to create a comprehensive and open repository of cancer related molecular analysis, to be exploited by bioinformaticians towards advancing cancer knowledge. However, devising bioinformatics applications to analyse such large dataset is still challenging, as it often requires downloading large archives and parsing the relevant text files. Therefore, it is making it difficult to enable virtual data integration in order to collect the critical co-variates necessary for analysis. We address these issues by transforming the TCGA data into the Semantic Web standard Resource Description Format (RDF), link it to relevant datasets in the Linked Open Data (LOD) cloud and further propose an efficient data distribution strategy to host the resulting 20.4 billion triples data via several SPARQL endpoints. Having the TCGA data distributed across multiple SPARQL endpoints, we enable biomedical scientists to query and retrieve information from these SPARQL endpoints by proposing a TCGA tailored federated SPARQL query processing engine named TopFed. We compare TopFed with a well established federation engine FedX in terms of source selection and query execution time by using 10 different federated SPARQL queries with varying requirements. Our evaluation results show that TopFed selects on average less than half of the sources (with 100% recall) with query execution time equal to one third to that of FedX. With TopFed, we aim to offer biomedical scientists a single-point-of-access through which distributed TCGA data can be accessed in unison. We believe the proposed system can greatly help researchers in the biomedical domain to carry out their research effectively with TCGA as the amount and diversity of data exceeds the ability of local resources to handle its retrieval and parsing.

  12. Towards ontology-driven navigation of the lipid bibliosphere

    PubMed Central

    Baker, Christopher JO; Kanagasabai, Rajaraman; Ang, Wee Tiong; Veeramani, Anitha; Low, Hong-Sang; Wenk, Markus R

    2008-01-01

    Background The indexing of scientific literature and content is a relevant and contemporary requirement within life science information systems. Navigating information available in legacy formats continues to be a challenge both in enterprise and academic domains. The emergence of semantic web technologies and their fusion with artificial intelligence techniques has provided a new toolkit with which to address these data integration challenges. In the emerging field of lipidomics such navigation challenges are barriers to the translation of scientific results into actionable knowledge, critical to the treatment of diseases such as Alzheimer's syndrome, Mycobacterium infections and cancer. Results We present a literature-driven workflow involving document delivery and natural language processing steps generating tagged sentences containing lipid, protein and disease names, which are instantiated to custom designed lipid ontology. We describe the design challenges in capturing lipid nomenclature, the mandate of the ontology and its role as query model in the navigation of the lipid bibliosphere. We illustrate the extent of the description logic-based A-box query capability provided by the instantiated ontology using a graphical query composer to query sentences describing lipid-protein and lipid-disease correlations. Conclusion As scientists accept the need to readjust the manner in which we search for information and derive knowledge we illustrate a system that can constrain the literature explosion and knowledge navigation problems. Specifically we have focussed on solving this challenge for lipidomics researchers who have to deal with the lack of standardized vocabulary, differing classification schemes, and a wide array of synonyms before being able to derive scientific insights. The use of the OWL-DL variant of the Web Ontology Language (OWL) and description logic reasoning is pivotal in this regard, providing the lipid scientist with advanced query access to the results of text mining algorithms instantiated into the ontology. The visual query paradigm assists in the adoption of this technology. PMID:18315858

  13. Towards ontology-driven navigation of the lipid bibliosphere.

    PubMed

    Baker, Christopher Jo; Kanagasabai, Rajaraman; Ang, Wee Tiong; Veeramani, Anitha; Low, Hong-Sang; Wenk, Markus R

    2008-01-01

    The indexing of scientific literature and content is a relevant and contemporary requirement within life science information systems. Navigating information available in legacy formats continues to be a challenge both in enterprise and academic domains. The emergence of semantic web technologies and their fusion with artificial intelligence techniques has provided a new toolkit with which to address these data integration challenges. In the emerging field of lipidomics such navigation challenges are barriers to the translation of scientific results into actionable knowledge, critical to the treatment of diseases such as Alzheimer's syndrome, Mycobacterium infections and cancer. We present a literature-driven workflow involving document delivery and natural language processing steps generating tagged sentences containing lipid, protein and disease names, which are instantiated to custom designed lipid ontology. We describe the design challenges in capturing lipid nomenclature, the mandate of the ontology and its role as query model in the navigation of the lipid bibliosphere. We illustrate the extent of the description logic-based A-box query capability provided by the instantiated ontology using a graphical query composer to query sentences describing lipid-protein and lipid-disease correlations. As scientists accept the need to readjust the manner in which we search for information and derive knowledge we illustrate a system that can constrain the literature explosion and knowledge navigation problems. Specifically we have focussed on solving this challenge for lipidomics researchers who have to deal with the lack of standardized vocabulary, differing classification schemes, and a wide array of synonyms before being able to derive scientific insights. The use of the OWL-DL variant of the Web Ontology Language (OWL) and description logic reasoning is pivotal in this regard, providing the lipid scientist with advanced query access to the results of text mining algorithms instantiated into the ontology. The visual query paradigm assists in the adoption of this technology.

  14. Quality by Design (QbD) Approach for Development of Co-Processed Excipient Pellets (MOMLETS) By Extrusion-Spheronization Technique.

    PubMed

    Patel, Hetal; Patel, Kishan; Tiwari, Sanjay; Pandey, Sonia; Shah, Shailesh; Gohel, Mukesh

    2016-01-01

    Microcrystalline cellulose (MCC) is an excellent excipient for the production of pellets by extrusion spheronization. However, it causes slow release rate of poorly water soluble drugs from pellets. Co-processed excipient prepared by spray drying (US4744987; US5686107; WO2003051338) and coprecipitation technique (WO9517831) are patented. The objective of present study was to develop co-processed MCC pellets (MOMLETS) by extrusion-spheronization technique using the principle of Quality by Design (QbD). Co-processed excipient core pellets (MOMLETS) were developed by extrusion spheronization technique using Quality by Design (QbD) approach. BCS class II drug (telmisartan) was layered onto it in a fluidized bed processor. Quality Target Product Profile (QTPP) and Critical Quality Attributes (CQA) for pellets were identified. Risk assessment was reported using Ishikawa diagram. Plackett Burman design was used to check the effect of seven independent variables; superdisintegrant, extruder speed, ethanol: water, spheronizer speed, extruder screen, pore former and MCC: lactose; on percentage drug release at 30 min. Pareto chart and normal probability plot was constructed to identify the significant factors. Box-Behnken design (BBD) using three most significant factors (Extruder screen size, type of superdisintegrant and type of pore former) was used as an optimization design. The control space was identified in which desired quality of the pellets can be obtained. Co-processed excipient core pellets (MOMLETS) were successfully developed by QbD approach. Versatility, Industrial scalability and simplicity are the main features of the proposed research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Fast Query-Optimized Kernel-Machine Classification

    NASA Technical Reports Server (NTRS)

    Mazzoni, Dominic; DeCoste, Dennis

    2004-01-01

    A recently developed algorithm performs kernel-machine classification via incremental approximate nearest support vectors. The algorithm implements support-vector machines (SVMs) at speeds 10 to 100 times those attainable by use of conventional SVM algorithms. The algorithm offers potential benefits for classification of images, recognition of speech, recognition of handwriting, and diverse other applications in which there are requirements to discern patterns in large sets of data. SVMs constitute a subset of kernel machines (KMs), which have become popular as models for machine learning and, more specifically, for automated classification of input data on the basis of labeled training data. While similar in many ways to k-nearest-neighbors (k-NN) models and artificial neural networks (ANNs), SVMs tend to be more accurate. Using representations that scale only linearly in the numbers of training examples, while exploring nonlinear (kernelized) feature spaces that are exponentially larger than the original input dimensionality, KMs elegantly and practically overcome the classic curse of dimensionality. However, the price that one must pay for the power of KMs is that query-time complexity scales linearly with the number of training examples, making KMs often orders of magnitude more computationally expensive than are ANNs, decision trees, and other popular machine learning alternatives. The present algorithm treats an SVM classifier as a special form of a k-NN. The algorithm is based partly on an empirical observation that one can often achieve the same classification as that of an exact KM by using only small fraction of the nearest support vectors (SVs) of a query. The exact KM output is a weighted sum over the kernel values between the query and the SVs. In this algorithm, the KM output is approximated with a k-NN classifier, the output of which is a weighted sum only over the kernel values involving k selected SVs. Before query time, there are gathered statistics about how misleading the output of the k-NN model can be, relative to the outputs of the exact KM for a representative set of examples, for each possible k from 1 to the total number of SVs. From these statistics, there are derived upper and lower thresholds for each step k. These thresholds identify output levels for which the particular variant of the k-NN model already leans so strongly positively or negatively that a reversal in sign is unlikely, given the weaker SV neighbors still remaining. At query time, the partial output of each query is incrementally updated, stopping as soon as it exceeds the predetermined statistical thresholds of the current step. For an easy query, stopping can occur as early as step k = 1. For more difficult queries, stopping might not occur until nearly all SVs are touched. A key empirical observation is that this approach can tolerate very approximate nearest-neighbor orderings. In experiments, SVs and queries were projected to a subspace comprising the top few principal- component dimensions and neighbor orderings were computed in that subspace. This approach ensured that the overhead of the nearest-neighbor computations was insignificant, relative to that of the exact KM computation.

  16. Robust Requirements Tracing via Internet Search Technology: Improving an IV and V Technique. Phase 2

    NASA Technical Reports Server (NTRS)

    Hayes, Jane; Dekhtyar, Alex

    2004-01-01

    There are three major objectives to this phase of the work. (1) Improvement of Information Retrieval (IR) methods for Independent Verification and Validation (IV&V) requirements tracing. Information Retrieval methods are typically developed for very large (order of millions - tens of millions and more documents) document collections and therefore, most successfully used methods somewhat sacrifice precision and recall in order to achieve efficiency. At the same time typical IR systems treat all user queries as independent of each other and assume that relevance of documents to queries is subjective for each user. The IV&V requirements tracing problem has a much smaller data set to operate on, even for large software development projects; the set of queries is predetermined by the high-level specification document and individual requirements considered as query input to IR methods are not necessarily independent from each other. Namely, knowledge about the links for one requirement may be helpful in determining the links of another requirement. Finally, while the final decision on the exact form of the traceability matrix still belongs to the IV&V analyst, his/her decisions are much less arbitrary than those of an Internet search engine user. All this suggests that the information available to us in the framework of the IV&V tracing problem can be successfully leveraged to enhance standard IR techniques, which in turn would lead to increased recall and precision. We developed several new methods during Phase II; (2) IV&V requirements tracing IR toolkit. Based on the methods developed in Phase I and their improvements developed in Phase II, we built a toolkit of IR methods for IV&V requirements tracing. The toolkit has been integrated, at the data level, with SAIC's SuperTracePlus (STP) tool; (3) Toolkit testing. We tested the methods included in the IV&V requirements tracing IR toolkit on a number of projects.

  17. Cooperative answers in database systems

    NASA Technical Reports Server (NTRS)

    Gaasterland, Terry; Godfrey, Parke; Minker, Jack; Novik, Lev

    1993-01-01

    A major concern of researchers who seek to improve human-computer communication involves how to move beyond literal interpretations of queries to a level of responsiveness that takes the user's misconceptions, expectations, desires, and interests into consideration. At Maryland, we are investigating how to better meet a user's needs within the framework of the cooperative answering system of Gal and Minker. We have been exploring how to use semantic information about the database to formulate coherent and informative answers. The work has two main thrusts: (1) the construction of a logic formula which embodies the content of a cooperative answer; and (2) the presentation of the logic formula to the user in a natural language form. The information that is available in a deductive database system for building cooperative answers includes integrity constraints, user constraints, the search tree for answers to the query, and false presuppositions that are present in the query. The basic cooperative answering theory of Gal and Minker forms the foundation of a cooperative answering system that integrates the new construction and presentation methods. This paper provides an overview of the cooperative answering strategies used in the CARMIN cooperative answering system, an ongoing research effort at Maryland. Section 2 gives some useful background definitions. Section 3 describes techniques for collecting cooperative logical formulae. Section 4 discusses which natural language generation techniques are useful for presenting the logic formula in natural language text. Section 5 presents a diagram of the system.

  18. Automated mapping of clinical terms into SNOMED-CT. An application to codify procedures in pathology.

    PubMed

    Allones, J L; Martinez, D; Taboada, M

    2014-10-01

    Clinical terminologies are considered a key technology for capturing clinical data in a precise and standardized manner, which is critical to accurately exchange information among different applications, medical records and decision support systems. An important step to promote the real use of clinical terminologies, such as SNOMED-CT, is to facilitate the process of finding mappings between local terms of medical records and concepts of terminologies. In this paper, we propose a mapping tool to discover text-to-concept mappings in SNOMED-CT. Name-based techniques were combined with a query expansion system to generate alternative search terms, and with a strategy to analyze and take advantage of the semantic relationships of the SNOMED-CT concepts. The developed tool was evaluated and compared to the search services provided by two SNOMED-CT browsers. Our tool automatically mapped clinical terms from a Spanish glossary of procedures in pathology with 88.0% precision and 51.4% recall, providing a substantial improvement of recall (28% and 60%) over other publicly accessible mapping services. The improvements reached by the mapping tool are encouraging. Our results demonstrate the feasibility of accurately mapping clinical glossaries to SNOMED-CT concepts, by means a combination of structural, query expansion and named-based techniques. We have shown that SNOMED-CT is a great source of knowledge to infer synonyms for the medical domain. Results show that an automated query expansion system overcomes the challenge of vocabulary mismatch partially.

  19. A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses

    NASA Astrophysics Data System (ADS)

    Yondo, Raul; Andrés, Esther; Valero, Eusebio

    2018-01-01

    Full scale aerodynamic wind tunnel testing, numerical simulation of high dimensional (full-order) aerodynamic models or flight testing are some of the fundamental but complex steps in the various design phases of recent civil transport aircrafts. Current aircraft aerodynamic designs have increase in complexity (multidisciplinary, multi-objective or multi-fidelity) and need to address the challenges posed by the nonlinearity of the objective functions and constraints, uncertainty quantification in aerodynamic problems or the restrained computational budgets. With the aim to reduce the computational burden and generate low-cost but accurate models that mimic those full order models at different values of the design variables, Recent progresses have witnessed the introduction, in real-time and many-query analyses, of surrogate-based approaches as rapid and cheaper to simulate models. In this paper, a comprehensive and state-of-the art survey on common surrogate modeling techniques and surrogate-based optimization methods is given, with an emphasis on models selection and validation, dimensionality reduction, sensitivity analyses, constraints handling or infill and stopping criteria. Benefits, drawbacks and comparative discussions in applying those methods are described. Furthermore, the paper familiarizes the readers with surrogate models that have been successfully applied to the general field of fluid dynamics, but not yet in the aerospace industry. Additionally, the review revisits the most popular sampling strategies used in conducting physical and simulation-based experiments in aircraft aerodynamic design. Attractive or smart designs infrequently used in the field and discussions on advanced sampling methodologies are presented, to give a glance on the various efficient possibilities to a priori sample the parameter space. Closing remarks foster on future perspectives, challenges and shortcomings associated with the use of surrogate models by aircraft industrial aerodynamicists, despite their increased interest among the research communities.

  20. Development and evaluation of a biomedical search engine using a predicate-based vector space model.

    PubMed

    Kwak, Myungjae; Leroy, Gondy; Martinez, Jesse D; Harwell, Jeffrey

    2013-10-01

    Although biomedical information available in articles and patents is increasing exponentially, we continue to rely on the same information retrieval methods and use very few keywords to search millions of documents. We are developing a fundamentally different approach for finding much more precise and complete information with a single query using predicates instead of keywords for both query and document representation. Predicates are triples that are more complex datastructures than keywords and contain more structured information. To make optimal use of them, we developed a new predicate-based vector space model and query-document similarity function with adjusted tf-idf and boost function. Using a test bed of 107,367 PubMed abstracts, we evaluated the first essential function: retrieving information. Cancer researchers provided 20 realistic queries, for which the top 15 abstracts were retrieved using a predicate-based (new) and keyword-based (baseline) approach. Each abstract was evaluated, double-blind, by cancer researchers on a 0-5 point scale to calculate precision (0 versus higher) and relevance (0-5 score). Precision was significantly higher (p<.001) for the predicate-based (80%) than for the keyword-based (71%) approach. Relevance was almost doubled with the predicate-based approach-2.1 versus 1.6 without rank order adjustment (p<.001) and 1.34 versus 0.98 with rank order adjustment (p<.001) for predicate--versus keyword-based approach respectively. Predicates can support more precise searching than keywords, laying the foundation for rich and sophisticated information search. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Characterizing the Discussion of Antibiotics in the Twittersphere: What is the Bigger Picture?

    PubMed

    Kendra, Rachel Lynn; Karki, Suman; Eickholt, Jesse Lee; Gandy, Lisa

    2015-06-19

    User content posted through Twitter has been used for biosurveillance, to characterize public perception of health-related topics, and as a means of distributing information to the general public. Most of the existing work surrounding Twitter and health care has shown Twitter to be an effective medium for these problems but more could be done to provide finer and more efficient access to all pertinent data. Given the diversity of user-generated content, small samples or summary presentations of the data arguably omit a large part of the virtual discussion taking place in the Twittersphere. Still, managing, processing, and querying large amounts of Twitter data is not a trivial task. This work describes tools and techniques capable of handling larger sets of Twitter data and demonstrates their use with the issue of antibiotics. This work has two principle objectives: (1) to provide an open-source means to efficiently explore all collected tweets and query health-related topics on Twitter, specifically, questions such as what users are saying and how messages are spread, and (2) to characterize the larger discourse taking place on Twitter with respect to antibiotics. Open-source software suites Hadoop, Flume, and Hive were used to collect and query a large number of Twitter posts. To classify tweets by topic, a deep network classifier was trained using a limited number of manually classified tweets. The particular machine learning approach used also allowed the use of a large number of unclassified tweets to increase performance. Query-based analysis of the collected tweets revealed that a large number of users contributed to the online discussion and that a frequent topic mentioned was resistance. A number of prominent events related to antibiotics led to a number of spikes in activity but these were short in duration. The category-based classifier developed was able to correctly classify 70% of manually labeled tweets (using a 10-fold cross validation procedure and 9 classes). The classifier also performed well when evaluated on a per category basis. Using existing tools such as Hive, Flume, Hadoop, and machine learning techniques, it is possible to construct tools and workflows to collect and query large amounts of Twitter data to characterize the larger discussion taking place on Twitter with respect to a particular health-related topic. Furthermore, using newer machine learning techniques and a limited number of manually labeled tweets, an entire body of collected tweets can be classified to indicate what topics are driving the virtual, online discussion. The resulting classifier can also be used to efficiently explore collected tweets by category and search for messages of interest or exemplary content.

  2. SPARQLog: SPARQL with Rules and Quantification

    NASA Astrophysics Data System (ADS)

    Bry, François; Furche, Tim; Marnette, Bruno; Ley, Clemens; Linse, Benedikt; Poppe, Olga

    SPARQL has become the gold-standard for RDF query languages. Nevertheless, we believe there is further room for improving RDF query languages. In this chapter, we investigate the addition of rules and quantifier alternation to SPARQL. That extension, called SPARQLog, extends previous RDF query languages by arbitrary quantifier alternation: blank nodes may occur in the scope of all, some, or none of the universal variables of a rule. In addition, SPARQLog is aware of important RDF features such as the distinction between blank nodes, literals and IRIs or the RDFS vocabulary. The semantics of SPARQLog is closed (every answer is an RDF graph), but lifts RDF's restrictions on literal and blank node occurrences for intermediary data. We show how to define a sound and complete operational semantics that can be implemented using existing logic programming techniques. While SPARQLog is Turing complete, we identify a decidable (in fact, polynomial time) fragment SwARQLog ensuring polynomial data-complexity inspired from the notion of super-weak acyclicity in data exchange. Furthermore, we prove that SPARQLog with no universal quantifiers in the scope of existential ones (∀ ∃ fragment) is equivalent to full SPARQLog in presence of graph projection. Thus, the convenience of arbitrary quantifier alternation comes, in fact, for free. These results, though here presented in the context of RDF querying, apply similarly also in the more general setting of data exchange.

  3. BioMart: a data federation framework for large collaborative projects.

    PubMed

    Zhang, Junjun; Haider, Syed; Baran, Joachim; Cros, Anthony; Guberman, Jonathan M; Hsu, Jack; Liang, Yong; Yao, Long; Kasprzyk, Arek

    2011-01-01

    BioMart is a freely available, open source, federated database system that provides a unified access to disparate, geographically distributed data sources. It is designed to be data agnostic and platform independent, such that existing databases can easily be incorporated into the BioMart framework. BioMart allows databases hosted on different servers to be presented seamlessly to users, facilitating collaborative projects between different research groups. BioMart contains several levels of query optimization to efficiently manage large data sets and offers a diverse selection of graphical user interfaces and application programming interfaces to ensure that queries can be performed in whatever manner is most convenient for the user. The software has now been adopted by a large number of different biological databases spanning a wide range of data types and providing a rich source of annotation available to bioinformaticians and biologists alike.

  4. An Information Retrieval and Recommendation System for Astronomical Observatories

    NASA Astrophysics Data System (ADS)

    Mukund, Nikhil; Thakur, Saurabh; Abraham, Sheelu; Aniyan, A. K.; Mitra, Sanjit; Sajeeth Philip, Ninan; Vaghmare, Kaustubh; Acharjya, D. P.

    2018-03-01

    We present a machine-learning-based information retrieval system for astronomical observatories that tries to address user-defined queries related to an instrument. In the modern instrumentation scenario where heterogeneous systems and talents are simultaneously at work, the ability to supply people with the right information helps speed up the tasks for detector operation, maintenance, and upgradation. The proposed method analyzes existing documented efforts at the site to intelligently group related information to a query and to present it online to the user. The user in response can probe the suggested content and explore previously developed solutions or probable ways to address the present situation optimally. We demonstrate natural language-processing-backed knowledge rediscovery by making use of the open source logbook data from the Laser Interferometric Gravitational Observatory (LIGO). We implement and test a web application that incorporates the above idea for LIGO Livingston, LIGO Hanford, and Virgo observatories.

  5. An evaluation of multi-probe locality sensitive hashing for computing similarities over web-scale query logs

    PubMed Central

    2018-01-01

    Many modern applications of AI such as web search, mobile browsing, image processing, and natural language processing rely on finding similar items from a large database of complex objects. Due to the very large scale of data involved (e.g., users’ queries from commercial search engines), computing such near or nearest neighbors is a non-trivial task, as the computational cost grows significantly with the number of items. To address this challenge, we adopt Locality Sensitive Hashing (a.k.a, LSH) methods and evaluate four variants in a distributed computing environment (specifically, Hadoop). We identify several optimizations which improve performance, suitable for deployment in very large scale settings. The experimental results demonstrate our variants of LSH achieve the robust performance with better recall compared with “vanilla” LSH, even when using the same amount of space. PMID:29346410

  6. Visualization of Earth and Space Science Data at JPL's Science Data Processing Systems Section

    NASA Technical Reports Server (NTRS)

    Green, William B.

    1996-01-01

    This presentation will provide an overview of systems in use at NASA's Jet Propulsion Laboratory for processing data returned by space exploration and earth observations spacecraft. Graphical and visualization techniques used to query and retrieve data from large scientific data bases will be described.

  7. NLPIR: A Theoretical Framework for Applying Natural Language Processing to Information Retrieval.

    ERIC Educational Resources Information Center

    Zhou, Lina; Zhang, Dongsong

    2003-01-01

    Proposes a theoretical framework called NLPIR that integrates natural language processing (NLP) into information retrieval (IR) based on the assumption that there exists representation distance between queries and documents. Discusses problems in traditional keyword-based IR, including relevance, and describes some existing NLP techniques.…

  8. Using Web Ontology Language to Integrate Heterogeneous Databases in the Neurosciences

    PubMed Central

    Lam, Hugo Y.K.; Marenco, Luis; Shepherd, Gordon M.; Miller, Perry L.; Cheung, Kei-Hoi

    2006-01-01

    Integrative neuroscience involves the integration and analysis of diverse types of neuroscience data involving many different experimental techniques. This data will increasingly be distributed across many heterogeneous databases that are web-accessible. Currently, these databases do not expose their schemas (database structures) and their contents to web applications/agents in a standardized, machine-friendly way. This limits database interoperation. To address this problem, we describe a pilot project that illustrates how neuroscience databases can be expressed using the Web Ontology Language, which is a semantically-rich ontological language, as a common data representation language to facilitate complex cross-database queries. In this pilot project, an existing tool called “D2RQ” was used to translate two neuroscience databases (NeuronDB and CoCoDat) into OWL, and the resulting OWL ontologies were then merged. An OWL-based reasoner (Racer) was then used to provide a sophisticated query language (nRQL) to perform integrated queries across the two databases based on the merged ontology. This pilot project is one step toward exploring the use of semantic web technologies in the neurosciences. PMID:17238384

  9. Video indexing based on image and sound

    NASA Astrophysics Data System (ADS)

    Faudemay, Pascal; Montacie, Claude; Caraty, Marie-Jose

    1997-10-01

    Video indexing is a major challenge for both scientific and economic reasons. Information extraction can sometimes be easier from sound channel than from image channel. We first present a multi-channel and multi-modal query interface, to query sound, image and script through 'pull' and 'push' queries. We then summarize the segmentation phase, which needs information from the image channel. Detection of critical segments is proposed. It should speed-up both automatic and manual indexing. We then present an overview of the information extraction phase. Information can be extracted from the sound channel, through speaker recognition, vocal dictation with unconstrained vocabularies, and script alignment with speech. We present experiment results for these various techniques. Speaker recognition methods were tested on the TIMIT and NTIMIT database. Vocal dictation as experimented on newspaper sentences spoken by several speakers. Script alignment was tested on part of a carton movie, 'Ivanhoe'. For good quality sound segments, error rates are low enough for use in indexing applications. Major issues are the processing of sound segments with noise or music, and performance improvement through the use of appropriate, low-cost architectures or networks of workstations.

  10. Approach to Privacy-Preserve Data in Two-Tiered Wireless Sensor Network Based on Linear System and Histogram

    NASA Astrophysics Data System (ADS)

    Dang, Van H.; Wohlgemuth, Sven; Yoshiura, Hiroshi; Nguyen, Thuc D.; Echizen, Isao

    Wireless sensor network (WSN) has been one of key technologies for the future with broad applications from the military to everyday life [1,2,3,4,5]. There are two kinds of WSN model models with sensors for sensing data and a sink for receiving and processing queries from users; and models with special additional nodes capable of storing large amounts of data from sensors and processing queries from the sink. Among the latter type, a two-tiered model [6,7] has been widely adopted because of its storage and energy saving benefits for weak sensors, as proved by the advent of commercial storage node products such as Stargate [8] and RISE. However, by concentrating storage in certain nodes, this model becomes more vulnerable to attack. Our novel technique, called zip-histogram, contributes to solving the problems of previous studies [6,7] by protecting the stored data's confidentiality and integrity (including data from the sensor and queries from the sink) against attackers who might target storage nodes in two-tiered WSNs.

  11. An Energy-Efficient Approach to Enhance Virtual Sensors Provisioning in Sensor Clouds Environments

    PubMed Central

    Filho, Raimir Holanda; Rabêlo, Ricardo de Andrade L.; de Carvalho, Carlos Giovanni N.; Mendes, Douglas Lopes de S.; Costa, Valney da Gama

    2018-01-01

    Virtual sensors provisioning is a central issue for sensors cloud middleware since it is responsible for selecting physical nodes, usually from Wireless Sensor Networks (WSN) of different owners, to handle user’s queries or applications. Recent works perform provisioning by clustering sensor nodes based on the correlation measurements and then selecting as few nodes as possible to preserve WSN energy. However, such works consider only homogeneous nodes (same set of sensors). Therefore, those works are not entirely appropriate for sensor clouds, which in most cases comprises heterogeneous sensor nodes. In this paper, we propose ACxSIMv2, an approach to enhance the provisioning task by considering heterogeneous environments. Two main algorithms form ACxSIMv2. The first one, ACASIMv1, creates multi-dimensional clusters of sensor nodes, taking into account the measurements correlations instead of the physical distance between nodes like most works on literature. Then, the second algorithm, ACOSIMv2, based on an Ant Colony Optimization system, selects an optimal set of sensors nodes from to respond user’s queries while attending all parameters and preserving the overall energy consumption. Results from initial experiments show that the approach reduces significantly the sensor cloud energy consumption compared to traditional works, providing a solution to be considered in sensor cloud scenarios. PMID:29495406

  12. An Energy-Efficient Approach to Enhance Virtual Sensors Provisioning in Sensor Clouds Environments.

    PubMed

    Lemos, Marcus Vinícius de S; Filho, Raimir Holanda; Rabêlo, Ricardo de Andrade L; de Carvalho, Carlos Giovanni N; Mendes, Douglas Lopes de S; Costa, Valney da Gama

    2018-02-26

    Virtual sensors provisioning is a central issue for sensors cloud middleware since it is responsible for selecting physical nodes, usually from Wireless Sensor Networks (WSN) of different owners, to handle user's queries or applications. Recent works perform provisioning by clustering sensor nodes based on the correlation measurements and then selecting as few nodes as possible to preserve WSN energy. However, such works consider only homogeneous nodes (same set of sensors). Therefore, those works are not entirely appropriate for sensor clouds, which in most cases comprises heterogeneous sensor nodes. In this paper, we propose ACxSIMv2, an approach to enhance the provisioning task by considering heterogeneous environments. Two main algorithms form ACxSIMv2. The first one, ACASIMv1, creates multi-dimensional clusters of sensor nodes, taking into account the measurements correlations instead of the physical distance between nodes like most works on literature. Then, the second algorithm, ACOSIMv2, based on an Ant Colony Optimization system, selects an optimal set of sensors nodes from to respond user's queries while attending all parameters and preserving the overall energy consumption. Results from initial experiments show that the approach reduces significantly the sensor cloud energy consumption compared to traditional works, providing a solution to be considered in sensor cloud scenarios.

  13. Enabling multi-level relevance feedback on PubMed by integrating rank learning into DBMS.

    PubMed

    Yu, Hwanjo; Kim, Taehoon; Oh, Jinoh; Ko, Ilhwan; Kim, Sungchul; Han, Wook-Shin

    2010-04-16

    Finding relevant articles from PubMed is challenging because it is hard to express the user's specific intention in the given query interface, and a keyword query typically retrieves a large number of results. Researchers have applied machine learning techniques to find relevant articles by ranking the articles according to the learned relevance function. However, the process of learning and ranking is usually done offline without integrated with the keyword queries, and the users have to provide a large amount of training documents to get a reasonable learning accuracy. This paper proposes a novel multi-level relevance feedback system for PubMed, called RefMed, which supports both ad-hoc keyword queries and a multi-level relevance feedback in real time on PubMed. RefMed supports a multi-level relevance feedback by using the RankSVM as the learning method, and thus it achieves higher accuracy with less feedback. RefMed "tightly" integrates the RankSVM into RDBMS to support both keyword queries and the multi-level relevance feedback in real time; the tight coupling of the RankSVM and DBMS substantially improves the processing time. An efficient parameter selection method for the RankSVM is also proposed, which tunes the RankSVM parameter without performing validation. Thereby, RefMed achieves a high learning accuracy in real time without performing a validation process. RefMed is accessible at http://dm.postech.ac.kr/refmed. RefMed is the first multi-level relevance feedback system for PubMed, which achieves a high accuracy with less feedback. It effectively learns an accurate relevance function from the user's feedback and efficiently processes the function to return relevant articles in real time.

  14. Enabling multi-level relevance feedback on PubMed by integrating rank learning into DBMS

    PubMed Central

    2010-01-01

    Background Finding relevant articles from PubMed is challenging because it is hard to express the user's specific intention in the given query interface, and a keyword query typically retrieves a large number of results. Researchers have applied machine learning techniques to find relevant articles by ranking the articles according to the learned relevance function. However, the process of learning and ranking is usually done offline without integrated with the keyword queries, and the users have to provide a large amount of training documents to get a reasonable learning accuracy. This paper proposes a novel multi-level relevance feedback system for PubMed, called RefMed, which supports both ad-hoc keyword queries and a multi-level relevance feedback in real time on PubMed. Results RefMed supports a multi-level relevance feedback by using the RankSVM as the learning method, and thus it achieves higher accuracy with less feedback. RefMed "tightly" integrates the RankSVM into RDBMS to support both keyword queries and the multi-level relevance feedback in real time; the tight coupling of the RankSVM and DBMS substantially improves the processing time. An efficient parameter selection method for the RankSVM is also proposed, which tunes the RankSVM parameter without performing validation. Thereby, RefMed achieves a high learning accuracy in real time without performing a validation process. RefMed is accessible at http://dm.postech.ac.kr/refmed. Conclusions RefMed is the first multi-level relevance feedback system for PubMed, which achieves a high accuracy with less feedback. It effectively learns an accurate relevance function from the user’s feedback and efficiently processes the function to return relevant articles in real time. PMID:20406504

  15. Engineering the ATLAS TAG Browser

    NASA Astrophysics Data System (ADS)

    Zhang, Qizhi; ATLAS Collaboration

    2011-12-01

    ELSSI is a web-based event metadata (TAG) browser and event-level selection service for ATLAS. In this paper, we describe some of the challenges encountered in the process of developing ELSSI, and the software engineering strategies adopted to address those challenges. Approaches to management of access to data, browsing, data rendering, query building, query validation, execution, connection management, and communication with auxiliary services are discussed. We also describe strategies for dealing with data that may vary over time, such as run-dependent trigger decision decoding. Along with examples, we illustrate how programming techniques in multiple languages (PHP, JAVASCRIPT, XML, AJAX, and PL/SQL) have been blended to achieve the required results. Finally, we evaluate features of the ELSSI service in terms of functionality, scalability, and performance.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Critchlow, Terence J.; Abdulla, Ghaleb; Becla, Jacek

    Data management is the organization of information to support efficient access and analysis. For data intensive computing applications, the speed at which relevant data can be accessed is a limiting factor in terms of the size and complexity of computation that can be performed. Data access speed is impacted by the size of the relevant subset of the data, the complexity of the query used to define it, and the layout of the data relative to the query. As the underlying data sets become increasingly complex, the questions asked of it become more involved as well. For example, geospatial datamore » associated with a city is no longer limited to the map data representing its streets, but now also includes layers identifying utility lines, key points, locations and types of businesses within the city limits, tax information for each land parcel, satellite imagery, and possibly even street-level views. As a result, queries have gone from simple questions, such as "how long is Main Street?", to much more complex questions such as "taking all other factors into consideration, are the property values of houses near parks higher than those under power lines, and if so, by what percentage". Answering these questions requires a coherent infrastructure, integrating the relevant data into a format optimized for the questions being asked.« less

  17. EnsMart: A Generic System for Fast and Flexible Access to Biological Data

    PubMed Central

    Kasprzyk, Arek; Keefe, Damian; Smedley, Damian; London, Darin; Spooner, William; Melsopp, Craig; Hammond, Martin; Rocca-Serra, Philippe; Cox, Tony; Birney, Ewan

    2004-01-01

    The EnsMart system (www.ensembl.org/EnsMart) provides a generic data warehousing solution for fast and flexible querying of large biological data sets and integration with third-party data and tools. The system consists of a query-optimized database and interactive, user-friendly interfaces. EnsMart has been applied to Ensembl, where it extends its genomic browser capabilities, facilitating rapid retrieval of customized data sets. A wide variety of complex queries, on various types of annotations, for numerous species are supported. These can be applied to many research problems, ranging from SNP selection for candidate gene screening, through cross-species evolutionary comparisons, to microarray annotation. Users can group and refine biological data according to many criteria, including cross-species analyses, disease links, sequence variations, and expression patterns. Both tabulated list data and biological sequence output can be generated dynamically, in HTML, text, Microsoft Excel, and compressed formats. A wide range of sequence types, such as cDNA, peptides, coding regions, UTRs, and exons, with additional upstream and downstream regions, can be retrieved. The EnsMart database can be accessed via a public Web site, or through a Java application suite. Both implementations and the database are freely available for local installation, and can be extended or adapted to `non-Ensembl' data sets. PMID:14707178

  18. Information system building of the urban electromagnetic environment

    NASA Astrophysics Data System (ADS)

    Wang, Jiechen; Rui, Yikang; Shen, Dingtao; Yu, Qing

    2007-06-01

    The pollution of urban electromagnetic radiation has become more serious, however, there is still lack of a perfect and interactive User System to manage, analyze and issue the information. In this study, taking the electromagnetic environment of Nanjing as an example, an information system based on WebGIS with the techniques of ArcIMS and JSP has been developed, in order to provide the services and technique supports for information query of public and decision making of relevant departments.

  19. The Geodetic Seamless Archive Centers Service Layer: A System Architecture for Federating Geodesy Data Repositories

    NASA Astrophysics Data System (ADS)

    McWhirter, J.; Boler, F. M.; Bock, Y.; Jamason, P.; Squibb, M. B.; Noll, C. E.; Blewitt, G.; Kreemer, C. W.

    2010-12-01

    Three geodesy Archive Centers, Scripps Orbit and Permanent Array Center (SOPAC), NASA's Crustal Dynamics Data Information System (CDDIS) and UNAVCO are engaged in a joint effort to define and develop a common Web Service Application Programming Interface (API) for accessing geodetic data holdings. This effort is funded by the NASA ROSES ACCESS Program to modernize the original GPS Seamless Archive Centers (GSAC) technology which was developed in the 1990s. A new web service interface, the GSAC-WS, is being developed to provide uniform and expanded mechanisms through which users can access our data repositories. In total, our respective archives hold tens of millions of files and contain a rich collection of site/station metadata. Though we serve similar user communities, we currently provide a range of different access methods, query services and metadata formats. This leads to a lack of consistency in the userís experience and a duplication of engineering efforts. The GSAC-WS API and its reference implementation in an underlying Java-based GSAC Service Layer (GSL) supports metadata and data queries into site/station oriented data archives. The general nature of this API makes it applicable to a broad range of data systems. The overall goals of this project include providing consistent and rich query interfaces for end users and client programs, the development of enabling technology to facilitate third party repositories in developing these web service capabilities and to enable the ability to perform data queries across a collection of federated GSAC-WS enabled repositories. A fundamental challenge faced in this project is to provide a common suite of query services across a heterogeneous collection of data yet enabling each repository to expose their specific metadata holdings. To address this challenge we are developing a "capabilities" based service where a repository can describe its specific query and metadata capabilities. Furthermore, the architecture of the GSL is based on a model-view paradigm that decouples the underlying data model semantics from particular representations of the data model. This will allow for the GSAC-WS enabled repositories to evolve their service offerings to incorporate new metadata definition formats (e.g., ISO-19115, FGDC, JSON, etc.) and new techniques for accessing their holdings. Building on the core GSAC-WS implementations the project is also developing a federated/distributed query service. This service will seamlessly integrate with the GSAC Service Layer and will support data and metadata queries across a collection of federated GSAC repositories.

  20. The Anticonvulsant Effects of Ketogenic Diet on Epileptic Seizures and Potential Mechanisms.

    PubMed

    Zhang, Yifan; Xu, Jingwei; Zhang, Kun; Yang, Wei; Li, Bingjin

    2018-01-01

    Epilepsy is a syndrome of brain dysfunction induced by the aberrant excitability of certain neurons. Despite advances in surgical technique and anti-epileptic drug in recent years, recurrent epileptic seizures remain intractable and lead to a serious morbidity in the world. The ketogenic diet refers to a high-fat, low-carbohydrate and adequate-protein diet. Currently, its beneficial effects on epileptic seizure reduction have been well established. However, the detailed mechanisms underlying the anti-epileptic effects of ketogenic diet are still poorly understood. In this article, the possible roles of ketogenic diet on epilepsy were discussed. Data was obtained from the websites including Web of Science, Medline, Pubmed, Scopus, based on these keywords: "Ketogenic diet" and "epilepsy". As shown in both clinical and basic studies, the therapeutic effects of ketogenic diet might involve neuronal metabolism, neurotransmitter function, neuronal membrane potential and neuron protection against ROS. In this review, we systematically reviewed the effects and possible mechanisms of ketogenic diet on epilepsy, which may optimize the therapeutic strategies against epilepsy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Active learning methods for interactive image retrieval.

    PubMed

    Gosselin, Philippe Henri; Cord, Matthieu

    2008-07-01

    Active learning methods have been considered with increased interest in the statistical learning community. Initially developed within a classification framework, a lot of extensions are now being proposed to handle multimedia applications. This paper provides algorithms within a statistical framework to extend active learning for online content-based image retrieval (CBIR). The classification framework is presented with experiments to compare several powerful classification techniques in this information retrieval context. Focusing on interactive methods, active learning strategy is then described. The limitations of this approach for CBIR are emphasized before presenting our new active selection process RETIN. First, as any active method is sensitive to the boundary estimation between classes, the RETIN strategy carries out a boundary correction to make the retrieval process more robust. Second, the criterion of generalization error to optimize the active learning selection is modified to better represent the CBIR objective of database ranking. Third, a batch processing of images is proposed. Our strategy leads to a fast and efficient active learning scheme to retrieve sets of online images (query concept). Experiments on large databases show that the RETIN method performs well in comparison to several other active strategies.

  2. High-performance Negative Database for Massive Data Management System of The Mingantu Spectral Radioheliograph

    NASA Astrophysics Data System (ADS)

    Shi, Congming; Wang, Feng; Deng, Hui; Liu, Yingbo; Liu, Cuiyin; Wei, Shoulin

    2017-08-01

    As a dedicated synthetic aperture radio interferometer in China, the MingantU SpEctral Radioheliograph (MUSER), initially known as the Chinese Spectral RadioHeliograph (CSRH), has entered the stage of routine observation. More than 23 million data records per day need to be effectively managed to provide high-performance data query and retrieval for scientific data reduction. In light of these massive amounts of data generated by the MUSER, in this paper, a novel data management technique called the negative database (ND) is proposed and used to implement a data management system for the MUSER. Based on the key-value database, the ND technique makes complete utilization of the complement set of observational data to derive the requisite information. Experimental results showed that the proposed ND can significantly reduce storage volume in comparison with a relational database management system (RDBMS). Even when considering the time needed to derive records that were absent, its overall performance, including querying and deriving the data of the ND, is comparable with that of a relational database management system (RDBMS). The ND technique effectively solves the problem of massive data storage for the MUSER and is a valuable reference for the massive data management required in next-generation telescopes.

  3. Using Vector and Extended Boolean Matching in an Expert System for Selecting Foster Homes.

    ERIC Educational Resources Information Center

    Fox, Edward A.; Winett, Sheila G.

    1990-01-01

    Describes FOCES (Foster Care Expert System), a prototype expert system for choosing foster care placements for children which integrates information retrieval techniques with artificial intelligence. The use of prototypes and queries in Prolog routines, extended Boolean matching, and vector correlation are explained, as well as evaluation by…

  4. Query2Question: Translating Visualization Interaction into Natural Language.

    PubMed

    Nafari, Maryam; Weaver, Chris

    2015-06-01

    Richly interactive visualization tools are increasingly popular for data exploration and analysis in a wide variety of domains. Existing systems and techniques for recording provenance of interaction focus either on comprehensive automated recording of low-level interaction events or on idiosyncratic manual transcription of high-level analysis activities. In this paper, we present the architecture and translation design of a query-to-question (Q2Q) system that automatically records user interactions and presents them semantically using natural language (written English). Q2Q takes advantage of domain knowledge and uses natural language generation (NLG) techniques to translate and transcribe a progression of interactive visualization states into a visual log of styled text that complements and effectively extends the functionality of visualization tools. We present Q2Q as a means to support a cross-examination process in which questions rather than interactions are the focus of analytic reasoning and action. We describe the architecture and implementation of the Q2Q system, discuss key design factors and variations that effect question generation, and present several visualizations that incorporate Q2Q for analysis in a variety of knowledge domains.

  5. Foundations for Streaming Model Transformations by Complex Event Processing.

    PubMed

    Dávid, István; Ráth, István; Varró, Dániel

    2018-01-01

    Streaming model transformations represent a novel class of transformations to manipulate models whose elements are continuously produced or modified in high volume and with rapid rate of change. Executing streaming transformations requires efficient techniques to recognize activated transformation rules over a live model and a potentially infinite stream of events. In this paper, we propose foundations of streaming model transformations by innovatively integrating incremental model query, complex event processing (CEP) and reactive (event-driven) transformation techniques. Complex event processing allows to identify relevant patterns and sequences of events over an event stream. Our approach enables event streams to include model change events which are automatically and continuously populated by incremental model queries. Furthermore, a reactive rule engine carries out transformations on identified complex event patterns. We provide an integrated domain-specific language with precise semantics for capturing complex event patterns and streaming transformations together with an execution engine, all of which is now part of the Viatra reactive transformation framework. We demonstrate the feasibility of our approach with two case studies: one in an advanced model engineering workflow; and one in the context of on-the-fly gesture recognition.

  6. Rapid Exploitation and Analysis of Documents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttler, D J; Andrzejewski, D; Stevens, K D

    Analysts are overwhelmed with information. They have large archives of historical data, both structured and unstructured, and continuous streams of relevant messages and documents that they need to match to current tasks, digest, and incorporate into their analysis. The purpose of the READ project is to develop technologies to make it easier to catalog, classify, and locate relevant information. We approached this task from multiple angles. First, we tackle the issue of processing large quantities of information in reasonable time. Second, we provide mechanisms that allow users to customize their queries based on latent topics exposed from corpus statistics. Third,more » we assist users in organizing query results, adding localized expert structure over results. Forth, we use word sense disambiguation techniques to increase the precision of matching user generated keyword lists with terms and concepts in the corpus. Fifth, we enhance co-occurrence statistics with latent topic attribution, to aid entity relationship discovery. Finally we quantitatively analyze the quality of three popular latent modeling techniques to examine under which circumstances each is useful.« less

  7. LEAP into the Pfizer Global Virtual Library (PGVL) space: creation of readily synthesizable design ideas automatically.

    PubMed

    Hu, Qiyue; Peng, Zhengwei; Kostrowicki, Jaroslav; Kuki, Atsuo

    2011-01-01

    Pfizer Global Virtual Library (PGVL) of 10(13) readily synthesizable molecules offers a tremendous opportunity for lead optimization and scaffold hopping in drug discovery projects. However, mining into a chemical space of this size presents a challenge for the concomitant design informatics due to the fact that standard molecular similarity searches against a collection of explicit molecules cannot be utilized, since no chemical information system could create and manage more than 10(8) explicit molecules. Nevertheless, by accepting a tolerable level of false negatives in search results, we were able to bypass the need for full 10(13) enumeration and enabled the efficient similarity search and retrieval into this huge chemical space for practical usage by medicinal chemists. In this report, two search methods (LEAP1 and LEAP2) are presented. The first method uses PGVL reaction knowledge to disassemble the incoming search query molecule into a set of reactants and then uses reactant-level similarities into actual available starting materials to focus on a much smaller sub-region of the full virtual library compound space. This sub-region is then explicitly enumerated and searched via a standard similarity method using the original query molecule. The second method uses a fuzzy mapping onto candidate reactions and does not require exact disassembly of the incoming query molecule. Instead Basis Products (or capped reactants) are mapped into the query molecule and the resultant asymmetric similarity scores are used to prioritize the corresponding reactions and reactant sets. All sets of Basis Products are inherently indexed to specific reactions and specific starting materials. This again allows focusing on a much smaller sub-region for explicit enumeration and subsequent standard product-level similarity search. A set of validation studies were conducted. The results have shown that the level of false negatives for the disassembly-based method is acceptable when the query molecule can be recognized for exact disassembly, and the fuzzy reaction mapping method based on Basis Products has an even better performance in terms of lower false-negative rate because it is not limited by the requirement that the query molecule needs to be recognized by any disassembly algorithm. Both search methods have been implemented and accessed through a powerful desktop molecular design tool (see ref. (33) for details). The chapter will end with a comparison of published search methods against large virtual chemical space.

  8. EquiX-A Search and Query Language for XML.

    ERIC Educational Resources Information Center

    Cohen, Sara; Kanza, Yaron; Kogan, Yakov; Sagiv, Yehoshua; Nutt, Werner; Serebrenik, Alexander

    2002-01-01

    Describes EquiX, a search language for XML that combines querying with searching to query the data and the meta-data content of Web pages. Topics include search engines; a data model for XML documents; search query syntax; search query semantics; an algorithm for evaluating a query on a document; and indexing EquiX queries. (LRW)

  9. Rapid Prototyping of Application Specific Signal Processors Program

    DTIC Science & Technology

    1992-10-09

    EREQ Query optimizer generator from the University of Colorado. In the five year time frame , this trend toward convergence makes it a non- issue ...related issues . TI’s RASSP vision plans to leverage and support CALS as a baseline for addressing data formatting and handling. Previously stated CALS goals ...of the U.S. Gc;:zrnrenL Distibution Statement A. Approved for public release; distribution is unlimited. Prepared By: _-- Texas Instruments Integrated

  10. Query Optimization in Distributed Databases.

    DTIC Science & Technology

    1982-10-01

    general, the strategy a31 a11 a 3 is more time comsuming than the strategy a, a, and sually we do not use it. Since the semijoin of R.XJ> RS requires...analytic behavior of those heuristic algorithms. Although some analytic results of worst case and average case analysis are difficult to obtain, some...is the study of the analytic behavior of those heuristic algorithms. Although some analytic results of worst case and average case analysis are

  11. UMass Amherst and UT Austin @ The TREC 2009 Relevance Feedback Track

    DTIC Science & Technology

    2009-11-01

    number of terms to select com- pared to our case. We chose AdaRank [Xu and Li, 2007] for the following reasons . It directly optimizes retrieval performance...and the number of topics containing at least one relevant document. query car parts dinosaurs espn sports atari cell phone hoboken dogs adoption auto...infraorder disney activision ringtone nj puppy body bird abc sega forum ny pet lowest extinct channel hardware wireless brook rottweiler cost

  12. Minimizing Statistical Bias with Queries.

    DTIC Science & Technology

    1995-09-14

    method for optimally selecting these points would o er enormous savings in time and money. An active learning system will typically attempt to select data...research in active learning assumes that the sec- ond term of Equation 2 is approximately zero, that is, that the learner is unbiased. If this is the case...outperforms the variance- minimizing algorithm and random exploration. and e ective strategy for active learning . I have given empirical evidence that, with

  13. Google it: obtaining information about local STD/HIV testing services online.

    PubMed

    Habel, Melissa A; Hood, Julia; Desai, Sheila; Kachur, Rachel; Buhi, Eric R; Liddon, Nicole

    2011-04-01

    Although the Internet is one of the most commonly accessed resources for health information, finding information on local sexual health services, such as sexually transmitted disease (STD) testing, can be challenging. Recognizing that most quests for online health information begin with search engines, the purpose of this exploratory study was to examine the extent to which online information about local STD/HIV testing services can be found using Google. Queries on STD and HIV testing services were executed in Google for 6 geographically unique locations across the United States. The first 3 websites that resulted from each query were coded for the following characteristics: (1) relevancy to the search topic, (2) domain and purpose, (3) rank in Google results, and (4) content. Websites hosted at .com (57.3%), .org (25.7%), and .gov (10.5%) domains were retrieved most frequently. Roughly half of all websites (n = 376) provided information relevant to the query, and about three-quarters (77.0%) of all queries yielded at least 1 relevant website within the first 3 results. Searches for larger cities were more likely to yield relevant results compared with smaller cities (odds ratio [OR] = 10.0, 95% confidence interval [CI] = 5.6, 17.9). On comparison with .com domains, .gov (OR = 2.9, 95% CI = 1.4, 5.6) and .org domains (OR = 2.9, 95% CI = 1.7, 4.8) were more likely to provide information of the location to get tested. Ease of online access to information about sexual health services varies by search topic and locale. Sexual health service providers must optimize their website placement so as to reach a greater proportion of the sexually active population who use web search engines.

  14. DCMS: A data analytics and management system for molecular simulation.

    PubMed

    Kumar, Anand; Grupcev, Vladimir; Berrada, Meryem; Fogarty, Joseph C; Tu, Yi-Cheng; Zhu, Xingquan; Pandit, Sagar A; Xia, Yuni

    Molecular Simulation (MS) is a powerful tool for studying physical/chemical features of large systems and has seen applications in many scientific and engineering domains. During the simulation process, the experiments generate a very large number of atoms and intend to observe their spatial and temporal relationships for scientific analysis. The sheer data volumes and their intensive interactions impose significant challenges for data accessing, managing, and analysis. To date, existing MS software systems fall short on storage and handling of MS data, mainly because of the missing of a platform to support applications that involve intensive data access and analytical process. In this paper, we present the database-centric molecular simulation (DCMS) system our team developed in the past few years. The main idea behind DCMS is to store MS data in a relational database management system (DBMS) to take advantage of the declarative query interface ( i.e. , SQL), data access methods, query processing, and optimization mechanisms of modern DBMSs. A unique challenge is to handle the analytical queries that are often compute-intensive. For that, we developed novel indexing and query processing strategies (including algorithms running on modern co-processors) as integrated components of the DBMS. As a result, researchers can upload and analyze their data using efficient functions implemented inside the DBMS. Index structures are generated to store analysis results that may be interesting to other users, so that the results are readily available without duplicating the analysis. We have developed a prototype of DCMS based on the PostgreSQL system and experiments using real MS data and workload show that DCMS significantly outperforms existing MS software systems. We also used it as a platform to test other data management issues such as security and compression.

  15. Health information exchange policies of 11 diverse health systems and the associated impact on volume of exchange.

    PubMed

    Downing, N Lance; Adler-Milstein, Julia; Palma, Jonathan P; Lane, Steven; Eisenberg, Matthew; Sharp, Christopher; Longhurst, Christopher A

    2017-01-01

    Provider organizations increasingly have the ability to exchange patient health information electronically. Organizational health information exchange (HIE) policy decisions can impact the extent to which external information is readily available to providers, but this relationship has not been well studied. Our objective was to examine the relationship between electronic exchange of patient health information across organizations and organizational HIE policy decisions. We focused on 2 key decisions: whether to automatically search for information from other organizations and whether to require HIE-specific patient consent. We conducted a retrospective time series analysis of the effect of automatic querying and the patient consent requirement on the monthly volume of clinical summaries exchanged. We could not assess degree of use or usefulness of summaries, organizational decision-making processes, or generalizability to other vendors. Between 2013 and 2015, clinical summary exchange volume increased by 1349% across 11 organizations. Nine of the 11 systems were set up to enable auto-querying, and auto-querying was associated with a significant increase in the monthly rate of exchange (P = .006 for change in trend). Seven of the 11 organizations did not require patient consent specifically for HIE, and these organizations experienced a greater increase in volume of exchange over time compared to organizations that required consent. Automatic querying and limited consent requirements are organizational HIE policy decisions that impact the volume of exchange, and ultimately the information available to providers to support optimal care. Future efforts to ensure effective HIE may need to explicitly address these factors. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  16. Spatial and symbolic queries for 3D image data

    NASA Astrophysics Data System (ADS)

    Benson, Daniel C.; Zick, Gregory L.

    1992-04-01

    We present a query system for an object-oriented biomedical imaging database containing 3-D anatomical structures and their corresponding 2-D images. The graphical interface facilitates the formation of spatial queries, nonspatial or symbolic queries, and combined spatial/symbolic queries. A query editor is used for the creation and manipulation of 3-D query objects as volumes, surfaces, lines, and points. Symbolic predicates are formulated through a combination of text fields and multiple choice selections. Query results, which may include images, image contents, composite objects, graphics, and alphanumeric data, are displayed in multiple views. Objects returned by the query may be selected directly within the views for further inspection or modification, or for use as query objects in subsequent queries. Our image database query system provides visual feedback and manipulation of spatial query objects, multiple views of volume data, and the ability to combine spatial and symbolic queries. The system allows for incremental enhancement of existing objects and the addition of new objects and spatial relationships. The query system is designed for databases containing symbolic and spatial data. This paper discuses its application to data acquired in biomedical 3- D image reconstruction, but it is applicable to other areas such as CAD/CAM, geographical information systems, and computer vision.

  17. GenoQuery: a new querying module for functional annotation in a genomic warehouse

    PubMed Central

    Lemoine, Frédéric; Labedan, Bernard; Froidevaux, Christine

    2008-01-01

    Motivation: We have to cope with both a deluge of new genome sequences and a huge amount of data produced by high-throughput approaches used to exploit these genomic features. Crossing and comparing such heterogeneous and disparate data will help improving functional annotation of genomes. This requires designing elaborate integration systems such as warehouses for storing and querying these data. Results: We have designed a relational genomic warehouse with an original multi-layer architecture made of a databases layer and an entities layer. We describe a new querying module, GenoQuery, which is based on this architecture. We use the entities layer to define mixed queries. These mixed queries allow searching for instances of biological entities and their properties in the different databases, without specifying in which database they should be found. Accordingly, we further introduce the central notion of alternative queries. Such queries have the same meaning as the original mixed queries, while exploiting complementarities yielded by the various integrated databases of the warehouse. We explain how GenoQuery computes all the alternative queries of a given mixed query. We illustrate how useful this querying module is by means of a thorough example. Availability: http://www.lri.fr/~lemoine/GenoQuery/ Contact: chris@lri.fr, lemoine@lri.fr PMID:18586731

  18. SPARK: Adapting Keyword Query to Semantic Search

    NASA Astrophysics Data System (ADS)

    Zhou, Qi; Wang, Chong; Xiong, Miao; Wang, Haofen; Yu, Yong

    Semantic search promises to provide more accurate result than present-day keyword search. However, progress with semantic search has been delayed due to the complexity of its query languages. In this paper, we explore a novel approach of adapting keywords to querying the semantic web: the approach automatically translates keyword queries into formal logic queries so that end users can use familiar keywords to perform semantic search. A prototype system named 'SPARK' has been implemented in light of this approach. Given a keyword query, SPARK outputs a ranked list of SPARQL queries as the translation result. The translation in SPARK consists of three major steps: term mapping, query graph construction and query ranking. Specifically, a probabilistic query ranking model is proposed to select the most likely SPARQL query. In the experiment, SPARK achieved an encouraging translation result.

  19. Multi-Case Knowledge-Based IMRT Treatment Planning in Head and Neck Cancer

    NASA Astrophysics Data System (ADS)

    Grzetic, Shelby Mariah

    Head and neck cancer (HNC) IMRT treatment planning is a challenging process that relies heavily on the planner's experience. Previously, we used the single, best match from a library of manually planned cases to semi-automatically generate IMRT plans for a new patient. The current multi-case Knowledge Based Radiation Therapy (MC-KBRT) study utilized different matching cases for each of six individual organs-at-risk (OARs), then combined those six cases to create the new treatment plan. From a database of 103 patient plans created by experienced planners, MC-KBRT plans were created for 40 (17 unilateral and 23 bilateral) HNC "query" patients. For each case, 2D beam's-eye-view images were used to find similar geometric "match" patients separately for each of 6 OARs. Dose distributions for each OAR from the 6 matching cases were combined and then warped to suit the query case's geometry. The dose-volume constraints were used to create the new query treatment plan without the need for human decision-making throughout the IMRT optimization. The optimized MC-KBRT plans were compared against the clinically approved plans and Version 1 (previous KBRT using only one matching case with dose warping) using the dose metrics: mean, median, and maximum (brainstem and cord+5mm) doses. Compared to Version 1, MC-KBRT had no significant reduction of the dose to any of the OARs in either unilateral or bilateral cases. Compared to the manually planned unilateral cases, there was significant reduction of the oral cavity mean/median dose (>2Gy) at the expense of the contralateral parotid. Compared to the manually planned bilateral cases, reduction of dose was significant in the ipsilateral parotid, larynx, and oral cavity (>3Gy mean/median) while maintaining PTV coverage. MC-KBRT planning in head and neck cancer generates IMRT plans with better dose sparing than manually created plans. MC-KBRT using multiple case matches does not show significant dose reduction compared to using a single match case with dose warping.

  20. Query-oriented evidence extraction to support evidence-based medicine practice.

    PubMed

    Sarker, Abeed; Mollá, Diego; Paris, Cecile

    2016-02-01

    Evidence-based medicine practice requires medical practitioners to rely on the best available evidence, in addition to their expertise, when making clinical decisions. The medical domain boasts a large amount of published medical research data, indexed in various medical databases such as MEDLINE. As the size of this data grows, practitioners increasingly face the problem of information overload, and past research has established the time-associated obstacles faced by evidence-based medicine practitioners. In this paper, we focus on the problem of automatic text summarisation to help practitioners quickly find query-focused information from relevant documents. We utilise an annotated corpus that is specialised for the task of evidence-based summarisation of text. In contrast to past summarisation approaches, which mostly rely on surface level features to identify salient pieces of texts that form the summaries, our approach focuses on the use of corpus-based statistics, and domain-specific lexical knowledge for the identification of summary contents. We also apply a target-sentence-specific summarisation technique that reduces the problem of underfitting that persists in generic summarisation models. In automatic evaluations run over a large number of annotated summaries, our extractive summarisation technique statistically outperforms various baseline and benchmark summarisation models with a percentile rank of 96.8%. A manual evaluation shows that our extractive summarisation approach is capable of selecting content with high recall and precision, and may thus be used to generate bottom-line answers to practitioners' queries. Our research shows that the incorporation of specialised data and domain-specific knowledge can significantly improve text summarisation performance in the medical domain. Due to the vast amounts of medical text available, and the high growth of this form of data, we suspect that such summarisation techniques will address the time-related obstacles associated with evidence-based medicine. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Private and Efficient Query Processing on Outsourced Genomic Databases.

    PubMed

    Ghasemi, Reza; Al Aziz, Md Momin; Mohammed, Noman; Dehkordi, Massoud Hadian; Jiang, Xiaoqian

    2017-09-01

    Applications of genomic studies are spreading rapidly in many domains of science and technology such as healthcare, biomedical research, direct-to-consumer services, and legal and forensic. However, there are a number of obstacles that make it hard to access and process a big genomic database for these applications. First, sequencing genomic sequence is a time consuming and expensive process. Second, it requires large-scale computation and storage systems to process genomic sequences. Third, genomic databases are often owned by different organizations, and thus, not available for public usage. Cloud computing paradigm can be leveraged to facilitate the creation and sharing of big genomic databases for these applications. Genomic data owners can outsource their databases in a centralized cloud server to ease the access of their databases. However, data owners are reluctant to adopt this model, as it requires outsourcing the data to an untrusted cloud service provider that may cause data breaches. In this paper, we propose a privacy-preserving model for outsourcing genomic data to a cloud. The proposed model enables query processing while providing privacy protection of genomic databases. Privacy of the individuals is guaranteed by permuting and adding fake genomic records in the database. These techniques allow cloud to evaluate count and top-k queries securely and efficiently. Experimental results demonstrate that a count and a top-k query over 40 Single Nucleotide Polymorphisms (SNPs) in a database of 20 000 records takes around 100 and 150 s, respectively.

  2. Private and Efficient Query Processing on Outsourced Genomic Databases

    PubMed Central

    Ghasemi, Reza; Al Aziz, Momin; Mohammed, Noman; Dehkordi, Massoud Hadian; Jiang, Xiaoqian

    2017-01-01

    Applications of genomic studies are spreading rapidly in many domains of science and technology such as healthcare, biomedical research, direct-to-consumer services, and legal and forensic. However, there are a number of obstacles that make it hard to access and process a big genomic database for these applications. First, sequencing genomic sequence is a time-consuming and expensive process. Second, it requires large-scale computation and storage systems to processes genomic sequences. Third, genomic databases are often owned by different organizations and thus not available for public usage. Cloud computing paradigm can be leveraged to facilitate the creation and sharing of big genomic databases for these applications. Genomic data owners can outsource their databases in a centralized cloud server to ease the access of their databases. However, data owners are reluctant to adopt this model, as it requires outsourcing the data to an untrusted cloud service provider that may cause data breaches. In this paper, we propose a privacy-preserving model for outsourcing genomic data to a cloud. The proposed model enables query processing while providing privacy protection of genomic databases. Privacy of the individuals is guaranteed by permuting and adding fake genomic records in the database. These techniques allow cloud to evaluate count and top-k queries securely and efficiently. Experimental results demonstrate that a count and a top-k query over 40 SNPs in a database of 20,000 records takes around 100 and 150 seconds, respectively. PMID:27834660

  3. Searching for rare diseases in PubMed: a blind comparison of Orphanet expert query and query based on terminological knowledge.

    PubMed

    Griffon, N; Schuers, M; Dhombres, F; Merabti, T; Kerdelhué, G; Rollin, L; Darmoni, S J

    2016-08-02

    Despite international initiatives like Orphanet, it remains difficult to find up-to-date information about rare diseases. The aim of this study is to propose an exhaustive set of queries for PubMed based on terminological knowledge and to evaluate it versus the queries based on expertise provided by the most frequently used resource in Europe: Orphanet. Four rare disease terminologies (MeSH, OMIM, HPO and HRDO) were manually mapped to each other permitting the automatic creation of expended terminological queries for rare diseases. For 30 rare diseases, 30 citations retrieved by Orphanet expert query and/or query based on terminological knowledge were assessed for relevance by two independent reviewers unaware of the query's origin. An adjudication procedure was used to resolve any discrepancy. Precision, relative recall and F-measure were all computed. For each Orphanet rare disease (n = 8982), there was a corresponding terminological query, in contrast with only 2284 queries provided by Orphanet. Only 553 citations were evaluated due to queries with 0 or only a few hits. There were no significant differences between the Orpha query and terminological query in terms of precision, respectively 0.61 vs 0.52 (p = 0.13). Nevertheless, terminological queries retrieved more citations more often than Orpha queries (0.57 vs. 0.33; p = 0.01). Interestingly, Orpha queries seemed to retrieve older citations than terminological queries (p < 0.0001). The terminological queries proposed in this study are now currently available for all rare diseases. They may be a useful tool for both precision or recall oriented literature search.

  4. On-Demand Associative Cross-Language Information Retrieval

    NASA Astrophysics Data System (ADS)

    Geraldo, André Pinto; Moreira, Viviane P.; Gonçalves, Marcos A.

    This paper proposes the use of algorithms for mining association rules as an approach for Cross-Language Information Retrieval. These algorithms have been widely used to analyse market basket data. The idea is to map the problem of finding associations between sales items to the problem of finding term translations over a parallel corpus. The proposal was validated by means of experiments using queries in two distinct languages: Portuguese and Finnish to retrieve documents in English. The results show that the performance of our proposed approach is comparable to the performance of the monolingual baseline and to query translation via machine translation, even though these systems employ more complex Natural Language Processing techniques. The combination between machine translation and our approach yielded the best results, even outperforming the monolingual baseline.

  5. Undergraduate virology exercises demonstrate conventional and real-time PCR using commercially available HIV primers and noninfectious target.

    PubMed

    Sulzinski, Michael A; Wasilewski, Melissa A; Farrell, James C; Glick, David L

    2009-07-01

    It is an extraordinary challenge to offer an undergraduate laboratory course in virology that teaches hands-on, relevant molecular biology techniques using nonpathogenic models of human virus detection. To our knowledge, there exists no inexpensive kits or reagent sets that are appropriate for demonstrating real-time PCR (RT-PCR) in an undergraduate laboratory course in virology. Here we describe simple procedures for student exercises that demonstrate the PCR detection of an HIV target nucleic acid. Our procedures combine a commercially available kit for conventional PCR with a modification for RT-PCR using the same reagents in the kit, making it possible for an instructor with access to a LightCycler® instrument to implement a relevant student exercise on RT-PCR detection of HIV nucleic acid targets. This combination of techniques is useful for demonstrating and comparing conventional PCR amplification and detection with agarose gel electrophoresis, with real-time PCR over a series of three laboratory periods. The series of laboratory periods also is used to provide the foundation for teaching the concept of PCR primer design, optimization of PCR detection systems, and introduction to nucleic acid queries using NCBI-BLAST to find and identify primers, amplicons, and other potential amplification targets within the HIV viral genome. The techniques were successfully implemented at the Biology 364 undergraduate virology course at the University of Scranton during the Fall 2008 semester. The techniques are particularly targeted to students who intend to pursue either postgraduate technical employment or graduate studies in the molecular life sciences. Copyright © 2009 International Union of Biochemistry and Molecular Biology, Inc.

  6. An advanced web query interface for biological databases

    PubMed Central

    Latendresse, Mario; Karp, Peter D.

    2010-01-01

    Although most web-based biological databases (DBs) offer some type of web-based form to allow users to author DB queries, these query forms are quite restricted in the complexity of DB queries that they can formulate. They can typically query only one DB, and can query only a single type of object at a time (e.g. genes) with no possible interaction between the objects—that is, in SQL parlance, no joins are allowed between DB objects. Writing precise queries against biological DBs is usually left to a programmer skillful enough in complex DB query languages like SQL. We present a web interface for building precise queries for biological DBs that can construct much more precise queries than most web-based query forms, yet that is user friendly enough to be used by biologists. It supports queries containing multiple conditions, and connecting multiple object types without using the join concept, which is unintuitive to biologists. This interactive web interface is called the Structured Advanced Query Page (SAQP). Users interactively build up a wide range of query constructs. Interactive documentation within the SAQP describes the schema of the queried DBs. The SAQP is based on BioVelo, a query language based on list comprehension. The SAQP is part of the Pathway Tools software and is available as part of several bioinformatics web sites powered by Pathway Tools, including the BioCyc.org site that contains more than 500 Pathway/Genome DBs. PMID:20624715

  7. Interactive Exploration on Large Genomic Datasets.

    PubMed

    Tu, Eric

    2016-01-01

    The prevalence of large genomics datasets has made the the need to explore this data more important. Large sequencing projects like the 1000 Genomes Project [1], which reconstructed the genomes of 2,504 individuals sampled from 26 populations, have produced over 200TB of publically available data. Meanwhile, existing genomic visualization tools have been unable to scale with the growing amount of larger, more complex data. This difficulty is acute when viewing large regions (over 1 megabase, or 1,000,000 bases of DNA), or when concurrently viewing multiple samples of data. While genomic processing pipelines have shifted towards using distributed computing techniques, such as with ADAM [4], genomic visualization tools have not. In this work we present Mango, a scalable genome browser built on top of ADAM that can run both locally and on a cluster. Mango presents a combination of different optimizations that can be combined in a single application to drive novel genomic visualization techniques over terabytes of genomic data. By building visualization on top of a distributed processing pipeline, we can perform visualization queries over large regions that are not possible with current tools, and decrease the time for viewing large data sets. Mango is part of the Big Data Genomics project at University of California-Berkeley [25] and is published under the Apache 2 license. Mango is available at https://github.com/bigdatagenomics/mango.

  8. Towards the novel reasoning among particles in PSO by the use of RDF and SPARQL.

    PubMed

    Fister, Iztok; Yang, Xin-She; Ljubič, Karin; Fister, Dušan; Brest, Janez; Fister, Iztok

    2014-01-01

    The significant development of the Internet has posed some new challenges and many new programming tools have been developed to address such challenges. Today, semantic web is a modern paradigm for representing and accessing knowledge data on the Internet. This paper tries to use the semantic tools such as resource definition framework (RDF) and RDF query language (SPARQL) for the optimization purpose. These tools are combined with particle swarm optimization (PSO) and the selection of the best solutions depends on its fitness. Instead of the local best solution, a neighborhood of solutions for each particle can be defined and used for the calculation of the new position, based on the key ideas from semantic web domain. The preliminary results by optimizing ten benchmark functions showed the promising results and thus this method should be investigated further.

  9. SPARQL Query Re-writing Using Partonomy Based Transformation Rules

    NASA Astrophysics Data System (ADS)

    Jain, Prateek; Yeh, Peter Z.; Verma, Kunal; Henson, Cory A.; Sheth, Amit P.

    Often the information present in a spatial knowledge base is represented at a different level of granularity and abstraction than the query constraints. For querying ontology's containing spatial information, the precise relationships between spatial entities has to be specified in the basic graph pattern of SPARQL query which can result in long and complex queries. We present a novel approach to help users intuitively write SPARQL queries to query spatial data, rather than relying on knowledge of the ontology structure. Our framework re-writes queries, using transformation rules to exploit part-whole relations between geographical entities to address the mismatches between query constraints and knowledge base. Our experiments were performed on completely third party datasets and queries. Evaluations were performed on Geonames dataset using questions from National Geographic Bee serialized into SPARQL and British Administrative Geography Ontology using questions from a popular trivia website. These experiments demonstrate high precision in retrieval of results and ease in writing queries.

  10. BioCarian: search engine for exploratory searches in heterogeneous biological databases.

    PubMed

    Zaki, Nazar; Tennakoon, Chandana

    2017-10-02

    There are a large number of biological databases publicly available for scientists in the web. Also, there are many private databases generated in the course of research projects. These databases are in a wide variety of formats. Web standards have evolved in the recent times and semantic web technologies are now available to interconnect diverse and heterogeneous sources of data. Therefore, integration and querying of biological databases can be facilitated by techniques used in semantic web. Heterogeneous databases can be converted into Resource Description Format (RDF) and queried using SPARQL language. Searching for exact queries in these databases is trivial. However, exploratory searches need customized solutions, especially when multiple databases are involved. This process is cumbersome and time consuming for those without a sufficient background in computer science. In this context, a search engine facilitating exploratory searches of databases would be of great help to the scientific community. We present BioCarian, an efficient and user-friendly search engine for performing exploratory searches on biological databases. The search engine is an interface for SPARQL queries over RDF databases. We note that many of the databases can be converted to tabular form. We first convert the tabular databases to RDF. The search engine provides a graphical interface based on facets to explore the converted databases. The facet interface is more advanced than conventional facets. It allows complex queries to be constructed, and have additional features like ranking of facet values based on several criteria, visually indicating the relevance of a facet value and presenting the most important facet values when a large number of choices are available. For the advanced users, SPARQL queries can be run directly on the databases. Using this feature, users will be able to incorporate federated searches of SPARQL endpoints. We used the search engine to do an exploratory search on previously published viral integration data and were able to deduce the main conclusions of the original publication. BioCarian is accessible via http://www.biocarian.com . We have developed a search engine to explore RDF databases that can be used by both novice and advanced users.

  11. Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Hao, Liang; Zhao, Lian-Jie

    2011-08-01

    We present a modified protocol for the realization of a quantum private query process on a classical database. Using one-qubit query and CNOT operation, the query process can be realized in a two-mode database. In the query process, the data privacy is preserved as the sender would not reveal any information about the database besides her query information, and the database provider cannot retain any information about the query. We implement the quantum private query protocol in a nuclear magnetic resonance system. The density matrix of the memory registers are constructed.

  12. A study of medical and health queries to web search engines.

    PubMed

    Spink, Amanda; Yang, Yin; Jansen, Jim; Nykanen, Pirrko; Lorence, Daniel P; Ozmutlu, Seda; Ozmutlu, H Cenk

    2004-03-01

    This paper reports findings from an analysis of medical or health queries to different web search engines. We report results: (i). comparing samples of 10000 web queries taken randomly from 1.2 million query logs from the AlltheWeb.com and Excite.com commercial web search engines in 2001 for medical or health queries, (ii). comparing the 2001 findings from Excite and AlltheWeb.com users with results from a previous analysis of medical and health related queries from the Excite Web search engine for 1997 and 1999, and (iii). medical or health advice-seeking queries beginning with the word 'should'. Findings suggest: (i). a small percentage of web queries are medical or health related, (ii). the top five categories of medical or health queries were: general health, weight issues, reproductive health and puberty, pregnancy/obstetrics, and human relationships, and (iii). over time, the medical and health queries may have declined as a proportion of all web queries, as the use of specialized medical/health websites and e-commerce-related queries has increased. Findings provide insights into medical and health-related web querying and suggests some implications for the use of the general web search engines when seeking medical/health information.

  13. Monitoring Moving Queries inside a Safe Region

    PubMed Central

    Al-Khalidi, Haidar; Taniar, David; Alamri, Sultan

    2014-01-01

    With mobile moving range queries, there is a need to recalculate the relevant surrounding objects of interest whenever the query moves. Therefore, monitoring the moving query is very costly. The safe region is one method that has been proposed to minimise the communication and computation cost of continuously monitoring a moving range query. Inside the safe region the set of objects of interest to the query do not change; thus there is no need to update the query while it is inside its safe region. However, when the query leaves its safe region the mobile device has to reevaluate the query, necessitating communication with the server. Knowing when and where the mobile device will leave a safe region is widely known as a difficult problem. To solve this problem, we propose a novel method to monitor the position of the query over time using a linear function based on the direction of the query obtained by periodic monitoring of its position. Periodic monitoring ensures that the query is aware of its location all the time. This method reduces the costs associated with communications in client-server architecture. Computational results show that our method is successful in handling moving query patterns. PMID:24696652

  14. RDF-GL: A SPARQL-Based Graphical Query Language for RDF

    NASA Astrophysics Data System (ADS)

    Hogenboom, Frederik; Milea, Viorel; Frasincar, Flavius; Kaymak, Uzay

    This chapter presents RDF-GL, a graphical query language (GQL) for RDF. The GQL is based on the textual query language SPARQL and mainly focuses on SPARQL SELECT queries. The advantage of a GQL over textual query languages is that complexity is hidden through the use of graphical symbols. RDF-GL is supported by a Java-based editor, SPARQLinG, which is presented as well. The editor does not only allow for RDF-GL query creation, but also converts RDF-GL queries to SPARQL queries and is able to subsequently execute these. Experiments show that using the GQL in combination with the editor makes RDF querying more accessible for end users.

  15. PhyreStorm: A Web Server for Fast Structural Searches Against the PDB.

    PubMed

    Mezulis, Stefans; Sternberg, Michael J E; Kelley, Lawrence A

    2016-02-22

    The identification of structurally similar proteins can provide a range of biological insights, and accordingly, the alignment of a query protein to a database of experimentally determined protein structures is a technique commonly used in the fields of structural and evolutionary biology. The PhyreStorm Web server has been designed to provide comprehensive, up-to-date and rapid structural comparisons against the Protein Data Bank (PDB) combined with a rich and intuitive user interface. It is intended that this facility will enable biologists inexpert in bioinformatics access to a powerful tool for exploring protein structure relationships beyond what can be achieved by sequence analysis alone. By partitioning the PDB into similar structures, PhyreStorm is able to quickly discard the majority of structures that cannot possibly align well to a query protein, reducing the number of alignments required by an order of magnitude. PhyreStorm is capable of finding 93±2% of all highly similar (TM-score>0.7) structures in the PDB for each query structure, usually in less than 60s. PhyreStorm is available at http://www.sbg.bio.ic.ac.uk/phyrestorm/. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Active Exploration of Large 3D Model Repositories.

    PubMed

    Gao, Lin; Cao, Yan-Pei; Lai, Yu-Kun; Huang, Hao-Zhi; Kobbelt, Leif; Hu, Shi-Min

    2015-12-01

    With broader availability of large-scale 3D model repositories, the need for efficient and effective exploration becomes more and more urgent. Existing model retrieval techniques do not scale well with the size of the database since often a large number of very similar objects are returned for a query, and the possibilities to refine the search are quite limited. We propose an interactive approach where the user feeds an active learning procedure by labeling either entire models or parts of them as "like" or "dislike" such that the system can automatically update an active set of recommended models. To provide an intuitive user interface, candidate models are presented based on their estimated relevance for the current query. From the methodological point of view, our main contribution is to exploit not only the similarity between a query and the database models but also the similarities among the database models themselves. We achieve this by an offline pre-processing stage, where global and local shape descriptors are computed for each model and a sparse distance metric is derived that can be evaluated efficiently even for very large databases. We demonstrate the effectiveness of our method by interactively exploring a repository containing over 100 K models.

  17. Magnetic Fields for All: The GPIPS Community Web-Access Portal

    NASA Astrophysics Data System (ADS)

    Carveth, Carol; Clemens, D. P.; Pinnick, A.; Pavel, M.; Jameson, K.; Taylor, B.

    2007-12-01

    The new GPIPS website portal provides community users with an intuitive and powerful interface to query the data products of the Galactic Plane Infrared Polarization Survey. The website, which was built using PHP for the front end and MySQL for the database back end, allows users to issue queries based on galactic or equatorial coordinates, GPIPS-specific identifiers, polarization information, magnitude information, and several other attributes. The returns are presented in HTML tables, with the added option of either downloading or being emailed an ASCII file including the same or more information from the database. Other functionalities of the website include providing details of the status of the Survey (which fields have been observed or are planned to be observed), techniques involved in data collection and analysis, and descriptions of the database contents and names. For this initial launch of the website, users may access the GPIPS polarization point source catalog and the deep coadd photometric point source catalog. Future planned developments include a graphics-based method for querying the database, as well as tools to combine neighboring GPIPS images into larger image files for both polarimetry and photometry. This work is partially supported by NSF grant AST-0607500.

  18. RadSearch: a RIS/PACS integrated query tool

    NASA Astrophysics Data System (ADS)

    Tsao, Sinchai; Documet, Jorge; Moin, Paymann; Wang, Kevin; Liu, Brent J.

    2008-03-01

    Radiology Information Systems (RIS) contain a wealth of information that can be used for research, education, and practice management. However, the sheer amount of information available makes querying specific data difficult and time consuming. Previous work has shown that a clinical RIS database and its RIS text reports can be extracted, duplicated and indexed for searches while complying with HIPAA and IRB requirements. This project's intent is to provide a software tool, the RadSearch Toolkit, to allow intelligent indexing and parsing of RIS reports for easy yet powerful searches. In addition, the project aims to seamlessly query and retrieve associated images from the Picture Archiving and Communication System (PACS) in situations where an integrated RIS/PACS is in place - even subselecting individual series, such as in an MRI study. RadSearch's application of simple text parsing techniques to index text-based radiology reports will allow the search engine to quickly return relevant results. This powerful combination will be useful in both private practice and academic settings; administrators can easily obtain complex practice management information such as referral patterns; researchers can conduct retrospective studies with specific, multiple criteria; teaching institutions can quickly and effectively create thorough teaching files.

  19. A Hybrid Spatio-Temporal Data Indexing Method for Trajectory Databases

    PubMed Central

    Ke, Shengnan; Gong, Jun; Li, Songnian; Zhu, Qing; Liu, Xintao; Zhang, Yeting

    2014-01-01

    In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type. PMID:25051028

  20. A hybrid spatio-temporal data indexing method for trajectory databases.

    PubMed

    Ke, Shengnan; Gong, Jun; Li, Songnian; Zhu, Qing; Liu, Xintao; Zhang, Yeting

    2014-07-21

    In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type.

  1. The EarthServer Federation: State, Role, and Contribution to GEOSS

    NASA Astrophysics Data System (ADS)

    Merticariu, Vlad; Baumann, Peter

    2016-04-01

    The intercontinental EarthServer initiative has established a European datacube platform with proven scalability: known databases exceed 100 TB, and single queries have been split across more than 1,000 cloud nodes. Its service interface being rigorously based on the OGC "Big Geo Data" standards, Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS), a series of clients can dock into the services, ranging from open-source OpenLayers and QGIS over open-source NASA WorldWind to proprietary ESRI ArcGIS. Datacube fusion in a "mix and match" style is supported by the platform technolgy, the rasdaman Array Database System, which transparently federates queries so that users simply approach any node of the federation to access any data item, internally optimized for minimal data transfer. Notably, rasdaman is part of GEOSS GCI. NASA is contributing its Web WorldWind virtual globe for user-friendly data extraction, navigation, and analysis. Integrated datacube / metadata queries are contributed by CITE. Current federation members include ESA (managed by MEEO sr.l.), Plymouth Marine Laboratory (PML), the European Centre for Medium-Range Weather Forecast (ECMWF), Australia's National Computational Infrastructure, and Jacobs University (adding in Planetary Science). Further data centers have expressed interest in joining. We present the EarthServer approach, discuss its underlying technology, and illustrate the contribution this datacube platform can make to GEOSS.

  2. Intersystem Compatibility and Convertibility of Subject Vocabularies.

    ERIC Educational Resources Information Center

    Wall, E.; Barnes, J.

    This is the fifth in a series of eight reports of a research study for the National Agricultural Library (NAL) on the effective utilization of bibliographic data bases in machine readable form. NAL desires ultimately to develop techniques of interacting with other data bases so that queries put to NAL may be answered with documents or document…

  3. Survey on Uses of Distance Learning in the U.S.

    ERIC Educational Resources Information Center

    Downing, Diane E.

    A December 1983 survey queried the chief state school officers of the 50 states on the extent to which distance learning techniques are used in public education in their states. Respondents were asked to focus on interactive forms of distance learning, such as audio and video teleconferencing. A total of 28 states (56%) responded, with the…

  4. Shark: SQL and Rich Analytics at Scale

    DTIC Science & Technology

    2012-11-26

    learning programs up to 100 faster than Hadoop. Unlike previous systems, Shark shows that it is possible to achieve these speedups while retaining a...Shark to run SQL queries up to 100× faster than Apache Hive, and machine learning programs up to 100× faster than Hadoop. Unlike previous systems, Shark...so using a runtime that is optimized for such workloads and a programming model that is designed to express machine learn - ing algorithms. 4.1

  5. Cumulative query method for influenza surveillance using search engine data.

    PubMed

    Seo, Dong-Woo; Jo, Min-Woo; Sohn, Chang Hwan; Shin, Soo-Yong; Lee, JaeHo; Yu, Maengsoo; Kim, Won Young; Lim, Kyoung Soo; Lee, Sang-Il

    2014-12-16

    Internet search queries have become an important data source in syndromic surveillance system. However, there is currently no syndromic surveillance system using Internet search query data in South Korea. The objective of this study was to examine correlations between our cumulative query method and national influenza surveillance data. Our study was based on the local search engine, Daum (approximately 25% market share), and influenza-like illness (ILI) data from the Korea Centers for Disease Control and Prevention. A quota sampling survey was conducted with 200 participants to obtain popular queries. We divided the study period into two sets: Set 1 (the 2009/10 epidemiological year for development set 1 and 2010/11 for validation set 1) and Set 2 (2010/11 for development Set 2 and 2011/12 for validation Set 2). Pearson's correlation coefficients were calculated between the Daum data and the ILI data for the development set. We selected the combined queries for which the correlation coefficients were .7 or higher and listed them in descending order. Then, we created a cumulative query method n representing the number of cumulative combined queries in descending order of the correlation coefficient. In validation set 1, 13 cumulative query methods were applied, and 8 had higher correlation coefficients (min=.916, max=.943) than that of the highest single combined query. Further, 11 of 13 cumulative query methods had an r value of ≥.7, but 4 of 13 combined queries had an r value of ≥.7. In validation set 2, 8 of 15 cumulative query methods showed higher correlation coefficients (min=.975, max=.987) than that of the highest single combined query. All 15 cumulative query methods had an r value of ≥.7, but 6 of 15 combined queries had an r value of ≥.7. Cumulative query method showed relatively higher correlation with national influenza surveillance data than combined queries in the development and validation set.

  6. Optimal Embedding for Shape Indexing in Medical Image Databases

    PubMed Central

    Qian, Xiaoning; Tagare, Hemant D.; Fulbright, Robert K.; Long, Rodney; Antani, Sameer

    2010-01-01

    This paper addresses the problem of indexing shapes in medical image databases. Shapes of organs are often indicative of disease, making shape similarity queries important in medical image databases. Mathematically, shapes with landmarks belong to shape spaces which are curved manifolds with a well defined metric. The challenge in shape indexing is to index data in such curved spaces. One natural indexing scheme is to use metric trees, but metric trees are prone to inefficiency. This paper proposes a more efficient alternative. We show that it is possible to optimally embed finite sets of shapes in shape space into a Euclidean space. After embedding, classical coordinate-based trees can be used for efficient shape retrieval. The embedding proposed in the paper is optimal in the sense that it least distorts the partial Procrustes shape distance. The proposed indexing technique is used to retrieve images by vertebral shape from the NHANES II database of cervical and lumbar spine x-ray images maintained at the National Library of Medicine. Vertebral shape strongly correlates with the presence of osteophytes, and shape similarity retrieval is proposed as a tool for retrieval by osteophyte presence and severity. Experimental results included in the paper evaluate (1) the usefulness of shape-similarity as a proxy for osteophytes, (2) the computational and disk access efficiency of the new indexing scheme, (3) the relative performance of indexing with embedding to the performance of indexing without embedding, and (4) the computational cost of indexing using the proposed embedding versus the cost of an alternate embedding. The experimental results clearly show the relevance of shape indexing and the advantage of using the proposed embedding. PMID:20163981

  7. Optimal embedding for shape indexing in medical image databases.

    PubMed

    Qian, Xiaoning; Tagare, Hemant D; Fulbright, Robert K; Long, Rodney; Antani, Sameer

    2010-06-01

    This paper addresses the problem of indexing shapes in medical image databases. Shapes of organs are often indicative of disease, making shape similarity queries important in medical image databases. Mathematically, shapes with landmarks belong to shape spaces which are curved manifolds with a well defined metric. The challenge in shape indexing is to index data in such curved spaces. One natural indexing scheme is to use metric trees, but metric trees are prone to inefficiency. This paper proposes a more efficient alternative. We show that it is possible to optimally embed finite sets of shapes in shape space into a Euclidean space. After embedding, classical coordinate-based trees can be used for efficient shape retrieval. The embedding proposed in the paper is optimal in the sense that it least distorts the partial Procrustes shape distance. The proposed indexing technique is used to retrieve images by vertebral shape from the NHANES II database of cervical and lumbar spine X-ray images maintained at the National Library of Medicine. Vertebral shape strongly correlates with the presence of osteophytes, and shape similarity retrieval is proposed as a tool for retrieval by osteophyte presence and severity. Experimental results included in the paper evaluate (1) the usefulness of shape similarity as a proxy for osteophytes, (2) the computational and disk access efficiency of the new indexing scheme, (3) the relative performance of indexing with embedding to the performance of indexing without embedding, and (4) the computational cost of indexing using the proposed embedding versus the cost of an alternate embedding. The experimental results clearly show the relevance of shape indexing and the advantage of using the proposed embedding. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Novel Solid Lipid Nanocarrier Of Glibenclamide: A Factorial Design Approach With Response Surface Methodology.

    PubMed

    Pandey, Sonia; Patel, Payal; Gupta, Arti

    2018-05-21

    In the present investigation a factorial design approach attempt was applied to develop the solid lipid nanoparticles (SLN) of Glibenclamide (GLB) a poorly water-soluble drug (BCS -II) used in the treatment of type 2 diabetes. Prime objectives of this experiment are to optimize the SLN formulation of Glibenclamide and improve the therapeutic effectiveness of the developed formulation. Glibenclamide loaded SLNs (GLB-SLN) were fabricated by High speed homogenization technique. A 32-factorial design approach has been employed to assess the influence of two independent variables, namely amount of Poloxamer 188 and Glyceryl Monostearate on entrapment efficiency (% EE) (Y1), Particle Size (nm) (Y2), % drug release at 8hr Q8 (Y3) and 24 hr Q24 (Y4) of prepared SLNs. Differential scanning calorimetry analysis revealed the compatibility of the drug into lipid matrix with surfactant, while Transmission electron and Scanning electron microscopy studies indicated the size and shape of SLN. The entrapment efficiency, particle size, Q8 and Q24 of the optimized SLNs were 88.93%, 125 nm, 31.12±0.951% and 86.07±1.291% respectively. Optimized GLB-SLN formula was derived from an overlay plot. Three dimensional response surface plots and regression equations confirmed the corresponding influence of selected independent variables on measured responses. In vivo testing of the GLB-SLN in diabetic albino rats demonstrated significant antidiabetic effect of GLB-SLN. The hypoglycemic effect obtained by GLB-SLN remained significantly higher than that given by drug alone and marketed formulation, further confirming the higher therapeutic effectiveness of the GLB-SLN formulation. Our findings suggested the feasibility of investigated system for oral administration of Glibenclamide. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. [Queries related to the technology of soybean seed inoculation with Bradyrhizobium spp].

    PubMed

    Lodeiro, Aníbal R

    2015-01-01

    With the aim of exploiting symbiotic nitrogen fixation, soybean crops are inoculated with selected strains of Bradyrhizobium japonicum, Bradyrhizobium diazoefficiens or Bradyrhizobium elkanii (collectively referred to as Bradyrhizobium spp.). The most common method of inoculation used is seed inoculation, whether performed immediately before sowing or using preinoculated seeds or pretreated seeds by the professional seed treatment. The methodology of inoculation should not only cover the seeds with living rhizobia, but must also optimize the chances of these rhizobia to infect the roots and nodulate. To this end, inoculated rhizobia must be in such an amount and condition that would allow them to overcome the competition exerted by the rhizobia of the allochthonous population of the soil, which are usually less effective for nitrogen fixation and thus dilute the effect of inoculation on yield. This optimization requires solving some queries related to the current knowledge of seed inoculation, which are addressed in this article. I conclude that the aspects that require further research are the adhesion and survival of rhizobia on seeds, the release of rhizobia once the seeds are deposited in the soil, and the movement of rhizobia from the vicinity of the seeds to the infection sites in the roots. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. A community effort to protect genomic data sharing, collaboration and outsourcing.

    PubMed

    Wang, Shuang; Jiang, Xiaoqian; Tang, Haixu; Wang, Xiaofeng; Bu, Diyue; Carey, Knox; Dyke, Stephanie Om; Fox, Dov; Jiang, Chao; Lauter, Kristin; Malin, Bradley; Sofia, Heidi; Telenti, Amalio; Wang, Lei; Wang, Wenhao; Ohno-Machado, Lucila

    2017-01-01

    The human genome can reveal sensitive information and is potentially re-identifiable, which raises privacy and security concerns about sharing such data on wide scales. In 2016, we organized the third Critical Assessment of Data Privacy and Protection competition as a community effort to bring together biomedical informaticists, computer privacy and security researchers, and scholars in ethical, legal, and social implications (ELSI) to assess the latest advances on privacy-preserving techniques for protecting human genomic data. Teams were asked to develop novel protection methods for emerging genome privacy challenges in three scenarios: Track (1) data sharing through the Beacon service of the Global Alliance for Genomics and Health. Track (2) collaborative discovery of similar genomes between two institutions; and Track (3) data outsourcing to public cloud services. The latter two tracks represent continuing themes from our 2015 competition, while the former was new and a response to a recently established vulnerability. The winning strategy for Track 1 mitigated the privacy risk by hiding approximately 11% of the variation in the database while permitting around 160,000 queries, a significant improvement over the baseline. The winning strategies in Tracks 2 and 3 showed significant progress over the previous competition by achieving multiple orders of magnitude performance improvement in terms of computational runtime and memory requirements. The outcomes suggest that applying highly optimized privacy-preserving and secure computation techniques to safeguard genomic data sharing and analysis is useful. However, the results also indicate that further efforts are needed to refine these techniques into practical solutions.

  11. A Query Integrator and Manager for the Query Web

    PubMed Central

    Brinkley, James F.; Detwiler, Landon T.

    2012-01-01

    We introduce two concepts: the Query Web as a layer of interconnected queries over the document web and the semantic web, and a Query Web Integrator and Manager (QI) that enables the Query Web to evolve. QI permits users to write, save and reuse queries over any web accessible source, including other queries saved in other installations of QI. The saved queries may be in any language (e.g. SPARQL, XQuery); the only condition for interconnection is that the queries return their results in some form of XML. This condition allows queries to chain off each other, and to be written in whatever language is appropriate for the task. We illustrate the potential use of QI for several biomedical use cases, including ontology view generation using a combination of graph-based and logical approaches, value set generation for clinical data management, image annotation using terminology obtained from an ontology web service, ontology-driven brain imaging data integration, small-scale clinical data integration, and wider-scale clinical data integration. Such use cases illustrate the current range of applications of QI and lead us to speculate about the potential evolution from smaller groups of interconnected queries into a larger query network that layers over the document and semantic web. The resulting Query Web could greatly aid researchers and others who now have to manually navigate through multiple information sources in order to answer specific questions. PMID:22531831

  12. A formulation of a matrix sparsity approach for the quantum ordered search algorithm

    NASA Astrophysics Data System (ADS)

    Parmar, Jupinder; Rahman, Saarim; Thiara, Jaskaran

    One specific subset of quantum algorithms is Grovers Ordered Search Problem (OSP), the quantum counterpart of the classical binary search algorithm, which utilizes oracle functions to produce a specified value within an ordered database. Classically, the optimal algorithm is known to have a log2N complexity; however, Grovers algorithm has been found to have an optimal complexity between the lower bound of ((lnN-1)/π≈0.221log2N) and the upper bound of 0.433log2N. We sought to lower the known upper bound of the OSP. With Farhi et al. MITCTP 2815 (1999), arXiv:quant-ph/9901059], we see that the OSP can be resolved into a translational invariant algorithm to create quantum query algorithm restraints. With these restraints, one can find Laurent polynomials for various k — queries — and N — database sizes — thus finding larger recursive sets to solve the OSP and effectively reducing the upper bound. These polynomials are found to be convex functions, allowing one to make use of convex optimization to find an improvement on the known bounds. According to Childs et al. [Phys. Rev. A 75 (2007) 032335], semidefinite programming, a subset of convex optimization, can solve the particular problem represented by the constraints. We were able to implement a program abiding to their formulation of a semidefinite program (SDP), leading us to find that it takes an immense amount of storage and time to compute. To combat this setback, we then formulated an approach to improve results of the SDP using matrix sparsity. Through the development of this approach, along with an implementation of a rudimentary solver, we demonstrate how matrix sparsity reduces the amount of time and storage required to compute the SDP — overall ensuring further improvements will likely be made to reach the theorized lower bound.

  13. Designing a Bioengine for Detection and Analysis of Base String on an Affected Sequence in High-Concentration Regions

    PubMed Central

    Mandal, Bijoy Kumar; Kim, Tai-hoon

    2013-01-01

    We design an Algorithm for bioengine. As a program are enable optimal alignments searching between two sequences, the host sequence (normal plant) as well as query sequence (virus). Searching for homologues has become a routine operation of biological sequences in 4 × 4 combination with different subsequence (word size). This program takes the advantage of the high degree of homology between such sequences to construct an alignment of the matching regions. There is a main aim which is to detect the overlapping reading frames. This program also enables to find out the highly infected colones selection highest matching region with minimum gap or mismatch zones and unique virus colones matches. This is a small, portable, interactive, front-end program intended to be used to find out the regions of matching between host sequence and query subsequences. All the operations are carried out in fraction of seconds, depending on the required task and on the sequence length. PMID:24000321

  14. Active learning based segmentation of Crohns disease from abdominal MRI.

    PubMed

    Mahapatra, Dwarikanath; Vos, Franciscus M; Buhmann, Joachim M

    2016-05-01

    This paper proposes a novel active learning (AL) framework, and combines it with semi supervised learning (SSL) for segmenting Crohns disease (CD) tissues from abdominal magnetic resonance (MR) images. Robust fully supervised learning (FSL) based classifiers require lots of labeled data of different disease severities. Obtaining such data is time consuming and requires considerable expertise. SSL methods use a few labeled samples, and leverage the information from many unlabeled samples to train an accurate classifier. AL queries labels of most informative samples and maximizes gain from the labeling effort. Our primary contribution is in designing a query strategy that combines novel context information with classification uncertainty and feature similarity. Combining SSL and AL gives a robust segmentation method that: (1) optimally uses few labeled samples and many unlabeled samples; and (2) requires lower training time. Experimental results show our method achieves higher segmentation accuracy than FSL methods with fewer samples and reduced training effort. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. The Selection and Placement Method of Materialized Views on Big Data Platform of Equipment Condition Assessment

    NASA Astrophysics Data System (ADS)

    Ma, Yan; Yao, Jinxia; Gu, Chao; Chen, Yufeng; Yang, Yi; Zou, Lida

    2017-05-01

    With the formation of electric big data environment, more and more big data analyses emerge. In the complicated data analysis on equipment condition assessment, there exist many join operations, which are time-consuming. In order to save time, the approach of materialized view is usually used. It places part of common and critical join results on external storage and avoids the frequent join operation. In the paper we propose the methods of selecting and placing materialized views to reduce the query time of electric transmission and transformation equipment, and make the profits of service providers maximal. In selection method we design a computation way for the value of non-leaf node based on MVPP structure chart. In placement method we use relevance weights to place the selected materialized views, which help reduce the network transmission time. Our experiments show that the proposed selection and placement methods have a high throughput and good optimization ability of query time for electric transmission and transformation equipment.

  16. Intelligent Data Granulation on Load: Improving Infobright's Knowledge Grid

    NASA Astrophysics Data System (ADS)

    Ślęzak, Dominik; Kowalski, Marcin

    One of the major aspects of Infobright's relational database technology is automatic decomposition of each of data tables onto Rough Rows, each consisting of 64K of original rows. Rough Rows are automatically annotated by Knowledge Nodes that represent compact information about the rows' values. Query performance depends on the quality of Knowledge Nodes, i.e., their efficiency in minimizing the access to the compressed portions of data stored on disk, according to the specific query optimization procedures. We show how to implement the mechanism of organizing the incoming data into such Rough Rows that maximize the quality of the corresponding Knowledge Nodes. Given clear business-driven requirements, the implemented mechanism needs to be fully integrated with the data load process, causing no decrease in the data load speed. The performance gain resulting from better data organization is illustrated by some tests over our benchmark data. The differences between the proposed mechanism and some well-known procedures of database clustering or partitioning are discussed. The paper is a continuation of our patent application [22].

  17. Final Report: Efficient Databases for MPC Microdata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael A. Bender; Martin Farach-Colton; Bradley C. Kuszmaul

    2011-08-31

    The purpose of this grant was to develop the theory and practice of high-performance databases for massive streamed datasets. Over the last three years, we have developed fast indexing technology, that is, technology for rapidly ingesting data and storing that data so that it can be efficiently queried and analyzed. During this project we developed the technology so that high-bandwidth data streams can be indexed and queried efficiently. Our technology has been proven to work data sets composed of tens of billions of rows when the data streams arrives at over 40,000 rows per second. We achieved these numbers evenmore » on a single disk driven by two cores. Our work comprised (1) new write-optimized data structures with better asymptotic complexity than traditional structures, (2) implementation, and (3) benchmarking. We furthermore developed a prototype of TokuFS, a middleware layer that can handle microdata I/O packaged up in an MPI-IO abstraction.« less

  18. Clinician-Oriented Access to Data - C.O.A.D.: A Natural Language Interface to a VA DHCP Database

    PubMed Central

    Levy, Christine; Rogers, Elizabeth

    1995-01-01

    Hospitals collect enormous amounts of data related to the on-going care of patients. Unfortunately, a clinicians access to the data is limited by complexities of the database structure and/or programming skills required to access the database. The COAD project attempts to bridge the gap between the clinical user's need for specific information from the database, and the wealth of data residing in the hospital information system. The project design includes a natural language interface to data contained in a VA DHCP database. We have developed a prototype which links natural language software to certain DHCP data elements, including, patient demographics, prescriptions, diagnoses, laboratory data, and provider information. English queries can by typed onto the system, and answers to the questions are returned. Future work includes refinement of natural language/DHCP connections to enable more sophisticated queries, and optimization of the system to reduce response time to user questions.

  19. The application of artificial intelligence techniques to large distributed networks

    NASA Technical Reports Server (NTRS)

    Dubyah, R.; Smith, T. R.; Star, J. L.

    1985-01-01

    Data accessibility and transfer of information, including the land resources information system pilot, are structured as large computer information networks. These pilot efforts include the reduction of the difficulty to find and use data, reducing processing costs, and minimize incompatibility between data sources. Artificial Intelligence (AI) techniques were suggested to achieve these goals. The applicability of certain AI techniques are explored in the context of distributed problem solving systems and the pilot land data system (PLDS). The topics discussed include: PLDS and its data processing requirements, expert systems and PLDS, distributed problem solving systems, AI problem solving paradigms, query processing, and distributed data bases.

  20. Selecting reusable components using algebraic specifications

    NASA Technical Reports Server (NTRS)

    Eichmann, David A.

    1992-01-01

    A significant hurdle confronts the software reuser attempting to select candidate components from a software repository - discriminating between those components without resorting to inspection of the implementation(s). We outline a mixed classification/axiomatic approach to this problem based upon our lattice-based faceted classification technique and Guttag and Horning's algebraic specification techniques. This approach selects candidates by natural language-derived classification, by their interfaces, using signatures, and by their behavior, using axioms. We briefly outline our problem domain and related work. Lattice-based faceted classifications are described; the reader is referred to surveys of the extensive literature for algebraic specification techniques. Behavioral support for reuse queries is presented, followed by the conclusions.

  1. A web-based data-querying tool based on ontology-driven methodology and flowchart-based model.

    PubMed

    Ping, Xiao-Ou; Chung, Yufang; Tseng, Yi-Ju; Liang, Ja-Der; Yang, Pei-Ming; Huang, Guan-Tarn; Lai, Feipei

    2013-10-08

    Because of the increased adoption rate of electronic medical record (EMR) systems, more health care records have been increasingly accumulating in clinical data repositories. Therefore, querying the data stored in these repositories is crucial for retrieving the knowledge from such large volumes of clinical data. The aim of this study is to develop a Web-based approach for enriching the capabilities of the data-querying system along the three following considerations: (1) the interface design used for query formulation, (2) the representation of query results, and (3) the models used for formulating query criteria. The Guideline Interchange Format version 3.5 (GLIF3.5), an ontology-driven clinical guideline representation language, was used for formulating the query tasks based on the GLIF3.5 flowchart in the Protégé environment. The flowchart-based data-querying model (FBDQM) query execution engine was developed and implemented for executing queries and presenting the results through a visual and graphical interface. To examine a broad variety of patient data, the clinical data generator was implemented to automatically generate the clinical data in the repository, and the generated data, thereby, were employed to evaluate the system. The accuracy and time performance of the system for three medical query tasks relevant to liver cancer were evaluated based on the clinical data generator in the experiments with varying numbers of patients. In this study, a prototype system was developed to test the feasibility of applying a methodology for building a query execution engine using FBDQMs by formulating query tasks using the existing GLIF. The FBDQM-based query execution engine was used to successfully retrieve the clinical data based on the query tasks formatted using the GLIF3.5 in the experiments with varying numbers of patients. The accuracy of the three queries (ie, "degree of liver damage," "degree of liver damage when applying a mutually exclusive setting," and "treatments for liver cancer") was 100% for all four experiments (10 patients, 100 patients, 1000 patients, and 10,000 patients). Among the three measured query phases, (1) structured query language operations, (2) criteria verification, and (3) other, the first two had the longest execution time. The ontology-driven FBDQM-based approach enriched the capabilities of the data-querying system. The adoption of the GLIF3.5 increased the potential for interoperability, shareability, and reusability of the query tasks.

  2. A study of data representation in Hadoop to optimize data storage and search performance for the ATLAS EventIndex

    NASA Astrophysics Data System (ADS)

    Baranowski, Z.; Canali, L.; Toebbicke, R.; Hrivnac, J.; Barberis, D.

    2017-10-01

    This paper reports on the activities aimed at improving the architecture and performance of the ATLAS EventIndex implementation in Hadoop. The EventIndex contains tens of billions of event records, each of which consists of ∼100 bytes, all having the same probability to be searched or counted. Data formats represent one important area for optimizing the performance and storage footprint of applications based on Hadoop. This work reports on the production usage and on tests using several data formats including Map Files, Apache Parquet, Avro, and various compression algorithms. The query engine plays also a critical role in the architecture. We report also on the use of HBase for the EventIndex, focussing on the optimizations performed in production and on the scalability tests. Additional engines that have been tested include Cloudera Impala, in particular for its SQL interface, and the optimizations for data warehouse workloads and reports.

  3. Comparative Analysis of Online Health Queries Originating From Personal Computers and Smart Devices on a Consumer Health Information Portal

    PubMed Central

    Jadhav, Ashutosh; Andrews, Donna; Fiksdal, Alexander; Kumbamu, Ashok; McCormick, Jennifer B; Misitano, Andrew; Nelsen, Laurie; Ryu, Euijung; Sheth, Amit; Wu, Stephen

    2014-01-01

    Background The number of people using the Internet and mobile/smart devices for health information seeking is increasing rapidly. Although the user experience for online health information seeking varies with the device used, for example, smart devices (SDs) like smartphones/tablets versus personal computers (PCs) like desktops/laptops, very few studies have investigated how online health information seeking behavior (OHISB) may differ by device. Objective The objective of this study is to examine differences in OHISB between PCs and SDs through a comparative analysis of large-scale health search queries submitted through Web search engines from both types of devices. Methods Using the Web analytics tool, IBM NetInsight OnDemand, and based on the type of devices used (PCs or SDs), we obtained the most frequent health search queries between June 2011 and May 2013 that were submitted on Web search engines and directed users to the Mayo Clinic’s consumer health information website. We performed analyses on “Queries with considering repetition counts (QwR)” and “Queries without considering repetition counts (QwoR)”. The dataset contains (1) 2.74 million and 3.94 million QwoR, respectively for PCs and SDs, and (2) more than 100 million QwR for both PCs and SDs. We analyzed structural properties of the queries (length of the search queries, usage of query operators and special characters in health queries), types of search queries (keyword-based, wh-questions, yes/no questions), categorization of the queries based on health categories and information mentioned in the queries (gender, age-groups, temporal references), misspellings in the health queries, and the linguistic structure of the health queries. Results Query strings used for health information searching via PCs and SDs differ by almost 50%. The most searched health categories are “Symptoms” (1 in 3 search queries), “Causes”, and “Treatments & Drugs”. The distribution of search queries for different health categories differs with the device used for the search. Health queries tend to be longer and more specific than general search queries. Health queries from SDs are longer and have slightly fewer spelling mistakes than those from PCs. Users specify words related to women and children more often than that of men and any other age group. Most of the health queries are formulated using keywords; the second-most common are wh- and yes/no questions. Users ask more health questions using SDs than PCs. Almost all health queries have at least one noun and health queries from SDs are more descriptive than those from PCs. Conclusions This study is a large-scale comparative analysis of health search queries to understand the effects of device type (PCs vs SDs) used on OHISB. The study indicates that the device used for online health information search plays an important role in shaping how health information searches by consumers and patients are executed. PMID:25000537

  4. Comparative analysis of online health queries originating from personal computers and smart devices on a consumer health information portal.

    PubMed

    Jadhav, Ashutosh; Andrews, Donna; Fiksdal, Alexander; Kumbamu, Ashok; McCormick, Jennifer B; Misitano, Andrew; Nelsen, Laurie; Ryu, Euijung; Sheth, Amit; Wu, Stephen; Pathak, Jyotishman

    2014-07-04

    The number of people using the Internet and mobile/smart devices for health information seeking is increasing rapidly. Although the user experience for online health information seeking varies with the device used, for example, smart devices (SDs) like smartphones/tablets versus personal computers (PCs) like desktops/laptops, very few studies have investigated how online health information seeking behavior (OHISB) may differ by device. The objective of this study is to examine differences in OHISB between PCs and SDs through a comparative analysis of large-scale health search queries submitted through Web search engines from both types of devices. Using the Web analytics tool, IBM NetInsight OnDemand, and based on the type of devices used (PCs or SDs), we obtained the most frequent health search queries between June 2011 and May 2013 that were submitted on Web search engines and directed users to the Mayo Clinic's consumer health information website. We performed analyses on "Queries with considering repetition counts (QwR)" and "Queries without considering repetition counts (QwoR)". The dataset contains (1) 2.74 million and 3.94 million QwoR, respectively for PCs and SDs, and (2) more than 100 million QwR for both PCs and SDs. We analyzed structural properties of the queries (length of the search queries, usage of query operators and special characters in health queries), types of search queries (keyword-based, wh-questions, yes/no questions), categorization of the queries based on health categories and information mentioned in the queries (gender, age-groups, temporal references), misspellings in the health queries, and the linguistic structure of the health queries. Query strings used for health information searching via PCs and SDs differ by almost 50%. The most searched health categories are "Symptoms" (1 in 3 search queries), "Causes", and "Treatments & Drugs". The distribution of search queries for different health categories differs with the device used for the search. Health queries tend to be longer and more specific than general search queries. Health queries from SDs are longer and have slightly fewer spelling mistakes than those from PCs. Users specify words related to women and children more often than that of men and any other age group. Most of the health queries are formulated using keywords; the second-most common are wh- and yes/no questions. Users ask more health questions using SDs than PCs. Almost all health queries have at least one noun and health queries from SDs are more descriptive than those from PCs. This study is a large-scale comparative analysis of health search queries to understand the effects of device type (PCs vs. SDs) used on OHISB. The study indicates that the device used for online health information search plays an important role in shaping how health information searches by consumers and patients are executed.

  5. Structural optimization of mangiferin binding to cancer molecular targets: a guide for synthetic derivatization.

    PubMed

    Taiwo, Bamigboye J; Olubiyi, Olujide O; van Heerden, Fanie R

    2018-03-20

    Nigerian medicinal plants have been demonstrated to be veritable source of lead compounds for drug discovery efforts. One such example is mangiferin. Mangiferin was originally isolated from the Nigerian plant Ceiba pentandra (Mombacaceae), after which its structure was elucidated with the aid of spectroscopy. Mangiferin, a xanthone glycoside, has also been reported in certain other plant families including Gentianaceae and Anacardiaceae. In certain other climes and different parts of the world, folkloric and traditional medicine has extensively employed Mangifera indica (another source of mangiferin) in treating different diseases. For many of such cultural uses carefully designed experimental investigations have been conducted confirming mangiferin's efficacies in those different pathologies which have included but not limited to cytotoxic as well as chemopreventive properties in selected cancer cell lines. In this study, computational techniques were employed to profile the interaction of the xanthone glycoside at the atomistic level against nine selected molecular targets with clinical relevance in tumorigenesis. In attempt to investigate the potential of the mangiferin structure as a viable starting point for synthetic exploration of mangiferin-based analogs, extensive structural modifications were performed. By analyzing the resulting structure-energetic pattern, critical points capable of improving mangiferin interaction with the profiled targets were identified. The outcome of this study provides both direction and impetus for synthetic derivitization of the mangiferin molecule into novel optimized inhibitors for anticancer lead development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. A semantic problem solving environment for integrative parasite research: identification of intervention targets for Trypanosoma cruzi.

    PubMed

    Parikh, Priti P; Minning, Todd A; Nguyen, Vinh; Lalithsena, Sarasi; Asiaee, Amir H; Sahoo, Satya S; Doshi, Prashant; Tarleton, Rick; Sheth, Amit P

    2012-01-01

    Research on the biology of parasites requires a sophisticated and integrated computational platform to query and analyze large volumes of data, representing both unpublished (internal) and public (external) data sources. Effective analysis of an integrated data resource using knowledge discovery tools would significantly aid biologists in conducting their research, for example, through identifying various intervention targets in parasites and in deciding the future direction of ongoing as well as planned projects. A key challenge in achieving this objective is the heterogeneity between the internal lab data, usually stored as flat files, Excel spreadsheets or custom-built databases, and the external databases. Reconciling the different forms of heterogeneity and effectively integrating data from disparate sources is a nontrivial task for biologists and requires a dedicated informatics infrastructure. Thus, we developed an integrated environment using Semantic Web technologies that may provide biologists the tools for managing and analyzing their data, without the need for acquiring in-depth computer science knowledge. We developed a semantic problem-solving environment (SPSE) that uses ontologies to integrate internal lab data with external resources in a Parasite Knowledge Base (PKB), which has the ability to query across these resources in a unified manner. The SPSE includes Web Ontology Language (OWL)-based ontologies, experimental data with its provenance information represented using the Resource Description Format (RDF), and a visual querying tool, Cuebee, that features integrated use of Web services. We demonstrate the use and benefit of SPSE using example queries for identifying gene knockout targets of Trypanosoma cruzi for vaccine development. Answers to these queries involve looking up multiple sources of data, linking them together and presenting the results. The SPSE facilitates parasitologists in leveraging the growing, but disparate, parasite data resources by offering an integrative platform that utilizes Semantic Web techniques, while keeping their workload increase minimal.

  7. Real-time community detection in full social networks on a laptop

    PubMed Central

    Chamberlain, Benjamin Paul; Levy-Kramer, Josh; Humby, Clive

    2018-01-01

    For a broad range of research and practical applications it is important to understand the allegiances, communities and structure of key players in society. One promising direction towards extracting this information is to exploit the rich relational data in digital social networks (the social graph). As global social networks (e.g., Facebook and Twitter) are very large, most approaches make use of distributed computing systems for this purpose. Distributing graph processing requires solving many difficult engineering problems, which has lead some researchers to look at single-machine solutions that are faster and easier to maintain. In this article, we present an approach for analyzing full social networks on a standard laptop, allowing for interactive exploration of the communities in the locality of a set of user specified query vertices. The key idea is that the aggregate actions of large numbers of users can be compressed into a data structure that encapsulates the edge weights between vertices in a derived graph. Local communities can be constructed by selecting vertices that are connected to the query vertices with high edge weights in the derived graph. This compression is robust to noise and allows for interactive queries of local communities in real-time, which we define to be less than the average human reaction time of 0.25s. We achieve single-machine real-time performance by compressing the neighborhood of each vertex using minhash signatures and facilitate rapid queries through Locality Sensitive Hashing. These techniques reduce query times from hours using industrial desktop machines operating on the full graph to milliseconds on standard laptops. Our method allows exploration of strongly associated regions (i.e., communities) of large graphs in real-time on a laptop. It has been deployed in software that is actively used by social network analysts and offers another channel for media owners to monetize their data, helping them to continue to provide free services that are valued by billions of people globally. PMID:29342158

  8. CARIBIAM: constrained Association Rules using Interactive Biological IncrementAl Mining.

    PubMed

    Rahal, Imad; Rahhal, Riad; Wang, Baoying; Perrizo, William

    2008-01-01

    This paper analyses annotated genome data by applying a very central data-mining technique known as Association Rule Mining (ARM) with the aim of discovering rules and hypotheses capable of yielding deeper insights into this type of data. In the literature, ARM has been noted for producing an overwhelming number of rules. This work proposes a new technique capable of using domain knowledge in the form of queries in order to efficiently mine only the subset of the associations that are of interest to investigators in an incremental and interactive manner.

  9. A high-performance spatial database based approach for pathology imaging algorithm evaluation

    PubMed Central

    Wang, Fusheng; Kong, Jun; Gao, Jingjing; Cooper, Lee A.D.; Kurc, Tahsin; Zhou, Zhengwen; Adler, David; Vergara-Niedermayr, Cristobal; Katigbak, Bryan; Brat, Daniel J.; Saltz, Joel H.

    2013-01-01

    Background: Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. Context: The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS) data model. Aims: (1) Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2) Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3) Develop a set of queries to support data sampling and result comparisons; (4) Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. Materials and Methods: We have considered two scenarios for algorithm evaluation: (1) algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2) algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The validated data were formatted based on the PAIS data model and loaded into a spatial database. To support efficient data loading, we have implemented a parallel data loading tool that takes advantage of multi-core CPUs to accelerate data injection. The spatial database manages both geometric shapes and image features or classifications, and enables spatial sampling, result comparison, and result aggregation through expressive structured query language (SQL) queries with spatial extensions. To provide scalable and efficient query support, we have employed a shared nothing parallel database architecture, which distributes data homogenously across multiple database partitions to take advantage of parallel computation power and implements spatial indexing to achieve high I/O throughput. Results: Our work proposes a high performance, parallel spatial database platform for algorithm validation and comparison. This platform was evaluated by storing, managing, and comparing analysis results from a set of brain tumor whole slide images. The tools we develop are open source and available to download. Conclusions: Pathology image algorithm validation and comparison are essential to iterative algorithm development and refinement. One critical component is the support for queries involving spatial predicates and comparisons. In our work, we develop an efficient data model and parallel database approach to model, normalize, manage and query large volumes of analytical image result data. Our experiments demonstrate that the data partitioning strategy and the grid-based indexing result in good data distribution across database nodes and reduce I/O overhead in spatial join queries through parallel retrieval of relevant data and quick subsetting of datasets. The set of tools in the framework provide a full pipeline to normalize, load, manage and query analytical results for algorithm evaluation. PMID:23599905

  10. SkyQuery - A Prototype Distributed Query and Cross-Matching Web Service for the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Thakar, A. R.; Budavari, T.; Malik, T.; Szalay, A. S.; Fekete, G.; Nieto-Santisteban, M.; Haridas, V.; Gray, J.

    2002-12-01

    We have developed a prototype distributed query and cross-matching service for the VO community, called SkyQuery, which is implemented with hierarchichal Web Services. SkyQuery enables astronomers to run combined queries on existing distributed heterogeneous astronomy archives. SkyQuery provides a simple, user-friendly interface to run distributed queries over the federation of registered astronomical archives in the VO. The SkyQuery client connects to the portal Web Service, which farms the query out to the individual archives, which are also Web Services called SkyNodes. The cross-matching algorithm is run recursively on each SkyNode. Each archive is a relational DBMS with a HTM index for fast spatial lookups. The results of the distributed query are returned as an XML DataSet that is automatically rendered by the client. SkyQuery also returns the image cutout corresponding to the query result. SkyQuery finds not only matches between the various catalogs, but also dropouts - objects that exist in some of the catalogs but not in others. This is often as important as finding matches. We demonstrate the utility of SkyQuery with a brown-dwarf search between SDSS and 2MASS, and a search for radio-quiet quasars in SDSS, 2MASS and FIRST. The importance of a service like SkyQuery for the worldwide astronomical community cannot be overstated: data on the same objects in various archives is mapped in different wavelength ranges and looks very different due to different errors, instrument sensitivities and other peculiarities of each archive. Our cross-matching algorithm preforms a fuzzy spatial join across multiple catalogs. This type of cross-matching is currently often done by eye, one object at a time. A static cross-identification table for a set of archives would become obsolete by the time it was built - the exponential growth of astronomical data means that a dynamic cross-identification mechanism like SkyQuery is the only viable option. SkyQuery was funded by a grant from the NASA AISR program.

  11. Fast Marching Tree: a Fast Marching Sampling-Based Method for Optimal Motion Planning in Many Dimensions*

    PubMed Central

    Janson, Lucas; Schmerling, Edward; Clark, Ashley; Pavone, Marco

    2015-01-01

    In this paper we present a novel probabilistic sampling-based motion planning algorithm called the Fast Marching Tree algorithm (FMT*). The algorithm is specifically aimed at solving complex motion planning problems in high-dimensional configuration spaces. This algorithm is proven to be asymptotically optimal and is shown to converge to an optimal solution faster than its state-of-the-art counterparts, chiefly PRM* and RRT*. The FMT* algorithm performs a “lazy” dynamic programming recursion on a predetermined number of probabilistically-drawn samples to grow a tree of paths, which moves steadily outward in cost-to-arrive space. As such, this algorithm combines features of both single-query algorithms (chiefly RRT) and multiple-query algorithms (chiefly PRM), and is reminiscent of the Fast Marching Method for the solution of Eikonal equations. As a departure from previous analysis approaches that are based on the notion of almost sure convergence, the FMT* algorithm is analyzed under the notion of convergence in probability: the extra mathematical flexibility of this approach allows for convergence rate bounds—the first in the field of optimal sampling-based motion planning. Specifically, for a certain selection of tuning parameters and configuration spaces, we obtain a convergence rate bound of order O(n−1/d+ρ), where n is the number of sampled points, d is the dimension of the configuration space, and ρ is an arbitrarily small constant. We go on to demonstrate asymptotic optimality for a number of variations on FMT*, namely when the configuration space is sampled non-uniformly, when the cost is not arc length, and when connections are made based on the number of nearest neighbors instead of a fixed connection radius. Numerical experiments over a range of dimensions and obstacle configurations confirm our the-oretical and heuristic arguments by showing that FMT*, for a given execution time, returns substantially better solutions than either PRM* or RRT*, especially in high-dimensional configuration spaces and in scenarios where collision-checking is expensive. PMID:27003958

  12. Fast in-database cross-matching of high-cadence, high-density source lists with an up-to-date sky model

    NASA Astrophysics Data System (ADS)

    Scheers, B.; Bloemen, S.; Mühleisen, H.; Schellart, P.; van Elteren, A.; Kersten, M.; Groot, P. J.

    2018-04-01

    Coming high-cadence wide-field optical telescopes will image hundreds of thousands of sources per minute. Besides inspecting the near real-time data streams for transient and variability events, the accumulated data archive is a wealthy laboratory for making complementary scientific discoveries. The goal of this work is to optimise column-oriented database techniques to enable the construction of a full-source and light-curve database for large-scale surveys, that is accessible by the astronomical community. We adopted LOFAR's Transients Pipeline as the baseline and modified it to enable the processing of optical images that have much higher source densities. The pipeline adds new source lists to the archive database, while cross-matching them with the known cataloguedsources in order to build a full light-curve archive. We investigated several techniques of indexing and partitioning the largest tables, allowing for faster positional source look-ups in the cross matching algorithms. We monitored all query run times in long-term pipeline runs where we processed a subset of IPHAS data that have image source density peaks over 170,000 per field of view (500,000 deg-2). Our analysis demonstrates that horizontal table partitions of declination widths of one-degree control the query run times. Usage of an index strategy where the partitions are densely sorted according to source declination yields another improvement. Most queries run in sublinear time and a few (< 20%) run in linear time, because of dependencies on input source-list and result-set size. We observed that for this logical database partitioning schema the limiting cadence the pipeline achieved with processing IPHAS data is 25 s.

  13. toxoMine: an integrated omics data warehouse for Toxoplasma gondii systems biology research

    PubMed Central

    Rhee, David B.; Croken, Matthew McKnight; Shieh, Kevin R.; Sullivan, Julie; Micklem, Gos; Kim, Kami; Golden, Aaron

    2015-01-01

    Toxoplasma gondii (T. gondii) is an obligate intracellular parasite that must monitor for changes in the host environment and respond accordingly; however, it is still not fully known which genetic or epigenetic factors are involved in regulating virulence traits of T. gondii. There are on-going efforts to elucidate the mechanisms regulating the stage transition process via the application of high-throughput epigenomics, genomics and proteomics techniques. Given the range of experimental conditions and the typical yield from such high-throughput techniques, a new challenge arises: how to effectively collect, organize and disseminate the generated data for subsequent data analysis. Here, we describe toxoMine, which provides a powerful interface to support sophisticated integrative exploration of high-throughput experimental data and metadata, providing researchers with a more tractable means toward understanding how genetic and/or epigenetic factors play a coordinated role in determining pathogenicity of T. gondii. As a data warehouse, toxoMine allows integration of high-throughput data sets with public T. gondii data. toxoMine is also able to execute complex queries involving multiple data sets with straightforward user interaction. Furthermore, toxoMine allows users to define their own parameters during the search process that gives users near-limitless search and query capabilities. The interoperability feature also allows users to query and examine data available in other InterMine systems, which would effectively augment the search scope beyond what is available to toxoMine. toxoMine complements the major community database ToxoDB by providing a data warehouse that enables more extensive integrative studies for T. gondii. Given all these factors, we believe it will become an indispensable resource to the greater infectious disease research community. Database URL: http://toxomine.org PMID:26130662

  14. A method of searching for related literature on protein structure analysis by considering a user's intention

    PubMed Central

    2015-01-01

    Background In recent years, with advances in techniques for protein structure analysis, the knowledge about protein structure and function has been published in a vast number of articles. A method to search for specific publications from such a large pool of articles is needed. In this paper, we propose a method to search for related articles on protein structure analysis by using an article itself as a query. Results Each article is represented as a set of concepts in the proposed method. Then, by using similarities among concepts formulated from databases such as Gene Ontology, similarities between articles are evaluated. In this framework, the desired search results vary depending on the user's search intention because a variety of information is included in a single article. Therefore, the proposed method provides not only one input article (primary article) but also additional articles related to it as an input query to determine the search intention of the user, based on the relationship between two query articles. In other words, based on the concepts contained in the input article and additional articles, we actualize a relevant literature search that considers user intention by varying the degree of attention given to each concept and modifying the concept hierarchy graph. Conclusions We performed an experiment to retrieve relevant papers from articles on protein structure analysis registered in the Protein Data Bank by using three query datasets. The experimental results yielded search results with better accuracy than when user intention was not considered, confirming the effectiveness of the proposed method. PMID:25952498

  15. Ontological Approach to Military Knowledge Modeling and Management

    DTIC Science & Technology

    2004-03-01

    federated search mechanism has to reformulate user queries (expressed using the ontology) in the query languages of the different sources (e.g. SQL...ontologies as a common terminology – Unified query to perform federated search • Query processing – Ontology mapping to sources reformulate queries

  16. Research on Extension of Sparql Ontology Query Language Considering the Computation of Indoor Spatial Relations

    NASA Astrophysics Data System (ADS)

    Li, C.; Zhu, X.; Guo, W.; Liu, Y.; Huang, H.

    2015-05-01

    A method suitable for indoor complex semantic query considering the computation of indoor spatial relations is provided According to the characteristics of indoor space. This paper designs ontology model describing the space related information of humans, events and Indoor space objects (e.g. Storey and Room) as well as their relations to meet the indoor semantic query. The ontology concepts are used in IndoorSPARQL query language which extends SPARQL syntax for representing and querying indoor space. And four types specific primitives for indoor query, "Adjacent", "Opposite", "Vertical" and "Contain", are defined as query functions in IndoorSPARQL used to support quantitative spatial computations. Also a method is proposed to analysis the query language. Finally this paper adopts this method to realize indoor semantic query on the study area through constructing the ontology model for the study building. The experimental results show that the method proposed in this paper can effectively support complex indoor space semantic query.

  17. VISAGE: Interactive Visual Graph Querying.

    PubMed

    Pienta, Robert; Navathe, Shamkant; Tamersoy, Acar; Tong, Hanghang; Endert, Alex; Chau, Duen Horng

    2016-06-01

    Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce graph autocomplete , an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with "wildcard" nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates VISAGE's ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) VISAGE works on real graphs with over 468K edges, achieving sub-second response times for common queries.

  18. VISAGE: Interactive Visual Graph Querying

    PubMed Central

    Pienta, Robert; Navathe, Shamkant; Tamersoy, Acar; Tong, Hanghang; Endert, Alex; Chau, Duen Horng

    2017-01-01

    Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce graph autocomplete, an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with “wildcard” nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates VISAGE’s ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) VISAGE works on real graphs with over 468K edges, achieving sub-second response times for common queries. PMID:28553670

  19. A Visual Interface for Querying Heterogeneous Phylogenetic Databases.

    PubMed

    Jamil, Hasan M

    2017-01-01

    Despite the recent growth in the number of phylogenetic databases, access to these wealth of resources remain largely tool or form-based interface driven. It is our thesis that the flexibility afforded by declarative query languages may offer the opportunity to access these repositories in a better way, and to use such a language to pose truly powerful queries in unprecedented ways. In this paper, we propose a substantially enhanced closed visual query language, called PhyQL, that can be used to query phylogenetic databases represented in a canonical form. The canonical representation presented helps capture most phylogenetic tree formats in a convenient way, and is used as the storage model for our PhyloBase database for which PhyQL serves as the query language. We have implemented a visual interface for the end users to pose PhyQL queries using visual icons, and drag and drop operations defined over them. Once a query is posed, the interface translates the visual query into a Datalog query for execution over the canonical database. Responses are returned as hyperlinks to phylogenies that can be viewed in several formats using the tree viewers supported by PhyloBase. Results cached in PhyQL buffer allows secondary querying on the computed results making it a truly powerful querying architecture.

  20. Which factors predict the time spent answering queries to a drug information centre?

    PubMed Central

    Reppe, Linda A.; Spigset, Olav

    2010-01-01

    Objective To develop a model based upon factors able to predict the time spent answering drug-related queries to Norwegian drug information centres (DICs). Setting and method Drug-related queries received at 5 DICs in Norway from March to May 2007 were randomly assigned to 20 employees until each of them had answered a minimum of five queries. The employees reported the number of drugs involved, the type of literature search performed, and whether the queries were considered judgmental or not, using a specifically developed scoring system. Main outcome measures The scores of these three factors were added together to define a workload score for each query. Workload and its individual factors were subsequently related to the measured time spent answering the queries by simple or multiple linear regression analyses. Results Ninety-six query/answer pairs were analyzed. Workload significantly predicted the time spent answering the queries (adjusted R2 = 0.22, P < 0.001). Literature search was the individual factor best predicting the time spent answering the queries (adjusted R2 = 0.17, P < 0.001), and this variable also contributed the most in the multiple regression analyses. Conclusion The most important workload factor predicting the time spent handling the queries in this study was the type of literature search that had to be performed. The categorisation of queries as judgmental or not, also affected the time spent answering the queries. The number of drugs involved did not significantly influence the time spent answering drug information queries. PMID:20922480

  1. Personalized query suggestion based on user behavior

    NASA Astrophysics Data System (ADS)

    Chen, Wanyu; Hao, Zepeng; Shao, Taihua; Chen, Honghui

    Query suggestions help users refine their queries after they input an initial query. Previous work mainly concentrated on similarity-based and context-based query suggestion approaches. However, models that focus on adapting to a specific user (personalization) can help to improve the probability of the user being satisfied. In this paper, we propose a personalized query suggestion model based on users’ search behavior (UB model), where we inject relevance between queries and users’ search behavior into a basic probabilistic model. For the relevance between queries, we consider their semantical similarity and co-occurrence which indicates the behavior information from other users in web search. Regarding the current user’s preference to a query, we combine the user’s short-term and long-term search behavior in a linear fashion and deal with the data sparse problem with Bayesian probabilistic matrix factorization (BPMF). In particular, we also investigate the impact of different personalization strategies (the combination of the user’s short-term and long-term search behavior) on the performance of query suggestion reranking. We quantify the improvement of our proposed UB model against a state-of-the-art baseline using the public AOL query logs and show that it beats the baseline in terms of metrics used in query suggestion reranking. The experimental results show that: (i) for personalized ranking, users’ behavioral information helps to improve query suggestion effectiveness; and (ii) given a query, merging information inferred from the short-term and long-term search behavior of a particular user can result in a better performance than both plain approaches.

  2. Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce.

    PubMed

    Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel

    2013-08-01

    Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS - a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive.

  3. Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce

    PubMed Central

    Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel

    2013-01-01

    Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS – a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive. PMID:24187650

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segev, A.; Fang, W.

    In currency-based updates, processing a query to a materialized view has to satisfy a currency constraint which specifies the maximum time lag of the view data with respect to a transaction database. Currency-based update policies are more general than periodical, deferred, and immediate updates; they provide additional opportunities for optimization and allow updating a materialized view from other materialized views. In this paper, we present algorithms to determine the source and timing of view updates and validate the resulting cost savings through simulation results. 20 refs.

  5. Lost in translation? A multilingual Query Builder improves the quality of PubMed queries: a randomised controlled trial.

    PubMed

    Schuers, Matthieu; Joulakian, Mher; Kerdelhué, Gaetan; Segas, Léa; Grosjean, Julien; Darmoni, Stéfan J; Griffon, Nicolas

    2017-07-03

    MEDLINE is the most widely used medical bibliographic database in the world. Most of its citations are in English and this can be an obstacle for some researchers to access the information the database contains. We created a multilingual query builder to facilitate access to the PubMed subset using a language other than English. The aim of our study was to assess the impact of this multilingual query builder on the quality of PubMed queries for non-native English speaking physicians and medical researchers. A randomised controlled study was conducted among French speaking general practice residents. We designed a multi-lingual query builder to facilitate information retrieval, based on available MeSH translations and providing users with both an interface and a controlled vocabulary in their own language. Participating residents were randomly allocated either the French or the English version of the query builder. They were asked to translate 12 short medical questions into MeSH queries. The main outcome was the quality of the query. Two librarians blind to the arm independently evaluated each query, using a modified published classification that differentiated eight types of errors. Twenty residents used the French version of the query builder and 22 used the English version. 492 queries were analysed. There were significantly more perfect queries in the French group vs. the English group (respectively 37.9% vs. 17.9%; p < 0.01). It took significantly more time for the members of the English group than the members of the French group to build each query, respectively 194 sec vs. 128 sec; p < 0.01. This multi-lingual query builder is an effective tool to improve the quality of PubMed queries in particular for researchers whose first language is not English.

  6. A Web-Based Data-Querying Tool Based on Ontology-Driven Methodology and Flowchart-Based Model

    PubMed Central

    Ping, Xiao-Ou; Chung, Yufang; Liang, Ja-Der; Yang, Pei-Ming; Huang, Guan-Tarn; Lai, Feipei

    2013-01-01

    Background Because of the increased adoption rate of electronic medical record (EMR) systems, more health care records have been increasingly accumulating in clinical data repositories. Therefore, querying the data stored in these repositories is crucial for retrieving the knowledge from such large volumes of clinical data. Objective The aim of this study is to develop a Web-based approach for enriching the capabilities of the data-querying system along the three following considerations: (1) the interface design used for query formulation, (2) the representation of query results, and (3) the models used for formulating query criteria. Methods The Guideline Interchange Format version 3.5 (GLIF3.5), an ontology-driven clinical guideline representation language, was used for formulating the query tasks based on the GLIF3.5 flowchart in the Protégé environment. The flowchart-based data-querying model (FBDQM) query execution engine was developed and implemented for executing queries and presenting the results through a visual and graphical interface. To examine a broad variety of patient data, the clinical data generator was implemented to automatically generate the clinical data in the repository, and the generated data, thereby, were employed to evaluate the system. The accuracy and time performance of the system for three medical query tasks relevant to liver cancer were evaluated based on the clinical data generator in the experiments with varying numbers of patients. Results In this study, a prototype system was developed to test the feasibility of applying a methodology for building a query execution engine using FBDQMs by formulating query tasks using the existing GLIF. The FBDQM-based query execution engine was used to successfully retrieve the clinical data based on the query tasks formatted using the GLIF3.5 in the experiments with varying numbers of patients. The accuracy of the three queries (ie, “degree of liver damage,” “degree of liver damage when applying a mutually exclusive setting,” and “treatments for liver cancer”) was 100% for all four experiments (10 patients, 100 patients, 1000 patients, and 10,000 patients). Among the three measured query phases, (1) structured query language operations, (2) criteria verification, and (3) other, the first two had the longest execution time. Conclusions The ontology-driven FBDQM-based approach enriched the capabilities of the data-querying system. The adoption of the GLIF3.5 increased the potential for interoperability, shareability, and reusability of the query tasks. PMID:25600078

  7. Applying Analogical Reasoning Techniques for Teaching XML Document Querying Skills in Database Classes

    ERIC Educational Resources Information Center

    Mitri, Michel

    2012-01-01

    XML has become the most ubiquitous format for exchange of data between applications running on the Internet. Most Web Services provide their information to clients in the form of XML. The ability to process complex XML documents in order to extract relevant information is becoming as important a skill for IS students to master as querying…

  8. Mining Student Data Captured from a Web-Based Tutoring Tool: Initial Exploration and Results

    ERIC Educational Resources Information Center

    Merceron, Agathe; Yacef, Kalina

    2004-01-01

    In this article we describe the initial investigations that we have conducted on student data collected from a web-based tutoring tool. We have used some data mining techniques such as association rule and symbolic data analysis, as well as traditional SQL queries to gain further insight on the students' learning and deduce information to improve…

  9. Research on spatio-temporal database techniques for spatial information service

    NASA Astrophysics Data System (ADS)

    Zhao, Rong; Wang, Liang; Li, Yuxiang; Fan, Rongshuang; Liu, Ping; Li, Qingyuan

    2007-06-01

    Geographic data should be described by spatial, temporal and attribute components, but the spatio-temporal queries are difficult to be answered within current GIS. This paper describes research into the development and application of spatio-temporal data management system based upon GeoWindows GIS software platform which was developed by Chinese Academy of Surveying and Mapping (CASM). Faced the current and practical requirements of spatial information application, and based on existing GIS platform, one kind of spatio-temporal data model which integrates vector and grid data together was established firstly. Secondly, we solved out the key technique of building temporal data topology, successfully developed a suit of spatio-temporal database management system adopting object-oriented methods. The system provides the temporal data collection, data storage, data management and data display and query functions. Finally, as a case study, we explored the application of spatio-temporal data management system with the administrative region data of multi-history periods of China as the basic data. With all the efforts above, the GIS capacity of management and manipulation in aspect of time and attribute of GIS has been enhanced, and technical reference has been provided for the further development of temporal geographic information system (TGIS).

  10. WATCHMAN: A Data Warehouse Intelligent Cache Manager

    NASA Technical Reports Server (NTRS)

    Scheuermann, Peter; Shim, Junho; Vingralek, Radek

    1996-01-01

    Data warehouses store large volumes of data which are used frequently by decision support applications. Such applications involve complex queries. Query performance in such an environment is critical because decision support applications often require interactive query response time. Because data warehouses are updated infrequently, it becomes possible to improve query performance by caching sets retrieved by queries in addition to query execution plans. In this paper we report on the design of an intelligent cache manager for sets retrieved by queries called WATCHMAN, which is particularly well suited for data warehousing environment. Our cache manager employs two novel, complementary algorithms for cache replacement and for cache admission. WATCHMAN aims at minimizing query response time and its cache replacement policy swaps out entire retrieved sets of queries instead of individual pages. The cache replacement and admission algorithms make use of a profit metric, which considers for each retrieved set its average rate of reference, its size, and execution cost of the associated query. We report on a performance evaluation based on the TPC-D and Set Query benchmarks. These experiments show that WATCHMAN achieves a substantial performance improvement in a decision support environment when compared to a traditional LRU replacement algorithm.

  11. Assisting Consumer Health Information Retrieval with Query Recommendations

    PubMed Central

    Zeng, Qing T.; Crowell, Jonathan; Plovnick, Robert M.; Kim, Eunjung; Ngo, Long; Dibble, Emily

    2006-01-01

    Objective: Health information retrieval (HIR) on the Internet has become an important practice for millions of people, many of whom have problems forming effective queries. We have developed and evaluated a tool to assist people in health-related query formation. Design: We developed the Health Information Query Assistant (HIQuA) system. The system suggests alternative/additional query terms related to the user's initial query that can be used as building blocks to construct a better, more specific query. The recommended terms are selected according to their semantic distance from the original query, which is calculated on the basis of concept co-occurrences in medical literature and log data as well as semantic relations in medical vocabularies. Measurements: An evaluation of the HIQuA system was conducted and a total of 213 subjects participated in the study. The subjects were randomized into 2 groups. One group was given query recommendations and the other was not. Each subject performed HIR for both a predefined and a self-defined task. Results: The study showed that providing HIQuA recommendations resulted in statistically significantly higher rates of successful queries (odds ratio = 1.66, 95% confidence interval = 1.16–2.38), although no statistically significant impact on user satisfaction or the users' ability to accomplish the predefined retrieval task was found. Conclusion: Providing semantic-distance-based query recommendations can help consumers with query formation during HIR. PMID:16221944

  12. PAQ: Persistent Adaptive Query Middleware for Dynamic Environments

    NASA Astrophysics Data System (ADS)

    Rajamani, Vasanth; Julien, Christine; Payton, Jamie; Roman, Gruia-Catalin

    Pervasive computing applications often entail continuous monitoring tasks, issuing persistent queries that return continuously updated views of the operational environment. We present PAQ, a middleware that supports applications' needs by approximating a persistent query as a sequence of one-time queries. PAQ introduces an integration strategy abstraction that allows composition of one-time query responses into streams representing sophisticated spatio-temporal phenomena of interest. A distinguishing feature of our middleware is the realization that the suitability of a persistent query's result is a function of the application's tolerance for accuracy weighed against the associated overhead costs. In PAQ, programmers can specify an inquiry strategy that dictates how information is gathered. Since network dynamics impact the suitability of a particular inquiry strategy, PAQ associates an introspection strategy with a persistent query, that evaluates the quality of the query's results. The result of introspection can trigger application-defined adaptation strategies that alter the nature of the query. PAQ's simple API makes developing adaptive querying systems easily realizable. We present the key abstractions, describe their implementations, and demonstrate the middleware's usefulness through application examples and evaluation.

  13. The CMS DBS query language

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Valentin; Riley, Daniel; Afaq, Anzar; Sekhri, Vijay; Guo, Yuyi; Lueking, Lee

    2010-04-01

    The CMS experiment has implemented a flexible and powerful system enabling users to find data within the CMS physics data catalog. The Dataset Bookkeeping Service (DBS) comprises a database and the services used to store and access metadata related to CMS physics data. To this, we have added a generalized query system in addition to the existing web and programmatic interfaces to the DBS. This query system is based on a query language that hides the complexity of the underlying database structure by discovering the join conditions between database tables. This provides a way of querying the system that is simple and straightforward for CMS data managers and physicists to use without requiring knowledge of the database tables or keys. The DBS Query Language uses the ANTLR tool to build the input query parser and tokenizer, followed by a query builder that uses a graph representation of the DBS schema to construct the SQL query sent to underlying database. We will describe the design of the query system, provide details of the language components and overview of how this component fits into the overall data discovery system architecture.

  14. Comparison of Clobetasol Propionate Generics Using Simplified in Vitro Bioequivalence Method for Topical Drug Products.

    PubMed

    Soares, Kelen Carine Costa; de Souza, Weidson Carlos; de Souza Texeira, Leonardo; da Cunha-Filho, Marcilio Sergio Soares; Gelfuso, Guilherme Martins; Gratieri, Tais

    2017-11-20

    The aim of this paper is to propose a simple in vitro skin penetration experiment in which the drug is extracted from the whole skin piece as a test valid for formulation screening and optimization during development process, equivalence assessment during quality control or post-approval after changes to the product. Twelve clobetasol propionate (CP) formulations (six creams and six ointments) from the local market were used as a model to challenge the proposed methodology in comparison to in vitro skin penetration following tape-stripping for drug extraction. To support the results, physicochemical tests for pH, viscosity, density and assay, as well as in vitro release were performed. Both protocols, extracting the drug from the skin using the tape-stripping technique or extracting from the full skin were capable of differentiating CP formulations. Only one formulation did not present statistical difference from the reference drug product in penetration tests and only other two oitments presented equivalent release to the reference. The proposed protocol is straightforward and reproducible. Results suggest the bioinequavalence of tested CP formulations reinforcing the necessity of such evaluations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Efficient and secure outsourcing of genomic data storage.

    PubMed

    Sousa, João Sá; Lefebvre, Cédric; Huang, Zhicong; Raisaro, Jean Louis; Aguilar-Melchor, Carlos; Killijian, Marc-Olivier; Hubaux, Jean-Pierre

    2017-07-26

    Cloud computing is becoming the preferred solution for efficiently dealing with the increasing amount of genomic data. Yet, outsourcing storage and processing sensitive information, such as genomic data, comes with important concerns related to privacy and security. This calls for new sophisticated techniques that ensure data protection from untrusted cloud providers and that still enable researchers to obtain useful information. We present a novel privacy-preserving algorithm for fully outsourcing the storage of large genomic data files to a public cloud and enabling researchers to efficiently search for variants of interest. In order to protect data and query confidentiality from possible leakage, our solution exploits optimal encoding for genomic variants and combines it with homomorphic encryption and private information retrieval. Our proposed algorithm is implemented in C++ and was evaluated on real data as part of the 2016 iDash Genome Privacy-Protection Challenge. Results show that our solution outperforms the state-of-the-art solutions and enables researchers to search over millions of encrypted variants in a few seconds. As opposed to prior beliefs that sophisticated privacy-enhancing technologies (PETs) are unpractical for real operational settings, our solution demonstrates that, in the case of genomic data, PETs are very efficient enablers.

  16. Efficient Implementation of an Optimal Interpolator for Large Spatial Data Sets

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Mount, David M.

    2007-01-01

    Interpolating scattered data points is a problem of wide ranging interest. A number of approaches for interpolation have been proposed both from theoretical domains such as computational geometry and in applications' fields such as geostatistics. Our motivation arises from geological and mining applications. In many instances data can be costly to compute and are available only at nonuniformly scattered positions. Because of the high cost of collecting measurements, high accuracy is required in the interpolants. One of the most popular interpolation methods in this field is called ordinary kriging. It is popular because it is a best linear unbiased estimator. The price for its statistical optimality is that the estimator is computationally very expensive. This is because the value of each interpolant is given by the solution of a large dense linear system. In practice, kriging problems have been solved approximately by restricting the domain to a small local neighborhood of points that lie near the query point. Determining the proper size for this neighborhood is a solved by ad hoc methods, and it has been shown that this approach leads to undesirable discontinuities in the interpolant. Recently a more principled approach to approximating kriging has been proposed based on a technique called covariance tapering. This process achieves its efficiency by replacing the large dense kriging system with a much sparser linear system. This technique has been applied to a restriction of our problem, called simple kriging, which is not unbiased for general data sets. In this paper we generalize these results by showing how to apply covariance tapering to the more general problem of ordinary kriging. Through experimentation we demonstrate the space and time efficiency and accuracy of approximating ordinary kriging through the use of covariance tapering combined with iterative methods for solving large sparse systems. We demonstrate our approach on large data sizes arising both from synthetic sources and from real applications.

  17. Data Rods: High Speed, Time-Series Analysis of Massive Cryospheric Data Sets Using Object-Oriented Database Methods

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Gallaher, D. W.; Grant, G.; Lv, Q.

    2011-12-01

    Change over time, is the central driver of climate change detection. The goal is to diagnose the underlying causes, and make projections into the future. In an effort to optimize this process we have developed the Data Rod model, an object-oriented approach that provides the ability to query grid cell changes and their relationships to neighboring grid cells through time. The time series data is organized in time-centric structures called "data rods." A single data rod can be pictured as the multi-spectral data history at one grid cell: a vertical column of data through time. This resolves the long-standing problem of managing time-series data and opens new possibilities for temporal data analysis. This structure enables rapid time- centric analysis at any grid cell across multiple sensors and satellite platforms. Collections of data rods can be spatially and temporally filtered, statistically analyzed, and aggregated for use with pattern matching algorithms. Likewise, individual image pixels can be extracted to generate multi-spectral imagery at any spatial and temporal location. The Data Rods project has created a series of prototype databases to store and analyze massive datasets containing multi-modality remote sensing data. Using object-oriented technology, this method overcomes the operational limitations of traditional relational databases. To demonstrate the speed and efficiency of time-centric analysis using the Data Rods model, we have developed a sea ice detection algorithm. This application determines the concentration of sea ice in a small spatial region across a long temporal window. If performed using traditional analytical techniques, this task would typically require extensive data downloads and spatial filtering. Using Data Rods databases, the exact spatio-temporal data set is immediately available No extraneous data is downloaded, and all selected data querying occurs transparently on the server side. Moreover, fundamental statistical calculations such as running averages are easily implemented against the time-centric columns of data.

  18. SING: Subgraph search In Non-homogeneous Graphs

    PubMed Central

    2010-01-01

    Background Finding the subgraphs of a graph database that are isomorphic to a given query graph has practical applications in several fields, from cheminformatics to image understanding. Since subgraph isomorphism is a computationally hard problem, indexing techniques have been intensively exploited to speed up the process. Such systems filter out those graphs which cannot contain the query, and apply a subgraph isomorphism algorithm to each residual candidate graph. The applicability of such systems is limited to databases of small graphs, because their filtering power degrades on large graphs. Results In this paper, SING (Subgraph search In Non-homogeneous Graphs), a novel indexing system able to cope with large graphs, is presented. The method uses the notion of feature, which can be a small subgraph, subtree or path. Each graph in the database is annotated with the set of all its features. The key point is to make use of feature locality information. This idea is used to both improve the filtering performance and speed up the subgraph isomorphism task. Conclusions Extensive tests on chemical compounds, biological networks and synthetic graphs show that the proposed system outperforms the most popular systems in query time over databases of medium and large graphs. Other specific tests show that the proposed system is effective for single large graphs. PMID:20170516

  19. Automatic Prediction of Protein 3D Structures by Probabilistic Multi-template Homology Modeling.

    PubMed

    Meier, Armin; Söding, Johannes

    2015-10-01

    Homology modeling predicts the 3D structure of a query protein based on the sequence alignment with one or more template proteins of known structure. Its great importance for biological research is owed to its speed, simplicity, reliability and wide applicability, covering more than half of the residues in protein sequence space. Although multiple templates have been shown to generally increase model quality over single templates, the information from multiple templates has so far been combined using empirically motivated, heuristic approaches. We present here a rigorous statistical framework for multi-template homology modeling. First, we find that the query proteins' atomic distance restraints can be accurately described by two-component Gaussian mixtures. This insight allowed us to apply the standard laws of probability theory to combine restraints from multiple templates. Second, we derive theoretically optimal weights to correct for the redundancy among related templates. Third, a heuristic template selection strategy is proposed. We improve the average GDT-ha model quality score by 11% over single template modeling and by 6.5% over a conventional multi-template approach on a set of 1000 query proteins. Robustness with respect to wrong constraints is likewise improved. We have integrated our multi-template modeling approach with the popular MODELLER homology modeling software in our free HHpred server http://toolkit.tuebingen.mpg.de/hhpred and also offer open source software for running MODELLER with the new restraints at https://bitbucket.org/soedinglab/hh-suite.

  20. Improve Performance of Data Warehouse by Query Cache

    NASA Astrophysics Data System (ADS)

    Gour, Vishal; Sarangdevot, S. S.; Sharma, Anand; Choudhary, Vinod

    2010-11-01

    The primary goal of data warehouse is to free the information locked up in the operational database so that decision makers and business analyst can make queries, analysis and planning regardless of the data changes in operational database. As the number of queries is large, therefore, in certain cases there is reasonable probability that same query submitted by the one or multiple users at different times. Each time when query is executed, all the data of warehouse is analyzed to generate the result of that query. In this paper we will study how using query cache improves performance of Data Warehouse and try to find the common problems faced. These kinds of problems are faced by Data Warehouse administrators which are minimizes response time and improves the efficiency of query in data warehouse overall, particularly when data warehouse is updated at regular interval.

  1. Complex analyses on clinical information systems using restricted natural language querying to resolve time-event dependencies.

    PubMed

    Safari, Leila; Patrick, Jon D

    2018-06-01

    This paper reports on a generic framework to provide clinicians with the ability to conduct complex analyses on elaborate research topics using cascaded queries to resolve internal time-event dependencies in the research questions, as an extension to the proposed Clinical Data Analytics Language (CliniDAL). A cascaded query model is proposed to resolve internal time-event dependencies in the queries which can have up to five levels of criteria starting with a query to define subjects to be admitted into a study, followed by a query to define the time span of the experiment. Three more cascaded queries can be required to define control groups, control variables and output variables which all together simulate a real scientific experiment. According to the complexity of the research questions, the cascaded query model has the flexibility of merging some lower level queries for simple research questions or adding a nested query to each level to compose more complex queries. Three different scenarios (one of them contains two studies) are described and used for evaluation of the proposed solution. CliniDAL's complex analyses solution enables answering complex queries with time-event dependencies at most in a few hours which manually would take many days. An evaluation of results of the research studies based on the comparison between CliniDAL and SQL solutions reveals high usability and efficiency of CliniDAL's solution. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. health communication.

    PubMed

    Mullany, Louise; Smith, Catherine; Harvey, Kevin; Adolphs, Svenja

    2015-01-01

    This article explores the communicative choices of adolescents seeking advice from an internet-based health forum run by medical professionals. Techniques from the disciplines of sociolinguistics and corpus linguistics are integrated to examine the strategies used in adolescents’ health questions. We focus on the emergent theme of Weight and Eating, a concern which features prominently in adolescents’ requests to medical practitioners. The majority of advice requests are authored by adolescent girls, with queries peaking at age 12. A combined quantitative and qualitative analysis provides detailed insights into adolescents’ communicative strategies. Examinations of question types, register and a discourse-based analysis draw attention to dominant discourses of the body, including a ‘discourse of slenderness’ and a ‘discourse of normality’, which exercise negative influences on adolescents’ dietary behaviours. The findings are of applied linguistic relevance to health practitioners and educators, as they provide them with access to adolescents’ health queries in their own language.

  3. Novel Algorithm for Classification of Medical Images

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat; Juneja, Monika

    2010-11-01

    Content-based image retrieval (CBIR) methods in medical image databases have been designed to support specific tasks, such as retrieval of medical images. These methods cannot be transferred to other medical applications since different imaging modalities require different types of processing. To enable content-based queries in diverse collections of medical images, the retrieval system must be familiar with the current Image class prior to the query processing. Further, almost all of them deal with the DICOM imaging format. In this paper a novel algorithm based on energy information obtained from wavelet transform for the classification of medical images according to their modalities is described. For this two types of wavelets have been used and have been shown that energy obtained in either case is quite distinct for each of the body part. This technique can be successfully applied to different image formats. The results are shown for JPEG imaging format.

  4. An energy-aware routing protocol for query-based applications in wireless sensor networks.

    PubMed

    Ahvar, Ehsan; Ahvar, Shohreh; Lee, Gyu Myoung; Crespi, Noel

    2014-01-01

    Wireless sensor network (WSN) typically has energy consumption restriction. Designing energy-aware routing protocol can significantly reduce energy consumption in WSNs. Energy-aware routing protocols can be classified into two categories, energy savers and energy balancers. Energy saving protocols are used to minimize the overall energy consumed by a WSN, while energy balancing protocols attempt to efficiently distribute the consumption of energy throughout the network. In general terms, energy saving protocols are not necessarily good at balancing energy consumption and energy balancing protocols are not always good at reducing energy consumption. In this paper, we propose an energy-aware routing protocol (ERP) for query-based applications in WSNs, which offers a good trade-off between traditional energy balancing and energy saving objectives and supports a soft real time packet delivery. This is achieved by means of fuzzy sets and learning automata techniques along with zonal broadcasting to decrease total energy consumption.

  5. Intelligent search in Big Data

    NASA Astrophysics Data System (ADS)

    Birialtsev, E.; Bukharaev, N.; Gusenkov, A.

    2017-10-01

    An approach to data integration, aimed on the ontology-based intelligent search in Big Data, is considered in the case when information objects are represented in the form of relational databases (RDB), structurally marked by their schemes. The source of information for constructing an ontology and, later on, the organization of the search are texts in natural language, treated as semi-structured data. For the RDBs, these are comments on the names of tables and their attributes. Formal definition of RDBs integration model in terms of ontologies is given. Within framework of the model universal RDB representation ontology, oil production subject domain ontology and linguistic thesaurus of subject domain language are built. Technique of automatic SQL queries generation for subject domain specialists is proposed. On the base of it, information system for TATNEFT oil-producing company RDBs was implemented. Exploitation of the system showed good relevance with majority of queries.

  6. Bidirectional Active Learning: A Two-Way Exploration Into Unlabeled and Labeled Data Set.

    PubMed

    Zhang, Xiao-Yu; Wang, Shupeng; Yun, Xiaochun

    2015-12-01

    In practical machine learning applications, human instruction is indispensable for model construction. To utilize the precious labeling effort effectively, active learning queries the user with selective sampling in an interactive way. Traditional active learning techniques merely focus on the unlabeled data set under a unidirectional exploration framework and suffer from model deterioration in the presence of noise. To address this problem, this paper proposes a novel bidirectional active learning algorithm that explores into both unlabeled and labeled data sets simultaneously in a two-way process. For the acquisition of new knowledge, forward learning queries the most informative instances from unlabeled data set. For the introspection of learned knowledge, backward learning detects the most suspiciously unreliable instances within the labeled data set. Under the two-way exploration framework, the generalization ability of the learning model can be greatly improved, which is demonstrated by the encouraging experimental results.

  7. Conceptual search in electronic patient record.

    PubMed

    Baud, R H; Lovis, C; Ruch, P; Rassinoux, A M

    2001-01-01

    Search by content in a large corpus of free texts in the medical domain is, today, only partially solved. The so-called GREP approach (Get Regular Expression and Print), based on highly efficient string matching techniques, is subject to inherent limitations, especially its inability to recognize domain specific knowledge. Such methods oblige the user to formulate his or her query in a logical Boolean style; if this constraint is not fulfilled, the results are poor. The authors present an enhancement to string matching search by the addition of a light conceptual model behind the word lexicon. The new system accepts any sentence as a query and radically improves the quality of results. Efficiency regarding execution time is obtained at the expense of implementing advanced indexing algorithms in a pre-processing phase. The method is described and commented and a brief account of the results illustrates this paper.

  8. Diamond Eye: a distributed architecture for image data mining

    NASA Astrophysics Data System (ADS)

    Burl, Michael C.; Fowlkes, Charless; Roden, Joe; Stechert, Andre; Mukhtar, Saleem

    1999-02-01

    Diamond Eye is a distributed software architecture, which enables users (scientists) to analyze large image collections by interacting with one or more custom data mining servers via a Java applet interface. Each server is coupled with an object-oriented database and a computational engine, such as a network of high-performance workstations. The database provides persistent storage and supports querying of the 'mined' information. The computational engine provides parallel execution of expensive image processing, object recognition, and query-by-content operations. Key benefits of the Diamond Eye architecture are: (1) the design promotes trial evaluation of advanced data mining and machine learning techniques by potential new users (all that is required is to point a web browser to the appropriate URL), (2) software infrastructure that is common across a range of science mining applications is factored out and reused, and (3) the system facilitates closer collaborations between algorithm developers and domain experts.

  9. An Energy-Aware Routing Protocol for Query-Based Applications in Wireless Sensor Networks

    PubMed Central

    Crespi, Noel

    2014-01-01

    Wireless sensor network (WSN) typically has energy consumption restriction. Designing energy-aware routing protocol can significantly reduce energy consumption in WSNs. Energy-aware routing protocols can be classified into two categories, energy savers and energy balancers. Energy saving protocols are used to minimize the overall energy consumed by a WSN, while energy balancing protocols attempt to efficiently distribute the consumption of energy throughout the network. In general terms, energy saving protocols are not necessarily good at balancing energy consumption and energy balancing protocols are not always good at reducing energy consumption. In this paper, we propose an energy-aware routing protocol (ERP) for query-based applications in WSNs, which offers a good trade-off between traditional energy balancing and energy saving objectives and supports a soft real time packet delivery. This is achieved by means of fuzzy sets and learning automata techniques along with zonal broadcasting to decrease total energy consumption. PMID:24696640

  10. EarthServer: Use of Rasdaman as a data store for use in visualisation of complex EO data

    NASA Astrophysics Data System (ADS)

    Clements, Oliver; Walker, Peter; Grant, Mike

    2013-04-01

    The European Commission FP7 project EarthServer is establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending cutting-edge Array Database technology. EarthServer is built around the Rasdaman Raster Data Manager which extends standard relational database systems with the ability to store and retrieve multi-dimensional raster data of unlimited size through an SQL style query language. Rasdaman facilitates visualisation of data by providing several Open Geospatial Consortium (OGC) standard interfaces through its web services wrapper, Petascope. These include the well established standards, Web Coverage Service (WCS) and Web Map Service (WMS) as well as the emerging standard, Web Coverage Processing Service (WCPS). The WCPS standard allows the running of ad-hoc queries on the data stored within Rasdaman, creating an infrastructure where users are not restricted by bandwidth when manipulating or querying huge datasets. Here we will show that the use of EarthServer technologies and infrastructure allows access and visualisation of massive scale data through a web client with only marginal bandwidth use as opposed to the current mechanism of copying huge amounts of data to create visualisations locally. For example if a user wanted to generate a plot of global average chlorophyll for a complete decade time series they would only have to download the result instead of Terabytes of data. Firstly we will present a brief overview of the capabilities of Rasdaman and the WCPS query language to introduce the ways in which it is used in a visualisation tool chain. We will show that there are several ways in which WCPS can be utilised to create both standard and novel web based visualisations. An example of a standard visualisation is the production of traditional 2d plots, allowing users the ability to plot data products easily. However, the query language allows the creation of novel/custom products, which can then immediately be plotted with the same system. For more complex multi-spectral data, WCPS allows the user to explore novel combinations of bands in standard band-ratio algorithms through a web browser with dynamic updating of the resultant image. To visualise very large datasets Rasdaman has the capability to dynamically scale a dataset or query result so that it can be appraised quickly for use in later unscaled queries. All of these techniques are accessible through a web based GIS interface increasing the number of potential users of the system. Lastly we will show the advances in dynamic web based 3D visualisations being explored within the EarthServer project. By utilising the emerging declarative 3D web standard X3DOM as a tool to visualise the results of WCPS queries we introduce several possible benefits, including quick appraisal of data for outliers or anomalous data points and visualisation of the uncertainty of data alongside the actual data values.

  11. Data Processing Factory for the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Stoughton, Christopher; Adelman, Jennifer; Annis, James T.; Hendry, John; Inkmann, John; Jester, Sebastian; Kent, Steven M.; Kuropatkin, Nickolai; Lee, Brian; Lin, Huan; Peoples, John, Jr.; Sparks, Robert; Tucker, Douglas; Vanden Berk, Dan; Yanny, Brian; Yocum, Dan

    2002-12-01

    The Sloan Digital Sky Survey (SDSS) data handling presents two challenges: large data volume and timely production of spectroscopic plates from imaging data. A data processing factory, using technologies both old and new, handles this flow. Distribution to end users is via disk farms, to serve corrected images and calibrated spectra, and a database, to efficiently process catalog queries. For distribution of modest amounts of data from Apache Point Observatory to Fermilab, scripts use rsync to update files, while larger data transfers are accomplished by shipping magnetic tapes commercially. All data processing pipelines are wrapped in scripts to address consecutive phases: preparation, submission, checking, and quality control. We constructed the factory by chaining these pipelines together while using an operational database to hold processed imaging catalogs. The science database catalogs all imaging and spectroscopic object, with pointers to the various external files associated with them. Diverse computing systems address particular processing phases. UNIX computers handle tape reading and writing, as well as calibration steps that require access to a large amount of data with relatively modest computational demands. Commodity CPUs process steps that require access to a limited amount of data with more demanding computations requirements. Disk servers optimized for cost per Gbyte serve terabytes of processed data, while servers optimized for disk read speed run SQLServer software to process queries on the catalogs. This factory produced data for the SDSS Early Data Release in June 2001, and it is currently producing Data Release One, scheduled for January 2003.

  12. Increased Prognostic Value of Query Amyloid Late Enhancement Score in Light-Chain Cardiac Amyloidosis.

    PubMed

    Wan, Ke; Sun, Jiayu; Han, Yuchi; Liu, Hong; Yang, Dan; Li, Weihao; Wang, Jie; Cheng, Wei; Zhang, Qing; Zeng, Zhi; Chen, Yucheng

    2018-02-23

    Late gadolinium enhancement (LGE) pattern is a powerful imaging biomarker for prognosis of cardiac amyloidosis. It is unknown if the query amyloid late enhancement (QALE) score in light-chain (AL) amyloidosis could provide increased prognostic value compared with LGE pattern.Methods and Results:Seventy-eight consecutive patients with AL amyloidosis underwent contrast-enhanced cardiovascular magnetic resonance imaging. Patients with cardiac involvement were grouped by LGE pattern and analyzed using QALE score. Receiver operating characteristic curve was used to identify the optimal cut-off for QALE score in predicting all-cause mortality. Survival of these patients was analyzed with the Kaplan-Meier method and multivariate Cox regression. During a median follow-up of 34 months, 53 of 78 patients died. The optimal cut-off for QALE score to predict mortality at 12-month follow-up was 9.0. On multivariate Cox analysis, QALE score ≥9 (HR, 5.997; 95% CI: 2.665-13.497; P<0.001) and log N-terminal pro-brain natriuretic peptide (HR, 1.525; 95% CI: 1.112-2.092; P=0.009) were the only 2 independent predictors of all-cause mortality. On Kaplan-Meier analysis, patients with subendocardial LGE can be further risk stratified using QALE score ≥9. The QALE scoring system provides powerful independent prognostic value in AL cardiac amyloidosis. QALE score ≥9 has added value to differentiate prognosis in AL amyloidosis patients with a subendocardial LGE pattern.

  13. Architecture for knowledge-based and federated search of online clinical evidence.

    PubMed

    Coiera, Enrico; Walther, Martin; Nguyen, Ken; Lovell, Nigel H

    2005-10-24

    It is increasingly difficult for clinicians to keep up-to-date with the rapidly growing biomedical literature. Online evidence retrieval methods are now seen as a core tool to support evidence-based health practice. However, standard search engine technology is not designed to manage the many different types of evidence sources that are available or to handle the very different information needs of various clinical groups, who often work in widely different settings. The objectives of this paper are (1) to describe the design considerations and system architecture of a wrapper-mediator approach to federate search system design, including the use of knowledge-based, meta-search filters, and (2) to analyze the implications of system design choices on performance measurements. A trial was performed to evaluate the technical performance of a federated evidence retrieval system, which provided access to eight distinct online resources, including e-journals, PubMed, and electronic guidelines. The Quick Clinical system architecture utilized a universal query language to reformulate queries internally and utilized meta-search filters to optimize search strategies across resources. We recruited 227 family physicians from across Australia who used the system to retrieve evidence in a routine clinical setting over a 4-week period. The total search time for a query was recorded, along with the duration of individual queries sent to different online resources. Clinicians performed 1662 searches over the trial. The average search duration was 4.9 +/- 3.2 s (N = 1662 searches). Mean search duration to the individual sources was between 0.05 s and 4.55 s. Average system time (ie, system overhead) was 0.12 s. The relatively small system overhead compared to the average time it takes to perform a search for an individual source shows that the system achieves a good trade-off between performance and reliability. Furthermore, despite the additional effort required to incorporate the capabilities of each individual source (to improve the quality of search results), system maintenance requires only a small additional overhead.

  14. Information-theoretic CAD system in mammography: Entropy-based indexing for computational efficiency and robust performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tourassi, Georgia D.; Harrawood, Brian; Singh, Swatee

    2007-08-15

    We have previously presented a knowledge-based computer-assisted detection (KB-CADe) system for the detection of mammographic masses. The system is designed to compare a query mammographic region with mammographic templates of known ground truth. The templates are stored in an adaptive knowledge database. Image similarity is assessed with information theoretic measures (e.g., mutual information) derived directly from the image histograms. A previous study suggested that the diagnostic performance of the system steadily improves as the knowledge database is initially enriched with more templates. However, as the database increases in size, an exhaustive comparison of the query case with each stored templatemore » becomes computationally burdensome. Furthermore, blind storing of new templates may result in redundancies that do not necessarily improve diagnostic performance. To address these concerns we investigated an entropy-based indexing scheme for improving the speed of analysis and for satisfying database storage restrictions without compromising the overall diagnostic performance of our KB-CADe system. The indexing scheme was evaluated on two different datasets as (i) a search mechanism to sort through the knowledge database, and (ii) a selection mechanism to build a smaller, concise knowledge database that is easier to maintain but still effective. There were two important findings in the study. First, entropy-based indexing is an effective strategy to identify fast a subset of templates that are most relevant to a given query. Only this subset could be analyzed in more detail using mutual information for optimized decision making regarding the query. Second, a selective entropy-based deposit strategy may be preferable where only high entropy cases are maintained in the knowledge database. Overall, the proposed entropy-based indexing scheme was shown to reduce the computational cost of our KB-CADe system by 55% to 80% while maintaining the system's diagnostic performance.« less

  15. Large Survey Database: A Distributed Framework for Storage and Analysis of Large Datasets

    NASA Astrophysics Data System (ADS)

    Juric, Mario

    2011-01-01

    The Large Survey Database (LSD) is a Python framework and DBMS for distributed storage, cross-matching and querying of large survey catalogs (>10^9 rows, >1 TB). The primary driver behind its development is the analysis of Pan-STARRS PS1 data. It is specifically optimized for fast queries and parallel sweeps of positionally and temporally indexed datasets. It transparently scales to more than >10^2 nodes, and can be made to function in "shared nothing" architectures. An LSD database consists of a set of vertically and horizontally partitioned tables, physically stored as compressed HDF5 files. Vertically, we partition the tables into groups of related columns ('column groups'), storing together logically related data (e.g., astrometry, photometry). Horizontally, the tables are partitioned into partially overlapping ``cells'' by position in space (lon, lat) and time (t). This organization allows for fast lookups based on spatial and temporal coordinates, as well as data and task distribution. The design was inspired by the success of Google BigTable (Chang et al., 2006). Our programming model is a pipelined extension of MapReduce (Dean and Ghemawat, 2004). An SQL-like query language is used to access data. For complex tasks, map-reduce ``kernels'' that operate on query results on a per-cell basis can be written, with the framework taking care of scheduling and execution. The combination leverages users' familiarity with SQL, while offering a fully distributed computing environment. LSD adds little overhead compared to direct Python file I/O. In tests, we sweeped through 1.1 Grows of PanSTARRS+SDSS data (220GB) less than 15 minutes on a dual CPU machine. In a cluster environment, we achieved bandwidths of 17Gbits/sec (I/O limited). Based on current experience, we believe LSD should scale to be useful for analysis and storage of LSST-scale datasets. It can be downloaded from http://mwscience.net/lsd.

  16. Evaluation of Sub Query Performance in SQL Server

    NASA Astrophysics Data System (ADS)

    Oktavia, Tanty; Sujarwo, Surya

    2014-03-01

    The paper explores several sub query methods used in a query and their impact on the query performance. The study uses experimental approach to evaluate the performance of each sub query methods combined with indexing strategy. The sub query methods consist of in, exists, relational operator and relational operator combined with top operator. The experimental shows that using relational operator combined with indexing strategy in sub query has greater performance compared with using same method without indexing strategy and also other methods. In summary, for application that emphasized on the performance of retrieving data from database, it better to use relational operator combined with indexing strategy. This study is done on Microsoft SQL Server 2012.

  17. User evaluation of ride technology research

    NASA Technical Reports Server (NTRS)

    Mckenzie, J. R.; Brumaghim, S. H.

    1976-01-01

    The 23 organizations queried represent government, carrier, and manufacturing interests in air, marine, rail, and surface transportation systems. Results indicate a strong need for common terminology and data analysis/reporting techniques. The various types of ride criteria currently in use are discussed, particularly in terms of their respective data base requirements. A plan of action is proposed for fulfilling the ride technology needs identified by this study.

  18. New Capabilities in the Astrophysics Multispectral Archive Search Engine

    NASA Astrophysics Data System (ADS)

    Cheung, C. Y.; Kelley, S.; Roussopoulos, N.

    The Astrophysics Multispectral Archive Search Engine (AMASE) uses object-oriented database techniques to provide a uniform multi-mission and multi-spectral interface to search for data in the distributed archives. We describe our experience of porting AMASE from Illustra object-relational DBMS to the Informix Universal Data Server. New capabilities and utilities have been developed, including a spatial datablade that supports Nearest Neighbor queries.

  19. Secure Skyline Queries on Cloud Platform.

    PubMed

    Liu, Jinfei; Yang, Juncheng; Xiong, Li; Pei, Jian

    2017-04-01

    Outsourcing data and computation to cloud server provides a cost-effective way to support large scale data storage and query processing. However, due to security and privacy concerns, sensitive data (e.g., medical records) need to be protected from the cloud server and other unauthorized users. One approach is to outsource encrypted data to the cloud server and have the cloud server perform query processing on the encrypted data only. It remains a challenging task to support various queries over encrypted data in a secure and efficient way such that the cloud server does not gain any knowledge about the data, query, and query result. In this paper, we study the problem of secure skyline queries over encrypted data. The skyline query is particularly important for multi-criteria decision making but also presents significant challenges due to its complex computations. We propose a fully secure skyline query protocol on data encrypted using semantically-secure encryption. As a key subroutine, we present a new secure dominance protocol, which can be also used as a building block for other queries. Finally, we provide both serial and parallelized implementations and empirically study the protocols in terms of efficiency and scalability under different parameter settings, verifying the feasibility of our proposed solutions.

  20. Query Health: standards-based, cross-platform population health surveillance

    PubMed Central

    Klann, Jeffrey G; Buck, Michael D; Brown, Jeffrey; Hadley, Marc; Elmore, Richard; Weber, Griffin M; Murphy, Shawn N

    2014-01-01

    Objective Understanding population-level health trends is essential to effectively monitor and improve public health. The Office of the National Coordinator for Health Information Technology (ONC) Query Health initiative is a collaboration to develop a national architecture for distributed, population-level health queries across diverse clinical systems with disparate data models. Here we review Query Health activities, including a standards-based methodology, an open-source reference implementation, and three pilot projects. Materials and methods Query Health defined a standards-based approach for distributed population health queries, using an ontology based on the Quality Data Model and Consolidated Clinical Document Architecture, Health Quality Measures Format (HQMF) as the query language, the Query Envelope as the secure transport layer, and the Quality Reporting Document Architecture as the result language. Results We implemented this approach using Informatics for Integrating Biology and the Bedside (i2b2) and hQuery for data analytics and PopMedNet for access control, secure query distribution, and response. We deployed the reference implementation at three pilot sites: two public health departments (New York City and Massachusetts) and one pilot designed to support Food and Drug Administration post-market safety surveillance activities. The pilots were successful, although improved cross-platform data normalization is needed. Discussions This initiative resulted in a standards-based methodology for population health queries, a reference implementation, and revision of the HQMF standard. It also informed future directions regarding interoperability and data access for ONC's Data Access Framework initiative. Conclusions Query Health was a test of the learning health system that supplied a functional methodology and reference implementation for distributed population health queries that has been validated at three sites. PMID:24699371

  1. Query Health: standards-based, cross-platform population health surveillance.

    PubMed

    Klann, Jeffrey G; Buck, Michael D; Brown, Jeffrey; Hadley, Marc; Elmore, Richard; Weber, Griffin M; Murphy, Shawn N

    2014-01-01

    Understanding population-level health trends is essential to effectively monitor and improve public health. The Office of the National Coordinator for Health Information Technology (ONC) Query Health initiative is a collaboration to develop a national architecture for distributed, population-level health queries across diverse clinical systems with disparate data models. Here we review Query Health activities, including a standards-based methodology, an open-source reference implementation, and three pilot projects. Query Health defined a standards-based approach for distributed population health queries, using an ontology based on the Quality Data Model and Consolidated Clinical Document Architecture, Health Quality Measures Format (HQMF) as the query language, the Query Envelope as the secure transport layer, and the Quality Reporting Document Architecture as the result language. We implemented this approach using Informatics for Integrating Biology and the Bedside (i2b2) and hQuery for data analytics and PopMedNet for access control, secure query distribution, and response. We deployed the reference implementation at three pilot sites: two public health departments (New York City and Massachusetts) and one pilot designed to support Food and Drug Administration post-market safety surveillance activities. The pilots were successful, although improved cross-platform data normalization is needed. This initiative resulted in a standards-based methodology for population health queries, a reference implementation, and revision of the HQMF standard. It also informed future directions regarding interoperability and data access for ONC's Data Access Framework initiative. Query Health was a test of the learning health system that supplied a functional methodology and reference implementation for distributed population health queries that has been validated at three sites. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Extreme Learning Machine and Particle Swarm Optimization in optimizing CNC turning operation

    NASA Astrophysics Data System (ADS)

    Janahiraman, Tiagrajah V.; Ahmad, Nooraziah; Hani Nordin, Farah

    2018-04-01

    The CNC machine is controlled by manipulating cutting parameters that could directly influence the process performance. Many optimization methods has been applied to obtain the optimal cutting parameters for the desired performance function. Nonetheless, the industry still uses the traditional technique to obtain those values. Lack of knowledge on optimization techniques is the main reason for this issue to be prolonged. Therefore, the simple yet easy to implement, Optimal Cutting Parameters Selection System is introduced to help the manufacturer to easily understand and determine the best optimal parameters for their turning operation. This new system consists of two stages which are modelling and optimization. In modelling of input-output and in-process parameters, the hybrid of Extreme Learning Machine and Particle Swarm Optimization is applied. This modelling technique tend to converge faster than other artificial intelligent technique and give accurate result. For the optimization stage, again the Particle Swarm Optimization is used to get the optimal cutting parameters based on the performance function preferred by the manufacturer. Overall, the system can reduce the gap between academic world and the industry by introducing a simple yet easy to implement optimization technique. This novel optimization technique can give accurate result besides being the fastest technique.

  3. Using search engine query data to track pharmaceutical utilization: a study of statins.

    PubMed

    Schuster, Nathaniel M; Rogers, Mary A M; McMahon, Laurence F

    2010-08-01

    To examine temporal and geographic associations between Google queries for health information and healthcare utilization benchmarks. Retrospective longitudinal study. Using Google Trends and Google Insights for Search data, the search terms Lipitor (atorvastatin calcium; Pfizer, Ann Arbor, MI) and simvastatin were evaluated for change over time and for association with Lipitor revenues. The relationship between query data and community-based resource use per Medicare beneficiary was assessed for 35 US metropolitan areas. Google queries for Lipitor significantly decreased from January 2004 through June 2009 and queries for simvastatin significantly increased (P <.001 for both), particularly after Lipitor came off patent (P <.001 for change in slope). The mean number of Google queries for Lipitor correlated (r = 0.98) with the percentage change in Lipitor global revenues from 2004 to 2008 (P <.001). Query preference for Lipitor over simvastatin was positively associated (r = 0.40) with a community's use of Medicare services. For every 1% increase in utilization of Medicare services in a community, there was a 0.2-unit increase in the ratio of Lipitor queries to simvastatin queries in that community (P = .02). Specific search engine queries for medical information correlate with pharmaceutical revenue and with overall healthcare utilization in a community. This suggests that search query data can track community-wide characteristics in healthcare utilization and have the potential for informing payers and policy makers regarding trends in utilization.

  4. Respiratory Motion Management in PET/CT: Applications and Clinical Usefulness.

    PubMed

    Guerra, Luca; Ponti, Elena De; Morzenti, Sabrina; Spadavecchia, Chiara; Crivellaro, Cinzia

    2017-01-01

    Breathing movement can introduce heavy bias in both image quality and quantitation in PET/CT. The aim of this paper is a review of the literature to evaluate the benefit of respiratory gating in terms of image quality, quantification and lesion detectability. A review of the literature published in the last 10 years and dealing with gated PET/CT technique has been performed, focusing on improvement in quantification, lesion detectability and diagnostic accuracy in neoplastic lesion. In addition, the improvement in the definition of radiotherapy planning has been evaluated. There is a consistent increase of the Standardized Uptake Value (SUV) in gated PET images when compared to ungated ones, particularly for lesions located in liver and in lung. Respiratory gating can also increase sensitivity, specificity and accuracy of PET/CT. Gated PET/CT can be used for radiation therapy planning, reducing the uncertainty in target definition, optimizing the volume to be treated and reducing the possibility of "missing" during the dose delivery. Moreover, new technologies, able to define the movement of lesions and organs directly from the PET sinogram, can solve some problems that currently are limiting the clinical use of gated PET/CT (i.e.: extended acquisition time, radiation exposure). The published literature demonstrated that respiratory gating PET/CT is a valid technique to improve quantification, lesion detectability of lung and liver tumors and can better define the radiotherapy planning of moving lesions and organs. If new technical improvements for motion compensation will be clinically validated, gated technique could be applied routinely in any PET/CT scan. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. CSRQ: Communication-Efficient Secure Range Queries in Two-Tiered Sensor Networks

    PubMed Central

    Dai, Hua; Ye, Qingqun; Yang, Geng; Xu, Jia; He, Ruiliang

    2016-01-01

    In recent years, we have seen many applications of secure query in two-tiered wireless sensor networks. Storage nodes are responsible for storing data from nearby sensor nodes and answering queries from Sink. It is critical to protect data security from a compromised storage node. In this paper, the Communication-efficient Secure Range Query (CSRQ)—a privacy and integrity preserving range query protocol—is proposed to prevent attackers from gaining information of both data collected by sensor nodes and queries issued by Sink. To preserve privacy and integrity, in addition to employing the encoding mechanisms, a novel data structure called encrypted constraint chain is proposed, which embeds the information of integrity verification. Sink can use this encrypted constraint chain to verify the query result. The performance evaluation shows that CSRQ has lower communication cost than the current range query protocols. PMID:26907293

  6. SPARQLGraph: a web-based platform for graphically querying biological Semantic Web databases.

    PubMed

    Schweiger, Dominik; Trajanoski, Zlatko; Pabinger, Stephan

    2014-08-15

    Semantic Web has established itself as a framework for using and sharing data across applications and database boundaries. Here, we present a web-based platform for querying biological Semantic Web databases in a graphical way. SPARQLGraph offers an intuitive drag & drop query builder, which converts the visual graph into a query and executes it on a public endpoint. The tool integrates several publicly available Semantic Web databases, including the databases of the just recently released EBI RDF platform. Furthermore, it provides several predefined template queries for answering biological questions. Users can easily create and save new query graphs, which can also be shared with other researchers. This new graphical way of creating queries for biological Semantic Web databases considerably facilitates usability as it removes the requirement of knowing specific query languages and database structures. The system is freely available at http://sparqlgraph.i-med.ac.at.

  7. Enabling online studies of conceptual relationships between medical terms: developing an efficient web platform.

    PubMed

    Albin, Aaron; Ji, Xiaonan; Borlawsky, Tara B; Ye, Zhan; Lin, Simon; Payne, Philip Ro; Huang, Kun; Xiang, Yang

    2014-10-07

    The Unified Medical Language System (UMLS) contains many important ontologies in which terms are connected by semantic relations. For many studies on the relationships between biomedical concepts, the use of transitively associated information from ontologies and the UMLS has been shown to be effective. Although there are a few tools and methods available for extracting transitive relationships from the UMLS, they usually have major restrictions on the length of transitive relations or on the number of data sources. Our goal was to design an efficient online platform that enables efficient studies on the conceptual relationships between any medical terms. To overcome the restrictions of available methods and to facilitate studies on the conceptual relationships between medical terms, we developed a Web platform, onGrid, that supports efficient transitive queries and conceptual relationship studies using the UMLS. This framework uses the latest technique in converting natural language queries into UMLS concepts, performs efficient transitive queries, and visualizes the result paths. It also dynamically builds a relationship matrix for two sets of input biomedical terms. We are thus able to perform effective studies on conceptual relationships between medical terms based on their relationship matrix. The advantage of onGrid is that it can be applied to study any two sets of biomedical concept relations and the relations within one set of biomedical concepts. We use onGrid to study the disease-disease relationships in the Online Mendelian Inheritance in Man (OMIM). By crossvalidating our results with an external database, the Comparative Toxicogenomics Database (CTD), we demonstrated that onGrid is effective for the study of conceptual relationships between medical terms. onGrid is an efficient tool for querying the UMLS for transitive relations, studying the relationship between medical terms, and generating hypotheses.

  8. Automatically finding relevant citations for clinical guideline development.

    PubMed

    Bui, Duy Duc An; Jonnalagadda, Siddhartha; Del Fiol, Guilherme

    2015-10-01

    Literature database search is a crucial step in the development of clinical practice guidelines and systematic reviews. In the age of information technology, the process of literature search is still conducted manually, therefore it is costly, slow and subject to human errors. In this research, we sought to improve the traditional search approach using innovative query expansion and citation ranking approaches. We developed a citation retrieval system composed of query expansion and citation ranking methods. The methods are unsupervised and easily integrated over the PubMed search engine. To validate the system, we developed a gold standard consisting of citations that were systematically searched and screened to support the development of cardiovascular clinical practice guidelines. The expansion and ranking methods were evaluated separately and compared with baseline approaches. Compared with the baseline PubMed expansion, the query expansion algorithm improved recall (80.2% vs. 51.5%) with small loss on precision (0.4% vs. 0.6%). The algorithm could find all citations used to support a larger number of guideline recommendations than the baseline approach (64.5% vs. 37.2%, p<0.001). In addition, the citation ranking approach performed better than PubMed's "most recent" ranking (average precision +6.5%, recall@k +21.1%, p<0.001), PubMed's rank by "relevance" (average precision +6.1%, recall@k +14.8%, p<0.001), and the machine learning classifier that identifies scientifically sound studies from MEDLINE citations (average precision +4.9%, recall@k +4.2%, p<0.001). Our unsupervised query expansion and ranking techniques are more flexible and effective than PubMed's default search engine behavior and the machine learning classifier. Automated citation finding is promising to augment the traditional literature search. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Visually defining and querying consistent multi-granular clinical temporal abstractions.

    PubMed

    Combi, Carlo; Oliboni, Barbara

    2012-02-01

    The main goal of this work is to propose a framework for the visual specification and query of consistent multi-granular clinical temporal abstractions. We focus on the issue of querying patient clinical information by visually defining and composing temporal abstractions, i.e., high level patterns derived from several time-stamped raw data. In particular, we focus on the visual specification of consistent temporal abstractions with different granularities and on the visual composition of different temporal abstractions for querying clinical databases. Temporal abstractions on clinical data provide a concise and high-level description of temporal raw data, and a suitable way to support decision making. Granularities define partitions on the time line and allow one to represent time and, thus, temporal clinical information at different levels of detail, according to the requirements coming from the represented clinical domain. The visual representation of temporal information has been considered since several years in clinical domains. Proposed visualization techniques must be easy and quick to understand, and could benefit from visual metaphors that do not lead to ambiguous interpretations. Recently, physical metaphors such as strips, springs, weights, and wires have been proposed and evaluated on clinical users for the specification of temporal clinical abstractions. Visual approaches to boolean queries have been considered in the last years and confirmed that the visual support to the specification of complex boolean queries is both an important and difficult research topic. We propose and describe a visual language for the definition of temporal abstractions based on a set of intuitive metaphors (striped wall, plastered wall, brick wall), allowing the clinician to use different granularities. A new algorithm, underlying the visual language, allows the physician to specify only consistent abstractions, i.e., abstractions not containing contradictory conditions on the component abstractions. Moreover, we propose a visual query language where different temporal abstractions can be composed to build complex queries: temporal abstractions are visually connected through the usual logical connectives AND, OR, and NOT. The proposed visual language allows one to simply define temporal abstractions by using intuitive metaphors, and to specify temporal intervals related to abstractions by using different temporal granularities. The physician can interact with the designed and implemented tool by point-and-click selections, and can visually compose queries involving several temporal abstractions. The evaluation of the proposed granularity-related metaphors consisted in two parts: (i) solving 30 interpretation exercises by choosing the correct interpretation of a given screenshot representing a possible scenario, and (ii) solving a complex exercise, by visually specifying through the interface a scenario described only in natural language. The exercises were done by 13 subjects. The percentage of correct answers to the interpretation exercises were slightly different with respect to the considered metaphors (54.4--striped wall, 73.3--plastered wall, 61--brick wall, and 61--no wall), but post hoc statistical analysis on means confirmed that differences were not statistically significant. The result of the user's satisfaction questionnaire related to the evaluation of the proposed granularity-related metaphors ratified that there are no preferences for one of them. The evaluation of the proposed logical notation consisted in two parts: (i) solving five interpretation exercises provided by a screenshot representing a possible scenario and by three different possible interpretations, of which only one was correct, and (ii) solving five exercises, by visually defining through the interface a scenario described only in natural language. Exercises had an increasing difficulty. The evaluation involved a total of 31 subjects. Results related to this evaluation phase confirmed us about the soundness of the proposed solution even in comparison with a well known proposal based on a tabular query form (the only significant difference is that our proposal requires more time for the training phase: 21 min versus 14 min). In this work we have considered the issue of visually composing and querying temporal clinical patient data. In this context we have proposed a visual framework for the specification of consistent temporal abstractions with different granularities and for the visual composition of different temporal abstractions to build (possibly) complex queries on clinical databases. A new algorithm has been proposed to check the consistency of the specified granular abstraction. From the evaluation of the proposed metaphors and interfaces and from the comparison of the visual query language with a well known visual method for boolean queries, the soundness of the overall system has been confirmed; moreover, pros and cons and possible improvements emerged from the comparison of different visual metaphors and solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Improving accuracy for identifying related PubMed queries by an integrated approach.

    PubMed

    Lu, Zhiyong; Wilbur, W John

    2009-10-01

    PubMed is the most widely used tool for searching biomedical literature online. As with many other online search tools, a user often types a series of multiple related queries before retrieving satisfactory results to fulfill a single information need. Meanwhile, it is also a common phenomenon to see a user type queries on unrelated topics in a single session. In order to study PubMed users' search strategies, it is necessary to be able to automatically separate unrelated queries and group together related queries. Here, we report a novel approach combining both lexical and contextual analyses for segmenting PubMed query sessions and identifying related queries and compare its performance with the previous approach based solely on concept mapping. We experimented with our integrated approach on sample data consisting of 1539 pairs of consecutive user queries in 351 user sessions. The prediction results of 1396 pairs agreed with the gold-standard annotations, achieving an overall accuracy of 90.7%. This demonstrates that our approach is significantly better than the previously published method. By applying this approach to a one day query log of PubMed, we found that a significant proportion of information needs involved more than one PubMed query, and that most of the consecutive queries for the same information need are lexically related. Finally, the proposed PubMed distance is shown to be an accurate and meaningful measure for determining the contextual similarity between biological terms. The integrated approach can play a critical role in handling real-world PubMed query log data as is demonstrated in our experiments.

  11. Improving accuracy for identifying related PubMed queries by an integrated approach

    PubMed Central

    Lu, Zhiyong; Wilbur, W. John

    2009-01-01

    PubMed is the most widely used tool for searching biomedical literature online. As with many other online search tools, a user often types a series of multiple related queries before retrieving satisfactory results to fulfill a single information need. Meanwhile, it is also a common phenomenon to see a user type queries on unrelated topics in a single session. In order to study PubMed users’ search strategies, it is necessary to be able to automatically separate unrelated queries and group together related queries. Here, we report a novel approach combining both lexical and contextual analyses for segmenting PubMed query sessions and identifying related queries and compare its performance with the previous approach based solely on concept mapping. We experimented with our integrated approach on sample data consisting of 1,539 pairs of consecutive user queries in 351 user sessions. The prediction results of 1,396 pairs agreed with the gold-standard annotations, achieving an overall accuracy of 90.7%. This demonstrates that our approach is significantly better than the previously published method. By applying this approach to a one day query log of PubMed, we found that a significant proportion of information needs involved more than one PubMed query, and that most of the consecutive queries for the same information need are lexically related. Finally, the proposed PubMed distance is shown to be an accurate and meaningful measure for determining the contextual similarity between biological terms. The integrated approach can play a critical role in handling real-world PubMed query log data as is demonstrated in our experiments. PMID:19162232

  12. On the Optimization of Aerospace Plane Ascent Trajectory

    NASA Astrophysics Data System (ADS)

    Al-Garni, Ahmed; Kassem, Ayman Hamdy

    A hybrid heuristic optimization technique based on genetic algorithms and particle swarm optimization has been developed and tested for trajectory optimization problems with multi-constraints and a multi-objective cost function. The technique is used to calculate control settings for two types for ascending trajectories (constant dynamic pressure and minimum-fuel-minimum-heat) for a two-dimensional model of an aerospace plane. A thorough statistical analysis is done on the hybrid technique to make comparisons with both basic genetic algorithms and particle swarm optimization techniques with respect to convergence and execution time. Genetic algorithm optimization showed better execution time performance while particle swarm optimization showed better convergence performance. The hybrid optimization technique, benefiting from both techniques, showed superior robust performance compromising convergence trends and execution time.

  13. Multi-Bit Quantum Private Query

    NASA Astrophysics Data System (ADS)

    Shi, Wei-Xu; Liu, Xing-Tong; Wang, Jian; Tang, Chao-Jing

    2015-09-01

    Most of the existing Quantum Private Queries (QPQ) protocols provide only single-bit queries service, thus have to be repeated several times when more bits are retrieved. Wei et al.'s scheme for block queries requires a high-dimension quantum key distribution system to sustain, which is still restricted in the laboratory. Here, based on Markus Jakobi et al.'s single-bit QPQ protocol, we propose a multi-bit quantum private query protocol, in which the user can get access to several bits within one single query. We also extend the proposed protocol to block queries, using a binary matrix to guard database security. Analysis in this paper shows that our protocol has better communication complexity, implementability and can achieve a considerable level of security.

  14. Evaluation of Content-Matched Range Monitoring Queries over Moving Objects in Mobile Computing Environments.

    PubMed

    Jung, HaRim; Song, MoonBae; Youn, Hee Yong; Kim, Ung Mo

    2015-09-18

    A content-matched (CM) rangemonitoring query overmoving objects continually retrieves the moving objects (i) whose non-spatial attribute values are matched to given non-spatial query values; and (ii) that are currently located within a given spatial query range. In this paper, we propose a new query indexing structure, called the group-aware query region tree (GQR-tree) for efficient evaluation of CMrange monitoring queries. The primary role of the GQR-tree is to help the server leverage the computational capabilities of moving objects in order to improve the system performance in terms of the wireless communication cost and server workload. Through a series of comprehensive simulations, we verify the superiority of the GQR-tree method over the existing methods.

  15. Estimating Missing Features to Improve Multimedia Information Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagherjeiran, A; Love, N S; Kamath, C

    Retrieval in a multimedia database usually involves combining information from different modalities of data, such as text and images. However, all modalities of the data may not be available to form the query. The retrieval results from such a partial query are often less than satisfactory. In this paper, we present an approach to complete a partial query by estimating the missing features in the query. Our experiments with a database of images and their associated captions show that, with an initial text-only query, our completion method has similar performance to a full query with both image and text features.more » In addition, when we use relevance feedback, our approach outperforms the results obtained using a full query.« less

  16. EarthServer: a Summary of Achievements in Technology, Services, and Standards

    NASA Astrophysics Data System (ADS)

    Baumann, Peter

    2015-04-01

    Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data, according to ISO and OGC defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timese ries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The transatlantic EarthServer initiative, running from 2011 through 2014, has united 11 partners to establish Big Earth Data Analytics. A key ingredient has been flexibility for users to ask whatever they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level, standards-based query languages which unify data and metadata search in a simple, yet powerful way. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing cod e has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, the pioneer and leading Array DBMS built for any-size multi-dimensional raster data being extended with support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data import and, hence, duplication); the aforementioned distributed query processing. Additionally, Web clients for multi-dimensional data visualization are being established. Client/server interfaces are strictly based on OGC and W3C standards, in particular the Web Coverage Processing Service (WCPS) which defines a high-level coverage query language. Reviewers have attested EarthServer that "With no doubt the project has been shaping the Big Earth Data landscape through the standardization activities within OGC, ISO and beyond". We present the project approach, its outcomes and impact on standardization and Big Data technology, and vistas for the future.

  17. QBIC project: querying images by content, using color, texture, and shape

    NASA Astrophysics Data System (ADS)

    Niblack, Carlton W.; Barber, Ron; Equitz, Will; Flickner, Myron D.; Glasman, Eduardo H.; Petkovic, Dragutin; Yanker, Peter; Faloutsos, Christos; Taubin, Gabriel

    1993-04-01

    In the query by image content (QBIC) project we are studying methods to query large on-line image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, and shape of image objects and regions. Potential applications include medical (`Give me other images that contain a tumor with a texture like this one'), photo-journalism (`Give me images that have blue at the top and red at the bottom'), and many others in art, fashion, cataloging, retailing, and industry. Key issues include derivation and computation of attributes of images and objects that provide useful query functionality, retrieval methods based on similarity as opposed to exact match, query by image example or user drawn image, the user interfaces, query refinement and navigation, high dimensional database indexing, and automatic and semi-automatic database population. We currently have a prototype system written in X/Motif and C running on an RS/6000 that allows a variety of queries, and a test database of over 1000 images and 1000 objects populated from commercially available photo clip art images. In this paper we present the main algorithms for color texture, shape and sketch query that we use, show example query results, and discuss future directions.

  18. Does query expansion limit our learning? A comparison of social-based expansion to content-based expansion for medical queries on the internet.

    PubMed

    Pentoney, Christopher; Harwell, Jeff; Leroy, Gondy

    2014-01-01

    Searching for medical information online is a common activity. While it has been shown that forming good queries is difficult, Google's query suggestion tool, a type of query expansion, aims to facilitate query formation. However, it is unknown how this expansion, which is based on what others searched for, affects the information gathering of the online community. To measure the impact of social-based query expansion, this study compared it with content-based expansion, i.e., what is really in the text. We used 138,906 medical queries from the AOL User Session Collection and expanded them using Google's Autocomplete method (social-based) and the content of the Google Web Corpus (content-based). We evaluated the specificity and ambiguity of the expansion terms for trigram queries. We also looked at the impact on the actual results using domain diversity and expansion edit distance. Results showed that the social-based method provided more precise expansion terms as well as terms that were less ambiguous. Expanded queries do not differ significantly in diversity when expanded using the social-based method (6.72 different domains returned in the first ten results, on average) vs. content-based method (6.73 different domains, on average).

  19. a Novel Approach of Indexing and Retrieving Spatial Polygons for Efficient Spatial Region Queries

    NASA Astrophysics Data System (ADS)

    Zhao, J. H.; Wang, X. Z.; Wang, F. Y.; Shen, Z. H.; Zhou, Y. C.; Wang, Y. L.

    2017-10-01

    Spatial region queries are more and more widely used in web-based applications. Mechanisms to provide efficient query processing over geospatial data are essential. However, due to the massive geospatial data volume, heavy geometric computation, and high access concurrency, it is difficult to get response in real time. Spatial indexes are usually used in this situation. In this paper, based on k-d tree, we introduce a distributed KD-Tree (DKD-Tree) suitbable for polygon data, and a two-step query algorithm. The spatial index construction is recursive and iterative, and the query is an in memory process. Both the index and query methods can be processed in parallel, and are implemented based on HDFS, Spark and Redis. Experiments on a large volume of Remote Sensing images metadata have been carried out, and the advantages of our method are investigated by comparing with spatial region queries executed on PostgreSQL and PostGIS. Results show that our approach not only greatly improves the efficiency of spatial region query, but also has good scalability, Moreover, the two-step spatial range query algorithm can also save cluster resources to support a large number of concurrent queries. Therefore, this method is very useful when building large geographic information systems.

  20. Secure Skyline Queries on Cloud Platform

    PubMed Central

    Liu, Jinfei; Yang, Juncheng; Xiong, Li; Pei, Jian

    2017-01-01

    Outsourcing data and computation to cloud server provides a cost-effective way to support large scale data storage and query processing. However, due to security and privacy concerns, sensitive data (e.g., medical records) need to be protected from the cloud server and other unauthorized users. One approach is to outsource encrypted data to the cloud server and have the cloud server perform query processing on the encrypted data only. It remains a challenging task to support various queries over encrypted data in a secure and efficient way such that the cloud server does not gain any knowledge about the data, query, and query result. In this paper, we study the problem of secure skyline queries over encrypted data. The skyline query is particularly important for multi-criteria decision making but also presents significant challenges due to its complex computations. We propose a fully secure skyline query protocol on data encrypted using semantically-secure encryption. As a key subroutine, we present a new secure dominance protocol, which can be also used as a building block for other queries. Finally, we provide both serial and parallelized implementations and empirically study the protocols in terms of efficiency and scalability under different parameter settings, verifying the feasibility of our proposed solutions. PMID:28883710

  1. Driver head pose tracking with thermal camera

    NASA Astrophysics Data System (ADS)

    Bole, S.; Fournier, C.; Lavergne, C.; Druart, G.; Lépine, T.

    2016-09-01

    Head pose can be seen as a coarse estimation of gaze direction. In automotive industry, knowledge about gaze direction could optimize Human-Machine Interface (HMI) and Advanced Driver Assistance Systems (ADAS). Pose estimation systems are often based on camera when applications have to be contactless. In this paper, we explore uncooled thermal imagery (8-14μm) for its intrinsic night vision capabilities and for its invariance versus lighting variations. Two methods are implemented and compared, both are aided by a 3D model of the head. The 3D model, mapped with thermal texture, allows to synthesize a base of 2D projected models, differently oriented and labeled in yaw and pitch. The first method is based on keypoints. Keypoints of models are matched with those of the query image. These sets of matchings, aided with the 3D shape of the model, allow to estimate 3D pose. The second method is a global appearance approach. Among all 2D models of the base, algorithm searches the one which is the closest to the query image thanks to a weighted least squares difference.

  2. Mantis: A Fast, Small, and Exact Large-Scale Sequence-Search Index.

    PubMed

    Pandey, Prashant; Almodaresi, Fatemeh; Bender, Michael A; Ferdman, Michael; Johnson, Rob; Patro, Rob

    2018-06-18

    Sequence-level searches on large collections of RNA sequencing experiments, such as the NCBI Sequence Read Archive (SRA), would enable one to ask many questions about the expression or variation of a given transcript in a population. Existing approaches, such as the sequence Bloom tree, suffer from fundamental limitations of the Bloom filter, resulting in slow build and query times, less-than-optimal space usage, and potentially large numbers of false-positives. This paper introduces Mantis, a space-efficient system that uses new data structures to index thousands of raw-read experiments and facilitates large-scale sequence searches. In our evaluation, index construction with Mantis is 6× faster and yields a 20% smaller index than the state-of-the-art split sequence Bloom tree (SSBT). For queries, Mantis is 6-108× faster than SSBT and has no false-positives or -negatives. For example, Mantis was able to search for all 200,400 known human transcripts in an index of 2,652 RNA sequencing experiments in 82 min; SSBT took close to 4 days. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Optimizing SIEM Throughput on the Cloud Using Parallelization.

    PubMed

    Alam, Masoom; Ihsan, Asif; Khan, Muazzam A; Javaid, Qaisar; Khan, Abid; Manzoor, Jawad; Akhundzada, Adnan; Khan, Muhammad Khurram; Farooq, Sajid

    2016-01-01

    Processing large amounts of data in real time for identifying security issues pose several performance challenges, especially when hardware infrastructure is limited. Managed Security Service Providers (MSSP), mostly hosting their applications on the Cloud, receive events at a very high rate that varies from a few hundred to a couple of thousand events per second (EPS). It is critical to process this data efficiently, so that attacks could be identified quickly and necessary response could be initiated. This paper evaluates the performance of a security framework OSTROM built on the Esper complex event processing (CEP) engine under a parallel and non-parallel computational framework. We explain three architectures under which Esper can be used to process events. We investigated the effect on throughput, memory and CPU usage in each configuration setting. The results indicate that the performance of the engine is limited by the number of events coming in rather than the queries being processed. The architecture where 1/4th of the total events are submitted to each instance and all the queries are processed by all the units shows best results in terms of throughput, memory and CPU usage.

  4. Local Feature Selection for Data Classification.

    PubMed

    Armanfard, Narges; Reilly, James P; Komeili, Majid

    2016-06-01

    Typical feature selection methods choose an optimal global feature subset that is applied over all regions of the sample space. In contrast, in this paper we propose a novel localized feature selection (LFS) approach whereby each region of the sample space is associated with its own distinct optimized feature set, which may vary both in membership and size across the sample space. This allows the feature set to optimally adapt to local variations in the sample space. An associated method for measuring the similarities of a query datum to each of the respective classes is also proposed. The proposed method makes no assumptions about the underlying structure of the samples; hence the method is insensitive to the distribution of the data over the sample space. The method is efficiently formulated as a linear programming optimization problem. Furthermore, we demonstrate the method is robust against the over-fitting problem. Experimental results on eleven synthetic and real-world data sets demonstrate the viability of the formulation and the effectiveness of the proposed algorithm. In addition we show several examples where localized feature selection produces better results than a global feature selection method.

  5. A high performance, ad-hoc, fuzzy query processing system for relational databases

    NASA Technical Reports Server (NTRS)

    Mansfield, William H., Jr.; Fleischman, Robert M.

    1992-01-01

    Database queries involving imprecise or fuzzy predicates are currently an evolving area of academic and industrial research. Such queries place severe stress on the indexing and I/O subsystems of conventional database environments since they involve the search of large numbers of records. The Datacycle architecture and research prototype is a database environment that uses filtering technology to perform an efficient, exhaustive search of an entire database. It has recently been modified to include fuzzy predicates in its query processing. The approach obviates the need for complex index structures, provides unlimited query throughput, permits the use of ad-hoc fuzzy membership functions, and provides a deterministic response time largely independent of query complexity and load. This paper describes the Datacycle prototype implementation of fuzzy queries and some recent performance results.

  6. Evaluation of Content-Matched Range Monitoring Queries over Moving Objects in Mobile Computing Environments

    PubMed Central

    Jung, HaRim; Song, MoonBae; Youn, Hee Yong; Kim, Ung Mo

    2015-01-01

    A content-matched (CM) range monitoring query over moving objects continually retrieves the moving objects (i) whose non-spatial attribute values are matched to given non-spatial query values; and (ii) that are currently located within a given spatial query range. In this paper, we propose a new query indexing structure, called the group-aware query region tree (GQR-tree) for efficient evaluation of CM range monitoring queries. The primary role of the GQR-tree is to help the server leverage the computational capabilities of moving objects in order to improve the system performance in terms of the wireless communication cost and server workload. Through a series of comprehensive simulations, we verify the superiority of the GQR-tree method over the existing methods. PMID:26393613

  7. Systems and methods for an extensible business application framework

    NASA Technical Reports Server (NTRS)

    Bell, David G. (Inventor); Crawford, Michael (Inventor)

    2012-01-01

    Method and systems for editing data from a query result include requesting a query result using a unique collection identifier for a collection of individual files and a unique identifier for a configuration file that specifies a data structure for the query result. A query result is generated that contains a plurality of fields as specified by the configuration file, by combining each of the individual files associated with a unique identifier for a collection of individual files. The query result data is displayed with a plurality of labels as specified in the configuration file. Edits can be performed by querying a collection of individual files using the configuration file, editing a portion of the query result, and transmitting only the edited information for storage back into a data repository.

  8. Beyond Worst-Case Analysis in Privacy and Clustering: Exploiting Explicit and Implicit Assumptions

    DTIC Science & Technology

    2013-08-01

    Dwork et al [63]. Given a query function f , the curator first estimates the global sensitivity of f , denoted GS(f) = maxD,D′ f(D)− f(D′), then outputs f...Ostrovsky et al [121]. Ostrovsky et al study instances in which the ratio between the cost of the optimal (k − 1)-means solu- tion and the cost of the...k-median objective. We also build on the work of Balcan et al [25] that investigate the connection between point-wise approximations of the target

  9. XMM-Newton Mobile Web Application

    NASA Astrophysics Data System (ADS)

    Ibarra, A.; Kennedy, M.; Rodríguez, P.; Hernández, C.; Saxton, R.; Gabriel, C.

    2013-10-01

    We present the first XMM-Newton web mobile application, coded using new web technologies such as HTML5, the Query mobile framework, and D3 JavaScript data-driven library. This new web mobile application focuses on re-formatted contents extracted directly from the XMM-Newton web, optimizing the contents for mobile devices. The main goals of this development were to reach all kind of handheld devices and operating systems, while minimizing software maintenance. The application therefore has been developed as a web mobile implementation rather than a more costly native application. New functionality will be added regularly.

  10. Mobile medical visual information retrieval.

    PubMed

    Depeursinge, Adrien; Duc, Samuel; Eggel, Ivan; Müller, Henning

    2012-01-01

    In this paper, we propose mobile access to peer-reviewed medical information based on textual search and content-based visual image retrieval. Web-based interfaces designed for limited screen space were developed to query via web services a medical information retrieval engine optimizing the amount of data to be transferred in wireless form. Visual and textual retrieval engines with state-of-the-art performance were integrated. Results obtained show a good usability of the software. Future use in clinical environments has the potential of increasing quality of patient care through bedside access to the medical literature in context.

  11. Analysis of Information Needs of Users of MEDLINEplus, 2002 – 2003

    PubMed Central

    Scott-Wright, Alicia; Crowell, Jon; Zeng, Qing; Bates, David W.; Greenes, Robert

    2006-01-01

    We analyzed query logs from use of MEDLINEplus to answer the questions: Are consumers’ health information needs stable over time? and To what extent do users’ queries change over time? To determine log stability, we assessed an Overlap Rate (OR) defined as the number of unique queries common to two adjacent months divided by the total number of unique queries in those months. All exactly matching queries were considered as one unique query. We measured ORs for the top 10 and 100 unique queries of a month and compared these to ORs for the following month. Over ten months, users submitted 12,234,737 queries; only 2,179,571 (17.8%) were unique and these had a mean word count of 2.73 (S.D., 0.24); 121 of 137 (88.3%) unique queries each comprised of exactly matching search term(s) used at least 5000 times were of only one word. We could predict with 95% confidence that the monthly OR for the top 100 unique queries would lie between 67% – 87% when compared with the top 100 from the previous month. The mean month-to-month OR for top 10 queries was 62% (S.D., 20%) indicating significant variability; the lowest OR of 33% between the top 10 in Mar. compared to Apr. was likely due to “new” interest in information about SARS pneumonia in Apr. 2003. Consumers’ health information needs are relatively stable and the 100 most common unique queries are about 77% the same from month to month. Website sponsors should provide a broad range of information about a relatively stable number of topics. Analyses of log similarity may identify media-induced, cyclical, or seasonal changes in areas of consumer interest. PMID:17238431

  12. Big Data and Dysmenorrhea: What Questions Do Women and Men Ask About Menstrual Pain?

    PubMed

    Chen, Chen X; Groves, Doyle; Miller, Wendy R; Carpenter, Janet S

    2018-04-30

    Menstrual pain is highly prevalent among women of reproductive age. As the general public increasingly obtains health information online, Big Data from online platforms provide novel sources to understand the public's perspectives and information needs about menstrual pain. The study's purpose was to describe salient queries about dysmenorrhea using Big Data from a question and answer platform. We performed text-mining of 1.9 billion queries from ChaCha, a United States-based question and answer platform. Dysmenorrhea-related queries were identified by using keyword searching. Each relevant query was split into token words (i.e., meaningful words or phrases) and stop words (i.e., not meaningful functional words). Word Adjacency Graph (WAG) modeling was used to detect clusters of queries and visualize the range of dysmenorrhea-related topics. We constructed two WAG models respectively from queries by women of reproductive age and bymen. Salient themes were identified through inspecting clusters of WAG models. We identified two subsets of queries: Subset 1 contained 507,327 queries from women aged 13-50 years. Subset 2 contained 113,888 queries from men aged 13 or above. WAG modeling revealed topic clusters for each subset. Between female and male subsets, topic clusters overlapped on dysmenorrhea symptoms and management. Among female queries, there were distinctive topics on approaching menstrual pain at school and menstrual pain-related conditions; while among male queries, there was a distinctive cluster of queries on menstrual pain from male's perspectives. Big Data mining of the ChaCha ® question and answer service revealed a series of information needs among women and men on menstrual pain. Findings may be useful in structuring the content and informing the delivery platform for educational interventions.

  13. Relational Algebra and SQL: Better Together

    ERIC Educational Resources Information Center

    McMaster, Kirby; Sambasivam, Samuel; Hadfield, Steven; Wolthuis, Stuart

    2013-01-01

    In this paper, we describe how database instructors can teach Relational Algebra and Structured Query Language together through programming. Students write query programs consisting of sequences of Relational Algebra operations vs. Structured Query Language SELECT statements. The query programs can then be run interactively, allowing students to…

  14. A Firefly Algorithm-based Approach for Pseudo-Relevance Feedback: Application to Medical Database.

    PubMed

    Khennak, Ilyes; Drias, Habiba

    2016-11-01

    The difficulty of disambiguating the sense of the incomplete and imprecise keywords that are extensively used in the search queries has caused the failure of search systems to retrieve the desired information. One of the most powerful and promising method to overcome this shortcoming and improve the performance of search engines is Query Expansion, whereby the user's original query is augmented by new keywords that best characterize the user's information needs and produce more useful query. In this paper, a new Firefly Algorithm-based approach is proposed to enhance the retrieval effectiveness of query expansion while maintaining low computational complexity. In contrast to the existing literature, the proposed approach uses a Firefly Algorithm to find the best expanded query among a set of expanded query candidates. Moreover, this new approach allows the determination of the length of the expanded query empirically. Experimental results on MEDLINE, the on-line medical information database, show that our proposed approach is more effective and efficient compared to the state-of-the-art.

  15. An intelligent content discovery technique for health portal content management.

    PubMed

    De Silva, Daswin; Burstein, Frada

    2014-04-23

    Continuous content management of health information portals is a feature vital for its sustainability and widespread acceptance. Knowledge and experience of a domain expert is essential for content management in the health domain. The rate of generation of online health resources is exponential and thereby manual examination for relevance to a specific topic and audience is a formidable challenge for domain experts. Intelligent content discovery for effective content management is a less researched topic. An existing expert-endorsed content repository can provide the necessary leverage to automatically identify relevant resources and evaluate qualitative metrics. This paper reports on the design research towards an intelligent technique for automated content discovery and ranking for health information portals. The proposed technique aims to improve efficiency of the current mostly manual process of portal content management by utilising an existing expert-endorsed content repository as a supporting base and a benchmark to evaluate the suitability of new content A model for content management was established based on a field study of potential users. The proposed technique is integral to this content management model and executes in several phases (ie, query construction, content search, text analytics and fuzzy multi-criteria ranking). The construction of multi-dimensional search queries with input from Wordnet, the use of multi-word and single-word terms as representative semantics for text analytics and the use of fuzzy multi-criteria ranking for subjective evaluation of quality metrics are original contributions reported in this paper. The feasibility of the proposed technique was examined with experiments conducted on an actual health information portal, the BCKOnline portal. Both intermediary and final results generated by the technique are presented in the paper and these help to establish benefits of the technique and its contribution towards effective content management. The prevalence of large numbers of online health resources is a key obstacle for domain experts involved in content management of health information portals and websites. The proposed technique has proven successful at search and identification of resources and the measurement of their relevance. It can be used to support the domain expert in content management and thereby ensure the health portal is up-to-date and current.

  16. Visual analytics for semantic queries of TerraSAR-X image content

    NASA Astrophysics Data System (ADS)

    Espinoza-Molina, Daniela; Alonso, Kevin; Datcu, Mihai

    2015-10-01

    With the continuous image product acquisition of satellite missions, the size of the image archives is considerably increasing every day as well as the variety and complexity of their content, surpassing the end-user capacity to analyse and exploit them. Advances in the image retrieval field have contributed to the development of tools for interactive exploration and extraction of the images from huge archives using different parameters like metadata, key-words, and basic image descriptors. Even though we count on more powerful tools for automated image retrieval and data analysis, we still face the problem of understanding and analyzing the results. Thus, a systematic computational analysis of these results is required in order to provide to the end-user a summary of the archive content in comprehensible terms. In this context, visual analytics combines automated analysis with interactive visualizations analysis techniques for an effective understanding, reasoning and decision making on the basis of very large and complex datasets. Moreover, currently several researches are focused on associating the content of the images with semantic definitions for describing the data in a format to be easily understood by the end-user. In this paper, we present our approach for computing visual analytics and semantically querying the TerraSAR-X archive. Our approach is mainly composed of four steps: 1) the generation of a data model that explains the information contained in a TerraSAR-X product. The model is formed by primitive descriptors and metadata entries, 2) the storage of this model in a database system, 3) the semantic definition of the image content based on machine learning algorithms and relevance feedback, and 4) querying the image archive using semantic descriptors as query parameters and computing the statistical analysis of the query results. The experimental results shows that with the help of visual analytics and semantic definitions we are able to explain the image content using semantic terms and the relations between them answering questions such as what is the percentage of urban area in a region? or what is the distribution of water bodies in a city?

  17. Static Analysis of Mobile Programs

    DTIC Science & Technology

    2017-02-01

    information flow analysis has the potential to significantly aid human auditors , but it is handicapped by high false positive rates. Instead, auditors ...presents these specifications to a human auditor for validation. We have implemented this framework for a taint analysis of An- droid apps that relies on...of queries to a human auditor . 6.4 Inferring Library Information Flow Specifications Using Dynamic Anal- ysis In [15], we present a technique to mine

  18. Logic-Based Retrieval: Technology for Content-Oriented and Analytical Querying of Patent Data

    NASA Astrophysics Data System (ADS)

    Klampanos, Iraklis Angelos; Wu, Hengzhi; Roelleke, Thomas; Azzam, Hany

    Patent searching is a complex retrieval task. An initial document search is only the starting point of a chain of searches and decisions that need to be made by patent searchers. Keyword-based retrieval is adequate for document searching, but it is not suitable for modelling comprehensive retrieval strategies. DB-like and logical approaches are the state-of-the-art techniques to model strategies, reasoning and decision making. In this paper we present the application of logical retrieval to patent searching. The two grand challenges are expressiveness and scalability, where high degree of expressiveness usually means a loss in scalability. In this paper we report how to maintain scalability while offering the expressiveness of logical retrieval required for solving patent search tasks. We present logical retrieval background, and how to model data-source selection and results' fusion. Moreover, we demonstrate the modelling of a retrieval strategy, a technique by which patent professionals are able to express, store and exchange their strategies and rationales when searching patents or when making decisions. An overview of the architecture and technical details complement the paper, while the evaluation reports preliminary results on how query processing times can be guaranteed, and how quality is affected by trading off responsiveness.

  19. Applying Query Structuring in Cross-language Retrieval.

    ERIC Educational Resources Information Center

    Pirkola, Ari; Puolamaki, Deniz; Jarvelin, Kalervo

    2003-01-01

    Explores ways to apply query structuring in cross-language information retrieval. Tested were: English queries translated into Finnish using an electronic dictionary, and run in a Finnish newspaper databases; effects of compound-based structuring using a proximity operator for translation equivalents of query language compound components; and a…

  20. Advanced Query Formulation in Deductive Databases.

    ERIC Educational Resources Information Center

    Niemi, Timo; Jarvelin, Kalervo

    1992-01-01

    Discusses deductive databases and database management systems (DBMS) and introduces a framework for advanced query formulation for end users. Recursive processing is described, a sample extensional database is presented, query types are explained, and criteria for advanced query formulation from the end user's viewpoint are examined. (31…

Top