Fragger: a protein fragment picker for structural queries.
Berenger, Francois; Simoncini, David; Voet, Arnout; Shrestha, Rojan; Zhang, Kam Y J
2017-01-01
Protein modeling and design activities often require querying the Protein Data Bank (PDB) with a structural fragment, possibly containing gaps. For some applications, it is preferable to work on a specific subset of the PDB or with unpublished structures. These requirements, along with specific user needs, motivated the creation of a new software to manage and query 3D protein fragments. Fragger is a protein fragment picker that allows protein fragment databases to be created and queried. All fragment lengths are supported and any set of PDB files can be used to create a database. Fragger can efficiently search a fragment database with a query fragment and a distance threshold. Matching fragments are ranked by distance to the query. The query fragment can have structural gaps and the allowed amino acid sequences matching a query can be constrained via a regular expression of one-letter amino acid codes. Fragger also incorporates a tool to compute the backbone RMSD of one versus many fragments in high throughput. Fragger should be useful for protein design, loop grafting and related structural bioinformatics tasks.
Konc, Janez; Cesnik, Tomo; Konc, Joanna Trykowska; Penca, Matej; Janežič, Dušanka
2012-02-27
ProBiS-Database is a searchable repository of precalculated local structural alignments in proteins detected by the ProBiS algorithm in the Protein Data Bank. Identification of functionally important binding regions of the protein is facilitated by structural similarity scores mapped to the query protein structure. PDB structures that have been aligned with a query protein may be rapidly retrieved from the ProBiS-Database, which is thus able to generate hypotheses concerning the roles of uncharacterized proteins. Presented with uncharacterized protein structure, ProBiS-Database can discern relationships between such a query protein and other better known proteins in the PDB. Fast access and a user-friendly graphical interface promote easy exploration of this database of over 420 million local structural alignments. The ProBiS-Database is updated weekly and is freely available online at http://probis.cmm.ki.si/database.
Identification of Conserved Water Sites in Protein Structures for Drug Design.
Jukič, Marko; Konc, Janez; Gobec, Stanislav; Janežič, Dušanka
2017-12-26
Identification of conserved waters in protein structures is a challenging task with applications in molecular docking and protein stability prediction. As an alternative to computationally demanding simulations of proteins in water, experimental cocrystallized waters in the Protein Data Bank (PDB) in combination with a local structure alignment algorithm can be used for reliable prediction of conserved water sites. We developed the ProBiS H2O approach based on the previously developed ProBiS algorithm, which enables identification of conserved water sites in proteins using experimental protein structures from the PDB or a set of custom protein structures available to the user. With a protein structure, a binding site, or an individual water molecule as a query, ProBiS H2O collects similar proteins from the PDB and performs local or binding site-specific superimpositions of the query structure with similar proteins using the ProBiS algorithm. It collects the experimental water molecules from the similar proteins and transposes them to the query protein. Transposed waters are clustered by their mutual proximity, which enables identification of discrete sites in the query protein with high water conservation. ProBiS H2O is a robust and fast new approach that uses existing experimental structural data to identify conserved water sites on the interfaces of protein complexes, for example protein-small molecule interfaces, and elsewhere on the protein structures. It has been successfully validated in several reported proteins in which conserved water molecules were found to play an important role in ligand binding with applications in drug design.
HomPPI: a class of sequence homology based protein-protein interface prediction methods
2011-01-01
Background Although homology-based methods are among the most widely used methods for predicting the structure and function of proteins, the question as to whether interface sequence conservation can be effectively exploited in predicting protein-protein interfaces has been a subject of debate. Results We studied more than 300,000 pair-wise alignments of protein sequences from structurally characterized protein complexes, including both obligate and transient complexes. We identified sequence similarity criteria required for accurate homology-based inference of interface residues in a query protein sequence. Based on these analyses, we developed HomPPI, a class of sequence homology-based methods for predicting protein-protein interface residues. We present two variants of HomPPI: (i) NPS-HomPPI (Non partner-specific HomPPI), which can be used to predict interface residues of a query protein in the absence of knowledge of the interaction partner; and (ii) PS-HomPPI (Partner-specific HomPPI), which can be used to predict the interface residues of a query protein with a specific target protein. Our experiments on a benchmark dataset of obligate homodimeric complexes show that NPS-HomPPI can reliably predict protein-protein interface residues in a given protein, with an average correlation coefficient (CC) of 0.76, sensitivity of 0.83, and specificity of 0.78, when sequence homologs of the query protein can be reliably identified. NPS-HomPPI also reliably predicts the interface residues of intrinsically disordered proteins. Our experiments suggest that NPS-HomPPI is competitive with several state-of-the-art interface prediction servers including those that exploit the structure of the query proteins. The partner-specific classifier, PS-HomPPI can, on a large dataset of transient complexes, predict the interface residues of a query protein with a specific target, with a CC of 0.65, sensitivity of 0.69, and specificity of 0.70, when homologs of both the query and the target can be reliably identified. The HomPPI web server is available at http://homppi.cs.iastate.edu/. Conclusions Sequence homology-based methods offer a class of computationally efficient and reliable approaches for predicting the protein-protein interface residues that participate in either obligate or transient interactions. For query proteins involved in transient interactions, the reliability of interface residue prediction can be improved by exploiting knowledge of putative interaction partners. PMID:21682895
Interactive and Versatile Navigation of Structural Databases.
Korb, Oliver; Kuhn, Bernd; Hert, Jérôme; Taylor, Neil; Cole, Jason; Groom, Colin; Stahl, Martin
2016-05-12
We present CSD-CrossMiner, a novel tool for pharmacophore-based searches in crystal structure databases. Intuitive pharmacophore queries describing, among others, protein-ligand interaction patterns, ligand scaffolds, or protein environments can be built and modified interactively. Matching crystal structures are overlaid onto the query and visualized as soon as they are available, enabling the researcher to quickly modify a hypothesis on the fly. We exemplify the utility of the approach by showing applications relevant to real-world drug discovery projects, including the identification of novel fragments for a specific protein environment or scaffold hopping. The ability to concurrently search protein-ligand binding sites extracted from the Protein Data Bank (PDB) and small organic molecules from the Cambridge Structural Database (CSD) using the same pharmacophore query further emphasizes the flexibility of CSD-CrossMiner. We believe that CSD-CrossMiner closes an important gap in mining structural data and will allow users to extract more value from the growing number of available crystal structures.
PhyreStorm: A Web Server for Fast Structural Searches Against the PDB.
Mezulis, Stefans; Sternberg, Michael J E; Kelley, Lawrence A
2016-02-22
The identification of structurally similar proteins can provide a range of biological insights, and accordingly, the alignment of a query protein to a database of experimentally determined protein structures is a technique commonly used in the fields of structural and evolutionary biology. The PhyreStorm Web server has been designed to provide comprehensive, up-to-date and rapid structural comparisons against the Protein Data Bank (PDB) combined with a rich and intuitive user interface. It is intended that this facility will enable biologists inexpert in bioinformatics access to a powerful tool for exploring protein structure relationships beyond what can be achieved by sequence analysis alone. By partitioning the PDB into similar structures, PhyreStorm is able to quickly discard the majority of structures that cannot possibly align well to a query protein, reducing the number of alignments required by an order of magnitude. PhyreStorm is capable of finding 93±2% of all highly similar (TM-score>0.7) structures in the PDB for each query structure, usually in less than 60s. PhyreStorm is available at http://www.sbg.bio.ic.ac.uk/phyrestorm/. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Query3d: a new method for high-throughput analysis of functional residues in protein structures.
Ausiello, Gabriele; Via, Allegra; Helmer-Citterich, Manuela
2005-12-01
The identification of local similarities between two protein structures can provide clues of a common function. Many different methods exist for searching for similar subsets of residues in proteins of known structure. However, the lack of functional and structural information on single residues, together with the low level of integration of this information in comparison methods, is a limitation that prevents these methods from being fully exploited in high-throughput analyses. Here we describe Query3d, a program that is both a structural DBMS (Database Management System) and a local comparison method. The method conserves a copy of all the residues of the Protein Data Bank annotated with a variety of functional and structural information. New annotations can be easily added from a variety of methods and known databases. The algorithm makes it possible to create complex queries based on the residues' function and then to compare only subsets of the selected residues. Functional information is also essential to speed up the comparison and the analysis of the results. With Query3d, users can easily obtain statistics on how many and which residues share certain properties in all proteins of known structure. At the same time, the method also finds their structural neighbours in the whole PDB. Programs and data can be accessed through the PdbFun web interface.
Query3d: a new method for high-throughput analysis of functional residues in protein structures
Ausiello, Gabriele; Via, Allegra; Helmer-Citterich, Manuela
2005-01-01
Background The identification of local similarities between two protein structures can provide clues of a common function. Many different methods exist for searching for similar subsets of residues in proteins of known structure. However, the lack of functional and structural information on single residues, together with the low level of integration of this information in comparison methods, is a limitation that prevents these methods from being fully exploited in high-throughput analyses. Results Here we describe Query3d, a program that is both a structural DBMS (Database Management System) and a local comparison method. The method conserves a copy of all the residues of the Protein Data Bank annotated with a variety of functional and structural information. New annotations can be easily added from a variety of methods and known databases. The algorithm makes it possible to create complex queries based on the residues' function and then to compare only subsets of the selected residues. Functional information is also essential to speed up the comparison and the analysis of the results. Conclusion With Query3d, users can easily obtain statistics on how many and which residues share certain properties in all proteins of known structure. At the same time, the method also finds their structural neighbours in the whole PDB. Programs and data can be accessed through the PdbFun web interface. PMID:16351754
Collier, James H; Lesk, Arthur M; Garcia de la Banda, Maria; Konagurthu, Arun S
2012-07-01
Searching for well-fitting 3D oligopeptide fragments within a large collection of protein structures is an important task central to many analyses involving protein structures. This article reports a new web server, Super, dedicated to the task of rapidly screening the protein data bank (PDB) to identify all fragments that superpose with a query under a prespecified threshold of root-mean-square deviation (RMSD). Super relies on efficiently computing a mathematical bound on the commonly used structural similarity measure, RMSD of superposition. This allows the server to filter out a large proportion of fragments that are unrelated to the query; >99% of the total number of fragments in some cases. For a typical query, Super scans the current PDB containing over 80,500 structures (with ∼40 million potential oligopeptide fragments to match) in under a minute. Super web server is freely accessible from: http://lcb.infotech.monash.edu.au/super.
Dictionary-driven protein annotation.
Rigoutsos, Isidore; Huynh, Tien; Floratos, Aris; Parida, Laxmi; Platt, Daniel
2002-09-01
Computational methods seeking to automatically determine the properties (functional, structural, physicochemical, etc.) of a protein directly from the sequence have long been the focus of numerous research groups. With the advent of advanced sequencing methods and systems, the number of amino acid sequences that are being deposited in the public databases has been increasing steadily. This has in turn generated a renewed demand for automated approaches that can annotate individual sequences and complete genomes quickly, exhaustively and objectively. In this paper, we present one such approach that is centered around and exploits the Bio-Dictionary, a collection of amino acid patterns that completely covers the natural sequence space and can capture functional and structural signals that have been reused during evolution, within and across protein families. Our annotation approach also makes use of a weighted, position-specific scoring scheme that is unaffected by the over-representation of well-conserved proteins and protein fragments in the databases used. For a given query sequence, the method permits one to determine, in a single pass, the following: local and global similarities between the query and any protein already present in a public database; the likeness of the query to all available archaeal/ bacterial/eukaryotic/viral sequences in the database as a function of amino acid position within the query; the character of secondary structure of the query as a function of amino acid position within the query; the cytoplasmic, transmembrane or extracellular behavior of the query; the nature and position of binding domains, active sites, post-translationally modified sites, signal peptides, etc. In terms of performance, the proposed method is exhaustive, objective and allows for the rapid annotation of individual sequences and full genomes. Annotation examples are presented and discussed in Results, including individual queries and complete genomes that were released publicly after we built the Bio-Dictionary that is used in our experiments. Finally, we have computed the annotations of more than 70 complete genomes and made them available on the World Wide Web at http://cbcsrv.watson.ibm.com/Annotations/.
Kaas, Quentin; Ruiz, Manuel; Lefranc, Marie-Paule
2004-01-01
IMGT/3Dstructure-DB and IMGT/Structural-Query are a novel 3D structure database and a new tool for immunological proteins. They are part of IMGT, the international ImMunoGenetics information system®, a high-quality integrated knowledge resource specializing in immunoglobulins (IG), T cell receptors (TR), major histocompatibility complex (MHC) and related proteins of the immune system (RPI) of human and other vertebrate species, which consists of databases, Web resources and interactive on-line tools. IMGT/3Dstructure-DB data are described according to the IMGT Scientific chart rules based on the IMGT-ONTOLOGY concepts. IMGT/3Dstructure-DB provides IMGT gene and allele identification of IG, TR and MHC proteins with known 3D structures, domain delimitations, amino acid positions according to the IMGT unique numbering and renumbered coordinate flat files. Moreover IMGT/3Dstructure-DB provides 2D graphical representations (or Collier de Perles) and results of contact analysis. The IMGT/StructuralQuery tool allows search of this database based on specific structural characteristics. IMGT/3Dstructure-DB and IMGT/StructuralQuery are freely available at http://imgt.cines.fr. PMID:14681396
ProBiS-CHARMMing: Web Interface for Prediction and Optimization of Ligands in Protein Binding Sites.
Konc, Janez; Miller, Benjamin T; Štular, Tanja; Lešnik, Samo; Woodcock, H Lee; Brooks, Bernard R; Janežič, Dušanka
2015-11-23
Proteins often exist only as apo structures (unligated) in the Protein Data Bank, with their corresponding holo structures (with ligands) unavailable. However, apoproteins may not represent the amino-acid residue arrangement upon ligand binding well, which is especially problematic for molecular docking. We developed the ProBiS-CHARMMing web interface by connecting the ProBiS ( http://probis.cmm.ki.si ) and CHARMMing ( http://www.charmming.org ) web servers into one functional unit that enables prediction of protein-ligand complexes and allows for their geometry optimization and interaction energy calculation. The ProBiS web server predicts ligands (small compounds, proteins, nucleic acids, and single-atom ligands) that may bind to a query protein. This is achieved by comparing its surface structure against a nonredundant database of protein structures and finding those that have binding sites similar to that of the query protein. Existing ligands found in the similar binding sites are then transposed to the query according to predictions from ProBiS. The CHARMMing web server enables, among other things, minimization and potential energy calculation for a wide variety of biomolecular systems, and it is used here to optimize the geometry of the predicted protein-ligand complex structures using the CHARMM force field and to calculate their interaction energies with the corresponding query proteins. We show how ProBiS-CHARMMing can be used to predict ligands and their poses for a particular binding site, and minimize the predicted protein-ligand complexes to obtain representations of holoproteins. The ProBiS-CHARMMing web interface is freely available for academic users at http://probis.nih.gov.
Super: a web server to rapidly screen superposable oligopeptide fragments from the protein data bank
Collier, James H.; Lesk, Arthur M.; Garcia de la Banda, Maria; Konagurthu, Arun S.
2012-01-01
Searching for well-fitting 3D oligopeptide fragments within a large collection of protein structures is an important task central to many analyses involving protein structures. This article reports a new web server, Super, dedicated to the task of rapidly screening the protein data bank (PDB) to identify all fragments that superpose with a query under a prespecified threshold of root-mean-square deviation (RMSD). Super relies on efficiently computing a mathematical bound on the commonly used structural similarity measure, RMSD of superposition. This allows the server to filter out a large proportion of fragments that are unrelated to the query; >99% of the total number of fragments in some cases. For a typical query, Super scans the current PDB containing over 80 500 structures (with ∼40 million potential oligopeptide fragments to match) in under a minute. Super web server is freely accessible from: http://lcb.infotech.monash.edu.au/super. PMID:22638586
Dictionary-driven protein annotation
Rigoutsos, Isidore; Huynh, Tien; Floratos, Aris; Parida, Laxmi; Platt, Daniel
2002-01-01
Computational methods seeking to automatically determine the properties (functional, structural, physicochemical, etc.) of a protein directly from the sequence have long been the focus of numerous research groups. With the advent of advanced sequencing methods and systems, the number of amino acid sequences that are being deposited in the public databases has been increasing steadily. This has in turn generated a renewed demand for automated approaches that can annotate individual sequences and complete genomes quickly, exhaustively and objectively. In this paper, we present one such approach that is centered around and exploits the Bio-Dictionary, a collection of amino acid patterns that completely covers the natural sequence space and can capture functional and structural signals that have been reused during evolution, within and across protein families. Our annotation approach also makes use of a weighted, position-specific scoring scheme that is unaffected by the over-representation of well-conserved proteins and protein fragments in the databases used. For a given query sequence, the method permits one to determine, in a single pass, the following: local and global similarities between the query and any protein already present in a public database; the likeness of the query to all available archaeal/bacterial/eukaryotic/viral sequences in the database as a function of amino acid position within the query; the character of secondary structure of the query as a function of amino acid position within the query; the cytoplasmic, transmembrane or extracellular behavior of the query; the nature and position of binding domains, active sites, post-translationally modified sites, signal peptides, etc. In terms of performance, the proposed method is exhaustive, objective and allows for the rapid annotation of individual sequences and full genomes. Annotation examples are presented and discussed in Results, including individual queries and complete genomes that were released publicly after we built the Bio-Dictionary that is used in our experiments. Finally, we have computed the annotations of more than 70 complete genomes and made them available on the World Wide Web at http://cbcsrv.watson.ibm.com/Annotations/. PMID:12202776
ProBiS-ligands: a web server for prediction of ligands by examination of protein binding sites.
Konc, Janez; Janežič, Dušanka
2014-07-01
The ProBiS-ligands web server predicts binding of ligands to a protein structure. Starting with a protein structure or binding site, ProBiS-ligands first identifies template proteins in the Protein Data Bank that share similar binding sites. Based on the superimpositions of the query protein and the similar binding sites found, the server then transposes the ligand structures from those sites to the query protein. Such ligand prediction supports many activities, e.g. drug repurposing. The ProBiS-ligands web server, an extension of the ProBiS web server, is open and free to all users at http://probis.cmm.ki.si/ligands. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
2015-01-01
Background In recent years, with advances in techniques for protein structure analysis, the knowledge about protein structure and function has been published in a vast number of articles. A method to search for specific publications from such a large pool of articles is needed. In this paper, we propose a method to search for related articles on protein structure analysis by using an article itself as a query. Results Each article is represented as a set of concepts in the proposed method. Then, by using similarities among concepts formulated from databases such as Gene Ontology, similarities between articles are evaluated. In this framework, the desired search results vary depending on the user's search intention because a variety of information is included in a single article. Therefore, the proposed method provides not only one input article (primary article) but also additional articles related to it as an input query to determine the search intention of the user, based on the relationship between two query articles. In other words, based on the concepts contained in the input article and additional articles, we actualize a relevant literature search that considers user intention by varying the degree of attention given to each concept and modifying the concept hierarchy graph. Conclusions We performed an experiment to retrieve relevant papers from articles on protein structure analysis registered in the Protein Data Bank by using three query datasets. The experimental results yielded search results with better accuracy than when user intention was not considered, confirming the effectiveness of the proposed method. PMID:25952498
Standley, Daron M; Toh, Hiroyuki; Nakamura, Haruki
2008-09-01
A method to functionally annotate structural genomics targets, based on a novel structural alignment scoring function, is proposed. In the proposed score, position-specific scoring matrices are used to weight structurally aligned residue pairs to highlight evolutionarily conserved motifs. The functional form of the score is first optimized for discriminating domains belonging to the same Pfam family from domains belonging to different families but the same CATH or SCOP superfamily. In the optimization stage, we consider four standard weighting functions as well as our own, the "maximum substitution probability," and combinations of these functions. The optimized score achieves an area of 0.87 under the receiver-operating characteristic curve with respect to identifying Pfam families within a sequence-unique benchmark set of domain pairs. Confidence measures are then derived from the benchmark distribution of true-positive scores. The alignment method is next applied to the task of functionally annotating 230 query proteins released to the public as part of the Protein 3000 structural genomics project in Japan. Of these queries, 78 were found to align to templates with the same Pfam family as the query or had sequence identities > or = 30%. Another 49 queries were found to match more distantly related templates. Within this group, the template predicted by our method to be the closest functional relative was often not the most structurally similar. Several nontrivial cases are discussed in detail. Finally, 103 queries matched templates at the fold level, but not the family or superfamily level, and remain functionally uncharacterized. 2008 Wiley-Liss, Inc.
Holm, Liisa; Laakso, Laura M
2016-07-08
The Dali server (http://ekhidna2.biocenter.helsinki.fi/dali) is a network service for comparing protein structures in 3D. In favourable cases, comparing 3D structures may reveal biologically interesting similarities that are not detectable by comparing sequences. The Dali server has been running in various places for over 20 years and is used routinely by crystallographers on newly solved structures. The latest update of the server provides enhanced analytics for the study of sequence and structure conservation. The server performs three types of structure comparisons: (i) Protein Data Bank (PDB) search compares one query structure against those in the PDB and returns a list of similar structures; (ii) pairwise comparison compares one query structure against a list of structures specified by the user; and (iii) all against all structure comparison returns a structural similarity matrix, a dendrogram and a multidimensional scaling projection of a set of structures specified by the user. Structural superimpositions are visualized using the Java-free WebGL viewer PV. The structural alignment view is enhanced by sequence similarity searches against Uniprot. The combined structure-sequence alignment information is compressed to a stack of aligned sequence logos. In the stack, each structure is structurally aligned to the query protein and represented by a sequence logo. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Motivated Proteins: A web application for studying small three-dimensional protein motifs
Leader, David P; Milner-White, E James
2009-01-01
Background Small loop-shaped motifs are common constituents of the three-dimensional structure of proteins. Typically they comprise between three and seven amino acid residues, and are defined by a combination of dihedral angles and hydrogen bonding partners. The most abundant of these are αβ-motifs, asx-motifs, asx-turns, β-bulges, β-bulge loops, β-turns, nests, niches, Schellmann loops, ST-motifs, ST-staples and ST-turns. We have constructed a database of such motifs from a range of high-quality protein structures and built a web application as a visual interface to this. Description The web application, Motivated Proteins, provides access to these 12 motifs (with 48 sub-categories) in a database of over 400 representative proteins. Queries can be made for specific categories or sub-categories of motif, motifs in the vicinity of ligands, motifs which include part of an enzyme active site, overlapping motifs, or motifs which include a particular amino acid sequence. Individual proteins can be specified, or, where appropriate, motifs for all proteins listed. The results of queries are presented in textual form as an (X)HTML table, and may be saved as parsable plain text or XML. Motifs can be viewed and manipulated either individually or in the context of the protein in the Jmol applet structural viewer. Cartoons of the motifs imposed on a linear representation of protein secondary structure are also provided. Summary information for the motifs is available, as are histograms of amino acid distribution, and graphs of dihedral angles at individual positions in the motifs. Conclusion Motivated Proteins is a publicly and freely accessible web application that enables protein scientists to study small three-dimensional motifs without requiring knowledge of either Structured Query Language or the underlying database schema. PMID:19210785
Bandyopadhyay, Deepak; Huan, Jun; Prins, Jan; Snoeyink, Jack; Wang, Wei; Tropsha, Alexander
2009-11-01
Protein function prediction is one of the central problems in computational biology. We present a novel automated protein structure-based function prediction method using libraries of local residue packing patterns that are common to most proteins in a known functional family. Critical to this approach is the representation of a protein structure as a graph where residue vertices (residue name used as a vertex label) are connected by geometrical proximity edges. The approach employs two steps. First, it uses a fast subgraph mining algorithm to find all occurrences of family-specific labeled subgraphs for all well characterized protein structural and functional families. Second, it queries a new structure for occurrences of a set of motifs characteristic of a known family, using a graph index to speed up Ullman's subgraph isomorphism algorithm. The confidence of function inference from structure depends on the number of family-specific motifs found in the query structure compared with their distribution in a large non-redundant database of proteins. This method can assign a new structure to a specific functional family in cases where sequence alignments, sequence patterns, structural superposition and active site templates fail to provide accurate annotation.
Projections for fast protein structure retrieval
Bhattacharya, Sourangshu; Bhattacharyya, Chiranjib; Chandra, Nagasuma R
2006-01-01
Background In recent times, there has been an exponential rise in the number of protein structures in databases e.g. PDB. So, design of fast algorithms capable of querying such databases is becoming an increasingly important research issue. This paper reports an algorithm, motivated from spectral graph matching techniques, for retrieving protein structures similar to a query structure from a large protein structure database. Each protein structure is specified by the 3D coordinates of residues of the protein. The algorithm is based on a novel characterization of the residues, called projections, leading to a similarity measure between the residues of the two proteins. This measure is exploited to efficiently compute the optimal equivalences. Results Experimental results show that, the current algorithm outperforms the state of the art on benchmark datasets in terms of speed without losing accuracy. Search results on SCOP 95% nonredundant database, for fold similarity with 5 proteins from different SCOP classes show that the current method performs competitively with the standard algorithm CE. The algorithm is also capable of detecting non-topological similarities between two proteins which is not possible with most of the state of the art tools like Dali. PMID:17254310
The distribution and query systems of the RCSB Protein Data Bank
Bourne, Philip E.; Addess, Kenneth J.; Bluhm, Wolfgang F.; Chen, Li; Deshpande, Nita; Feng, Zukang; Fleri, Ward; Green, Rachel; Merino-Ott, Jeffrey C.; Townsend-Merino, Wayne; Weissig, Helge; Westbrook, John; Berman, Helen M.
2004-01-01
The Protein Data Bank (PDB; http://www.pdb.org) is the primary source of information on the 3D structure of biological macromolecules. The PDB’s mandate is to disseminate this information in the most usable form and as widely as possible. The current query and distribution system is described and an alpha version of the future re-engineered system introduced. PMID:14681399
Rapid search for tertiary fragments reveals protein sequence–structure relationships
Zhou, Jianfu; Grigoryan, Gevorg
2015-01-01
Finding backbone substructures from the Protein Data Bank that match an arbitrary query structural motif, composed of multiple disjoint segments, is a problem of growing relevance in structure prediction and protein design. Although numerous protein structure search approaches have been proposed, methods that address this specific task without additional restrictions and on practical time scales are generally lacking. Here, we propose a solution, dubbed MASTER, that is both rapid, enabling searches over the Protein Data Bank in a matter of seconds, and provably correct, finding all matches below a user-specified root-mean-square deviation cutoff. We show that despite the potentially exponential time complexity of the problem, running times in practice are modest even for queries with many segments. The ability to explore naturally plausible structural and sequence variations around a given motif has the potential to synthesize its design principles in an automated manner; so we go on to illustrate the utility of MASTER to protein structural biology. We demonstrate its capacity to rapidly establish structure–sequence relationships, uncover the native designability landscapes of tertiary structural motifs, identify structural signatures of binding, and automatically rewire protein topologies. Given the broad utility of protein tertiary fragment searches, we hope that providing MASTER in an open-source format will enable novel advances in understanding, predicting, and designing protein structure. PMID:25420575
Discriminative structural approaches for enzyme active-site prediction.
Kato, Tsuyoshi; Nagano, Nozomi
2011-02-15
Predicting enzyme active-sites in proteins is an important issue not only for protein sciences but also for a variety of practical applications such as drug design. Because enzyme reaction mechanisms are based on the local structures of enzyme active-sites, various template-based methods that compare local structures in proteins have been developed to date. In comparing such local sites, a simple measurement, RMSD, has been used so far. This paper introduces new machine learning algorithms that refine the similarity/deviation for comparison of local structures. The similarity/deviation is applied to two types of applications, single template analysis and multiple template analysis. In the single template analysis, a single template is used as a query to search proteins for active sites, whereas a protein structure is examined as a query to discover the possible active-sites using a set of templates in the multiple template analysis. This paper experimentally illustrates that the machine learning algorithms effectively improve the similarity/deviation measurements for both the analyses.
Protein 3D Structure and Electron Microscopy Map Retrieval Using 3D-SURFER2.0 and EM-SURFER.
Han, Xusi; Wei, Qing; Kihara, Daisuke
2017-12-08
With the rapid growth in the number of solved protein structures stored in the Protein Data Bank (PDB) and the Electron Microscopy Data Bank (EMDB), it is essential to develop tools to perform real-time structure similarity searches against the entire structure database. Since conventional structure alignment methods need to sample different orientations of proteins in the three-dimensional space, they are time consuming and unsuitable for rapid, real-time database searches. To this end, we have developed 3D-SURFER and EM-SURFER, which utilize 3D Zernike descriptors (3DZD) to conduct high-throughput protein structure comparison, visualization, and analysis. Taking an atomic structure or an electron microscopy map of a protein or a protein complex as input, the 3DZD of a query protein is computed and compared with the 3DZD of all other proteins in PDB or EMDB. In addition, local geometrical characteristics of a query protein can be analyzed using VisGrid and LIGSITE CSC in 3D-SURFER. This article describes how to use 3D-SURFER and EM-SURFER to carry out protein surface shape similarity searches, local geometric feature analysis, and interpretation of the search results. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andonov, Rumen; Djidjev, Hristo Nikolov; Klau, Gunnar W.
In this paper, we propose a new distance measure for comparing two protein structures based on their contact map representations. We show that our novel measure, which we refer to as the maximum contact map overlap (max-CMO) metric, satisfies all properties of a metric on the space of protein representations. Having a metric in that space allows one to avoid pairwise comparisons on the entire database and, thus, to significantly accelerate exploring the protein space compared to no-metric spaces. We show on a gold standard superfamily classification benchmark set of 6759 proteins that our exact k-nearest neighbor (k-NN) scheme classifiesmore » up to 224 out of 236 queries correctly and on a larger, extended version of the benchmark with 60; 850 additional structures, up to 1361 out of 1369 queries. Finally, our k-NN classification thus provides a promising approach for the automatic classification of protein structures based on flexible contact map overlap alignments.« less
Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric
Andonov, Rumen; Djidjev, Hristo Nikolov; Klau, Gunnar W.; ...
2015-10-09
In this paper, we propose a new distance measure for comparing two protein structures based on their contact map representations. We show that our novel measure, which we refer to as the maximum contact map overlap (max-CMO) metric, satisfies all properties of a metric on the space of protein representations. Having a metric in that space allows one to avoid pairwise comparisons on the entire database and, thus, to significantly accelerate exploring the protein space compared to no-metric spaces. We show on a gold standard superfamily classification benchmark set of 6759 proteins that our exact k-nearest neighbor (k-NN) scheme classifiesmore » up to 224 out of 236 queries correctly and on a larger, extended version of the benchmark with 60; 850 additional structures, up to 1361 out of 1369 queries. Finally, our k-NN classification thus provides a promising approach for the automatic classification of protein structures based on flexible contact map overlap alignments.« less
FoldMiner and LOCK 2: protein structure comparison and motif discovery on the web.
Shapiro, Jessica; Brutlag, Douglas
2004-07-01
The FoldMiner web server (http://foldminer.stanford.edu/) provides remote access to methods for protein structure alignment and unsupervised motif discovery. FoldMiner is unique among such algorithms in that it improves both the motif definition and the sensitivity of a structural similarity search by combining the search and motif discovery methods and using information from each process to enhance the other. In a typical run, a query structure is aligned to all structures in one of several databases of single domain targets in order to identify its structural neighbors and to discover a motif that is the basis for the similarity among the query and statistically significant targets. This process is fully automated, but options for manual refinement of the results are available as well. The server uses the Chime plugin and customized controls to allow for visualization of the motif and of structural superpositions. In addition, we provide an interface to the LOCK 2 algorithm for rapid alignments of a query structure to smaller numbers of user-specified targets.
Integrated databanks access and sequence/structure analysis services at the PBIL.
Perrière, Guy; Combet, Christophe; Penel, Simon; Blanchet, Christophe; Thioulouse, Jean; Geourjon, Christophe; Grassot, Julien; Charavay, Céline; Gouy, Manolo; Duret, Laurent; Deléage, Gilbert
2003-07-01
The World Wide Web server of the PBIL (Pôle Bioinformatique Lyonnais) provides on-line access to sequence databanks and to many tools of nucleic acid and protein sequence analyses. This server allows to query nucleotide sequence banks in the EMBL and GenBank formats and protein sequence banks in the SWISS-PROT and PIR formats. The query engine on which our data bank access is based is the ACNUC system. It allows the possibility to build complex queries to access functional zones of biological interest and to retrieve large sequence sets. Of special interest are the unique features provided by this system to query the data banks of gene families developed at the PBIL. The server also provides access to a wide range of sequence analysis methods: similarity search programs, multiple alignments, protein structure prediction and multivariate statistics. An originality of this server is the integration of these two aspects: sequence retrieval and sequence analysis. Indeed, thanks to the introduction of re-usable lists, it is possible to perform treatments on large sets of data. The PBIL server can be reached at: http://pbil.univ-lyon1.fr.
Tsai, Keng-Chang; Jian, Jhih-Wei; Yang, Ei-Wen; Hsu, Po-Chiang; Peng, Hung-Pin; Chen, Ching-Tai; Chen, Jun-Bo; Chang, Jeng-Yih; Hsu, Wen-Lian; Yang, An-Suei
2012-01-01
Non-covalent protein-carbohydrate interactions mediate molecular targeting in many biological processes. Prediction of non-covalent carbohydrate binding sites on protein surfaces not only provides insights into the functions of the query proteins; information on key carbohydrate-binding residues could suggest site-directed mutagenesis experiments, design therapeutics targeting carbohydrate-binding proteins, and provide guidance in engineering protein-carbohydrate interactions. In this work, we show that non-covalent carbohydrate binding sites on protein surfaces can be predicted with relatively high accuracy when the query protein structures are known. The prediction capabilities were based on a novel encoding scheme of the three-dimensional probability density maps describing the distributions of 36 non-covalent interacting atom types around protein surfaces. One machine learning model was trained for each of the 30 protein atom types. The machine learning algorithms predicted tentative carbohydrate binding sites on query proteins by recognizing the characteristic interacting atom distribution patterns specific for carbohydrate binding sites from known protein structures. The prediction results for all protein atom types were integrated into surface patches as tentative carbohydrate binding sites based on normalized prediction confidence level. The prediction capabilities of the predictors were benchmarked by a 10-fold cross validation on 497 non-redundant proteins with known carbohydrate binding sites. The predictors were further tested on an independent test set with 108 proteins. The residue-based Matthews correlation coefficient (MCC) for the independent test was 0.45, with prediction precision and sensitivity (or recall) of 0.45 and 0.49 respectively. In addition, 111 unbound carbohydrate-binding protein structures for which the structures were determined in the absence of the carbohydrate ligands were predicted with the trained predictors. The overall prediction MCC was 0.49. Independent tests on anti-carbohydrate antibodies showed that the carbohydrate antigen binding sites were predicted with comparable accuracy. These results demonstrate that the predictors are among the best in carbohydrate binding site predictions to date. PMID:22848404
Exploring Polypharmacology Using a ROCS-Based Target Fishing Approach
2012-01-01
target representatives. Target profiles were then generated for a given query molecule by computing maximal shape/ chemistry overlap between the query...molecule and the drug sets assigned to each protein target. The overlap was computed using the program ROCS (Rapid Overlay of Chemical Structures ). We...approaches in off-target prediction has been reviewed.9,10 Many structure -based target fishing (SBTF) approaches, such as INVDOCK11 and Target Fishing Dock
Ashkenazy, Haim; Abadi, Shiran; Martz, Eric; Chay, Ofer; Mayrose, Itay; Pupko, Tal; Ben-Tal, Nir
2016-01-01
The degree of evolutionary conservation of an amino acid in a protein or a nucleic acid in DNA/RNA reflects a balance between its natural tendency to mutate and the overall need to retain the structural integrity and function of the macromolecule. The ConSurf web server (http://consurf.tau.ac.il), established over 15 years ago, analyses the evolutionary pattern of the amino/nucleic acids of the macromolecule to reveal regions that are important for structure and/or function. Starting from a query sequence or structure, the server automatically collects homologues, infers their multiple sequence alignment and reconstructs a phylogenetic tree that reflects their evolutionary relations. These data are then used, within a probabilistic framework, to estimate the evolutionary rates of each sequence position. Here we introduce several new features into ConSurf, including automatic selection of the best evolutionary model used to infer the rates, the ability to homology-model query proteins, prediction of the secondary structure of query RNA molecules from sequence, the ability to view the biological assembly of a query (in addition to the single chain), mapping of the conservation grades onto 2D RNA models and an advanced view of the phylogenetic tree that enables interactively rerunning ConSurf with the taxa of a sub-tree. PMID:27166375
Sousa, Filipa L; Parente, Daniel J; Hessman, Jacob A; Chazelle, Allen; Teichmann, Sarah A; Swint-Kruse, Liskin
2016-09-01
The AlloRep database (www.AlloRep.org) (Sousa et al., 2016) [1] compiles extensive sequence, mutagenesis, and structural information for the LacI/GalR family of transcription regulators. Sequence alignments are presented for >3000 proteins in 45 paralog subfamilies and as a subsampled alignment of the whole family. Phenotypic and biochemical data on almost 6000 mutants have been compiled from an exhaustive search of the literature; citations for these data are included herein. These data include information about oligomerization state, stability, DNA binding and allosteric regulation. Protein structural data for 65 proteins are presented as easily-accessible, residue-contact networks. Finally, this article includes example queries to enable the use of the AlloRep database. See the related article, "AlloRep: a repository of sequence, structural and mutagenesis data for the LacI/GalR transcription regulators" (Sousa et al., 2016) [1].
Automatic Prediction of Protein 3D Structures by Probabilistic Multi-template Homology Modeling.
Meier, Armin; Söding, Johannes
2015-10-01
Homology modeling predicts the 3D structure of a query protein based on the sequence alignment with one or more template proteins of known structure. Its great importance for biological research is owed to its speed, simplicity, reliability and wide applicability, covering more than half of the residues in protein sequence space. Although multiple templates have been shown to generally increase model quality over single templates, the information from multiple templates has so far been combined using empirically motivated, heuristic approaches. We present here a rigorous statistical framework for multi-template homology modeling. First, we find that the query proteins' atomic distance restraints can be accurately described by two-component Gaussian mixtures. This insight allowed us to apply the standard laws of probability theory to combine restraints from multiple templates. Second, we derive theoretically optimal weights to correct for the redundancy among related templates. Third, a heuristic template selection strategy is proposed. We improve the average GDT-ha model quality score by 11% over single template modeling and by 6.5% over a conventional multi-template approach on a set of 1000 query proteins. Robustness with respect to wrong constraints is likewise improved. We have integrated our multi-template modeling approach with the popular MODELLER homology modeling software in our free HHpred server http://toolkit.tuebingen.mpg.de/hhpred and also offer open source software for running MODELLER with the new restraints at https://bitbucket.org/soedinglab/hh-suite.
Columba: an integrated database of proteins, structures, and annotations.
Trissl, Silke; Rother, Kristian; Müller, Heiko; Steinke, Thomas; Koch, Ina; Preissner, Robert; Frömmel, Cornelius; Leser, Ulf
2005-03-31
Structural and functional research often requires the computation of sets of protein structures based on certain properties of the proteins, such as sequence features, fold classification, or functional annotation. Compiling such sets using current web resources is tedious because the necessary data are spread over many different databases. To facilitate this task, we have created COLUMBA, an integrated database of annotations of protein structures. COLUMBA currently integrates twelve different databases, including PDB, KEGG, Swiss-Prot, CATH, SCOP, the Gene Ontology, and ENZYME. The database can be searched using either keyword search or data source-specific web forms. Users can thus quickly select and download PDB entries that, for instance, participate in a particular pathway, are classified as containing a certain CATH architecture, are annotated as having a certain molecular function in the Gene Ontology, and whose structures have a resolution under a defined threshold. The results of queries are provided in both machine-readable extensible markup language and human-readable format. The structures themselves can be viewed interactively on the web. The COLUMBA database facilitates the creation of protein structure data sets for many structure-based studies. It allows to combine queries on a number of structure-related databases not covered by other projects at present. Thus, information on both many and few protein structures can be used efficiently. The web interface for COLUMBA is available at http://www.columba-db.de.
muBLASTP: database-indexed protein sequence search on multicore CPUs.
Zhang, Jing; Misra, Sanchit; Wang, Hao; Feng, Wu-Chun
2016-11-04
The Basic Local Alignment Search Tool (BLAST) is a fundamental program in the life sciences that searches databases for sequences that are most similar to a query sequence. Currently, the BLAST algorithm utilizes a query-indexed approach. Although many approaches suggest that sequence search with a database index can achieve much higher throughput (e.g., BLAT, SSAHA, and CAFE), they cannot deliver the same level of sensitivity as the query-indexed BLAST, i.e., NCBI BLAST, or they can only support nucleotide sequence search, e.g., MegaBLAST. Due to different challenges and characteristics between query indexing and database indexing, the existing techniques for query-indexed search cannot be used into database indexed search. muBLASTP, a novel database-indexed BLAST for protein sequence search, delivers identical hits returned to NCBI BLAST. On Intel Haswell multicore CPUs, for a single query, the single-threaded muBLASTP achieves up to a 4.41-fold speedup for alignment stages, and up to a 1.75-fold end-to-end speedup over single-threaded NCBI BLAST. For a batch of queries, the multithreaded muBLASTP achieves up to a 5.7-fold speedups for alignment stages, and up to a 4.56-fold end-to-end speedup over multithreaded NCBI BLAST. With a newly designed index structure for protein database and associated optimizations in BLASTP algorithm, we re-factored BLASTP algorithm for modern multicore processors that achieves much higher throughput with acceptable memory footprint for the database index.
Kister, Alexander
2015-01-01
We present an alternative approach to protein 3D folding prediction based on determination of rules that specify distribution of “favorable” residues, that are mainly responsible for a given fold formation, and “unfavorable” residues, that are incompatible with that fold, in polypeptide sequences. The process of determining favorable and unfavorable residues is iterative. The starting assumptions are based on the general principles of protein structure formation as well as structural features peculiar to a protein fold under investigation. The initial assumptions are tested one-by-one for a set of all known proteins with a given structure. The assumption is accepted as a “rule of amino acid distribution” for the protein fold if it holds true for all, or near all, structures. If the assumption is not accepted as a rule, it can be modified to better fit the data and then tested again in the next step of the iterative search algorithm, or rejected. We determined the set of amino acid distribution rules for a large group of beta sandwich-like proteins characterized by a specific arrangement of strands in two beta sheets. It was shown that this set of rules is highly sensitive (~90%) and very specific (~99%) for identifying sequences of proteins with specified beta sandwich fold structure. The advantage of the proposed approach is that it does not require that query proteins have a high degree of homology to proteins with known structure. So long as the query protein satisfies residue distribution rules, it can be confidently assigned to its respective protein fold. Another advantage of our approach is that it allows for a better understanding of which residues play an essential role in protein fold formation. It may, therefore, facilitate rational protein engineering design. PMID:25625198
Zhang, Chengxin; Zheng, Wei; Freddolino, Peter L; Zhang, Yang
2018-03-10
Homology-based transferal remains the major approach to computational protein function annotations, but it becomes increasingly unreliable when the sequence identity between query and template decreases below 30%. We propose a novel pipeline, MetaGO, to deduce Gene Ontology attributes of proteins by combining sequence homology-based annotation with low-resolution structure prediction and comparison, and partner's homology-based protein-protein network mapping. The pipeline was tested on a large-scale set of 1000 non-redundant proteins from the CAFA3 experiment. Under the stringent benchmark conditions where templates with >30% sequence identity to the query are excluded, MetaGO achieves average F-measures of 0.487, 0.408, and 0.598, for Molecular Function, Biological Process, and Cellular Component, respectively, which are significantly higher than those achieved by other state-of-the-art function annotations methods. Detailed data analysis shows that the major advantage of the MetaGO lies in the new functional homolog detections from partner's homology-based network mapping and structure-based local and global structure alignments, the confidence scores of which can be optimally combined through logistic regression. These data demonstrate the power of using a hybrid model incorporating protein structure and interaction networks to deduce new functional insights beyond traditional sequence homology-based referrals, especially for proteins that lack homologous function templates. The MetaGO pipeline is available at http://zhanglab.ccmb.med.umich.edu/MetaGO/. Copyright © 2018. Published by Elsevier Ltd.
A Real-Time All-Atom Structural Search Engine for Proteins
Gonzalez, Gabriel; Hannigan, Brett; DeGrado, William F.
2014-01-01
Protein designers use a wide variety of software tools for de novo design, yet their repertoire still lacks a fast and interactive all-atom search engine. To solve this, we have built the Suns program: a real-time, atomic search engine integrated into the PyMOL molecular visualization system. Users build atomic-level structural search queries within PyMOL and receive a stream of search results aligned to their query within a few seconds. This instant feedback cycle enables a new “designability”-inspired approach to protein design where the designer searches for and interactively incorporates native-like fragments from proven protein structures. We demonstrate the use of Suns to interactively build protein motifs, tertiary interactions, and to identify scaffolds compatible with hot-spot residues. The official web site and installer are located at http://www.degradolab.org/suns/ and the source code is hosted at https://github.com/godotgildor/Suns (PyMOL plugin, BSD license), https://github.com/Gabriel439/suns-cmd (command line client, BSD license), and https://github.com/Gabriel439/suns-search (search engine server, GPLv2 license). PMID:25079944
A real-time all-atom structural search engine for proteins.
Gonzalez, Gabriel; Hannigan, Brett; DeGrado, William F
2014-07-01
Protein designers use a wide variety of software tools for de novo design, yet their repertoire still lacks a fast and interactive all-atom search engine. To solve this, we have built the Suns program: a real-time, atomic search engine integrated into the PyMOL molecular visualization system. Users build atomic-level structural search queries within PyMOL and receive a stream of search results aligned to their query within a few seconds. This instant feedback cycle enables a new "designability"-inspired approach to protein design where the designer searches for and interactively incorporates native-like fragments from proven protein structures. We demonstrate the use of Suns to interactively build protein motifs, tertiary interactions, and to identify scaffolds compatible with hot-spot residues. The official web site and installer are located at http://www.degradolab.org/suns/ and the source code is hosted at https://github.com/godotgildor/Suns (PyMOL plugin, BSD license), https://github.com/Gabriel439/suns-cmd (command line client, BSD license), and https://github.com/Gabriel439/suns-search (search engine server, GPLv2 license).
Struct2Net: a web service to predict protein–protein interactions using a structure-based approach
Singh, Rohit; Park, Daniel; Xu, Jinbo; Hosur, Raghavendra; Berger, Bonnie
2010-01-01
Struct2Net is a web server for predicting interactions between arbitrary protein pairs using a structure-based approach. Prediction of protein–protein interactions (PPIs) is a central area of interest and successful prediction would provide leads for experiments and drug design; however, the experimental coverage of the PPI interactome remains inadequate. We believe that Struct2Net is the first community-wide resource to provide structure-based PPI predictions that go beyond homology modeling. Also, most web-resources for predicting PPIs currently rely on functional genomic data (e.g. GO annotation, gene expression, cellular localization, etc.). Our structure-based approach is independent of such methods and only requires the sequence information of the proteins being queried. The web service allows multiple querying options, aimed at maximizing flexibility. For the most commonly studied organisms (fly, human and yeast), predictions have been pre-computed and can be retrieved almost instantaneously. For proteins from other species, users have the option of getting a quick-but-approximate result (using orthology over pre-computed results) or having a full-blown computation performed. The web service is freely available at http://struct2net.csail.mit.edu. PMID:20513650
iDBPs: a web server for the identification of DNA binding proteins.
Nimrod, Guy; Schushan, Maya; Szilágyi, András; Leslie, Christina; Ben-Tal, Nir
2010-03-01
The iDBPs server uses the three-dimensional (3D) structure of a query protein to predict whether it binds DNA. First, the algorithm predicts the functional region of the protein based on its evolutionary profile; the assumption is that large clusters of conserved residues are good markers of functional regions. Next, various characteristics of the predicted functional region as well as global features of the protein are calculated, such as the average surface electrostatic potential, the dipole moment and cluster-based amino acid conservation patterns. Finally, a random forests classifier is used to predict whether the query protein is likely to bind DNA and to estimate the prediction confidence. We have trained and tested the classifier on various datasets and shown that it outperformed related methods. On a dataset that reflects the fraction of DNA binding proteins (DBPs) in a proteome, the area under the ROC curve was 0.90. The application of the server to an updated version of the N-Func database, which contains proteins of unknown function with solved 3D-structure, suggested new putative DBPs for experimental studies. http://idbps.tau.ac.il/
SSEP: secondary structural elements of proteins
Shanthi, V.; Selvarani, P.; Kiran Kumar, Ch.; Mohire, C. S.; Sekar, K.
2003-01-01
SSEP is a comprehensive resource for accessing information related to the secondary structural elements present in the 25 and 90% non-redundant protein chains. The database contains 1771 protein chains from 1670 protein structures and 6182 protein chains from 5425 protein structures in 25 and 90% non-redundant protein chains, respectively. The current version provides information about the α-helical segments and β-strand fragments of varying lengths. In addition, it also contains the information about 310-helix, β- and ν-turns and hairpin loops. The free graphics program RASMOL has been interfaced with the search engine to visualize the three-dimensional structures of the user queried secondary structural fragment. The database is updated regularly and is available through Bioinformatics web server at http://cluster.physics.iisc.ernet.in/ssep/ or http://144.16.71.148/ssep/. PMID:12824336
Sehnal, David; Pravda, Lukáš; Svobodová Vařeková, Radka; Ionescu, Crina-Maria; Koča, Jaroslav
2015-07-01
Well defined biomacromolecular patterns such as binding sites, catalytic sites, specific protein or nucleic acid sequences, etc. precisely modulate many important biological phenomena. We introduce PatternQuery, a web-based application designed for detection and fast extraction of such patterns. The application uses a unique query language with Python-like syntax to define the patterns that will be extracted from datasets provided by the user, or from the entire Protein Data Bank (PDB). Moreover, the database-wide search can be restricted using a variety of criteria, such as PDB ID, resolution, and organism of origin, to provide only relevant data. The extraction generally takes a few seconds for several hundreds of entries, up to approximately one hour for the whole PDB. The detected patterns are made available for download to enable further processing, as well as presented in a clear tabular and graphical form directly in the browser. The unique design of the language and the provided service could pave the way towards novel PDB-wide analyses, which were either difficult or unfeasible in the past. The application is available free of charge at http://ncbr.muni.cz/PatternQuery. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
PARS: a web server for the prediction of Protein Allosteric and Regulatory Sites.
Panjkovich, Alejandro; Daura, Xavier
2014-05-01
The regulation of protein activity is a key aspect of life at the molecular level. Unveiling its details is thus crucial to understanding signalling and metabolic pathways. The most common and powerful mechanism of protein-function regulation is allostery, which has been increasingly calling the attention of medicinal chemists due to its potential for the discovery of novel therapeutics. In this context, PARS is a simple and fast method that queries protein dynamics and structural conservation to identify pockets on a protein structure that may exert a regulatory effect on the binding of a small-molecule ligand.
Whitmore, Lee; Mavridis, Lazaros; Wallace, B A; Janes, Robert W
2018-01-01
Circular dichroism spectroscopy is a well-used, but simple method in structural biology for providing information on the secondary structure and folds of proteins. DichroMatch (DM@PCDDB) is an online tool that is newly available in the Protein Circular Dichroism Data Bank (PCDDB), which takes advantage of the wealth of spectral and metadata deposited therein, to enable identification of spectral nearest neighbors of a query protein based on four different methods of spectral matching. DM@PCDDB can potentially provide novel information about structural relationships between proteins and can be used in comparison studies of protein homologs and orthologs. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.
Sharma, Ronesh; Bayarjargal, Maitsetseg; Tsunoda, Tatsuhiko; Patil, Ashwini; Sharma, Alok
2018-01-21
Intrinsically Disordered Proteins (IDPs) lack stable tertiary structure and they actively participate in performing various biological functions. These IDPs expose short binding regions called Molecular Recognition Features (MoRFs) that permit interaction with structured protein regions. Upon interaction they undergo a disorder-to-order transition as a result of which their functionality arises. Predicting these MoRFs in disordered protein sequences is a challenging task. In this study, we present MoRFpred-plus, an improved predictor over our previous proposed predictor to identify MoRFs in disordered protein sequences. Two separate independent propensity scores are computed via incorporating physicochemical properties and HMM profiles, these scores are combined to predict final MoRF propensity score for a given residue. The first score reflects the characteristics of a query residue to be part of MoRF region based on the composition and similarity of assumed MoRF and flank regions. The second score reflects the characteristics of a query residue to be part of MoRF region based on the properties of flanks associated around the given residue in the query protein sequence. The propensity scores are processed and common averaging is applied to generate the final prediction score of MoRFpred-plus. Performance of the proposed predictor is compared with available MoRF predictors, MoRFchibi, MoRFpred, and ANCHOR. Using previously collected training and test sets used to evaluate the mentioned predictors, the proposed predictor outperforms these predictors and generates lower false positive rate. In addition, MoRFpred-plus is a downloadable predictor, which makes it useful as it can be used as input to other computational tools. https://github.com/roneshsharma/MoRFpred-plus/wiki/MoRFpred-plus:-Download. Copyright © 2017 Elsevier Ltd. All rights reserved.
Using structure to explore the sequence alignment space of remote homologs.
Kuziemko, Andrew; Honig, Barry; Petrey, Donald
2011-10-01
Protein structure modeling by homology requires an accurate sequence alignment between the query protein and its structural template. However, sequence alignment methods based on dynamic programming (DP) are typically unable to generate accurate alignments for remote sequence homologs, thus limiting the applicability of modeling methods. A central problem is that the alignment that is "optimal" in terms of the DP score does not necessarily correspond to the alignment that produces the most accurate structural model. That is, the correct alignment based on structural superposition will generally have a lower score than the optimal alignment obtained from sequence. Variations of the DP algorithm have been developed that generate alternative alignments that are "suboptimal" in terms of the DP score, but these still encounter difficulties in detecting the correct structural alignment. We present here a new alternative sequence alignment method that relies heavily on the structure of the template. By initially aligning the query sequence to individual fragments in secondary structure elements and combining high-scoring fragments that pass basic tests for "modelability", we can generate accurate alignments within a small ensemble. Our results suggest that the set of sequences that can currently be modeled by homology can be greatly extended.
iDBPs: a web server for the identification of DNA binding proteins
Nimrod, Guy; Schushan, Maya; Szilágyi, András; Leslie, Christina; Ben-Tal, Nir
2010-01-01
Summary: The iDBPs server uses the three-dimensional (3D) structure of a query protein to predict whether it binds DNA. First, the algorithm predicts the functional region of the protein based on its evolutionary profile; the assumption is that large clusters of conserved residues are good markers of functional regions. Next, various characteristics of the predicted functional region as well as global features of the protein are calculated, such as the average surface electrostatic potential, the dipole moment and cluster-based amino acid conservation patterns. Finally, a random forests classifier is used to predict whether the query protein is likely to bind DNA and to estimate the prediction confidence. We have trained and tested the classifier on various datasets and shown that it outperformed related methods. On a dataset that reflects the fraction of DNA binding proteins (DBPs) in a proteome, the area under the ROC curve was 0.90. The application of the server to an updated version of the N-Func database, which contains proteins of unknown function with solved 3D-structure, suggested new putative DBPs for experimental studies. Availability: http://idbps.tau.ac.il/ Contact: NirB@tauex.tau.ac.il Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20089514
Ghosh, Pritha; Mathew, Oommen K; Sowdhamini, Ramanathan
2016-10-07
RNA-binding proteins (RBPs) interact with their cognate RNA(s) to form large biomolecular assemblies. They are versatile in their functionality and are involved in a myriad of processes inside the cell. RBPs with similar structural features and common biological functions are grouped together into families and superfamilies. It will be useful to obtain an early understanding and association of RNA-binding property of sequences of gene products. Here, we report a web server, RStrucFam, to predict the structure, type of cognate RNA(s) and function(s) of proteins, where possible, from mere sequence information. The web server employs Hidden Markov Model scan (hmmscan) to enable association to a back-end database of structural and sequence families. The database (HMMRBP) comprises of 437 HMMs of RBP families of known structure that have been generated using structure-based sequence alignments and 746 sequence-centric RBP family HMMs. The input protein sequence is associated with structural or sequence domain families, if structure or sequence signatures exist. In case of association of the protein with a family of known structures, output features like, multiple structure-based sequence alignment (MSSA) of the query with all others members of that family is provided. Further, cognate RNA partner(s) for that protein, Gene Ontology (GO) annotations, if any and a homology model of the protein can be obtained. The users can also browse through the database for details pertaining to each family, protein or RNA and their related information based on keyword search or RNA motif search. RStrucFam is a web server that exploits structurally conserved features of RBPs, derived from known family members and imprinted in mathematical profiles, to predict putative RBPs from sequence information. Proteins that fail to associate with such structure-centric families are further queried against the sequence-centric RBP family HMMs in the HMMRBP database. Further, all other essential information pertaining to an RBP, like overall function annotations, are provided. The web server can be accessed at the following link: http://caps.ncbs.res.in/rstrucfam .
Glycan fragment database: a database of PDB-based glycan 3D structures.
Jo, Sunhwan; Im, Wonpil
2013-01-01
The glycan fragment database (GFDB), freely available at http://www.glycanstructure.org, is a database of the glycosidic torsion angles derived from the glycan structures in the Protein Data Bank (PDB). Analogous to protein structure, the structure of an oligosaccharide chain in a glycoprotein, referred to as a glycan, can be characterized by the torsion angles of glycosidic linkages between relatively rigid carbohydrate monomeric units. Knowledge of accessible conformations of biologically relevant glycans is essential in understanding their biological roles. The GFDB provides an intuitive glycan sequence search tool that allows the user to search complex glycan structures. After a glycan search is complete, each glycosidic torsion angle distribution is displayed in terms of the exact match and the fragment match. The exact match results are from the PDB entries that contain the glycan sequence identical to the query sequence. The fragment match results are from the entries with the glycan sequence whose substructure (fragment) or entire sequence is matched to the query sequence, such that the fragment results implicitly include the influences from the nearby carbohydrate residues. In addition, clustering analysis based on the torsion angle distribution can be performed to obtain the representative structures among the searched glycan structures.
3D-SURFER 2.0: web platform for real-time search and characterization of protein surfaces.
Xiong, Yi; Esquivel-Rodriguez, Juan; Sael, Lee; Kihara, Daisuke
2014-01-01
The increasing number of uncharacterized protein structures necessitates the development of computational approaches for function annotation using the protein tertiary structures. Protein structure database search is the basis of any structure-based functional elucidation of proteins. 3D-SURFER is a web platform for real-time protein surface comparison of a given protein structure against the entire PDB using 3D Zernike descriptors. It can smoothly navigate the protein structure space in real-time from one query structure to another. A major new feature of Release 2.0 is the ability to compare the protein surface of a single chain, a single domain, or a single complex against databases of protein chains, domains, complexes, or a combination of all three in the latest PDB. Additionally, two types of protein structures can now be compared: all-atom-surface and backbone-atom-surface. The server can also accept a batch job for a large number of database searches. Pockets in protein surfaces can be identified by VisGrid and LIGSITE (csc) . The server is available at http://kiharalab.org/3d-surfer/.
Querying graphs in protein-protein interactions networks using feedback vertex set.
Blin, Guillaume; Sikora, Florian; Vialette, Stéphane
2010-01-01
Recent techniques increase rapidly the amount of our knowledge on interactions between proteins. The interpretation of these new information depends on our ability to retrieve known substructures in the data, the Protein-Protein Interactions (PPIs) networks. In an algorithmic point of view, it is an hard task since it often leads to NP-hard problems. To overcome this difficulty, many authors have provided tools for querying patterns with a restricted topology, i.e., paths or trees in PPI networks. Such restriction leads to the development of fixed parameter tractable (FPT) algorithms, which can be practicable for restricted sizes of queries. Unfortunately, Graph Homomorphism is a W[1]-hard problem, and hence, no FPT algorithm can be found when patterns are in the shape of general graphs. However, Dost et al. gave an algorithm (which is not implemented) to query graphs with a bounded treewidth in PPI networks (the treewidth of the query being involved in the time complexity). In this paper, we propose another algorithm for querying pattern in the shape of graphs, also based on dynamic programming and the color-coding technique. To transform graphs queries into trees without loss of informations, we use feedback vertex set coupled to a node duplication mechanism. Hence, our algorithm is FPT for querying graphs with a bounded size of their feedback vertex set. It gives an alternative to the treewidth parameter, which can be better or worst for a given query. We provide a python implementation which allows us to validate our implementation on real data. Especially, we retrieve some human queries in the shape of graphs into the fly PPI network.
A structural-alphabet-based strategy for finding structural motifs across protein families
Wu, Chih Yuan; Chen, Yao Chi; Lim, Carmay
2010-01-01
Proteins with insignificant sequence and overall structure similarity may still share locally conserved contiguous structural segments; i.e. structural/3D motifs. Most methods for finding 3D motifs require a known motif to search for other similar structures or functionally/structurally crucial residues. Here, without requiring a query motif or essential residues, a fully automated method for discovering 3D motifs of various sizes across protein families with different folds based on a 16-letter structural alphabet is presented. It was applied to structurally non-redundant proteins bound to DNA, RNA, obligate/non-obligate proteins as well as free DNA-binding proteins (DBPs) and proteins with known structures but unknown function. Its usefulness was illustrated by analyzing the 3D motifs found in DBPs. A non-specific motif was found with a ‘corner’ architecture that confers a stable scaffold and enables diverse interactions, making it suitable for binding not only DNA but also RNA and proteins. Furthermore, DNA-specific motifs present ‘only’ in DBPs were discovered. The motifs found can provide useful guidelines in detecting binding sites and computational protein redesign. PMID:20525797
Bhadra, Pratiti; Pal, Debnath
2017-04-01
Dynamics is integral to the function of proteins, yet the use of molecular dynamics (MD) simulation as a technique remains under-explored for molecular function inference. This is more important in the context of genomics projects where novel proteins are determined with limited evolutionary information. Recently we developed a method to match the query protein's flexible segments to infer function using a novel approach combining analysis of residue fluctuation-graphs and auto-correlation vectors derived from coarse-grained (CG) MD trajectory. The method was validated on a diverse dataset with sequence identity between proteins as low as 3%, with high function-recall rates. Here we share its implementation as a publicly accessible web service, named DynFunc (Dynamics Match for Function) to query protein function from ≥1 µs long CG dynamics trajectory information of protein subunits. Users are provided with the custom-developed coarse-grained molecular mechanics (CGMM) forcefield to generate the MD trajectories for their protein of interest. On upload of trajectory information, the DynFunc web server identifies specific flexible regions of the protein linked to putative molecular function. Our unique application does not use evolutionary information to infer molecular function from MD information and can, therefore, work for all proteins, including moonlighting and the novel ones, whenever structural information is available. Our pipeline is expected to be of utility to all structural biologists working with novel proteins and interested in moonlighting functions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oliveira, S R M; Almeida, G V; Souza, K R R; Rodrigues, D N; Kuser-Falcão, P R; Yamagishi, M E B; Santos, E H; Vieira, F D; Jardine, J G; Neshich, G
2007-10-05
An effective strategy for managing protein databases is to provide mechanisms to transform raw data into consistent, accurate and reliable information. Such mechanisms will greatly reduce operational inefficiencies and improve one's ability to better handle scientific objectives and interpret the research results. To achieve this challenging goal for the STING project, we introduce Sting_RDB, a relational database of structural parameters for protein analysis with support for data warehousing and data mining. In this article, we highlight the main features of Sting_RDB and show how a user can explore it for efficient and biologically relevant queries. Considering its importance for molecular biologists, effort has been made to advance Sting_RDB toward data quality assessment. To the best of our knowledge, Sting_RDB is one of the most comprehensive data repositories for protein analysis, now also capable of providing its users with a data quality indicator. This paper differs from our previous study in many aspects. First, we introduce Sting_RDB, a relational database with mechanisms for efficient and relevant queries using SQL. Sting_rdb evolved from the earlier, text (flat file)-based database, in which data consistency and integrity was not guaranteed. Second, we provide support for data warehousing and mining. Third, the data quality indicator was introduced. Finally and probably most importantly, complex queries that could not be posed on a text-based database, are now easily implemented. Further details are accessible at the Sting_RDB demo web page: http://www.cbi.cnptia.embrapa.br/StingRDB.
Suzuki, Hirofumi; Kawabata, Takeshi; Nakamura, Haruki
2016-02-15
Omokage search is a service to search the global shape similarity of biological macromolecules and their assemblies, in both the Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB). The server compares global shapes of assemblies independent of sequence order and number of subunits. As a search query, the user inputs a structure ID (PDB ID or EMDB ID) or uploads an atomic model or 3D density map to the server. The search is performed usually within 1 min, using one-dimensional profiles (incremental distance rank profiles) to characterize the shapes. Using the gmfit (Gaussian mixture model fitting) program, the found structures are fitted onto the query structure and their superimposed structures are displayed on the Web browser. Our service provides new structural perspectives to life science researchers. Omokage search is freely accessible at http://pdbj.org/omokage/. © The Author 2015. Published by Oxford University Press.
Property Graph vs RDF Triple Store: A Comparison on Glycan Substructure Search
Alocci, Davide; Mariethoz, Julien; Horlacher, Oliver; Bolleman, Jerven T.; Campbell, Matthew P.; Lisacek, Frederique
2015-01-01
Resource description framework (RDF) and Property Graph databases are emerging technologies that are used for storing graph-structured data. We compare these technologies through a molecular biology use case: glycan substructure search. Glycans are branched tree-like molecules composed of building blocks linked together by chemical bonds. The molecular structure of a glycan can be encoded into a direct acyclic graph where each node represents a building block and each edge serves as a chemical linkage between two building blocks. In this context, Graph databases are possible software solutions for storing glycan structures and Graph query languages, such as SPARQL and Cypher, can be used to perform a substructure search. Glycan substructure searching is an important feature for querying structure and experimental glycan databases and retrieving biologically meaningful data. This applies for example to identifying a region of the glycan recognised by a glycan binding protein (GBP). In this study, 19,404 glycan structures were selected from GlycomeDB (www.glycome-db.org) and modelled for being stored into a RDF triple store and a Property Graph. We then performed two different sets of searches and compared the query response times and the results from both technologies to assess performance and accuracy. The two implementations produced the same results, but interestingly we noted a difference in the query response times. Qualitative measures such as portability were also used to define further criteria for choosing the technology adapted to solving glycan substructure search and other comparable issues. PMID:26656740
Jian, Jhih-Wei; Elumalai, Pavadai; Pitti, Thejkiran; Wu, Chih Yuan; Tsai, Keng-Chang; Chang, Jeng-Yih; Peng, Hung-Pin; Yang, An-Suei
2016-01-01
Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from experimental or computational methods, is a useful first step in functional annotation or structure-based drug design for the protein structures. In this work, the structure-based machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein surfaces with input attributes derived from the three-dimensional probability density maps of interacting atoms, which were reconstructed on the query protein surfaces and were relatively insensitive to local conformational variations of the tentative ligand binding sites. The prediction accuracy of the ISMBLab-LIG predictors is comparable to that of the best LBS predictors benchmarked on several well-established testing datasets. More importantly, the ISMBLab-LIG algorithm has substantial tolerance to the prediction uncertainties of computationally derived protein structure models. As such, the method is particularly useful for predicting LBSs not only on experimental protein structures without known LBS templates in the database but also on computationally predicted model protein structures with structural uncertainties in the tentative ligand binding sites. PMID:27513851
TOPSAN: a dynamic web database for structural genomics.
Ellrott, Kyle; Zmasek, Christian M; Weekes, Dana; Sri Krishna, S; Bakolitsa, Constantina; Godzik, Adam; Wooley, John
2011-01-01
The Open Protein Structure Annotation Network (TOPSAN) is a web-based collaboration platform for exploring and annotating structures determined by structural genomics efforts. Characterization of those structures presents a challenge since the majority of the proteins themselves have not yet been characterized. Responding to this challenge, the TOPSAN platform facilitates collaborative annotation and investigation via a user-friendly web-based interface pre-populated with automatically generated information. Semantic web technologies expand and enrich TOPSAN's content through links to larger sets of related databases, and thus, enable data integration from disparate sources and data mining via conventional query languages. TOPSAN can be found at http://www.topsan.org.
XLinkDB 2.0: integrated, large-scale structural analysis of protein crosslinking data
Schweppe, Devin K.; Zheng, Chunxiang; Chavez, Juan D.; Navare, Arti T.; Wu, Xia; Eng, Jimmy K.; Bruce, James E.
2016-01-01
Motivation: Large-scale chemical cross-linking with mass spectrometry (XL-MS) analyses are quickly becoming a powerful means for high-throughput determination of protein structural information and protein–protein interactions. Recent studies have garnered thousands of cross-linked interactions, yet the field lacks an effective tool to compile experimental data or access the network and structural knowledge for these large scale analyses. We present XLinkDB 2.0 which integrates tools for network analysis, Protein Databank queries, modeling of predicted protein structures and modeling of docked protein structures. The novel, integrated approach of XLinkDB 2.0 enables the holistic analysis of XL-MS protein interaction data without limitation to the cross-linker or analytical system used for the analysis. Availability and Implementation: XLinkDB 2.0 can be found here, including documentation and help: http://xlinkdb.gs.washington.edu/. Contact: jimbruce@uw.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153666
Durand, Patrick; Labarre, Laurent; Meil, Alain; Divo, Jean-Louis; Vandenbrouck, Yves; Viari, Alain; Wojcik, Jérôme
2006-01-17
A large variety of biological data can be represented by graphs. These graphs can be constructed from heterogeneous data coming from genomic and post-genomic technologies, but there is still need for tools aiming at exploring and analysing such graphs. This paper describes GenoLink, a software platform for the graphical querying and exploration of graphs. GenoLink provides a generic framework for representing and querying data graphs. This framework provides a graph data structure, a graph query engine, allowing to retrieve sub-graphs from the entire data graph, and several graphical interfaces to express such queries and to further explore their results. A query consists in a graph pattern with constraints attached to the vertices and edges. A query result is the set of all sub-graphs of the entire data graph that are isomorphic to the pattern and satisfy the constraints. The graph data structure does not rely upon any particular data model but can dynamically accommodate for any user-supplied data model. However, for genomic and post-genomic applications, we provide a default data model and several parsers for the most popular data sources. GenoLink does not require any programming skill since all operations on graphs and the analysis of the results can be carried out graphically through several dedicated graphical interfaces. GenoLink is a generic and interactive tool allowing biologists to graphically explore various sources of information. GenoLink is distributed either as a standalone application or as a component of the Genostar/Iogma platform. Both distributions are free for academic research and teaching purposes and can be requested at academy@genostar.com. A commercial licence form can be obtained for profit company at info@genostar.com. See also http://www.genostar.org.
Durand, Patrick; Labarre, Laurent; Meil, Alain; Divo1, Jean-Louis; Vandenbrouck, Yves; Viari, Alain; Wojcik, Jérôme
2006-01-01
Background A large variety of biological data can be represented by graphs. These graphs can be constructed from heterogeneous data coming from genomic and post-genomic technologies, but there is still need for tools aiming at exploring and analysing such graphs. This paper describes GenoLink, a software platform for the graphical querying and exploration of graphs. Results GenoLink provides a generic framework for representing and querying data graphs. This framework provides a graph data structure, a graph query engine, allowing to retrieve sub-graphs from the entire data graph, and several graphical interfaces to express such queries and to further explore their results. A query consists in a graph pattern with constraints attached to the vertices and edges. A query result is the set of all sub-graphs of the entire data graph that are isomorphic to the pattern and satisfy the constraints. The graph data structure does not rely upon any particular data model but can dynamically accommodate for any user-supplied data model. However, for genomic and post-genomic applications, we provide a default data model and several parsers for the most popular data sources. GenoLink does not require any programming skill since all operations on graphs and the analysis of the results can be carried out graphically through several dedicated graphical interfaces. Conclusion GenoLink is a generic and interactive tool allowing biologists to graphically explore various sources of information. GenoLink is distributed either as a standalone application or as a component of the Genostar/Iogma platform. Both distributions are free for academic research and teaching purposes and can be requested at academy@genostar.com. A commercial licence form can be obtained for profit company at info@genostar.com. See also . PMID:16417636
A protein block based fold recognition method for the annotation of twilight zone sequences.
Suresh, V; Ganesan, K; Parthasarathy, S
2013-03-01
The description of protein backbone was recently improved with a group of structural fragments called Structural Alphabets instead of the regular three states (Helix, Sheet and Coil) secondary structure description. Protein Blocks is one of the Structural Alphabets used to describe each and every region of protein backbone including the coil. According to de Brevern (2000) the Protein Blocks has 16 structural fragments and each one has 5 residues in length. Protein Blocks fragments are highly informative among the available Structural Alphabets and it has been used for many applications. Here, we present a protein fold recognition method based on Protein Blocks for the annotation of twilight zone sequences. In our method, we align the predicted Protein Blocks of a query amino acid sequence with a library of assigned Protein Blocks of 953 known folds using the local pair-wise alignment. The alignment results with z-value ≥ 2.5 and P-value ≤ 0.08 are predicted as possible folds. Our method is able to recognize the possible folds for nearly 35.5% of the twilight zone sequences with their predicted Protein Block sequence obtained by pb_prediction, which is available at Protein Block Export server.
Tertiary structural propensities reveal fundamental sequence/structure relationships.
Zheng, Fan; Zhang, Jian; Grigoryan, Gevorg
2015-05-05
Extracting useful generalizations from the continually growing Protein Data Bank (PDB) is of central importance. We hypothesize that the PDB contains valuable quantitative information on the level of local tertiary structural motifs (TERMs). We show that by breaking a protein structure into its constituent TERMs, and querying the PDB to characterize the natural ensemble matching each, we can estimate the compatibility of the structure with a given amino acid sequence through a metric we term "structure score." Considering submissions from recent Critical Assessment of Structure Prediction (CASP) experiments, we found a strong correlation (R = 0.69) between structure score and model accuracy, with poorly predicted regions readily identifiable. This performance exceeds that of leading atomistic statistical energy functions. Furthermore, TERM-based analysis of two prototypical multi-state proteins rapidly produced structural insights fully consistent with prior extensive experimental studies. We thus find that TERM-based analysis should have considerable utility for protein structural biology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Protein domain assignment from the recurrence of locally similar structures
Tai, Chin-Hsien; Sam, Vichetra; Gibrat, Jean-Francois; Garnier, Jean; Munson, Peter J.
2010-01-01
Domains are basic units of protein structure and essential for exploring protein fold space and structure evolution. With the structural genomics initiative, the number of protein structures in the Protein Databank (PDB) is increasing dramatically and domain assignments need to be done automatically. Most existing structural domain assignment programs define domains using the compactness of the domains and/or the number and strength of intra-domain versus inter-domain contacts. Here we present a different approach based on the recurrence of locally similar structural pieces (LSSPs) found by one-against-all structure comparisons with a dataset of 6,373 protein chains from the PDB. Residues of the query protein are clustered using LSSPs via three different procedures to define domains. This approach gives results that are comparable to several existing programs that use geometrical and other structural information explicitly. Remarkably, most of the proteins that contribute the LSSPs defining a domain do not themselves contain the domain of interest. This study shows that domains can be defined by a collection of relatively small locally similar structural pieces containing, on average, four secondary structure elements. In addition, it indicates that domains are indeed made of recurrent small structural pieces that are used to build protein structures of many different folds as suggested by recent studies. PMID:21287617
Zhu, Jianwei; Zhang, Haicang; Li, Shuai Cheng; Wang, Chao; Kong, Lupeng; Sun, Shiwei; Zheng, Wei-Mou; Bu, Dongbo
2017-12-01
Accurate recognition of protein fold types is a key step for template-based prediction of protein structures. The existing approaches to fold recognition mainly exploit the features derived from alignments of query protein against templates. These approaches have been shown to be successful for fold recognition at family level, but usually failed at superfamily/fold levels. To overcome this limitation, one of the key points is to explore more structurally informative features of proteins. Although residue-residue contacts carry abundant structural information, how to thoroughly exploit these information for fold recognition still remains a challenge. In this study, we present an approach (called DeepFR) to improve fold recognition at superfamily/fold levels. The basic idea of our approach is to extract fold-specific features from predicted residue-residue contacts of proteins using deep convolutional neural network (DCNN) technique. Based on these fold-specific features, we calculated similarity between query protein and templates, and then assigned query protein with fold type of the most similar template. DCNN has showed excellent performance in image feature extraction and image recognition; the rational underlying the application of DCNN for fold recognition is that contact likelihood maps are essentially analogy to images, as they both display compositional hierarchy. Experimental results on the LINDAHL dataset suggest that even using the extracted fold-specific features alone, our approach achieved success rate comparable to the state-of-the-art approaches. When further combining these features with traditional alignment-related features, the success rate of our approach increased to 92.3%, 82.5% and 78.8% at family, superfamily and fold levels, respectively, which is about 18% higher than the state-of-the-art approach at fold level, 6% higher at superfamily level and 1% higher at family level. An independent assessment on SCOP_TEST dataset showed consistent performance improvement, indicating robustness of our approach. Furthermore, bi-clustering results of the extracted features are compatible with fold hierarchy of proteins, implying that these features are fold-specific. Together, these results suggest that the features extracted from predicted contacts are orthogonal to alignment-related features, and the combination of them could greatly facilitate fold recognition at superfamily/fold levels and template-based prediction of protein structures. Source code of DeepFR is freely available through https://github.com/zhujianwei31415/deepfr, and a web server is available through http://protein.ict.ac.cn/deepfr. zheng@itp.ac.cn or dbu@ict.ac.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Bioinformatics Analysis of Protein Phosphorylation in Plant Systems Biology Using P3DB.
Yao, Qiuming; Xu, Dong
2017-01-01
Protein phosphorylation is one of the most pervasive protein post-translational modification events in plant cells. It is involved in many plant biological processes, such as plant growth, organ development, and plant immunology, by regulating or switching signaling and metabolic pathways. High-throughput experimental methods like mass spectrometry can easily characterize hundreds to thousands of phosphorylation events in a single experiment. With the increasing volume of the data sets, Plant Protein Phosphorylation DataBase (P3DB, http://p3db.org ) provides a comprehensive, systematic, and interactive online platform to deposit, query, analyze, and visualize these phosphorylation events in many plant species. It stores the protein phosphorylation sites in the context of identified mass spectra, phosphopeptides, and phosphoproteins contributed from various plant proteome studies. In addition, P3DB associates these plant phosphorylation sites to protein physicochemical information in the protein charts and tertiary structures, while various protein annotations from hierarchical kinase phosphatase families, protein domains, and gene ontology are also added into the database. P3DB not only provides rich information, but also interconnects and provides visualization of the data in networks, in systems biology context. Currently, P3DB includes the KiC (Kinase Client) assay network, the protein-protein interaction network, the kinase-substrate network, the phosphatase-substrate network, and the protein domain co-occurrence network. All of these are available to query for and visualize existing phosphorylation events. Although P3DB only hosts experimentally identified phosphorylation data, it provides a plant phosphorylation prediction model for any unknown queries on the fly. P3DB is an entry point to the plant phosphorylation community to deposit and visualize any customized data sets within this systems biology framework. Nowadays, P3DB has become one of the major bioinformatics platforms of protein phosphorylation in plant biology.
PredictProtein—an open resource for online prediction of protein structural and functional features
Yachdav, Guy; Kloppmann, Edda; Kajan, Laszlo; Hecht, Maximilian; Goldberg, Tatyana; Hamp, Tobias; Hönigschmid, Peter; Schafferhans, Andrea; Roos, Manfred; Bernhofer, Michael; Richter, Lothar; Ashkenazy, Haim; Punta, Marco; Schlessinger, Avner; Bromberg, Yana; Schneider, Reinhard; Vriend, Gerrit; Sander, Chris; Ben-Tal, Nir; Rost, Burkhard
2014-01-01
PredictProtein is a meta-service for sequence analysis that has been predicting structural and functional features of proteins since 1992. Queried with a protein sequence it returns: multiple sequence alignments, predicted aspects of structure (secondary structure, solvent accessibility, transmembrane helices (TMSEG) and strands, coiled-coil regions, disulfide bonds and disordered regions) and function. The service incorporates analysis methods for the identification of functional regions (ConSurf), homology-based inference of Gene Ontology terms (metastudent), comprehensive subcellular localization prediction (LocTree3), protein–protein binding sites (ISIS2), protein–polynucleotide binding sites (SomeNA) and predictions of the effect of point mutations (non-synonymous SNPs) on protein function (SNAP2). Our goal has always been to develop a system optimized to meet the demands of experimentalists not highly experienced in bioinformatics. To this end, the PredictProtein results are presented as both text and a series of intuitive, interactive and visually appealing figures. The web server and sources are available at http://ppopen.rostlab.org. PMID:24799431
An ontology-based search engine for protein-protein interactions
2010-01-01
Background Keyword matching or ID matching is the most common searching method in a large database of protein-protein interactions. They are purely syntactic methods, and retrieve the records in the database that contain a keyword or ID specified in a query. Such syntactic search methods often retrieve too few search results or no results despite many potential matches present in the database. Results We have developed a new method for representing protein-protein interactions and the Gene Ontology (GO) using modified Gödel numbers. This representation is hidden from users but enables a search engine using the representation to efficiently search protein-protein interactions in a biologically meaningful way. Given a query protein with optional search conditions expressed in one or more GO terms, the search engine finds all the interaction partners of the query protein by unique prime factorization of the modified Gödel numbers representing the query protein and the search conditions. Conclusion Representing the biological relations of proteins and their GO annotations by modified Gödel numbers makes a search engine efficiently find all protein-protein interactions by prime factorization of the numbers. Keyword matching or ID matching search methods often miss the interactions involving a protein that has no explicit annotations matching the search condition, but our search engine retrieves such interactions as well if they satisfy the search condition with a more specific term in the ontology. PMID:20122195
An ontology-based search engine for protein-protein interactions.
Park, Byungkyu; Han, Kyungsook
2010-01-18
Keyword matching or ID matching is the most common searching method in a large database of protein-protein interactions. They are purely syntactic methods, and retrieve the records in the database that contain a keyword or ID specified in a query. Such syntactic search methods often retrieve too few search results or no results despite many potential matches present in the database. We have developed a new method for representing protein-protein interactions and the Gene Ontology (GO) using modified Gödel numbers. This representation is hidden from users but enables a search engine using the representation to efficiently search protein-protein interactions in a biologically meaningful way. Given a query protein with optional search conditions expressed in one or more GO terms, the search engine finds all the interaction partners of the query protein by unique prime factorization of the modified Gödel numbers representing the query protein and the search conditions. Representing the biological relations of proteins and their GO annotations by modified Gödel numbers makes a search engine efficiently find all protein-protein interactions by prime factorization of the numbers. Keyword matching or ID matching search methods often miss the interactions involving a protein that has no explicit annotations matching the search condition, but our search engine retrieves such interactions as well if they satisfy the search condition with a more specific term in the ontology.
2006-06-01
SPARQL SPARQL Protocol and RDF Query Language SQL Structured Query Language SUMO Suggested Upper Merged Ontology SW... Query optimization algorithms are implemented in the Pellet reasoner in order to ensure querying a knowledge base is efficient . These algorithms...memory as a treelike structure in order for the data to be queried . XML Query (XQuery) is the standard language used when querying XML
Mobilio, Dominick; Walker, Gary; Brooijmans, Natasja; Nilakantan, Ramaswamy; Denny, R Aldrin; Dejoannis, Jason; Feyfant, Eric; Kowticwar, Rupesh K; Mankala, Jyoti; Palli, Satish; Punyamantula, Sairam; Tatipally, Maneesh; John, Reji K; Humblet, Christine
2010-08-01
The Protein Data Bank is the most comprehensive source of experimental macromolecular structures. It can, however, be difficult at times to locate relevant structures with the Protein Data Bank search interface. This is particularly true when searching for complexes containing specific interactions between protein and ligand atoms. Moreover, searching within a family of proteins can be tedious. For example, one cannot search for some conserved residue as residue numbers vary across structures. We describe herein three databases, Protein Relational Database, Kinase Knowledge Base, and Matrix Metalloproteinase Knowledge Base, containing protein structures from the Protein Data Bank. In Protein Relational Database, atom-atom distances between protein and ligand have been precalculated allowing for millisecond retrieval based on atom identity and distance constraints. Ring centroids, centroid-centroid and centroid-atom distances and angles have also been included permitting queries for pi-stacking interactions and other structural motifs involving rings. Other geometric features can be searched through the inclusion of residue pair and triplet distances. In Kinase Knowledge Base and Matrix Metalloproteinase Knowledge Base, the catalytic domains have been aligned into common residue numbering schemes. Thus, by searching across Protein Relational Database and Kinase Knowledge Base, one can easily retrieve structures wherein, for example, a ligand of interest is making contact with the gatekeeper residue.
Applying Query Structuring in Cross-language Retrieval.
ERIC Educational Resources Information Center
Pirkola, Ari; Puolamaki, Deniz; Jarvelin, Kalervo
2003-01-01
Explores ways to apply query structuring in cross-language information retrieval. Tested were: English queries translated into Finnish using an electronic dictionary, and run in a Finnish newspaper databases; effects of compound-based structuring using a proximity operator for translation equivalents of query language compound components; and a…
Querying and Ranking XML Documents.
ERIC Educational Resources Information Center
Schlieder, Torsten; Meuss, Holger
2002-01-01
Discussion of XML, information retrieval, precision, and recall focuses on a retrieval technique that adopts the similarity measure of the vector space model, incorporates the document structure, and supports structured queries. Topics include a query model based on tree matching; structured queries and term-based ranking; and term frequency and…
POOL server: machine learning application for functional site prediction in proteins.
Somarowthu, Srinivas; Ondrechen, Mary Jo
2012-08-01
We present an automated web server for partial order optimum likelihood (POOL), a machine learning application that combines computed electrostatic and geometric information for high-performance prediction of catalytic residues from 3D structures. Input features consist of THEMATICS electrostatics data and pocket information from ConCavity. THEMATICS measures deviation from typical, sigmoidal titration behavior to identify functionally important residues and ConCavity identifies binding pockets by analyzing the surface geometry of protein structures. Both THEMATICS and ConCavity (structure only) do not require the query protein to have any sequence or structure similarity to other proteins. Hence, POOL is applicable to proteins with novel folds and engineered proteins. As an additional option for cases where sequence homologues are available, users can include evolutionary information from INTREPID for enhanced accuracy in site prediction. The web site is free and open to all users with no login requirements at http://www.pool.neu.edu. m.ondrechen@neu.edu Supplementary data are available at Bioinformatics online.
What are the structural features that drive partitioning of proteins in aqueous two-phase systems?
Wu, Zhonghua; Hu, Gang; Wang, Kui; Zaslavsky, Boris Yu; Kurgan, Lukasz; Uversky, Vladimir N
2017-01-01
Protein partitioning in aqueous two-phase systems (ATPSs) represents a convenient, inexpensive, and easy to scale-up protein separation technique. Since partition behavior of a protein dramatically depends on an ATPS composition, it would be highly beneficial to have reliable means for (even qualitative) prediction of partitioning of a target protein under different conditions. Our aim was to understand which structural features of proteins contribute to partitioning of a query protein in a given ATPS. We undertook a systematic empirical analysis of relations between 57 numerical structural descriptors derived from the corresponding amino acid sequences and crystal structures of 10 well-characterized proteins and the partition behavior of these proteins in 29 different ATPSs. This analysis revealed that just a few structural characteristics of proteins can accurately determine behavior of these proteins in a given ATPS. However, partition behavior of proteins in different ATPSs relies on different structural features. In other words, we could not find a unique set of protein structural features derived from their crystal structures that could be used for the description of the protein partition behavior of all proteins in all ATPSs analyzed in this study. We likely need to gain better insight into relationships between protein-solvent interactions and protein structure peculiarities, in particular given limitations of the used here crystal structures, to be able to construct a model that accurately predicts protein partition behavior across all ATPSs. Copyright © 2016 Elsevier B.V. All rights reserved.
Ganesan, K; Parthasarathy, S
2011-12-01
Annotation of any newly determined protein sequence depends on the pairwise sequence identity with known sequences. However, for the twilight zone sequences which have only 15-25% identity, the pair-wise comparison methods are inadequate and the annotation becomes a challenging task. Such sequences can be annotated by using methods that recognize their fold. Bowie et al. described a 3D1D profile method in which the amino acid sequences that fold into a known 3D structure are identified by their compatibility to that known 3D structure. We have improved the above method by using the predicted secondary structure information and employ it for fold recognition from the twilight zone sequences. In our Protein Secondary Structure 3D1D (PSS-3D1D) method, a score (w) for the predicted secondary structure of the query sequence is included in finding the compatibility of the query sequence to the known fold 3D structures. In the benchmarks, the PSS-3D1D method shows a maximum of 21% improvement in predicting correctly the α + β class of folds from the sequences with twilight zone level of identity, when compared with the 3D1D profile method. Hence, the PSS-3D1D method could offer more clues than the 3D1D method for the annotation of twilight zone sequences. The web based PSS-3D1D method is freely available in the PredictFold server at http://bioinfo.bdu.ac.in/servers/ .
HippDB: a database of readily targeted helical protein-protein interactions.
Bergey, Christina M; Watkins, Andrew M; Arora, Paramjit S
2013-11-01
HippDB catalogs every protein-protein interaction whose structure is available in the Protein Data Bank and which exhibits one or more helices at the interface. The Web site accepts queries on variables such as helix length and sequence, and it provides computational alanine scanning and change in solvent-accessible surface area values for every interfacial residue. HippDB is intended to serve as a starting point for structure-based small molecule and peptidomimetic drug development. HippDB is freely available on the web at http://www.nyu.edu/projects/arora/hippdb. The Web site is implemented in PHP, MySQL and Apache. Source code freely available for download at http://code.google.com/p/helidb, implemented in Perl and supported on Linux. arora@nyu.edu.
PACSY, a relational database management system for protein structure and chemical shift analysis.
Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo; Lee, Weontae; Markley, John L
2012-10-01
PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.edu.
The RCSB protein data bank: integrative view of protein, gene and 3D structural information
Rose, Peter W.; Prlić, Andreas; Altunkaya, Ali; Bi, Chunxiao; Bradley, Anthony R.; Christie, Cole H.; Costanzo, Luigi Di; Duarte, Jose M.; Dutta, Shuchismita; Feng, Zukang; Green, Rachel Kramer; Goodsell, David S.; Hudson, Brian; Kalro, Tara; Lowe, Robert; Peisach, Ezra; Randle, Christopher; Rose, Alexander S.; Shao, Chenghua; Tao, Yi-Ping; Valasatava, Yana; Voigt, Maria; Westbrook, John D.; Woo, Jesse; Yang, Huangwang; Young, Jasmine Y.; Zardecki, Christine; Berman, Helen M.; Burley, Stephen K.
2017-01-01
The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, http://rcsb.org), the US data center for the global PDB archive, makes PDB data freely available to all users, from structural biologists to computational biologists and beyond. New tools and resources have been added to the RCSB PDB web portal in support of a ‘Structural View of Biology.’ Recent developments have improved the User experience, including the high-speed NGL Viewer that provides 3D molecular visualization in any web browser, improved support for data file download and enhanced organization of website pages for query, reporting and individual structure exploration. Structure validation information is now visible for all archival entries. PDB data have been integrated with external biological resources, including chromosomal position within the human genome; protein modifications; and metabolic pathways. PDB-101 educational materials have been reorganized into a searchable website and expanded to include new features such as the Geis Digital Archive. PMID:27794042
Predicting protein crystallization propensity from protein sequence
2011-01-01
The high-throughput structure determination pipelines developed by structural genomics programs offer a unique opportunity for data mining. One important question is how protein properties derived from a primary sequence correlate with the protein’s propensity to yield X-ray quality crystals (crystallizability) and 3D X-ray structures. A set of protein properties were computed for over 1,300 proteins that expressed well but were insoluble, and for ~720 unique proteins that resulted in X-ray structures. The correlation of the protein’s iso-electric point and grand average hydropathy (GRAVY) with crystallizability was analyzed for full length and domain constructs of protein targets. In a second step, several additional properties that can be calculated from the protein sequence were added and evaluated. Using statistical analyses we have identified a set of the attributes correlating with a protein’s propensity to crystallize and implemented a Support Vector Machine (SVM) classifier based on these. We have created applications to analyze and provide optimal boundary information for query sequences and to visualize the data. These tools are available via the web site http://bioinformatics.anl.gov/cgi-bin/tools/pdpredictor. PMID:20177794
NASA Technical Reports Server (NTRS)
Aspinall, David; Denney, Ewen; Lueth, Christoph
2012-01-01
We motivate and introduce a query language PrQL designed for inspecting machine representations of proofs. PrQL natively supports hiproofs which express proof structure using hierarchical nested labelled trees. The core language presented in this paper is locally structured (first-order), with queries built using recursion and patterns over proof structure and rule names. We define the syntax and semantics of locally structured queries, demonstrate their power, and sketch some implementation experiments.
GeneBee-net: Internet-based server for analyzing biopolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, L.I.; Ivanov, V.V.; Nikolaev, V.K.
This work describes a network server for searching databanks of biopolymer structures and performing other biocomputing procedures; it is available via direct Internet connection. Basic server procedures are dedicated to homology (similarity) search of sequence and 3D structure of proteins. The homologies found could be used to build multiple alignments, predict protein and RNA secondary structure, and construct phylogenetic trees. In addition to traditional methods of sequence similarity search, the authors propose {open_quotes}non-matrix{close_quotes} (correlational) search. An analogous approach is used to identify regions of similar tertiary structure of proteins. Algorithm concepts and usage examples are presented for new methods. Servicemore » logic is based upon interaction of a client program and server procedures. The client program allows the compilation of queries and the processing of results of an analysis.« less
PROFESS: a PROtein Function, Evolution, Structure and Sequence database
Triplet, Thomas; Shortridge, Matthew D.; Griep, Mark A.; Stark, Jaime L.; Powers, Robert; Revesz, Peter
2010-01-01
The proliferation of biological databases and the easy access enabled by the Internet is having a beneficial impact on biological sciences and transforming the way research is conducted. There are ∼1100 molecular biology databases dispersed throughout the Internet. To assist in the functional, structural and evolutionary analysis of the abundant number of novel proteins continually identified from whole-genome sequencing, we introduce the PROFESS (PROtein Function, Evolution, Structure and Sequence) database. Our database is designed to be versatile and expandable and will not confine analysis to a pre-existing set of data relationships. A fundamental component of this approach is the development of an intuitive query system that incorporates a variety of similarity functions capable of generating data relationships not conceived during the creation of the database. The utility of PROFESS is demonstrated by the analysis of the structural drift of homologous proteins and the identification of potential pancreatic cancer therapeutic targets based on the observation of protein–protein interaction networks. Database URL: http://cse.unl.edu/∼profess/ PMID:20624718
Quality assurance for the query and distribution systems of the RCSB Protein Data Bank
Bluhm, Wolfgang F.; Beran, Bojan; Bi, Chunxiao; Dimitropoulos, Dimitris; Prlić, Andreas; Quinn, Gregory B.; Rose, Peter W.; Shah, Chaitali; Young, Jasmine; Yukich, Benjamin; Berman, Helen M.; Bourne, Philip E.
2011-01-01
The RCSB Protein Data Bank (RCSB PDB, www.pdb.org) is a key online resource for structural biology and related scientific disciplines. The website is used on average by 165 000 unique visitors per month, and more than 2000 other websites link to it. The amount and complexity of PDB data as well as the expectations on its usage are growing rapidly. Therefore, ensuring the reliability and robustness of the RCSB PDB query and distribution systems are crucially important and increasingly challenging. This article describes quality assurance for the RCSB PDB website at several distinct levels, including: (i) hardware redundancy and failover, (ii) testing protocols for weekly database updates, (iii) testing and release procedures for major software updates and (iv) miscellaneous monitoring and troubleshooting tools and practices. As such it provides suggestions for how other websites might be operated. Database URL: www.pdb.org PMID:21382834
Databases and Associated Tools for Glycomics and Glycoproteomics.
Lisacek, Frederique; Mariethoz, Julien; Alocci, Davide; Rudd, Pauline M; Abrahams, Jodie L; Campbell, Matthew P; Packer, Nicolle H; Ståhle, Jonas; Widmalm, Göran; Mullen, Elaine; Adamczyk, Barbara; Rojas-Macias, Miguel A; Jin, Chunsheng; Karlsson, Niclas G
2017-01-01
The access to biodatabases for glycomics and glycoproteomics has proven to be essential for current glycobiological research. This chapter presents available databases that are devoted to different aspects of glycobioinformatics. This includes oligosaccharide sequence databases, experimental databases, 3D structure databases (of both glycans and glycorelated proteins) and association of glycans with tissue, disease, and proteins. Specific search protocols are also provided using tools associated with experimental databases for converting primary glycoanalytical data to glycan structural information. In particular, researchers using glycoanalysis methods by U/HPLC (GlycoBase), MS (GlycoWorkbench, UniCarb-DB, GlycoDigest), and NMR (CASPER) will benefit from this chapter. In addition we also include information on how to utilize glycan structural information to query databases that associate glycans with proteins (UniCarbKB) and with interactions with pathogens (SugarBind).
A Structural Perspective on the Modulation of Protein-Protein Interactions with Small Molecules.
Demirel, Habibe Cansu; Dogan, Tunca; Tuncbag, Nurcan
2018-05-31
Protein-protein interactions (PPIs) are the key components in many cellular processes including signaling pathways, enzymatic reactions and epigenetic regulation. Abnormal interactions of some proteins may be pathogenic and cause various disorders including cancer and neurodegenerative diseases. Although inhibiting PPIs with small molecules is a challenging task, it gained an increasing interest because of its strong potential for drug discovery and design. The knowledge of the interface as well as the structural and chemical characteristics of the PPIs and their roles in the cellular pathways are necessary for a rational design of small molecules to modulate PPIs. In this study, we review the recent progress in the field and detail the physicochemical properties of PPIs including binding hot spots with a focus on structural methods. Then, we review recent approaches for structural prediction of PPIs. Finally, we revisit the concept of targeting PPIs in a systems biology perspective and we refer to the non-structural approaches, usually employed when the structural information is not present. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Ensemble-based evaluation for protein structure models.
Jamroz, Michal; Kolinski, Andrzej; Kihara, Daisuke
2016-06-15
Comparing protein tertiary structures is a fundamental procedure in structural biology and protein bioinformatics. Structure comparison is important particularly for evaluating computational protein structure models. Most of the model structure evaluation methods perform rigid body superimposition of a structure model to its crystal structure and measure the difference of the corresponding residue or atom positions between them. However, these methods neglect intrinsic flexibility of proteins by treating the native structure as a rigid molecule. Because different parts of proteins have different levels of flexibility, for example, exposed loop regions are usually more flexible than the core region of a protein structure, disagreement of a model to the native needs to be evaluated differently depending on the flexibility of residues in a protein. We propose a score named FlexScore for comparing protein structures that consider flexibility of each residue in the native state of proteins. Flexibility information may be extracted from experiments such as NMR or molecular dynamics simulation. FlexScore considers an ensemble of conformations of a protein described as a multivariate Gaussian distribution of atomic displacements and compares a query computational model with the ensemble. We compare FlexScore with other commonly used structure similarity scores over various examples. FlexScore agrees with experts' intuitive assessment of computational models and provides information of practical usefulness of models. https://bitbucket.org/mjamroz/flexscore dkihara@purdue.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Ensemble-based evaluation for protein structure models
Jamroz, Michal; Kolinski, Andrzej; Kihara, Daisuke
2016-01-01
Motivation: Comparing protein tertiary structures is a fundamental procedure in structural biology and protein bioinformatics. Structure comparison is important particularly for evaluating computational protein structure models. Most of the model structure evaluation methods perform rigid body superimposition of a structure model to its crystal structure and measure the difference of the corresponding residue or atom positions between them. However, these methods neglect intrinsic flexibility of proteins by treating the native structure as a rigid molecule. Because different parts of proteins have different levels of flexibility, for example, exposed loop regions are usually more flexible than the core region of a protein structure, disagreement of a model to the native needs to be evaluated differently depending on the flexibility of residues in a protein. Results: We propose a score named FlexScore for comparing protein structures that consider flexibility of each residue in the native state of proteins. Flexibility information may be extracted from experiments such as NMR or molecular dynamics simulation. FlexScore considers an ensemble of conformations of a protein described as a multivariate Gaussian distribution of atomic displacements and compares a query computational model with the ensemble. We compare FlexScore with other commonly used structure similarity scores over various examples. FlexScore agrees with experts’ intuitive assessment of computational models and provides information of practical usefulness of models. Availability and implementation: https://bitbucket.org/mjamroz/flexscore Contact: dkihara@purdue.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307633
TDR Targets: a chemogenomics resource for neglected diseases.
Magariños, María P; Carmona, Santiago J; Crowther, Gregory J; Ralph, Stuart A; Roos, David S; Shanmugam, Dhanasekaran; Van Voorhis, Wesley C; Agüero, Fernán
2012-01-01
The TDR Targets Database (http://tdrtargets.org) has been designed and developed as an online resource to facilitate the rapid identification and prioritization of molecular targets for drug development, focusing on pathogens responsible for neglected human diseases. The database integrates pathogen specific genomic information with functional data (e.g. expression, phylogeny, essentiality) for genes collected from various sources, including literature curation. This information can be browsed and queried using an extensive web interface with functionalities for combining, saving, exporting and sharing the query results. Target genes can be ranked and prioritized using numerical weights assigned to the criteria used for querying. In this report we describe recent updates to the TDR Targets database, including the addition of new genomes (specifically helminths), and integration of chemical structure, property and bioactivity information for biological ligands, drugs and inhibitors and cheminformatic tools for querying and visualizing these chemical data. These changes greatly facilitate exploration of linkages (both known and predicted) between genes and small molecules, yielding insight into whether particular proteins may be druggable, effectively allowing the navigation of chemical space in a genomics context.
TDR Targets: a chemogenomics resource for neglected diseases
Magariños, María P.; Carmona, Santiago J.; Crowther, Gregory J.; Ralph, Stuart A.; Roos, David S.; Shanmugam, Dhanasekaran; Van Voorhis, Wesley C.; Agüero, Fernán
2012-01-01
The TDR Targets Database (http://tdrtargets.org) has been designed and developed as an online resource to facilitate the rapid identification and prioritization of molecular targets for drug development, focusing on pathogens responsible for neglected human diseases. The database integrates pathogen specific genomic information with functional data (e.g. expression, phylogeny, essentiality) for genes collected from various sources, including literature curation. This information can be browsed and queried using an extensive web interface with functionalities for combining, saving, exporting and sharing the query results. Target genes can be ranked and prioritized using numerical weights assigned to the criteria used for querying. In this report we describe recent updates to the TDR Targets database, including the addition of new genomes (specifically helminths), and integration of chemical structure, property and bioactivity information for biological ligands, drugs and inhibitors and cheminformatic tools for querying and visualizing these chemical data. These changes greatly facilitate exploration of linkages (both known and predicted) between genes and small molecules, yielding insight into whether particular proteins may be druggable, effectively allowing the navigation of chemical space in a genomics context. PMID:22116064
MetalPDB in 2018: a database of metal sites in biological macromolecular structures.
Putignano, Valeria; Rosato, Antonio; Banci, Lucia; Andreini, Claudia
2018-01-04
MetalPDB (http://metalweb.cerm.unifi.it/) is a database providing information on metal-binding sites detected in the three-dimensional (3D) structures of biological macromolecules. MetalPDB represents such sites as 3D templates, called Minimal Functional Sites (MFSs), which describe the local environment around the metal(s) independently of the larger context of the macromolecular structure. The 2018 update of MetalPDB includes new contents and tools. A major extension is the inclusion of proteins whose structures do not contain metal ions although their sequences potentially contain a known MFS. In addition, MetalPDB now provides extensive statistical analyses addressing several aspects of general metal usage within the PDB, across protein families and in catalysis. Users can also query MetalPDB to extract statistical information on structural aspects associated with individual metals, such as preferred coordination geometries or aminoacidic environment. A further major improvement is the functional annotation of MFSs; the annotation is manually performed via a password-protected annotator interface. At present, ∼50% of all MFSs have such a functional annotation. Other noteworthy improvements are bulk query functionality, through the upload of a list of PDB identifiers, and ftp access to MetalPDB contents, allowing users to carry out in-depth analyses on their own computational infrastructure. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Relational Algebra and SQL: Better Together
ERIC Educational Resources Information Center
McMaster, Kirby; Sambasivam, Samuel; Hadfield, Steven; Wolthuis, Stuart
2013-01-01
In this paper, we describe how database instructors can teach Relational Algebra and Structured Query Language together through programming. Students write query programs consisting of sequences of Relational Algebra operations vs. Structured Query Language SELECT statements. The query programs can then be run interactively, allowing students to…
Structural, Functional and Evolutionary Aspects of Seed Globulins.
Kesari, Pooja; Neetu; Sharma, Anchal; Katiki, Madhusudhanarao; Kumar, Pramod; Gurjar, Bhola R; Tomar, Shailly; Sharma, Ashwani K; Kumar, Pravindra
2017-01-01
Globulins are a major class of seed storage proteins which were thought to be enzymatically inactive. These proteins belong to the most ancient cupin superfamily. They can be graded into 11S legumin type and 7S vicilin type based on their sedimentation coefficients. Members from both classes share structural homology are thought to have evolved from either one-domain germin predecessor by duplication or by horizontal gene transfer of two-domain gene from bacteria to eukaryotes. Globulins are known to define the nutritional quality of the seeds, however, they are also involved in sucrose binding, desiccation, defense against microbes, hormone binding and oxidative stress etc. Major drawback with globulins is their tendency to bind to IgE. Studying structural-functional behavior of such protein can help in modifying proteins for enhanced functionality in food processing industries. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
PACSY, a relational database management system for protein structure and chemical shift analysis
Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo
2012-01-01
PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.edu. PMID:22903636
CHENG, JIANLIN; EICKHOLT, JESSE; WANG, ZHENG; DENG, XIN
2013-01-01
After decades of research, protein structure prediction remains a very challenging problem. In order to address the different levels of complexity of structural modeling, two types of modeling techniques — template-based modeling and template-free modeling — have been developed. Template-based modeling can often generate a moderate- to high-resolution model when a similar, homologous template structure is found for a query protein but fails if no template or only incorrect templates are found. Template-free modeling, such as fragment-based assembly, may generate models of moderate resolution for small proteins of low topological complexity. Seldom have the two techniques been integrated together to improve protein modeling. Here we develop a recursive protein modeling approach to selectively and collaboratively apply template-based and template-free modeling methods to model template-covered (i.e. certain) and template-free (i.e. uncertain) regions of a protein. A preliminary implementation of the approach was tested on a number of hard modeling cases during the 9th Critical Assessment of Techniques for Protein Structure Prediction (CASP9) and successfully improved the quality of modeling in most of these cases. Recursive modeling can signicantly reduce the complexity of protein structure modeling and integrate template-based and template-free modeling to improve the quality and efficiency of protein structure prediction. PMID:22809379
Jefferson, Emily R.; Walsh, Thomas P.; Roberts, Timothy J.; Barton, Geoffrey J.
2007-01-01
SNAPPI-DB, a high performance database of Structures, iNterfaces and Alignments of Protein–Protein Interactions, and its associated Java Application Programming Interface (API) is described. SNAPPI-DB contains structural data, down to the level of atom co-ordinates, for each structure in the Protein Data Bank (PDB) together with associated data including SCOP, CATH, Pfam, SWISSPROT, InterPro, GO terms, Protein Quaternary Structures (PQS) and secondary structure information. Domain–domain interactions are stored for multiple domain definitions and are classified by their Superfamily/Family pair and interaction interface. Each set of classified domain–domain interactions has an associated multiple structure alignment for each partner. The API facilitates data access via PDB entries, domains and domain–domain interactions. Rapid development, fast database access and the ability to perform advanced queries without the requirement for complex SQL statements are provided via an object oriented database and the Java Data Objects (JDO) API. SNAPPI-DB contains many features which are not available in other databases of structural protein–protein interactions. It has been applied in three studies on the properties of protein–protein interactions and is currently being employed to train a protein–protein interaction predictor and a functional residue predictor. The database, API and manual are available for download at: . PMID:17202171
Konc, Janez; Janezic, Dusanka
2012-07-01
The ProBiS web server is a web server for detection of structurally similar binding sites in the PDB and for local pairwise alignment of protein structures. In this article, we present a new version of the ProBiS web server that is 10 times faster than earlier versions, due to the efficient parallelization of the ProBiS algorithm, which now allows significantly faster comparison of a protein query against the PDB and reduces the calculation time for scanning the entire PDB from hours to minutes. It also features new web services, and an improved user interface. In addition, the new web server is united with the ProBiS-Database and thus provides instant access to pre-calculated protein similarity profiles for over 29 000 non-redundant protein structures. The ProBiS web server is particularly adept at detection of secondary binding sites in proteins. It is freely available at http://probis.cmm.ki.si/old-version, and the new ProBiS web server is at http://probis.cmm.ki.si.
Konc, Janez; Janežič, Dušanka
2012-01-01
The ProBiS web server is a web server for detection of structurally similar binding sites in the PDB and for local pairwise alignment of protein structures. In this article, we present a new version of the ProBiS web server that is 10 times faster than earlier versions, due to the efficient parallelization of the ProBiS algorithm, which now allows significantly faster comparison of a protein query against the PDB and reduces the calculation time for scanning the entire PDB from hours to minutes. It also features new web services, and an improved user interface. In addition, the new web server is united with the ProBiS-Database and thus provides instant access to pre-calculated protein similarity profiles for over 29 000 non-redundant protein structures. The ProBiS web server is particularly adept at detection of secondary binding sites in proteins. It is freely available at http://probis.cmm.ki.si/old-version, and the new ProBiS web server is at http://probis.cmm.ki.si. PMID:22600737
MODBASE, a database of annotated comparative protein structure models
Pieper, Ursula; Eswar, Narayanan; Stuart, Ashley C.; Ilyin, Valentin A.; Sali, Andrej
2002-01-01
MODBASE (http://guitar.rockefeller.edu/modbase) is a relational database of annotated comparative protein structure models for all available protein sequences matched to at least one known protein structure. The models are calculated by MODPIPE, an automated modeling pipeline that relies on PSI-BLAST, IMPALA and MODELLER. MODBASE uses the MySQL relational database management system for flexible and efficient querying, and the MODVIEW Netscape plugin for viewing and manipulating multiple sequences and structures. It is updated regularly to reflect the growth of the protein sequence and structure databases, as well as improvements in the software for calculating the models. For ease of access, MODBASE is organized into different datasets. The largest dataset contains models for domains in 304 517 out of 539 171 unique protein sequences in the complete TrEMBL database (23 March 2001); only models based on significant alignments (PSI-BLAST E-value < 10–4) and models assessed to have the correct fold are included. Other datasets include models for target selection and structure-based annotation by the New York Structural Genomics Research Consortium, models for prediction of genes in the Drosophila melanogaster genome, models for structure determination of several ribosomal particles and models calculated by the MODWEB comparative modeling web server. PMID:11752309
Cui, Xuefeng; Lu, Zhiwu; Wang, Sheng; Jing-Yan Wang, Jim; Gao, Xin
2016-06-15
Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence-structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM-HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods. Our program is freely available for download from http://sfb.kaust.edu.sa/Pages/Software.aspx : xin.gao@kaust.edu.sa Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Concept-based query language approach to enterprise information systems
NASA Astrophysics Data System (ADS)
Niemi, Timo; Junkkari, Marko; Järvelin, Kalervo
2014-01-01
In enterprise information systems (EISs) it is necessary to model, integrate and compute very diverse data. In advanced EISs the stored data often are based both on structured (e.g. relational) and semi-structured (e.g. XML) data models. In addition, the ad hoc information needs of end-users may require the manipulation of data-oriented (structural), behavioural and deductive aspects of data. Contemporary languages capable of treating this kind of diversity suit only persons with good programming skills. In this paper we present a concept-oriented query language approach to manipulate this diversity so that the programming skill requirements are considerably reduced. In our query language, the features which need technical knowledge are hidden in application-specific concepts and structures. Therefore, users need not be aware of the underlying technology. Application-specific concepts and structures are represented by the modelling primitives of the extended RDOOM (relational deductive object-oriented modelling) which contains primitives for all crucial real world relationships (is-a relationship, part-of relationship, association), XML documents and views. Our query language also supports intensional and extensional-intensional queries, in addition to conventional extensional queries. In its query formulation, the end-user combines available application-specific concepts and structures through shared variables.
Balancing focused combinatorial libraries based on multiple GPCR ligands
NASA Astrophysics Data System (ADS)
Soltanshahi, Farhad; Mansley, Tamsin E.; Choi, Sun; Clark, Robert D.
2006-08-01
G-Protein coupled receptors (GPCRs) are important targets for drug discovery, and combinatorial chemistry is an important tool for pharmaceutical development. The absence of detailed structural information, however, limits the kinds of combinatorial design techniques that can be applied to GPCR targets. This is particularly problematic given the current emphasis on focused combinatorial libraries. By linking an incremental construction method (OptDesign) to the very fast shape-matching capability of ChemSpace, we have created an efficient method for designing targeted sublibraries that are topomerically similar to known actives. Multi-objective scoring allows consideration of multiple queries (actives) simultaneously. This can lead to a distribution of products skewed towards one particular query structure, however, particularly when the ligands of interest are quite dissimilar to one another. A novel pivoting technique is described which makes it possible to generate promising designs even under those circumstances. The approach is illustrated by application to some serotonergic agonists and chemokine antagonists.
Xu, Qifang; Dunbrack, Roland L
2012-11-01
Automating the assignment of existing domain and protein family classifications to new sets of sequences is an important task. Current methods often miss assignments because remote relationships fail to achieve statistical significance. Some assignments are not as long as the actual domain definitions because local alignment methods often cut alignments short. Long insertions in query sequences often erroneously result in two copies of the domain assigned to the query. Divergent repeat sequences in proteins are often missed. We have developed a multilevel procedure to produce nearly complete assignments of protein families of an existing classification system to a large set of sequences. We apply this to the task of assigning Pfam domains to sequences and structures in the Protein Data Bank (PDB). We found that HHsearch alignments frequently scored more remotely related Pfams in Pfam clans higher than closely related Pfams, thus, leading to erroneous assignment at the Pfam family level. A greedy algorithm allowing for partial overlaps was, thus, applied first to sequence/HMM alignments, then HMM-HMM alignments and then structure alignments, taking care to join partial alignments split by large insertions into single-domain assignments. Additional assignment of repeat Pfams with weaker E-values was allowed after stronger assignments of the repeat HMM. Our database of assignments, presented in a database called PDBfam, contains Pfams for 99.4% of chains >50 residues. The Pfam assignment data in PDBfam are available at http://dunbrack2.fccc.edu/ProtCid/PDBfam, which can be searched by PDB codes and Pfam identifiers. They will be updated regularly.
Protein Engineering Approaches in the Post-Genomic Era.
Singh, Raushan K; Lee, Jung-Kul; Selvaraj, Chandrabose; Singh, Ranjitha; Li, Jinglin; Kim, Sang-Yong; Kalia, Vipin C
2018-01-01
Proteins are one of the most multifaceted macromolecules in living systems. Proteins have evolved to function under physiological conditions and, therefore, are not usually tolerant of harsh experimental and environmental conditions. The growing use of proteins in industrial processes as a greener alternative to chemical catalysts often demands constant innovation to improve their performance. Protein engineering aims to design new proteins or modify the sequence of a protein to create proteins with new or desirable functions. With the emergence of structural and functional genomics, protein engineering has been invigorated in the post-genomic era. The three-dimensional structures of proteins with known functions facilitate protein engineering approaches to design variants with desired properties. There are three major approaches of protein engineering research, namely, directed evolution, rational design, and de novo design. Rational design is an effective method of protein engineering when the threedimensional structure and mechanism of the protein is well known. In contrast, directed evolution does not require extensive information and a three-dimensional structure of the protein of interest. Instead, it involves random mutagenesis and selection to screen enzymes with desired properties. De novo design uses computational protein design algorithms to tailor synthetic proteins by using the three-dimensional structures of natural proteins and their folding rules. The present review highlights and summarizes recent protein engineering approaches, and their challenges and limitations in the post-genomic era. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Duan, Rui; Xu, Xianjin; Zou, Xiaoqin
2018-01-01
D3R 2016 Grand Challenge 2 focused on predictions of binding modes and affinities for 102 compounds against the farnesoid X receptor (FXR). In this challenge, two distinct methods, a docking-based method and a template-based method, were employed by our team for the binding mode prediction. For the new template-based method, 3D ligand similarities were calculated for each query compound against the ligands in the co-crystal structures of FXR available in Protein Data Bank. The binding mode was predicted based on the co-crystal protein structure containing the ligand with the best ligand similarity score against the query compound. For the FXR dataset, the template-based method achieved a better performance than the docking-based method on the binding mode prediction. For the binding affinity prediction, an in-house knowledge-based scoring function ITScore2 and MM/PBSA approach were employed. Good performance was achieved for MM/PBSA, whereas the performance of ITScore2 was sensitive to ligand composition, e.g. the percentage of carbon atoms in the compounds. The sensitivity to ligand composition could be a clue for the further improvement of our knowledge-based scoring function.
Highly sensitive detection of individual HEAT and ARM repeats with HHpred and COACH.
Kippert, Fred; Gerloff, Dietlind L
2009-09-24
HEAT and ARM repeats occur in a large number of eukaryotic proteins. As these repeats are often highly diverged, the prediction of HEAT or ARM domains can be challenging. Except for the most clear-cut cases, identification at the individual repeat level is indispensable, in particular for determining domain boundaries. However, methods using single sequence queries do not have the sensitivity required to deal with more divergent repeats and, when applied to proteins with known structures, in some cases failed to detect a single repeat. Testing algorithms which use multiple sequence alignments as queries, we found two of them, HHpred and COACH, to detect HEAT and ARM repeats with greatly enhanced sensitivity. Calibration against experimentally determined structures suggests the use of three score classes with increasing confidence in the prediction, and prediction thresholds for each method. When we applied a new protocol using both HHpred and COACH to these structures, it detected 82% of HEAT repeats and 90% of ARM repeats, with the minimum for a given protein of 57% for HEAT repeats and 60% for ARM repeats. Application to bona fide HEAT and ARM proteins or domains indicated that similar numbers can be expected for the full complement of HEAT/ARM proteins. A systematic screen of the Protein Data Bank for false positive hits revealed their number to be low, in particular for ARM repeats. Double false positive hits for a given protein were rare for HEAT and not at all observed for ARM repeats. In combination with fold prediction and consistency checking (multiple sequence alignments, secondary structure prediction, and position analysis), repeat prediction with the new HHpred/COACH protocol dramatically improves prediction in the twilight zone of fold prediction methods, as well as the delineation of HEAT/ARM domain boundaries. A protocol is presented for the identification of individual HEAT or ARM repeats which is straightforward to implement. It provides high sensitivity at a low false positive rate and will therefore greatly enhance the accuracy of predictions of HEAT and ARM domains.
Highly Sensitive Detection of Individual HEAT and ARM Repeats with HHpred and COACH
Kippert, Fred; Gerloff, Dietlind L.
2009-01-01
Background HEAT and ARM repeats occur in a large number of eukaryotic proteins. As these repeats are often highly diverged, the prediction of HEAT or ARM domains can be challenging. Except for the most clear-cut cases, identification at the individual repeat level is indispensable, in particular for determining domain boundaries. However, methods using single sequence queries do not have the sensitivity required to deal with more divergent repeats and, when applied to proteins with known structures, in some cases failed to detect a single repeat. Methodology and Principal Findings Testing algorithms which use multiple sequence alignments as queries, we found two of them, HHpred and COACH, to detect HEAT and ARM repeats with greatly enhanced sensitivity. Calibration against experimentally determined structures suggests the use of three score classes with increasing confidence in the prediction, and prediction thresholds for each method. When we applied a new protocol using both HHpred and COACH to these structures, it detected 82% of HEAT repeats and 90% of ARM repeats, with the minimum for a given protein of 57% for HEAT repeats and 60% for ARM repeats. Application to bona fide HEAT and ARM proteins or domains indicated that similar numbers can be expected for the full complement of HEAT/ARM proteins. A systematic screen of the Protein Data Bank for false positive hits revealed their number to be low, in particular for ARM repeats. Double false positive hits for a given protein were rare for HEAT and not at all observed for ARM repeats. In combination with fold prediction and consistency checking (multiple sequence alignments, secondary structure prediction, and position analysis), repeat prediction with the new HHpred/COACH protocol dramatically improves prediction in the twilight zone of fold prediction methods, as well as the delineation of HEAT/ARM domain boundaries. Significance A protocol is presented for the identification of individual HEAT or ARM repeats which is straightforward to implement. It provides high sensitivity at a low false positive rate and will therefore greatly enhance the accuracy of predictions of HEAT and ARM domains. PMID:19777061
Multidimensional indexing structure for use with linear optimization queries
NASA Technical Reports Server (NTRS)
Bergman, Lawrence David (Inventor); Castelli, Vittorio (Inventor); Chang, Yuan-Chi (Inventor); Li, Chung-Sheng (Inventor); Smith, John Richard (Inventor)
2002-01-01
Linear optimization queries, which usually arise in various decision support and resource planning applications, are queries that retrieve top N data records (where N is an integer greater than zero) which satisfy a specific optimization criterion. The optimization criterion is to either maximize or minimize a linear equation. The coefficients of the linear equation are given at query time. Methods and apparatus are disclosed for constructing, maintaining and utilizing a multidimensional indexing structure of database records to improve the execution speed of linear optimization queries. Database records with numerical attributes are organized into a number of layers and each layer represents a geometric structure called convex hull. Such linear optimization queries are processed by searching from the outer-most layer of this multi-layer indexing structure inwards. At least one record per layer will satisfy the query criterion and the number of layers needed to be searched depends on the spatial distribution of records, the query-issued linear coefficients, and N, the number of records to be returned. When N is small compared to the total size of the database, answering the query typically requires searching only a small fraction of all relevant records, resulting in a tremendous speedup as compared to linearly scanning the entire dataset.
An exponentiation method for XML element retrieval.
Wichaiwong, Tanakorn
2014-01-01
XML document is now widely used for modelling and storing structured documents. The structure is very rich and carries important information about contents and their relationships, for example, e-Commerce. XML data-centric collections require query terms allowing users to specify constraints on the document structure; mapping structure queries and assigning the weight are significant for the set of possibly relevant documents with respect to structural conditions. In this paper, we present an extension to the MEXIR search system that supports the combination of structural and content queries in the form of content-and-structure queries, which we call the Exponentiation function. It has been shown the structural information improve the effectiveness of the search system up to 52.60% over the baseline BM25 at MAP.
Innovative computer-aided methods for the discovery of new kinase ligands.
Abuhammad, Areej; Taha, Mutasem
2016-04-01
Recent evidence points to significant roles played by protein kinases in cell signaling and cellular proliferation. Faulty protein kinases are involved in cancer, diabetes and chronic inflammation. Efforts are continuously carried out to discover new inhibitors for selected protein kinases. In this review, we discuss two new computer-aided methodologies we developed to mine virtual databases for new bioactive compounds. One method is ligand-based exploration of the pharmacophoric space of inhibitors of any particular biotarget followed by quantitative structure-activity relationship-based selection of the best pharmacophore(s). The second approach is structure-based assuming that potent ligands come into contact with binding site spots distinct from those contacted by weakly potent ligands. Both approaches yield pharmacophores useful as 3D search queries for the discovery of new bioactive (kinase) inhibitors.
Xu, Dong; Jaroszewski, Lukasz; Li, Zhanwen; Godzik, Adam
2015-01-01
Motivation: Most proteins consist of multiple domains, independent structural and evolutionary units that are often reshuffled in genomic rearrangements to form new protein architectures. Template-based modeling methods can often detect homologous templates for individual domains, but templates that could be used to model the entire query protein are often not available. Results: We have developed a fast docking algorithm ab initio domain assembly (AIDA) for assembling multi-domain protein structures, guided by the ab initio folding potential. This approach can be extended to discontinuous domains (i.e. domains with ‘inserted’ domains). When tested on experimentally solved structures of multi-domain proteins, the relative domain positions were accurately found among top 5000 models in 86% of cases. AIDA server can use domain assignments provided by the user or predict them from the provided sequence. The latter approach is particularly useful for automated protein structure prediction servers. The blind test consisting of 95 CASP10 targets shows that domain boundaries could be successfully determined for 97% of targets. Availability and implementation: The AIDA package as well as the benchmark sets used here are available for download at http://ffas.burnham.org/AIDA/. Contact: adam@sanfordburnham.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25701568
AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide
2015-11-19
Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database in which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. This database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.
Designing and benchmarking the MULTICOM protein structure prediction system
2013-01-01
Background Predicting protein structure from sequence is one of the most significant and challenging problems in bioinformatics. Numerous bioinformatics techniques and tools have been developed to tackle almost every aspect of protein structure prediction ranging from structural feature prediction, template identification and query-template alignment to structure sampling, model quality assessment, and model refinement. How to synergistically select, integrate and improve the strengths of the complementary techniques at each prediction stage and build a high-performance system is becoming a critical issue for constructing a successful, competitive protein structure predictor. Results Over the past several years, we have constructed a standalone protein structure prediction system MULTICOM that combines multiple sources of information and complementary methods at all five stages of the protein structure prediction process including template identification, template combination, model generation, model assessment, and model refinement. The system was blindly tested during the ninth Critical Assessment of Techniques for Protein Structure Prediction (CASP9) in 2010 and yielded very good performance. In addition to studying the overall performance on the CASP9 benchmark, we thoroughly investigated the performance and contributions of each component at each stage of prediction. Conclusions Our comprehensive and comparative study not only provides useful and practical insights about how to select, improve, and integrate complementary methods to build a cutting-edge protein structure prediction system but also identifies a few new sources of information that may help improve the design of a protein structure prediction system. Several components used in the MULTICOM system are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/. PMID:23442819
GBA manager: an online tool for querying low-complexity regions in proteins.
Bandyopadhyay, Nirmalya; Kahveci, Tamer
2010-01-01
Abstract We developed GBA Manager, an online software that facilitates the Graph-Based Algorithm (GBA) we proposed in our earlier work. GBA identifies the low-complexity regions (LCR) of protein sequences. GBA exploits a similarity matrix, such as BLOSUM62, to compute the complexity of the subsequences of the input protein sequence. It uses a graph-based algorithm to accurately compute the regions that have low complexities. GBA Manager is a user friendly web-service that enables online querying of protein sequences using GBA. In addition to querying capabilities of the existing GBA algorithm, GBA Manager computes the p-values of the LCR identified. The p-value gives an estimate of the possibility that the region appears by chance. GBA Manager presents the output in three different understandable formats. GBA Manager is freely accessible at http://bioinformatics.cise.ufl.edu/GBA/GBA.htm .
GALT protein database: querying structural and functional features of GALT enzyme.
d'Acierno, Antonio; Facchiano, Angelo; Marabotti, Anna
2014-09-01
Knowledge of the impact of variations on protein structure can enhance the comprehension of the mechanisms of genetic diseases related to that protein. Here, we present a new version of GALT Protein Database, a Web-accessible data repository for the storage and interrogation of structural effects of variations of the enzyme galactose-1-phosphate uridylyltransferase (GALT), the impairment of which leads to classic Galactosemia, a rare genetic disease. This new version of this database now contains the models of 201 missense variants of GALT enzyme, including heterozygous variants, and it allows users not only to retrieve information about the missense variations affecting this protein, but also to investigate their impact on substrate binding, intersubunit interactions, stability, and other structural features. In addition, it allows the interactive visualization of the models of variants collected into the database. We have developed additional tools to improve the use of the database by nonspecialized users. This Web-accessible database (http://bioinformatica.isa.cnr.it/GALT/GALT2.0) represents a model of tools potentially suitable for application to other proteins that are involved in human pathologies and that are subjected to genetic variations. © 2014 WILEY PERIODICALS, INC.
An Exponentiation Method for XML Element Retrieval
2014-01-01
XML document is now widely used for modelling and storing structured documents. The structure is very rich and carries important information about contents and their relationships, for example, e-Commerce. XML data-centric collections require query terms allowing users to specify constraints on the document structure; mapping structure queries and assigning the weight are significant for the set of possibly relevant documents with respect to structural conditions. In this paper, we present an extension to the MEXIR search system that supports the combination of structural and content queries in the form of content-and-structure queries, which we call the Exponentiation function. It has been shown the structural information improve the effectiveness of the search system up to 52.60% over the baseline BM25 at MAP. PMID:24696643
Using the Tools and Resources of the RCSB Protein Data Bank.
Costanzo, Luigi Di; Ghosh, Sutapa; Zardecki, Christine; Burley, Stephen K
2016-09-07
The Protein Data Bank (PDB) archive is the worldwide repository of experimentally determined three-dimensional structures of large biological molecules found in all three kingdoms of life. Atomic-level structures of these proteins, nucleic acids, and complex assemblies thereof are central to research and education in molecular, cellular, and organismal biology, biochemistry, biophysics, materials science, bioengineering, ecology, and medicine. Several types of information are associated with each PDB archival entry, including atomic coordinates, primary experimental data, polymer sequence(s), and summary metadata. The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) serves as the U.S. data center for the PDB, distributing archival data and supporting both simple and complex queries that return results. These data can be freely downloaded, analyzed, and visualized using RCSB PDB tools and resources to gain a deeper understanding of fundamental biological processes, molecular evolution, human health and disease, and drug discovery. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
THGS: a web-based database of Transmembrane Helices in Genome Sequences
Fernando, S. A.; Selvarani, P.; Das, Soma; Kumar, Ch. Kiran; Mondal, Sukanta; Ramakumar, S.; Sekar, K.
2004-01-01
Transmembrane Helices in Genome Sequences (THGS) is an interactive web-based database, developed to search the transmembrane helices in the user-interested gene sequences available in the Genome Database (GDB). The proposed database has provision to search sequence motifs in transmembrane and globular proteins. In addition, the motif can be searched in the other sequence databases (Swiss-Prot and PIR) or in the macromolecular structure database, Protein Data Bank (PDB). Further, the 3D structure of the corresponding queried motif, if it is available in the solved protein structures deposited in the Protein Data Bank, can also be visualized using the widely used graphics package RASMOL. All the sequence databases used in the present work are updated frequently and hence the results produced are up to date. The database THGS is freely available via the world wide web and can be accessed at http://pranag.physics.iisc.ernet.in/thgs/ or http://144.16.71.10/thgs/. PMID:14681375
Najmanovich, Rafael
2013-01-01
IsoCleft Finder is a web-based tool for the detection of local geometric and chemical similarities between potential small-molecule binding cavities and a non-redundant dataset of ligand-bound known small-molecule binding-sites. The non-redundant dataset developed as part of this study is composed of 7339 entries representing unique Pfam/PDB-ligand (hetero group code) combinations with known levels of cognate ligand similarity. The query cavity can be uploaded by the user or detected automatically by the system using existing PDB entries as well as user-provided structures in PDB format. In all cases, the user can refine the definition of the cavity interactively via a browser-based Jmol 3D molecular visualization interface. Furthermore, users can restrict the search to a subset of the dataset using a cognate-similarity threshold. Local structural similarities are detected using the IsoCleft software and ranked according to two criteria (number of atoms in common and Tanimoto score of local structural similarity) and the associated Z-score and p-value measures of statistical significance. The results, including predicted ligands, target proteins, similarity scores, number of atoms in common, etc., are shown in a powerful interactive graphical interface. This interface permits the visualization of target ligands superimposed on the query cavity and additionally provides a table of pairwise ligand topological similarities. Similarities between top scoring ligands serve as an additional tool to judge the quality of the results obtained. We present several examples where IsoCleft Finder provides useful functional information. IsoCleft Finder results are complementary to existing approaches for the prediction of protein function from structure, rational drug design and x-ray crystallography. IsoCleft Finder can be found at: http://bcb.med.usherbrooke.ca/isocleftfinder. PMID:24555058
Li, Liqi; Cui, Xiang; Yu, Sanjiu; Zhang, Yuan; Luo, Zhong; Yang, Hua; Zhou, Yue; Zheng, Xiaoqi
2014-01-01
Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM) in conjunction with integrated features from position-specific score matrix (PSSM), PROFEAT and Gene Ontology (GO). A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets.
Application of Machine Learning Approaches for Protein-protein Interactions Prediction.
Zhang, Mengying; Su, Qiang; Lu, Yi; Zhao, Manman; Niu, Bing
2017-01-01
Proteomics endeavors to study the structures, functions and interactions of proteins. Information of the protein-protein interactions (PPIs) helps to improve our knowledge of the functions and the 3D structures of proteins. Thus determining the PPIs is essential for the study of the proteomics. In this review, in order to study the application of machine learning in predicting PPI, some machine learning approaches such as support vector machine (SVM), artificial neural networks (ANNs) and random forest (RF) were selected, and the examples of its applications in PPIs were listed. SVM and RF are two commonly used methods. Nowadays, more researchers predict PPIs by combining more than two methods. This review presents the application of machine learning approaches in predicting PPI. Many examples of success in identification and prediction in the area of PPI prediction have been discussed, and the PPIs research is still in progress. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Wong, Sienna; Jin, J-P
2017-01-01
Study of folded structure of proteins provides insights into their biological functions, conformational dynamics and molecular evolution. Current methods of elucidating folded structure of proteins are laborious, low-throughput, and constrained by various limitations. Arising from these methods is the need for a sensitive, quantitative, rapid and high-throughput method not only analysing the folded structure of proteins, but also to monitor dynamic changes under physiological or experimental conditions. In this focused review, we outline the foundation and limitations of current protein structure-determination methods prior to discussing the advantages of an emerging antibody epitope analysis for applications in structural, conformational and evolutionary studies of proteins. We discuss the application of this method using representative examples in monitoring allosteric conformation of regulatory proteins and the determination of the evolutionary lineage of related proteins and protein isoforms. The versatility of the method described herein is validated by the ability to modulate a variety of assay parameters to meet the needs of the user in order to monitor protein conformation. Furthermore, the assay has been used to clarify the lineage of troponin isoforms beyond what has been depicted by sequence homology alone, demonstrating the nonlinear evolutionary relationship between primary structure and tertiary structure of proteins. The antibody epitope analysis method is a highly adaptable technique of protein conformation elucidation, which can be easily applied without the need for specialized equipment or technical expertise. When applied in a systematic and strategic manner, this method has the potential to reveal novel and biomedically meaningful information for structure-function relationship and evolutionary lineage of proteins. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Budowski-Tal, Inbal; Nov, Yuval; Kolodny, Rachel
2010-02-23
Fast identification of protein structures that are similar to a specified query structure in the entire Protein Data Bank (PDB) is fundamental in structure and function prediction. We present FragBag: An ultrafast and accurate method for comparing protein structures. We describe a protein structure by the collection of its overlapping short contiguous backbone segments, and discretize this set using a library of fragments. Then, we succinctly represent the protein as a "bags-of-fragments"-a vector that counts the number of occurrences of each fragment-and measure the similarity between two structures by the similarity between their vectors. Our representation has two additional benefits: (i) it can be used to construct an inverted index, for implementing a fast structural search engine of the entire PDB, and (ii) one can specify a structure as a collection of substructures, without combining them into a single structure; this is valuable for structure prediction, when there are reliable predictions only of parts of the protein. We use receiver operating characteristic curve analysis to quantify the success of FragBag in identifying neighbor candidate sets in a dataset of over 2,900 structures. The gold standard is the set of neighbors found by six state of the art structural aligners. Our best FragBag library finds more accurate candidate sets than the three other filter methods: The SGM, PRIDE, and a method by Zotenko et al. More interestingly, FragBag performs on a par with the computationally expensive, yet highly trusted structural aligners STRUCTAL and CE.
PDBe: improved accessibility of macromolecular structure data from PDB and EMDB
Velankar, Sameer; van Ginkel, Glen; Alhroub, Younes; Battle, Gary M.; Berrisford, John M.; Conroy, Matthew J.; Dana, Jose M.; Gore, Swanand P.; Gutmanas, Aleksandras; Haslam, Pauline; Hendrickx, Pieter M. S.; Lagerstedt, Ingvar; Mir, Saqib; Fernandez Montecelo, Manuel A.; Mukhopadhyay, Abhik; Oldfield, Thomas J.; Patwardhan, Ardan; Sanz-García, Eduardo; Sen, Sanchayita; Slowley, Robert A.; Wainwright, Michael E.; Deshpande, Mandar S.; Iudin, Andrii; Sahni, Gaurav; Salavert Torres, Jose; Hirshberg, Miriam; Mak, Lora; Nadzirin, Nurul; Armstrong, David R.; Clark, Alice R.; Smart, Oliver S.; Korir, Paul K.; Kleywegt, Gerard J.
2016-01-01
The Protein Data Bank in Europe (http://pdbe.org) accepts and annotates depositions of macromolecular structure data in the PDB and EMDB archives and enriches, integrates and disseminates structural information in a variety of ways. The PDBe website has been redesigned based on an analysis of user requirements, and now offers intuitive access to improved and value-added macromolecular structure information. Unique value-added information includes lists of reviews and research articles that cite or mention PDB entries as well as access to figures and legends from full-text open-access publications that describe PDB entries. A powerful new query system not only shows all the PDB entries that match a given query, but also shows the ‘best structures’ for a given macromolecule, ligand complex or sequence family using data-quality information from the wwPDB validation reports. A PDBe RESTful API has been developed to provide unified access to macromolecular structure data available in the PDB and EMDB archives as well as value-added annotations, e.g. regarding structure quality and up-to-date cross-reference information from the SIFTS resource. Taken together, these new developments facilitate unified access to macromolecular structure data in an intuitive way for non-expert users and support expert users in analysing macromolecular structure data. PMID:26476444
Xu, Dong; Zhang, Yang
2012-07-01
Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field. Copyright © 2012 Wiley Periodicals, Inc.
Mining Longitudinal Web Queries: Trends and Patterns.
ERIC Educational Resources Information Center
Wang, Peiling; Berry, Michael W.; Yang, Yiheng
2003-01-01
Analyzed user queries submitted to an academic Web site during a four-year period, using a relational database, to examine users' query behavior, to identify problems they encounter, and to develop techniques for optimizing query analysis and mining. Linguistic analyses focus on query structures, lexicon, and word associations using statistical…
Dunbrack, Roland L.
2012-01-01
Motivation: Automating the assignment of existing domain and protein family classifications to new sets of sequences is an important task. Current methods often miss assignments because remote relationships fail to achieve statistical significance. Some assignments are not as long as the actual domain definitions because local alignment methods often cut alignments short. Long insertions in query sequences often erroneously result in two copies of the domain assigned to the query. Divergent repeat sequences in proteins are often missed. Results: We have developed a multilevel procedure to produce nearly complete assignments of protein families of an existing classification system to a large set of sequences. We apply this to the task of assigning Pfam domains to sequences and structures in the Protein Data Bank (PDB). We found that HHsearch alignments frequently scored more remotely related Pfams in Pfam clans higher than closely related Pfams, thus, leading to erroneous assignment at the Pfam family level. A greedy algorithm allowing for partial overlaps was, thus, applied first to sequence/HMM alignments, then HMM–HMM alignments and then structure alignments, taking care to join partial alignments split by large insertions into single-domain assignments. Additional assignment of repeat Pfams with weaker E-values was allowed after stronger assignments of the repeat HMM. Our database of assignments, presented in a database called PDBfam, contains Pfams for 99.4% of chains >50 residues. Availability: The Pfam assignment data in PDBfam are available at http://dunbrack2.fccc.edu/ProtCid/PDBfam, which can be searched by PDB codes and Pfam identifiers. They will be updated regularly. Contact: Roland.Dunbracks@fccc.edu PMID:22942020
Walia, Rasna R; Xue, Li C; Wilkins, Katherine; El-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant
2014-01-01
Protein-RNA interactions are central to essential cellular processes such as protein synthesis and regulation of gene expression and play roles in human infectious and genetic diseases. Reliable identification of protein-RNA interfaces is critical for understanding the structural bases and functional implications of such interactions and for developing effective approaches to rational drug design. Sequence-based computational methods offer a viable, cost-effective way to identify putative RNA-binding residues in RNA-binding proteins. Here we report two novel approaches: (i) HomPRIP, a sequence homology-based method for predicting RNA-binding sites in proteins; (ii) RNABindRPlus, a new method that combines predictions from HomPRIP with those from an optimized Support Vector Machine (SVM) classifier trained on a benchmark dataset of 198 RNA-binding proteins. Although highly reliable, HomPRIP cannot make predictions for the unaligned parts of query proteins and its coverage is limited by the availability of close sequence homologs of the query protein with experimentally determined RNA-binding sites. RNABindRPlus overcomes these limitations. We compared the performance of HomPRIP and RNABindRPlus with that of several state-of-the-art predictors on two test sets, RB44 and RB111. On a subset of proteins for which homologs with experimentally determined interfaces could be reliably identified, HomPRIP outperformed all other methods achieving an MCC of 0.63 on RB44 and 0.83 on RB111. RNABindRPlus was able to predict RNA-binding residues of all proteins in both test sets, achieving an MCC of 0.55 and 0.37, respectively, and outperforming all other methods, including those that make use of structure-derived features of proteins. More importantly, RNABindRPlus outperforms all other methods for any choice of tradeoff between precision and recall. An important advantage of both HomPRIP and RNABindRPlus is that they rely on readily available sequence and sequence-derived features of RNA-binding proteins. A webserver implementation of both methods is freely available at http://einstein.cs.iastate.edu/RNABindRPlus/.
PDB-Metrics: a web tool for exploring the PDB contents.
Fileto, Renato; Kuser, Paula R; Yamagishi, Michel E B; Ribeiro, André A; Quinalia, Thiago G; Franco, Eduardo H; Mancini, Adauto L; Higa, Roberto H; Oliveira, Stanley R M; Santos, Edgard H; Vieira, Fabio D; Mazoni, Ivan; Cruz, Sergio A B; Neshich, Goran
2006-06-30
PDB-Metrics (http://sms.cbi.cnptia.embrapa.br/SMS/pdb_metrics/index.html) is a component of the Diamond STING suite of programs for the analysis of protein sequence, structure and function. It summarizes the characteristics of the collection of protein structure descriptions deposited in the Protein Data Bank (PDB) and provides a Web interface to search and browse the PDB, using a variety of alternative criteria. PDB-Metrics is a powerful tool for bioinformaticians to examine the data span in the PDB from several perspectives. Although other Web sites offer some similar resources to explore the PDB contents, PDB-Metrics is among those with the most complete set of such facilities, integrated into a single Web site. This program has been developed using SQLite, a C library that provides all the query facilities of a database management system.
Structure-guided Protein Transition Modeling with a Probabilistic Roadmap Algorithm.
Maximova, Tatiana; Plaku, Erion; Shehu, Amarda
2016-07-07
Proteins are macromolecules in perpetual motion, switching between structural states to modulate their function. A detailed characterization of the precise yet complex relationship between protein structure, dynamics, and function requires elucidating transitions between functionally-relevant states. Doing so challenges both wet and dry laboratories, as protein dynamics involves disparate temporal scales. In this paper we present a novel, sampling-based algorithm to compute transition paths. The algorithm exploits two main ideas. First, it leverages known structures to initialize its search and define a reduced conformation space for rapid sampling. This is key to address the insufficient sampling issue suffered by sampling-based algorithms. Second, the algorithm embeds samples in a nearest-neighbor graph where transition paths can be efficiently computed via queries. The algorithm adapts the probabilistic roadmap framework that is popular in robot motion planning. In addition to efficiently computing lowest-cost paths between any given structures, the algorithm allows investigating hypotheses regarding the order of experimentally-known structures in a transition event. This novel contribution is likely to open up new venues of research. Detailed analysis is presented on multiple-basin proteins of relevance to human disease. Multiscaling and the AMBER ff14SB force field are used to obtain energetically-credible paths at atomistic detail.
Mavridis, Lazaros; Janes, Robert W
2017-01-01
Circular dichroism (CD) spectroscopy is extensively utilized for determining the percentages of secondary structure content present in proteins. However, although a large contributor, secondary structure is not the only factor that influences the shape and magnitude of the CD spectrum produced. Other structural features can make contributions so an entire protein structural conformation can give rise to a CD spectrum. There is a need for an application capable of generating protein CD spectra from atomic coordinates. However, no empirically derived method to do this currently exists. PDB2CD has been created as an empirical-based approach to the generation of protein CD spectra from atomic coordinates. The method utilizes a combination of structural features within the conformation of a protein; not only its percentage secondary structure content, but also the juxtaposition of these structural components relative to one another, and the overall structure similarity of the query protein to proteins in our dataset, the SP175 dataset, the 'gold standard' set obtained from the Protein Circular Dichroism Data Bank (PCDDB). A significant number of the CD spectra associated with the 71 proteins in this dataset have been produced with excellent accuracy using a leave-one-out cross-validation process. The method also creates spectra in good agreement with those of a test set of 14 proteins from the PCDDB. The PDB2CD package provides a web-based, user friendly approach to enable researchers to produce CD spectra from protein atomic coordinates. http://pdb2cd.cryst.bbk.ac.uk CONTACT: r.w.janes@qmul.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Yokochi, Masashi; Kobayashi, Naohiro; Ulrich, Eldon L; Kinjo, Akira R; Iwata, Takeshi; Ioannidis, Yannis E; Livny, Miron; Markley, John L; Nakamura, Haruki; Kojima, Chojiro; Fujiwara, Toshimichi
2016-05-05
The nuclear magnetic resonance (NMR) spectroscopic data for biological macromolecules archived at the BioMagResBank (BMRB) provide a rich resource of biophysical information at atomic resolution. The NMR data archived in NMR-STAR ASCII format have been implemented in a relational database. However, it is still fairly difficult for users to retrieve data from the NMR-STAR files or the relational database in association with data from other biological databases. To enhance the interoperability of the BMRB database, we present a full conversion of BMRB entries to two standard structured data formats, XML and RDF, as common open representations of the NMR-STAR data. Moreover, a SPARQL endpoint has been deployed. The described case study demonstrates that a simple query of the SPARQL endpoints of the BMRB, UniProt, and Online Mendelian Inheritance in Man (OMIM), can be used in NMR and structure-based analysis of proteins combined with information of single nucleotide polymorphisms (SNPs) and their phenotypes. We have developed BMRB/XML and BMRB/RDF and demonstrate their use in performing a federated SPARQL query linking the BMRB to other databases through standard semantic web technologies. This will facilitate data exchange across diverse information resources.
Query Language for Location-Based Services: A Model Checking Approach
NASA Astrophysics Data System (ADS)
Hoareau, Christian; Satoh, Ichiro
We present a model checking approach to the rationale, implementation, and applications of a query language for location-based services. Such query mechanisms are necessary so that users, objects, and/or services can effectively benefit from the location-awareness of their surrounding environment. The underlying data model is founded on a symbolic model of space organized in a tree structure. Once extended to a semantic model for modal logic, we regard location query processing as a model checking problem, and thus define location queries as hybrid logicbased formulas. Our approach is unique to existing research because it explores the connection between location models and query processing in ubiquitous computing systems, relies on a sound theoretical basis, and provides modal logic-based query mechanisms for expressive searches over a decentralized data structure. A prototype implementation is also presented and will be discussed.
Efficient protein structure search using indexing methods
2013-01-01
Understanding functions of proteins is one of the most important challenges in many studies of biological processes. The function of a protein can be predicted by analyzing the functions of structurally similar proteins, thus finding structurally similar proteins accurately and efficiently from a large set of proteins is crucial. A protein structure can be represented as a vector by 3D-Zernike Descriptor (3DZD) which compactly represents the surface shape of the protein tertiary structure. This simplified representation accelerates the searching process. However, computing the similarity of two protein structures is still computationally expensive, thus it is hard to efficiently process many simultaneous requests of structurally similar protein search. This paper proposes indexing techniques which substantially reduce the search time to find structurally similar proteins. In particular, we first exploit two indexing techniques, i.e., iDistance and iKernel, on the 3DZDs. After that, we extend the techniques to further improve the search speed for protein structures. The extended indexing techniques build and utilize an reduced index constructed from the first few attributes of 3DZDs of protein structures. To retrieve top-k similar structures, top-10 × k similar structures are first found using the reduced index, and top-k structures are selected among them. We also modify the indexing techniques to support θ-based nearest neighbor search, which returns data points less than θ to the query point. The results show that both iDistance and iKernel significantly enhance the searching speed. In top-k nearest neighbor search, the searching time is reduced 69.6%, 77%, 77.4% and 87.9%, respectively using iDistance, iKernel, the extended iDistance, and the extended iKernel. In θ-based nearest neighbor serach, the searching time is reduced 80%, 81%, 95.6% and 95.6% using iDistance, iKernel, the extended iDistance, and the extended iKernel, respectively. PMID:23691543
Efficient protein structure search using indexing methods.
Kim, Sungchul; Sael, Lee; Yu, Hwanjo
2013-01-01
Understanding functions of proteins is one of the most important challenges in many studies of biological processes. The function of a protein can be predicted by analyzing the functions of structurally similar proteins, thus finding structurally similar proteins accurately and efficiently from a large set of proteins is crucial. A protein structure can be represented as a vector by 3D-Zernike Descriptor (3DZD) which compactly represents the surface shape of the protein tertiary structure. This simplified representation accelerates the searching process. However, computing the similarity of two protein structures is still computationally expensive, thus it is hard to efficiently process many simultaneous requests of structurally similar protein search. This paper proposes indexing techniques which substantially reduce the search time to find structurally similar proteins. In particular, we first exploit two indexing techniques, i.e., iDistance and iKernel, on the 3DZDs. After that, we extend the techniques to further improve the search speed for protein structures. The extended indexing techniques build and utilize an reduced index constructed from the first few attributes of 3DZDs of protein structures. To retrieve top-k similar structures, top-10 × k similar structures are first found using the reduced index, and top-k structures are selected among them. We also modify the indexing techniques to support θ-based nearest neighbor search, which returns data points less than θ to the query point. The results show that both iDistance and iKernel significantly enhance the searching speed. In top-k nearest neighbor search, the searching time is reduced 69.6%, 77%, 77.4% and 87.9%, respectively using iDistance, iKernel, the extended iDistance, and the extended iKernel. In θ-based nearest neighbor serach, the searching time is reduced 80%, 81%, 95.6% and 95.6% using iDistance, iKernel, the extended iDistance, and the extended iKernel, respectively.
Reduced Fragment Diversity for Alpha and Alpha-Beta Protein Structure Prediction using Rosetta.
Abbass, Jad; Nebel, Jean-Christophe
2017-01-01
Protein structure prediction is considered a main challenge in computational biology. The biannual international competition, Critical Assessment of protein Structure Prediction (CASP), has shown in its eleventh experiment that free modelling target predictions are still beyond reliable accuracy, therefore, much effort should be made to improve ab initio methods. Arguably, Rosetta is considered as the most competitive method when it comes to targets with no homologues. Relying on fragments of length 9 and 3 from known structures, Rosetta creates putative structures by assembling candidate fragments. Generally, the structure with the lowest energy score, also known as first model, is chosen to be the "predicted one". A thorough study has been conducted on the role and diversity of 3-mers involved in Rosetta's model "refinement" phase. Usage of the standard number of 3-mers - i.e. 200 - has been shown to degrade alpha and alpha-beta protein conformations initially achieved by assembling 9-mers. Therefore, a new prediction pipeline is proposed for Rosetta where the "refinement" phase is customised according to a target's structural class prediction. Over 8% improvement in terms of first model structure accuracy is reported for alpha and alpha-beta classes when decreasing the number of 3- mers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Knowledge-based prediction of protein backbone conformation using a structural alphabet.
Vetrivel, Iyanar; Mahajan, Swapnil; Tyagi, Manoj; Hoffmann, Lionel; Sanejouand, Yves-Henri; Srinivasan, Narayanaswamy; de Brevern, Alexandre G; Cadet, Frédéric; Offmann, Bernard
2017-01-01
Libraries of structural prototypes that abstract protein local structures are known as structural alphabets and have proven to be very useful in various aspects of protein structure analyses and predictions. One such library, Protein Blocks, is composed of 16 standard 5-residues long structural prototypes. This form of analyzing proteins involves drafting its structure as a string of Protein Blocks. Predicting the local structure of a protein in terms of protein blocks is the general objective of this work. A new approach, PB-kPRED is proposed towards this aim. It involves (i) organizing the structural knowledge in the form of a database of pentapeptide fragments extracted from all protein structures in the PDB and (ii) applying a knowledge-based algorithm that does not rely on any secondary structure predictions and/or sequence alignment profiles, to scan this database and predict most probable backbone conformations for the protein local structures. Though PB-kPRED uses the structural information from homologues in preference, if available. The predictions were evaluated rigorously on 15,544 query proteins representing a non-redundant subset of the PDB filtered at 30% sequence identity cut-off. We have shown that the kPRED method was able to achieve mean accuracies ranging from 40.8% to 66.3% depending on the availability of homologues. The impact of the different strategies for scanning the database on the prediction was evaluated and is discussed. Our results highlight the usefulness of the method in the context of proteins without any known structural homologues. A scoring function that gives a good estimate of the accuracy of prediction was further developed. This score estimates very well the accuracy of the algorithm (R2 of 0.82). An online version of the tool is provided freely for non-commercial usage at http://www.bo-protscience.fr/kpred/.
Content-Aware DataGuide with Incremental Index Update using Frequently Used Paths
NASA Astrophysics Data System (ADS)
Sharma, A. K.; Duhan, Neelam; Khattar, Priyanka
2010-11-01
Size of the WWW is increasing day by day. Due to the absence of structured data on the Web, it becomes very difficult for information retrieval tools to fully utilize the Web information. As a solution to this problem, XML pages come into play, which provide structural information to the users to some extent. Without efficient indexes, query processing can be quite inefficient due to an exhaustive traversal on XML data. In this paper an improved content-centric approach of Content-Aware DataGuide, which is an indexing technique for XML databases, is being proposed that uses frequently used paths from historical query logs to improve query performance. The index can be updated incrementally according to the changes in query workload and thus, the overhead of reconstruction can be minimized. Frequently used paths are extracted using any Sequential Pattern mining algorithm on subsequent queries in the query workload. After this, the data structures are incrementally updated. This indexing technique proves to be efficient as partial matching queries can be executed efficiently and users can now get the more relevant documents in results.
GenProBiS: web server for mapping of sequence variants to protein binding sites.
Konc, Janez; Skrlj, Blaz; Erzen, Nika; Kunej, Tanja; Janezic, Dusanka
2017-07-03
Discovery of potentially deleterious sequence variants is important and has wide implications for research and generation of new hypotheses in human and veterinary medicine, and drug discovery. The GenProBiS web server maps sequence variants to protein structures from the Protein Data Bank (PDB), and further to protein-protein, protein-nucleic acid, protein-compound, and protein-metal ion binding sites. The concept of a protein-compound binding site is understood in the broadest sense, which includes glycosylation and other post-translational modification sites. Binding sites were defined by local structural comparisons of whole protein structures using the Protein Binding Sites (ProBiS) algorithm and transposition of ligands from the similar binding sites found to the query protein using the ProBiS-ligands approach with new improvements introduced in GenProBiS. Binding site surfaces were generated as three-dimensional grids encompassing the space occupied by predicted ligands. The server allows intuitive visual exploration of comprehensively mapped variants, such as human somatic mis-sense mutations related to cancer and non-synonymous single nucleotide polymorphisms from 21 species, within the predicted binding sites regions for about 80 000 PDB protein structures using fast WebGL graphics. The GenProBiS web server is open and free to all users at http://genprobis.insilab.org. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
d'Acierno, Antonio; Facchiano, Angelo; Marabotti, Anna
2009-06-01
We describe the GALT-Prot database and its related web-based application that have been developed to collect information about the structural and functional effects of mutations on the human enzyme galactose-1-phosphate uridyltransferase (GALT) involved in the genetic disease named galactosemia type I. Besides a list of missense mutations at gene and protein sequence levels, GALT-Prot reports the analysis results of mutant GALT structures. In addition to the structural information about the wild-type enzyme, the database also includes structures of over 100 single point mutants simulated by means of a computational procedure, and the analysis to each mutant was made with several bioinformatics programs in order to investigate the effect of the mutations. The web-based interface allows querying of the database, and several links are also provided in order to guarantee a high integration with other resources already present on the web. Moreover, the architecture of the database and the web application is flexible and can be easily adapted to store data related to other proteins with point mutations. GALT-Prot is freely available at http://bioinformatica.isa.cnr.it/GALT/.
MannDB: A microbial annotation database for protein characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, C; Lam, M; Smith, J
2006-05-19
MannDB was created to meet a need for rapid, comprehensive automated protein sequence analyses to support selection of proteins suitable as targets for driving the development of reagents for pathogen or protein toxin detection. Because a large number of open-source tools were needed, it was necessary to produce a software system to scale the computations for whole-proteome analysis. Thus, we built a fully automated system for executing software tools and for storage, integration, and display of automated protein sequence analysis and annotation data. MannDB is a relational database that organizes data resulting from fully automated, high-throughput protein-sequence analyses using open-sourcemore » tools. Types of analyses provided include predictions of cleavage, chemical properties, classification, features, functional assignment, post-translational modifications, motifs, antigenicity, and secondary structure. Proteomes (lists of hypothetical and known proteins) are downloaded and parsed from Genbank and then inserted into MannDB, and annotations from SwissProt are downloaded when identifiers are found in the Genbank entry or when identical sequences are identified. Currently 36 open-source tools are run against MannDB protein sequences either on local systems or by means of batch submission to external servers. In addition, BLAST against protein entries in MvirDB, our database of microbial virulence factors, is performed. A web client browser enables viewing of computational results and downloaded annotations, and a query tool enables structured and free-text search capabilities. When available, links to external databases, including MvirDB, are provided. MannDB contains whole-proteome analyses for at least one representative organism from each category of biological threat organism listed by APHIS, CDC, HHS, NIAID, USDA, USFDA, and WHO. MannDB comprises a large number of genomes and comprehensive protein sequence analyses representing organisms listed as high-priority agents on the websites of several governmental organizations concerned with bio-terrorism. MannDB provides the user with a BLAST interface for comparison of native and non-native sequences and a query tool for conveniently selecting proteins of interest. In addition, the user has access to a web-based browser that compiles comprehensive and extensive reports.« less
PDBe: improved accessibility of macromolecular structure data from PDB and EMDB.
Velankar, Sameer; van Ginkel, Glen; Alhroub, Younes; Battle, Gary M; Berrisford, John M; Conroy, Matthew J; Dana, Jose M; Gore, Swanand P; Gutmanas, Aleksandras; Haslam, Pauline; Hendrickx, Pieter M S; Lagerstedt, Ingvar; Mir, Saqib; Fernandez Montecelo, Manuel A; Mukhopadhyay, Abhik; Oldfield, Thomas J; Patwardhan, Ardan; Sanz-García, Eduardo; Sen, Sanchayita; Slowley, Robert A; Wainwright, Michael E; Deshpande, Mandar S; Iudin, Andrii; Sahni, Gaurav; Salavert Torres, Jose; Hirshberg, Miriam; Mak, Lora; Nadzirin, Nurul; Armstrong, David R; Clark, Alice R; Smart, Oliver S; Korir, Paul K; Kleywegt, Gerard J
2016-01-04
The Protein Data Bank in Europe (http://pdbe.org) accepts and annotates depositions of macromolecular structure data in the PDB and EMDB archives and enriches, integrates and disseminates structural information in a variety of ways. The PDBe website has been redesigned based on an analysis of user requirements, and now offers intuitive access to improved and value-added macromolecular structure information. Unique value-added information includes lists of reviews and research articles that cite or mention PDB entries as well as access to figures and legends from full-text open-access publications that describe PDB entries. A powerful new query system not only shows all the PDB entries that match a given query, but also shows the 'best structures' for a given macromolecule, ligand complex or sequence family using data-quality information from the wwPDB validation reports. A PDBe RESTful API has been developed to provide unified access to macromolecular structure data available in the PDB and EMDB archives as well as value-added annotations, e.g. regarding structure quality and up-to-date cross-reference information from the SIFTS resource. Taken together, these new developments facilitate unified access to macromolecular structure data in an intuitive way for non-expert users and support expert users in analysing macromolecular structure data. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Xu, Dong; Zhang, Yang
2012-01-01
Ab initio protein folding is one of the major unsolved problems in computational biology due to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1–20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 non-homologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score (TM-score) >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in 1/3 cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction (CASP9) experiment, QUARK server outperformed the second and third best servers by 18% and 47% based on the cumulative Z-score of global distance test-total (GDT-TS) scores in the free modeling (FM) category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress towards the solution of the most important problem in the field. PMID:22411565
NASA Technical Reports Server (NTRS)
Denney, Ewen W.; Naylor, Dwight; Pai, Ganesh
2014-01-01
Querying a safety case to show how the various stakeholders' concerns about system safety are addressed has been put forth as one of the benefits of argument-based assurance (in a recent study by the Health Foundation, UK, which reviewed the use of safety cases in safety-critical industries). However, neither the literature nor current practice offer much guidance on querying mechanisms appropriate for, or available within, a safety case paradigm. This paper presents a preliminary approach that uses a formal basis for querying safety cases, specifically Goal Structuring Notation (GSN) argument structures. Our approach semantically enriches GSN arguments with domain-specific metadata that the query language leverages, along with its inherent structure, to produce views. We have implemented the approach in our toolset AdvoCATE, and illustrate it by application to a fragment of the safety argument for an Unmanned Aircraft System (UAS) being developed at NASA Ames. We also discuss the potential practical utility of our query mechanism within the context of the existing framework for UAS safety assurance.
A Semantic Graph Query Language
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, I L
2006-10-16
Semantic graphs can be used to organize large amounts of information from a number of sources into one unified structure. A semantic query language provides a foundation for extracting information from the semantic graph. The graph query language described here provides a simple, powerful method for querying semantic graphs.
An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system
DOE Office of Scientific and Technical Information (OSTI.GOV)
AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide
Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.« less
An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system
AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide
2015-11-19
Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.« less
Navigating 3D electron microscopy maps with EM-SURFER.
Esquivel-Rodríguez, Juan; Xiong, Yi; Han, Xusi; Guang, Shuomeng; Christoffer, Charles; Kihara, Daisuke
2015-05-30
The Electron Microscopy DataBank (EMDB) is growing rapidly, accumulating biological structural data obtained mainly by electron microscopy and tomography, which are emerging techniques for determining large biomolecular complex and subcellular structures. Together with the Protein Data Bank (PDB), EMDB is becoming a fundamental resource of the tertiary structures of biological macromolecules. To take full advantage of this indispensable resource, the ability to search the database by structural similarity is essential. However, unlike high-resolution structures stored in PDB, methods for comparing low-resolution electron microscopy (EM) density maps in EMDB are not well established. We developed a computational method for efficiently searching low-resolution EM maps. The method uses a compact fingerprint representation of EM maps based on the 3D Zernike descriptor, which is derived from a mathematical series expansion for EM maps that are considered as 3D functions. The method is implemented in a web server named EM-SURFER, which allows users to search against the entire EMDB in real-time. EM-SURFER compares the global shapes of EM maps. Examples of search results from different types of query structures are discussed. We developed EM-SURFER, which retrieves structurally relevant matches for query EM maps from EMDB within seconds. The unique capability of EM-SURFER to detect 3D shape similarity of low-resolution EM maps should prove invaluable in structural biology.
An evolution-based DNA-binding residue predictor using a dynamic query-driven learning scheme.
Chai, H; Zhang, J; Yang, G; Ma, Z
2016-11-15
DNA-binding proteins play a pivotal role in various biological activities. Identification of DNA-binding residues (DBRs) is of great importance for understanding the mechanism of gene regulations and chromatin remodeling. Most traditional computational methods usually construct their predictors on static non-redundant datasets. They excluded many homologous DNA-binding proteins so as to guarantee the generalization capability of their models. However, those ignored samples may potentially provide useful clues when studying protein-DNA interactions, which have not obtained enough attention. In view of this, we propose a novel method, namely DQPred-DBR, to fill the gap of DBR predictions. First, a large-scale extensible sample pool was compiled. Second, evolution-based features in the form of a relative position specific score matrix and covariant evolutionary conservation descriptors were used to encode the feature space. Third, a dynamic query-driven learning scheme was designed to make more use of proteins with known structure and functions. In comparison with a traditional static model, the introduction of dynamic models could obviously improve the prediction performance. Experimental results from the benchmark and independent datasets proved that our DQPred-DBR had promising generalization capability. It was capable of producing decent predictions and outperforms many state-of-the-art methods. For the convenience of academic use, our proposed method was also implemented as a web server at .
Information Retrieval Using UMLS-based Structured Queries
Fagan, Lawrence M.; Berrios, Daniel C.; Chan, Albert; Cucina, Russell; Datta, Anupam; Shah, Maulik; Surendran, Sujith
2001-01-01
During the last three years, we have developed and described components of ELBook, a semantically based information-retrieval system [1-4]. Using these components, domain experts can specify a query model, indexers can use the query model to index documents, and end-users can search these documents for instances of indexed queries.
The Bologna Annotation Resource (BAR 3.0): improving protein functional annotation
Casadio, Rita
2017-01-01
Abstract BAR 3.0 updates our server BAR (Bologna Annotation Resource) for predicting protein structural and functional features from sequence. We increase data volume, query capabilities and information conveyed to the user. The core of BAR 3.0 is a graph-based clustering procedure of UniProtKB sequences, following strict pairwise similarity criteria (sequence identity ≥40% with alignment coverage ≥90%). Each cluster contains the available annotation downloaded from UniProtKB, GO, PFAM and PDB. After statistical validation, GO terms and PFAM domains are cluster-specific and annotate new sequences entering the cluster after satisfying similarity constraints. BAR 3.0 includes 28 869 663 sequences in 1 361 773 clusters, of which 22.2% (22 241 661 sequences) and 47.4% (24 555 055 sequences) have at least one validated GO term and one PFAM domain, respectively. 1.4% of the clusters (36% of all sequences) include PDB structures and the cluster is associated to a hidden Markov model that allows building template-target alignment suitable for structural modeling. Some other 3 399 026 sequences are singletons. BAR 3.0 offers an improved search interface, allowing queries by UniProtKB-accession, Fasta sequence, GO-term, PFAM-domain, organism, PDB and ligand/s. When evaluated on the CAFA2 targets, BAR 3.0 largely outperforms our previous version and scores among state-of-the-art methods. BAR 3.0 is publicly available and accessible at http://bar.biocomp.unibo.it/bar3. PMID:28453653
NASA Astrophysics Data System (ADS)
Xu, Xianjin; Yan, Chengfei; Zou, Xiaoqin
2017-08-01
The growing number of protein-ligand complex structures, particularly the structures of proteins co-bound with different ligands, in the Protein Data Bank helps us tackle two major challenges in molecular docking studies: the protein flexibility and the scoring function. Here, we introduced a systematic strategy by using the information embedded in the known protein-ligand complex structures to improve both binding mode and binding affinity predictions. Specifically, a ligand similarity calculation method was employed to search a receptor structure with a bound ligand sharing high similarity with the query ligand for the docking use. The strategy was applied to the two datasets (HSP90 and MAP4K4) in recent D3R Grand Challenge 2015. In addition, for the HSP90 dataset, a system-specific scoring function (ITScore2_hsp90) was generated by recalibrating our statistical potential-based scoring function (ITScore2) using the known protein-ligand complex structures and the statistical mechanics-based iterative method. For the HSP90 dataset, better performances were achieved for both binding mode and binding affinity predictions comparing with the original ITScore2 and with ensemble docking. For the MAP4K4 dataset, although there were only eight known protein-ligand complex structures, our docking strategy achieved a comparable performance with ensemble docking. Our method for receptor conformational selection and iterative method for the development of system-specific statistical potential-based scoring functions can be easily applied to other protein targets that have a number of protein-ligand complex structures available to improve predictions on binding.
Querying databases of trajectories of differential equations: Data structures for trajectories
NASA Technical Reports Server (NTRS)
Grossman, Robert
1989-01-01
One approach to qualitative reasoning about dynamical systems is to extract qualitative information by searching or making queries on databases containing very large numbers of trajectories. The efficiency of such queries depends crucially upon finding an appropriate data structure for trajectories of dynamical systems. Suppose that a large number of parameterized trajectories gamma of a dynamical system evolving in R sup N are stored in a database. Let Eta is contained in set R sup N denote a parameterized path in Euclidean Space, and let the Euclidean Norm denote a norm on the space of paths. A data structure is defined to represent trajectories of dynamical systems, and an algorithm is sketched which answers queries.
ATP-binding cassette exporters: structure and mechanism with a focus on P-glycoprotein and MRP1.
Arana, Maite Rocío; Altenberg, Guillermo
2017-10-12
The majority of proteins that belong to the ATP-binding cassette (ABC) superfamily are transporters that mediate the efflux of substrates from cells. These exporters include multidrug resistance proteins of the ABCB and ABCC subfamilies, such as P-glycoprotein (Pgp) and MRP1, respectively. These proteins are not only involved in the resistance of cancer to cytotoxic agents, but also in the protection from endo and xenobiotics, and the determination of drug pharmacokinetics, as well as in the pathophysiology of a variety of disorders. Here, we present a review of the information available on ABC exporters, with a focus on Pgp, MRP1 and related proteins. We describe tissue localization and function of these transporters in health and disease, and discuss the mechanisms of substrate transport. We also correlate recent structural information with the function of the exporters, and discuss details of their molecular mechanism with a focus on the nucleotide-binding domains. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
An intuitive graphical webserver for multiple-choice protein sequence search.
Banky, Daniel; Szalkai, Balazs; Grolmusz, Vince
2014-04-10
Every day tens of thousands of sequence searches and sequence alignment queries are submitted to webservers. The capitalized word "BLAST" becomes a verb, describing the act of performing sequence search and alignment. However, if one needs to search for sequences that contain, for example, two hydrophobic and three polar residues at five given positions, the query formation on the most frequently used webservers will be difficult. Some servers support the formation of queries with regular expressions, but most of the users are unfamiliar with their syntax. Here we present an intuitive, easily applicable webserver, the Protein Sequence Analysis server, that allows the formation of multiple choice queries by simply drawing the residues to their positions; if more than one residue are drawn to the same position, then they will be nicely stacked on the user interface, indicating the multiple choice at the given position. This computer-game-like interface is natural and intuitive, and the coloring of the residues makes possible to form queries requiring not just certain amino acids in the given positions, but also small nonpolar, negatively charged, hydrophobic, positively charged, or polar ones. The webserver is available at http://psa.pitgroup.org. Copyright © 2014 Elsevier B.V. All rights reserved.
Knowledge Query Language (KQL)
2016-02-12
Lexington Massachusetts This page intentionally left blank. iii EXECUTIVE SUMMARY Currently, queries for data ...retrieval from non-Structured Query Language (NoSQL) data stores are tightly coupled to the specific implementation of the data store implementation...independent of the storage content and format for querying NoSQL or relational data stores. This approach uses address expressions (or A-Expressions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, Gregory B.; Bi, Chunxiao; Christie, Cole H.
The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) resource provides tools for query, analysis and visualization of the 3D structures in the PDB archive. As the mobile Web is starting to surpass desktop and laptop usage, scientists and educators are beginning to integrate mobile devices into their research and teaching. In response, we have developed the RCSB PDB Mobile app for the iOS and Android mobile platforms to enable fast and convenient access to RCSB PDB data and services. Lastly, using the app, users from the general public to expert researchers can quickly search and visualize biomolecules,more » and add personal annotations via the RCSB PDB's integrated MyPDB service.« less
Quinn, Gregory B.; Bi, Chunxiao; Christie, Cole H.; ...
2014-09-02
The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) resource provides tools for query, analysis and visualization of the 3D structures in the PDB archive. As the mobile Web is starting to surpass desktop and laptop usage, scientists and educators are beginning to integrate mobile devices into their research and teaching. In response, we have developed the RCSB PDB Mobile app for the iOS and Android mobile platforms to enable fast and convenient access to RCSB PDB data and services. Lastly, using the app, users from the general public to expert researchers can quickly search and visualize biomolecules,more » and add personal annotations via the RCSB PDB's integrated MyPDB service.« less
Ligand Depot: a data warehouse for ligands bound to macromolecules.
Feng, Zukang; Chen, Li; Maddula, Himabindu; Akcan, Ozgur; Oughtred, Rose; Berman, Helen M; Westbrook, John
2004-09-01
Ligand Depot is an integrated data resource for finding information about small molecules bound to proteins and nucleic acids. The initial release (version 1.0, November, 2003) focuses on providing chemical and structural information for small molecules found as part of the structures deposited in the Protein Data Bank. Ligand Depot accepts keyword-based queries and also provides a graphical interface for performing chemical substructure searches. A wide variety of web resources that contain information on small molecules may also be accessed through Ligand Depot. Ligand Depot is available at http://ligand-depot.rutgers.edu/. Version 1.0 supports multiple operating systems including Windows, Unix, Linux and the Macintosh operating system. The current drawing tool works in Internet Explorer, Netscape and Mozilla on Windows, Unix and Linux.
Improving Protein Fold Recognition by Deep Learning Networks.
Jo, Taeho; Hou, Jie; Eickholt, Jesse; Cheng, Jianlin
2015-12-04
For accurate recognition of protein folds, a deep learning network method (DN-Fold) was developed to predict if a given query-template protein pair belongs to the same structural fold. The input used stemmed from the protein sequence and structural features extracted from the protein pair. We evaluated the performance of DN-Fold along with 18 different methods on Lindahl's benchmark dataset and on a large benchmark set extracted from SCOP 1.75 consisting of about one million protein pairs, at three different levels of fold recognition (i.e., protein family, superfamily, and fold) depending on the evolutionary distance between protein sequences. The correct recognition rate of ensembled DN-Fold for Top 1 predictions is 84.5%, 61.5%, and 33.6% and for Top 5 is 91.2%, 76.5%, and 60.7% at family, superfamily, and fold levels, respectively. We also evaluated the performance of single DN-Fold (DN-FoldS), which showed the comparable results at the level of family and superfamily, compared to ensemble DN-Fold. Finally, we extended the binary classification problem of fold recognition to real-value regression task, which also show a promising performance. DN-Fold is freely available through a web server at http://iris.rnet.missouri.edu/dnfold.
3D-SURFER: software for high-throughput protein surface comparison and analysis
La, David; Esquivel-Rodríguez, Juan; Venkatraman, Vishwesh; Li, Bin; Sael, Lee; Ueng, Stephen; Ahrendt, Steven; Kihara, Daisuke
2009-01-01
Summary: We present 3D-SURFER, a web-based tool designed to facilitate high-throughput comparison and characterization of proteins based on their surface shape. As each protein is effectively represented by a vector of 3D Zernike descriptors, comparison times for a query protein against the entire PDB take, on an average, only a couple of seconds. The web interface has been designed to be as interactive as possible with displays showing animated protein rotations, CATH codes and structural alignments using the CE program. In addition, geometrically interesting local features of the protein surface, such as pockets that often correspond to ligand binding sites as well as protrusions and flat regions can also be identified and visualized. Availability: 3D-SURFER is a web application that can be freely accessed from: http://dragon.bio.purdue.edu/3d-surfer Contact: dkihara@purdue.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19759195
3D-SURFER: software for high-throughput protein surface comparison and analysis.
La, David; Esquivel-Rodríguez, Juan; Venkatraman, Vishwesh; Li, Bin; Sael, Lee; Ueng, Stephen; Ahrendt, Steven; Kihara, Daisuke
2009-11-01
We present 3D-SURFER, a web-based tool designed to facilitate high-throughput comparison and characterization of proteins based on their surface shape. As each protein is effectively represented by a vector of 3D Zernike descriptors, comparison times for a query protein against the entire PDB take, on an average, only a couple of seconds. The web interface has been designed to be as interactive as possible with displays showing animated protein rotations, CATH codes and structural alignments using the CE program. In addition, geometrically interesting local features of the protein surface, such as pockets that often correspond to ligand binding sites as well as protrusions and flat regions can also be identified and visualized. 3D-SURFER is a web application that can be freely accessed from: http://dragon.bio.purdue.edu/3d-surfer dkihara@purdue.edu Supplementary data are available at Bioinformatics online.
Jeon, Jouhyun; Arnold, Roland; Singh, Fateh; Teyra, Joan; Braun, Tatjana; Kim, Philip M
2016-04-01
The identification of structured units in a protein sequence is an important first step for most biochemical studies. Importantly for this study, the identification of stable structured region is a crucial first step to generate novel synthetic antibodies. While many approaches to find domains or predict structured regions exist, important limitations remain, such as the optimization of domain boundaries and the lack of identification of non-domain structured units. Moreover, no integrated tool exists to find and optimize structural domains within protein sequences. Here, we describe a new tool, PAT ( http://www.kimlab.org/software/pat ) that can efficiently identify both domains (with optimized boundaries) and non-domain putative structured units. PAT automatically analyzes various structural properties, evaluates the folding stability, and reports possible structural domains in a given protein sequence. For reliability evaluation of PAT, we applied PAT to identify antibody target molecules based on the notion that soluble and well-defined protein secondary and tertiary structures are appropriate target molecules for synthetic antibodies. PAT is an efficient and sensitive tool to identify structured units. A performance analysis shows that PAT can characterize structurally well-defined regions in a given sequence and outperforms other efforts to define reliable boundaries of domains. Specially, PAT successfully identifies experimentally confirmed target molecules for antibody generation. PAT also offers the pre-calculated results of 20,210 human proteins to accelerate common queries. PAT can therefore help to investigate large-scale structured domains and improve the success rate for synthetic antibody generation.
Kinase Pathway Database: An Integrated Protein-Kinase and NLP-Based Protein-Interaction Resource
Koike, Asako; Kobayashi, Yoshiyuki; Takagi, Toshihisa
2003-01-01
Protein kinases play a crucial role in the regulation of cellular functions. Various kinds of information about these molecules are important for understanding signaling pathways and organism characteristics. We have developed the Kinase Pathway Database, an integrated database involving major completely sequenced eukaryotes. It contains the classification of protein kinases and their functional conservation, ortholog tables among species, protein–protein, protein–gene, and protein–compound interaction data, domain information, and structural information. It also provides an automatic pathway graphic image interface. The protein, gene, and compound interactions are automatically extracted from abstracts for all genes and proteins by natural-language processing (NLP).The method of automatic extraction uses phrase patterns and the GENA protein, gene, and compound name dictionary, which was developed by our group. With this database, pathways are easily compared among species using data with more than 47,000 protein interactions and protein kinase ortholog tables. The database is available for querying and browsing at http://kinasedb.ontology.ims.u-tokyo.ac.jp/. PMID:12799355
Biomedical Requirements for High Productivity Computing Systems
2005-04-01
server at http://www.ncbi.nlm.nih.gov/BLAST/. There are many variants of BLAST, including: 1. BLASTN - Compares a DNA query to a DNA database. Searches ...database (3 reading frames from each strand of the DNA) searching . 13 4. TBLASTN - Compares a protein query to a DNA database, in the 6 possible...the molecular during this phase. After eliminating molecules that could not match the query , an atom-by-atom search for the molecules in conducted
Zemla, Adam T; Lang, Dorothy M; Kostova, Tanya; Andino, Raul; Ecale Zhou, Carol L
2011-06-02
Most of the currently used methods for protein function prediction rely on sequence-based comparisons between a query protein and those for which a functional annotation is provided. A serious limitation of sequence similarity-based approaches for identifying residue conservation among proteins is the low confidence in assigning residue-residue correspondences among proteins when the level of sequence identity between the compared proteins is poor. Multiple sequence alignment methods are more satisfactory--still, they cannot provide reliable results at low levels of sequence identity. Our goal in the current work was to develop an algorithm that could help overcome these difficulties by facilitating the identification of structurally (and possibly functionally) relevant residue-residue correspondences between compared protein structures. Here we present StralSV (structure-alignment sequence variability), a new algorithm for detecting closely related structure fragments and quantifying residue frequency from tight local structure alignments. We apply StralSV in a study of the RNA-dependent RNA polymerase of poliovirus, and we demonstrate that the algorithm can be used to determine regions of the protein that are relatively unique, or that share structural similarity with proteins that would be considered distantly related. By quantifying residue frequencies among many residue-residue pairs extracted from local structural alignments, one can infer potential structural or functional importance of specific residues that are determined to be highly conserved or that deviate from a consensus. We further demonstrate that considerable detailed structural and phylogenetic information can be derived from StralSV analyses. StralSV is a new structure-based algorithm for identifying and aligning structure fragments that have similarity to a reference protein. StralSV analysis can be used to quantify residue-residue correspondences and identify residues that may be of particular structural or functional importance, as well as unusual or unexpected residues at a given sequence position. StralSV is provided as a web service at http://proteinmodel.org/AS2TS/STRALSV/.
Ganguli, Sayak; Gupta, Manoj Kumar; Basu, Protip; Banik, Rahul; Singh, Pankaj Kumar; Vishal, Vineet; Bera, Abhisek Ranjan; Chakraborty, Hirak Jyoti; Das, Sasti Gopal
2014-01-01
With the advent of age of big data and advances in high throughput technology accessing data has become one of the most important step in the entire knowledge discovery process. Most users are not able to decipher the query result that is obtained when non specific keywords or a combination of keywords are used. Intelligent access to sequence and structure databases (IASSD) is a desktop application for windows operating system. It is written in Java and utilizes the web service description language (wsdl) files and Jar files of E-utilities of various databases such as National Centre for Biotechnology Information (NCBI) and Protein Data Bank (PDB). Apart from that IASSD allows the user to view protein structure using a JMOL application which supports conditional editing. The Jar file is freely available through e-mail from the corresponding author.
2014-01-01
Background The advent of human genome sequencing project has led to a spurt in the number of protein sequences in the databanks. Success of structure based drug discovery severely hinges on the availability of structures. Despite significant progresses in the area of experimental protein structure determination, the sequence-structure gap is continually widening. Data driven homology based computational methods have proved successful in predicting tertiary structures for sequences sharing medium to high sequence similarities. With dwindling similarities of query sequences, advanced homology/ ab initio hybrid approaches are being explored to solve structure prediction problem. Here we describe Bhageerath-H, a homology/ ab initio hybrid software/server for predicting protein tertiary structures with advancing drug design attempts as one of the goals. Results Bhageerath-H web-server was validated on 75 CASP10 targets which showed TM-scores ≥0.5 in 91% of the cases and Cα RMSDs ≤5Å from the native in 58% of the targets, which is well above the CASP10 water mark. Comparison with some leading servers demonstrated the uniqueness of the hybrid methodology in effectively sampling conformational space, scoring best decoys and refining low resolution models to high and medium resolution. Conclusion Bhageerath-H methodology is web enabled for the scientific community as a freely accessible web server. The methodology is fielded in the on-going CASP11 experiment. PMID:25521245
The Protein Disease Database of human body fluids: II. Computer methods and data issues.
Lemkin, P F; Orr, G A; Goldstein, M P; Creed, G J; Myrick, J E; Merril, C R
1995-01-01
The Protein Disease Database (PDD) is a relational database of proteins and diseases. With this database it is possible to screen for quantitative protein abnormalities associated with disease states. These quantitative relationships use data drawn from the peer-reviewed biomedical literature. Assays may also include those observed in high-resolution electrophoretic gels that offer the potential to quantitate many proteins in a single test as well as data gathered by enzymatic or immunologic assays. We are using the Internet World Wide Web (WWW) and the Web browser paradigm as an access method for wide distribution and querying of the Protein Disease Database. The WWW hypertext transfer protocol and its Common Gateway Interface make it possible to build powerful graphical user interfaces that can support easy-to-use data retrieval using query specification forms or images. The details of these interactions are totally transparent to the users of these forms. Using a client-server SQL relational database, user query access, initial data entry and database maintenance are all performed over the Internet with a Web browser. We discuss the underlying design issues, mapping mechanisms and assumptions that we used in constructing the system, data entry, access to the database server, security, and synthesis of derived two-dimensional gel image maps and hypertext documents resulting from SQL database searches.
Knowledge Query Language (KQL)
2016-02-01
unlimited. This page intentionally left blank. iii EXECUTIVE SUMMARY Currently, queries for data ...retrieval from non-Structured Query Language (NoSQL) data stores are tightly coupled to the specific implementation of the data store implementation, making...of the storage content and format for querying NoSQL or relational data stores. This approach uses address expressions (or A-Expressions) embedded in
Kadumuri, Rajashekar Varma; Vadrevu, Ramakrishna
2017-10-01
Due to their crucial role in function, folding, and stability, protein loops are being targeted for grafting/designing to create novel or alter existing functionality and improve stability and foldability. With a view to facilitate a thorough analysis and effectual search options for extracting and comparing loops for sequence and structural compatibility, we developed, LoopX a comprehensively compiled library of sequence and conformational features of ∼700,000 loops from protein structures. The database equipped with a graphical user interface is empowered with diverse query tools and search algorithms, with various rendering options to visualize the sequence- and structural-level information along with hydrogen bonding patterns, backbone φ, ψ dihedral angles of both the target and candidate loops. Two new features (i) conservation of the polar/nonpolar environment and (ii) conservation of sequence and conformation of specific residues within the loops have also been incorporated in the search and retrieval of compatible loops for a chosen target loop. Thus, the LoopX server not only serves as a database and visualization tool for sequence and structural analysis of protein loops but also aids in extracting and comparing candidate loops for a given target loop based on user-defined search options.
A New Publicly Available Chemical Query Language, CSRML ...
A new XML-based query language, CSRML, has been developed for representing chemical substructures, molecules, reaction rules, and reactions. CSRML queries are capable of integrating additional forms of information beyond the simple substructure (e.g., SMARTS) or reaction transformation (e.g., SMIRKS, reaction SMILES) queries currently in use. Chemotypes, a term used to represent advanced CSRML queries for repeated application can be encoded not only with connectivity and topology, but also with properties of atoms, bonds, electronic systems, or molecules. The CSRML language has been developed in parallel with a public set of chemotypes, i.e., the ToxPrint chemotypes, which are designed to provide excellent coverage of environmental, regulatory and commercial use chemical space, as well as to represent features and frameworks believed to be especially relevant to toxicity concerns. A software application, ChemoTyper, has also been developed and made publicly available to enable chemotype searching and fingerprinting against a target structure set. The public ChemoTyper houses the ToxPrint chemotype CSRML dictionary, as well as reference implementation so that the query specifications may be adopted by other chemical structure knowledge systems. The full specifications of the XML standard used in CSRML-based chemotypes are publicly available to facilitate and encourage the exchange of structural knowledge. Paper details specifications for a new XML-based query lan
SPARQL Query Re-writing Using Partonomy Based Transformation Rules
NASA Astrophysics Data System (ADS)
Jain, Prateek; Yeh, Peter Z.; Verma, Kunal; Henson, Cory A.; Sheth, Amit P.
Often the information present in a spatial knowledge base is represented at a different level of granularity and abstraction than the query constraints. For querying ontology's containing spatial information, the precise relationships between spatial entities has to be specified in the basic graph pattern of SPARQL query which can result in long and complex queries. We present a novel approach to help users intuitively write SPARQL queries to query spatial data, rather than relying on knowledge of the ontology structure. Our framework re-writes queries, using transformation rules to exploit part-whole relations between geographical entities to address the mismatches between query constraints and knowledge base. Our experiments were performed on completely third party datasets and queries. Evaluations were performed on Geonames dataset using questions from National Geographic Bee serialized into SPARQL and British Administrative Geography Ontology using questions from a popular trivia website. These experiments demonstrate high precision in retrieval of results and ease in writing queries.
Towards computational improvement of DNA database indexing and short DNA query searching.
Stojanov, Done; Koceski, Sašo; Mileva, Aleksandra; Koceska, Nataša; Bande, Cveta Martinovska
2014-09-03
In order to facilitate and speed up the search of massive DNA databases, the database is indexed at the beginning, employing a mapping function. By searching through the indexed data structure, exact query hits can be identified. If the database is searched against an annotated DNA query, such as a known promoter consensus sequence, then the starting locations and the number of potential genes can be determined. This is particularly relevant if unannotated DNA sequences have to be functionally annotated. However, indexing a massive DNA database and searching an indexed data structure with millions of entries is a time-demanding process. In this paper, we propose a fast DNA database indexing and searching approach, identifying all query hits in the database, without having to examine all entries in the indexed data structure, limiting the maximum length of a query that can be searched against the database. By applying the proposed indexing equation, the whole human genome could be indexed in 10 hours on a personal computer, under the assumption that there is enough RAM to store the indexed data structure. Analysing the methodology proposed by Reneker, we observed that hits at starting positions [Formula: see text] are not reported, if the database is searched against a query shorter than [Formula: see text] nucleotides, such that [Formula: see text] is the length of the DNA database words being mapped and [Formula: see text] is the length of the query. A solution of this drawback is also presented.
CPHmodels-3.0--remote homology modeling using structure-guided sequence profiles.
Nielsen, Morten; Lundegaard, Claus; Lund, Ole; Petersen, Thomas Nordahl
2010-07-01
CPHmodels-3.0 is a web server predicting protein 3D structure by use of single template homology modeling. The server employs a hybrid of the scoring functions of CPHmodels-2.0 and a novel remote homology-modeling algorithm. A query sequence is first attempted modeled using the fast CPHmodels-2.0 profile-profile scoring function suitable for close homology modeling. The new computational costly remote homology-modeling algorithm is only engaged provided that no suitable PDB template is identified in the initial search. CPHmodels-3.0 was benchmarked in the CASP8 competition and produced models for 94% of the targets (117 out of 128), 74% were predicted as high reliability models (87 out of 117). These achieved an average RMSD of 4.6 A when superimposed to the 3D structure. The remaining 26% low reliably models (30 out of 117) could superimpose to the true 3D structure with an average RMSD of 9.3 A. These performance values place the CPHmodels-3.0 method in the group of high performing 3D prediction tools. Beside its accuracy, one of the important features of the method is its speed. For most queries, the response time of the server is <20 min. The web server is available at http://www.cbs.dtu.dk/services/CPHmodels/.
Yang, Yunhuang; Ramelot, Theresa A; Cort, John R; Garcia, Maite; Yee, Adelinda; Arrowsmith, Cheryl H; Kennedy, Michael A
2012-01-01
CV_2116 is a small hypothetical protein of 82 amino acids from the Gram-negative coccobacillus Chromobacterium violaceum. A PSI-BLAST search using the CV_2116 sequence as a query identified only one hit (E = 2e(-07)) corresponding to a hypothetical protein OR16_04617 from Cupriavidus basilensis OR16, which failed to provide insight into the function of CV_2116. The CV_2116 gene was cloned into the p15TvLic expression plasmid, transformed into E. coli, and (13)C- and (15)N-labeled NMR samples of CV_2116 were overexpressed in E. coli and purified for structure determination using NMR spectroscopy. The resulting high-quality solution NMR structure of CV_2116 revealed a novel α + β fold containing two anti-parallel β-sheets in the N-terminal two-thirds of the protein and one α-helix in the C-terminal third of the protein. CV_2116 does not belong to any known protein sequence family and a Dali search indicated that no similar structures exist in the protein data bank. Although no function of CV_2116 could be derived from either sequence or structural similarity searches, the neighboring genes of CV_2116 encode various proteins annotated as similar to bacteriophage tail assembly proteins. Interestingly, C. violaceum exhibits an extensive network of bacteriophage tail-like structures that likely result from lateral gene transfer by incorporation of viral DNA into its genome (prophages) due to bacteriophage infection. Indeed, C. violaceum has been shown to contain four prophage elements and CV_2116 resides in the fourth of these elements. Analysis of the putative operon in which CV_2116 resides indicates that CV_2116 might be a component of the bacteriophage tail-like assembly that occurs in C. violaceum.
p3d--Python module for structural bioinformatics.
Fufezan, Christian; Specht, Michael
2009-08-21
High-throughput bioinformatic analysis tools are needed to mine the large amount of structural data via knowledge based approaches. The development of such tools requires a robust interface to access the structural data in an easy way. For this the Python scripting language is the optimal choice since its philosophy is to write an understandable source code. p3d is an object oriented Python module that adds a simple yet powerful interface to the Python interpreter to process and analyse three dimensional protein structure files (PDB files). p3d's strength arises from the combination of a) very fast spatial access to the structural data due to the implementation of a binary space partitioning (BSP) tree, b) set theory and c) functions that allow to combine a and b and that use human readable language in the search queries rather than complex computer language. All these factors combined facilitate the rapid development of bioinformatic tools that can perform quick and complex analyses of protein structures. p3d is the perfect tool to quickly develop tools for structural bioinformatics using the Python scripting language.
SHOP: scaffold HOPping by GRID-based similarity searches.
Bergmann, Rikke; Linusson, Anna; Zamora, Ismael
2007-05-31
A new GRID-based method for scaffold hopping (SHOP) is presented. In a fully automatic manner, scaffolds were identified in a database based on three types of 3D-descriptors. SHOP's ability to recover scaffolds was assessed and validated by searching a database spiked with fragments of known ligands of three different protein targets relevant for drug discovery using a rational approach based on statistical experimental design. Five out of eight and seven out of eight thrombin scaffolds and all seven HIV protease scaffolds were recovered within the top 10 and 31 out of 31 neuraminidase scaffolds were in the 31 top-ranked scaffolds. SHOP also identified new scaffolds with substantially different chemotypes from the queries. Docking analysis indicated that the new scaffolds would have similar binding modes to those of the respective query scaffolds observed in X-ray structures. The databases contained scaffolds from published combinatorial libraries to ensure that identified scaffolds could be feasibly synthesized.
A Semantic Basis for Proof Queries and Transformations
NASA Technical Reports Server (NTRS)
Aspinall, David; Denney, Ewen W.; Luth, Christoph
2013-01-01
We extend the query language PrQL, designed for inspecting machine representations of proofs, to also allow transformation of proofs. PrQL natively supports hiproofs which express proof structure using hierarchically nested labelled trees, which we claim is a natural way of taming the complexity of huge proofs. Query-driven transformations enable manipulation of this structure, in particular, to transform proofs produced by interactive theorem provers into forms that assist their understanding, or that could be consumed by other tools. In this paper we motivate and define basic transformation operations, using an abstract denotational semantics of hiproofs and queries. This extends our previous semantics for queries based on syntactic tree representations.We define update operations that add and remove sub-proofs, and manipulate the hierarchy to group and ungroup nodes. We show that
Prediction of Protein Configurational Entropy (Popcoen).
Goethe, Martin; Gleixner, Jan; Fita, Ignacio; Rubi, J Miguel
2018-03-13
A knowledge-based method for configurational entropy prediction of proteins is presented; this methodology is extremely fast, compared to previous approaches, because it does not involve any type of configurational sampling. Instead, the configurational entropy of a query fold is estimated by evaluating an artificial neural network, which was trained on molecular-dynamics simulations of ∼1000 proteins. The predicted entropy can be incorporated into a large class of protein software based on cost-function minimization/evaluation, in which configurational entropy is currently neglected for performance reasons. Software of this type is used for all major protein tasks such as structure predictions, proteins design, NMR and X-ray refinement, docking, and mutation effect predictions. Integrating the predicted entropy can yield a significant accuracy increase as we show exemplarily for native-state identification with the prominent protein software FoldX. The method has been termed Popcoen for Prediction of Protein Configurational Entropy. An implementation is freely available at http://fmc.ub.edu/popcoen/ .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemla, A; Lang, D; Kostova, T
2010-11-29
Most of the currently used methods for protein function prediction rely on sequence-based comparisons between a query protein and those for which a functional annotation is provided. A serious limitation of sequence similarity-based approaches for identifying residue conservation among proteins is the low confidence in assigning residue-residue correspondences among proteins when the level of sequence identity between the compared proteins is poor. Multiple sequence alignment methods are more satisfactory - still, they cannot provide reliable results at low levels of sequence identity. Our goal in the current work was to develop an algorithm that could overcome these difficulties and facilitatemore » the identification of structurally (and possibly functionally) relevant residue-residue correspondences between compared protein structures. Here we present StralSV, a new algorithm for detecting closely related structure fragments and quantifying residue frequency from tight local structure alignments. We apply StralSV in a study of the RNA-dependent RNA polymerase of poliovirus and demonstrate that the algorithm can be used to determine regions of the protein that are relatively unique or that shared structural similarity with structures that are distantly related. By quantifying residue frequencies among many residue-residue pairs extracted from local alignments, one can infer potential structural or functional importance of specific residues that are determined to be highly conserved or that deviate from a consensus. We further demonstrate that considerable detailed structural and phylogenetic information can be derived from StralSV analyses. StralSV is a new structure-based algorithm for identifying and aligning structure fragments that have similarity to a reference protein. StralSV analysis can be used to quantify residue-residue correspondences and identify residues that may be of particular structural or functional importance, as well as unusual or unexpected residues at a given sequence position.« less
Shuttle-Data-Tape XML Translator
NASA Technical Reports Server (NTRS)
Barry, Matthew R.; Osborne, Richard N.
2005-01-01
JSDTImport is a computer program for translating native Shuttle Data Tape (SDT) files from American Standard Code for Information Interchange (ASCII) format into databases in other formats. JSDTImport solves the problem of organizing the SDT content, affording flexibility to enable users to choose how to store the information in a database to better support client and server applications. JSDTImport can be dynamically configured by use of a simple Extensible Markup Language (XML) file. JSDTImport uses this XML file to define how each record and field will be parsed, its layout and definition, and how the resulting database will be structured. JSDTImport also includes a client application programming interface (API) layer that provides abstraction for the data-querying process. The API enables a user to specify the search criteria to apply in gathering all the data relevant to a query. The API can be used to organize the SDT content and translate into a native XML database. The XML format is structured into efficient sections, enabling excellent query performance by use of the XPath query language. Optionally, the content can be translated into a Structured Query Language (SQL) database for fast, reliable SQL queries on standard database server computers.
The Bologna Annotation Resource (BAR 3.0): improving protein functional annotation.
Profiti, Giuseppe; Martelli, Pier Luigi; Casadio, Rita
2017-07-03
BAR 3.0 updates our server BAR (Bologna Annotation Resource) for predicting protein structural and functional features from sequence. We increase data volume, query capabilities and information conveyed to the user. The core of BAR 3.0 is a graph-based clustering procedure of UniProtKB sequences, following strict pairwise similarity criteria (sequence identity ≥40% with alignment coverage ≥90%). Each cluster contains the available annotation downloaded from UniProtKB, GO, PFAM and PDB. After statistical validation, GO terms and PFAM domains are cluster-specific and annotate new sequences entering the cluster after satisfying similarity constraints. BAR 3.0 includes 28 869 663 sequences in 1 361 773 clusters, of which 22.2% (22 241 661 sequences) and 47.4% (24 555 055 sequences) have at least one validated GO term and one PFAM domain, respectively. 1.4% of the clusters (36% of all sequences) include PDB structures and the cluster is associated to a hidden Markov model that allows building template-target alignment suitable for structural modeling. Some other 3 399 026 sequences are singletons. BAR 3.0 offers an improved search interface, allowing queries by UniProtKB-accession, Fasta sequence, GO-term, PFAM-domain, organism, PDB and ligand/s. When evaluated on the CAFA2 targets, BAR 3.0 largely outperforms our previous version and scores among state-of-the-art methods. BAR 3.0 is publicly available and accessible at http://bar.biocomp.unibo.it/bar3. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Query-seeded iterative sequence similarity searching improves selectivity 5–20-fold
Li, Weizhong; Lopez, Rodrigo
2017-01-01
Abstract Iterative similarity search programs, like psiblast, jackhmmer, and psisearch, are much more sensitive than pairwise similarity search methods like blast and ssearch because they build a position specific scoring model (a PSSM or HMM) that captures the pattern of sequence conservation characteristic to a protein family. But models are subject to contamination; once an unrelated sequence has been added to the model, homologs of the unrelated sequence will also produce high scores, and the model can diverge from the original protein family. Examination of alignment errors during psiblast PSSM contamination suggested a simple strategy for dramatically reducing PSSM contamination. psiblast PSSMs are built from the query-based multiple sequence alignment (MSA) implied by the pairwise alignments between the query model (PSSM, HMM) and the subject sequences in the library. When the original query sequence residues are inserted into gapped positions in the aligned subject sequence, the resulting PSSM rarely produces alignment over-extensions or alignments to unrelated sequences. This simple step, which tends to anchor the PSSM to the original query sequence and slightly increase target percent identity, can reduce the frequency of false-positive alignments more than 20-fold compared with psiblast and jackhmmer, with little loss in search sensitivity. PMID:27923999
An emerging cyberinfrastructure for biodefense pathogen and pathogen-host data.
Zhang, C; Crasta, O; Cammer, S; Will, R; Kenyon, R; Sullivan, D; Yu, Q; Sun, W; Jha, R; Liu, D; Xue, T; Zhang, Y; Moore, M; McGarvey, P; Huang, H; Chen, Y; Zhang, J; Mazumder, R; Wu, C; Sobral, B
2008-01-01
The NIAID-funded Biodefense Proteomics Resource Center (RC) provides storage, dissemination, visualization and analysis capabilities for the experimental data deposited by seven Proteomics Research Centers (PRCs). The data and its publication is to support researchers working to discover candidates for the next generation of vaccines, therapeutics and diagnostics against NIAID's Category A, B and C priority pathogens. The data includes transcriptional profiles, protein profiles, protein structural data and host-pathogen protein interactions, in the context of the pathogen life cycle in vivo and in vitro. The database has stored and supported host or pathogen data derived from Bacillus, Brucella, Cryptosporidium, Salmonella, SARS, Toxoplasma, Vibrio and Yersinia, human tissue libraries, and mouse macrophages. These publicly available data cover diverse data types such as mass spectrometry, yeast two-hybrid (Y2H), gene expression profiles, X-ray and NMR determined protein structures and protein expression clones. The growing database covers over 23 000 unique genes/proteins from different experiments and organisms. All of the genes/proteins are annotated and integrated across experiments using UniProt Knowledgebase (UniProtKB) accession numbers. The web-interface for the database enables searching, querying and downloading at the level of experiment, group and individual gene(s)/protein(s) via UniProtKB accession numbers or protein function keywords. The system is accessible at http://www.proteomicsresource.org/.
Yiu, Chin Pang Benny; Chen, Yu Wai
2017-01-01
Proteins implicated in neurological conformational diseases contain substantial amounts of "intrinsic disorder". These native monomeric functional states may transit into some oligomeric states that have high β-sheet contents and seed the formation of insoluble amyloid fibrils. The prevailing view is that these "toxic" oligomers should be targeted for drug development. Here, an overview of the diseases was presented, within the general framework of the oligomerization of intrinsically disordered proteins. These systems pose some specific challenges to structural studies: the toxic oligomers are transient, low in concentration, and often need to be studied in a heterogeneous environment. Nevertheless, there have been much exciting progress as a result of the creative use of experimental techniques, a selection of these were outlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Structuring Legacy Pathology Reports by openEHR Archetypes to Enable Semantic Querying.
Kropf, Stefan; Krücken, Peter; Mueller, Wolf; Denecke, Kerstin
2017-05-18
Clinical information is often stored as free text, e.g. in discharge summaries or pathology reports. These documents are semi-structured using section headers, numbered lists, items and classification strings. However, it is still challenging to retrieve relevant documents since keyword searches applied on complete unstructured documents result in many false positive retrieval results. We are concentrating on the processing of pathology reports as an example for unstructured clinical documents. The objective is to transform reports semi-automatically into an information structure that enables an improved access and retrieval of relevant data. The data is expected to be stored in a standardized, structured way to make it accessible for queries that are applied to specific sections of a document (section-sensitive queries) and for information reuse. Our processing pipeline comprises information modelling, section boundary detection and section-sensitive queries. For enabling a focused search in unstructured data, documents are automatically structured and transformed into a patient information model specified through openEHR archetypes. The resulting XML-based pathology electronic health records (PEHRs) are queried by XQuery and visualized by XSLT in HTML. Pathology reports (PRs) can be reliably structured into sections by a keyword-based approach. The information modelling using openEHR allows saving time in the modelling process since many archetypes can be reused. The resulting standardized, structured PEHRs allow accessing relevant data by retrieving data matching user queries. Mapping unstructured reports into a standardized information model is a practical solution for a better access to data. Archetype-based XML enables section-sensitive retrieval and visualisation by well-established XML techniques. Focussing the retrieval to particular sections has the potential of saving retrieval time and improving the accuracy of the retrieval.
GDAP: a web tool for genome-wide protein disulfide bond prediction.
O'Connor, Brian D; Yeates, Todd O
2004-07-01
The Genomic Disulfide Analysis Program (GDAP) provides web access to computationally predicted protein disulfide bonds for over one hundred microbial genomes, including both bacterial and achaeal species. In the GDAP process, sequences of unknown structure are mapped, when possible, to known homologous Protein Data Bank (PDB) structures, after which specific distance criteria are applied to predict disulfide bonds. GDAP also accepts user-supplied protein sequences and subsequently queries the PDB sequence database for the best matches, scans for possible disulfide bonds and returns the results to the client. These predictions are useful for a variety of applications and have previously been used to show a dramatic preference in certain thermophilic archaea and bacteria for disulfide bonds within intracellular proteins. Given the central role these stabilizing, covalent bonds play in such organisms, the predictions available from GDAP provide a rich data source for designing site-directed mutants with more stable thermal profiles. The GDAP web application is a gateway to this information and can be used to understand the role disulfide bonds play in protein stability both in these unusual organisms and in sequences of interest to the individual researcher. The prediction server can be accessed at http://www.doe-mbi.ucla.edu/Services/GDAP.
Specialized microbial databases for inductive exploration of microbial genome sequences
Fang, Gang; Ho, Christine; Qiu, Yaowu; Cubas, Virginie; Yu, Zhou; Cabau, Cédric; Cheung, Frankie; Moszer, Ivan; Danchin, Antoine
2005-01-01
Background The enormous amount of genome sequence data asks for user-oriented databases to manage sequences and annotations. Queries must include search tools permitting function identification through exploration of related objects. Methods The GenoList package for collecting and mining microbial genome databases has been rewritten using MySQL as the database management system. Functions that were not available in MySQL, such as nested subquery, have been implemented. Results Inductive reasoning in the study of genomes starts from "islands of knowledge", centered around genes with some known background. With this concept of "neighborhood" in mind, a modified version of the GenoList structure has been used for organizing sequence data from prokaryotic genomes of particular interest in China. GenoChore , a set of 17 specialized end-user-oriented microbial databases (including one instance of Microsporidia, Encephalitozoon cuniculi, a member of Eukarya) has been made publicly available. These databases allow the user to browse genome sequence and annotation data using standard queries. In addition they provide a weekly update of searches against the world-wide protein sequences data libraries, allowing one to monitor annotation updates on genes of interest. Finally, they allow users to search for patterns in DNA or protein sequences, taking into account a clustering of genes into formal operons, as well as providing extra facilities to query sequences using predefined sequence patterns. Conclusion This growing set of specialized microbial databases organize data created by the first Chinese bacterial genome programs (ThermaList, Thermoanaerobacter tencongensis, LeptoList, with two different genomes of Leptospira interrogans and SepiList, Staphylococcus epidermidis) associated to related organisms for comparison. PMID:15698474
Sahoo, Satya S.; Bodenreider, Olivier; Rutter, Joni L.; Skinner, Karen J.; Sheth, Amit P.
2008-01-01
Objectives This paper illustrates how Semantic Web technologies (especially RDF, OWL, and SPARQL) can support information integration and make it easy to create semantic mashups (semantically integrated resources). In the context of understanding the genetic basis of nicotine dependence, we integrate gene and pathway information and show how three complex biological queries can be answered by the integrated knowledge base. Methods We use an ontology-driven approach to integrate two gene resources (Entrez Gene and HomoloGene) and three pathway resources (KEGG, Reactome and BioCyc), for five organisms, including humans. We created the Entrez Knowledge Model (EKoM), an information model in OWL for the gene resources, and integrated it with the extant BioPAX ontology designed for pathway resources. The integrated schema is populated with data from the pathway resources, publicly available in BioPAX-compatible format, and gene resources for which a population procedure was created. The SPARQL query language is used to formulate queries over the integrated knowledge base to answer the three biological queries. Results Simple SPARQL queries could easily identify hub genes, i.e., those genes whose gene products participate in many pathways or interact with many other gene products. The identification of the genes expressed in the brain turned out to be more difficult, due to the lack of a common identification scheme for proteins. Conclusion Semantic Web technologies provide a valid framework for information integration in the life sciences. Ontology-driven integration represents a flexible, sustainable and extensible solution to the integration of large volumes of information. Additional resources, which enable the creation of mappings between information sources, are required to compensate for heterogeneity across namespaces. Resource page http://knoesis.wright.edu/research/lifesci/integration/structured_data/JBI-2008/ PMID:18395495
Sahoo, Satya S; Bodenreider, Olivier; Rutter, Joni L; Skinner, Karen J; Sheth, Amit P
2008-10-01
This paper illustrates how Semantic Web technologies (especially RDF, OWL, and SPARQL) can support information integration and make it easy to create semantic mashups (semantically integrated resources). In the context of understanding the genetic basis of nicotine dependence, we integrate gene and pathway information and show how three complex biological queries can be answered by the integrated knowledge base. We use an ontology-driven approach to integrate two gene resources (Entrez Gene and HomoloGene) and three pathway resources (KEGG, Reactome and BioCyc), for five organisms, including humans. We created the Entrez Knowledge Model (EKoM), an information model in OWL for the gene resources, and integrated it with the extant BioPAX ontology designed for pathway resources. The integrated schema is populated with data from the pathway resources, publicly available in BioPAX-compatible format, and gene resources for which a population procedure was created. The SPARQL query language is used to formulate queries over the integrated knowledge base to answer the three biological queries. Simple SPARQL queries could easily identify hub genes, i.e., those genes whose gene products participate in many pathways or interact with many other gene products. The identification of the genes expressed in the brain turned out to be more difficult, due to the lack of a common identification scheme for proteins. Semantic Web technologies provide a valid framework for information integration in the life sciences. Ontology-driven integration represents a flexible, sustainable and extensible solution to the integration of large volumes of information. Additional resources, which enable the creation of mappings between information sources, are required to compensate for heterogeneity across namespaces. RESOURCE PAGE: http://knoesis.wright.edu/research/lifesci/integration/structured_data/JBI-2008/
Information Network Model Query Processing
NASA Astrophysics Data System (ADS)
Song, Xiaopu
Information Networking Model (INM) [31] is a novel database model for real world objects and relationships management. It naturally and directly supports various kinds of static and dynamic relationships between objects. In INM, objects are networked through various natural and complex relationships. INM Query Language (INM-QL) [30] is designed to explore such information network, retrieve information about schema, instance, their attributes, relationships, and context-dependent information, and process query results in the user specified form. INM database management system has been implemented using Berkeley DB, and it supports INM-QL. This thesis is mainly focused on the implementation of the subsystem that is able to effectively and efficiently process INM-QL. The subsystem provides a lexical and syntactical analyzer of INM-QL, and it is able to choose appropriate evaluation strategies and index mechanism to process queries in INM-QL without the user's intervention. It also uses intermediate result structure to hold intermediate query result and other helping structures to reduce complexity of query processing.
DIBS: a repository of disordered binding sites mediating interactions with ordered proteins.
Schad, Eva; Fichó, Erzsébet; Pancsa, Rita; Simon, István; Dosztányi, Zsuzsanna; Mészáros, Bálint
2018-02-01
Intrinsically Disordered Proteins (IDPs) mediate crucial protein-protein interactions, most notably in signaling and regulation. As their importance is increasingly recognized, the detailed analyses of specific IDP interactions opened up new opportunities for therapeutic targeting. Yet, large scale information about IDP-mediated interactions in structural and functional details are lacking, hindering the understanding of the mechanisms underlying this distinct binding mode. Here, we present DIBS, the first comprehensive, curated collection of complexes between IDPs and ordered proteins. DIBS not only describes by far the highest number of cases, it also provides the dissociation constants of their interactions, as well as the description of potential post-translational modifications modulating the binding strength and linear motifs involved in the binding. Together with the wide range of structural and functional annotations, DIBS will provide the cornerstone for structural and functional studies of IDP complexes. DIBS is freely accessible at http://dibs.enzim.ttk.mta.hu/. The DIBS application is hosted by Apache web server and was implemented in PHP. To enrich querying features and to enhance backend performance a MySQL database was also created. dosztanyi@caesar.elte.hu or bmeszaros@caesar.elte.hu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
DDRprot: a database of DNA damage response-related proteins.
Andrés-León, Eduardo; Cases, Ildefonso; Arcas, Aida; Rojas, Ana M
2016-01-01
The DNA Damage Response (DDR) signalling network is an essential system that protects the genome's integrity. The DDRprot database presented here is a resource that integrates manually curated information on the human DDR network and its sub-pathways. For each particular DDR protein, we present detailed information about its function. If involved in post-translational modifications (PTMs) with each other, we depict the position of the modified residue/s in the three-dimensional structures, when resolved structures are available for the proteins. All this information is linked to the original publication from where it was obtained. Phylogenetic information is also shown, including time of emergence and conservation across 47 selected species, family trees and sequence alignments of homologues. The DDRprot database can be queried by different criteria: pathways, species, evolutionary age or involvement in (PTM). Sequence searches using hidden Markov models can be also used.Database URL: http://ddr.cbbio.es. © The Author(s) 2016. Published by Oxford University Press.
EXTENSIBLE DATABASE FRAMEWORK FOR MANAGEMENT OF UNSTRUCTURED AND SEMI-STRUCTURED DOCUMENTS
NASA Technical Reports Server (NTRS)
Gawdiak, Yuri O. (Inventor); La, Tracy T. (Inventor); Lin, Shu-Chun Y. (Inventor); Malof, David A. (Inventor); Tran, Khai Peter B. (Inventor)
2005-01-01
Method and system for querying a collection of Unstructured or semi-structured documents to identify presence of, and provide context and/or content for, keywords and/or keyphrases. The documents are analyzed and assigned a node structure, including an ordered sequence of mutually exclusive node segments or strings. Each node has an associated set of at least four, five or six attributes with node information and can represent a format marker or text, with the last node in any node segment usually being a text node. A keyword (or keyphrase) is specified. and the last node in each node segment is searched for a match with the keyword. When a match is found at a query node, or at a node determined with reference to a query node, the system displays the context andor the content of the query node.
Improving Protein Fold Recognition by Deep Learning Networks
NASA Astrophysics Data System (ADS)
Jo, Taeho; Hou, Jie; Eickholt, Jesse; Cheng, Jianlin
2015-12-01
For accurate recognition of protein folds, a deep learning network method (DN-Fold) was developed to predict if a given query-template protein pair belongs to the same structural fold. The input used stemmed from the protein sequence and structural features extracted from the protein pair. We evaluated the performance of DN-Fold along with 18 different methods on Lindahl’s benchmark dataset and on a large benchmark set extracted from SCOP 1.75 consisting of about one million protein pairs, at three different levels of fold recognition (i.e., protein family, superfamily, and fold) depending on the evolutionary distance between protein sequences. The correct recognition rate of ensembled DN-Fold for Top 1 predictions is 84.5%, 61.5%, and 33.6% and for Top 5 is 91.2%, 76.5%, and 60.7% at family, superfamily, and fold levels, respectively. We also evaluated the performance of single DN-Fold (DN-FoldS), which showed the comparable results at the level of family and superfamily, compared to ensemble DN-Fold. Finally, we extended the binary classification problem of fold recognition to real-value regression task, which also show a promising performance. DN-Fold is freely available through a web server at http://iris.rnet.missouri.edu/dnfold.
Yousefi, Reza; Ferdowsi, Leila; Tavaf, Zohreh; Sadeghian, Tanaz; Tamaddon, Ali M; Moghtaderi, Mozhgan; Pourpak, Zahra
2017-01-01
Milk has a potent reducing environment with an important quantity of sugar levels. In the current study β-casein was glycated in the presence of D-glucose and sodium cyanoborohydride as a reducing agent. Then, the reduced glucitol adduct of β-casein was used for the structural and functional analyses using different spectroscopic techniques. The results of fluorescence and far ultraviolet circular dichroism assessments suggest important structural alteration upon non-enzymatic glycation of β-casein. In addition, the chaperone activity, micellization properties and antioxidant activity of this protein were altered upon glucose modification. Also, as a result of reduced glycation, the allergenicity profile of this protein remained largely unchanged. Additional to its energetic and nutritional values, β-casein has important functional properties. The native structure of this protein is important to perform accurately its biological functions. Non-enzymatic glycation under reducing state was capable to alter both structural and functional aspects of β-casein. Due to effective reducing environment and significant quantity of reducing sugar of human milk, similar structural and functional alterations are most likely to occur upon reducing glycation of β-casein in vivo. Also, these changes might be even intensified during chronic hyperglycemia in diabetic mothers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The Cell Wall-Associated Proteins in the Dimorphic Pathogenic Species of Paracoccidioides.
Puccia, Rosana; Vallejo, Milene C; Longo, Larissa V G
2017-01-01
Paracoccidioides brasiliensis and P. lutzii cause human paracoccidioidomycosis (PCM). They are dimorphic ascomycetes that grow as filaments at mild temperatures up to 28oC and as multibudding pathogenic yeast cells at 37oC. Components of the fungal cell wall have an important role in the interaction with the host because they compose the cell outermost layer. The Paracoccidioides cell wall is composed mainly of polysaccharides, but it also contains proportionally smaller rates of proteins, lipids, and melanin. The polysaccharide cell wall composition and structure of Paracoccidioides yeast cells, filamentous and transition phases were studied in detail in the past. Other cell wall components have been better analyzed in the last decades. The present work gives to the readers a detailed updated view of cell wall-associated proteins. Proteins that have been localized at the cell wall compartment using antibodies are individually addressed. We also make an overview about PCM, the Paracoccidioides cell wall structure, secretion mechanisms, and fungal extracellular vesicles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Jung, HaRim; Song, MoonBae; Youn, Hee Yong; Kim, Ung Mo
2015-09-18
A content-matched (CM) rangemonitoring query overmoving objects continually retrieves the moving objects (i) whose non-spatial attribute values are matched to given non-spatial query values; and (ii) that are currently located within a given spatial query range. In this paper, we propose a new query indexing structure, called the group-aware query region tree (GQR-tree) for efficient evaluation of CMrange monitoring queries. The primary role of the GQR-tree is to help the server leverage the computational capabilities of moving objects in order to improve the system performance in terms of the wireless communication cost and server workload. Through a series of comprehensive simulations, we verify the superiority of the GQR-tree method over the existing methods.
Spatial and symbolic queries for 3D image data
NASA Astrophysics Data System (ADS)
Benson, Daniel C.; Zick, Gregory L.
1992-04-01
We present a query system for an object-oriented biomedical imaging database containing 3-D anatomical structures and their corresponding 2-D images. The graphical interface facilitates the formation of spatial queries, nonspatial or symbolic queries, and combined spatial/symbolic queries. A query editor is used for the creation and manipulation of 3-D query objects as volumes, surfaces, lines, and points. Symbolic predicates are formulated through a combination of text fields and multiple choice selections. Query results, which may include images, image contents, composite objects, graphics, and alphanumeric data, are displayed in multiple views. Objects returned by the query may be selected directly within the views for further inspection or modification, or for use as query objects in subsequent queries. Our image database query system provides visual feedback and manipulation of spatial query objects, multiple views of volume data, and the ability to combine spatial and symbolic queries. The system allows for incremental enhancement of existing objects and the addition of new objects and spatial relationships. The query system is designed for databases containing symbolic and spatial data. This paper discuses its application to data acquired in biomedical 3- D image reconstruction, but it is applicable to other areas such as CAD/CAM, geographical information systems, and computer vision.
Query-Time Optimization Techniques for Structured Queries in Information Retrieval
ERIC Educational Resources Information Center
Cartright, Marc-Allen
2013-01-01
The use of information retrieval (IR) systems is evolving towards larger, more complicated queries. Both the IR industrial and research communities have generated significant evidence indicating that in order to continue improving retrieval effectiveness, increases in retrieval model complexity may be unavoidable. From an operational perspective,…
VISAGE: Interactive Visual Graph Querying.
Pienta, Robert; Navathe, Shamkant; Tamersoy, Acar; Tong, Hanghang; Endert, Alex; Chau, Duen Horng
2016-06-01
Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce graph autocomplete , an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with "wildcard" nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates VISAGE's ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) VISAGE works on real graphs with over 468K edges, achieving sub-second response times for common queries.
VISAGE: Interactive Visual Graph Querying
Pienta, Robert; Navathe, Shamkant; Tamersoy, Acar; Tong, Hanghang; Endert, Alex; Chau, Duen Horng
2017-01-01
Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce graph autocomplete, an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with “wildcard” nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates VISAGE’s ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) VISAGE works on real graphs with over 468K edges, achieving sub-second response times for common queries. PMID:28553670
MetalS(3), a database-mining tool for the identification of structurally similar metal sites.
Valasatava, Yana; Rosato, Antonio; Cavallaro, Gabriele; Andreini, Claudia
2014-08-01
We have developed a database search tool to identify metal sites having structural similarity to a query metal site structure within the MetalPDB database of minimal functional sites (MFSs) contained in metal-binding biological macromolecules. MFSs describe the local environment around the metal(s) independently of the larger context of the macromolecular structure. Such a local environment has a determinant role in tuning the chemical reactivity of the metal, ultimately contributing to the functional properties of the whole system. The database search tool, which we called MetalS(3) (Metal Sites Similarity Search), can be accessed through a Web interface at http://metalweb.cerm.unifi.it/tools/metals3/ . MetalS(3) uses a suitably adapted version of an algorithm that we previously developed to systematically compare the structure of the query metal site with each MFS in MetalPDB. For each MFS, the best superposition is kept. All these superpositions are then ranked according to the MetalS(3) scoring function and are presented to the user in tabular form. The user can interact with the output Web page to visualize the structural alignment or the sequence alignment derived from it. Options to filter the results are available. Test calculations show that the MetalS(3) output correlates well with expectations from protein homology considerations. Furthermore, we describe some usage scenarios that highlight the usefulness of MetalS(3) to obtain mechanistic and functional hints regardless of homology.
How many human proteoforms are there?
Aebersold, Ruedi; Agar, Jeffrey N; Amster, I Jonathan; Baker, Mark S; Bertozzi, Carolyn R; Boja, Emily S; Costello, Catherine E; Cravatt, Benjamin F; Fenselau, Catherine; Garcia, Benjamin A; Ge, Ying; Gunawardena, Jeremy; Hendrickson, Ronald C; Hergenrother, Paul J; Huber, Christian G; Ivanov, Alexander R; Jensen, Ole N; Jewett, Michael C; Kelleher, Neil L; Kiessling, Laura L; Krogan, Nevan J; Larsen, Martin R; Loo, Joseph A; Ogorzalek Loo, Rachel R; Lundberg, Emma; MacCoss, Michael J; Mallick, Parag; Mootha, Vamsi K; Mrksich, Milan; Muir, Tom W; Patrie, Steven M; Pesavento, James J; Pitteri, Sharon J; Rodriguez, Henry; Saghatelian, Alan; Sandoval, Wendy; Schlüter, Hartmut; Sechi, Salvatore; Slavoff, Sarah A; Smith, Lloyd M; Snyder, Michael P; Thomas, Paul M; Uhlén, Mathias; Van Eyk, Jennifer E; Vidal, Marc; Walt, David R; White, Forest M; Williams, Evan R; Wohlschlager, Therese; Wysocki, Vicki H; Yates, Nathan A; Young, Nicolas L; Zhang, Bing
2018-02-14
Despite decades of accumulated knowledge about proteins and their post-translational modifications (PTMs), numerous questions remain regarding their molecular composition and biological function. One of the most fundamental queries is the extent to which the combinations of DNA-, RNA- and PTM-level variations explode the complexity of the human proteome. Here, we outline what we know from current databases and measurement strategies including mass spectrometry-based proteomics. In doing so, we examine prevailing notions about the number of modifications displayed on human proteins and how they combine to generate the protein diversity underlying health and disease. We frame central issues regarding determination of protein-level variation and PTMs, including some paradoxes present in the field today. We use this framework to assess existing data and to ask the question, "How many distinct primary structures of proteins (proteoforms) are created from the 20,300 human genes?" We also explore prospects for improving measurements to better regularize protein-level biology and efficiently associate PTMs to function and phenotype.
Evolution of Protein Lipograms: A Bioinformatics Problem
ERIC Educational Resources Information Center
White, Harold B., III; Dhurjati, Prasad
2006-01-01
A protein lacking one of the 20 common amino acids is a protein lipogram. This open-ended problem-based learning assignment deals with the evolution of proteins with biased amino acid composition. It has students query protein and metabolic databases to test the hypothesis that natural selection has reduced the frequency of each amino acid…
Sumbalova, Lenka; Stourac, Jan; Martinek, Tomas; Bednar, David; Damborsky, Jiri
2018-05-23
HotSpot Wizard is a web server used for the automated identification of hotspots in semi-rational protein design to give improved protein stability, catalytic activity, substrate specificity and enantioselectivity. Since there are three orders of magnitude fewer protein structures than sequences in bioinformatic databases, the major limitation to the usability of previous versions was the requirement for the protein structure to be a compulsory input for the calculation. HotSpot Wizard 3.0 now accepts the protein sequence as input data. The protein structure for the query sequence is obtained either from eight repositories of homology models or is modeled using Modeller and I-Tasser. The quality of the models is then evaluated using three quality assessment tools-WHAT_CHECK, PROCHECK and MolProbity. During follow-up analyses, the system automatically warns the users whenever they attempt to redesign poorly predicted parts of their homology models. The second main limitation of HotSpot Wizard's predictions is that it identifies suitable positions for mutagenesis, but does not provide any reliable advice on particular substitutions. A new module for the estimation of thermodynamic stabilities using the Rosetta and FoldX suites has been introduced which prevents destabilizing mutations among pre-selected variants entering experimental testing. HotSpot Wizard is freely available at http://loschmidt.chemi.muni.cz/hotspotwizard.
Hayashi, Takanori; Matsuzaki, Yuri; Yanagisawa, Keisuke; Ohue, Masahito; Akiyama, Yutaka
2018-05-08
Protein-protein interactions (PPIs) play several roles in living cells, and computational PPI prediction is a major focus of many researchers. The three-dimensional (3D) structure and binding surface are important for the design of PPI inhibitors. Therefore, rigid body protein-protein docking calculations for two protein structures are expected to allow elucidation of PPIs different from known complexes in terms of 3D structures because known PPI information is not explicitly required. We have developed rapid PPI prediction software based on protein-protein docking, called MEGADOCK. In order to fully utilize the benefits of computational PPI predictions, it is necessary to construct a comprehensive database to gather prediction results and their predicted 3D complex structures and to make them easily accessible. Although several databases exist that provide predicted PPIs, the previous databases do not contain a sufficient number of entries for the purpose of discovering novel PPIs. In this study, we constructed an integrated database of MEGADOCK PPI predictions, named MEGADOCK-Web. MEGADOCK-Web provides more than 10 times the number of PPI predictions than previous databases and enables users to conduct PPI predictions that cannot be found in conventional PPI prediction databases. In MEGADOCK-Web, there are 7528 protein chains and 28,331,628 predicted PPIs from all possible combinations of those proteins. Each protein structure is annotated with PDB ID, chain ID, UniProt AC, related KEGG pathway IDs, and known PPI pairs. Additionally, MEGADOCK-Web provides four powerful functions: 1) searching precalculated PPI predictions, 2) providing annotations for each predicted protein pair with an experimentally known PPI, 3) visualizing candidates that may interact with the query protein on biochemical pathways, and 4) visualizing predicted complex structures through a 3D molecular viewer. MEGADOCK-Web provides a huge amount of comprehensive PPI predictions based on docking calculations with biochemical pathways and enables users to easily and quickly assess PPI feasibilities by archiving PPI predictions. MEGADOCK-Web also promotes the discovery of new PPIs and protein functions and is freely available for use at http://www.bi.cs.titech.ac.jp/megadock-web/ .
GCView: the genomic context viewer for protein homology searches
Grin, Iwan; Linke, Dirk
2011-01-01
Genomic neighborhood can provide important insights into evolution and function of a protein or gene. When looking at operons, changes in operon structure and composition can only be revealed by looking at the operon as a whole. To facilitate the analysis of the genomic context of a query in multiple organisms we have developed Genomic Context Viewer (GCView). GCView accepts results from one or multiple protein homology searches such as BLASTp as input. For each hit, the neighboring protein-coding genes are extracted, the regions of homology are labeled for each input and the results are presented as a clear, interactive graphical output. It is also possible to add more searches to iteratively refine the output. GCView groups outputs by the hits for different proteins. This allows for easy comparison of different operon compositions and structures. The tool is embedded in the framework of the Bioinformatics Toolkit of the Max-Planck Institute for Developmental Biology (MPI Toolkit). Job results from the homology search tools inside the MPI Toolkit can be forwarded to GCView and results can be subsequently analyzed by sequence analysis tools. Results are stored online, allowing for later reinspection. GCView is freely available at http://toolkit.tuebingen.mpg.de/gcview. PMID:21609955
Predicting turns in proteins with a unified model.
Song, Qi; Li, Tonghua; Cong, Peisheng; Sun, Jiangming; Li, Dapeng; Tang, Shengnan
2012-01-01
Turns are a critical element of the structure of a protein; turns play a crucial role in loops, folds, and interactions. Current prediction methods are well developed for the prediction of individual turn types, including α-turn, β-turn, and γ-turn, etc. However, for further protein structure and function prediction it is necessary to develop a uniform model that can accurately predict all types of turns simultaneously. In this study, we present a novel approach, TurnP, which offers the ability to investigate all the turns in a protein based on a unified model. The main characteristics of TurnP are: (i) using newly exploited features of structural evolution information (secondary structure and shape string of protein) based on structure homologies, (ii) considering all types of turns in a unified model, and (iii) practical capability of accurate prediction of all turns simultaneously for a query. TurnP utilizes predicted secondary structures and predicted shape strings, both of which have greater accuracy, based on innovative technologies which were both developed by our group. Then, sequence and structural evolution features, which are profile of sequence, profile of secondary structures and profile of shape strings are generated by sequence and structure alignment. When TurnP was validated on a non-redundant dataset (4,107 entries) by five-fold cross-validation, we achieved an accuracy of 88.8% and a sensitivity of 71.8%, which exceeded the most state-of-the-art predictors of certain type of turn. Newly determined sequences, the EVA and CASP9 datasets were used as independent tests and the results we achieved were outstanding for turn predictions and confirmed the good performance of TurnP for practical applications.
Predicting Turns in Proteins with a Unified Model
Song, Qi; Li, Tonghua; Cong, Peisheng; Sun, Jiangming; Li, Dapeng; Tang, Shengnan
2012-01-01
Motivation Turns are a critical element of the structure of a protein; turns play a crucial role in loops, folds, and interactions. Current prediction methods are well developed for the prediction of individual turn types, including α-turn, β-turn, and γ-turn, etc. However, for further protein structure and function prediction it is necessary to develop a uniform model that can accurately predict all types of turns simultaneously. Results In this study, we present a novel approach, TurnP, which offers the ability to investigate all the turns in a protein based on a unified model. The main characteristics of TurnP are: (i) using newly exploited features of structural evolution information (secondary structure and shape string of protein) based on structure homologies, (ii) considering all types of turns in a unified model, and (iii) practical capability of accurate prediction of all turns simultaneously for a query. TurnP utilizes predicted secondary structures and predicted shape strings, both of which have greater accuracy, based on innovative technologies which were both developed by our group. Then, sequence and structural evolution features, which are profile of sequence, profile of secondary structures and profile of shape strings are generated by sequence and structure alignment. When TurnP was validated on a non-redundant dataset (4,107 entries) by five-fold cross-validation, we achieved an accuracy of 88.8% and a sensitivity of 71.8%, which exceeded the most state-of-the-art predictors of certain type of turn. Newly determined sequences, the EVA and CASP9 datasets were used as independent tests and the results we achieved were outstanding for turn predictions and confirmed the good performance of TurnP for practical applications. PMID:23144872
NNvPDB: Neural Network based Protein Secondary Structure Prediction with PDB Validation.
Sakthivel, Seethalakshmi; S K M, Habeeb
2015-01-01
The predicted secondary structural states are not cross validated by any of the existing servers. Hence, information on the level of accuracy for every sequence is not reported by the existing servers. This was overcome by NNvPDB, which not only reported greater Q3 but also validates every prediction with the homologous PDB entries. NNvPDB is based on the concept of Neural Network, with a new and different approach of training the network every time with five PDB structures that are similar to query sequence. The average accuracy for helix is 76%, beta sheet is 71% and overall (helix, sheet and coil) is 66%. http://bit.srmuniv.ac.in/cgi-bin/bit/cfpdb/nnsecstruct.pl.
Discovery and Development of ATP-Competitive mTOR Inhibitors Using Computational Approaches.
Luo, Yao; Wang, Ling
2017-11-16
The mammalian target of rapamycin (mTOR) is a central controller of cell growth, proliferation, metabolism, and angiogenesis. This protein is an attractive target for new anticancer drug development. Significant progress has been made in hit discovery, lead optimization, drug candidate development and determination of the three-dimensional (3D) structure of mTOR. Computational methods have been applied to accelerate the discovery and development of mTOR inhibitors helping to model the structure of mTOR, screen compound databases, uncover structure-activity relationship (SAR) and optimize the hits, mine the privileged fragments and design focused libraries. Besides, computational approaches were also applied to study protein-ligand interactions mechanisms and in natural product-driven drug discovery. Herein, we survey the most recent progress on the application of computational approaches to advance the discovery and development of compounds targeting mTOR. Future directions in the discovery of new mTOR inhibitors using computational methods are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Quinn, Gregory B; Bi, Chunxiao; Christie, Cole H; Pang, Kyle; Prlić, Andreas; Nakane, Takanori; Zardecki, Christine; Voigt, Maria; Berman, Helen M; Bourne, Philip E; Rose, Peter W
2015-01-01
The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) resource provides tools for query, analysis and visualization of the 3D structures in the PDB archive. As the mobile Web is starting to surpass desktop and laptop usage, scientists and educators are beginning to integrate mobile devices into their research and teaching. In response, we have developed the RCSB PDB Mobile app for the iOS and Android mobile platforms to enable fast and convenient access to RCSB PDB data and services. Using the app, users from the general public to expert researchers can quickly search and visualize biomolecules, and add personal annotations via the RCSB PDB's integrated MyPDB service. RCSB PDB Mobile is freely available from the Apple App Store and Google Play (http://www.rcsb.org). © The Author 2014. Published by Oxford University Press.
Quinn, Gregory B.; Bi, Chunxiao; Christie, Cole H.; Pang, Kyle; Prlić, Andreas; Nakane, Takanori; Zardecki, Christine; Voigt, Maria; Berman, Helen M.; Rose, Peter W.
2015-01-01
Summary: The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) resource provides tools for query, analysis and visualization of the 3D structures in the PDB archive. As the mobile Web is starting to surpass desktop and laptop usage, scientists and educators are beginning to integrate mobile devices into their research and teaching. In response, we have developed the RCSB PDB Mobile app for the iOS and Android mobile platforms to enable fast and convenient access to RCSB PDB data and services. Using the app, users from the general public to expert researchers can quickly search and visualize biomolecules, and add personal annotations via the RCSB PDB’s integrated MyPDB service. Availability and implementation: RCSB PDB Mobile is freely available from the Apple App Store and Google Play (http://www.rcsb.org). Contact: pwrose@ucsd.edu PMID:25183487
NASA Astrophysics Data System (ADS)
Ho, Chris M. W.; Marshall, Garland R.
1993-12-01
SPLICE is a program that processes partial query solutions retrieved from 3D, structural databases to generate novel, aggregate ligands. It is designed to interface with the database searching program FOUNDATION, which retrieves fragments containing any combination of a user-specified minimum number of matching query elements. SPLICE eliminates aspects of structures that are physically incapable of binding within the active site. Then, a systematic rule-based procedure is performed upon the remaining fragments to ensure receptor complementarity. All modifications are automated and remain transparent to the user. Ligands are then assembled by linking components into composite structures through overlapping bonds. As a control experiment, FOUNDATION and SPLICE were used to reconstruct a know HIV-1 protease inhibitor after it had been fragmented, reoriented, and added to a sham database of fifty different small molecules. To illustrate the capabilities of this program, a 3D search query containing the pharmacophoric elements of an aspartic proteinase-inhibitor crystal complex was searched using FOUNDATION against a subset of the Cambridge Structural Database. One hundred thirty-one compounds were retrieved, each containing any combination of at least four query elements. Compounds were automatically screened and edited for receptor complementarity. Numerous combinations of fragments were discovered that could be linked to form novel structures, containing a greater number of pharmacophoric elements than any single retrieved fragment.
A high performance, ad-hoc, fuzzy query processing system for relational databases
NASA Technical Reports Server (NTRS)
Mansfield, William H., Jr.; Fleischman, Robert M.
1992-01-01
Database queries involving imprecise or fuzzy predicates are currently an evolving area of academic and industrial research. Such queries place severe stress on the indexing and I/O subsystems of conventional database environments since they involve the search of large numbers of records. The Datacycle architecture and research prototype is a database environment that uses filtering technology to perform an efficient, exhaustive search of an entire database. It has recently been modified to include fuzzy predicates in its query processing. The approach obviates the need for complex index structures, provides unlimited query throughput, permits the use of ad-hoc fuzzy membership functions, and provides a deterministic response time largely independent of query complexity and load. This paper describes the Datacycle prototype implementation of fuzzy queries and some recent performance results.
Jung, HaRim; Song, MoonBae; Youn, Hee Yong; Kim, Ung Mo
2015-01-01
A content-matched (CM) range monitoring query over moving objects continually retrieves the moving objects (i) whose non-spatial attribute values are matched to given non-spatial query values; and (ii) that are currently located within a given spatial query range. In this paper, we propose a new query indexing structure, called the group-aware query region tree (GQR-tree) for efficient evaluation of CM range monitoring queries. The primary role of the GQR-tree is to help the server leverage the computational capabilities of moving objects in order to improve the system performance in terms of the wireless communication cost and server workload. Through a series of comprehensive simulations, we verify the superiority of the GQR-tree method over the existing methods. PMID:26393613
Systems and methods for an extensible business application framework
NASA Technical Reports Server (NTRS)
Bell, David G. (Inventor); Crawford, Michael (Inventor)
2012-01-01
Method and systems for editing data from a query result include requesting a query result using a unique collection identifier for a collection of individual files and a unique identifier for a configuration file that specifies a data structure for the query result. A query result is generated that contains a plurality of fields as specified by the configuration file, by combining each of the individual files associated with a unique identifier for a collection of individual files. The query result data is displayed with a plurality of labels as specified in the configuration file. Edits can be performed by querying a collection of individual files using the configuration file, editing a portion of the query result, and transmitting only the edited information for storage back into a data repository.
An Experimental Investigation of Complexity in Database Query Formulation Tasks
ERIC Educational Resources Information Center
Casterella, Gretchen Irwin; Vijayasarathy, Leo
2013-01-01
Information Technology professionals and other knowledge workers rely on their ability to extract data from organizational databases to respond to business questions and support decision making. Structured query language (SQL) is the standard programming language for querying data in relational databases, and SQL skills are in high demand and are…
Jadhav, Ashutosh; Sheth, Amit; Pathak, Jyotishman
2014-01-01
Since the early 2000’s, Internet usage for health information searching has increased significantly. Studying search queries can help us to understand users “information need” and how do they formulate search queries (“expression of information need”). Although cardiovascular diseases (CVD) affect a large percentage of the population, few studies have investigated how and what users search for CVD. We address this knowledge gap in the community by analyzing a large corpus of 10 million CVD related search queries from MayoClinic.com. Using UMLS MetaMap and UMLS semantic types/concepts, we developed a rule-based approach to categorize the queries into 14 health categories. We analyzed structural properties, types (keyword-based/Wh-questions/Yes-No questions) and linguistic structure of the queries. Our results show that the most searched health categories are ‘Diseases/Conditions’, ‘Vital-Sings’, ‘Symptoms’ and ‘Living-with’. CVD queries are longer and are predominantly keyword-based. This study extends our knowledge about online health information searching and provides useful insights for Web search engines and health websites. PMID:25954380
CSRQ: Communication-Efficient Secure Range Queries in Two-Tiered Sensor Networks
Dai, Hua; Ye, Qingqun; Yang, Geng; Xu, Jia; He, Ruiliang
2016-01-01
In recent years, we have seen many applications of secure query in two-tiered wireless sensor networks. Storage nodes are responsible for storing data from nearby sensor nodes and answering queries from Sink. It is critical to protect data security from a compromised storage node. In this paper, the Communication-efficient Secure Range Query (CSRQ)—a privacy and integrity preserving range query protocol—is proposed to prevent attackers from gaining information of both data collected by sensor nodes and queries issued by Sink. To preserve privacy and integrity, in addition to employing the encoding mechanisms, a novel data structure called encrypted constraint chain is proposed, which embeds the information of integrity verification. Sink can use this encrypted constraint chain to verify the query result. The performance evaluation shows that CSRQ has lower communication cost than the current range query protocols. PMID:26907293
SPARQLGraph: a web-based platform for graphically querying biological Semantic Web databases.
Schweiger, Dominik; Trajanoski, Zlatko; Pabinger, Stephan
2014-08-15
Semantic Web has established itself as a framework for using and sharing data across applications and database boundaries. Here, we present a web-based platform for querying biological Semantic Web databases in a graphical way. SPARQLGraph offers an intuitive drag & drop query builder, which converts the visual graph into a query and executes it on a public endpoint. The tool integrates several publicly available Semantic Web databases, including the databases of the just recently released EBI RDF platform. Furthermore, it provides several predefined template queries for answering biological questions. Users can easily create and save new query graphs, which can also be shared with other researchers. This new graphical way of creating queries for biological Semantic Web databases considerably facilitates usability as it removes the requirement of knowing specific query languages and database structures. The system is freely available at http://sparqlgraph.i-med.ac.at.
Repetski, Stephen; Venkataraman, Girish; Che, Anney; Luke, Brian T.; Girard, F. Pascal; Stephens, Robert M.
2013-01-01
As the discipline of biomedical science continues to apply new technologies capable of producing unprecedented volumes of noisy and complex biological data, it has become evident that available methods for deriving meaningful information from such data are simply not keeping pace. In order to achieve useful results, researchers require methods that consolidate, store and query combinations of structured and unstructured data sets efficiently and effectively. As we move towards personalized medicine, the need to combine unstructured data, such as medical literature, with large amounts of highly structured and high-throughput data such as human variation or expression data from very large cohorts, is especially urgent. For our study, we investigated a likely biomedical query using the Hadoop framework. We ran queries using native MapReduce tools we developed as well as other open source and proprietary tools. Our results suggest that the available technologies within the Big Data domain can reduce the time and effort needed to utilize and apply distributed queries over large datasets in practical clinical applications in the life sciences domain. The methodologies and technologies discussed in this paper set the stage for a more detailed evaluation that investigates how various data structures and data models are best mapped to the proper computational framework. PMID:24312478
A Layered Searchable Encryption Scheme with Functional Components Independent of Encryption Methods
Luo, Guangchun; Qin, Ke
2014-01-01
Searchable encryption technique enables the users to securely store and search their documents over the remote semitrusted server, which is especially suitable for protecting sensitive data in the cloud. However, various settings (based on symmetric or asymmetric encryption) and functionalities (ranked keyword query, range query, phrase query, etc.) are often realized by different methods with different searchable structures that are generally not compatible with each other, which limits the scope of application and hinders the functional extensions. We prove that asymmetric searchable structure could be converted to symmetric structure, and functions could be modeled separately apart from the core searchable structure. Based on this observation, we propose a layered searchable encryption (LSE) scheme, which provides compatibility, flexibility, and security for various settings and functionalities. In this scheme, the outputs of the core searchable component based on either symmetric or asymmetric setting are converted to some uniform mappings, which are then transmitted to loosely coupled functional components to further filter the results. In such a way, all functional components could directly support both symmetric and asymmetric settings. Based on LSE, we propose two representative and novel constructions for ranked keyword query (previously only available in symmetric scheme) and range query (previously only available in asymmetric scheme). PMID:24719565
Mudunuri, Uma S; Khouja, Mohamad; Repetski, Stephen; Venkataraman, Girish; Che, Anney; Luke, Brian T; Girard, F Pascal; Stephens, Robert M
2013-01-01
As the discipline of biomedical science continues to apply new technologies capable of producing unprecedented volumes of noisy and complex biological data, it has become evident that available methods for deriving meaningful information from such data are simply not keeping pace. In order to achieve useful results, researchers require methods that consolidate, store and query combinations of structured and unstructured data sets efficiently and effectively. As we move towards personalized medicine, the need to combine unstructured data, such as medical literature, with large amounts of highly structured and high-throughput data such as human variation or expression data from very large cohorts, is especially urgent. For our study, we investigated a likely biomedical query using the Hadoop framework. We ran queries using native MapReduce tools we developed as well as other open source and proprietary tools. Our results suggest that the available technologies within the Big Data domain can reduce the time and effort needed to utilize and apply distributed queries over large datasets in practical clinical applications in the life sciences domain. The methodologies and technologies discussed in this paper set the stage for a more detailed evaluation that investigates how various data structures and data models are best mapped to the proper computational framework.
A natural language interface plug-in for cooperative query answering in biological databases.
Jamil, Hasan M
2012-06-11
One of the many unique features of biological databases is that the mere existence of a ground data item is not always a precondition for a query response. It may be argued that from a biologist's standpoint, queries are not always best posed using a structured language. By this we mean that approximate and flexible responses to natural language like queries are well suited for this domain. This is partly due to biologists' tendency to seek simpler interfaces and partly due to the fact that questions in biology involve high level concepts that are open to interpretations computed using sophisticated tools. In such highly interpretive environments, rigidly structured databases do not always perform well. In this paper, our goal is to propose a semantic correspondence plug-in to aid natural language query processing over arbitrary biological database schema with an aim to providing cooperative responses to queries tailored to users' interpretations. Natural language interfaces for databases are generally effective when they are tuned to the underlying database schema and its semantics. Therefore, changes in database schema become impossible to support, or a substantial reorganization cost must be absorbed to reflect any change. We leverage developments in natural language parsing, rule languages and ontologies, and data integration technologies to assemble a prototype query processor that is able to transform a natural language query into a semantically equivalent structured query over the database. We allow knowledge rules and their frequent modifications as part of the underlying database schema. The approach we adopt in our plug-in overcomes some of the serious limitations of many contemporary natural language interfaces, including support for schema modifications and independence from underlying database schema. The plug-in introduced in this paper is generic and facilitates connecting user selected natural language interfaces to arbitrary databases using a semantic description of the intended application. We demonstrate the feasibility of our approach with a practical example.
Jadhav, Ashutosh; Andrews, Donna; Fiksdal, Alexander; Kumbamu, Ashok; McCormick, Jennifer B; Misitano, Andrew; Nelsen, Laurie; Ryu, Euijung; Sheth, Amit; Wu, Stephen
2014-01-01
Background The number of people using the Internet and mobile/smart devices for health information seeking is increasing rapidly. Although the user experience for online health information seeking varies with the device used, for example, smart devices (SDs) like smartphones/tablets versus personal computers (PCs) like desktops/laptops, very few studies have investigated how online health information seeking behavior (OHISB) may differ by device. Objective The objective of this study is to examine differences in OHISB between PCs and SDs through a comparative analysis of large-scale health search queries submitted through Web search engines from both types of devices. Methods Using the Web analytics tool, IBM NetInsight OnDemand, and based on the type of devices used (PCs or SDs), we obtained the most frequent health search queries between June 2011 and May 2013 that were submitted on Web search engines and directed users to the Mayo Clinic’s consumer health information website. We performed analyses on “Queries with considering repetition counts (QwR)” and “Queries without considering repetition counts (QwoR)”. The dataset contains (1) 2.74 million and 3.94 million QwoR, respectively for PCs and SDs, and (2) more than 100 million QwR for both PCs and SDs. We analyzed structural properties of the queries (length of the search queries, usage of query operators and special characters in health queries), types of search queries (keyword-based, wh-questions, yes/no questions), categorization of the queries based on health categories and information mentioned in the queries (gender, age-groups, temporal references), misspellings in the health queries, and the linguistic structure of the health queries. Results Query strings used for health information searching via PCs and SDs differ by almost 50%. The most searched health categories are “Symptoms” (1 in 3 search queries), “Causes”, and “Treatments & Drugs”. The distribution of search queries for different health categories differs with the device used for the search. Health queries tend to be longer and more specific than general search queries. Health queries from SDs are longer and have slightly fewer spelling mistakes than those from PCs. Users specify words related to women and children more often than that of men and any other age group. Most of the health queries are formulated using keywords; the second-most common are wh- and yes/no questions. Users ask more health questions using SDs than PCs. Almost all health queries have at least one noun and health queries from SDs are more descriptive than those from PCs. Conclusions This study is a large-scale comparative analysis of health search queries to understand the effects of device type (PCs vs SDs) used on OHISB. The study indicates that the device used for online health information search plays an important role in shaping how health information searches by consumers and patients are executed. PMID:25000537
Jadhav, Ashutosh; Andrews, Donna; Fiksdal, Alexander; Kumbamu, Ashok; McCormick, Jennifer B; Misitano, Andrew; Nelsen, Laurie; Ryu, Euijung; Sheth, Amit; Wu, Stephen; Pathak, Jyotishman
2014-07-04
The number of people using the Internet and mobile/smart devices for health information seeking is increasing rapidly. Although the user experience for online health information seeking varies with the device used, for example, smart devices (SDs) like smartphones/tablets versus personal computers (PCs) like desktops/laptops, very few studies have investigated how online health information seeking behavior (OHISB) may differ by device. The objective of this study is to examine differences in OHISB between PCs and SDs through a comparative analysis of large-scale health search queries submitted through Web search engines from both types of devices. Using the Web analytics tool, IBM NetInsight OnDemand, and based on the type of devices used (PCs or SDs), we obtained the most frequent health search queries between June 2011 and May 2013 that were submitted on Web search engines and directed users to the Mayo Clinic's consumer health information website. We performed analyses on "Queries with considering repetition counts (QwR)" and "Queries without considering repetition counts (QwoR)". The dataset contains (1) 2.74 million and 3.94 million QwoR, respectively for PCs and SDs, and (2) more than 100 million QwR for both PCs and SDs. We analyzed structural properties of the queries (length of the search queries, usage of query operators and special characters in health queries), types of search queries (keyword-based, wh-questions, yes/no questions), categorization of the queries based on health categories and information mentioned in the queries (gender, age-groups, temporal references), misspellings in the health queries, and the linguistic structure of the health queries. Query strings used for health information searching via PCs and SDs differ by almost 50%. The most searched health categories are "Symptoms" (1 in 3 search queries), "Causes", and "Treatments & Drugs". The distribution of search queries for different health categories differs with the device used for the search. Health queries tend to be longer and more specific than general search queries. Health queries from SDs are longer and have slightly fewer spelling mistakes than those from PCs. Users specify words related to women and children more often than that of men and any other age group. Most of the health queries are formulated using keywords; the second-most common are wh- and yes/no questions. Users ask more health questions using SDs than PCs. Almost all health queries have at least one noun and health queries from SDs are more descriptive than those from PCs. This study is a large-scale comparative analysis of health search queries to understand the effects of device type (PCs vs. SDs) used on OHISB. The study indicates that the device used for online health information search plays an important role in shaping how health information searches by consumers and patients are executed.
An emerging cyberinfrastructure for biodefense pathogen and pathogen–host data
Zhang, C.; Crasta, O.; Cammer, S.; Will, R.; Kenyon, R.; Sullivan, D.; Yu, Q.; Sun, W.; Jha, R.; Liu, D.; Xue, T.; Zhang, Y.; Moore, M.; McGarvey, P.; Huang, H.; Chen, Y.; Zhang, J.; Mazumder, R.; Wu, C.; Sobral, B.
2008-01-01
The NIAID-funded Biodefense Proteomics Resource Center (RC) provides storage, dissemination, visualization and analysis capabilities for the experimental data deposited by seven Proteomics Research Centers (PRCs). The data and its publication is to support researchers working to discover candidates for the next generation of vaccines, therapeutics and diagnostics against NIAID's Category A, B and C priority pathogens. The data includes transcriptional profiles, protein profiles, protein structural data and host–pathogen protein interactions, in the context of the pathogen life cycle in vivo and in vitro. The database has stored and supported host or pathogen data derived from Bacillus, Brucella, Cryptosporidium, Salmonella, SARS, Toxoplasma, Vibrio and Yersinia, human tissue libraries, and mouse macrophages. These publicly available data cover diverse data types such as mass spectrometry, yeast two-hybrid (Y2H), gene expression profiles, X-ray and NMR determined protein structures and protein expression clones. The growing database covers over 23 000 unique genes/proteins from different experiments and organisms. All of the genes/proteins are annotated and integrated across experiments using UniProt Knowledgebase (UniProtKB) accession numbers. The web-interface for the database enables searching, querying and downloading at the level of experiment, group and individual gene(s)/protein(s) via UniProtKB accession numbers or protein function keywords. The system is accessible at http://www.proteomicsresource.org/. PMID:17984082
ChemProt-2.0: visual navigation in a disease chemical biology database
Kim Kjærulff, Sonny; Wich, Louis; Kringelum, Jens; Jacobsen, Ulrik P.; Kouskoumvekaki, Irene; Audouze, Karine; Lund, Ole; Brunak, Søren; Oprea, Tudor I.; Taboureau, Olivier
2013-01-01
ChemProt-2.0 (http://www.cbs.dtu.dk/services/ChemProt-2.0) is a public available compilation of multiple chemical–protein annotation resources integrated with diseases and clinical outcomes information. The database has been updated to >1.15 million compounds with 5.32 millions bioactivity measurements for 15 290 proteins. Each protein is linked to quality-scored human protein–protein interactions data based on more than half a million interactions, for studying diseases and biological outcomes (diseases, pathways and GO terms) through protein complexes. In ChemProt-2.0, therapeutic effects as well as adverse drug reactions have been integrated allowing for suggesting proteins associated to clinical outcomes. New chemical structure fingerprints were computed based on the similarity ensemble approach. Protein sequence similarity search was also integrated to evaluate the promiscuity of proteins, which can help in the prediction of off-target effects. Finally, the database was integrated into a visual interface that enables navigation of the pharmacological space for small molecules. Filtering options were included in order to facilitate and to guide dynamic search of specific queries. PMID:23185041
Bouchard, P; Chomilier, J; Ravet, V; Mornon, J P; Viguès, B
2001-01-01
Epiplasmin C is the major protein component of the membrane skeleton in the ciliate Tetrahymena pyriformis. Cloning and analysis of the gene encoding epiplasmin C showed this protein to be a previously unrecognized protein. In particular, epiplasmin C was shown to lack the canonical features of already known epiplasmic proteins in ciliates and flagellates. By means of hydrophobic cluster analysis (HCA), it has been shown that epiplasmin C is constituted of a repeat of 25 domains of 40 residues each. These domains are related and can be grouped in two families called types I and types II. Connections between types I and types II present rules that can be evidenced in the sequence itself, thus enforcing the validity of the splitting of the domains. Using these repeated domains as queries, significant structural similarities were demonstrated with an extra six heptads shared by nuclear lamins and invertebrate cytoplasmic intermediate filament proteins and deleted in the cytoplasmic intermediate filament protein lineage at the protostome-deuterostome branching in the eukaryotic phylogenetic tree.
Highly Disordered Proteins in Prostate Cancer.
Uversky, Vladimir N; Na, Insung; Landau, Kevin S; Schenck, Ryan O
2017-01-01
Prostate cancer is one of the major threats to the man's health. There are several mechanisms of the prostate cancer development characterized by the involvement of various androgen-related and androgen-unrelated factors in prostate cancer pathogenesis and in the metastatic carcinogenesis of prostate. In all these processes, proteins play various important roles, and the KEGG database has information on 88 human proteins experimentally shown to be involved in prostate cancer. It is known that many proteins associated with different human maladies are intrinsically disordered (i.e., they do not have stable secondary and/or tertiary structure in their unbound states). The goal of this review is to consider several highly disordered proteins known to be associated with the prostate cancer pathogenesis in order to better understand the roles of disordered proteins in this disease. We also hope that consideration of the pathology-related proteins from the perspective of intrinsic disorder can potentially lead to future experimental studies of these proteins to find novel pathways associated with prostate cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Kuznetsov, Valentin; Riley, Daniel; Afaq, Anzar; Sekhri, Vijay; Guo, Yuyi; Lueking, Lee
2010-04-01
The CMS experiment has implemented a flexible and powerful system enabling users to find data within the CMS physics data catalog. The Dataset Bookkeeping Service (DBS) comprises a database and the services used to store and access metadata related to CMS physics data. To this, we have added a generalized query system in addition to the existing web and programmatic interfaces to the DBS. This query system is based on a query language that hides the complexity of the underlying database structure by discovering the join conditions between database tables. This provides a way of querying the system that is simple and straightforward for CMS data managers and physicists to use without requiring knowledge of the database tables or keys. The DBS Query Language uses the ANTLR tool to build the input query parser and tokenizer, followed by a query builder that uses a graph representation of the DBS schema to construct the SQL query sent to underlying database. We will describe the design of the query system, provide details of the language components and overview of how this component fits into the overall data discovery system architecture.
BioWarehouse: a bioinformatics database warehouse toolkit
Lee, Thomas J; Pouliot, Yannick; Wagner, Valerie; Gupta, Priyanka; Stringer-Calvert, David WJ; Tenenbaum, Jessica D; Karp, Peter D
2006-01-01
Background This article addresses the problem of interoperation of heterogeneous bioinformatics databases. Results We introduce BioWarehouse, an open source toolkit for constructing bioinformatics database warehouses using the MySQL and Oracle relational database managers. BioWarehouse integrates its component databases into a common representational framework within a single database management system, thus enabling multi-database queries using the Structured Query Language (SQL) but also facilitating a variety of database integration tasks such as comparative analysis and data mining. BioWarehouse currently supports the integration of a pathway-centric set of databases including ENZYME, KEGG, and BioCyc, and in addition the UniProt, GenBank, NCBI Taxonomy, and CMR databases, and the Gene Ontology. Loader tools, written in the C and JAVA languages, parse and load these databases into a relational database schema. The loaders also apply a degree of semantic normalization to their respective source data, decreasing semantic heterogeneity. The schema supports the following bioinformatics datatypes: chemical compounds, biochemical reactions, metabolic pathways, proteins, genes, nucleic acid sequences, features on protein and nucleic-acid sequences, organisms, organism taxonomies, and controlled vocabularies. As an application example, we applied BioWarehouse to determine the fraction of biochemically characterized enzyme activities for which no sequences exist in the public sequence databases. The answer is that no sequence exists for 36% of enzyme activities for which EC numbers have been assigned. These gaps in sequence data significantly limit the accuracy of genome annotation and metabolic pathway prediction, and are a barrier for metabolic engineering. Complex queries of this type provide examples of the value of the data warehousing approach to bioinformatics research. Conclusion BioWarehouse embodies significant progress on the database integration problem for bioinformatics. PMID:16556315
BioWarehouse: a bioinformatics database warehouse toolkit.
Lee, Thomas J; Pouliot, Yannick; Wagner, Valerie; Gupta, Priyanka; Stringer-Calvert, David W J; Tenenbaum, Jessica D; Karp, Peter D
2006-03-23
This article addresses the problem of interoperation of heterogeneous bioinformatics databases. We introduce BioWarehouse, an open source toolkit for constructing bioinformatics database warehouses using the MySQL and Oracle relational database managers. BioWarehouse integrates its component databases into a common representational framework within a single database management system, thus enabling multi-database queries using the Structured Query Language (SQL) but also facilitating a variety of database integration tasks such as comparative analysis and data mining. BioWarehouse currently supports the integration of a pathway-centric set of databases including ENZYME, KEGG, and BioCyc, and in addition the UniProt, GenBank, NCBI Taxonomy, and CMR databases, and the Gene Ontology. Loader tools, written in the C and JAVA languages, parse and load these databases into a relational database schema. The loaders also apply a degree of semantic normalization to their respective source data, decreasing semantic heterogeneity. The schema supports the following bioinformatics datatypes: chemical compounds, biochemical reactions, metabolic pathways, proteins, genes, nucleic acid sequences, features on protein and nucleic-acid sequences, organisms, organism taxonomies, and controlled vocabularies. As an application example, we applied BioWarehouse to determine the fraction of biochemically characterized enzyme activities for which no sequences exist in the public sequence databases. The answer is that no sequence exists for 36% of enzyme activities for which EC numbers have been assigned. These gaps in sequence data significantly limit the accuracy of genome annotation and metabolic pathway prediction, and are a barrier for metabolic engineering. Complex queries of this type provide examples of the value of the data warehousing approach to bioinformatics research. BioWarehouse embodies significant progress on the database integration problem for bioinformatics.
An advanced web query interface for biological databases
Latendresse, Mario; Karp, Peter D.
2010-01-01
Although most web-based biological databases (DBs) offer some type of web-based form to allow users to author DB queries, these query forms are quite restricted in the complexity of DB queries that they can formulate. They can typically query only one DB, and can query only a single type of object at a time (e.g. genes) with no possible interaction between the objects—that is, in SQL parlance, no joins are allowed between DB objects. Writing precise queries against biological DBs is usually left to a programmer skillful enough in complex DB query languages like SQL. We present a web interface for building precise queries for biological DBs that can construct much more precise queries than most web-based query forms, yet that is user friendly enough to be used by biologists. It supports queries containing multiple conditions, and connecting multiple object types without using the join concept, which is unintuitive to biologists. This interactive web interface is called the Structured Advanced Query Page (SAQP). Users interactively build up a wide range of query constructs. Interactive documentation within the SAQP describes the schema of the queried DBs. The SAQP is based on BioVelo, a query language based on list comprehension. The SAQP is part of the Pathway Tools software and is available as part of several bioinformatics web sites powered by Pathway Tools, including the BioCyc.org site that contains more than 500 Pathway/Genome DBs. PMID:20624715
E-MSD: an integrated data resource for bioinformatics.
Golovin, A; Oldfield, T J; Tate, J G; Velankar, S; Barton, G J; Boutselakis, H; Dimitropoulos, D; Fillon, J; Hussain, A; Ionides, J M C; John, M; Keller, P A; Krissinel, E; McNeil, P; Naim, A; Newman, R; Pajon, A; Pineda, J; Rachedi, A; Copeland, J; Sitnov, A; Sobhany, S; Suarez-Uruena, A; Swaminathan, G J; Tagari, M; Tromm, S; Vranken, W; Henrick, K
2004-01-01
The Macromolecular Structure Database (MSD) group (http://www.ebi.ac.uk/msd/) continues to enhance the quality and consistency of macromolecular structure data in the Protein Data Bank (PDB) and to work towards the integration of various bioinformatics data resources. We have implemented a simple form-based interface that allows users to query the MSD directly. The MSD 'atlas pages' show all of the information in the MSD for a particular PDB entry. The group has designed new search interfaces aimed at specific areas of interest, such as the environment of ligands and the secondary structures of proteins. We have also implemented a novel search interface that begins to integrate separate MSD search services in a single graphical tool. We have worked closely with collaborators to build a new visualization tool that can present both structure and sequence data in a unified interface, and this data viewer is now used throughout the MSD services for the visualization and presentation of search results. Examples showcasing the functionality and power of these tools are available from tutorial webpages (http://www. ebi.ac.uk/msd-srv/docs/roadshow_tutorial/).
E-MSD: an integrated data resource for bioinformatics
Golovin, A.; Oldfield, T. J.; Tate, J. G.; Velankar, S.; Barton, G. J.; Boutselakis, H.; Dimitropoulos, D.; Fillon, J.; Hussain, A.; Ionides, J. M. C.; John, M.; Keller, P. A.; Krissinel, E.; McNeil, P.; Naim, A.; Newman, R.; Pajon, A.; Pineda, J.; Rachedi, A.; Copeland, J.; Sitnov, A.; Sobhany, S.; Suarez-Uruena, A.; Swaminathan, G. J.; Tagari, M.; Tromm, S.; Vranken, W.; Henrick, K.
2004-01-01
The Macromolecular Structure Database (MSD) group (http://www.ebi.ac.uk/msd/) continues to enhance the quality and consistency of macromolecular structure data in the Protein Data Bank (PDB) and to work towards the integration of various bioinformatics data resources. We have implemented a simple form-based interface that allows users to query the MSD directly. The MSD ‘atlas pages’ show all of the information in the MSD for a particular PDB entry. The group has designed new search interfaces aimed at specific areas of interest, such as the environment of ligands and the secondary structures of proteins. We have also implemented a novel search interface that begins to integrate separate MSD search services in a single graphical tool. We have worked closely with collaborators to build a new visualization tool that can present both structure and sequence data in a unified interface, and this data viewer is now used throughout the MSD services for the visualization and presentation of search results. Examples showcasing the functionality and power of these tools are available from tutorial webpages (http://www.ebi.ac.uk/msd-srv/docs/roadshow_tutorial/). PMID:14681397
ASD: a comprehensive database of allosteric proteins and modulators
Huang, Zhimin; Zhu, Liang; Cao, Yan; Wu, Geng; Liu, Xinyi; Chen, Yingyi; Wang, Qi; Shi, Ting; Zhao, Yaxue; Wang, Yuefei; Li, Weihua; Li, Yixue; Chen, Haifeng; Chen, Guoqiang; Zhang, Jian
2011-01-01
Allostery is the most direct, rapid and efficient way of regulating protein function, ranging from the control of metabolic mechanisms to signal-transduction pathways. However, an enormous amount of unsystematic allostery information has deterred scientists who could benefit from this field. Here, we present the AlloSteric Database (ASD), the first online database that provides a central resource for the display, search and analysis of structure, function and related annotation for allosteric molecules. Currently, ASD contains 336 allosteric proteins from 101 species and 8095 modulators in three categories (activators, inhibitors and regulators). Proteins are annotated with a detailed description of allostery, biological process and related diseases, and modulators with binding affinity, physicochemical properties and therapeutic area. Integrating the information of allosteric proteins in ASD should allow for the identification of specific allosteric sites of a given subtype among proteins of the same family that can potentially serve as ideal targets for experimental validation. In addition, modulators curated in ASD can be used to investigate potent allosteric targets for the query compound, and also help chemists to implement structure modifications for novel allosteric drug design. Therefore, ASD could be a platform and a starting point for biologists and medicinal chemists for furthering allosteric research. ASD is freely available at http://mdl.shsmu.edu.cn/ASD/. PMID:21051350
Nadzirin, Nurul; Willett, Peter; Artymiuk, Peter J.; Firdaus-Raih, Mohd
2013-01-01
We describe a server that allows the interrogation of the Protein Data Bank for hypothetical 3D side chain patterns that are not limited to known patterns from existing 3D structures. A minimal side chain description allows a variety of side chain orientations to exist within the pattern, and generic side chain types such as acid, base and hydroxyl-containing can be additionally deployed in the search query. Moreover, only a subset of distances between the side chains need be specified. We illustrate these capabilities in case studies involving arginine stacks, serine-acid group arrangements and multiple catalytic triad-like configurations. The IMAAAGINE server can be accessed at http://mfrlab.org/grafss/imaaagine/. PMID:23716645
Queries over Unstructured Data: Probabilistic Methods to the Rescue
NASA Astrophysics Data System (ADS)
Sarawagi, Sunita
Unstructured data like emails, addresses, invoices, call transcripts, reviews, and press releases are now an integral part of any large enterprise. A challenge of modern business intelligence applications is analyzing and querying data seamlessly across structured and unstructured sources. This requires the development of automated techniques for extracting structured records from text sources and resolving entity mentions in data from various sources. The success of any automated method for extraction and integration depends on how effectively it unifies diverse clues in the unstructured source and in existing structured databases. We argue that statistical learning techniques like Conditional Random Fields (CRFs) provide a accurate, elegant and principled framework for tackling these tasks. Given the inherent noise in real-world sources, it is important to capture the uncertainty of the above operations via imprecise data models. CRFs provide a sound probability distribution over extractions but are not easy to represent and query in a relational framework. We present methods of approximating this distribution to query-friendly row and column uncertainty models. Finally, we present models for representing the uncertainty of de-duplication and algorithms for various Top-K count queries on imprecise duplicates.
PDBj Mine: design and implementation of relational database interface for Protein Data Bank Japan
Kinjo, Akira R.; Yamashita, Reiko; Nakamura, Haruki
2010-01-01
This article is a tutorial for PDBj Mine, a new database and its interface for Protein Data Bank Japan (PDBj). In PDBj Mine, data are loaded from files in the PDBMLplus format (an extension of PDBML, PDB's canonical XML format, enriched with annotations), which are then served for the user of PDBj via the worldwide web (WWW). We describe the basic design of the relational database (RDB) and web interfaces of PDBj Mine. The contents of PDBMLplus files are first broken into XPath entities, and these paths and data are indexed in the way that reflects the hierarchical structure of the XML files. The data for each XPath type are saved into the corresponding relational table that is named as the XPath itself. The generation of table definitions from the PDBMLplus XML schema is fully automated. For efficient search, frequently queried terms are compiled into a brief summary table. Casual users can perform simple keyword search, and 'Advanced Search' which can specify various conditions on the entries. More experienced users can query the database using SQL statements which can be constructed in a uniform manner. Thus, PDBj Mine achieves a combination of the flexibility of XML documents and the robustness of the RDB. Database URL: http://www.pdbj.org/ PMID:20798081
PDBj Mine: design and implementation of relational database interface for Protein Data Bank Japan.
Kinjo, Akira R; Yamashita, Reiko; Nakamura, Haruki
2010-08-25
This article is a tutorial for PDBj Mine, a new database and its interface for Protein Data Bank Japan (PDBj). In PDBj Mine, data are loaded from files in the PDBMLplus format (an extension of PDBML, PDB's canonical XML format, enriched with annotations), which are then served for the user of PDBj via the worldwide web (WWW). We describe the basic design of the relational database (RDB) and web interfaces of PDBj Mine. The contents of PDBMLplus files are first broken into XPath entities, and these paths and data are indexed in the way that reflects the hierarchical structure of the XML files. The data for each XPath type are saved into the corresponding relational table that is named as the XPath itself. The generation of table definitions from the PDBMLplus XML schema is fully automated. For efficient search, frequently queried terms are compiled into a brief summary table. Casual users can perform simple keyword search, and 'Advanced Search' which can specify various conditions on the entries. More experienced users can query the database using SQL statements which can be constructed in a uniform manner. Thus, PDBj Mine achieves a combination of the flexibility of XML documents and the robustness of the RDB. Database URL: http://www.pdbj.org/
DrugBank: a knowledgebase for drugs, drug actions and drug targets
Wishart, David S.; Knox, Craig; Guo, An Chi; Cheng, Dean; Shrivastava, Savita; Tzur, Dan; Gautam, Bijaya; Hassanali, Murtaza
2008-01-01
DrugBank is a richly annotated resource that combines detailed drug data with comprehensive drug target and drug action information. Since its first release in 2006, DrugBank has been widely used to facilitate in silico drug target discovery, drug design, drug docking or screening, drug metabolism prediction, drug interaction prediction and general pharmaceutical education. The latest version of DrugBank (release 2.0) has been expanded significantly over the previous release. With ∼4900 drug entries, it now contains 60% more FDA-approved small molecule and biotech drugs including 10% more ‘experimental’ drugs. Significantly, more protein target data has also been added to the database, with the latest version of DrugBank containing three times as many non-redundant protein or drug target sequences as before (1565 versus 524). Each DrugCard entry now contains more than 100 data fields with half of the information being devoted to drug/chemical data and the other half devoted to pharmacological, pharmacogenomic and molecular biological data. A number of new data fields, including food–drug interactions, drug–drug interactions and experimental ADME data have been added in response to numerous user requests. DrugBank has also significantly improved the power and simplicity of its structure query and text query searches. DrugBank is available at http://www.drugbank.ca PMID:18048412
Mirel, Barbara
2009-02-13
Current usability studies of bioinformatics tools suggest that tools for exploratory analysis support some tasks related to finding relationships of interest but not the deep causal insights necessary for formulating plausible and credible hypotheses. To better understand design requirements for gaining these causal insights in systems biology analyses a longitudinal field study of 15 biomedical researchers was conducted. Researchers interacted with the same protein-protein interaction tools to discover possible disease mechanisms for further experimentation. Findings reveal patterns in scientists' exploratory and explanatory analysis and reveal that tools positively supported a number of well-structured query and analysis tasks. But for several of scientists' more complex, higher order ways of knowing and reasoning the tools did not offer adequate support. Results show that for a better fit with scientists' cognition for exploratory analysis systems biology tools need to better match scientists' processes for validating, for making a transition from classification to model-based reasoning, and for engaging in causal mental modelling. As the next great frontier in bioinformatics usability, tool designs for exploratory systems biology analysis need to move beyond the successes already achieved in supporting formulaic query and analysis tasks and now reduce current mismatches with several of scientists' higher order analytical practices. The implications of results for tool designs are discussed.
NASA Astrophysics Data System (ADS)
Wang, Lusheng; Yang, Yong; Lin, Guohui
Finding the closest object for a query in a database is a classical problem in computer science. For some modern biological applications, computing the similarity between two objects might be very time consuming. For example, it takes a long time to compute the edit distance between two whole chromosomes and the alignment cost of two 3D protein structures. In this paper, we study the nearest neighbor search problem in metric space, where the pair-wise distance between two objects in the database is known and we want to minimize the number of distances computed on-line between the query and objects in the database in order to find the closest object. We have designed two randomized approaches for indexing metric space databases, where objects are purely described by their distances with each other. Analysis and experiments show that our approaches only need to compute O(logn) objects in order to find the closest object, where n is the total number of objects in the database.
PiCO QL: A software library for runtime interactive queries on program data
NASA Astrophysics Data System (ADS)
Fragkoulis, Marios; Spinellis, Diomidis; Louridas, Panos
PiCO QL is an open source C/C++ software whose scientific scope is real-time interactive analysis of in-memory data through SQL queries. It exposes a relational view of a system's or application's data structures, which is queryable through SQL. While the application or system is executing, users can input queries through a web-based interface or issue web service requests. Queries execute on the live data structures through the respective relational views. PiCO QL makes a good candidate for ad-hoc data analysis in applications and for diagnostics in systems settings. Applications of PiCO QL include the Linux kernel, the Valgrind instrumentation framework, a GIS application, a virtual real-time observatory of stellar objects, and a source code analyser.
On the Delusiveness of Adopting a Common Space for Modeling IR Objects: Are Queries Documents?
ERIC Educational Resources Information Center
Bollmann-Sdorra, Peter; Raghavan, Vjay V.
1993-01-01
Proposes that document space and query space have different structures in information retrieval and discusses similarity measures, term independence, and linear structure. Examples are given using the retrieval functions of dot-product, the cosine measure, the coefficient of Jaccard, and the overlap function. (Contains 28 references.) (LRW)
Homology Modeling of Class A G Protein-Coupled Receptors
Costanzi, Stefano
2012-01-01
G protein-coupled receptors (GPCRs) are a large superfamily of membrane bound signaling proteins that hold great pharmaceutical interest. Since experimentally elucidated structures are available only for a very limited number of receptors, homology modeling has become a widespread technique for the construction of GPCR models intended to study the structure-function relationships of the receptors and aid the discovery and development of ligands capable of modulating their activity. Through this chapter, various aspects involved in the constructions of homology models of the serpentine domain of the largest class of GPCRs, known as class A or rhodopsin family, are illustrated. In particular, the chapter provides suggestions, guidelines and critical thoughts on some of the most crucial aspect of GPCR modeling, including: collection of candidate templates and a structure-based alignment of their sequences; identification and alignment of the transmembrane helices of the query receptor to the corresponding domains of the candidate templates; selection of one or more templates receptor; election of homology or de novo modeling for the construction of specific extracellular and intracellular domains; construction of the three-dimensional models, with special consideration to extracellular regions, disulfide bridges, and interhelical cavity; validation of the models through controlled virtual screening experiments. PMID:22323225
Huebner-Bloder, Gudrun; Duftschmid, Georg; Kohler, Michael; Rinner, Christoph; Saboor, Samrend; Ammenwerth, Elske
2012-01-01
Cross-institutional longitudinal Electronic Health Records (EHR), as introduced in Austria at the moment, increase the challenge of information overload of healthcare professionals. We developed an innovative cross-institutional EHR query prototype that offers extended query options, including searching for specific information items or sets of information items. The available query options were derived from a systematic analysis of information needs of diabetes specialists during patient encounters. The prototype operates in an IHE-XDS-based environment where ISO/EN 13606-structured documents are available. We conducted a controlled study with seven diabetes specialists to assess the feasibility and impact of this EHR query prototype on efficient retrieving of patient information to answer typical clinical questions. The controlled study showed that the specialists were quicker and more successful (measured in percentage of expected information items found) in finding patient information compared to the standard full-document search options. The participants also appreciated the extended query options. PMID:23304308
A two-level cache for distributed information retrieval in search engines.
Zhang, Weizhe; He, Hui; Ye, Jianwei
2013-01-01
To improve the performance of distributed information retrieval in search engines, we propose a two-level cache structure based on the queries of the users' logs. We extract the highest rank queries of users from the static cache, in which the queries are the most popular. We adopt the dynamic cache as an auxiliary to optimize the distribution of the cache data. We propose a distribution strategy of the cache data. The experiments prove that the hit rate, the efficiency, and the time consumption of the two-level cache have advantages compared with other structures of cache.
A Two-Level Cache for Distributed Information Retrieval in Search Engines
Zhang, Weizhe; He, Hui; Ye, Jianwei
2013-01-01
To improve the performance of distributed information retrieval in search engines, we propose a two-level cache structure based on the queries of the users' logs. We extract the highest rank queries of users from the static cache, in which the queries are the most popular. We adopt the dynamic cache as an auxiliary to optimize the distribution of the cache data. We propose a distribution strategy of the cache data. The experiments prove that the hit rate, the efficiency, and the time consumption of the two-level cache have advantages compared with other structures of cache. PMID:24363621
System for Performing Single Query Searches of Heterogeneous and Dispersed Databases
NASA Technical Reports Server (NTRS)
Maluf, David A. (Inventor); Okimura, Takeshi (Inventor); Gurram, Mohana M. (Inventor); Tran, Vu Hoang (Inventor); Knight, Christopher D. (Inventor); Trinh, Anh Ngoc (Inventor)
2017-01-01
The present invention is a distributed computer system of heterogeneous databases joined in an information grid and configured with an Application Programming Interface hardware which includes a search engine component for performing user-structured queries on multiple heterogeneous databases in real time. This invention reduces overhead associated with the impedance mismatch that commonly occurs in heterogeneous database queries.
Measuring Up: Implementing a Dental Quality Measure in the Electronic Health Record Context
Bhardwaj, Aarti; Ramoni, Rachel; Kalenderian, Elsbeth; Neumann, Ana; Hebballi, Nutan B; White, Joel M; McClellan, Lyle; Walji, Muhammad F
2015-01-01
Background Quality improvement requires quality measures that are validly implementable. In this work, we assessed the feasibility and performance of an automated electronic Meaningful Use dental clinical quality measure (percentage of children who received fluoride varnish). Methods We defined how to implement the automated measure queries in a dental electronic health record (EHR). Within records identified through automated query, we manually reviewed a subsample to assess the performance of the query. Results The automated query found 71.0% of patients to have had fluoride varnish compared to 77.6% found using the manual chart review. The automated quality measure performance was 90.5% sensitivity, 90.8% specificity, 96.9% positive predictive value, and 75.2% negative predictive value. Conclusions Our findings support the feasibility of automated dental quality measure queries in the context of sufficient structured data. Information noted only in the free text rather than in structured data would require natural language processing approaches to effectively query. Practical Implications To participate in self-directed quality improvement, dental clinicians must embrace the accountability era. Commitment to quality will require enhanced documentation in order to support near-term automated calculation of quality measures. PMID:26562736
Comparing NetCDF and SciDB on managing and querying 5D hydrologic dataset
NASA Astrophysics Data System (ADS)
Liu, Haicheng; Xiao, Xiao
2016-11-01
Efficiently extracting information from high dimensional hydro-meteorological modelling datasets requires smart solutions. Traditional methods are mostly based on files, which can be edited and accessed handily. But they have problems of efficiency due to contiguous storage structure. Others propose databases as an alternative for advantages such as native functionalities for manipulating multidimensional (MD) arrays, smart caching strategy and scalability. In this research, NetCDF file based solutions and the multidimensional array database management system (DBMS) SciDB applying chunked storage structure are benchmarked to determine the best solution for storing and querying 5D large hydrologic modelling dataset. The effect of data storage configurations including chunk size, dimension order and compression on query performance is explored. Results indicate that dimension order to organize storage of 5D data has significant influence on query performance if chunk size is very large. But the effect becomes insignificant when chunk size is properly set. Compression of SciDB mostly has negative influence on query performance. Caching is an advantage but may be influenced by execution of different query processes. On the whole, NetCDF solution without compression is in general more efficient than the SciDB DBMS.
RiPPAS: A Ring-Based Privacy-Preserving Aggregation Scheme in Wireless Sensor Networks
Zhang, Kejia; Han, Qilong; Cai, Zhipeng; Yin, Guisheng
2017-01-01
Recently, data privacy in wireless sensor networks (WSNs) has been paid increased attention. The characteristics of WSNs determine that users’ queries are mainly aggregation queries. In this paper, the problem of processing aggregation queries in WSNs with data privacy preservation is investigated. A Ring-based Privacy-Preserving Aggregation Scheme (RiPPAS) is proposed. RiPPAS adopts ring structure to perform aggregation. It uses pseudonym mechanism for anonymous communication and uses homomorphic encryption technique to add noise to the data easily to be disclosed. RiPPAS can handle both sum() queries and min()/max() queries, while the existing privacy-preserving aggregation methods can only deal with sum() queries. For processing sum() queries, compared with the existing methods, RiPPAS has advantages in the aspects of privacy preservation and communication efficiency, which can be proved by theoretical analysis and simulation results. For processing min()/max() queries, RiPPAS provides effective privacy preservation and has low communication overhead. PMID:28178197
Rocchia, W; Neshich, G
2007-10-05
STING and Java Protein Dossier provide a collection of physical-chemical parameters, describing protein structure, stability, function, and interaction, considered one of the most comprehensive among the available protein databases of similar type. Particular attention in STING is paid to the electrostatic potential. It makes use of DelPhi, a well-known tool that calculates this physical-chemical quantity for biomolecules by solving the Poisson Boltzmann equation. In this paper, we describe a modification to the DelPhi program aimed at integrating it within the STING environment. We also outline how the "amino acid electrostatic potential" and the "surface amino acid electrostatic potential" are calculated (over all Protein Data Bank (PDB) content) and how the corresponding values are made searchable in STING_DB. In addition, we show that the STING and Java Protein Dossier are also capable of providing these particular parameter values for the analysis of protein structures modeled in computers or being experimentally solved, but not yet deposited in the PDB. Furthermore, we compare the calculated electrostatic potential values obtained by using the earlier version of DelPhi and those by STING, for the biologically relevant case of lysozyme-antibody interaction. Finally, we describe the STING capacity to make queries (at both residue and atomic levels) across the whole PDB, by looking at a specific case where the electrostatic potential parameter plays a crucial role in terms of a particular protein function, such as ligand binding. BlueStar STING is available at http://www.cbi.cnptia.embrapa.br.
ERIC Educational Resources Information Center
Piyayodilokchai, Hongsiri; Panjaburee, Patcharin; Laosinchai, Parames; Ketpichainarong, Watcharee; Ruenwongsa, Pintip
2013-01-01
With the benefit of multimedia and the learning cycle approach in promoting effective active learning, this paper proposed a learning cycle approach-based, multimedia-supplemented instructional unit for Structured Query Language (SQL) for second-year undergraduate students with the aim of enhancing their basic knowledge of SQL and ability to apply…
A distributed query execution engine of big attributed graphs.
Batarfi, Omar; Elshawi, Radwa; Fayoumi, Ayman; Barnawi, Ahmed; Sakr, Sherif
2016-01-01
A graph is a popular data model that has become pervasively used for modeling structural relationships between objects. In practice, in many real-world graphs, the graph vertices and edges need to be associated with descriptive attributes. Such type of graphs are referred to as attributed graphs. G-SPARQL has been proposed as an expressive language, with a centralized execution engine, for querying attributed graphs. G-SPARQL supports various types of graph querying operations including reachability, pattern matching and shortest path where any G-SPARQL query may include value-based predicates on the descriptive information (attributes) of the graph edges/vertices in addition to the structural predicates. In general, a main limitation of centralized systems is that their vertical scalability is always restricted by the physical limits of computer systems. This article describes the design, implementation in addition to the performance evaluation of DG-SPARQL, a distributed, hybrid and adaptive parallel execution engine of G-SPARQL queries. In this engine, the topology of the graph is distributed over the main memory of the underlying nodes while the graph data are maintained in a relational store which is replicated on the disk of each of the underlying nodes. DG-SPARQL evaluates parts of the query plan via SQL queries which are pushed to the underlying relational stores while other parts of the query plan, as necessary, are evaluated via indexless memory-based graph traversal algorithms. Our experimental evaluation shows the efficiency and the scalability of DG-SPARQL on querying massive attributed graph datasets in addition to its ability to outperform the performance of Apache Giraph, a popular distributed graph processing system, by orders of magnitudes.
Folksonomical P2P File Sharing Networks Using Vectorized KANSEI Information as Search Tags
NASA Astrophysics Data System (ADS)
Ohnishi, Kei; Yoshida, Kaori; Oie, Yuji
We present the concept of folksonomical peer-to-peer (P2P) file sharing networks that allow participants (peers) to freely assign structured search tags to files. These networks are similar to folksonomies in the present Web from the point of view that users assign search tags to information distributed over a network. As a concrete example, we consider an unstructured P2P network using vectorized Kansei (human sensitivity) information as structured search tags for file search. Vectorized Kansei information as search tags indicates what participants feel about their files and is assigned by the participant to each of their files. A search query also has the same form of search tags and indicates what participants want to feel about files that they will eventually obtain. A method that enables file search using vectorized Kansei information is the Kansei query-forwarding method, which probabilistically propagates a search query to peers that are likely to hold more files having search tags that are similar to the query. The similarity between the search query and the search tags is measured in terms of their dot product. The simulation experiments examine if the Kansei query-forwarding method can provide equal search performance for all peers in a network in which only the Kansei information and the tendency with respect to file collection are different among all of the peers. The simulation results show that the Kansei query forwarding method and a random-walk-based query forwarding method, for comparison, work effectively in different situations and are complementary. Furthermore, the Kansei query forwarding method is shown, through simulations, to be superior to or equal to the random-walk based one in terms of search speed.
An ontology-driven tool for structured data acquisition using Web forms.
Gonçalves, Rafael S; Tu, Samson W; Nyulas, Csongor I; Tierney, Michael J; Musen, Mark A
2017-08-01
Structured data acquisition is a common task that is widely performed in biomedicine. However, current solutions for this task are far from providing a means to structure data in such a way that it can be automatically employed in decision making (e.g., in our example application domain of clinical functional assessment, for determining eligibility for disability benefits) based on conclusions derived from acquired data (e.g., assessment of impaired motor function). To use data in these settings, we need it structured in a way that can be exploited by automated reasoning systems, for instance, in the Web Ontology Language (OWL); the de facto ontology language for the Web. We tackle the problem of generating Web-based assessment forms from OWL ontologies, and aggregating input gathered through these forms as an ontology of "semantically-enriched" form data that can be queried using an RDF query language, such as SPARQL. We developed an ontology-based structured data acquisition system, which we present through its specific application to the clinical functional assessment domain. We found that data gathered through our system is highly amenable to automatic analysis using queries. We demonstrated how ontologies can be used to help structuring Web-based forms and to semantically enrich the data elements of the acquired structured data. The ontologies associated with the enriched data elements enable automated inferences and provide a rich vocabulary for performing queries.
RNA Bricks—a database of RNA 3D motifs and their interactions
Chojnowski, Grzegorz; Waleń, Tomasz; Bujnicki, Janusz M.
2014-01-01
The RNA Bricks database (http://iimcb.genesilico.pl/rnabricks), stores information about recurrent RNA 3D motifs and their interactions, found in experimentally determined RNA structures and in RNA–protein complexes. In contrast to other similar tools (RNA 3D Motif Atlas, RNA Frabase, Rloom) RNA motifs, i.e. ‘RNA bricks’ are presented in the molecular environment, in which they were determined, including RNA, protein, metal ions, water molecules and ligands. All nucleotide residues in RNA bricks are annotated with structural quality scores that describe real-space correlation coefficients with the electron density data (if available), backbone geometry and possible steric conflicts, which can be used to identify poorly modeled residues. The database is also equipped with an algorithm for 3D motif search and comparison. The algorithm compares spatial positions of backbone atoms of the user-provided query structure and of stored RNA motifs, without relying on sequence or secondary structure information. This enables the identification of local structural similarities among evolutionarily related and unrelated RNA molecules. Besides, the search utility enables searching ‘RNA bricks’ according to sequence similarity, and makes it possible to identify motifs with modified ribonucleotide residues at specific positions. PMID:24220091
Federated ontology-based queries over cancer data
2012-01-01
Background Personalised medicine provides patients with treatments that are specific to their genetic profiles. It requires efficient data sharing of disparate data types across a variety of scientific disciplines, such as molecular biology, pathology, radiology and clinical practice. Personalised medicine aims to offer the safest and most effective therapeutic strategy based on the gene variations of each subject. In particular, this is valid in oncology, where knowledge about genetic mutations has already led to new therapies. Current molecular biology techniques (microarrays, proteomics, epigenetic technology and improved DNA sequencing technology) enable better characterisation of cancer tumours. The vast amounts of data, however, coupled with the use of different terms - or semantic heterogeneity - in each discipline makes the retrieval and integration of information difficult. Results Existing software infrastructures for data-sharing in the cancer domain, such as caGrid, support access to distributed information. caGrid follows a service-oriented model-driven architecture. Each data source in caGrid is associated with metadata at increasing levels of abstraction, including syntactic, structural, reference and domain metadata. The domain metadata consists of ontology-based annotations associated with the structural information of each data source. However, caGrid's current querying functionality is given at the structural metadata level, without capitalising on the ontology-based annotations. This paper presents the design of and theoretical foundations for distributed ontology-based queries over cancer research data. Concept-based queries are reformulated to the target query language, where join conditions between multiple data sources are found by exploiting the semantic annotations. The system has been implemented, as a proof of concept, over the caGrid infrastructure. The approach is applicable to other model-driven architectures. A graphical user interface has been developed, supporting ontology-based queries over caGrid data sources. An extensive evaluation of the query reformulation technique is included. Conclusions To support personalised medicine in oncology, it is crucial to retrieve and integrate molecular, pathology, radiology and clinical data in an efficient manner. The semantic heterogeneity of the data makes this a challenging task. Ontologies provide a formal framework to support querying and integration. This paper provides an ontology-based solution for querying distributed databases over service-oriented, model-driven infrastructures. PMID:22373043
Panda, Subhamay; Kumari, Leena
2017-01-01
Serine proteases are a group of enzymes that hydrolyses the peptide bonds in proteins. In mammals, these enzymes help in the regulation of several major physiological functions such as digestion, blood clotting, responses of immune system, reproductive functions and the complement system. Serine proteases obtained from the venom of Octopodidae family is a relatively unexplored area of research. In the present work, we tried to effectively utilize comparative composite molecular modeling technique. Our key aim was to propose the first molecular model structure of unexplored serine protease 5 derived from big blue octopus. The other objective of this study was to analyze the distribution of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, hydrophobicity molecular surface analysis and electrostatic potential analysis with the aid of different bioinformatic tools. In the present study, molecular model has been generated with the help of I-TASSER suite. Afterwards the refined structural model was validated with standard methods. For functional annotation of protein molecule we used Protein Information Resource (PIR) database. Serine protease 5 of big blue octopus was analyzed with different bioinformatical algorithms for the distribution of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, hydrophobicity molecular surface analysis and electrostatic potential analysis. The functionally critical amino acids and ligand- binding site (LBS) of the proteins (modeled) were determined using the COACH program. The molecular model data in cooperation to other pertinent post model analysis data put forward molecular insight to proteolytic activity of serine protease 5, which helps in the clear understanding of procoagulant and anticoagulant characteristics of this natural lead molecule. Our approach was to investigate the octopus venom protein as a whole or a part of their structure that may result in the development of new lead molecule. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Finkina, Ekaterina I; Melnikova, Daria N; Bogdanov, Ivan V; Ovchinnikova, Tatiana V
2017-01-01
Pathogenesis-related (PR) proteins are components of innate immunity system in plants. They play an important role in plant defense against pathogens. Lipid transfer proteins (LTPs) and Bet v 1 homologs comprise of two separate families of PR-proteins. Both LTPs (PR-14) and Bet v 1 homologs (PR-10) are multifunctional small proteins involving in plant response to abiotic and biotic stress conditions. The representatives of these PR-protein families do not show any sequence similarity but have other common biochemical features such as low molecular masses, the presence of hydrophobic cavities, ligand binding properties, and antimicrobial activities. Besides, many members of PR-10 and PR-14 families are ubiquitous plant panallergens which are able to cause sensitization of human immune system and crossreactive allergic reactions to plant food and pollen. This review is aimed at comparative analysis of structure-functional and allergenic properties of the PR-10 and PR-14 families, as well as prospects for their medicinal application. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
STARS 2.0: 2nd-generation open-source archiving and query software
NASA Astrophysics Data System (ADS)
Winegar, Tom
2008-07-01
The Subaru Telescope is in process of developing an open-source alternative to the 1st-generation software and databases (STARS 1) used for archiving and query. For STARS 2, we have chosen PHP and Python for scripting and MySQL as the database software. We have collected feedback from staff and observers, and used this feedback to significantly improve the design and functionality of our future archiving and query software. Archiving - We identified two weaknesses in 1st-generation STARS archiving software: a complex and inflexible table structure and uncoordinated system administration for our business model: taking pictures from the summit and archiving them in both Hawaii and Japan. We adopted a simplified and normalized table structure with passive keyword collection, and we are designing an archive-to-archive file transfer system that automatically reports real-time status and error conditions and permits error recovery. Query - We identified several weaknesses in 1st-generation STARS query software: inflexible query tools, poor sharing of calibration data, and no automatic file transfer mechanisms to observers. We are developing improved query tools and sharing of calibration data, and multi-protocol unassisted file transfer mechanisms for observers. In the process, we have redefined a 'query': from an invisible search result that can only transfer once in-house right now, with little status and error reporting and no error recovery - to a stored search result that can be monitored, transferred to different locations with multiple protocols, reporting status and error conditions and permitting recovery from errors.
How to Choose the Suitable Template for Homology Modelling of GPCRs: 5-HT7 Receptor as a Test Case.
Shahaf, Nir; Pappalardo, Matteo; Basile, Livia; Guccione, Salvatore; Rayan, Anwar
2016-09-01
G protein-coupled receptors (GPCRs) are a super-family of membrane proteins that attract great pharmaceutical interest due to their involvement in almost every physiological activity, including extracellular stimuli, neurotransmission, and hormone regulation. Currently, structural information on many GPCRs is mainly obtained by the techniques of computer modelling in general and by homology modelling in particular. Based on a quantitative analysis of eighteen antagonist-bound, resolved structures of rhodopsin family "A" receptors - also used as templates to build 153 homology models - it was concluded that a higher sequence identity between two receptors does not guarantee a lower RMSD between their structures, especially when their pair-wise sequence identity (within trans-membrane domain and/or in binding pocket) lies between 25 % and 40 %. This study suggests that we should consider all template receptors having a sequence identity ≤50 % with the query receptor. In fact, most of the GPCRs, compared to the currently available resolved structures of GPCRs, fall within this range and lack a correlation between structure and sequence. When testing suitability for structure-based drug design, it was found that choosing as a template the most similar resolved protein, based on sequence resemblance only, led to unsound results in many cases. Molecular docking analyses were carried out, and enrichment factors as well as attrition rates were utilized as criteria for assessing suitability for structure-based drug design. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Woo-Yeon; Kang, Sungsoo; Kim, Byoung-Chul; Oh, Jeehyun; Cho, Seongwoong; Bhak, Jong; Choi, Jong-Soon
2008-01-01
Cyanobacteria are model organisms for studying photosynthesis, carbon and nitrogen assimilation, evolution of plant plastids, and adaptability to environmental stresses. Despite many studies on cyanobacteria, there is no web-based database of their regulatory and signaling protein-protein interaction networks to date. We report a database and website SynechoNET that provides predicted protein-protein interactions. SynechoNET shows cyanobacterial domain-domain interactions as well as their protein-level interactions using the model cyanobacterium, Synechocystis sp. PCC 6803. It predicts the protein-protein interactions using public interaction databases that contain mutually complementary and redundant data. Furthermore, SynechoNET provides information on transmembrane topology, signal peptide, and domain structure in order to support the analysis of regulatory membrane proteins. Such biological information can be queried and visualized in user-friendly web interfaces that include the interactive network viewer and search pages by keyword and functional category. SynechoNET is an integrated protein-protein interaction database designed to analyze regulatory membrane proteins in cyanobacteria. It provides a platform for biologists to extend the genomic data of cyanobacteria by predicting interaction partners, membrane association, and membrane topology of Synechocystis proteins. SynechoNET is freely available at http://synechocystis.org/ or directly at http://bioportal.kobic.kr/SynechoNET/.
Pillai, Harikrishna; Yadav, Brijesh Singh; Chaturvedi, Navaneet; Jan, Arif Tasleem; Gupta, Girish Kumar; Baig, Mohammad Hassan; Bhure, Sanjeev Kumar
2017-01-01
Regucalcin (RGN), a calcium regulating protein having anti-prolific, antiapoptotic functions, plays important part in the biosynthesis of ascorbic acid. It is a highly conserved protein that has been reported from many tissue types of various vertebrate species. Employing its effect of regulating enzyme activities through reaction with sulfhydryl group (-SH) and calcium, structural level study believed to offer a better understanding of binding properties and regulatory mechanisms of RGN, was performed. Using sample from testis of Bubalus bubalis, amplification of regucalcin (RGN) gene was subjected to characterization by performing digestion using different restriction endonucleases (RE). Alongside, cDNA was cloned into pPICZαC vector and transformed in DH5α host for custom sequencing. To get a better insight of its structural characteristics, three dimensional (3D) structure of protein sequence was generated using in silico molecular modelling approach. The full trajectory analysis of structure was achieved by the Molecular Dynamics (MD) that explains the stability, flexibility and robustness of protein during simulation in a time of 50ns. Molecular docking against 1,5-anhydrosorbitol was performed for functional characterization of RGN. Preliminary screening of amplified products on Agarose gel showed expected size of ~893 bp of PCR product corresponding to RGN. Following sequencing, BLASTp search of the target sequence revealed that it shares 91% similarity score with human senescence marker protein-30 (pdb id: 3G4E). Molecular docking of 1,5-anhydrosorbitol reveals information regarding important binding site residues of RGN. 1,5-anhydrosorbitol was found to interact with binding free energy of - 6.01 Kcal/mol. RMSD calculation of subunits A, B and D-F might be responsible for functional and conserved regions of modeled protein. Three dimensional structure of RGN was generated and its interactions with 1,5- anhydrosorbitol, demonstrates the role of key binding residues. Until now, no structural details were available for buffalo RGN proteins, hence this study will broaden the horizon towards understanding the structural and functional aspects of different proteins in cattle. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Skotniczny, Zbigniew
1989-12-01
The Query by Forms (QbF) system is a user-oriented interactive tool for querying large relational database with minimal queries difinition cost. The system was worked out under the assumption that user's time and effort for defining needed queries is the most severe bottleneck. The system may be applied in any Rdb/VMS databases system and is recommended for specific information systems of any project where end-user queries cannot be foreseen. The tool is dedicated to specialist of an application domain who have to analyze data maintained in database from any needed point of view, who do not need to know commercial databases languages. The paper presents the system developed as a compromise between its functionality and usability. User-system communication via a menu-driven "tree-like" structure of screen-forms which produces a query difinition and execution is discussed in detail. Output of query results (printed reports and graphics) is also discussed. Finally the paper shows one application of QbF to a HERA-project.
Choi, J.; Seong, J.C.; Kim, B.; Usery, E.L.
2008-01-01
A feature relies on three dimensions (space, theme, and time) for its representation. Even though spatiotemporal models have been proposed, they have principally focused on the spatial changes of a feature. In this paper, a feature-based temporal model is proposed to represent the changes of both space and theme independently. The proposed model modifies the ISO's temporal schema and adds new explicit temporal relationship structure that stores temporal topological relationship with the ISO's temporal primitives of a feature in order to keep track feature history. The explicit temporal relationship can enhance query performance on feature history by removing topological comparison during query process. Further, a prototype system has been developed to test a proposed feature-based temporal model by querying land parcel history in Athens, Georgia. The result of temporal query on individual feature history shows the efficiency of the explicit temporal relationship structure. ?? Springer Science+Business Media, LLC 2007.
ProteinWorldDB: querying radical pairwise alignments among protein sets from complete genomes.
Otto, Thomas Dan; Catanho, Marcos; Tristão, Cristian; Bezerra, Márcia; Fernandes, Renan Mathias; Elias, Guilherme Steinberger; Scaglia, Alexandre Capeletto; Bovermann, Bill; Berstis, Viktors; Lifschitz, Sergio; de Miranda, Antonio Basílio; Degrave, Wim
2010-03-01
Many analyses in modern biological research are based on comparisons between biological sequences, resulting in functional, evolutionary and structural inferences. When large numbers of sequences are compared, heuristics are often used resulting in a certain lack of accuracy. In order to improve and validate results of such comparisons, we have performed radical all-against-all comparisons of 4 million protein sequences belonging to the RefSeq database, using an implementation of the Smith-Waterman algorithm. This extremely intensive computational approach was made possible with the help of World Community Grid, through the Genome Comparison Project. The resulting database, ProteinWorldDB, which contains coordinates of pairwise protein alignments and their respective scores, is now made available. Users can download, compare and analyze the results, filtered by genomes, protein functions or clusters. ProteinWorldDB is integrated with annotations derived from Swiss-Prot, Pfam, KEGG, NCBI Taxonomy database and gene ontology. The database is a unique and valuable asset, representing a major effort to create a reliable and consistent dataset of cross-comparisons of the whole protein content encoded in hundreds of completely sequenced genomes using a rigorous dynamic programming approach. The database can be accessed through http://proteinworlddb.org
Optimization of protein and peptide drugs based on the mechanisms of kidney clearance.
Huang, Jiaguo; Wu, Huizi
2018-05-30
Development of proteins and peptides into drugs has been considered as a promising strategy to target certain diseases. However, only few proteins and peptides has been approved as new drugs into the market each year. One major problem is that proteins and peptides often exhibit short plasma half-life times, which limits the application for their clinical use. In most cases a short half-life time is not effective to deliver sufficient amount of drugs to the target organs and tissues, which is generally caused by fast renal clearance and low plasma stability due to proteolytic degradation during systemic circulation, because the most common clearance pathway of small proteins and peptides is through glomerular filtration by the kidneys. In this review, enzymatic degradation of proteins and peptides were discussed. Furthermore, several approaches to lengthen the half-life of peptides and proteins drugs based on the unique structures of glomerular capillary wall and the mechanisms of glomerular filtration were summarized, such as increasing the size and hydrodynamic diameter; increasing the negative charge to delay the filtration; increasing plasma protein binding to decrease plasma clearance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Hybrid Schema Matching for Deep Web
NASA Astrophysics Data System (ADS)
Chen, Kerui; Zuo, Wanli; He, Fengling; Chen, Yongheng
Schema matching is the process of identifying semantic mappings, or correspondences, between two or more schemas. Schema matching is a first step and critical part of data integration. For schema matching of deep web, most researches only interested in query interface, while rarely pay attention to abundant schema information contained in query result pages. This paper proposed a mixed schema matching technique, which combines attributes that appeared in query structures and query results of different data sources, and mines the matched schemas inside. Experimental results prove the effectiveness of this method for improving the accuracy of schema matching.
Mini Heme-Proteins: Designability of Structure and Diversity of Functions.
Rai, Jagdish
2017-08-30
Natural heme proteins may have heme bound to poly-peptide chain as a cofactor via noncovalent forces or heme as a prosthetic group may be covalently bound to the proteins. Nature has used porphyrins in diverse functions like electron transfer, oxidation, reduction, ligand binding, photosynthesis, signaling, etc. by modulating its properties through diverse protein matrices. Synthetic chemists have tried to utilize these molecules in equally diverse industrial and medical applications due to their versatile electro-chemical and optical properties. The heme iron has catalytic activity which can be modulated and enhanced for specific applications by protein matrix around it. Heme proteins can be designed into novel enzymes for sterio specific catalysis ranging from oxidation to reduction. These designed heme-proteins can have applications in industrial catalysis and biosensing. A peptide folds around heme easily due to hydrophobic effect of the large aromatic ring of heme. The directional property of co-ordinate bonding between peptide and metal ion in heme further specifies the structure. Therefore heme proteins can be easily designed for targeted structure and catalytic activity. The central aromatic chemical entity in heme viz. porphyrin is a very ancient molecule. Its presence in the prebiotic soup and in all forms of life suggests that it has played a vital role in the origin and progressive evolution of living organisms. Porphyrin macrocycles are highly conjugated systems composed of four modified pyrrole subunits interconnected at their α -carbon atoms via methine (=CH-) bridges. Initial minimalist models of hemoproteins focused on effect of heme-ligand co-ordinate bonding on chemical reactivity, spectroscopy, electrochemistry and magnetic properties of heme. The great sensitivity of these spectroscopic features of heme to its surrounding makes them extremely useful in structural elucidation of designed heme-peptide complexes. Therefore heme proteins are easier to work on for designing novel proteins for industrial and medical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Breaking the Curse of Cardinality on Bitmap Indexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kesheng; Wu, Kesheng; Stockinger, Kurt
2008-04-04
Bitmap indexes are known to be efficient for ad-hoc range queries that are common in data warehousing and scientific applications. However, they suffer from the curse of cardinality, that is, their efficiency deteriorates as attribute cardinalities increase. A number of strategies have been proposed, but none of them addresses the problem adequately. In this paper, we propose a novel binned bitmap index that greatly reduces the cost to answer queries, and therefore breaks the curse of cardinality. The key idea is to augment the binned index with an Order-preserving Bin-based Clustering (OrBiC) structure. This data structure significantly reduces the I/Omore » operations needed to resolve records that cannot be resolved with the bitmaps. To further improve the proposed index structure, we also present a strategy to create single-valued bins for frequent values. This strategy reduces index sizes and improves query processing speed. Overall, the binned indexes with OrBiC great improves the query processing speed, and are 3 - 25 times faster than the best available indexes for high-cardinality data.« less
Suresh, V; Parthasarathy, S
2014-01-01
We developed a support vector machine based web server called SVM-PB-Pred, to predict the Protein Block for any given amino acid sequence. The input features of SVM-PB-Pred include i) sequence profiles (PSSM) and ii) actual secondary structures (SS) from DSSP method or predicted secondary structures from NPS@ and GOR4 methods. There were three combined input features PSSM+SS(DSSP), PSSM+SS(NPS@) and PSSM+SS(GOR4) used to test and train the SVM models. Similarly, four datasets RS90, DB433, LI1264 and SP1577 were used to develop the SVM models. These four SVM models developed were tested using three different benchmarking tests namely; (i) self consistency, (ii) seven fold cross validation test and (iii) independent case test. The maximum possible prediction accuracy of ~70% was observed in self consistency test for the SVM models of both LI1264 and SP1577 datasets, where PSSM+SS(DSSP) input features was used to test. The prediction accuracies were reduced to ~53% for PSSM+SS(NPS@) and ~43% for PSSM+SS(GOR4) in independent case test, for the SVM models of above two same datasets. Using our method, it is possible to predict the protein block letters for any query protein sequence with ~53% accuracy, when the SP1577 dataset and predicted secondary structure from NPS@ server were used. The SVM-PB-Pred server can be freely accessed through http://bioinfo.bdu.ac.in/~svmpbpred.
CUFID-query: accurate network querying through random walk based network flow estimation.
Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun
2017-12-28
Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive performance evaluation based on biological networks with known functional modules, we show that CUFID-query outperforms the existing state-of-the-art algorithms in terms of prediction accuracy and biological significance of the predictions.
Index Compression and Efficient Query Processing in Large Web Search Engines
ERIC Educational Resources Information Center
Ding, Shuai
2013-01-01
The inverted index is the main data structure used by all the major search engines. Search engines build an inverted index on their collection to speed up query processing. As the size of the web grows, the length of the inverted list structures, which can easily grow to hundreds of MBs or even GBs for common terms (roughly linear in the size of…
Efficient hemodynamic event detection utilizing relational databases and wavelet analysis
NASA Technical Reports Server (NTRS)
Saeed, M.; Mark, R. G.
2001-01-01
Development of a temporal query framework for time-oriented medical databases has hitherto been a challenging problem. We describe a novel method for the detection of hemodynamic events in multiparameter trends utilizing wavelet coefficients in a MySQL relational database. Storage of the wavelet coefficients allowed for a compact representation of the trends, and provided robust descriptors for the dynamics of the parameter time series. A data model was developed to allow for simplified queries along several dimensions and time scales. Of particular importance, the data model and wavelet framework allowed for queries to be processed with minimal table-join operations. A web-based search engine was developed to allow for user-defined queries. Typical queries required between 0.01 and 0.02 seconds, with at least two orders of magnitude improvement in speed over conventional queries. This powerful and innovative structure will facilitate research on large-scale time-oriented medical databases.
ProtaBank: A repository for protein design and engineering data.
Wang, Connie Y; Chang, Paul M; Ary, Marie L; Allen, Benjamin D; Chica, Roberto A; Mayo, Stephen L; Olafson, Barry D
2018-03-25
We present ProtaBank, a repository for storing, querying, analyzing, and sharing protein design and engineering data in an actively maintained and updated database. ProtaBank provides a format to describe and compare all types of protein mutational data, spanning a wide range of properties and techniques. It features a user-friendly web interface and programming layer that streamlines data deposition and allows for batch input and queries. The database schema design incorporates a standard format for reporting protein sequences and experimental data that facilitates comparison of results across different data sets. A suite of analysis and visualization tools are provided to facilitate discovery, to guide future designs, and to benchmark and train new predictive tools and algorithms. ProtaBank will provide a valuable resource to the protein engineering community by storing and safeguarding newly generated data, allowing for fast searching and identification of relevant data from the existing literature, and exploring correlations between disparate data sets. ProtaBank invites researchers to contribute data to the database to make it accessible for search and analysis. ProtaBank is available at https://protabank.org. © 2018 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.
Cheng, Yiming; Perocchi, Fabiana
2015-07-01
ProtPhylo is a web-based tool to identify proteins that are functionally linked to either a phenotype or a protein of interest based on co-evolution. ProtPhylo infers functional associations by comparing protein phylogenetic profiles (co-occurrence patterns of orthology relationships) for more than 9.7 million non-redundant protein sequences from all three domains of life. Users can query any of 2048 fully sequenced organisms, including 1678 bacteria, 255 eukaryotes and 115 archaea. In addition, they can tailor ProtPhylo to a particular kind of biological question by choosing among four main orthology inference methods based either on pair-wise sequence comparisons (One-way Best Hits and Best Reciprocal Hits) or clustering of orthologous proteins across multiple species (OrthoMCL and eggNOG). Next, ProtPhylo ranks phylogenetic neighbors of query proteins or phenotypic properties using the Hamming distance as a measure of similarity between pairs of phylogenetic profiles. Candidate hits can be easily and flexibly prioritized by complementary clues on subcellular localization, known protein-protein interactions, membrane spanning regions and protein domains. The resulting protein list can be quickly exported into a csv text file for further analyses. ProtPhylo is freely available at http://www.protphylo.org. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Karthikeyan, Muthukumarasamy; Pandit, Yogesh; Pandit, Deepak; Vyas, Renu
2015-01-01
Virtual screening is an indispensable tool to cope with the massive amount of data being tossed by the high throughput omics technologies. With the objective of enhancing the automation capability of virtual screening process a robust portal termed MegaMiner has been built using the cloud computing platform wherein the user submits a text query and directly accesses the proposed lead molecules along with their drug-like, lead-like and docking scores. Textual chemical structural data representation is fraught with ambiguity in the absence of a global identifier. We have used a combination of statistical models, chemical dictionary and regular expression for building a disease specific dictionary. To demonstrate the effectiveness of this approach, a case study on malaria has been carried out in the present work. MegaMiner offered superior results compared to other text mining search engines, as established by F score analysis. A single query term 'malaria' in the portlet led to retrieval of related PubMed records, protein classes, drug classes and 8000 scaffolds which were internally processed and filtered to suggest new molecules as potential anti-malarials. The results obtained were validated by docking the virtual molecules into relevant protein targets. It is hoped that MegaMiner will serve as an indispensable tool for not only identifying hidden relationships between various biological and chemical entities but also for building better corpus and ontologies.
Zhang, Ai-bing; Feng, Jie; Ward, Robert D; Wan, Ping; Gao, Qiang; Wu, Jun; Zhao, Wei-zhong
2012-01-01
Species identification via DNA barcodes is contributing greatly to current bioinventory efforts. The initial, and widely accepted, proposal was to use the protein-coding cytochrome c oxidase subunit I (COI) region as the standard barcode for animals, but recently non-coding internal transcribed spacer (ITS) genes have been proposed as candidate barcodes for both animals and plants. However, achieving a robust alignment for non-coding regions can be problematic. Here we propose two new methods (DV-RBF and FJ-RBF) to address this issue for species assignment by both coding and non-coding sequences that take advantage of the power of machine learning and bioinformatics. We demonstrate the value of the new methods with four empirical datasets, two representing typical protein-coding COI barcode datasets (neotropical bats and marine fish) and two representing non-coding ITS barcodes (rust fungi and brown algae). Using two random sub-sampling approaches, we demonstrate that the new methods significantly outperformed existing Neighbor-joining (NJ) and Maximum likelihood (ML) methods for both coding and non-coding barcodes when there was complete species coverage in the reference dataset. The new methods also out-performed NJ and ML methods for non-coding sequences in circumstances of potentially incomplete species coverage, although then the NJ and ML methods performed slightly better than the new methods for protein-coding barcodes. A 100% success rate of species identification was achieved with the two new methods for 4,122 bat queries and 5,134 fish queries using COI barcodes, with 95% confidence intervals (CI) of 99.75-100%. The new methods also obtained a 96.29% success rate (95%CI: 91.62-98.40%) for 484 rust fungi queries and a 98.50% success rate (95%CI: 96.60-99.37%) for 1094 brown algae queries, both using ITS barcodes.
A Framework for Building and Reasoning with Adaptive and Interoperable PMESII Models
2007-11-01
Description Logic SOA Service Oriented Architecture SPARQL Simple Protocol And RDF Query Language SQL Standard Query Language SROM Stability and...another by providing a more expressive ontological structure for one of the models, e.g., semantic networks can be mapped to first- order logical...Pellet is an open-source reasoner that works with OWL-DL. It accepts the SPARQL protocol and RDF query language ( SPARQL ) and provides a Java API to
Cappel, Daniel; Sherman, Woody; Beuming, Thijs
2017-01-01
The ability to accurately characterize the solvation properties (water locations and thermodynamics) of biomolecules is of great importance to drug discovery. While crystallography, NMR, and other experimental techniques can assist in determining the structure of water networks in proteins and protein-ligand complexes, most water molecules are not fully resolved and accurately placed. Furthermore, understanding the energetic effects of solvation and desolvation on binding requires an analysis of the thermodynamic properties of solvent involved in the interaction between ligands and proteins. WaterMap is a molecular dynamics-based computational method that uses statistical mechanics to describe the thermodynamic properties (entropy, enthalpy, and free energy) of water molecules at the surface of proteins. This method can be used to assess the solvent contributions to ligand binding affinity and to guide lead optimization. In this review, we provide a comprehensive summary of published uses of WaterMap, including applications to lead optimization, virtual screening, selectivity analysis, ligand pose prediction, and druggability assessment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
PrionScan: an online database of predicted prion domains in complete proteomes.
Espinosa Angarica, Vladimir; Angulo, Alfonso; Giner, Arturo; Losilla, Guillermo; Ventura, Salvador; Sancho, Javier
2014-02-05
Prions are a particular type of amyloids related to a large variety of important processes in cells, but also responsible for serious diseases in mammals and humans. The number of experimentally characterized prions is still low and corresponds to a handful of examples in microorganisms and mammals. Prion aggregation is mediated by specific protein domains with a remarkable compositional bias towards glutamine/asparagine and against charged residues and prolines. These compositional features have been used to predict new prion proteins in the genomes of different organisms. Despite these efforts, there are only a few available data sources containing prion predictions at a genomic scale. Here we present PrionScan, a new database of predicted prion-like domains in complete proteomes. We have previously developed a predictive methodology to identify and score prionogenic stretches in protein sequences. In the present work, we exploit this approach to scan all the protein sequences in public databases and compile a repository containing relevant information of proteins bearing prion-like domains. The database is updated regularly alongside UniprotKB and in its present version contains approximately 28000 predictions in proteins from different functional categories in more than 3200 organisms from all the taxonomic subdivisions. PrionScan can be used in two different ways: database query and analysis of protein sequences submitted by the users. In the first mode, simple queries allow to retrieve a detailed description of the properties of a defined protein. Queries can also be combined to generate more complex and specific searching patterns. In the second mode, users can submit and analyze their own sequences. It is expected that this database would provide relevant insights on prion functions and regulation from a genome-wide perspective, allowing researches performing cross-species prion biology studies. Our database might also be useful for guiding experimentalists in the identification of new candidates for further experimental characterization.
Towards ontology-driven navigation of the lipid bibliosphere
Baker, Christopher JO; Kanagasabai, Rajaraman; Ang, Wee Tiong; Veeramani, Anitha; Low, Hong-Sang; Wenk, Markus R
2008-01-01
Background The indexing of scientific literature and content is a relevant and contemporary requirement within life science information systems. Navigating information available in legacy formats continues to be a challenge both in enterprise and academic domains. The emergence of semantic web technologies and their fusion with artificial intelligence techniques has provided a new toolkit with which to address these data integration challenges. In the emerging field of lipidomics such navigation challenges are barriers to the translation of scientific results into actionable knowledge, critical to the treatment of diseases such as Alzheimer's syndrome, Mycobacterium infections and cancer. Results We present a literature-driven workflow involving document delivery and natural language processing steps generating tagged sentences containing lipid, protein and disease names, which are instantiated to custom designed lipid ontology. We describe the design challenges in capturing lipid nomenclature, the mandate of the ontology and its role as query model in the navigation of the lipid bibliosphere. We illustrate the extent of the description logic-based A-box query capability provided by the instantiated ontology using a graphical query composer to query sentences describing lipid-protein and lipid-disease correlations. Conclusion As scientists accept the need to readjust the manner in which we search for information and derive knowledge we illustrate a system that can constrain the literature explosion and knowledge navigation problems. Specifically we have focussed on solving this challenge for lipidomics researchers who have to deal with the lack of standardized vocabulary, differing classification schemes, and a wide array of synonyms before being able to derive scientific insights. The use of the OWL-DL variant of the Web Ontology Language (OWL) and description logic reasoning is pivotal in this regard, providing the lipid scientist with advanced query access to the results of text mining algorithms instantiated into the ontology. The visual query paradigm assists in the adoption of this technology. PMID:18315858
Towards ontology-driven navigation of the lipid bibliosphere.
Baker, Christopher Jo; Kanagasabai, Rajaraman; Ang, Wee Tiong; Veeramani, Anitha; Low, Hong-Sang; Wenk, Markus R
2008-01-01
The indexing of scientific literature and content is a relevant and contemporary requirement within life science information systems. Navigating information available in legacy formats continues to be a challenge both in enterprise and academic domains. The emergence of semantic web technologies and their fusion with artificial intelligence techniques has provided a new toolkit with which to address these data integration challenges. In the emerging field of lipidomics such navigation challenges are barriers to the translation of scientific results into actionable knowledge, critical to the treatment of diseases such as Alzheimer's syndrome, Mycobacterium infections and cancer. We present a literature-driven workflow involving document delivery and natural language processing steps generating tagged sentences containing lipid, protein and disease names, which are instantiated to custom designed lipid ontology. We describe the design challenges in capturing lipid nomenclature, the mandate of the ontology and its role as query model in the navigation of the lipid bibliosphere. We illustrate the extent of the description logic-based A-box query capability provided by the instantiated ontology using a graphical query composer to query sentences describing lipid-protein and lipid-disease correlations. As scientists accept the need to readjust the manner in which we search for information and derive knowledge we illustrate a system that can constrain the literature explosion and knowledge navigation problems. Specifically we have focussed on solving this challenge for lipidomics researchers who have to deal with the lack of standardized vocabulary, differing classification schemes, and a wide array of synonyms before being able to derive scientific insights. The use of the OWL-DL variant of the Web Ontology Language (OWL) and description logic reasoning is pivotal in this regard, providing the lipid scientist with advanced query access to the results of text mining algorithms instantiated into the ontology. The visual query paradigm assists in the adoption of this technology.
Sukhwal, Anshul; Sowdhamini, Ramanathan
2013-07-01
Protein-protein interactions are important in carrying out many biological processes and functions. These interactions may be either permanent or of temporary nature. Several studies have employed tools like solvent accessibility and graph theory to identify these interactions, but still more studies need to be performed to quantify and validate them. Although we now have many databases available with predicted and experimental results on protein-protein interactions, we still do not have many databases which focus on providing structural details of the interacting complexes, their oligomerisation state and homologues. In this work, protein-protein interactions have been thoroughly investigated within the structural regime and quantified for their strength using calculated pseudoenergies. The PPCheck server, an in-house webserver, has been used for calculating the pseudoenergies like van der Waals, hydrogen bonds and electrostatic energy based on distances between atoms of amino acids from two interacting proteins. PPCheck can be visited at . Based on statistical data, as obtained by studying established protein-protein interacting complexes from earlier studies, we came to a conclusion that an average protein-protein interface consisted of about 51 to 150 amino acid residues and the generalized energy per residue ranged from -2 kJ mol(-1) to -6 kJ mol(-1). We found that some of the proteins have an exceptionally higher number of amino acids at the interface and it was purely because of their elaborate interface or extended topology i.e. some of their secondary structure regions or loops were either inter-mixing or running parallel to one another or they were taking part in domain swapping. Residue networks were prepared for all the amino acids of the interacting proteins involved in different types of interactions (like van der Waals, hydrogen-bonding, electrostatic or intramolecular interactions) and were analysed between the query domain-interacting partner pair and its remote homologue-interacting partner pair. We found that, in exceptional cases, homologous proteins belonging to the same superfamily, but with remote sequence similarity, can share similar interfaces.
An ontology-based comparative anatomy information system
Travillian, Ravensara S.; Diatchka, Kremena; Judge, Tejinder K.; Wilamowska, Katarzyna; Shapiro, Linda G.
2010-01-01
Introduction This paper describes the design, implementation, and potential use of a comparative anatomy information system (CAIS) for querying on similarities and differences between homologous anatomical structures across species, the knowledge base it operates upon, the method it uses for determining the answers to the queries, and the user interface it employs to present the results. The relevant informatics contributions of our work include (1) the development and application of the structural difference method, a formalism for symbolically representing anatomical similarities and differences across species; (2) the design of the structure of a mapping between the anatomical models of two different species and its application to information about specific structures in humans, mice, and rats; and (3) the design of the internal syntax and semantics of the query language. These contributions provide the foundation for the development of a working system that allows users to submit queries about the similarities and differences between mouse, rat, and human anatomy; delivers result sets that describe those similarities and differences in symbolic terms; and serves as a prototype for the extension of the knowledge base to any number of species. Additionally, we expanded the domain knowledge by identifying medically relevant structural questions for the human, the mouse, and the rat, and made an initial foray into the validation of the application and its content by means of user questionnaires, software testing, and other feedback. Methods The anatomical structures of the species to be compared, as well as the mappings between species, are modeled on templates from the Foundational Model of Anatomy knowledge base, and compared using graph-matching techniques. A graphical user interface allows users to issue queries that retrieve information concerning similarities and differences between structures in the species being examined. Queries from diverse information sources, including domain experts, peer-reviewed articles, and reference books, have been used to test the system and to illustrate its potential use in comparative anatomy studies. Results 157 test queries were submitted to the CAIS system, and all of them were correctly answered. The interface was evaluated in terms of clarity and ease of use. This testing determined that the application works well, and is fairly intuitive to use, but users want to see more clarification of the meaning of the different types of possible queries. Some of the interface issues will naturally be resolved as we refine our conceptual model to deal with partial and complex homologies in the content. Conclusions The CAIS system and its associated methods are expected to be useful to biologists and translational medicine researchers. Possible applications range from supporting theoretical work in clarifying and modeling ontogenetic, physiological, pathological, and evolutionary transformations, to concrete techniques for improving the analysis of genotype–phenotype relationships among various animal models in support of a wide array of clinical and scientific initiatives. PMID:21146377
Meta sequence analysis of human blood peptides and their parent proteins.
Bowden, Peter; Pendrak, Voitek; Zhu, Peihong; Marshall, John G
2010-04-18
Sequence analysis of the blood peptides and their qualities will be key to understanding the mechanisms that contribute to error in LC-ESI-MS/MS. Analysis of peptides and their proteins at the level of sequences is much more direct and informative than the comparison of disparate accession numbers. A portable database of all blood peptide and protein sequences with descriptor fields and gene ontology terms might be useful for designing immunological or MRM assays from human blood. The results of twelve studies of human blood peptides and/or proteins identified by LC-MS/MS and correlated against a disparate array of genetic libraries were parsed and matched to proteins from the human ENSEMBL, SwissProt and RefSeq databases by SQL. The reported peptide and protein sequences were organized into an SQL database with full protein sequences and up to five unique peptides in order of prevalence along with the peptide count for each protein. Structured query language or BLAST was used to acquire descriptive information in current databases. Sampling error at the level of peptides is the largest source of disparity between groups. Chi Square analysis of peptide to protein distributions confirmed the significant agreement between groups on identified proteins. Copyright 2010. Published by Elsevier B.V.
Supporting temporal queries on clinical relational databases: the S-WATCH-QL language.
Combi, C.; Missora, L.; Pinciroli, F.
1996-01-01
Due to the ubiquitous and special nature of time, specially in clinical datábases there's the need of particular temporal data and operators. In this paper we describe S-WATCH-QL (Structured Watch Query Language), a temporal extension of SQL, the widespread query language based on the relational model. S-WATCH-QL extends the well-known SQL by the addition of: a) temporal data types that allow the storage of information with different levels of granularity; b) historical relations that can store together both instantaneous valid times and intervals; c) some temporal clauses, functions and predicates allowing to define complex temporal queries. PMID:8947722
Ad-Hoc Queries over Document Collections - A Case Study
NASA Astrophysics Data System (ADS)
Löser, Alexander; Lutter, Steffen; Düssel, Patrick; Markl, Volker
We discuss the novel problem of supporting analytical business intelligence queries over web-based textual content, e.g., BI-style reports based on 100.000's of documents from an ad-hoc web search result. Neither conventional search engines nor conventional Business Intelligence and ETL tools address this problem, which lies at the intersection of their capabilities. "Google Squared" or our system GOOLAP.info, are examples of these kinds of systems. They execute information extraction methods over one or several document collections at query time and integrate extracted records into a common view or tabular structure. Frequent extraction and object resolution failures cause incomplete records which could not be joined into a record answering the query. Our focus is the identification of join-reordering heuristics maximizing the size of complete records answering a structured query. With respect to given costs for document extraction we propose two novel join-operations: The multi-way CJ-operator joins records from multiple relationships extracted from a single document. The two-way join-operator DJ ensures data density by removing incomplete records from results. In a preliminary case study we observe that our join-reordering heuristics positively impact result size, record density and lower execution costs.
Building alternate protein structures using the elastic network model.
Yang, Qingyi; Sharp, Kim A
2009-02-15
We describe a method for efficiently generating ensembles of alternate, all-atom protein structures that (a) differ significantly from the starting structure, (b) have good stereochemistry (bonded geometry), and (c) have good steric properties (absence of atomic overlap). The method uses reconstruction from a series of backbone framework structures that are obtained from a modified elastic network model (ENM) by perturbation along low-frequency normal modes. To ensure good quality backbone frameworks, the single force parameter ENM is modified by introducing two more force parameters to characterize the interaction between the consecutive carbon alphas and those within the same secondary structure domain. The relative stiffness of the three parameters is parameterized to reproduce B-factors, while maintaining good bonded geometry. After parameterization, violations of experimental Calpha-Calpha distances and Calpha-Calpha-Calpha pseudo angles along the backbone are reduced to less than 1%. Simultaneously, the average B-factor correlation coefficient improves to R = 0.77. Two applications illustrate the potential of the approach. (1) 102,051 protein backbones spanning a conformational space of 15 A root mean square deviation were generated from 148 nonredundant proteins in the PDB database, and all-atom models with minimal bonded and nonbonded violations were produced from this ensemble of backbone structures using the SCWRL side chain building program. (2) Improved backbone templates for homology modeling. Fifteen query sequences were each modeled on two targets. For each of the 30 target frameworks, dozens of improved templates could be produced In all cases, improved full atom homology models resulted, of which 50% could be identified blind using the D-Fire statistical potential. (c) 2008 Wiley-Liss, Inc.
Kashani-Amin, Elaheh; Tabatabaei-Malazy, Ozra; Sakhteman, Amirhossein; Larijani, Bagher; Ebrahim-Habibi, Azadeh
2018-02-27
Prediction of proteins' secondary structure is one of the major steps in the generation of homology models. These models provide structural information which is used to design suitable ligands for potential medicinal targets. However, selecting a proper tool between multiple secondary structure prediction (SSP) options is challenging. The current study is an insight onto currently favored methods and tools, within various contexts. A systematic review was performed for a comprehensive access to recent (2013-2016) studies which used or recommended protein SSP tools. Three databases, Web of Science, PubMed and Scopus were systematically searched and 99 out of 209 studies were finally found eligible to extract data. Four categories of applications for 59 retrieved SSP tools were: (I) prediction of structural features of a given sequence, (II) evaluation of a method, (III) providing input for a new SSP method and (IV) integrating a SSP tool as a component for a program. PSIPRED was found to be the most popular tool in all four categories. JPred and tools utilizing PHD (Profile network from HeiDelberg) method occupied second and third places of popularity in categories I and II. JPred was only found in the two first categories, while PHD was present in three fields. This study provides a comprehensive insight about the recent usage of SSP tools which could be helpful for selecting a proper tool's choice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
A web-based data-querying tool based on ontology-driven methodology and flowchart-based model.
Ping, Xiao-Ou; Chung, Yufang; Tseng, Yi-Ju; Liang, Ja-Der; Yang, Pei-Ming; Huang, Guan-Tarn; Lai, Feipei
2013-10-08
Because of the increased adoption rate of electronic medical record (EMR) systems, more health care records have been increasingly accumulating in clinical data repositories. Therefore, querying the data stored in these repositories is crucial for retrieving the knowledge from such large volumes of clinical data. The aim of this study is to develop a Web-based approach for enriching the capabilities of the data-querying system along the three following considerations: (1) the interface design used for query formulation, (2) the representation of query results, and (3) the models used for formulating query criteria. The Guideline Interchange Format version 3.5 (GLIF3.5), an ontology-driven clinical guideline representation language, was used for formulating the query tasks based on the GLIF3.5 flowchart in the Protégé environment. The flowchart-based data-querying model (FBDQM) query execution engine was developed and implemented for executing queries and presenting the results through a visual and graphical interface. To examine a broad variety of patient data, the clinical data generator was implemented to automatically generate the clinical data in the repository, and the generated data, thereby, were employed to evaluate the system. The accuracy and time performance of the system for three medical query tasks relevant to liver cancer were evaluated based on the clinical data generator in the experiments with varying numbers of patients. In this study, a prototype system was developed to test the feasibility of applying a methodology for building a query execution engine using FBDQMs by formulating query tasks using the existing GLIF. The FBDQM-based query execution engine was used to successfully retrieve the clinical data based on the query tasks formatted using the GLIF3.5 in the experiments with varying numbers of patients. The accuracy of the three queries (ie, "degree of liver damage," "degree of liver damage when applying a mutually exclusive setting," and "treatments for liver cancer") was 100% for all four experiments (10 patients, 100 patients, 1000 patients, and 10,000 patients). Among the three measured query phases, (1) structured query language operations, (2) criteria verification, and (3) other, the first two had the longest execution time. The ontology-driven FBDQM-based approach enriched the capabilities of the data-querying system. The adoption of the GLIF3.5 increased the potential for interoperability, shareability, and reusability of the query tasks.
Chakraborty, Sandeep
2014-01-01
The ability to accurately and effectively predict the interaction between proteins and small drug-like compounds has long intrigued researchers for pedagogic, humanitarian and economic reasons. Protein docking methods (AutoDock, GOLD, DOCK, FlexX and Glide to name a few) rank a large number of possible conformations of protein-ligand complexes using fast algorithms. Previously, it has been shown that structural congruence leading to the same enzymatic function necessitates the congruence of electrostatic properties (CLASP). The current work presents a methodology for docking a ligand into a target protein, provided that there is at least one known holoenzyme with ligand bound - DOCLASP (Docking using CLASP). The contact points of the ligand in the holoenzyme defines a motif, which is used to query the target enzyme using CLASP. If there are significant matches, the holoenzyme and the target protein are superimposed based on congruent atoms. The same linear and rotational transformations are also applied to the ligand, thus creating a unified coordinate framework having the holoenzyme, the ligand and the target enzyme. In the current work, the dipeptidyl peptidase-IV inhibitor vildagliptin was docked to the PI-PLC structure complexed with myo-inositol using DOCLASP. Also, corroboration of the docking of phenylthiourea to the modelled structure of polyphenol oxidase (JrPPO1) from walnut is provided based on the subsequently solved structure of JrPPO1 (PDBid:5CE9). Analysis of the binding of the antitrypanosomial drug suramin to nine non-homologous proteins in the PDB database shows a diverse set of binding motifs, and multiple binding sites in the phospholipase A2-likeproteins from the Bothrops genus of pitvipers. The conformational changes in the suramin molecule on binding highlights the challenges in docking flexible ligands into an already 'plastic' binding site. Thus, DOCLASP presents a method for 'soft docking' ligands to proteins with low computational requirements.
NVST Data Archiving System Based On FastBit NoSQL Database
NASA Astrophysics Data System (ADS)
Liu, Ying-bo; Wang, Feng; Ji, Kai-fan; Deng, Hui; Dai, Wei; Liang, Bo
2014-06-01
The New Vacuum Solar Telescope (NVST) is a 1-meter vacuum solar telescope that aims to observe the fine structures of active regions on the Sun. The main tasks of the NVST are high resolution imaging and spectral observations, including the measurements of the solar magnetic field. The NVST has been collecting more than 20 million FITS files since it began routine observations in 2012 and produces a maximum observational records of 120 thousand files in a day. Given the large amount of files, the effective archiving and retrieval of files becomes a critical and urgent problem. In this study, we implement a new data archiving system for the NVST based on the Fastbit Not Only Structured Query Language (NoSQL) database. Comparing to the relational database (i.e., MySQL; My Structured Query Language), the Fastbit database manifests distinctive advantages on indexing and querying performance. In a large scale database of 40 million records, the multi-field combined query response time of Fastbit database is about 15 times faster and fully meets the requirements of the NVST. Our study brings a new idea for massive astronomical data archiving and would contribute to the design of data management systems for other astronomical telescopes.
Domain fusion analysis by applying relational algebra to protein sequence and domain databases
Truong, Kevin; Ikura, Mitsuhiko
2003-01-01
Background Domain fusion analysis is a useful method to predict functionally linked proteins that may be involved in direct protein-protein interactions or in the same metabolic or signaling pathway. As separate domain databases like BLOCKS, PROSITE, Pfam, SMART, PRINTS-S, ProDom, TIGRFAMs, and amalgamated domain databases like InterPro continue to grow in size and quality, a computational method to perform domain fusion analysis that leverages on these efforts will become increasingly powerful. Results This paper proposes a computational method employing relational algebra to find domain fusions in protein sequence databases. The feasibility of this method was illustrated on the SWISS-PROT+TrEMBL sequence database using domain predictions from the Pfam HMM (hidden Markov model) database. We identified 235 and 189 putative functionally linked protein partners in H. sapiens and S. cerevisiae, respectively. From scientific literature, we were able to confirm many of these functional linkages, while the remainder offer testable experimental hypothesis. Results can be viewed at . Conclusion As the analysis can be computed quickly on any relational database that supports standard SQL (structured query language), it can be dynamically updated along with the sequence and domain databases, thereby improving the quality of predictions over time. PMID:12734020
Spatial Query for Planetary Data
NASA Technical Reports Server (NTRS)
Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.
2011-01-01
Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.
Big Data and Dysmenorrhea: What Questions Do Women and Men Ask About Menstrual Pain?
Chen, Chen X; Groves, Doyle; Miller, Wendy R; Carpenter, Janet S
2018-04-30
Menstrual pain is highly prevalent among women of reproductive age. As the general public increasingly obtains health information online, Big Data from online platforms provide novel sources to understand the public's perspectives and information needs about menstrual pain. The study's purpose was to describe salient queries about dysmenorrhea using Big Data from a question and answer platform. We performed text-mining of 1.9 billion queries from ChaCha, a United States-based question and answer platform. Dysmenorrhea-related queries were identified by using keyword searching. Each relevant query was split into token words (i.e., meaningful words or phrases) and stop words (i.e., not meaningful functional words). Word Adjacency Graph (WAG) modeling was used to detect clusters of queries and visualize the range of dysmenorrhea-related topics. We constructed two WAG models respectively from queries by women of reproductive age and bymen. Salient themes were identified through inspecting clusters of WAG models. We identified two subsets of queries: Subset 1 contained 507,327 queries from women aged 13-50 years. Subset 2 contained 113,888 queries from men aged 13 or above. WAG modeling revealed topic clusters for each subset. Between female and male subsets, topic clusters overlapped on dysmenorrhea symptoms and management. Among female queries, there were distinctive topics on approaching menstrual pain at school and menstrual pain-related conditions; while among male queries, there was a distinctive cluster of queries on menstrual pain from male's perspectives. Big Data mining of the ChaCha ® question and answer service revealed a series of information needs among women and men on menstrual pain. Findings may be useful in structuring the content and informing the delivery platform for educational interventions.
gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances.
Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav
2016-01-01
Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos).
gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances
Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav
2016-01-01
Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos). PMID:27846272
Kangaroo – A pattern-matching program for biological sequences
2002-01-01
Background Biologists are often interested in performing a simple database search to identify proteins or genes that contain a well-defined sequence pattern. Many databases do not provide straightforward or readily available query tools to perform simple searches, such as identifying transcription binding sites, protein motifs, or repetitive DNA sequences. However, in many cases simple pattern-matching searches can reveal a wealth of information. We present in this paper a regular expression pattern-matching tool that was used to identify short repetitive DNA sequences in human coding regions for the purpose of identifying potential mutation sites in mismatch repair deficient cells. Results Kangaroo is a web-based regular expression pattern-matching program that can search for patterns in DNA, protein, or coding region sequences in ten different organisms. The program is implemented to facilitate a wide range of queries with no restriction on the length or complexity of the query expression. The program is accessible on the web at http://bioinfo.mshri.on.ca/kangaroo/ and the source code is freely distributed at http://sourceforge.net/projects/slritools/. Conclusion A low-level simple pattern-matching application can prove to be a useful tool in many research settings. For example, Kangaroo was used to identify potential genetic targets in a human colorectal cancer variant that is characterized by a high frequency of mutations in coding regions containing mononucleotide repeats. PMID:12150718
González-Díaz, Humberto; Muíño, Laura; Anadón, Ana M; Romaris, Fernanda; Prado-Prado, Francisco J; Munteanu, Cristian R; Dorado, Julián; Sierra, Alejandro Pazos; Mezo, Mercedes; González-Warleta, Marta; Gárate, Teresa; Ubeira, Florencio M
2011-06-01
Infections caused by human parasites (HPs) affect the poorest 500 million people worldwide but chemotherapy has become expensive, toxic, and/or less effective due to drug resistance. On the other hand, many 3D structures in Protein Data Bank (PDB) remain without function annotation. We need theoretical models to quickly predict biologically relevant Parasite Self Proteins (PSP), which are expressed differentially in a given parasite and are dissimilar to proteins expressed in other parasites and have a high probability to become new vaccines (unique sequence) or drug targets (unique 3D structure). We present herein a model for PSPs in eight different HPs (Ascaris, Entamoeba, Fasciola, Giardia, Leishmania, Plasmodium, Trypanosoma, and Toxoplasma) with 90% accuracy for 15 341 training and validation cases. The model combines protein residue networks, Markov Chain Models (MCM) and Artificial Neural Networks (ANN). The input parameters are the spectral moments of the Markov transition matrix for electrostatic interactions associated with the protein residue complex network calculated with the MARCH-INSIDE software. We implemented this model in a new web-server called MISS-Prot (MARCH-INSIDE Scores for Self-Proteins). MISS-Prot was programmed using PHP/HTML/Python and MARCH-INSIDE routines and is freely available at: . This server is easy to use by non-experts in Bioinformatics who can carry out automatic online upload and prediction with 3D structures deposited at PDB (mode 1). We can also study outcomes of Peptide Mass Fingerprinting (PMFs) and MS/MS for query proteins with unknown 3D structures (mode 2). We illustrated the use of MISS-Prot in experimental and/or theoretical studies of peptides from Fasciola hepatica cathepsin proteases or present on 10 Anisakis simplex allergens (Ani s 1 to Ani s 10). In doing so, we combined electrophoresis (1DE), MALDI-TOF Mass Spectroscopy, and MASCOT to seek sequences, Molecular Mechanics + Molecular Dynamics (MM/MD) to generate 3D structures and MISS-Prot to predict PSP scores. MISS-Prot also allows the prediction of PSP proteins in 16 additional species including parasite hosts, fungi pathogens, disease transmission vectors, and biotechnologically relevant organisms.
System and method for responding to ground and flight system malfunctions
NASA Technical Reports Server (NTRS)
Anderson, Julie J. (Inventor); Fussell, Ronald M. (Inventor)
2010-01-01
A system for on-board anomaly resolution for a vehicle has a data repository. The data repository stores data related to different systems, subsystems, and components of the vehicle. The data stored is encoded in a tree-based structure. A query engine is coupled to the data repository. The query engine provides a user and automated interface and provides contextual query to the data repository. An inference engine is coupled to the query engine. The inference engine compares current anomaly data to contextual data stored in the data repository using inference rules. The inference engine generates a potential solution to the current anomaly by referencing the data stored in the data repository.
Ahmad, Javed; Singhal, Madhur; Amin, Saima; Rizwanullah, Md; Akhter, Sohail; Kamal, Mohammad Amjad; Haider, Nafis; Midoux, Patrick; Pichon, Chantal
2017-01-01
With the advent of novel vesicular drug delivery systems especially bilosomes, for large molecular weight proteins and peptides, their oral administration seems a viable approach. These nano-vesicles have shown promising results for the effective delivery of insulin and other therapeutics, perhaps due to their structural composition. The present review has elaborated the biopharmaceutical challenges for the oral delivery of therapeutic proteins and peptides as well as presented a novel approach to deliver the essential macromolecules through oral route as bilosomes. The extensive search has been presented related to the formulation, evaluation and in vivo performance of bilosomes. Some of the crucial findings related to bilosomes have corroborated them superior to other colloidal carriers. The successful drug delivery through bilosomes requires significant justifications related to their interaction with the biological membranes. The other aspects such as absolute absorption, safety and toxicity of bilosome drug delivery should also be equally considered. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
AbDb: antibody structure database—a database of PDB-derived antibody structures
Ferdous, Saba
2018-01-01
Abstract In order to analyse structures of proteins of a particular class, these need to be extracted from Protein Data Bank (PDB) files. In the case of antibodies, there are a number of special considerations: (i) identifying antibodies in the PDB is not trivial, (ii) they may be crystallized with or without antigen, (iii) for analysis purposes, one is normally only interested in the Fv region of the antibody, (iv) structural analysis of epitopes, in particular, requires individual antibody–antigen complexes from a PDB file which may contain multiple copies of the same, or different, antibodies and (v) standard numbering schemes should be applied. Consequently, there is a need for a specialist resource containing pre-numbered non-redundant antibody Fv structures with their cognate antigens. We have created an automatically updated resource, AbDb, which collects the Fv regions from antibody structures using information from our SACS database which summarizes antibody structures from the PDB. PDB files containing multiple structures are split and numbered and each antibody structure is associated with its antigen where available. Antibody structures with only light or heavy chains have also been processed and sequences of antibodies are compared to identify multiple structures of the same antibody. The data may be queried on the basis of PDB code, or the name or species of the antibody or antigen, and the complete datasets may be downloaded. Database URL: www.bioinf.org.uk/abs/abdb/ PMID:29718130
Gene Unprediction with Spurio: A tool to identify spurious protein sequences.
Höps, Wolfram; Jeffryes, Matt; Bateman, Alex
2018-01-01
We now have access to the sequences of tens of millions of proteins. These protein sequences are essential for modern molecular biology and computational biology. The vast majority of protein sequences are derived from gene prediction tools and have no experimental supporting evidence for their translation. Despite the increasing accuracy of gene prediction tools there likely exists a large number of spurious protein predictions in the sequence databases. We have developed the Spurio tool to help identify spurious protein predictions in prokaryotes. Spurio searches the query protein sequence against a prokaryotic nucleotide database using tblastn and identifies homologous sequences. The tblastn matches are used to score the query sequence's likelihood of being a spurious protein prediction using a Gaussian process model. The most informative feature is the appearance of stop codons within the presumed translation of homologous DNA sequences. Benchmarking shows that the Spurio tool is able to distinguish spurious from true proteins. However, transposon proteins are prone to be predicted as spurious because of the frequency of degraded homologs found in the DNA sequence databases. Our initial experiments suggest that less than 1% of the proteins in the UniProtKB sequence database are likely to be spurious and that Spurio is able to identify over 60 times more spurious proteins than the AntiFam resource. The Spurio software and source code is available under an MIT license at the following URL: https://bitbucket.org/bateman-group/spurio.
MFIB: a repository of protein complexes with mutual folding induced by binding.
Fichó, Erzsébet; Reményi, István; Simon, István; Mészáros, Bálint
2017-11-15
It is commonplace that intrinsically disordered proteins (IDPs) are involved in crucial interactions in the living cell. However, the study of protein complexes formed exclusively by IDPs is hindered by the lack of data and such analyses remain sporadic. Systematic studies benefited other types of protein-protein interactions paving a way from basic science to therapeutics; yet these efforts require reliable datasets that are currently lacking for synergistically folding complexes of IDPs. Here we present the Mutual Folding Induced by Binding (MFIB) database, the first systematic collection of complexes formed exclusively by IDPs. MFIB contains an order of magnitude more data than any dataset used in corresponding studies and offers a wide coverage of known IDP complexes in terms of flexibility, oligomeric composition and protein function from all domains of life. The included complexes are grouped using a hierarchical classification and are complemented with structural and functional annotations. MFIB is backed by a firm development team and infrastructure, and together with possible future community collaboration it will provide the cornerstone for structural and functional studies of IDP complexes. MFIB is freely accessible at http://mfib.enzim.ttk.mta.hu/. The MFIB application is hosted by Apache web server and was implemented in PHP. To enrich querying features and to enhance backend performance a MySQL database was also created. simon.istvan@ttk.mta.hu, meszaros.balint@ttk.mta.hu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
ProteinWorldDB: querying radical pairwise alignments among protein sets from complete genomes
Otto, Thomas Dan; Catanho, Marcos; Tristão, Cristian; Bezerra, Márcia; Fernandes, Renan Mathias; Elias, Guilherme Steinberger; Scaglia, Alexandre Capeletto; Bovermann, Bill; Berstis, Viktors; Lifschitz, Sergio; de Miranda, Antonio Basílio; Degrave, Wim
2010-01-01
Motivation: Many analyses in modern biological research are based on comparisons between biological sequences, resulting in functional, evolutionary and structural inferences. When large numbers of sequences are compared, heuristics are often used resulting in a certain lack of accuracy. In order to improve and validate results of such comparisons, we have performed radical all-against-all comparisons of 4 million protein sequences belonging to the RefSeq database, using an implementation of the Smith–Waterman algorithm. This extremely intensive computational approach was made possible with the help of World Community Grid™, through the Genome Comparison Project. The resulting database, ProteinWorldDB, which contains coordinates of pairwise protein alignments and their respective scores, is now made available. Users can download, compare and analyze the results, filtered by genomes, protein functions or clusters. ProteinWorldDB is integrated with annotations derived from Swiss-Prot, Pfam, KEGG, NCBI Taxonomy database and gene ontology. The database is a unique and valuable asset, representing a major effort to create a reliable and consistent dataset of cross-comparisons of the whole protein content encoded in hundreds of completely sequenced genomes using a rigorous dynamic programming approach. Availability: The database can be accessed through http://proteinworlddb.org Contact: otto@fiocruz.br PMID:20089515
Akce, Abdullah; Norton, James J S; Bretl, Timothy
2015-09-01
This paper presents a brain-computer interface for text entry using steady-state visually evoked potentials (SSVEP). Like other SSVEP-based spellers, ours identifies the desired input character by posing questions (or queries) to users through a visual interface. Each query defines a mapping from possible characters to steady-state stimuli. The user responds by attending to one of these stimuli. Unlike other SSVEP-based spellers, ours chooses from a much larger pool of possible queries-on the order of ten thousand instead of ten. The larger query pool allows our speller to adapt more effectively to the inherent structure of what is being typed and to the input performance of the user, both of which make certain queries provide more information than others. In particular, our speller chooses queries from this pool that maximize the amount of information to be received per unit of time, a measure of mutual information that we call information gain rate. To validate our interface, we compared it with two other state-of-the-art SSVEP-based spellers, which were re-implemented to use the same input mechanism. Results showed that our interface, with the larger query pool, allowed users to spell multiple-word texts nearly twice as fast as they could with the compared spellers.
Query construction, entropy, and generalization in neural-network models
NASA Astrophysics Data System (ADS)
Sollich, Peter
1994-05-01
We study query construction algorithms, which aim at improving the generalization ability of systems that learn from examples by choosing optimal, nonredundant training sets. We set up a general probabilistic framework for deriving such algorithms from the requirement of optimizing a suitable objective function; specifically, we consider the objective functions entropy (or information gain) and generalization error. For two learning scenarios, the high-low game and the linear perceptron, we evaluate the generalization performance obtained by applying the corresponding query construction algorithms and compare it to training on random examples. We find qualitative differences between the two scenarios due to the different structure of the underlying rules (nonlinear and ``noninvertible'' versus linear); in particular, for the linear perceptron, random examples lead to the same generalization ability as a sequence of queries in the limit of an infinite number of examples. We also investigate learning algorithms which are ill matched to the learning environment and find that, in this case, minimum entropy queries can in fact yield a lower generalization ability than random examples. Finally, we study the efficiency of single queries and its dependence on the learning history, i.e., on whether the previous training examples were generated randomly or by querying, and the difference between globally and locally optimal query construction.
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Applications in Quantitative Proteomics.
Chahrour, Osama; Malone, John
2017-01-01
Recent advances in inductively coupled plasma mass spectrometry (ICP-MS) hyphenated to different separation techniques have promoted it as a valuable tool in protein/peptide quantification. These emerging ICP-MS applications allow absolute quantification by measuring specific elemental responses. One approach quantifies elements already present in the structure of the target peptide (e.g. phosphorus and sulphur) as natural tags. Quantification of these natural tags allows the elucidation of the degree of protein phosphorylation in addition to absolute protein quantification. A separate approach is based on utilising bi-functional labelling substances (those containing ICP-MS detectable elements), that form a covalent chemical bond with the protein thus creating analogs which are detectable by ICP-MS. Based on the previously established stoichiometries of the labelling reagents, quantification can be achieved. This technique is very useful for the design of precise multiplexed quantitation schemes to address the challenges of biomarker screening and discovery. This review discusses the capabilities and different strategies to implement ICP-MS in the field of quantitative proteomics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Use of Graph Database for the Integration of Heterogeneous Biological Data.
Yoon, Byoung-Ha; Kim, Seon-Kyu; Kim, Seon-Young
2017-03-01
Understanding complex relationships among heterogeneous biological data is one of the fundamental goals in biology. In most cases, diverse biological data are stored in relational databases, such as MySQL and Oracle, which store data in multiple tables and then infer relationships by multiple-join statements. Recently, a new type of database, called the graph-based database, was developed to natively represent various kinds of complex relationships, and it is widely used among computer science communities and IT industries. Here, we demonstrate the feasibility of using a graph-based database for complex biological relationships by comparing the performance between MySQL and Neo4j, one of the most widely used graph databases. We collected various biological data (protein-protein interaction, drug-target, gene-disease, etc.) from several existing sources, removed duplicate and redundant data, and finally constructed a graph database containing 114,550 nodes and 82,674,321 relationships. When we tested the query execution performance of MySQL versus Neo4j, we found that Neo4j outperformed MySQL in all cases. While Neo4j exhibited a very fast response for various queries, MySQL exhibited latent or unfinished responses for complex queries with multiple-join statements. These results show that using graph-based databases, such as Neo4j, is an efficient way to store complex biological relationships. Moreover, querying a graph database in diverse ways has the potential to reveal novel relationships among heterogeneous biological data.
Use of Graph Database for the Integration of Heterogeneous Biological Data
Yoon, Byoung-Ha; Kim, Seon-Kyu
2017-01-01
Understanding complex relationships among heterogeneous biological data is one of the fundamental goals in biology. In most cases, diverse biological data are stored in relational databases, such as MySQL and Oracle, which store data in multiple tables and then infer relationships by multiple-join statements. Recently, a new type of database, called the graph-based database, was developed to natively represent various kinds of complex relationships, and it is widely used among computer science communities and IT industries. Here, we demonstrate the feasibility of using a graph-based database for complex biological relationships by comparing the performance between MySQL and Neo4j, one of the most widely used graph databases. We collected various biological data (protein-protein interaction, drug-target, gene-disease, etc.) from several existing sources, removed duplicate and redundant data, and finally constructed a graph database containing 114,550 nodes and 82,674,321 relationships. When we tested the query execution performance of MySQL versus Neo4j, we found that Neo4j outperformed MySQL in all cases. While Neo4j exhibited a very fast response for various queries, MySQL exhibited latent or unfinished responses for complex queries with multiple-join statements. These results show that using graph-based databases, such as Neo4j, is an efficient way to store complex biological relationships. Moreover, querying a graph database in diverse ways has the potential to reveal novel relationships among heterogeneous biological data. PMID:28416946
Measuring up: Implementing a dental quality measure in the electronic health record context.
Bhardwaj, Aarti; Ramoni, Rachel; Kalenderian, Elsbeth; Neumann, Ana; Hebballi, Nutan B; White, Joel M; McClellan, Lyle; Walji, Muhammad F
2016-01-01
Quality improvement requires using quality measures that can be implemented in a valid manner. Using guidelines set forth by the Meaningful Use portion of the Health Information Technology for Economic and Clinical Health Act, the authors assessed the feasibility and performance of an automated electronic Meaningful Use dental clinical quality measure to determine the percentage of children who received fluoride varnish. The authors defined how to implement the automated measure queries in a dental electronic health record. Within records identified through automated query, the authors manually reviewed a subsample to assess the performance of the query. The automated query results revealed that 71.0% of patients had fluoride varnish compared with the manual chart review results that indicated 77.6% of patients had fluoride varnish. The automated quality measure performance results indicated 90.5% sensitivity, 90.8% specificity, 96.9% positive predictive value, and 75.2% negative predictive value. The authors' findings support the feasibility of using automated dental quality measure queries in the context of sufficient structured data. Information noted only in free text rather than in structured data would require using natural language processing approaches to effectively query electronic health records. To participate in self-directed quality improvement, dental clinicians must embrace the accountability era. Commitment to quality will require enhanced documentation to support near-term automated calculation of quality measures. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.
A Text Knowledge Base from the AI Handbook.
ERIC Educational Resources Information Center
Simmons, Robert F.
1987-01-01
Describes a prototype natural language text knowledge system (TKS) that was used to organize 50 pages of a handbook on artificial intelligence as an inferential knowledge base with natural language query and command capabilities. Representation of text, database navigation, query systems, discourse structuring, and future research needs are…
G6PDdb, an integrated database of glucose-6-phosphate dehydrogenase (G6PD) mutations.
Kwok, Colin J; Martin, Andrew C R; Au, Shannon W N; Lam, Veronica M S
2002-03-01
G6PDdb (http://www.rubic.rdg.ac.uk/g6pd/ or http://www.bioinf.org.uk/g6pd/) is a newly created web-accessible locus-specific mutation database for the human Glucose-6-phosphate dehydrogenase (G6PD) gene. The relational database integrates up-to-date mutational and structural data from various databanks (GenBank, Protein Data Bank, etc.) with biochemically characterized variants and their associated phenotypes obtained from published literature and the Favism website. An automated analysis of the mutations likely to have a significant impact on the structure of the protein has been performed using a recently developed procedure. The database may be queried online and the full results of the analysis of the structural impact of mutations are available. The web page provides a form for submitting additional mutation data and is linked to resources such as the Favism website, OMIM, HGMD, HGVBASE, and the PDB. This database provides insights into the molecular aspects and clinical significance of G6PD deficiency for researchers and clinicians and the web page functions as a knowledge base relevant to the understanding of G6PD deficiency and its management. Copyright 2002 Wiley-Liss, Inc.
Shi, Xiao-Feng; Li, Yi-Nü; Yi, Yong-Zhu; Xiao, Xing-Guo; Zhang, Zhi-Fang
2015-01-01
The 30 K proteins, the major group of hemolymph proteins in the silkworm, Bombyx mori (Lepidoptera: Bombycidae), are structurally related with molecular masses of ∼30 kDa and are involved in various physiological processes, e.g., energy storage, embryonic development, and immune responses. For this report, known 30 K protein gene sequences were used as Blastn queries against sequences in the B. mori transcriptome (SilkTransDB). Twenty-nine cDNAs (Bm30K-1–29) were retrieved, including four being previously unidentified in the Lipoprotein_11 family. The genomic structures of the 29 genes were analyzed and they were mapped to their corresponding chromosomes. Furthermore, phylogenetic analysis revealed that the 29 genes encode three types of 30 K proteins. The members increased in each type is mainly a result of gene duplication with the appearance of each type preceding the differentiation of each species included in the tree. Real-Time Quantitative Polymerase Chain Reaction (Q-PCR) confirmed that the genes could be expressed, and that the three types have different temporal expression patterns. Proteins from the hemolymph was separated by SDS-PAGE, and those with molecular mass of ∼30 kDa were isolated and identified by mass spectrometry sequencing in combination with searches of various databases containing B. mori 30K protein sequences. Of the 34 proteins identified, 13 are members of the 30 K protein family, with one that had not been found in the SilkTransDB, although it had been found in the B. mori genome. Taken together, our results indicate that the 30 K protein family contains many members with various functions. Other methods will be required to find more members of the family. PMID:26078299
A Feature and Algorithm Selection Method for Improving the Prediction of Protein Structural Class.
Ni, Qianwu; Chen, Lei
2017-01-01
Correct prediction of protein structural class is beneficial to investigation on protein functions, regulations and interactions. In recent years, several computational methods have been proposed in this regard. However, based on various features, it is still a great challenge to select proper classification algorithm and extract essential features to participate in classification. In this study, a feature and algorithm selection method was presented for improving the accuracy of protein structural class prediction. The amino acid compositions and physiochemical features were adopted to represent features and thirty-eight machine learning algorithms collected in Weka were employed. All features were first analyzed by a feature selection method, minimum redundancy maximum relevance (mRMR), producing a feature list. Then, several feature sets were constructed by adding features in the list one by one. For each feature set, thirtyeight algorithms were executed on a dataset, in which proteins were represented by features in the set. The predicted classes yielded by these algorithms and true class of each protein were collected to construct a dataset, which were analyzed by mRMR method, yielding an algorithm list. From the algorithm list, the algorithm was taken one by one to build an ensemble prediction model. Finally, we selected the ensemble prediction model with the best performance as the optimal ensemble prediction model. Experimental results indicate that the constructed model is much superior to models using single algorithm and other models that only adopt feature selection procedure or algorithm selection procedure. The feature selection procedure or algorithm selection procedure are really helpful for building an ensemble prediction model that can yield a better performance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Toward An Unstructured Mesh Database
NASA Astrophysics Data System (ADS)
Rezaei Mahdiraji, Alireza; Baumann, Peter Peter
2014-05-01
Unstructured meshes are used in several application domains such as earth sciences (e.g., seismology), medicine, oceanography, cli- mate modeling, GIS as approximate representations of physical objects. Meshes subdivide a domain into smaller geometric elements (called cells) which are glued together by incidence relationships. The subdivision of a domain allows computational manipulation of complicated physical structures. For instance, seismologists model earthquakes using elastic wave propagation solvers on hexahedral meshes. The hexahedral con- tains several hundred millions of grid points and millions of hexahedral cells. Each vertex node in the hexahedrals stores a multitude of data fields. To run simulation on such meshes, one needs to iterate over all the cells, iterate over incident cells to a given cell, retrieve coordinates of cells, assign data values to cells, etc. Although meshes are used in many application domains, to the best of our knowledge there is no database vendor that support unstructured mesh features. Currently, the main tool for querying and manipulating unstructured meshes are mesh libraries, e.g., CGAL and GRAL. Mesh li- braries are dedicated libraries which includes mesh algorithms and can be run on mesh representations. The libraries do not scale with dataset size, do not have declarative query language, and need deep C++ knowledge for query implementations. Furthermore, due to high coupling between the implementations and input file structure, the implementations are less reusable and costly to maintain. A dedicated mesh database offers the following advantages: 1) declarative querying, 2) ease of maintenance, 3) hiding mesh storage structure from applications, and 4) transparent query optimization. To design a mesh database, the first challenge is to define a suitable generic data model for unstructured meshes. We proposed ImG-Complexes data model as a generic topological mesh data model which extends incidence graph model to multi-incidence relationships. We instrument ImG model with sets of optional and application-specific constraints which can be used to check validity of meshes for a specific class of object such as manifold, pseudo-manifold, and simplicial manifold. We conducted experiments to measure the performance of the graph database solution in processing mesh queries and compare it with GrAL mesh library and PostgreSQL database on synthetic and real mesh datasets. The experiments show that each system perform well on specific types of mesh queries, e.g., graph databases perform well on global path-intensive queries. In the future, we investigate database operations for the ImG model and design a mesh query language.
Remembrance of inferences past: Amortization in human hypothesis generation.
Dasgupta, Ishita; Schulz, Eric; Goodman, Noah D; Gershman, Samuel J
2018-05-21
Bayesian models of cognition assume that people compute probability distributions over hypotheses. However, the required computations are frequently intractable or prohibitively expensive. Since people often encounter many closely related distributions, selective reuse of computations (amortized inference) is a computationally efficient use of the brain's limited resources. We present three experiments that provide evidence for amortization in human probabilistic reasoning. When sequentially answering two related queries about natural scenes, participants' responses to the second query systematically depend on the structure of the first query. This influence is sensitive to the content of the queries, only appearing when the queries are related. Using a cognitive load manipulation, we find evidence that people amortize summary statistics of previous inferences, rather than storing the entire distribution. These findings support the view that the brain trades off accuracy and computational cost, to make efficient use of its limited cognitive resources to approximate probabilistic inference. Copyright © 2018 Elsevier B.V. All rights reserved.
A Web-Based Data-Querying Tool Based on Ontology-Driven Methodology and Flowchart-Based Model
Ping, Xiao-Ou; Chung, Yufang; Liang, Ja-Der; Yang, Pei-Ming; Huang, Guan-Tarn; Lai, Feipei
2013-01-01
Background Because of the increased adoption rate of electronic medical record (EMR) systems, more health care records have been increasingly accumulating in clinical data repositories. Therefore, querying the data stored in these repositories is crucial for retrieving the knowledge from such large volumes of clinical data. Objective The aim of this study is to develop a Web-based approach for enriching the capabilities of the data-querying system along the three following considerations: (1) the interface design used for query formulation, (2) the representation of query results, and (3) the models used for formulating query criteria. Methods The Guideline Interchange Format version 3.5 (GLIF3.5), an ontology-driven clinical guideline representation language, was used for formulating the query tasks based on the GLIF3.5 flowchart in the Protégé environment. The flowchart-based data-querying model (FBDQM) query execution engine was developed and implemented for executing queries and presenting the results through a visual and graphical interface. To examine a broad variety of patient data, the clinical data generator was implemented to automatically generate the clinical data in the repository, and the generated data, thereby, were employed to evaluate the system. The accuracy and time performance of the system for three medical query tasks relevant to liver cancer were evaluated based on the clinical data generator in the experiments with varying numbers of patients. Results In this study, a prototype system was developed to test the feasibility of applying a methodology for building a query execution engine using FBDQMs by formulating query tasks using the existing GLIF. The FBDQM-based query execution engine was used to successfully retrieve the clinical data based on the query tasks formatted using the GLIF3.5 in the experiments with varying numbers of patients. The accuracy of the three queries (ie, “degree of liver damage,” “degree of liver damage when applying a mutually exclusive setting,” and “treatments for liver cancer”) was 100% for all four experiments (10 patients, 100 patients, 1000 patients, and 10,000 patients). Among the three measured query phases, (1) structured query language operations, (2) criteria verification, and (3) other, the first two had the longest execution time. Conclusions The ontology-driven FBDQM-based approach enriched the capabilities of the data-querying system. The adoption of the GLIF3.5 increased the potential for interoperability, shareability, and reusability of the query tasks. PMID:25600078
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madduri, Kamesh; Wu, Kesheng
The Resource Description Framework (RDF) is a popular data model for representing linked data sets arising from the web, as well as large scienti c data repositories such as UniProt. RDF data intrinsically represents a labeled and directed multi-graph. SPARQL is a query language for RDF that expresses subgraph pattern- nding queries on this implicit multigraph in a SQL- like syntax. SPARQL queries generate complex intermediate join queries; to compute these joins e ciently, we propose a new strategy based on bitmap indexes. We store the RDF data in column-oriented structures as compressed bitmaps along with two dictionaries. This papermore » makes three new contributions. (i) We present an e cient parallel strategy for parsing the raw RDF data, building dictionaries of unique entities, and creating compressed bitmap indexes of the data. (ii) We utilize the constructed bitmap indexes to e ciently answer SPARQL queries, simplifying the join evaluations. (iii) To quantify the performance impact of using bitmap indexes, we compare our approach to the state-of-the-art triple-store RDF-3X. We nd that our bitmap index-based approach to answering queries is up to an order of magnitude faster for a variety of SPARQL queries, on gigascale RDF data sets.« less
HodDB: Design and Analysis of a Query Processor for Brick.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fierro, Gabriel; Culler, David
Brick is a recently proposed metadata schema and ontology for describing building components and the relationships between them. It represents buildings as directed labeled graphs using the RDF data model. Using the SPARQL query language, building-agnostic applications query a Brick graph to discover the set of resources and relationships they require to operate. Latency-sensitive applications, such as user interfaces, demand response and modelpredictive control, require fast queries — conventionally less than 100ms. We benchmark a set of popular open-source and commercial SPARQL databases against three real Brick models using seven application queries and find that none of them meet thismore » performance target. This lack of performance can be attributed to design decisions that optimize for queries over large graphs consisting of billions of triples, but give poor spatial locality and join performance on the small dense graphs typical of Brick. We present the design and evaluation of HodDB, a RDF/SPARQL database for Brick built over a node-based index structure. HodDB performs Brick queries 3-700x faster than leading SPARQL databases and consistently meets the 100ms threshold, enabling the portability of important latency-sensitive building applications.« less
NASA Astrophysics Data System (ADS)
Kase, Sue E.; Vanni, Michelle; Knight, Joanne A.; Su, Yu; Yan, Xifeng
2016-05-01
Within operational environments decisions must be made quickly based on the information available. Identifying an appropriate knowledge base and accurately formulating a search query are critical tasks for decision-making effectiveness in dynamic situations. The spreading of graph data management tools to access large graph databases is a rapidly emerging research area of potential benefit to the intelligence community. A graph representation provides a natural way of modeling data in a wide variety of domains. Graph structures use nodes, edges, and properties to represent and store data. This research investigates the advantages of information search by graph query initiated by the analyst and interactively refined within the contextual dimensions of the answer space toward a solution. The paper introduces SLQ, a user-friendly graph querying system enabling the visual formulation of schemaless and structureless graph queries. SLQ is demonstrated with an intelligence analyst information search scenario focused on identifying individuals responsible for manufacturing a mosquito-hosted deadly virus. The scenario highlights the interactive construction of graph queries without prior training in complex query languages or graph databases, intuitive navigation through the problem space, and visualization of results in graphical format.
Representation and alignment of sung queries for music information retrieval
NASA Astrophysics Data System (ADS)
Adams, Norman H.; Wakefield, Gregory H.
2005-09-01
The pursuit of robust and rapid query-by-humming systems, which search melodic databases using sung queries, is a common theme in music information retrieval. The retrieval aspect of this database problem has received considerable attention, whereas the front-end processing of sung queries and the data structure to represent melodies has been based on musical intuition and historical momentum. The present work explores three time series representations for sung queries: a sequence of notes, a ``smooth'' pitch contour, and a sequence of pitch histograms. The performance of the three representations is compared using a collection of naturally sung queries. It is found that the most robust performance is achieved by the representation with highest dimension, the smooth pitch contour, but that this representation presents a formidable computational burden. For all three representations, it is necessary to align the query and target in order to achieve robust performance. The computational cost of the alignment is quadratic, hence it is necessary to keep the dimension small for rapid retrieval. Accordingly, iterative deepening is employed to achieve both robust performance and rapid retrieval. Finally, the conventional iterative framework is expanded to adapt the alignment constraints based on previous iterations, further expediting retrieval without degrading performance.
Comparative modeling without implicit sequence alignments.
Kolinski, Andrzej; Gront, Dominik
2007-10-01
The number of known protein sequences is about thousand times larger than the number of experimentally solved 3D structures. For more than half of the protein sequences a close or distant structural analog could be identified. The key starting point in a classical comparative modeling is to generate the best possible sequence alignment with a template or templates. With decreasing sequence similarity, the number of errors in the alignments increases and these errors are the main causes of the decreasing accuracy of the molecular models generated. Here we propose a new approach to comparative modeling, which does not require the implicit alignment - the model building phase explores geometric, evolutionary and physical properties of a template (or templates). The proposed method requires prior identification of a template, although the initial sequence alignment is ignored. The model is built using a very efficient reduced representation search engine CABS to find the best possible superposition of the query protein onto the template represented as a 3D multi-featured scaffold. The criteria used include: sequence similarity, predicted secondary structure consistency, local geometric features and hydrophobicity profile. For more difficult cases, the new method qualitatively outperforms existing schemes of comparative modeling. The algorithm unifies de novo modeling, 3D threading and sequence-based methods. The main idea is general and could be easily combined with other efficient modeling tools as Rosetta, UNRES and others.
LAILAPS-QSM: A RESTful API and JAVA library for semantic query suggestions.
Chen, Jinbo; Scholz, Uwe; Zhou, Ruonan; Lange, Matthias
2018-03-01
In order to access and filter content of life-science databases, full text search is a widely applied query interface. But its high flexibility and intuitiveness is paid for with potentially imprecise and incomplete query results. To reduce this drawback, query assistance systems suggest those combinations of keywords with the highest potential to match most of the relevant data records. Widespread approaches are syntactic query corrections that avoid misspelling and support expansion of words by suffixes and prefixes. Synonym expansion approaches apply thesauri, ontologies, and query logs. All need laborious curation and maintenance. Furthermore, access to query logs is in general restricted. Approaches that infer related queries by their query profile like research field, geographic location, co-authorship, affiliation etc. require user's registration and its public accessibility that contradict privacy concerns. To overcome these drawbacks, we implemented LAILAPS-QSM, a machine learning approach that reconstruct possible linguistic contexts of a given keyword query. The context is referred from the text records that are stored in the databases that are going to be queried or extracted for a general purpose query suggestion from PubMed abstracts and UniProt data. The supplied tool suite enables the pre-processing of these text records and the further computation of customized distributed word vectors. The latter are used to suggest alternative keyword queries. An evaluated of the query suggestion quality was done for plant science use cases. Locally present experts enable a cost-efficient quality assessment in the categories trait, biological entity, taxonomy, affiliation, and metabolic function which has been performed using ontology term similarities. LAILAPS-QSM mean information content similarity for 15 representative queries is 0.70, whereas 34% have a score above 0.80. In comparison, the information content similarity for human expert made query suggestions is 0.90. The software is either available as tool set to build and train dedicated query suggestion services or as already trained general purpose RESTful web service. The service uses open interfaces to be seamless embeddable into database frontends. The JAVA implementation uses highly optimized data structures and streamlined code to provide fast and scalable response for web service calls. The source code of LAILAPS-QSM is available under GNU General Public License version 2 in Bitbucket GIT repository: https://bitbucket.org/ipk_bit_team/bioescorte-suggestion.
Molecular Docking for Prediction and Interpretation of Adverse Drug Reactions.
Luo, Heng; Fokoue-Nkoutche, Achille; Singh, Nalini; Yang, Lun; Hu, Jianying; Zhang, Ping
2018-05-23
Adverse drug reactions (ADRs) present a major burden for patients and the healthcare industry. Various computational methods have been developed to predict ADRs for drug molecules. However, many of these methods require experimental or surveillance data and cannot be used when only structural information is available. We collected 1,231 small molecule drugs and 600 human proteins and utilized molecular docking to generate binding features among them. We developed machine learning models that use these docking features to make predictions for 1,533 ADRs. These models obtain an overall area under the receiver operating characteristic curve (AUROC) of 0.843 and an overall area under the precision-recall curve (AUPR) of 0.395, outperforming seven structural fingerprint-based prediction models. Using the method, we predicted skin striae for fluticasone propionate, dermatitis acneiform for mometasone, and decreased libido for irinotecan, as demonstrations. Furthermore, we analyzed the top binding proteins associated with some of the ADRs, which can help to understand and/or generate hypotheses for underlying mechanisms of ADRs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Merging OLTP and OLAP - Back to the Future
NASA Astrophysics Data System (ADS)
Lehner, Wolfgang
When the terms "Data Warehousing" and "Online Analytical Processing" were coined in the 1990s by Kimball, Codd, and others, there was an obvious need for separating data and workload for operational transactional-style processing and decision-making implying complex analytical queries over large and historic data sets. Large data warehouse infrastructures have been set up to cope with the special requirements of analytical query answering for multiple reasons: For example, analytical thinking heavily relies on predefined navigation paths to guide the user through the data set and to provide different views on different aggregation levels.Multi-dimensional queries exploiting hierarchically structured dimensions lead to complex star queries at a relational backend, which could hardly be handled by classical relational systems.
Querying databases of trajectories of differential equations 2: Index functions
NASA Technical Reports Server (NTRS)
Grossman, Robert
1991-01-01
Suppose that a large number of parameterized trajectories (gamma) of a dynamical system evolving in R sup N are stored in a database. Let eta is contained R sup N denote a parameterized path in Euclidean space, and let parallel to center dot parallel to denote a norm on the space of paths. A data structures and indices for trajectories are defined and algorithms are given to answer queries of the following forms: Query 1. Given a path eta, determine whether eta occurs as a subtrajectory of any trajectory gamma from the database. If so, return the trajectory; otherwise, return null. Query 2. Given a path eta, return the trajectory gamma from the database which minimizes the norm parallel to eta - gamma parallel.
USDA-ARS?s Scientific Manuscript database
A novel Babesia bovis gene family encoding proteins with similarities to the Plasmodium 6cys protein family was identified by TBLASTN searches of the Babesia bovis genome using the sequence of the P. falciparum PFS230 protein as query, and was termed Bbo-6cys gene family. The Bbo-cys6 gene family co...
GWFASTA: server for FASTA search in eukaryotic and microbial genomes.
Issac, Biju; Raghava, G P S
2002-09-01
Similarity searches are a powerful method for solving important biological problems such as database scanning, evolutionary studies, gene prediction, and protein structure prediction. FASTA is a widely used sequence comparison tool for rapid database scanning. Here we describe the GWFASTA server that was developed to assist the FASTA user in similarity searches against partially and/or completely sequenced genomes. GWFASTA consists of more than 60 microbial genomes, eight eukaryote genomes, and proteomes of annotatedgenomes. Infact, it provides the maximum number of databases for similarity searching from a single platform. GWFASTA allows the submission of more than one sequence as a single query for a FASTA search. It also provides integrated post-processing of FASTA output, including compositional analysis of proteins, multiple sequences alignment, and phylogenetic analysis. Furthermore, it summarizes the search results organism-wise for prokaryotes and chromosome-wise for eukaryotes. Thus, the integration of different tools for sequence analyses makes GWFASTA a powerful toolfor biologists.
Water-in-Oil Microemulsions for Protein Delivery: Loading Optimization and Stability.
Perinelli, Diego R; Cespi, Marco; Pucciarelli, Stefania; Vincenzetti, Silvia; Casettari, Luca; Lam, Jenny K W; Logrippo, Serena; Canala, Elisa; Soliman, Mahmoud E; Bonacucina, Giulia; Palmieri, Giovanni F
2017-01-01
Microemulsions are attractive delivery systems for therapeutic proteins and peptides due to their ability to enhance bioavailability. Although different proteins and peptides have been successfully delivered through such ternary systems, no information can be found about protein loading and the formulation stability when such microemulsions are prepared with pharmaceuticallyapproved oils and surfactants. The aim of this work was to optimise a ternary system consisting of water/ ethyl oleate/Span® 80-Tween® 80 and to determine its protein loading capacity and stability, using bovine serum albumin (BSA) as a model of biomolecule. The optimization was carried out using a Central Composite Design and all the prepared formulations were characterised through dynamic light scattering, rheology, optical and polarized microscopy. Subsequently, the maximum loading capacity was determined and the stability of the final microemulsion with the highest content of protein was followed over six months. To investigate the structural features of the protein, BSA was recovered from the microemulsion and analysed through fluorescence spectroscopy. After incorporation of the protein in the microemulsion, a decrease of its aqueous solubility was observed. However, the formulation remained stable over six months and the native-like state of the recovered protein was demonstrated by fluorescence spectroscopy Conclusion: This study demonstrated the feasibility of preparing microemulsions with the highest content of protein and their long-term stability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Social media based NPL system to find and retrieve ARM data: Concept paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devarakonda, Ranjeet; Giansiracusa, Michael T.; Kumar, Jitendra
Information connectivity and retrieval has a role in our daily lives. The most pervasive source of online information is databases. The amount of data is growing at rapid rate and database technology is improving and having a profound effect. Almost all online applications are storing and retrieving information from databases. One challenge in supplying the public with wider access to informational databases is the need for knowledge of database languages like Structured Query Language (SQL). Although the SQL language has been published in many forms, not everybody is able to write SQL queries. Another challenge is that it may notmore » be practical to make the public aware of the structure of the database. There is a need for novice users to query relational databases using their natural language. To solve this problem, many natural language interfaces to structured databases have been developed. The goal is to provide more intuitive method for generating database queries and delivering responses. Social media makes it possible to interact with a wide section of the population. Through this medium, and with the help of Natural Language Processing (NLP) we can make the data of the Atmospheric Radiation Measurement Data Center (ADC) more accessible to the public. We propose an architecture for using Apache Lucene/Solr [1], OpenML [2,3], and Kafka [4] to generate an automated query/response system with inputs from Twitter5, our Cassandra DB, and our log database. Using the Twitter API and NLP we can give the public the ability to ask questions of our database and get automated responses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devarakonda, Ranjeet; Giansiracusa, Michael T.; Kumar, Jitendra
Information connectivity and retrieval has a role in our daily lives. The most pervasive source of online information is databases. The amount of data is growing at rapid rate and database technology is improving and having a profound effect. Almost all online applications are storing and retrieving information from databases. One challenge in supplying the public with wider access to informational databases is the need for knowledge of database languages like Structured Query Language (SQL). Although the SQL language has been published in many forms, not everybody is able to write SQL queries. Another challenge is that it may notmore » be practical to make the public aware of the structure of the database. There is a need for novice users to query relational databases using their natural language. To solve this problem, many natural language interfaces to structured databases have been developed. The goal is to provide more intuitive method for generating database queries and delivering responses. Social media makes it possible to interact with a wide section of the population. Through this medium, and with the help of Natural Language Processing (NLP) we can make the data of the Atmospheric Radiation Measurement Data Center (ADC) more accessible to the public. We propose an architecture for using Apache Lucene/Solr [1], OpenML [2,3], and Kafka [4] to generate an automated query/response system with inputs from Twitter5, our Cassandra DB, and our log database. Using the Twitter API and NLP we can give the public the ability to ask questions of our database and get automated responses.« less
Recommender System for Learning SQL Using Hints
ERIC Educational Resources Information Center
Lavbic, Dejan; Matek, Tadej; Zrnec, Aljaž
2017-01-01
Today's software industry requires individuals who are proficient in as many programming languages as possible. Structured query language (SQL), as an adopted standard, is no exception, as it is the most widely used query language to retrieve and manipulate data. However, the process of learning SQL turns out to be challenging. The need for a…
Secure Nearest Neighbor Query on Crowd-Sensing Data
Cheng, Ke; Wang, Liangmin; Zhong, Hong
2016-01-01
Nearest neighbor queries are fundamental in location-based services, and secure nearest neighbor queries mainly focus on how to securely and quickly retrieve the nearest neighbor in the outsourced cloud server. However, the previous big data system structure has changed because of the crowd-sensing data. On the one hand, sensing data terminals as the data owner are numerous and mistrustful, while, on the other hand, in most cases, the terminals find it difficult to finish many safety operation due to computation and storage capability constraints. In light of they Multi Owners and Multi Users (MOMU) situation in the crowd-sensing data cloud environment, this paper presents a secure nearest neighbor query scheme based on the proxy server architecture, which is constructed by protocols of secure two-party computation and secure Voronoi diagram algorithm. It not only preserves the data confidentiality and query privacy but also effectively resists the collusion between the cloud server and the data owners or users. Finally, extensive theoretical and experimental evaluations are presented to show that our proposed scheme achieves a superior balance between the security and query performance compared to other schemes. PMID:27669253
Secure Nearest Neighbor Query on Crowd-Sensing Data.
Cheng, Ke; Wang, Liangmin; Zhong, Hong
2016-09-22
Nearest neighbor queries are fundamental in location-based services, and secure nearest neighbor queries mainly focus on how to securely and quickly retrieve the nearest neighbor in the outsourced cloud server. However, the previous big data system structure has changed because of the crowd-sensing data. On the one hand, sensing data terminals as the data owner are numerous and mistrustful, while, on the other hand, in most cases, the terminals find it difficult to finish many safety operation due to computation and storage capability constraints. In light of they Multi Owners and Multi Users (MOMU) situation in the crowd-sensing data cloud environment, this paper presents a secure nearest neighbor query scheme based on the proxy server architecture, which is constructed by protocols of secure two-party computation and secure Voronoi diagram algorithm. It not only preserves the data confidentiality and query privacy but also effectively resists the collusion between the cloud server and the data owners or users. Finally, extensive theoretical and experimental evaluations are presented to show that our proposed scheme achieves a superior balance between the security and query performance compared to other schemes.
Identification of a Herbal Powder by Deoxyribonucleic Acid Barcoding and Structural Analyses.
Sheth, Bhavisha P; Thaker, Vrinda S
2015-10-01
Authentic identification of plants is essential for exploiting their medicinal properties as well as to stop the adulteration and malpractices with the trade of the same. To identify a herbal powder obtained from a herbalist in the local vicinity of Rajkot, Gujarat, using deoxyribonucleic acid (DNA) barcoding and molecular tools. The DNA was extracted from a herbal powder and selected Cassia species, followed by the polymerase chain reaction (PCR) and sequencing of the rbcL barcode locus. Thereafter the sequences were subjected to National Center for Biotechnology Information (NCBI) basic local alignment search tool (BLAST) analysis, followed by the protein three-dimension structure determination of the rbcL protein from the herbal powder and Cassia species namely Cassia fistula, Cassia tora and Cassia javanica (sequences obtained in the present study), Cassia Roxburghii, and Cassia abbreviata (sequences retrieved from Genbank). Further, the multiple and pairwise structural alignment were carried out in order to identify the herbal powder. The nucleotide sequences obtained from the selected species of Cassia were submitted to Genbank (Accession No. JX141397, JX141405, JX141420). The NCBI BLAST analysis of the rbcL protein from the herbal powder showed an equal sequence similarity (with reference to different parameters like E value, maximum identity, total score, query coverage) to C. javanica and C. roxburghii. In order to solve the ambiguities of the BLAST result, a protein structural approach was implemented. The protein homology models obtained in the present study were submitted to the protein model database (PM0079748-PM0079753). The pairwise structural alignment of the herbal powder (as template) and C. javanica and C. roxburghii (as targets individually) revealed a close similarity of the herbal powder with C. javanica. A strategy as used here, incorporating the integrated use of DNA barcoding and protein structural analyses could be adopted, as a novel rapid and economic procedure, especially in cases when protein coding loci are considered. Authentic identification of plants is essential for exploiting their medicinal properties as well as to stop the adulteration and malpractices with the trade of the same. A herbal powder was obtained from a herbalist in the local vicinity of Rajkot, Gujarat. An integrated approach using DNA barcoding and structural analyses was carried out to identify the herbal powder. The herbal powder was identified as Cassia javanica L.
Computing health quality measures using Informatics for Integrating Biology and the Bedside.
Klann, Jeffrey G; Murphy, Shawn N
2013-04-19
The Health Quality Measures Format (HQMF) is a Health Level 7 (HL7) standard for expressing computable Clinical Quality Measures (CQMs). Creating tools to process HQMF queries in clinical databases will become increasingly important as the United States moves forward with its Health Information Technology Strategic Plan to Stages 2 and 3 of the Meaningful Use incentive program (MU2 and MU3). Informatics for Integrating Biology and the Bedside (i2b2) is one of the analytical databases used as part of the Office of the National Coordinator (ONC)'s Query Health platform to move toward this goal. Our goal is to integrate i2b2 with the Query Health HQMF architecture, to prepare for other HQMF use-cases (such as MU2 and MU3), and to articulate the functional overlap between i2b2 and HQMF. Therefore, we analyze the structure of HQMF, and then we apply this understanding to HQMF computation on the i2b2 clinical analytical database platform. Specifically, we develop a translator between two query languages, HQMF and i2b2, so that the i2b2 platform can compute HQMF queries. We use the HQMF structure of queries for aggregate reporting, which define clinical data elements and the temporal and logical relationships between them. We use the i2b2 XML format, which allows flexible querying of a complex clinical data repository in an easy-to-understand domain-specific language. The translator can represent nearly any i2b2-XML query as HQMF and execute in i2b2 nearly any HQMF query expressible in i2b2-XML. This translator is part of the freely available reference implementation of the QueryHealth initiative. We analyze limitations of the conversion and find it covers many, but not all, of the complex temporal and logical operators required by quality measures. HQMF is an expressive language for defining quality measures, and it will be important to understand and implement for CQM computation, in both meaningful use and population health. However, its current form might allow complexity that is intractable for current database systems (both in terms of implementation and computation). Our translator, which supports the subset of HQMF currently expressible in i2b2-XML, may represent the beginnings of a practical compromise. It is being pilot-tested in two Query Health demonstration projects, and it can be further expanded to balance computational tractability with the advanced features needed by measure developers.
Computing Health Quality Measures Using Informatics for Integrating Biology and the Bedside
Murphy, Shawn N
2013-01-01
Background The Health Quality Measures Format (HQMF) is a Health Level 7 (HL7) standard for expressing computable Clinical Quality Measures (CQMs). Creating tools to process HQMF queries in clinical databases will become increasingly important as the United States moves forward with its Health Information Technology Strategic Plan to Stages 2 and 3 of the Meaningful Use incentive program (MU2 and MU3). Informatics for Integrating Biology and the Bedside (i2b2) is one of the analytical databases used as part of the Office of the National Coordinator (ONC)’s Query Health platform to move toward this goal. Objective Our goal is to integrate i2b2 with the Query Health HQMF architecture, to prepare for other HQMF use-cases (such as MU2 and MU3), and to articulate the functional overlap between i2b2 and HQMF. Therefore, we analyze the structure of HQMF, and then we apply this understanding to HQMF computation on the i2b2 clinical analytical database platform. Specifically, we develop a translator between two query languages, HQMF and i2b2, so that the i2b2 platform can compute HQMF queries. Methods We use the HQMF structure of queries for aggregate reporting, which define clinical data elements and the temporal and logical relationships between them. We use the i2b2 XML format, which allows flexible querying of a complex clinical data repository in an easy-to-understand domain-specific language. Results The translator can represent nearly any i2b2-XML query as HQMF and execute in i2b2 nearly any HQMF query expressible in i2b2-XML. This translator is part of the freely available reference implementation of the QueryHealth initiative. We analyze limitations of the conversion and find it covers many, but not all, of the complex temporal and logical operators required by quality measures. Conclusions HQMF is an expressive language for defining quality measures, and it will be important to understand and implement for CQM computation, in both meaningful use and population health. However, its current form might allow complexity that is intractable for current database systems (both in terms of implementation and computation). Our translator, which supports the subset of HQMF currently expressible in i2b2-XML, may represent the beginnings of a practical compromise. It is being pilot-tested in two Query Health demonstration projects, and it can be further expanded to balance computational tractability with the advanced features needed by measure developers. PMID:23603227
Calvanese, Luisa; Falcigno, Lucia; Squeglia, Flavia; D'Auria, Gabriella; Berisio, Rita
2017-11-24
Penicillin binding proteins (PBPs) and Serine Threonine kinases (STPKs) are two classes of bacterial enzymes whose involvement in a series of vital processes in bacterial growth and division is well assessed. Many PBPs and STPKs show linked an ancillary domain named PASTA, whose functional role is not completely deciphered so far. It has been proposed that PASTAs are sensor modules that by binding opportune ligands (i.e. muropeptides) activate the cognate proteins to their functions. However, based on recent data, the sensor annotation sounds true for PASTA from STPKs, and false for PASTA from PBPs. Different PASTA domains, belonging or not to different protein classes, sharing or not appreciable sequence identities, always show identical folds. This survey of the structural, binding and dynamic properties of PASTA domains pursues the reasons why identical topologies may turn in different roles. Amino acid compositions, total charges and distribution of the hydrophobic/hydrophilic patches on the surface, significantly vary among PASTAs from STPKs and PBPs and appear to correlate with different functions. A possible criterion to discriminate between PASTA modules of STPKs or PBPs solely based on their sequences is proposed. Possibly reflecting different species as well as functional roles and evolutionary profile, our routine represents a fast even though approximate method to distinguish between PASTA belonging to different classes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Predicting permanent and transient protein-protein interfaces.
La, David; Kong, Misun; Hoffman, William; Choi, Youn Im; Kihara, Daisuke
2013-05-01
Protein-protein interactions (PPIs) are involved in diverse functions in a cell. To optimize functional roles of interactions, proteins interact with a spectrum of binding affinities. Interactions are conventionally classified into permanent and transient, where the former denotes tight binding between proteins that result in strong complexes, whereas the latter compose of relatively weak interactions that can dissociate after binding to regulate functional activity at specific time point. Knowing the type of interactions has significant implications for understanding the nature and function of PPIs. In this study, we constructed amino acid substitution models that capture mutation patterns at permanent and transient type of protein interfaces, which were found to be different with statistical significance. Using the substitution models, we developed a novel computational method that predicts permanent and transient protein binding interfaces (PBIs) in protein surfaces. Without knowledge of the interacting partner, the method uses a single query protein structure and a multiple sequence alignment of the sequence family. Using a large dataset of permanent and transient proteins, we show that our method, BindML+, performs very well in protein interface classification. A very high area under the curve (AUC) value of 0.957 was observed when predicted protein binding sites were classified. Remarkably, near prefect accuracy was achieved with an AUC of 0.991 when actual binding sites were classified. The developed method will be also useful for protein design of permanent and transient PBIs. Copyright © 2013 Wiley Periodicals, Inc.
Bitsch, A; Jacobi, S; Melber, C; Wahnschaffe, U; Simetska, N; Mangelsdorf, I
2006-12-01
A database for repeated dose toxicity data has been developed. Studies were selected by data quality. Review documents or risk assessments were used to get a pre-screened selection of available valid data. The structure of the chemicals should be rather simple for well defined chemical categories. The database consists of three core data sets for each chemical: (1) structural features and physico-chemical data, (2) data on study design, (3) study results. To allow consistent queries, a high degree of standardization categories and glossaries were developed for relevant parameters. At present, the database consists of 364 chemicals investigated in 1018 studies which resulted in a total of 6002 specific effects. Standard queries have been developed, which allow analyzing the influence of structural features or PC data on LOELs, target organs and effects. Furthermore, it can be used as an expert system. First queries have shown that the database is a very valuable tool.
Scaffold-Focused Virtual Screening: Prospective Application to the Discovery of TTK Inhibitors
2013-01-01
We describe and apply a scaffold-focused virtual screen based upon scaffold trees to the mitotic kinase TTK (MPS1). Using level 1 of the scaffold tree, we perform both 2D and 3D similarity searches between a query scaffold and a level 1 scaffold library derived from a 2 million compound library; 98 compounds from 27 unique top-ranked level 1 scaffolds are selected for biochemical screening. We show that this scaffold-focused virtual screen prospectively identifies eight confirmed active compounds that are structurally differentiated from the query compound. In comparison, 100 compounds were selected for biochemical screening using a virtual screen based upon whole molecule similarity resulting in 12 confirmed active compounds that are structurally similar to the query compound. We elucidated the binding mode for four of the eight confirmed scaffold hops to TTK by determining their protein–ligand crystal structures; each represents a ligand-efficient scaffold for inhibitor design. PMID:23672464
BEAUTY-X: enhanced BLAST searches for DNA queries.
Worley, K C; Culpepper, P; Wiese, B A; Smith, R F
1998-01-01
BEAUTY (BLAST Enhanced Alignment Utility) is an enhanced version of the BLAST database search tool that facilitates identification of the functions of matched sequences. Three recent improvements to the BEAUTY program described here make the enhanced output (1) available for DNA queries, (2) available for searches of any protein database, and (3) more up-to-date, with periodic updates of the domain information. BEAUTY searches of the NCBI and EMBL non-redundant protein sequence databases are available from the BCM Search Launcher Web pages (http://gc.bcm.tmc. edu:8088/search-launcher/launcher.html). BEAUTY Post-Processing of submitted search results is available using the BCM Search Launcher Batch Client (version 2.6) (ftp://gc.bcm.tmc. edu/pub/software/search-launcher/). Example figures are available at http://dot.bcm.tmc. edu:9331/papers/beautypp.html (kworley,culpep)@bcm.tmc.edu
MIPS: a database for protein sequences, homology data and yeast genome information.
Mewes, H W; Albermann, K; Heumann, K; Liebl, S; Pfeiffer, F
1997-01-01
The MIPS group (Martinsried Institute for Protein Sequences) at the Max-Planck-Institute for Biochemistry, Martinsried near Munich, Germany, collects, processes and distributes protein sequence data within the framework of the tripartite association of the PIR-International Protein Sequence Database (,). MIPS contributes nearly 50% of the data input to the PIR-International Protein Sequence Database. The database is distributed on CD-ROM together with PATCHX, an exhaustive supplement of unique, unverified protein sequences from external sources compiled by MIPS. Through its WWW server (http://www.mips.biochem.mpg.de/ ) MIPS permits internet access to sequence databases, homology data and to yeast genome information. (i) Sequence similarity results from the FASTA program () are stored in the FASTA database for all proteins from PIR-International and PATCHX. The database is dynamically maintained and permits instant access to FASTA results. (ii) Starting with FASTA database queries, proteins have been classified into families and superfamilies (PROT-FAM). (iii) The HPT (hashed position tree) data structure () developed at MIPS is a new approach for rapid sequence and pattern searching. (iv) MIPS provides access to the sequence and annotation of the complete yeast genome (), the functional classification of yeast genes (FunCat) and its graphical display, the 'Genome Browser' (). A CD-ROM based on the JAVA programming language providing dynamic interactive access to the yeast genome and the related protein sequences has been compiled and is available on request. PMID:9016498
Rattei, Thomas; Tischler, Patrick; Götz, Stefan; Jehl, Marc-André; Hoser, Jonathan; Arnold, Roland; Conesa, Ana; Mewes, Hans-Werner
2010-01-01
The prediction of protein function as well as the reconstruction of evolutionary genesis employing sequence comparison at large is still the most powerful tool in sequence analysis. Due to the exponential growth of the number of known protein sequences and the subsequent quadratic growth of the similarity matrix, the computation of the Similarity Matrix of Proteins (SIMAP) becomes a computational intensive task. The SIMAP database provides a comprehensive and up-to-date pre-calculation of the protein sequence similarity matrix, sequence-based features and sequence clusters. As of September 2009, SIMAP covers 48 million proteins and more than 23 million non-redundant sequences. Novel features of SIMAP include the expansion of the sequence space by including databases such as ENSEMBL as well as the integration of metagenomes based on their consistent processing and annotation. Furthermore, protein function predictions by Blast2GO are pre-calculated for all sequences in SIMAP and the data access and query functions have been improved. SIMAP assists biologists to query the up-to-date sequence space systematically and facilitates large-scale downstream projects in computational biology. Access to SIMAP is freely provided through the web portal for individuals (http://mips.gsf.de/simap/) and for programmatic access through DAS (http://webclu.bio.wzw.tum.de/das/) and Web-Service (http://mips.gsf.de/webservices/services/SimapService2.0?wsdl).
Kumar, Ravindra; Kumari, Bandana; Srivastava, Abhishikha; Kumar, Manish
2014-10-29
Nuclear receptor proteins (NRP) are transcription factor that regulate many vital cellular processes in animal cells. NRPs form a super-family of phylogenetically related proteins and divided into different sub-families on the basis of ligand characteristics and their functions. In the post-genomic era, when new proteins are being added to the database in a high-throughput mode, it becomes imperative to identify new NRPs using information from amino acid sequence alone. In this study we report a SVM based two level prediction systems, NRfamPred, using dipeptide composition of proteins as input. At the 1st level, NRfamPred screens whether the query protein is NRP or non-NRP; if the query protein belongs to NRP class, prediction moves to 2nd level and predicts the sub-family. Using leave-one-out cross-validation, we were able to achieve an overall accuracy of 97.88% at the 1st level and an overall accuracy of 98.11% at the 2nd level with dipeptide composition. Benchmarking on independent datasets showed that NRfamPred had comparable accuracy to other existing methods, developed on the same dataset. Our method predicted the existence of 76 NRPs in the human proteome, out of which 14 are novel NRPs. NRfamPred also predicted the sub-families of these 14 NRPs.
2013-01-01
Background Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics. Description Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of symbiosis, (2) planula and early developmental proteins, (3) neural messengers, receptors and sensory proteins, (4) calcification and Ca2+-signalling proteins, (5) plant-derived proteins, (6) proteins of nitrogen metabolism, (7) DNA repair proteins, (8) stress response proteins, (9) antioxidant and redox-protective proteins, (10) proteins of cellular apoptosis, (11) microbial symbioses and pathogenicity proteins, (12) proteins of viral pathogenicity, (13) toxins and venom, (14) proteins of the chemical defensome and (15) coral epigenetics. Conclusions We advocate that providing annotation in an open-access searchable database available to the public domain will give an unprecedented foundation to interrogate the fundamental molecular structure and interactions of coral symbiosis and allow critical questions to be addressed at the genomic level based on combined aspects of evolutionary, developmental, metabolic, and environmental perspectives. PMID:23889801
Camilo, Cesar M; Lima, Gustavo M A; Maluf, Fernando V; Guido, Rafael V C; Polikarpov, Igor
2016-01-01
Following burgeoning genomic and transcriptomic sequencing data, biochemical and molecular biology groups worldwide are implementing high-throughput cloning and mutagenesis facilities in order to obtain a large number of soluble proteins for structural and functional characterization. Since manual primer design can be a time-consuming and error-generating step, particularly when working with hundreds of targets, the automation of primer design process becomes highly desirable. HTP-OligoDesigner was created to provide the scientific community with a simple and intuitive online primer design tool for both laboratory-scale and high-throughput projects of sequence-independent gene cloning and site-directed mutagenesis and a Tm calculator for quick queries.
NOD-Like Receptors: A Tail from Plants to Mammals Through Invertebrates.
Pontillo, Alessandra; Crovella, Sergio
2017-01-01
NOD Like Receptors (NLRs) are the most abundant cytoplasmic immune receptors in plants and animals and they similarly act sensing pathogen invasion and activating immune response. Despite the fact that plant and mammals NLRs share homology.; with some protein structure differences.; for signalling pathway.; divergent evolution of the receptors has been hypothesized. Next generation genome sequencing has contributed to the description of NLRs in phyla others than plants and mammals and leads to new knowledge about NLRs evolution along phylogeny. Full comprehension of NLR-mediated immune response in plant could contribute to the understanding of animal NLRs physiology and/or pathology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Yu, Bowen; Doraiswamy, Harish; Chen, Xi; Miraldi, Emily; Arrieta-Ortiz, Mario Luis; Hafemeister, Christoph; Madar, Aviv; Bonneau, Richard; Silva, Cláudio T
2014-12-01
Elucidation of transcriptional regulatory networks (TRNs) is a fundamental goal in biology, and one of the most important components of TRNs are transcription factors (TFs), proteins that specifically bind to gene promoter and enhancer regions to alter target gene expression patterns. Advances in genomic technologies as well as advances in computational biology have led to multiple large regulatory network models (directed networks) each with a large corpus of supporting data and gene-annotation. There are multiple possible biological motivations for exploring large regulatory network models, including: validating TF-target gene relationships, figuring out co-regulation patterns, and exploring the coordination of cell processes in response to changes in cell state or environment. Here we focus on queries aimed at validating regulatory network models, and on coordinating visualization of primary data and directed weighted gene regulatory networks. The large size of both the network models and the primary data can make such coordinated queries cumbersome with existing tools and, in particular, inhibits the sharing of results between collaborators. In this work, we develop and demonstrate a web-based framework for coordinating visualization and exploration of expression data (RNA-seq, microarray), network models and gene-binding data (ChIP-seq). Using specialized data structures and multiple coordinated views, we design an efficient querying model to support interactive analysis of the data. Finally, we show the effectiveness of our framework through case studies for the mouse immune system (a dataset focused on a subset of key cellular functions) and a model bacteria (a small genome with high data-completeness).
SW#db: GPU-Accelerated Exact Sequence Similarity Database Search.
Korpar, Matija; Šošić, Martin; Blažeka, Dino; Šikić, Mile
2015-01-01
In recent years we have witnessed a growth in sequencing yield, the number of samples sequenced, and as a result-the growth of publicly maintained sequence databases. The increase of data present all around has put high requirements on protein similarity search algorithms with two ever-opposite goals: how to keep the running times acceptable while maintaining a high-enough level of sensitivity. The most time consuming step of similarity search are the local alignments between query and database sequences. This step is usually performed using exact local alignment algorithms such as Smith-Waterman. Due to its quadratic time complexity, alignments of a query to the whole database are usually too slow. Therefore, the majority of the protein similarity search methods prior to doing the exact local alignment apply heuristics to reduce the number of possible candidate sequences in the database. However, there is still a need for the alignment of a query sequence to a reduced database. In this paper we present the SW#db tool and a library for fast exact similarity search. Although its running times, as a standalone tool, are comparable to the running times of BLAST, it is primarily intended to be used for exact local alignment phase in which the database of sequences has already been reduced. It uses both GPU and CPU parallelization and was 4-5 times faster than SSEARCH, 6-25 times faster than CUDASW++ and more than 20 times faster than SSW at the time of writing, using multiple queries on Swiss-prot and Uniref90 databases.
Labeling RDF Graphs for Linear Time and Space Querying
NASA Astrophysics Data System (ADS)
Furche, Tim; Weinzierl, Antonius; Bry, François
Indices and data structures for web querying have mostly considered tree shaped data, reflecting the view of XML documents as tree-shaped. However, for RDF (and when querying ID/IDREF constraints in XML) data is indisputably graph-shaped. In this chapter, we first study existing indexing and labeling schemes for RDF and other graph datawith focus on support for efficient adjacency and reachability queries. For XML, labeling schemes are an important part of the widespread adoption of XML, in particular for mapping XML to existing (relational) database technology. However, the existing indexing and labeling schemes for RDF (and graph data in general) sacrifice one of the most attractive properties of XML labeling schemes, the constant time (and per-node space) test for adjacency (child) and reachability (descendant). In the second part, we introduce the first labeling scheme for RDF data that retains this property and thus achieves linear time and space processing of acyclic RDF queries on a significantly larger class of graphs than previous approaches (which are mostly limited to tree-shaped data). Finally, we show how this labeling scheme can be applied to (acyclic) SPARQL queries to obtain an evaluation algorithm with time and space complexity linear in the number of resources in the queried RDF graph.
An approach for heterogeneous and loosely coupled geospatial data distributed computing
NASA Astrophysics Data System (ADS)
Chen, Bin; Huang, Fengru; Fang, Yu; Huang, Zhou; Lin, Hui
2010-07-01
Most GIS (Geographic Information System) applications tend to have heterogeneous and autonomous geospatial information resources, and the availability of these local resources is unpredictable and dynamic under a distributed computing environment. In order to make use of these local resources together to solve larger geospatial information processing problems that are related to an overall situation, in this paper, with the support of peer-to-peer computing technologies, we propose a geospatial data distributed computing mechanism that involves loosely coupled geospatial resource directories and a term named as Equivalent Distributed Program of global geospatial queries to solve geospatial distributed computing problems under heterogeneous GIS environments. First, a geospatial query process schema for distributed computing as well as a method for equivalent transformation from a global geospatial query to distributed local queries at SQL (Structured Query Language) level to solve the coordinating problem among heterogeneous resources are presented. Second, peer-to-peer technologies are used to maintain a loosely coupled network environment that consists of autonomous geospatial information resources, thus to achieve decentralized and consistent synchronization among global geospatial resource directories, and to carry out distributed transaction management of local queries. Finally, based on the developed prototype system, example applications of simple and complex geospatial data distributed queries are presented to illustrate the procedure of global geospatial information processing.
An Application Programming Interface for Synthetic Snowflake Particle Structure and Scattering Data
NASA Technical Reports Server (NTRS)
Lammers, Matthew; Kuo, Kwo-Sen
2017-01-01
The work by Kuo and colleagues on growing synthetic snowflakes and calculating their single-scattering properties has demonstrated great potential to improve the retrievals of snowfall. To grant colleagues flexible and targeted access to their large collection of sizes and shapes at fifteen (15) microwave frequencies, we have developed a web-based Application Programming Interface (API) integrated with NASA Goddard's Precipitation Processing System (PPS) Group. It is our hope that the API will enable convenient programmatic utilization of the database. To help users better understand the API's capabilities, we have developed an interactive web interface called the OpenSSP API Query Builder, which implements an intuitive system of mechanisms for selecting shapes, sizes, and frequencies to generate queries, with which the API can then extract and return data from the database. The Query Builder also allows for the specification of normalized particle size distributions by setting pertinent parameters, with which the API can also return mean geometric and scattering properties for each size bin. Additionally, the Query Builder interface enables downloading of raw scattering and particle structure data packages. This presentation will describe some of the challenges and successes associated with developing such an API. Examples of its usage will be shown both through downloading output and pulling it into a spreadsheet, as well as querying the API programmatically and working with the output in code.
Domain fusion analysis by applying relational algebra to protein sequence and domain databases.
Truong, Kevin; Ikura, Mitsuhiko
2003-05-06
Domain fusion analysis is a useful method to predict functionally linked proteins that may be involved in direct protein-protein interactions or in the same metabolic or signaling pathway. As separate domain databases like BLOCKS, PROSITE, Pfam, SMART, PRINTS-S, ProDom, TIGRFAMs, and amalgamated domain databases like InterPro continue to grow in size and quality, a computational method to perform domain fusion analysis that leverages on these efforts will become increasingly powerful. This paper proposes a computational method employing relational algebra to find domain fusions in protein sequence databases. The feasibility of this method was illustrated on the SWISS-PROT+TrEMBL sequence database using domain predictions from the Pfam HMM (hidden Markov model) database. We identified 235 and 189 putative functionally linked protein partners in H. sapiens and S. cerevisiae, respectively. From scientific literature, we were able to confirm many of these functional linkages, while the remainder offer testable experimental hypothesis. Results can be viewed at http://calcium.uhnres.utoronto.ca/pi. As the analysis can be computed quickly on any relational database that supports standard SQL (structured query language), it can be dynamically updated along with the sequence and domain databases, thereby improving the quality of predictions over time.
Neuwald, Andrew F
2009-08-01
The patterns of sequence similarity and divergence present within functionally diverse, evolutionarily related proteins contain implicit information about corresponding biochemical similarities and differences. A first step toward accessing such information is to statistically analyze these patterns, which, in turn, requires that one first identify and accurately align a very large set of protein sequences. Ideally, the set should include many distantly related, functionally divergent subgroups. Because it is extremely difficult, if not impossible for fully automated methods to align such sequences correctly, researchers often resort to manual curation based on detailed structural and biochemical information. However, multiply-aligning vast numbers of sequences in this way is clearly impractical. This problem is addressed using Multiply-Aligned Profiles for Global Alignment of Protein Sequences (MAPGAPS). The MAPGAPS program uses a set of multiply-aligned profiles both as a query to detect and classify related sequences and as a template to multiply-align the sequences. It relies on Karlin-Altschul statistics for sensitivity and on PSI-BLAST (and other) heuristics for speed. Using as input a carefully curated multiple-profile alignment for P-loop GTPases, MAPGAPS correctly aligned weakly conserved sequence motifs within 33 distantly related GTPases of known structure. By comparison, the sequence- and structurally based alignment methods hmmalign and PROMALS3D misaligned at least 11 and 23 of these regions, respectively. When applied to a dataset of 65 million protein sequences, MAPGAPS identified, classified and aligned (with comparable accuracy) nearly half a million putative P-loop GTPase sequences. A C++ implementation of MAPGAPS is available at http://mapgaps.igs.umaryland.edu. Supplementary data are available at Bioinformatics online.
Swingle, Mark R; Honkanen, Richard Eric
2018-05-07
The reversible phosphorylation of proteins regulates many key functions in eukaryotic cells. Phosphorylation is catalyzed by protein kinases, with the majority of phosphorylation occurring on side chains of serine and threonine residues. The phosphomonoesters generated by protein kinases are hydrolyzed by protein phosphatases. In the absence of a phosphatase the half-time for the hydrolysis of alkyl phosphate dianions at 25º C is over 1 trillion years; knon ~2 x 10-20 sec-1. Therefore, ser/thr phosphatases are critical for processes controlled by reversible phosphorylation. This review is based on a search of the literature in available databases. We compare the catalytic mechanism of PPP-family phosphatases (PPPases) and the interactions of inhibitors that target these enzymes. PPPases are metal-dependent hydrolases that enhance the rate of hydrolysis ([kcat/kM]/knon ) by a factor of ~1021, placing them among the most powerful known catalysts on earth. Biochemical and structural studies indicate the remarkable catalytic proficiencies of PPPases are achieved by 10 conserved amino acids, DXH(X)~26DXXDR(X)~20-26NH(X)~50H(X)~25-45R(X)~30-40H. Six act as metal-coordinating residues. Four position and orient the substrate phosphate. Together, two metal ions and the 10 catalytic residues position the phosphoryl group and an activated bridging water/hydroxide nucleophile for inline attack upon the substrate phosphorous atom. The PPPases are conserved among species, and many structurally diverse natural toxins co-evolved to target these enzymes. Although the catalytic site is conserved, opportunities for the development of selective inhibitors of this important group of metalloenzymes exist. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Fast Inbound Top-K Query for Random Walk with Restart.
Zhang, Chao; Jiang, Shan; Chen, Yucheng; Sun, Yidan; Han, Jiawei
2015-09-01
Random walk with restart (RWR) is widely recognized as one of the most important node proximity measures for graphs, as it captures the holistic graph structure and is robust to noise in the graph. In this paper, we study a novel query based on the RWR measure, called the inbound top-k (Ink) query. Given a query node q and a number k , the Ink query aims at retrieving k nodes in the graph that have the largest weighted RWR scores to q . Ink queries can be highly useful for various applications such as traffic scheduling, disease treatment, and targeted advertising. Nevertheless, none of the existing RWR computation techniques can accurately and efficiently process the Ink query in large graphs. We propose two algorithms, namely Squeeze and Ripple, both of which can accurately answer the Ink query in a fast and incremental manner. To identify the top- k nodes, Squeeze iteratively performs matrix-vector multiplication and estimates the lower and upper bounds for all the nodes in the graph. Ripple employs a more aggressive strategy by only estimating the RWR scores for the nodes falling in the vicinity of q , the nodes outside the vicinity do not need to be evaluated because their RWR scores are propagated from the boundary of the vicinity and thus upper bounded. Ripple incrementally expands the vicinity until the top- k result set can be obtained. Our extensive experiments on real-life graph data sets show that Ink queries can retrieve interesting results, and the proposed algorithms are orders of magnitude faster than state-of-the-art method.
Liu, Zhiming; Luo, Jiawei
2017-08-01
Associating protein complexes to human inherited diseases is critical for better understanding of biological processes and functional mechanisms of the disease. Many protein complexes have been identified and functionally annotated by computational and purification methods so far, however, the particular roles they were playing in causing disease have not yet been well determined. In this study, we present a novel method to identify associations between protein complexes and diseases. First, we construct a disease-protein heterogeneous network based on data integration and laplacian normalization. Second, we apply a random walk with restart on heterogeneous network (RWRH) algorithm on this network to quantify the strength of the association between proteins and the query disease. Third, we sum over the scores of member proteins to obtain a summary score for each candidate protein complex, and then rank all candidate protein complexes according to their scores. With a series of leave-one-out cross-validation experiments, we found that our method not only possesses high performance but also demonstrates robustness regarding the parameters and the network structure. We test our approach with breast cancer and select top 20 highly ranked protein complexes, 17 of the selected protein complexes are evidenced to be connected with breast cancer. Our proposed method is effective in identifying disease-related protein complexes based on data integration and laplacian normalization. Copyright © 2017. Published by Elsevier Ltd.
A Dimensional Bus model for integrating clinical and research data.
Wade, Ted D; Hum, Richard C; Murphy, James R
2011-12-01
Many clinical research data integration platforms rely on the Entity-Attribute-Value model because of its flexibility, even though it presents problems in query formulation and execution time. The authors sought more balance in these traits. Borrowing concepts from Entity-Attribute-Value and from enterprise data warehousing, the authors designed an alternative called the Dimensional Bus model and used it to integrate electronic medical record, sponsored study, and biorepository data. Each type of observational collection has its own table, and the structure of these tables varies to suit the source data. The observational tables are linked to the Bus, which holds provenance information and links to various classificatory dimensions that amplify the meaning of the data or facilitate its query and exposure management. The authors implemented a Bus-based clinical research data repository with a query system that flexibly manages data access and confidentiality, facilitates catalog search, and readily formulates and compiles complex queries. The design provides a workable way to manage and query mixed schemas in a data warehouse.
Computer systems and methods for the query and visualization of multidimensional databases
Stolte, Chris; Tang, Diane L.; Hanrahan, Patrick
2006-08-08
A method and system for producing graphics. A hierarchical structure of a database is determined. A visual table, comprising a plurality of panes, is constructed by providing a specification that is in a language based on the hierarchical structure of the database. In some cases, this language can include fields that are in the database schema. The database is queried to retrieve a set of tuples in accordance with the specification. A subset of the set of tuples is associated with a pane in the plurality of panes.
Computer systems and methods for the query and visualization of multidimensional database
Stolte, Chris; Tang, Diane L.; Hanrahan, Patrick
2010-05-11
A method and system for producing graphics. A hierarchical structure of a database is determined. A visual table, comprising a plurality of panes, is constructed by providing a specification that is in a language based on the hierarchical structure of the database. In some cases, this language can include fields that are in the database schema. The database is queried to retrieve a set of tuples in accordance with the specification. A subset of the set of tuples is associated with a pane in the plurality of panes.
Huang, Liang-Chin; Ross, Karen E; Baffi, Timothy R; Drabkin, Harold; Kochut, Krzysztof J; Ruan, Zheng; D'Eustachio, Peter; McSkimming, Daniel; Arighi, Cecilia; Chen, Chuming; Natale, Darren A; Smith, Cynthia; Gaudet, Pascale; Newton, Alexandra C; Wu, Cathy; Kannan, Natarajan
2018-04-25
Many bioinformatics resources with unique perspectives on the protein landscape are currently available. However, generating new knowledge from these resources requires interoperable workflows that support cross-resource queries. In this study, we employ federated queries linking information from the Protein Kinase Ontology, iPTMnet, Protein Ontology, neXtProt, and the Mouse Genome Informatics to identify key knowledge gaps in the functional coverage of the human kinome and prioritize understudied kinases, cancer variants and post-translational modifications (PTMs) for functional studies. We identify 32 functional domains enriched in cancer variants and PTMs and generate mechanistic hypotheses on overlapping variant and PTM sites by aggregating information at the residue, protein, pathway and species level from these resources. We experimentally test the hypothesis that S768 phosphorylation in the C-helix of EGFR is inhibitory by showing that oncogenic variants altering S768 phosphorylation increase basal EGFR activity. In contrast, oncogenic variants altering conserved phosphorylation sites in the 'hydrophobic motif' of PKCβII (S660F and S660C) are loss-of-function in that they reduce kinase activity and enhance membrane translocation. Our studies provide a framework for integrative, consistent, and reproducible annotation of the cancer kinomes.
Baran, Michael C; Moseley, Hunter N B; Sahota, Gurmukh; Montelione, Gaetano T
2002-10-01
Modern protein NMR spectroscopy laboratories have a rapidly growing need for an easily queried local archival system of raw experimental NMR datasets. SPINS (Standardized ProteIn Nmr Storage) is an object-oriented relational database that provides facilities for high-volume NMR data archival, organization of analyses, and dissemination of results to the public domain by automatic preparation of the header files required for submission of data to the BioMagResBank (BMRB). The current version of SPINS coordinates the process from data collection to BMRB deposition of raw NMR data by standardizing and integrating the storage and retrieval of these data in a local laboratory file system. Additional facilities include a data mining query tool, graphical database administration tools, and a NMRStar v2. 1.1 file generator. SPINS also includes a user-friendly internet-based graphical user interface, which is optionally integrated with Varian VNMR NMR data collection software. This paper provides an overview of the data model underlying the SPINS database system, a description of its implementation in Oracle, and an outline of future plans for the SPINS project.
FALDO: a semantic standard for describing the location of nucleotide and protein feature annotation.
Bolleman, Jerven T; Mungall, Christopher J; Strozzi, Francesco; Baran, Joachim; Dumontier, Michel; Bonnal, Raoul J P; Buels, Robert; Hoehndorf, Robert; Fujisawa, Takatomo; Katayama, Toshiaki; Cock, Peter J A
2016-06-13
Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples. We have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites, among other features in coordinate systems of the aforementioned "omics" areas. Using the same data format to represent sequence positions that are independent of file formats allows us to integrate sequence data from multiple sources and data types. The genome browser JBrowse is used to demonstrate accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein annotations from UniProt mapped to genomic locations. Our ontology allows users to uniformly describe - and potentially merge - sequence annotations from multiple sources. Data sources using FALDO can prospectively be retrieved using federalised SPARQL queries against public SPARQL endpoints and/or local private triple stores.
FALDO: a semantic standard for describing the location of nucleotide and protein feature annotation
Bolleman, Jerven T.; Mungall, Christopher J.; Strozzi, Francesco; ...
2016-06-13
Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples. In this paper, we have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites, among other features in coordinate systems of the aforementioned “omics” areas. Using the same data formatmore » to represent sequence positions that are independent of file formats allows us to integrate sequence data from multiple sources and data types. The genome browser JBrowse is used to demonstrate accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein annotations from UniProt mapped to genomic locations. Our ontology allows users to uniformly describe – and potentially merge – sequence annotations from multiple sources. Finally, data sources using FALDO can prospectively be retrieved using federalised SPARQL queries against public SPARQL endpoints and/or local private triple stores.« less
FALDO: a semantic standard for describing the location of nucleotide and protein feature annotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolleman, Jerven T.; Mungall, Christopher J.; Strozzi, Francesco
Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples. In this paper, we have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites, among other features in coordinate systems of the aforementioned “omics” areas. Using the same data formatmore » to represent sequence positions that are independent of file formats allows us to integrate sequence data from multiple sources and data types. The genome browser JBrowse is used to demonstrate accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein annotations from UniProt mapped to genomic locations. Our ontology allows users to uniformly describe – and potentially merge – sequence annotations from multiple sources. Finally, data sources using FALDO can prospectively be retrieved using federalised SPARQL queries against public SPARQL endpoints and/or local private triple stores.« less
An adaptable architecture for patient cohort identification from diverse data sources.
Bache, Richard; Miles, Simon; Taweel, Adel
2013-12-01
We define and validate an architecture for systems that identify patient cohorts for clinical trials from multiple heterogeneous data sources. This architecture has an explicit query model capable of supporting temporal reasoning and expressing eligibility criteria independently of the representation of the data used to evaluate them. The architecture has the key feature that queries defined according to the query model are both pre and post-processed and this is used to address both structural and semantic heterogeneity. The process of extracting the relevant clinical facts is separated from the process of reasoning about them. A specific instance of the query model is then defined and implemented. We show that the specific instance of the query model has wide applicability. We then describe how it is used to access three diverse data warehouses to determine patient counts. Although the proposed architecture requires greater effort to implement the query model than would be the case for using just SQL and accessing a data-based management system directly, this effort is justified because it supports both temporal reasoning and heterogeneous data sources. The query model only needs to be implemented once no matter how many data sources are accessed. Each additional source requires only the implementation of a lightweight adaptor. The architecture has been used to implement a specific query model that can express complex eligibility criteria and access three diverse data warehouses thus demonstrating the feasibility of this approach in dealing with temporal reasoning and data heterogeneity.
Semantic-based surveillance video retrieval.
Hu, Weiming; Xie, Dan; Fu, Zhouyu; Zeng, Wenrong; Maybank, Steve
2007-04-01
Visual surveillance produces large amounts of video data. Effective indexing and retrieval from surveillance video databases are very important. Although there are many ways to represent the content of video clips in current video retrieval algorithms, there still exists a semantic gap between users and retrieval systems. Visual surveillance systems supply a platform for investigating semantic-based video retrieval. In this paper, a semantic-based video retrieval framework for visual surveillance is proposed. A cluster-based tracking algorithm is developed to acquire motion trajectories. The trajectories are then clustered hierarchically using the spatial and temporal information, to learn activity models. A hierarchical structure of semantic indexing and retrieval of object activities, where each individual activity automatically inherits all the semantic descriptions of the activity model to which it belongs, is proposed for accessing video clips and individual objects at the semantic level. The proposed retrieval framework supports various queries including queries by keywords, multiple object queries, and queries by sketch. For multiple object queries, succession and simultaneity restrictions, together with depth and breadth first orders, are considered. For sketch-based queries, a method for matching trajectories drawn by users to spatial trajectories is proposed. The effectiveness and efficiency of our framework are tested in a crowded traffic scene.
Teng, Rui; Zhang, Bing
2011-01-01
On-demand information retrieval enables users to query and collect up-to-date sensing information from sensor nodes. Since high energy efficiency is required in a sensor network, it is desirable to disseminate query messages with small traffic overhead and to collect sensing data with low energy consumption. However, on-demand query messages are generally forwarded to sensor nodes in network-wide broadcasts, which create large traffic overhead. In addition, since on-demand information retrieval may introduce intermittent and spatial data collections, the construction and maintenance of conventional aggregation structures such as clusters and chains will be at high cost. In this paper, we propose an on-demand information retrieval approach that exploits the name resolution of data queries according to the attribute and location of each sensor node. The proposed approach localises each query dissemination and enable localised data collection with maximised aggregation. To illustrate the effectiveness of the proposed approach, an analytical model that describes the criteria of sink proxy selection is provided. The evaluation results reveal that the proposed scheme significantly reduces energy consumption and improves the balance of energy consumption among sensor nodes by alleviating heavy traffic near the sink.
Essie: A Concept-based Search Engine for Structured Biomedical Text
Ide, Nicholas C.; Loane, Russell F.; Demner-Fushman, Dina
2007-01-01
This article describes the algorithms implemented in the Essie search engine that is currently serving several Web sites at the National Library of Medicine. Essie is a phrase-based search engine with term and concept query expansion and probabilistic relevancy ranking. Essie’s design is motivated by an observation that query terms are often conceptually related to terms in a document, without actually occurring in the document text. Essie’s performance was evaluated using data and standard evaluation methods from the 2003 and 2006 Text REtrieval Conference (TREC) Genomics track. Essie was the best-performing search engine in the 2003 TREC Genomics track and achieved results comparable to those of the highest-ranking systems on the 2006 TREC Genomics track task. Essie shows that a judicious combination of exploiting document structure, phrase searching, and concept based query expansion is a useful approach for information retrieval in the biomedical domain. PMID:17329729
SORTEZ: a relational translator for NCBI's ASN.1 database.
Hart, K W; Searls, D B; Overton, G C
1994-07-01
The National Center for Biotechnology Information (NCBI) has created a database collection that includes several protein and nucleic acid sequence databases, a biosequence-specific subset of MEDLINE, as well as value-added information such as links between similar sequences. Information in the NCBI database is modeled in Abstract Syntax Notation 1 (ASN.1) an Open Systems Interconnection protocol designed for the purpose of exchanging structured data between software applications rather than as a data model for database systems. While the NCBI database is distributed with an easy-to-use information retrieval system, ENTREZ, the ASN.1 data model currently lacks an ad hoc query language for general-purpose data access. For that reason, we have developed a software package, SORTEZ, that transforms the ASN.1 database (or other databases with nested data structures) to a relational data model and subsequently to a relational database management system (Sybase) where information can be accessed through the relational query language, SQL. Because the need to transform data from one data model and schema to another arises naturally in several important contexts, including efficient execution of specific applications, access to multiple databases and adaptation to database evolution this work also serves as a practical study of the issues involved in the various stages of database transformation. We show that transformation from the ASN.1 data model to a relational data model can be largely automated, but that schema transformation and data conversion require considerable domain expertise and would greatly benefit from additional support tools.
Mutations that Cause Human Disease: A Computational/Experimental Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beernink, P; Barsky, D; Pesavento, B
International genome sequencing projects have produced billions of nucleotides (letters) of DNA sequence data, including the complete genome sequences of 74 organisms. These genome sequences have created many new scientific opportunities, including the ability to identify sequence variations among individuals within a species. These genetic differences, which are known as single nucleotide polymorphisms (SNPs), are particularly important in understanding the genetic basis for disease susceptibility. Since the report of the complete human genome sequence, over two million human SNPs have been identified, including a large-scale comparison of an entire chromosome from twenty individuals. Of the protein coding SNPs (cSNPs), approximatelymore » half leads to a single amino acid change in the encoded protein (non-synonymous coding SNPs). Most of these changes are functionally silent, while the remainder negatively impact the protein and sometimes cause human disease. To date, over 550 SNPs have been found to cause single locus (monogenic) diseases and many others have been associated with polygenic diseases. SNPs have been linked to specific human diseases, including late-onset Parkinson disease, autism, rheumatoid arthritis and cancer. The ability to predict accurately the effects of these SNPs on protein function would represent a major advance toward understanding these diseases. To date several attempts have been made toward predicting the effects of such mutations. The most successful of these is a computational approach called ''Sorting Intolerant From Tolerant'' (SIFT). This method uses sequence conservation among many similar proteins to predict which residues in a protein are functionally important. However, this method suffers from several limitations. First, a query sequence must have a sufficient number of relatives to infer sequence conservation. Second, this method does not make use of or provide any information on protein structure, which can be used to understand how an amino acid change affects the protein. The experimental methods that provide the most detailed structural information on proteins are X-ray crystallography and NMR spectroscopy. However, these methods are labor intensive and currently cannot be carried out on a genomic scale. Nonetheless, Structural Genomics projects are being pursued by more than a dozen groups and consortia worldwide and as a result the number of experimentally determined structures is rising exponentially. Based on the expectation that protein structures will continue to be determined at an ever-increasing rate, reliable structure prediction schemes will become increasingly valuable, leading to information on protein function and disease for many different proteins. Given known genetic variability and experimentally determined protein structures, can we accurately predict the effects of single amino acid substitutions? An objective assessment of this question would involve comparing predicted and experimentally determined structures, which thus far has not been rigorously performed. The completed research leveraged existing expertise at LLNL in computational and structural biology, as well as significant computing resources, to address this question.« less
An efficient approach for video information retrieval
NASA Astrophysics Data System (ADS)
Dong, Daoguo; Xue, Xiangyang
2005-01-01
Today, more and more video information can be accessed through internet, satellite, etc.. Retrieving specific video information from large-scale video database has become an important and challenging research topic in the area of multimedia information retrieval. In this paper, we introduce a new and efficient index structure OVA-File, which is a variant of VA-File. In OVA-File, the approximations close to each other in data space are stored in close positions of the approximation file. The benefit is that only a part of approximations close to the query vector need to be visited to get the query result. Both shot query algorithm and video clip algorithm are proposed to support video information retrieval efficiently. The experimental results showed that the queries based on OVA-File were much faster than that based on VA-File with small loss of result quality.
Assembling a protein-protein interaction map of the SSU processome from existing datasets.
Lim, Young H; Charette, J Michael; Baserga, Susan J
2011-03-10
The small subunit (SSU) processome is a large ribonucleoprotein complex involved in small ribosomal subunit assembly. It consists of the U3 snoRNA and ∼72 proteins. While most of its components have been identified, the protein-protein interactions (PPIs) among them remain largely unknown, and thus the assembly, architecture and function of the SSU processome remains unclear. We queried PPI databases for SSU processome proteins to quantify the degree to which the three genome-wide high-throughput yeast two-hybrid (HT-Y2H) studies, the genome-wide protein fragment complementation assay (PCA) and the literature-curated (LC) datasets cover the SSU processome interactome. We find that coverage of the SSU processome PPI network is remarkably sparse. Two of the three HT-Y2H studies each account for four and six PPIs between only six of the 72 proteins, while the third study accounts for as little as one PPI and two proteins. The PCA dataset has the highest coverage among the genome-wide studies with 27 PPIs between 25 proteins. The LC dataset was the most extensive, accounting for 34 proteins and 38 PPIs, many of which were validated by independent methods, thereby further increasing their reliability. When the collected data were merged, we found that at least 70% of the predicted PPIs have yet to be determined and 26 proteins (36%) have no known partners. Since the SSU processome is conserved in all Eukaryotes, we also queried HT-Y2H datasets from six additional model organisms, but only four orthologues and three previously known interologous interactions were found. This provides a starting point for further work on SSU processome assembly, and spotlights the need for a more complete genome-wide Y2H analysis.
Assembling a Protein-Protein Interaction Map of the SSU Processome from Existing Datasets
Baserga, Susan J.
2011-01-01
Background The small subunit (SSU) processome is a large ribonucleoprotein complex involved in small ribosomal subunit assembly. It consists of the U3 snoRNA and ∼72 proteins. While most of its components have been identified, the protein-protein interactions (PPIs) among them remain largely unknown, and thus the assembly, architecture and function of the SSU processome remains unclear. Methodology We queried PPI databases for SSU processome proteins to quantify the degree to which the three genome-wide high-throughput yeast two-hybrid (HT-Y2H) studies, the genome-wide protein fragment complementation assay (PCA) and the literature-curated (LC) datasets cover the SSU processome interactome. Conclusions We find that coverage of the SSU processome PPI network is remarkably sparse. Two of the three HT-Y2H studies each account for four and six PPIs between only six of the 72 proteins, while the third study accounts for as little as one PPI and two proteins. The PCA dataset has the highest coverage among the genome-wide studies with 27 PPIs between 25 proteins. The LC dataset was the most extensive, accounting for 34 proteins and 38 PPIs, many of which were validated by independent methods, thereby further increasing their reliability. When the collected data were merged, we found that at least 70% of the predicted PPIs have yet to be determined and 26 proteins (36%) have no known partners. Since the SSU processome is conserved in all Eukaryotes, we also queried HT-Y2H datasets from six additional model organisms, but only four orthologues and three previously known interologous interactions were found. This provides a starting point for further work on SSU processome assembly, and spotlights the need for a more complete genome-wide Y2H analysis. PMID:21423703
Liu, Betty R; Huang, Yue-Wern; Korivi, Mallikarjuna; Lo, Shih-Yen; Aronstam, Robert S; Lee, Han-Jung
2017-01-01
Development of effective drug delivery systems (DDS) is a critical issue in health care and medicine. Advances in molecular biology and nanotechnology have allowed the introduction of nanomaterial-based drug delivery systems. Cell-penetrating peptides (CPPs) can form the basis of drug delivery systems by virtue of their ability to support the transport of cargoes into the cell. Potential cargoes include proteins, DNA, RNA, liposomes, and nanomaterials. These cargoes generally retain their bioactivities upon entering cells. In the present study, the smallest, fully-active lactoferricin-derived CPP, L5a is used to demonstrate the primary contributor of cellular internalization. The secondary helical structure of L5a encompasses symmetrical positive charges around the periphery. The contributions of cell-specificity, peptide length, concentration, zeta potential, particle size, and spatial structure of the peptides were examined, but only zeta potential and spatial structure affected protein transduction efficiency. FITC-labeled L5a appeared to enter cells via direct membrane translocation insofar as endocytic modulators did not block FITC-L5a entry. This is the same mechanism of protein transduction active in Cy5 labeled DNA delivery mediated by FITC-L5a. A significant reduction of transduction efficiency was observed with structurally incomplete FITC-L5a formed by tryptic destruction, in which case the mechanism of internalization switched to a classical energydependent endocytosis pathway. These results support the continued development of the non-cytotoxic L5a as an efficient tool for drug delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Reppe, Linda Amundstuen; Spigset, Olav; Kampmann, Jens Peter; Damkier, Per; Christensen, Hanne Rolighed; Böttiger, Ylva; Schjøtt, Jan
2017-05-01
The aim of this study was to identify structure and language elements affecting the quality of responses from Scandinavian drug information centres (DICs). Six different fictitious drug-related queries were sent to each of seven Scandinavian DICs. The centres were blinded for which queries were part of the study. The responses were assessed qualitatively by six clinical pharmacologists (internal experts) and six general practitioners (GPs, external experts). In addition, linguistic aspects of the responses were evaluated by a plain language expert. The quality of responses was generally judged as satisfactory to good. Presenting specific advice and conclusions were considered to improve the quality of the responses. However, small nuances in language formulations could affect the individual judgments of the experts, e.g. on whether or not advice was given. Some experts preferred the use of primary sources to the use of secondary and tertiary sources. Both internal and external experts criticised the use of abbreviations, professional terminology and study findings that was left unexplained. The plain language expert emphasised the importance of defining and explaining pharmacological terms to ensure that enquirers understand the response as intended. In addition, more use of active voice and less compressed text structure would be desirable. This evaluation of responses to DIC queries may give some indications on how to improve written responses on drug-related queries with respect to language and text structure. Giving specific advice and precise conclusions and avoiding too compressed language and non-standard abbreviations may aid to reach this goal.
ORCAN-a web-based meta-server for real-time detection and functional annotation of orthologs.
Zielezinski, Andrzej; Dziubek, Michal; Sliski, Jan; Karlowski, Wojciech M
2017-04-15
ORCAN (ORtholog sCANner) is a web-based meta-server for one-click evolutionary and functional annotation of protein sequences. The server combines information from the most popular orthology-prediction resources, including four tools and four online databases. Functional annotation utilizes five additional comparisons between the query and identified homologs, including: sequence similarity, protein domain architectures, functional motifs, Gene Ontology term assignments and a list of associated articles. Furthermore, the server uses a plurality-based rating system to evaluate the orthology relationships and to rank the reference proteins by their evolutionary and functional relevance to the query. Using a dataset of ∼1 million true yeast orthologs as a sample reference set, we show that combining multiple orthology-prediction tools in ORCAN increases the sensitivity and precision by 1-2 percent points. The service is available for free at http://www.combio.pl/orcan/ . wmk@amu.edu.pl. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Meshable: searching PubMed abstracts by utilizing MeSH and MeSH-derived topical terms.
Kim, Sun; Yeganova, Lana; Wilbur, W John
2016-10-01
Medical Subject Headings (MeSH(®)) is a controlled vocabulary for indexing and searching biomedical literature. MeSH terms and subheadings are organized in a hierarchical structure and are used to indicate the topics of an article. Biologists can use either MeSH terms as queries or the MeSH interface provided in PubMed(®) for searching PubMed abstracts. However, these are rarely used, and there is no convenient way to link standardized MeSH terms to user queries. Here, we introduce a web interface which allows users to enter queries to find MeSH terms closely related to the queries. Our method relies on co-occurrence of text words and MeSH terms to find keywords that are related to each MeSH term. A query is then matched with the keywords for MeSH terms, and candidate MeSH terms are ranked based on their relatedness to the query. The experimental results show that our method achieves the best performance among several term extraction approaches in terms of topic coherence. Moreover, the interface can be effectively used to find full names of abbreviations and to disambiguate user queries. https://www.ncbi.nlm.nih.gov/IRET/MESHABLE/ CONTACT: sun.kim@nih.gov Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Ferreira, Leonardo G; Andricopulo, Adriano D
2017-01-01
Fragment-based drug discovery (FBDD) is a broadly used strategy in structure-guided ligand design, whereby low-molecular weight hits move from lead-like to drug-like compounds. Over the past 15 years, an increasingly important role of the integration of these strategies into industrial and academic research platforms has been successfully established, allowing outstanding contributions to drug discovery. One important factor for the current prominence of FBDD is the better coverage of the chemical space provided by fragment-like libraries. The development of the field relies on two features: (i) the growing number of structurally characterized drug targets and (ii) the enormous chemical diversity available for experimental and virtual screenings. Indeed, fragment-based campaigns have contributed to address major challenges in lead optimization, such as the appropriate physicochemical profile of clinical candidates. This perspective paper outlines the usefulness and applications of FBDD approaches in medicinal chemistry and drug design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
PhosphoregDB: The tissue and sub-cellular distribution of mammalian protein kinases and phosphatases
Forrest, Alistair RR; Taylor, Darrin F; Fink, J Lynn; Gongora, M Milena; Flegg, Cameron; Teasdale, Rohan D; Suzuki, Harukazu; Kanamori, Mutsumi; Kai, Chikatoshi; Hayashizaki, Yoshihide; Grimmond, Sean M
2006-01-01
Background Protein kinases and protein phosphatases are the fundamental components of phosphorylation dependent protein regulatory systems. We have created a database for the protein kinase-like and phosphatase-like loci of mouse that integrates protein sequence, interaction, classification and pathway information with the results of a systematic screen of their sub-cellular localization and tissue specific expression data mined from the GNF tissue atlas of mouse. Results The database lets users query where a specific kinase or phosphatase is expressed at both the tissue and sub-cellular levels. Similarly the interface allows the user to query by tissue, pathway or sub-cellular localization, to reveal which components are co-expressed or co-localized. A review of their expression reveals 30% of these components are detected in all tissues tested while 70% show some level of tissue restriction. Hierarchical clustering of the expression data reveals that expression of these genes can be used to separate the samples into tissues of related lineage, including 3 larger clusters of nervous tissue, developing embryo and cells of the immune system. By overlaying the expression, sub-cellular localization and classification data we examine correlations between class, specificity and tissue restriction and show that tyrosine kinases are more generally expressed in fewer tissues than serine/threonine kinases. Conclusion Together these data demonstrate that cell type specific systems exist to regulate protein phosphorylation and that for accurate modelling and for determination of enzyme substrate relationships the co-location of components needs to be considered. PMID:16504016
Introducing glycomics data into the Semantic Web
2013-01-01
Background Glycoscience is a research field focusing on complex carbohydrates (otherwise known as glycans)a, which can, for example, serve as “switches” that toggle between different functions of a glycoprotein or glycolipid. Due to the advancement of glycomics technologies that are used to characterize glycan structures, many glycomics databases are now publicly available and provide useful information for glycoscience research. However, these databases have almost no link to other life science databases. Results In order to implement support for the Semantic Web most efficiently for glycomics research, the developers of major glycomics databases agreed on a minimal standard for representing glycan structure and annotation information using RDF (Resource Description Framework). Moreover, all of the participants implemented this standard prototype and generated preliminary RDF versions of their data. To test the utility of the converted data, all of the data sets were uploaded into a Virtuoso triple store, and several SPARQL queries were tested as “proofs-of-concept” to illustrate the utility of the Semantic Web in querying across databases which were originally difficult to implement. Conclusions We were able to successfully retrieve information by linking UniCarbKB, GlycomeDB and JCGGDB in a single SPARQL query to obtain our target information. We also tested queries linking UniProt with GlycoEpitope as well as lectin data with GlycomeDB through PDB. As a result, we have been able to link proteomics data with glycomics data through the implementation of Semantic Web technologies, allowing for more flexible queries across these domains. PMID:24280648
Introducing glycomics data into the Semantic Web.
Aoki-Kinoshita, Kiyoko F; Bolleman, Jerven; Campbell, Matthew P; Kawano, Shin; Kim, Jin-Dong; Lütteke, Thomas; Matsubara, Masaaki; Okuda, Shujiro; Ranzinger, Rene; Sawaki, Hiromichi; Shikanai, Toshihide; Shinmachi, Daisuke; Suzuki, Yoshinori; Toukach, Philip; Yamada, Issaku; Packer, Nicolle H; Narimatsu, Hisashi
2013-11-26
Glycoscience is a research field focusing on complex carbohydrates (otherwise known as glycans)a, which can, for example, serve as "switches" that toggle between different functions of a glycoprotein or glycolipid. Due to the advancement of glycomics technologies that are used to characterize glycan structures, many glycomics databases are now publicly available and provide useful information for glycoscience research. However, these databases have almost no link to other life science databases. In order to implement support for the Semantic Web most efficiently for glycomics research, the developers of major glycomics databases agreed on a minimal standard for representing glycan structure and annotation information using RDF (Resource Description Framework). Moreover, all of the participants implemented this standard prototype and generated preliminary RDF versions of their data. To test the utility of the converted data, all of the data sets were uploaded into a Virtuoso triple store, and several SPARQL queries were tested as "proofs-of-concept" to illustrate the utility of the Semantic Web in querying across databases which were originally difficult to implement. We were able to successfully retrieve information by linking UniCarbKB, GlycomeDB and JCGGDB in a single SPARQL query to obtain our target information. We also tested queries linking UniProt with GlycoEpitope as well as lectin data with GlycomeDB through PDB. As a result, we have been able to link proteomics data with glycomics data through the implementation of Semantic Web technologies, allowing for more flexible queries across these domains.
Querying archetype-based EHRs by search ontology-based XPath engineering.
Kropf, Stefan; Uciteli, Alexandr; Schierle, Katrin; Krücken, Peter; Denecke, Kerstin; Herre, Heinrich
2018-05-11
Legacy data and new structured data can be stored in a standardized format as XML-based EHRs on XML databases. Querying documents on these databases is crucial for answering research questions. Instead of using free text searches, that lead to false positive results, the precision can be increased by constraining the search to certain parts of documents. A search ontology-based specification of queries on XML documents defines search concepts and relates them to parts in the XML document structure. Such query specification method is practically introduced and evaluated by applying concrete research questions formulated in natural language on a data collection for information retrieval purposes. The search is performed by search ontology-based XPath engineering that reuses ontologies and XML-related W3C standards. The key result is that the specification of research questions can be supported by the usage of search ontology-based XPath engineering. A deeper recognition of entities and a semantic understanding of the content is necessary for a further improvement of precision and recall. Key limitation is that the application of the introduced process requires skills in ontology and software development. In future, the time consuming ontology development could be overcome by implementing a new clinical role: the clinical ontologist. The introduced Search Ontology XML extension connects Search Terms to certain parts in XML documents and enables an ontology-based definition of queries. Search ontology-based XPath engineering can support research question answering by the specification of complex XPath expressions without deep syntax knowledge about XPaths.
VIGOR: Interactive Visual Exploration of Graph Query Results.
Pienta, Robert; Hohman, Fred; Endert, Alex; Tamersoy, Acar; Roundy, Kevin; Gates, Chris; Navathe, Shamkant; Chau, Duen Horng
2018-01-01
Finding patterns in graphs has become a vital challenge in many domains from biological systems, network security, to finance (e.g., finding money laundering rings of bankers and business owners). While there is significant interest in graph databases and querying techniques, less research has focused on helping analysts make sense of underlying patterns within a group of subgraph results. Visualizing graph query results is challenging, requiring effective summarization of a large number of subgraphs, each having potentially shared node-values, rich node features, and flexible structure across queries. We present VIGOR, a novel interactive visual analytics system, for exploring and making sense of query results. VIGOR uses multiple coordinated views, leveraging different data representations and organizations to streamline analysts sensemaking process. VIGOR contributes: (1) an exemplar-based interaction technique, where an analyst starts with a specific result and relaxes constraints to find other similar results or starts with only the structure (i.e., without node value constraints), and adds constraints to narrow in on specific results; and (2) a novel feature-aware subgraph result summarization. Through a collaboration with Symantec, we demonstrate how VIGOR helps tackle real-world problems through the discovery of security blindspots in a cybersecurity dataset with over 11,000 incidents. We also evaluate VIGOR with a within-subjects study, demonstrating VIGOR's ease of use over a leading graph database management system, and its ability to help analysts understand their results at higher speed and make fewer errors.
Neural networks and logical reasoning systems: a translation table.
Martins, J; Mendes, R V
2001-04-01
A correspondence is established between the basic elements of logic reasoning systems (knowledge bases, rules, inference and queries) and the structure and dynamical evolution laws of neural networks. The correspondence is pictured as a translation dictionary which might allow to go back and forth between symbolic and network formulations, a desirable step in learning-oriented systems and multicomputer networks. In the framework of Horn clause logics, it is found that atomic propositions with n arguments correspond to nodes with nth order synapses, rules to synaptic intensity constraints, forward chaining to synaptic dynamics and queries either to simple node activation or to a query tensor dynamics.
2012-06-14
weight fat loss effects diet standard nutrition lose nfpa protein Topic 214: menu restaurant engineering restaurants jones wings seat wild buffalo...Selection ................................................................................... 30 3.5 Raw Data File Format...text mining to descriptions of biological activity and the target of the biological activity (i.e., gene, protein , cell, or microorganism) to predict
MMDB: Entrez’s 3D-structure database
Wang, Yanli; Anderson, John B.; Chen, Jie; Geer, Lewis Y.; He, Siqian; Hurwitz, David I.; Liebert, Cynthia A.; Madej, Thomas; Marchler, Gabriele H.; Marchler-Bauer, Aron; Panchenko, Anna R.; Shoemaker, Benjamin A.; Song, James S.; Thiessen, Paul A.; Yamashita, Roxanne A.; Bryant, Stephen H.
2002-01-01
Three-dimensional structures are now known within many protein families and it is quite likely, in searching a sequence database, that one will encounter a homolog with known structure. The goal of Entrez’s 3D-structure database is to make this information, and the functional annotation it can provide, easily accessible to molecular biologists. To this end Entrez’s search engine provides three powerful features. (i) Sequence and structure neighbors; one may select all sequences similar to one of interest, for example, and link to any known 3D structures. (ii) Links between databases; one may search by term matching in MEDLINE, for example, and link to 3D structures reported in these articles. (iii) Sequence and structure visualization; identifying a homolog with known structure, one may view molecular-graphic and alignment displays, to infer approximate 3D structure. In this article we focus on two features of Entrez’s Molecular Modeling Database (MMDB) not described previously: links from individual biopolymer chains within 3D structures to a systematic taxonomy of organisms represented in molecular databases, and links from individual chains (and compact 3D domains within them) to structure neighbors, other chains (and 3D domains) with similar 3D structure. MMDB may be accessed at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Structure. PMID:11752307
Sequence Alignment to Predict Across Species Susceptibility ...
Conservation of a molecular target across species can be used as a line-of-evidence to predict the likelihood of chemical susceptibility. The web-based Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to simplify, streamline, and quantitatively assess protein sequence/structural similarity across taxonomic groups as a means to predict relative intrinsic susceptibility. The intent of the tool is to allow for evaluation of any potential protein target, so it is amenable to variable degrees of protein characterization, depending on available information about the chemical/protein interaction and the molecular target itself. To allow for flexibility in the analysis, a layered strategy was adopted for the tool. The first level of the SeqAPASS analysis compares primary amino acid sequences to a query sequence, calculating a metric for sequence similarity (including detection of candidate orthologs), the second level evaluates sequence similarity within selected domains (e.g., ligand-binding domain, DNA binding domain), and the third level of analysis compares individual amino acid residue positions identified as being of importance for protein conformation and/or ligand binding upon chemical perturbation. Each level of the SeqAPASS analysis provides increasing evidence to apply toward rapid, screening-level assessments of probable cross species susceptibility. Such analyses can support prioritization of chemicals for further ev
eXframe: reusable framework for storage, analysis and visualization of genomics experiments
2011-01-01
Background Genome-wide experiments are routinely conducted to measure gene expression, DNA-protein interactions and epigenetic status. Structured metadata for these experiments is imperative for a complete understanding of experimental conditions, to enable consistent data processing and to allow retrieval, comparison, and integration of experimental results. Even though several repositories have been developed for genomics data, only a few provide annotation of samples and assays using controlled vocabularies. Moreover, many of them are tailored for a single type of technology or measurement and do not support the integration of multiple data types. Results We have developed eXframe - a reusable web-based framework for genomics experiments that provides 1) the ability to publish structured data compliant with accepted standards 2) support for multiple data types including microarrays and next generation sequencing 3) query, analysis and visualization integration tools (enabled by consistent processing of the raw data and annotation of samples) and is available as open-source software. We present two case studies where this software is currently being used to build repositories of genomics experiments - one contains data from hematopoietic stem cells and another from Parkinson's disease patients. Conclusion The web-based framework eXframe offers structured annotation of experiments as well as uniform processing and storage of molecular data from microarray and next generation sequencing platforms. The framework allows users to query and integrate information across species, technologies, measurement types and experimental conditions. Our framework is reusable and freely modifiable - other groups or institutions can deploy their own custom web-based repositories based on this software. It is interoperable with the most important data formats in this domain. We hope that other groups will not only use eXframe, but also contribute their own useful modifications. PMID:22103807
An adaptable architecture for patient cohort identification from diverse data sources
Bache, Richard; Miles, Simon; Taweel, Adel
2013-01-01
Objective We define and validate an architecture for systems that identify patient cohorts for clinical trials from multiple heterogeneous data sources. This architecture has an explicit query model capable of supporting temporal reasoning and expressing eligibility criteria independently of the representation of the data used to evaluate them. Method The architecture has the key feature that queries defined according to the query model are both pre and post-processed and this is used to address both structural and semantic heterogeneity. The process of extracting the relevant clinical facts is separated from the process of reasoning about them. A specific instance of the query model is then defined and implemented. Results We show that the specific instance of the query model has wide applicability. We then describe how it is used to access three diverse data warehouses to determine patient counts. Discussion Although the proposed architecture requires greater effort to implement the query model than would be the case for using just SQL and accessing a data-based management system directly, this effort is justified because it supports both temporal reasoning and heterogeneous data sources. The query model only needs to be implemented once no matter how many data sources are accessed. Each additional source requires only the implementation of a lightweight adaptor. Conclusions The architecture has been used to implement a specific query model that can express complex eligibility criteria and access three diverse data warehouses thus demonstrating the feasibility of this approach in dealing with temporal reasoning and data heterogeneity. PMID:24064442
TMFoldWeb: a web server for predicting transmembrane protein fold class.
Kozma, Dániel; Tusnády, Gábor E
2015-09-17
Here we present TMFoldWeb, the web server implementation of TMFoldRec, a transmembrane protein fold recognition algorithm. TMFoldRec uses statistical potentials and utilizes topology filtering and a gapless threading algorithm. It ranks template structures and selects the most likely candidates and estimates the reliability of the obtained lowest energy model. The statistical potential was developed in a maximum likelihood framework on a representative set of the PDBTM database. According to the benchmark test the performance of TMFoldRec is about 77 % in correctly predicting fold class for a given transmembrane protein sequence. An intuitive web interface has been developed for the recently published TMFoldRec algorithm. The query sequence goes through a pipeline of topology prediction and a systematic sequence to structure alignment (threading). Resulting templates are ordered by energy and reliability values and are colored according to their significance level. Besides the graphical interface, a programmatic access is available as well, via a direct interface for developers or for submitting genome-wide data sets. The TMFoldWeb web server is unique and currently the only web server that is able to predict the fold class of transmembrane proteins while assigning reliability scores for the prediction. This method is prepared for genome-wide analysis with its easy-to-use interface, informative result page and programmatic access. Considering the info-communication evolution in the last few years, the developed web server, as well as the molecule viewer, is responsive and fully compatible with the prevalent tablets and mobile devices.
Empowering pharmacoinformatics by linked life science data
NASA Astrophysics Data System (ADS)
Goldmann, Daria; Zdrazil, Barbara; Digles, Daniela; Ecker, Gerhard F.
2017-03-01
With the public availability of large data sources such as ChEMBLdb and the Open PHACTS Discovery Platform, retrieval of data sets for certain protein targets of interest with consistent assay conditions is no longer a time consuming process. Especially the use of workflow engines such as KNIME or Pipeline Pilot allows complex queries and enables to simultaneously search for several targets. Data can then directly be used as input to various ligand- and structure-based studies. In this contribution, using in-house projects on P-gp inhibition, transporter selectivity, and TRPV1 modulation we outline how the incorporation of linked life science data in the daily execution of projects allowed to expand our approaches from conventional Hansch analysis to complex, integrated multilayer models.
Singh, Vinay Kumar; Ambwani, Sonu; Marla, Soma; Kumar, Anil
2009-10-23
We describe the development of a user friendly tool that would assist in the retrieval of information relating to Cry genes in transgenic crops. The tool also helps in detection of transformed Cry genes from Bacillus thuringiensis present in transgenic plants by providing suitable designed primers for PCR identification of these genes. The tool designed based on relational database model enables easy retrieval of information from the database with simple user queries. The tool also enables users to access related information about Cry genes present in various databases by interacting with different sources (nucleotide sequences, protein sequence, sequence comparison tools, published literature, conserved domains, evolutionary and structural data). http://insilicogenomics.in/Cry-btIdentifier/welcome.html.
Analysis of Technique to Extract Data from the Web for Improved Performance
NASA Astrophysics Data System (ADS)
Gupta, Neena; Singh, Manish
2010-11-01
The World Wide Web rapidly guides the world into a newly amazing electronic world, where everyone can publish anything in electronic form and extract almost all the information. Extraction of information from semi structured or unstructured documents, such as web pages, is a useful yet complex task. Data extraction, which is important for many applications, extracts the records from the HTML files automatically. Ontologies can achieve a high degree of accuracy in data extraction. We analyze method for data extraction OBDE (Ontology-Based Data Extraction), which automatically extracts the query result records from the web with the help of agents. OBDE first constructs an ontology for a domain according to information matching between the query interfaces and query result pages from different web sites within the same domain. Then, the constructed domain ontology is used during data extraction to identify the query result section in a query result page and to align and label the data values in the extracted records. The ontology-assisted data extraction method is fully automatic and overcomes many of the deficiencies of current automatic data extraction methods.
A Dimensional Bus model for integrating clinical and research data
Hum, Richard C; Murphy, James R
2011-01-01
Objectives Many clinical research data integration platforms rely on the Entity–Attribute–Value model because of its flexibility, even though it presents problems in query formulation and execution time. The authors sought more balance in these traits. Materials and Methods Borrowing concepts from Entity–Attribute–Value and from enterprise data warehousing, the authors designed an alternative called the Dimensional Bus model and used it to integrate electronic medical record, sponsored study, and biorepository data. Each type of observational collection has its own table, and the structure of these tables varies to suit the source data. The observational tables are linked to the Bus, which holds provenance information and links to various classificatory dimensions that amplify the meaning of the data or facilitate its query and exposure management. Results The authors implemented a Bus-based clinical research data repository with a query system that flexibly manages data access and confidentiality, facilitates catalog search, and readily formulates and compiles complex queries. Conclusion The design provides a workable way to manage and query mixed schemas in a data warehouse. PMID:21856687
Chen, Josephine; Zhao, Po; Massaro, Donald; Clerch, Linda B; Almon, Richard R; DuBois, Debra C; Jusko, William J; Hoffman, Eric P
2004-01-01
Publicly accessible DNA databases (genome browsers) are rapidly accelerating post-genomic research (see http://www.genome.ucsc.edu/), with integrated genomic DNA, gene structure, EST/ splicing and cross-species ortholog data. DNA databases have relatively low dimensionality; the genome is a linear code that anchors all associated data. In contrast, RNA expression and protein databases need to be able to handle very high dimensional data, with time, tissue, cell type and genes, as interrelated variables. The high dimensionality of microarray expression profile data, and the lack of a standard experimental platform have complicated the development of web-accessible databases and analytical tools. We have designed and implemented a public resource of expression profile data containing 1024 human, mouse and rat Affymetrix GeneChip expression profiles, generated in the same laboratory, and subject to the same quality and procedural controls (Public Expression Profiling Resource; PEPR). Our Oracle-based PEPR data warehouse includes a novel time series query analysis tool (SGQT), enabling dynamic generation of graphs and spreadsheets showing the action of any transcript of interest over time. In this report, we demonstrate the utility of this tool using a 27 time point, in vivo muscle regeneration series. This data warehouse and associated analysis tools provides access to multidimensional microarray data through web-based interfaces, both for download of all types of raw data for independent analysis, and also for straightforward gene-based queries. Planned implementations of PEPR will include web-based remote entry of projects adhering to quality control and standard operating procedure (QC/SOP) criteria, and automated output of alternative probe set algorithms for each project (see http://microarray.cnmcresearch.org/pgadatatable.asp).
Chen, Josephine; Zhao, Po; Massaro, Donald; Clerch, Linda B.; Almon, Richard R.; DuBois, Debra C.; Jusko, William J.; Hoffman, Eric P.
2004-01-01
Publicly accessible DNA databases (genome browsers) are rapidly accelerating post-genomic research (see http://www.genome.ucsc.edu/), with integrated genomic DNA, gene structure, EST/ splicing and cross-species ortholog data. DNA databases have relatively low dimensionality; the genome is a linear code that anchors all associated data. In contrast, RNA expression and protein databases need to be able to handle very high dimensional data, with time, tissue, cell type and genes, as interrelated variables. The high dimensionality of microarray expression profile data, and the lack of a standard experimental platform have complicated the development of web-accessible databases and analytical tools. We have designed and implemented a public resource of expression profile data containing 1024 human, mouse and rat Affymetrix GeneChip expression profiles, generated in the same laboratory, and subject to the same quality and procedural controls (Public Expression Profiling Resource; PEPR). Our Oracle-based PEPR data warehouse includes a novel time series query analysis tool (SGQT), enabling dynamic generation of graphs and spreadsheets showing the action of any transcript of interest over time. In this report, we demonstrate the utility of this tool using a 27 time point, in vivo muscle regeneration series. This data warehouse and associated analysis tools provides access to multidimensional microarray data through web-based interfaces, both for download of all types of raw data for independent analysis, and also for straightforward gene-based queries. Planned implementations of PEPR will include web-based remote entry of projects adhering to quality control and standard operating procedure (QC/SOP) criteria, and automated output of alternative probe set algorithms for each project (see http://microarray.cnmcresearch.org/pgadatatable.asp). PMID:14681485
Optimizing Interactive Development of Data-Intensive Applications
Interlandi, Matteo; Tetali, Sai Deep; Gulzar, Muhammad Ali; Noor, Joseph; Condie, Tyson; Kim, Miryung; Millstein, Todd
2017-01-01
Modern Data-Intensive Scalable Computing (DISC) systems are designed to process data through batch jobs that execute programs (e.g., queries) compiled from a high-level language. These programs are often developed interactively by posing ad-hoc queries over the base data until a desired result is generated. We observe that there can be significant overlap in the structure of these queries used to derive the final program. Yet, each successive execution of a slightly modified query is performed anew, which can significantly increase the development cycle. Vega is an Apache Spark framework that we have implemented for optimizing a series of similar Spark programs, likely originating from a development or exploratory data analysis session. Spark developers (e.g., data scientists) can leverage Vega to significantly reduce the amount of time it takes to re-execute a modified Spark program, reducing the overall time to market for their Big Data applications. PMID:28405637
Transcriptomic analysis of the autophagy machinery in crustaceans.
Suwansa-Ard, Saowaros; Kankuan, Wilairat; Thongbuakaew, Tipsuda; Saetan, Jirawat; Kornthong, Napamanee; Kruangkum, Thanapong; Khornchatri, Kanjana; Cummins, Scott F; Isidoro, Ciro; Sobhon, Prasert
2016-08-09
The giant freshwater prawn, Macrobrachium rosenbergii, is a decapod crustacean that is commercially important as a food source. Farming of commercial crustaceans requires an efficient management strategy because the animals are easily subjected to stress and diseases during the culture. Autophagy, a stress response process, is well-documented and conserved in most animals, yet it is poorly studied in crustaceans. In this study, we have performed an in silico search for transcripts encoding autophagy-related (Atg) proteins within various tissue transcriptomes of M. rosenbergii. Basic Local Alignment Search Tool (BLAST) search using previously known Atg proteins as queries revealed 41 transcripts encoding homologous M. rosenbergii Atg proteins. Among these Atg proteins, we selected commonly used autophagy markers, including Beclin 1, vacuolar protein sorting (Vps) 34, microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B), p62/sequestosome 1 (SQSTM1), and lysosomal-associated membrane protein 1 (Lamp-1) for further sequence analyses using comparative alignment and protein structural prediction. We found that crustacean autophagy marker proteins contain conserved motifs typical of other animal Atg proteins. Western blotting using commercial antibodies raised against human Atg marker proteins indicated their presence in various M. rosenbergii tissues, while immunohistochemistry localized Atg marker proteins within ovarian tissue, specifically late stage oocytes. This study demonstrates that the molecular components of autophagic process are conserved in crustaceans, which is comparable to autophagic process in mammals. Furthermore, it provides a foundation for further studies of autophagy in crustaceans that may lead to more understanding of the reproduction- and stress-related autophagy, which will enable the efficient aquaculture practices.
NASA Technical Reports Server (NTRS)
Abiteboul, Serge
1997-01-01
The amount of data of all kinds available electronically has increased dramatically in recent years. The data resides in different forms, ranging from unstructured data in the systems to highly structured in relational database systems. Data is accessible through a variety of interfaces including Web browsers, database query languages, application-specic interfaces, or data exchange formats. Some of this data is raw data, e.g., images or sound. Some of it has structure even if the structure is often implicit, and not as rigid or regular as that found in standard database systems. Sometimes the structure exists but has to be extracted from the data. Sometimes also it exists but we prefer to ignore it for certain purposes such as browsing. We call here semi-structured data this data that is (from a particular viewpoint) neither raw data nor strictly typed, i.e., not table-oriented as in a relational model or sorted-graph as in object databases. As will seen later when the notion of semi-structured data is more precisely de ned, the need for semi-structured data arises naturally in the context of data integration, even when the data sources are themselves well-structured. Although data integration is an old topic, the need to integrate a wider variety of data- formats (e.g., SGML or ASN.1 data) and data found on the Web has brought the topic of semi-structured data to the forefront of research. The main purpose of the paper is to isolate the essential aspects of semi- structured data. We also survey some proposals of models and query languages for semi-structured data. In particular, we consider recent works at Stanford U. and U. Penn on semi-structured data. In both cases, the motivation is found in the integration of heterogeneous data.
The Role of Sigma-1 Receptor, an Intracellular Chaperone in Neurodegenerative Diseases.
Penke, Botond; Fulop, Livia; Szucs, Maria; Frecska, Ede
2018-01-01
Widespread protein aggregation occurs in the living system under stress or during aging, owing to disturbance of endoplasmic reticulum (ER) proteostasis. Many neurodegenerative diseases may have a common mechanism: the failure of protein homeostasis. Perturbation of ER results in unfolded protein response (UPR). Prolonged chronical UPR may activate apoptotic pathways and cause cell death. Research articles on Sigma-1 receptor were reviewed. ER is associated to mitochondria by the mitochondria-associated ER-membrane, MAM. The sigma-1 receptor (Sig-1R), a well-known ER-chaperone localizes in the MAM. It serves for Ca2+-signaling between the ER and mitochondria, involved in ion channel activities and especially important during neuronal differentiation. Sig-1R acts as central modulator in inter-organelle signaling. Sig-1R helps cell survival by attenuating ER-stress. According to sequence based predictions Sig-1R is a 223 amino acid protein with two transmembrane (2TM) domains. The X-ray structure of the Sig-1R [1] showed a membrane-bound trimeric assembly with one transmembrane (1TM) region. Despite the in vitro determined assembly, the results of in vivo studies are rather consistent with the 2TM structure. The receptor has unique and versatile pharmacological profile. Dimethyl tryptamine (DMT) and neuroactive steroids are endogenous ligands that activate Sig-1R. The receptor has a plethora of interacting client proteins. Sig-1R exists in oligomeric structures (dimer-trimer-octamer-multimer) and this fact may explain interaction with diverse proteins. Sig-1R agonists have been used in the treatment of different neurodegenerative diseases, e.g. Alzheimer's and Parkinson's diseases (AD and PD) and amyotrophic lateral sclerosis. Utilization of Sig-1R agents early in AD and similar other diseases has remained an overlooked therapeutic opportunity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Lee, HoJoon; Palm, Jennifer; Grimes, Susan M; Ji, Hanlee P
2015-10-27
The Cancer Genome Atlas (TCGA) project has generated genomic data sets covering over 20 malignancies. These data provide valuable insights into the underlying genetic and genomic basis of cancer. However, exploring the relationship among TCGA genomic results and clinical phenotype remains a challenge, particularly for individuals lacking formal bioinformatics training. Overcoming this hurdle is an important step toward the wider clinical translation of cancer genomic/proteomic data and implementation of precision cancer medicine. Several websites such as the cBio portal or University of California Santa Cruz genome browser make TCGA data accessible but lack interactive features for querying clinically relevant phenotypic associations with cancer drivers. To enable exploration of the clinical-genomic driver associations from TCGA data, we developed the Cancer Genome Atlas Clinical Explorer. The Cancer Genome Atlas Clinical Explorer interface provides a straightforward platform to query TCGA data using one of the following methods: (1) searching for clinically relevant genes, micro RNAs, and proteins by name, cancer types, or clinical parameters; (2) searching for genomic/proteomic profile changes by clinical parameters in a cancer type; or (3) testing two-hit hypotheses. SQL queries run in the background and results are displayed on our portal in an easy-to-navigate interface according to user's input. To derive these associations, we relied on elastic-net estimates of optimal multiple linear regularized regression and clinical parameters in the space of multiple genomic/proteomic features provided by TCGA data. Moreover, we identified and ranked gene/micro RNA/protein predictors of each clinical parameter for each cancer. The robustness of the results was estimated by bootstrapping. Overall, we identify associations of potential clinical relevance among genes/micro RNAs/proteins using our statistical analysis from 25 cancer types and 18 clinical parameters that include clinical stage or smoking history. The Cancer Genome Atlas Clinical Explorer enables the cancer research community and others to explore clinically relevant associations inferred from TCGA data. With its accessible web and mobile interface, users can examine queries and test hypothesis regarding genomic/proteomic alterations across a broad spectrum of malignancies.
StarView: The object oriented design of the ST DADS user interface
NASA Technical Reports Server (NTRS)
Williams, J. D.; Pollizzi, J. A.
1992-01-01
StarView is the user interface being developed for the Hubble Space Telescope Data Archive and Distribution Service (ST DADS). ST DADS is the data archive for HST observations and a relational database catalog describing the archived data. Users will use StarView to query the catalog and select appropriate datasets for study. StarView sends requests for archived datasets to ST DADS which processes the requests and returns the database to the user. StarView is designed to be a powerful and extensible user interface. Unique features include an internal relational database to navigate query results, a form definition language that will work with both CRT and X interfaces, a data definition language that will allow StarView to work with any relational database, and the ability to generate adhoc queries without requiring the user to understand the structure of the ST DADS catalog. Ultimately, StarView will allow the user to refine queries in the local database for improved performance and merge in data from external sources for correlation with other query results. The user will be able to create a query from single or multiple forms, merging the selected attributes into a single query. Arbitrary selection of attributes for querying is supported. The user will be able to select how query results are viewed. A standard form or table-row format may be used. Navigation capabilities are provided to aid the user in viewing query results. Object oriented analysis and design techniques were used in the design of StarView to support the mechanisms and concepts required to implement these features. One such mechanism is the Model-View-Controller (MVC) paradigm. The MVC allows the user to have multiple views of the underlying database, while providing a consistent mechanism for interaction regardless of the view. This approach supports both CRT and X interfaces while providing a common mode of user interaction. Another powerful abstraction is the concept of a Query Model. This concept allows a single query to be built form a single or multiple forms before it is submitted to ST DADS. Supporting this concept is the adhoc query generator which allows the user to select and qualify an indeterminate number attributes from the database. The user does not need any knowledge of how the joins across various tables are to be resolved. The adhoc generator calculates the joins automatically and generates the correct SQL query.
Torabi, F; Bogle, O A; Estanyol, J M; Oliva, R; Miller, D
2017-12-01
Are there novel hyaladherins in human sperm? Zona pellucida-binding protein 2 (ZPBP2), containing a Link-like hyaluronic acid (HA)-binding domain, and several other proteins containing BX7B motifs, such as ADAM32 and Midkine, may be novel hyaladherins with HA-binding properties. HA-binding proteins (hyaladherins), which can bind HA surrounding the cumulus-oophorus complex, are distinct from hyases such as PH 20 (SPAM1) and are expressed by mature spermatozoa. Although HABP1 and CD44 are reasonably well characterized hyaladherins and the former has been implicated in sperm-oocyte interactions, the overall significance of sperm hyaladherins for male fertility is still poorly understood. This was a laboratory-based investigation into human sperm hyaladherins undertaken as part of a three year PhD programme sponsored by the EU Marie Curie Training network, Reprotrain. Protein homogenates of sperm obtained from young men of unknown fertility (N = 4) were partitioned into HA-binding and non-binding fractions by a protein affinity 'panning' method; their subsequent characterization was by liquid chromatography-tandem mass spectrometry (LC-MS-MS) and partitioning behaviour was confirmed by western blotting. Sequences of proteins from both fractions were submitted to PDBsum to look for orthologous entries (PDB codes) and all returned codes were queried against the matching protein using SAS (Sequences Annotated by Structure) looking for structural similarities between them. A systematic search for other common features of hyaladherins was also undertaken. The presence of BX7B sequence motifs found in several well-described hyaladherins including RHAMM was used to assess efficacy of potential hyaladherin partitioning by the HA substrate. The data showed that 50% (14/28) and 34.5% (28/81) of proteins in the bound and unbound fractions, respectively, contained these motifs (one-tailed Z-score = 1.45; P = 0.074), indicating weak discrimination by the substrate. Querying PDBsum with sequences for all bound proteins returned several PDB codes matching ZPBP2 with the HA-binding Link domain of the hyaladherin, CD44. Western blot analysis confirmed the affinity partitioning of proteins indicated by the LC-MS/MS results, with ADAM32 (containing two BX7B motifs) and ZPBP2 (containing a Link-like HA-binding domain) present only in the binding fraction. There remains the possibility that the putative hyaladherins uncovered by this study were coincidentally enriched by HA-binding. The full proteomics data set is available on request. The protein extraction methods or the HA substrate used to pan them in this study were probably not ideal, as hyaladherins expected to be present in sperm homogenates (such as CD44 and RHAMM) were not detected. The results provide evidence that ZPBP2, found only in the bound fraction, may have hyaladherin-like properties, which could reflect the evolutionary background context of contemporary sperm-oocyte interaction mechanisms. An EU Marie Curie Sklodowska Initial Training Network Scholarship, supporting Ms Torabi, is gratefully acknowledged. This project was also supported and funded by the Efficacy and Mechanism Evaluation Programme, a UK MRC and NIHR partnership (Grant No 11/14/ 34). There is no conflict of interest in relation to this work. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Local functional descriptors for surface comparison based binding prediction
2012-01-01
Background Molecular recognition in proteins occurs due to appropriate arrangements of physical, chemical, and geometric properties of an atomic surface. Similar surface regions should create similar binding interfaces. Effective methods for comparing surface regions can be used in identifying similar regions, and to predict interactions without regard to the underlying structural scaffold that creates the surface. Results We present a new descriptor for protein functional surfaces and algorithms for using these descriptors to compare protein surface regions to identify ligand binding interfaces. Our approach uses descriptors of local regions of the surface, and assembles collections of matches to compare larger regions. Our approach uses a variety of physical, chemical, and geometric properties, adaptively weighting these properties as appropriate for different regions of the interface. Our approach builds a classifier based on a training corpus of examples of binding sites of the target ligand. The constructed classifiers can be applied to a query protein providing a probability for each position on the protein that the position is part of a binding interface. We demonstrate the effectiveness of the approach on a number of benchmarks, demonstrating performance that is comparable to the state-of-the-art, with an approach with more generality than these prior methods. Conclusions Local functional descriptors offer a new method for protein surface comparison that is sufficiently flexible to serve in a variety of applications. PMID:23176080
Ahmed, Aqeel; Smith, Richard D; Clark, Jordan J; Dunbar, James B; Carlson, Heather A
2015-01-01
For over 10 years, Binding MOAD (Mother of All Databases; http://www.BindingMOAD.org) has been one of the largest resources for high-quality protein-ligand complexes and associated binding affinity data. Binding MOAD has grown at the rate of 1994 complexes per year, on average. Currently, it contains 23,269 complexes and 8156 binding affinities. Our annual updates curate the data using a semi-automated literature search of the references cited within the PDB file, and we have recently upgraded our website and added new features and functionalities to better serve Binding MOAD users. In order to eliminate the legacy application server of the old platform and to accommodate new changes, the website has been completely rewritten in the LAMP (Linux, Apache, MySQL and PHP) environment. The improved user interface incorporates current third-party plugins for better visualization of protein and ligand molecules, and it provides features like sorting, filtering and filtered downloads. In addition to the field-based searching, Binding MOAD now can be searched by structural queries based on the ligand. In order to remove redundancy, Binding MOAD records are clustered in different families based on 90% sequence identity. The new Binding MOAD, with the upgraded platform, features and functionalities, is now equipped to better serve its users. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Galzitskaya, Oxana; Deryusheva, Eugenia; Machulin, Andrey; Nemashkalova, Ekaterina; Glyakina, Anna
2018-06-21
High prediction accuracy of flexible loops in different protein families is a challenge because of the crucial functions associated with these regions. Results of the currently available programs for prediction of loops vary from protein to protein. For prediction of flexible regions in the G-domain for 23 representatives of G-proteins with the known 3D structure we have used eight programs. The results of predictions demonstrate that the FoldUnfold program predicts better loop positions than the PONDR, RОNN, DisEMBL, IUPred, GlobPlot 2, FoldIndex, and MobiDB programs. When classifying the predicted loops (rigid/flexible) according to the Debye-Waller fluctuation factors, our data reveal the existing weak correlation between the B-factors and the average number of closed residues according to the FoldUnfold program; the percentage of overlapping characteristics (residue fold/unfold status) of the protein residues from the two methods is about 60-70%. According to the FoldUnfold program, for G-proteins with the posttranslational modifications, the surrounding binding site residues by disordered-promoting glycine and alanine residues conduces to a more flexible position of the binding sites for fatty acid, while methionine, cysteine and isoleucine residues provide more rigid binding sites. Thus, our research demonstrates additional possibilities of the FoldUnfold program for prediction of flexible regions and characteristics of individual residues in a different protein family. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Managing and Querying Image Annotation and Markup in XML.
Wang, Fusheng; Pan, Tony; Sharma, Ashish; Saltz, Joel
2010-01-01
Proprietary approaches for representing annotations and image markup are serious barriers for researchers to share image data and knowledge. The Annotation and Image Markup (AIM) project is developing a standard based information model for image annotation and markup in health care and clinical trial environments. The complex hierarchical structures of AIM data model pose new challenges for managing such data in terms of performance and support of complex queries. In this paper, we present our work on managing AIM data through a native XML approach, and supporting complex image and annotation queries through native extension of XQuery language. Through integration with xService, AIM databases can now be conveniently shared through caGrid.
Managing and Querying Image Annotation and Markup in XML
Wang, Fusheng; Pan, Tony; Sharma, Ashish; Saltz, Joel
2010-01-01
Proprietary approaches for representing annotations and image markup are serious barriers for researchers to share image data and knowledge. The Annotation and Image Markup (AIM) project is developing a standard based information model for image annotation and markup in health care and clinical trial environments. The complex hierarchical structures of AIM data model pose new challenges for managing such data in terms of performance and support of complex queries. In this paper, we present our work on managing AIM data through a native XML approach, and supporting complex image and annotation queries through native extension of XQuery language. Through integration with xService, AIM databases can now be conveniently shared through caGrid. PMID:21218167
Exploiting protein flexibility to predict the location of allosteric sites
2012-01-01
Background Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. Results By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity), by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing that this simple coarse-grained methodology is able to capture the effects triggered by allosteric ligands already described in the literature. Conclusions We introduce a simple computational approach to predict the presence and position of allosteric sites in a protein based on the analysis of changes in protein normal modes upon the binding of a coarse-grained ligand at predicted cavities. Its performance has been demonstrated using a newly curated non-redundant set of 91 proteins with reported allosteric properties. The software developed in this work is available upon request from the authors. PMID:23095452
Exploiting protein flexibility to predict the location of allosteric sites.
Panjkovich, Alejandro; Daura, Xavier
2012-10-25
Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity), by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing that this simple coarse-grained methodology is able to capture the effects triggered by allosteric ligands already described in the literature. We introduce a simple computational approach to predict the presence and position of allosteric sites in a protein based on the analysis of changes in protein normal modes upon the binding of a coarse-grained ligand at predicted cavities. Its performance has been demonstrated using a newly curated non-redundant set of 91 proteins with reported allosteric properties. The software developed in this work is available upon request from the authors.
A general natural-language text processor for clinical radiology.
Friedman, C; Alderson, P O; Austin, J H; Cimino, J J; Johnson, S B
1994-01-01
OBJECTIVE: Development of a general natural-language processor that identifies clinical information in narrative reports and maps that information into a structured representation containing clinical terms. DESIGN: The natural-language processor provides three phases of processing, all of which are driven by different knowledge sources. The first phase performs the parsing. It identifies the structure of the text through use of a grammar that defines semantic patterns and a target form. The second phase, regularization, standardizes the terms in the initial target structure via a compositional mapping of multi-word phrases. The third phase, encoding, maps the terms to a controlled vocabulary. Radiology is the test domain for the processor and the target structure is a formal model for representing clinical information in that domain. MEASUREMENTS: The impression sections of 230 radiology reports were encoded by the processor. Results of an automated query of the resultant database for the occurrences of four diseases were compared with the analysis of a panel of three physicians to determine recall and precision. RESULTS: Without training specific to the four diseases, recall and precision of the system (combined effect of the processor and query generator) were 70% and 87%. Training of the query component increased recall to 85% without changing precision. PMID:7719797
Improving integrative searching of systems chemical biology data using semantic annotation.
Chen, Bin; Ding, Ying; Wild, David J
2012-03-08
Systems chemical biology and chemogenomics are considered critical, integrative disciplines in modern biomedical research, but require data mining of large, integrated, heterogeneous datasets from chemistry and biology. We previously developed an RDF-based resource called Chem2Bio2RDF that enabled querying of such data using the SPARQL query language. Whilst this work has proved useful in its own right as one of the first major resources in these disciplines, its utility could be greatly improved by the application of an ontology for annotation of the nodes and edges in the RDF graph, enabling a much richer range of semantic queries to be issued. We developed a generalized chemogenomics and systems chemical biology OWL ontology called Chem2Bio2OWL that describes the semantics of chemical compounds, drugs, protein targets, pathways, genes, diseases and side-effects, and the relationships between them. The ontology also includes data provenance. We used it to annotate our Chem2Bio2RDF dataset, making it a rich semantic resource. Through a series of scientific case studies we demonstrate how this (i) simplifies the process of building SPARQL queries, (ii) enables useful new kinds of queries on the data and (iii) makes possible intelligent reasoning and semantic graph mining in chemogenomics and systems chemical biology. Chem2Bio2OWL is available at http://chem2bio2rdf.org/owl. The document is available at http://chem2bio2owl.wikispaces.com.
NASA Technical Reports Server (NTRS)
Lee, Steven (Editor)
1987-01-01
The major topics covered were a discussion of the structure of relational data base systems and features of the Britton Lee Relational Data Base Management System (RDBMS); a discussion of the workshop's objectives, approach, and research scenarios; and an overview of the Atmospheres Node User's Guide, which details the datasets stored on the Britton Lee, the structure of the query and data analysis system, and examples of the exact menu screens encountered. Also discussed were experience with the system, review of the system performance, and a strategy to produce queries and performance data retrievals of mutual interest. The goals were defined as examining correlations between cloud occurrence, water vapor abundance, and surface properties.
A Modular Framework for Transforming Structured Data into HTML with Machine-Readable Annotations
NASA Astrophysics Data System (ADS)
Patton, E. W.; West, P.; Rozell, E.; Zheng, J.
2010-12-01
There is a plethora of web-based Content Management Systems (CMS) available for maintaining projects and data, i.a. However, each system varies in its capabilities and often content is stored separately and accessed via non-uniform web interfaces. Moving from one CMS to another (e.g., MediaWiki to Drupal) can be cumbersome, especially if a large quantity of data must be adapted to the new system. To standardize the creation, display, management, and sharing of project information, we have assembled a framework that uses existing web technologies to transform data provided by any service that supports the SPARQL Protocol and RDF Query Language (SPARQL) queries into HTML fragments, allowing it to be embedded in any existing website. The framework utilizes a two-tier XML Stylesheet Transformation (XSLT) that uses existing ontologies (e.g., Friend-of-a-Friend, Dublin Core) to interpret query results and render them as HTML documents. These ontologies can be used in conjunction with custom ontologies suited to individual needs (e.g., domain-specific ontologies for describing data records). Furthermore, this transformation process encodes machine-readable annotations, namely, the Resource Description Framework in attributes (RDFa), into the resulting HTML, so that capable parsers and search engines can extract the relationships between entities (e.g, people, organizations, datasets). To facilitate editing of content, the framework provides a web-based form system, mapping each query to a dynamically generated form that can be used to modify and create entities, while keeping the native data store up-to-date. This open framework makes it easy to duplicate data across many different sites, allowing researchers to distribute their data in many different online forums. In this presentation we will outline the structure of queries and the stylesheets used to transform them, followed by a brief walkthrough that follows the data from storage to human- and machine-accessible web page. We conclude with a discussion on content caching and steps toward performing queries across multiple domains.
SuperTarget and Matador: resources for exploring drug-target relationships.
Günther, Stefan; Kuhn, Michael; Dunkel, Mathias; Campillos, Monica; Senger, Christian; Petsalaki, Evangelia; Ahmed, Jessica; Urdiales, Eduardo Garcia; Gewiess, Andreas; Jensen, Lars Juhl; Schneider, Reinhard; Skoblo, Roman; Russell, Robert B; Bourne, Philip E; Bork, Peer; Preissner, Robert
2008-01-01
The molecular basis of drug action is often not well understood. This is partly because the very abundant and diverse information generated in the past decades on drugs is hidden in millions of medical articles or textbooks. Therefore, we developed a one-stop data warehouse, SuperTarget that integrates drug-related information about medical indication areas, adverse drug effects, drug metabolization, pathways and Gene Ontology terms of the target proteins. An easy-to-use query interface enables the user to pose complex queries, for example to find drugs that target a certain pathway, interacting drugs that are metabolized by the same cytochrome P450 or drugs that target the same protein but are metabolized by different enzymes. Furthermore, we provide tools for 2D drug screening and sequence comparison of the targets. The database contains more than 2500 target proteins, which are annotated with about 7300 relations to 1500 drugs; the vast majority of entries have pointers to the respective literature source. A subset of these drugs has been annotated with additional binding information and indirect interactions and is available as a separate resource called Matador. SuperTarget and Matador are available at http://insilico.charite.de/supertarget and http://matador.embl.de.
2013-01-01
Background Protein-protein interactions (PPIs) play a key role in understanding the mechanisms of cellular processes. The availability of interactome data has catalyzed the development of computational approaches to elucidate functional behaviors of proteins on a system level. Gene Ontology (GO) and its annotations are a significant resource for functional characterization of proteins. Because of wide coverage, GO data have often been adopted as a benchmark for protein function prediction on the genomic scale. Results We propose a computational approach, called M-Finder, for functional association pattern mining. This method employs semantic analytics to integrate the genome-wide PPIs with GO data. We also introduce an interactive web application tool that visualizes a functional association network linked to a protein specified by a user. The proposed approach comprises two major components. First, the PPIs that have been generated by high-throughput methods are weighted in terms of their functional consistency using GO and its annotations. We assess two advanced semantic similarity metrics which quantify the functional association level of each interacting protein pair. We demonstrate that these measures outperform the other existing methods by evaluating their agreement to other biological features, such as sequence similarity, the presence of common Pfam domains, and core PPIs. Second, the information flow-based algorithm is employed to discover a set of proteins functionally associated with the protein in a query and their links efficiently. This algorithm reconstructs a functional association network of the query protein. The output network size can be flexibly determined by parameters. Conclusions M-Finder provides a useful framework to investigate functional association patterns with any protein. This software will also allow users to perform further systematic analysis of a set of proteins for any specific function. It is available online at http://bionet.ecs.baylor.edu/mfinder PMID:24565382
Database technology and the management of multimedia data in the Mirror project
NASA Astrophysics Data System (ADS)
de Vries, Arjen P.; Blanken, H. M.
1998-10-01
Multimedia digital libraries require an open distributed architecture instead of a monolithic database system. In the Mirror project, we use the Monet extensible database kernel to manage different representation of multimedia objects. To maintain independence between content, meta-data, and the creation of meta-data, we allow distribution of data and operations using CORBA. This open architecture introduces new problems for data access. From an end user's perspective, the problem is how to search the available representations to fulfill an actual information need; the conceptual gap between human perceptual processes and the meta-data is too large. From a system's perspective, several representations of the data may semantically overlap or be irrelevant. We address these problems with an iterative query process and active user participating through relevance feedback. A retrieval model based on inference networks assists the user with query formulation. The integration of this model into the database design has two advantages. First, the user can query both the logical and the content structure of multimedia objects. Second, the use of different data models in the logical and the physical database design provides data independence and allows algebraic query optimization. We illustrate query processing with a music retrieval application.
JASSA: a comprehensive tool for prediction of SUMOylation sites and SIMs.
Beauclair, Guillaume; Bridier-Nahmias, Antoine; Zagury, Jean-François; Saïb, Ali; Zamborlini, Alessia
2015-11-01
Post-translational modification by the Small Ubiquitin-like Modifier (SUMO) proteins, a process termed SUMOylation, is involved in many fundamental cellular processes. SUMO proteins are conjugated to a protein substrate, creating an interface for the recruitment of cofactors harboring SUMO-interacting motifs (SIMs). Mapping both SUMO-conjugation sites and SIMs is required to study the functional consequence of SUMOylation. To define the best candidate sites for experimental validation we designed JASSA, a Joint Analyzer of SUMOylation site and SIMs. JASSA is a predictor that uses a scoring system based on a Position Frequency Matrix derived from the alignment of experimental SUMOylation sites or SIMs. Compared with existing web-tools, JASSA displays on par or better performances. Novel features were implemented towards a better evaluation of the prediction, including identification of database hits matching the query sequence and representation of candidate sites within the secondary structural elements and/or the 3D fold of the protein of interest, retrievable from deposited PDB files. JASSA is freely accessible at http://www.jassa.fr/. Website is implemented in PHP and MySQL, with all major browsers supported. guillaume.beauclair@inserm.fr Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
MIPS: analysis and annotation of proteins from whole genomes in 2005.
Mewes, H W; Frishman, D; Mayer, K F X; Münsterkötter, M; Noubibou, O; Pagel, P; Rattei, T; Oesterheld, M; Ruepp, A; Stümpflen, V
2006-01-01
The Munich Information Center for Protein Sequences (MIPS at the GSF), Neuherberg, Germany, provides resources related to genome information. Manually curated databases for several reference organisms are maintained. Several of these databases are described elsewhere in this and other recent NAR database issues. In a complementary effort, a comprehensive set of >400 genomes automatically annotated with the PEDANT system are maintained. The main goal of our current work on creating and maintaining genome databases is to extend gene centered information to information on interactions within a generic comprehensive framework. We have concentrated our efforts along three lines (i) the development of suitable comprehensive data structures and database technology, communication and query tools to include a wide range of different types of information enabling the representation of complex information such as functional modules or networks Genome Research Environment System, (ii) the development of databases covering computable information such as the basic evolutionary relations among all genes, namely SIMAP, the sequence similarity matrix and the CABiNet network analysis framework and (iii) the compilation and manual annotation of information related to interactions such as protein-protein interactions or other types of relations (e.g. MPCDB, MPPI, CYGD). All databases described and the detailed descriptions of our projects can be accessed through the MIPS WWW server (http://mips.gsf.de).
Microbial Interactions in Plants: Perspectives and Applications of Proteomics.
Imam, Jahangir; Shukla, Pratyoosh; Mandal, Nimai Prasad; Variar, Mukund
2017-01-01
The structure and function of proteins involved in plant-microbe interactions is investigated through large-scale proteomics technology in a complex biological sample. Since the whole genome sequences are now available for several plant species and microbes, proteomics study has become easier, accurate and huge amount of data can be generated and analyzed during plant-microbe interactions. Proteomics approaches are highly important and relevant in many studies and showed that only genomics approaches are not sufficient enough as much significant information are lost as the proteins and not the genes coding them are final product that is responsible for the observed phenotype. Novel approaches in proteomics are developing continuously enabling the study of the various aspects in arrangements and configuration of proteins and its functions. Its application is becoming more common and frequently used in plant-microbe interactions with the advancement in new technologies. They are more used for the portrayal of cell and extracellular destructiveness and pathogenicity variables delivered by pathogens. This distinguishes the protein level adjustments in host plants when infected with pathogens and advantageous partners. This review provides a brief overview of different proteomics technology which is currently available followed by their exploitation to study the plant-microbe interaction. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Martone, Maryann E.; Tran, Joshua; Wong, Willy W.; Sargis, Joy; Fong, Lisa; Larson, Stephen; Lamont, Stephan P.; Gupta, Amarnath; Ellisman, Mark H.
2008-01-01
Databases have become integral parts of data management, dissemination and mining in biology. At the Second Annual Conference on Electron Tomography, held in Amsterdam in 2001, we proposed that electron tomography data should be shared in a manner analogous to structural data at the protein and sequence scales. At that time, we outlined our progress in creating a database to bring together cell level imaging data across scales, The Cell Centered Database (CCDB). The CCDB was formally launched in 2002 as an on-line repository of high-resolution 3D light and electron microscopic reconstructions of cells and subcellular structures. It contains 2D, 3D and 4D structural and protein distribution information from confocal, multiphoton and electron microscopy, including correlated light and electron microscopy. Many of the data sets are derived from electron tomography of cells and tissues. In the five years since its debut, we have moved the CCDB from a prototype to a stable resource and expanded the scope of the project to include data management and knowledge engineering. Here we provide an update on the CCDB and how it is used by the scientific community. We also describe our work in developing additional knowledge tools, e.g., ontologies, for annotation and query of electron microscopic data. PMID:18054501
Christie, Andrew E.; Fontanilla, Tiana M.; Nesbit, Katherine T.; Lenz, Petra H.
2013-01-01
Diel vertical migration and seasonal diapause are critical life history events for the copepod Calanus finmarchicus. While much is known about these behaviors phenomenologically, little is known about their molecular underpinnings. Recent studies in insects suggest that some circadian genes/proteins also contribute to the establishment of seasonal diapause. Thus, it is possible that in Calanus these distinct timing regimes share some genetic components. To begin to address this possibility, we used the well-established Drosophila melanogaster circadian system as a reference for mining clock transcripts from a 200,000+ sequence Calanus transcriptome; the proteins encoded by the identified transcripts were also deduced and characterized. Sequences encoding homologs of the Drosophila core clock proteins CLOCK, CYCLE, PERIOD and TIMELESS were identified, as was one encoding CRYPTOCHROME 2, a core clock protein in ancestral insect systems, but absent in Drosophila. Calanus transcripts encoding proteins known to modulate the Drosophila core clock were also identified and characterized, e.g. CLOCKWORK ORANGE, DOUBLETIME, SHAGGY and VRILLE. Alignment and structural analyses of the deduced Calanus proteins with their Drosophila counterparts revealed extensive sequence conservation, particularly in functional domains. Interestingly, reverse BLAST analyses of these sequences against all arthropod proteins typically revealed non-Drosophila isoforms to be most similar to the Calanus queries. This, in combination with the presence of both CRYPTOCHROME 1 (a clock input pathway protein) and CRYPTOCHROME 2 in Calanus, suggests that the organization of the copepod circadian system is an ancestral one, more similar to that of insects like Danaus plexippus than to that of Drosophila. PMID:23727418
Marenco, Luis; Li, Yuli; Martone, Maryann E; Sternberg, Paul W; Shepherd, Gordon M; Miller, Perry L
2008-09-01
This paper describes a pilot query interface that has been constructed to help us explore a "concept-based" approach for searching the Neuroscience Information Framework (NIF). The query interface is concept-based in the sense that the search terms submitted through the interface are selected from a standardized vocabulary of terms (concepts) that are structured in the form of an ontology. The NIF contains three primary resources: the NIF Resource Registry, the NIF Document Archive, and the NIF Database Mediator. These NIF resources are very different in their nature and therefore pose challenges when designing a single interface from which searches can be automatically launched against all three resources simultaneously. The paper first discusses briefly several background issues involving the use of standardized biomedical vocabularies in biomedical information retrieval, and then presents a detailed example that illustrates how the pilot concept-based query interface operates. The paper concludes by discussing certain lessons learned in the development of the current version of the interface.
Hierarchical data security in a Query-By-Example interface for a shared database.
Taylor, Merwyn
2002-06-01
Whenever a shared database resource, containing critical patient data, is created, protecting the contents of the database is a high priority goal. This goal can be achieved by developing a Query-By-Example (QBE) interface, designed to access a shared database, and embedding within the QBE a hierarchical security module that limits access to the data. The security module ensures that researchers working in one clinic do not get access to data from another clinic. The security can be based on a flexible taxonomy structure that allows ordinary users to access data from individual clinics and super users to access data from all clinics. All researchers submit queries through the same interface and the security module processes the taxonomy and user identifiers to limit access. Using this system, two different users with different access rights can submit the same query and get different results thus reducing the need to create different interfaces for different clinics and access rights.
Li, Yuli; Martone, Maryann E.; Sternberg, Paul W.; Shepherd, Gordon M.; Miller, Perry L.
2009-01-01
This paper describes a pilot query interface that has been constructed to help us explore a “concept-based” approach for searching the Neuroscience Information Framework (NIF). The query interface is concept-based in the sense that the search terms submitted through the interface are selected from a standardized vocabulary of terms (concepts) that are structured in the form of an ontology. The NIF contains three primary resources: the NIF Resource Registry, the NIF Document Archive, and the NIF Database Mediator. These NIF resources are very different in their nature and therefore pose challenges when designing a single interface from which searches can be automatically launched against all three resources simultaneously. The paper first discusses briefly several background issues involving the use of standardized biomedical vocabularies in biomedical information retrieval, and then presents a detailed example that illustrates how the pilot concept-based query interface operates. The paper concludes by discussing certain lessons learned in the development of the current version of the interface. PMID:18953674
Protein interface classification by evolutionary analysis
2012-01-01
Background Distinguishing biologically relevant interfaces from lattice contacts in protein crystals is a fundamental problem in structural biology. Despite efforts towards the computational prediction of interface character, many issues are still unresolved. Results We present here a protein-protein interface classifier that relies on evolutionary data to detect the biological character of interfaces. The classifier uses a simple geometric measure, number of core residues, and two evolutionary indicators based on the sequence entropy of homolog sequences. Both aim at detecting differential selection pressure between interface core and rim or rest of surface. The core residues, defined as fully buried residues (>95% burial), appear to be fundamental determinants of biological interfaces: their number is in itself a powerful discriminator of interface character and together with the evolutionary measures it is able to clearly distinguish evolved biological contacts from crystal ones. We demonstrate that this definition of core residues leads to distinctively better results than earlier definitions from the literature. The stringent selection and quality filtering of structural and sequence data was key to the success of the method. Most importantly we demonstrate that a more conservative selection of homolog sequences - with relatively high sequence identities to the query - is able to produce a clearer signal than previous attempts. Conclusions An evolutionary approach like the one presented here is key to the advancement of the field, which so far was missing an effective method exploiting the evolutionary character of protein interfaces. Its coverage and performance will only improve over time thanks to the incessant growth of sequence databases. Currently our method reaches an accuracy of 89% in classifying interfaces of the Ponstingl 2003 datasets and it lends itself to a variety of useful applications in structural biology and bioinformatics. We made the corresponding software implementation available to the community as an easy-to-use graphical web interface at http://www.eppic-web.org. PMID:23259833
Wang, Lei; You, Zhu-Hong; Chen, Xing; Yan, Xin; Liu, Gang; Zhang, Wei
2018-01-01
Identification of interaction between drugs and target proteins plays an important role in discovering new drug candidates. However, through the experimental method to identify the drug-target interactions remain to be extremely time-consuming, expensive and challenging even nowadays. Therefore, it is urgent to develop new computational methods to predict potential drugtarget interactions (DTI). In this article, a novel computational model is developed for predicting potential drug-target interactions under the theory that each drug-target interaction pair can be represented by the structural properties from drugs and evolutionary information derived from proteins. Specifically, the protein sequences are encoded as Position-Specific Scoring Matrix (PSSM) descriptor which contains information of biological evolutionary and the drug molecules are encoded as fingerprint feature vector which represents the existence of certain functional groups or fragments. Four benchmark datasets involving enzymes, ion channels, GPCRs and nuclear receptors, are independently used for establishing predictive models with Rotation Forest (RF) model. The proposed method achieved the prediction accuracy of 91.3%, 89.1%, 84.1% and 71.1% for four datasets respectively. In order to make our method more persuasive, we compared our classifier with the state-of-theart Support Vector Machine (SVM) classifier. We also compared the proposed method with other excellent methods. Experimental results demonstrate that the proposed method is effective in the prediction of DTI, and can provide assistance for new drug research and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Design and application of a data-independent precursor and product ion repository.
Thalassinos, Konstantinos; Vissers, Johannes P C; Tenzer, Stefan; Levin, Yishai; Thompson, J Will; Daniel, David; Mann, Darrin; DeLong, Mark R; Moseley, M Arthur; America, Antoine H; Ottens, Andrew K; Cavey, Greg S; Efstathiou, Georgios; Scrivens, James H; Langridge, James I; Geromanos, Scott J
2012-10-01
The functional design and application of a data-independent LC-MS precursor and product ion repository for protein identification, quantification, and validation is conceptually described. The ion repository was constructed from the sequence search results of a broad range of discovery experiments investigating various tissue types of two closely related mammalian species. The relative high degree of similarity in protein complement, ion detection, and peptide and protein identification allows for the analysis of normalized precursor and product ion intensity values, as well as standardized retention times, creating a multidimensional/orthogonal queryable, qualitative, and quantitative space. Peptide ion map selection for identification and quantification is primarily based on replication and limited variation. The information is stored in a relational database and is used to create peptide- and protein-specific fragment ion maps that can be queried in a targeted fashion against the raw or time aligned ion detections. These queries can be conducted either individually or as groups, where the latter affords pathway and molecular machinery analysis of the protein complement. The presented results also suggest that peptide ionization and fragmentation efficiencies are highly conserved between experiments and practically independent of the analyzed biological sample when using similar instrumentation. Moreover, the data illustrate only minor variation in ionization efficiency with amino acid sequence substitutions occurring between species. Finally, the data and the presented results illustrate how LC-MS performance metrics can be extracted and utilized to ensure optimal performance of the employed analytical workflows.
2007-08-01
In this domain, queries typically show a deeply nested structure, which makes the semantic parsing task rather challenging , e.g.: What states border...only 80% of the GEOQUERY queries are semantically tractable, which shows that GEOQUERY is indeed a more challenging domain than ATIS. Note that none...a particularly challenging task, because of the inherent ambiguity of natural languages on both sides. It has inspired a large body of research. In
Retrieving high-resolution images over the Internet from an anatomical image database
NASA Astrophysics Data System (ADS)
Strupp-Adams, Annette; Henderson, Earl
1999-12-01
The Visible Human Data set is an important contribution to the national collection of anatomical images. To enhance the availability of these images, the National Library of Medicine has supported the design and development of a prototype object-oriented image database which imports, stores, and distributes high resolution anatomical images in both pixel and voxel formats. One of the key database modules is its client-server Internet interface. This Web interface provides a query engine with retrieval access to high-resolution anatomical images that range in size from 100KB for browser viewable rendered images, to 1GB for anatomical structures in voxel file formats. The Web query and retrieval client-server system is composed of applet GUIs, servlets, and RMI application modules which communicate with each other to allow users to query for specific anatomical structures, and retrieve image data as well as associated anatomical images from the database. Selected images can be downloaded individually as single files via HTTP or downloaded in batch-mode over the Internet to the user's machine through an applet that uses Netscape's Object Signing mechanism. The image database uses ObjectDesign's object-oriented DBMS, ObjectStore that has a Java interface. The query and retrieval systems has been tested with a Java-CDE window system, and on the x86 architecture using Windows NT 4.0. This paper describes the Java applet client search engine that queries the database; the Java client module that enables users to view anatomical images online; the Java application server interface to the database which organizes data returned to the user, and its distribution engine that allow users to download image files individually and/or in batch-mode.
Chellapandi, Paulchamy; Prisilla, Arokiyasamy
2017-01-01
Clostridium botulinum group III strains are able to produce cytotoxins, C2 toxin and C3 exotoxin, along with botulinum neurotoxin types C and D. C2 toxin and C3 exotoxin produced by this organism are the most important members of bacterial ADP-ribosyltransferase superfamily. Both toxins have distinct pathophysiological functions in the avian and mammalian hosts. The members of this superfamily transfer an ADP-ribose moiety of NAD+ to specific eukaryotic target proteins. The present review describes the structure, function and evolution aspects of these toxins with a special emphasis to the development of veterinary vaccines. C2 toxin is a binary toxin that consists of a catalytic subunit (C2I) and a translocation subunit (C2II). C2I component is structurally and functionally similar to the VIP2 and iota A toxin whereas C2II component shows a significant homology with the protective antigen from anthrax toxin and iota B. Unlike C2 toxin, C3 toxin is devoid of translocation/binding subunit. Extensive studies on their sequence-structure-function link spawn additional efforts to understand the catalytic mechanisms and target recognition. Structural and functional relationships with them are often determined by using evolutionary constraints as valuable biological measures. Enzyme-deficient mutants derived from these toxins have been used as drug/protein delivery systems in eukaryotic cells. Thus, current knowledge on their molecular diversity is a well-known perspective to design immunotoxin or subunit vaccine for C. botulinum infection. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor.
Kohany, Oleksiy; Gentles, Andrew J; Hankus, Lukasz; Jurka, Jerzy
2006-10-25
Repbase is a reference database of eukaryotic repetitive DNA, which includes prototypic sequences of repeats and basic information described in annotations. Updating and maintenance of the database requires specialized tools, which we have created and made available for use with Repbase, and which may be useful as a template for other curated databases. We describe the software tools RepbaseSubmitter and Censor, which are designed to facilitate updating and screening the content of Repbase. RepbaseSubmitter is a java-based interface for formatting and annotating Repbase entries. It eliminates many common formatting errors, and automates actions such as calculation of sequence lengths and composition, thus facilitating curation of Repbase sequences. In addition, it has several features for predicting protein coding regions in sequences; searching and including Pubmed references in Repbase entries; and searching the NCBI taxonomy database for correct inclusion of species information and taxonomic position. Censor is a tool to rapidly identify repetitive elements by comparison to known repeats. It uses WU-BLAST for speed and sensitivity, and can conduct DNA-DNA, DNA-protein, or translated DNA-translated DNA searches of genomic sequence. Defragmented output includes a map of repeats present in the query sequence, with the options to report masked query sequence(s), repeat sequences found in the query, and alignments. Censor and RepbaseSubmitter are available as both web-based services and downloadable versions. They can be found at http://www.girinst.org/repbase/submission.html (RepbaseSubmitter) and http://www.girinst.org/censor/index.php (Censor).
Gillet, Ludovic C.; Navarro, Pedro; Tate, Stephen; Röst, Hannes; Selevsek, Nathalie; Reiter, Lukas; Bonner, Ron; Aebersold, Ruedi
2012-01-01
Most proteomic studies use liquid chromatography coupled to tandem mass spectrometry to identify and quantify the peptides generated by the proteolysis of a biological sample. However, with the current methods it remains challenging to rapidly, consistently, reproducibly, accurately, and sensitively detect and quantify large fractions of proteomes across multiple samples. Here we present a new strategy that systematically queries sample sets for the presence and quantity of essentially any protein of interest. It consists of using the information available in fragment ion spectral libraries to mine the complete fragment ion maps generated using a data-independent acquisition method. For this study, the data were acquired on a fast, high resolution quadrupole-quadrupole time-of-flight (TOF) instrument by repeatedly cycling through 32 consecutive 25-Da precursor isolation windows (swaths). This SWATH MS acquisition setup generates, in a single sample injection, time-resolved fragment ion spectra for all the analytes detectable within the 400–1200 m/z precursor range and the user-defined retention time window. We show that suitable combinations of fragment ions extracted from these data sets are sufficiently specific to confidently identify query peptides over a dynamic range of 4 orders of magnitude, even if the precursors of the queried peptides are not detectable in the survey scans. We also show that queried peptides are quantified with a consistency and accuracy comparable with that of selected reaction monitoring, the gold standard proteomic quantification method. Moreover, targeted data extraction enables ad libitum quantification refinement and dynamic extension of protein probing by iterative re-mining of the once-and-forever acquired data sets. This combination of unbiased, broad range precursor ion fragmentation and targeted data extraction alleviates most constraints of present proteomic methods and should be equally applicable to the comprehensive analysis of other classes of analytes, beyond proteomics. PMID:22261725
Lasorsa, Alessia; Natile, Giovanni; Rosato, Antonio; Tadini-Buoninsegni, Francesco; Arnesano, Fabio
2018-02-12
Resistance, either at the onset of the treatment or developed after an initial positive response, is a major limitation of antitumor therapy. In the case of platinum- based drugs, copper transporters have been found to interfere with drug trafficking by facilitating the import or favoring the platinum export and inactivation. The use of powerful spectroscopic, spectrometric and computational methods has allowed a deep structural insight into the mode of interaction of platinum drugs with the metal-binding domains of the transporter proteins. This review article focuses on the mode in which platinum drugs can compete with copper ion for binding to transport proteins and consequent structural and biological effects. Three types of transporters are discussed in detail: copper transporter 1 (Ctr1), the major responsible for Cu+ uptake; antioxidant-1 copper chaperone (Atox1), responsible for copper transfer within the cytoplasm; and copper ATPases (ATP7A/B), responsible for copper export into specific subcellular compartments and outside the cell. The body of knowledge summarized in this review can help in shaping current chemotherapy to optimize the efficacy of platinum drugs (particularly in relation to resistance) and to mitigate adverse effects on copper metabolism. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
HIPPI: highly accurate protein family classification with ensembles of HMMs.
Nguyen, Nam-Phuong; Nute, Michael; Mirarab, Siavash; Warnow, Tandy
2016-11-11
Given a new biological sequence, detecting membership in a known family is a basic step in many bioinformatics analyses, with applications to protein structure and function prediction and metagenomic taxon identification and abundance profiling, among others. Yet family identification of sequences that are distantly related to sequences in public databases or that are fragmentary remains one of the more difficult analytical problems in bioinformatics. We present a new technique for family identification called HIPPI (Hierarchical Profile Hidden Markov Models for Protein family Identification). HIPPI uses a novel technique to represent a multiple sequence alignment for a given protein family or superfamily by an ensemble of profile hidden Markov models computed using HMMER. An evaluation of HIPPI on the Pfam database shows that HIPPI has better overall precision and recall than blastp, HMMER, and pipelines based on HHsearch, and maintains good accuracy even for fragmentary query sequences and for protein families with low average pairwise sequence identity, both conditions where other methods degrade in accuracy. HIPPI provides accurate protein family identification and is robust to difficult model conditions. Our results, combined with observations from previous studies, show that ensembles of profile Hidden Markov models can better represent multiple sequence alignments than a single profile Hidden Markov model, and thus can improve downstream analyses for various bioinformatic tasks. Further research is needed to determine the best practices for building the ensemble of profile Hidden Markov models. HIPPI is available on GitHub at https://github.com/smirarab/sepp .
PropBase Query Layer: a single portal to UK subsurface physical property databases
NASA Astrophysics Data System (ADS)
Kingdon, Andrew; Nayembil, Martin L.; Richardson, Anne E.; Smith, A. Graham
2013-04-01
Until recently, the delivery of geological information for industry and public was achieved by geological mapping. Now pervasively available computers mean that 3D geological models can deliver realistic representations of the geometric location of geological units, represented as shells or volumes. The next phase of this process is to populate these with physical properties data that describe subsurface heterogeneity and its associated uncertainty. Achieving this requires capture and serving of physical, hydrological and other property information from diverse sources to populate these models. The British Geological Survey (BGS) holds large volumes of subsurface property data, derived both from their own research data collection and also other, often commercially derived data sources. This can be voxelated to incorporate this data into the models to demonstrate property variation within the subsurface geometry. All property data held by BGS has for many years been stored in relational databases to ensure their long-term continuity. However these have, by necessity, complex structures; each database contains positional reference data and model information, and also metadata such as sample identification information and attributes that define the source and processing. Whilst this is critical to assessing these analyses, it also hugely complicates the understanding of variability of the property under assessment and requires multiple queries to study related datasets making extracting physical properties from these databases difficult. Therefore the PropBase Query Layer has been created to allow simplified aggregation and extraction of all related data and its presentation of complex data in simple, mostly denormalized, tables which combine information from multiple databases into a single system. The structure from each relational database is denormalized in a generalised structure, so that each dataset can be viewed together in a common format using a simple interface. Data are re-engineered to facilitate easy loading. The query layer structure comprises tables, procedures, functions, triggers, views and materialised views. The structure contains a main table PRB_DATA which contains all of the data with the following attribution: • a unique identifier • the data source • the unique identifier from the parent database for traceability • the 3D location • the property type • the property value • the units • necessary qualifiers • precision information and an audit trail Data sources, property type and units are constrained by dictionaries, a key component of the structure which defines what properties and inheritance hierarchies are to be coded and also guides the process as to what and how these are extracted from the structure. Data types served by the Query Layer include site investigation derived geotechnical data, hydrogeology datasets, regional geochemistry, geophysical logs as well as lithological and borehole metadata. The size and complexity of the data sets with multiple parent structures requires a technically robust approach to keep the layer synchronised. This is achieved through Oracle procedures written in PL/SQL containing the logic required to carry out the data manipulation (inserts, updates, deletes) to keep the layer synchronised with the underlying databases either as regular scheduled jobs (weekly, monthly etc) or invoked on demand. The PropBase Query Layer's implementation has enabled rapid data discovery, visualisation and interpretation of geological data with greater ease, simplifying the parametrisation of 3D model volumes and facilitating the study of intra-unit heterogeneity.
A new relational database structure and online interface for the HITRAN database
NASA Astrophysics Data System (ADS)
Hill, Christian; Gordon, Iouli E.; Rothman, Laurence S.; Tennyson, Jonathan
2013-11-01
A new format for the HITRAN database is proposed. By storing the line-transition data in a number of linked tables described by a relational database schema, it is possible to overcome the limitations of the existing format, which have become increasingly apparent over the last few years as new and more varied data are being used by radiative-transfer models. Although the database in the new format can be searched using the well-established Structured Query Language (SQL), a web service, HITRANonline, has been deployed to allow users to make most common queries of the database using a graphical user interface in a web page. The advantages of the relational form of the database to ensuring data integrity and consistency are explored, and the compatibility of the online interface with the emerging standards of the Virtual Atomic and Molecular Data Centre (VAMDC) project is discussed. In particular, the ability to access HITRAN data using a standard query language from other websites, command line tools and from within computer programs is described.
An alternative database approach for management of SNOMED CT and improved patient data queries.
Campbell, W Scott; Pedersen, Jay; McClay, James C; Rao, Praveen; Bastola, Dhundy; Campbell, James R
2015-10-01
SNOMED CT is the international lingua franca of terminologies for human health. Based in Description Logics (DL), the terminology enables data queries that incorporate inferences between data elements, as well as, those relationships that are explicitly stated. However, the ontologic and polyhierarchical nature of the SNOMED CT concept model make it difficult to implement in its entirety within electronic health record systems that largely employ object oriented or relational database architectures. The result is a reduction of data richness, limitations of query capability and increased systems overhead. The hypothesis of this research was that a graph database (graph DB) architecture using SNOMED CT as the basis for the data model and subsequently modeling patient data upon the semantic core of SNOMED CT could exploit the full value of the terminology to enrich and support advanced data querying capability of patient data sets. The hypothesis was tested by instantiating a graph DB with the fully classified SNOMED CT concept model. The graph DB instance was tested for integrity by calculating the transitive closure table for the SNOMED CT hierarchy and comparing the results with transitive closure tables created using current, validated methods. The graph DB was then populated with 461,171 anonymized patient record fragments and over 2.1 million associated SNOMED CT clinical findings. Queries, including concept negation and disjunction, were then run against the graph database and an enterprise Oracle relational database (RDBMS) of the same patient data sets. The graph DB was then populated with laboratory data encoded using LOINC, as well as, medication data encoded with RxNorm and complex queries performed using LOINC, RxNorm and SNOMED CT to identify uniquely described patient populations. A graph database instance was successfully created for two international releases of SNOMED CT and two US SNOMED CT editions. Transitive closure tables and descriptive statistics generated using the graph database were identical to those using validated methods. Patient queries produced identical patient count results to the Oracle RDBMS with comparable times. Database queries involving defining attributes of SNOMED CT concepts were possible with the graph DB. The same queries could not be directly performed with the Oracle RDBMS representation of the patient data and required the creation and use of external terminology services. Further, queries of undefined depth were successful in identifying unknown relationships between patient cohorts. The results of this study supported the hypothesis that a patient database built upon and around the semantic model of SNOMED CT was possible. The model supported queries that leveraged all aspects of the SNOMED CT logical model to produce clinically relevant query results. Logical disjunction and negation queries were possible using the data model, as well as, queries that extended beyond the structural IS_A hierarchy of SNOMED CT to include queries that employed defining attribute-values of SNOMED CT concepts as search parameters. As medical terminologies, such as SNOMED CT, continue to expand, they will become more complex and model consistency will be more difficult to assure. Simultaneously, consumers of data will increasingly demand improvements to query functionality to accommodate additional granularity of clinical concepts without sacrificing speed. This new line of research provides an alternative approach to instantiating and querying patient data represented using advanced computable clinical terminologies. Copyright © 2015 Elsevier Inc. All rights reserved.
Unstructured medical image query using big data - An epilepsy case study.
Istephan, Sarmad; Siadat, Mohammad-Reza
2016-02-01
Big data technologies are critical to the medical field which requires new frameworks to leverage them. Such frameworks would benefit medical experts to test hypotheses by querying huge volumes of unstructured medical data to provide better patient care. The objective of this work is to implement and examine the feasibility of having such a framework to provide efficient querying of unstructured data in unlimited ways. The feasibility study was conducted specifically in the epilepsy field. The proposed framework evaluates a query in two phases. In phase 1, structured data is used to filter the clinical data warehouse. In phase 2, feature extraction modules are executed on the unstructured data in a distributed manner via Hadoop to complete the query. Three modules have been created, volume comparer, surface to volume conversion and average intensity. The framework allows for user-defined modules to be imported to provide unlimited ways to process the unstructured data hence potentially extending the application of this framework beyond epilepsy field. Two types of criteria were used to validate the feasibility of the proposed framework - the ability/accuracy of fulfilling an advanced medical query and the efficiency that Hadoop provides. For the first criterion, the framework executed an advanced medical query that spanned both structured and unstructured data with accurate results. For the second criterion, different architectures were explored to evaluate the performance of various Hadoop configurations and were compared to a traditional Single Server Architecture (SSA). The surface to volume conversion module performed up to 40 times faster than the SSA (using a 20 node Hadoop cluster) and the average intensity module performed up to 85 times faster than the SSA (using a 40 node Hadoop cluster). Furthermore, the 40 node Hadoop cluster executed the average intensity module on 10,000 models in 3h which was not even practical for the SSA. The current study is limited to epilepsy field and further research and more feature extraction modules are required to show its applicability in other medical domains. The proposed framework advances data-driven medicine by unleashing the content of unstructured medical data in an efficient and unlimited way to be harnessed by medical experts. Copyright © 2015 Elsevier Inc. All rights reserved.
Flandrois, Jean-Pierre; Lina, Gérard; Dumitrescu, Oana
2014-04-14
Tuberculosis is an infectious bacterial disease caused by Mycobacterium tuberculosis. It remains a major health threat, killing over one million people every year worldwide. An early antibiotic therapy is the basis of the treatment, and the emergence and spread of multidrug and extensively drug-resistant mutant strains raise significant challenges. As these bacteria grow very slowly, drug resistance mutations are currently detected using molecular biology techniques. Resistance mutations are identified by sequencing the resistance-linked genes followed by a comparison with the literature data. The only online database is the TB Drug Resistance Mutation database (TBDReaM database); however, it requires mutation detection before use, and its interrogation is complex due to its loose syntax and grammar. The MUBII-TB-DB database is a simple, highly structured text-based database that contains a set of Mycobacterium tuberculosis mutations (DNA and proteins) occurring at seven loci: rpoB, pncA, katG; mabA(fabG1)-inhA, gyrA, gyrB, and rrs. Resistance mutation data were extracted after the systematic review of MEDLINE referenced publications before March 2013. MUBII analyzes the query sequence obtained by PCR-sequencing using two parallel strategies: i) a BLAST search against a set of previously reconstructed mutated sequences and ii) the alignment of the query sequences (DNA and its protein translation) with the wild-type sequences. The post-treatment includes the extraction of the aligned sequences together with their descriptors (position and nature of mutations). The whole procedure is performed using the internet. The results are graphs (alignments) and text (description of the mutation, therapeutic significance). The system is quick and easy to use, even for technicians without bioinformatics training. MUBII-TB-DB is a structured database of the mutations occurring at seven loci of major therapeutic value in tuberculosis management. Moreover, the system provides interpretation of the mutations in biological and therapeutic terms and can evolve by the addition of newly described mutations. Its goal is to provide easy and comprehensive access through a client-server model over the Web to an up-to-date database of mutations that lead to the resistance of M. tuberculosis to antibiotics.
Troshin, Peter V; Procter, James B; Sherstnev, Alexander; Barton, Daniel L; Madeira, Fábio; Barton, Geoffrey J
2018-06-01
JABAWS 2.2 is a computational framework that simplifies the deployment of web services for Bioinformatics. In addition to the five multiple sequence alignment (MSA) algorithms in JABAWS 1.0, JABAWS 2.2 includes three additional MSA programs (Clustal Omega, MSAprobs, GLprobs), four protein disorder prediction methods (DisEMBL, IUPred, Ronn, GlobPlot), 18 measures of protein conservation as implemented in AACon, and RNA secondary structure prediction by the RNAalifold program. JABAWS 2.2 can be deployed on a variety of in-house or hosted systems. JABAWS 2.2 web services may be accessed from the Jalview multiple sequence analysis workbench (Version 2.8 and later), as well as directly via the JABAWS command line interface (CLI) client. JABAWS 2.2 can be deployed on a local virtual server as a Virtual Appliance (VA) or simply as a Web Application Archive (WAR) for private use. Improvements in JABAWS 2.2 also include simplified installation and a range of utility tools for usage statistics collection, and web services querying and monitoring. The JABAWS CLI client has been updated to support all the new services and allow integration of JABAWS 2.2 services into conventional scripts. A public JABAWS 2 server has been in production since December 2011 and served over 800 000 analyses for users worldwide. JABAWS 2.2 is made freely available under the Apache 2 license and can be obtained from: http://www.compbio.dundee.ac.uk/jabaws. g.j.barton@dundee.ac.uk.
Geographic Video 3d Data Model And Retrieval
NASA Astrophysics Data System (ADS)
Han, Z.; Cui, C.; Kong, Y.; Wu, H.
2014-04-01
Geographic video includes both spatial and temporal geographic features acquired through ground-based or non-ground-based cameras. With the popularity of video capture devices such as smartphones, the volume of user-generated geographic video clips has grown significantly and the trend of this growth is quickly accelerating. Such a massive and increasing volume poses a major challenge to efficient video management and query. Most of the today's video management and query techniques are based on signal level content extraction. They are not able to fully utilize the geographic information of the videos. This paper aimed to introduce a geographic video 3D data model based on spatial information. The main idea of the model is to utilize the location, trajectory and azimuth information acquired by sensors such as GPS receivers and 3D electronic compasses in conjunction with video contents. The raw spatial information is synthesized to point, line, polygon and solid according to the camcorder parameters such as focal length and angle of view. With the video segment and video frame, we defined the three categories geometry object using the geometry model of OGC Simple Features Specification for SQL. We can query video through computing the spatial relation between query objects and three categories geometry object such as VFLocation, VSTrajectory, VSFOView and VFFovCone etc. We designed the query methods using the structured query language (SQL) in detail. The experiment indicate that the model is a multiple objective, integration, loosely coupled, flexible and extensible data model for the management of geographic stereo video.
Risch, John S [Kennewick, WA; Dowson, Scott T [West Richland, WA; Hart, Michelle L [Richland, WA; Hatley, Wes L [Kennewick, WA
2008-05-13
A method of displaying correlations among information objects comprises receiving a query against a database; obtaining a query result set; and generating a visualization representing the components of the result set, the visualization including one of a plane and line to represent a data field, nodes representing data values, and links showing correlations among fields and values. Other visualization methods and apparatus are disclosed.
Risch, John S [Kennewick, WA; Dowson, Scott T [West Richland, WA
2012-03-06
A method of displaying correlations among information objects includes receiving a query against a database; obtaining a query result set; and generating a visualization representing the components of the result set, the visualization including one of a plane and line to represent a data field, nodes representing data values, and links showing correlations among fields and values. Other visualization methods and apparatus are disclosed.
BP Spill Sampling and Monitoring Data
This dataset analyzes waste from the the British Petroleum Deepwater Horizon Rig Explosion Emergency Response, providing opportunity to query data sets by metadata criteria and find resulting raw datasets in CSV format.The data query tool allows users to download EPA's air, water and sediment sampling and monitoring data that has been collected in response to the BP oil spill. All sampling and monitoring data that has been collected to date is available for download as raw structured data.The query tools enables CSV file creation to be refined based on the following search criteria: date range (between April 28, 2010 and 9/29/2010); location by zip, city, or county; media (solid waste, weathered oil, air, surface water, liquid waste, tar, sediment, water); substance categories (based on media selection) and substances (based on substance category selection).
Pont, Frédéric; Fournié, Jean Jacques
2010-03-01
MS, the reference technology for proteomics, routinely produces large numbers of protein lists whose fast comparison would prove very useful. Unfortunately, most softwares only allow comparisons of two to three lists at once. We introduce here nwCompare, a simple tool for n-way comparison of several protein lists without any query language, and exemplify its use with differential and shared cancer cell proteomes. As the software compares character strings, it can be applied to any type of data mining, such as genomic or metabolomic datalists.
Hynes, Denise M; Weddle, Timothy; Smith, Nina; Whittier, Erika; Atkins, David; Francis, Joseph
2010-01-01
As the Department of Veterans Affairs (VA) Health Services Research and Development Service's Quality Enhancement Research Initiative (QUERI) has progressed, health information technology (HIT) has occupied a crucial role in implementation research projects. We evaluated the role of HIT in VA QUERI implementation research, including HIT use and development, the contributions implementation research has made to HIT development, and HIT-related barriers and facilitators to implementation research. Key informants from nine disease-specific QUERI Centers. Documentation analysis of 86 implementation project abstracts followed up by semi-structured interviews with key informants from each of the nine QUERI centers. We used qualitative and descriptive analyses. We found: (1) HIT provided data and information to facilitate implementation research, (2) implementation research helped to further HIT development in a variety of uses including the development of clinical decision support systems (23 of 86 implementation research projects), and (3) common HIT barriers to implementation research existed but could be overcome by collaborations with clinical and administrative leadership. Our review of the implementation research progress in the VA revealed interdependency on an HIT infrastructure and research-based development. Collaboration with multiple stakeholders is a key factor in successful use and development of HIT in implementation research efforts and in advancing evidence-based practice.
PROTICdb: a web-based application to store, track, query, and compare plant proteome data.
Ferry-Dumazet, Hélène; Houel, Gwenn; Montalent, Pierre; Moreau, Luc; Langella, Olivier; Negroni, Luc; Vincent, Delphine; Lalanne, Céline; de Daruvar, Antoine; Plomion, Christophe; Zivy, Michel; Joets, Johann
2005-05-01
PROTICdb is a web-based application, mainly designed to store and analyze plant proteome data obtained by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and mass spectrometry (MS). The purposes of PROTICdb are (i) to store, track, and query information related to proteomic experiments, i.e., from tissue sampling to protein identification and quantitative measurements, and (ii) to integrate information from the user's own expertise and other sources into a knowledge base, used to support data interpretation (e.g., for the determination of allelic variants or products of post-translational modifications). Data insertion into the relational database of PROTICdb is achieved either by uploading outputs of image analysis and MS identification software, or by filling web forms. 2-D PAGE annotated maps can be displayed, queried, and compared through a graphical interface. Links to external databases are also available. Quantitative data can be easily exported in a tabulated format for statistical analyses. PROTICdb is based on the Oracle or the PostgreSQL Database Management System and is freely available upon request at the following URL: http://moulon.inra.fr/ bioinfo/PROTICdb.
Kawazoe, Yoshimasa; Imai, Takeshi; Ohe, Kazuhiko
2016-04-05
Health level seven version 2.5 (HL7 v2.5) is a widespread messaging standard for information exchange between clinical information systems. By applying Semantic Web technologies for handling HL7 v2.5 messages, it is possible to integrate large-scale clinical data with life science knowledge resources. Showing feasibility of a querying method over large-scale resource description framework (RDF)-ized HL7 v2.5 messages using publicly available drug databases. We developed a method to convert HL7 v2.5 messages into the RDF. We also converted five kinds of drug databases into RDF and provided explicit links between the corresponding items among them. With those linked drug data, we then developed a method for query expansion to search the clinical data using semantic information on drug classes along with four types of temporal patterns. For evaluation purpose, medication orders and laboratory test results for a 3-year period at the University of Tokyo Hospital were used, and the query execution times were measured. Approximately 650 million RDF triples for medication orders and 790 million RDF triples for laboratory test results were converted. Taking three types of query in use cases for detecting adverse events of drugs as an example, we confirmed these queries were represented in SPARQL Protocol and RDF Query Language (SPARQL) using our methods and comparison with conventional query expressions were performed. The measurement results confirm that the query time is feasible and increases logarithmically or linearly with the amount of data and without diverging. The proposed methods enabled query expressions that separate knowledge resources and clinical data, thereby suggesting the feasibility for improving the usability of clinical data by enhancing the knowledge resources. We also demonstrate that when HL7 v2.5 messages are automatically converted into RDF, searches are still possible through SPARQL without modifying the structure. As such, the proposed method benefits not only our hospitals, but also numerous hospitals that handle HL7 v2.5 messages. Our approach highlights a potential of large-scale data federation techniques to retrieve clinical information, which could be applied as applications of clinical intelligence to improve clinical practices, such as adverse drug event monitoring and cohort selection for a clinical study as well as discovering new knowledge from clinical information.
Hevener, Kirk E.; Mehboob, Shahila; Su, Pin-Chih; Truong, Kent; Boci, Teuta; Deng, Jiangping; Ghassemi, Mahmood; Cook, James L.; Johnson, Michael E.
2011-01-01
Enoyl-acyl carrier protein (ACP) reductase, FabI, is a key enzyme in the bacterial fatty acid biosynthesis pathway (FAS II). FabI is an NADH-dependent oxidoreductase that acts to reduce enoyl-ACP substrates in a final step of the pathway. The absence of this enzyme in humans makes it an attractive target for the development of new antibacterial agents. FabI is known to be unresponsive to structure-based design efforts due to a high degree of induced fit and a mobile flexible loop encompassing the active site. Here we discuss the development, validation, and careful application of a ligand-based virtual screen used for the identification of novel inhibitors of the Francisella tularensis FabI target. In this study, four known classes of FabI inhibitors were used as templates for virtual screens that involved molecular shape and electrostatic matching. The program ROCS was used to search a high-throughput screening library for compounds that matched any of the four molecular shape queries. Matching compounds were further refined using the program EON, which compares and scores compounds by matching electrostatic properties. Using these techniques, 50 compounds were selected, ordered, and tested. The tested compounds possessed novel chemical scaffolds when compared to the input query compounds. Several hits with low micromolar activity were identified and follow-up scaffold-based searches resulted in the identification of a lead series with sub-micromolar enzyme inhibition, high ligand efficiency, and a novel scaffold. Additionally, one of the most active compounds showed promising whole-cell antibacterial activity against several Gram-positive and Gram-negative species, including the target pathogen. The results of a preliminary structure-activity relationship analysis are presented. PMID:22098466
SuperTarget goes quantitative: update on drug–target interactions
Hecker, Nikolai; Ahmed, Jessica; von Eichborn, Joachim; Dunkel, Mathias; Macha, Karel; Eckert, Andreas; Gilson, Michael K.; Bourne, Philip E.; Preissner, Robert
2012-01-01
There are at least two good reasons for the on-going interest in drug–target interactions: first, drug-effects can only be fully understood by considering a complex network of interactions to multiple targets (so-called off-target effects) including metabolic and signaling pathways; second, it is crucial to consider drug-target-pathway relations for the identification of novel targets for drug development. To address this on-going need, we have developed a web-based data warehouse named SuperTarget, which integrates drug-related information associated with medical indications, adverse drug effects, drug metabolism, pathways and Gene Ontology (GO) terms for target proteins. At present, the updated database contains >6000 target proteins, which are annotated with >330 000 relations to 196 000 compounds (including approved drugs); the vast majority of interactions include binding affinities and pointers to the respective literature sources. The user interface provides tools for drug screening and target similarity inclusion. A query interface enables the user to pose complex queries, for example, to find drugs that target a certain pathway, interacting drugs that are metabolized by the same cytochrome P450 or drugs that target proteins within a certain affinity range. SuperTarget is available at http://bioinformatics.charite.de/supertarget. PMID:22067455
msBiodat analysis tool, big data analysis for high-throughput experiments.
Muñoz-Torres, Pau M; Rokć, Filip; Belužic, Robert; Grbeša, Ivana; Vugrek, Oliver
2016-01-01
Mass spectrometry (MS) are a group of a high-throughput techniques used to increase knowledge about biomolecules. They produce a large amount of data which is presented as a list of hundreds or thousands of proteins. Filtering those data efficiently is the first step for extracting biologically relevant information. The filtering may increase interest by merging previous data with the data obtained from public databases, resulting in an accurate list of proteins which meet the predetermined conditions. In this article we present msBiodat Analysis Tool, a web-based application thought to approach proteomics to the big data analysis. With this tool, researchers can easily select the most relevant information from their MS experiments using an easy-to-use web interface. An interesting feature of msBiodat analysis tool is the possibility of selecting proteins by its annotation on Gene Ontology using its Gene Id, ensembl or UniProt codes. The msBiodat analysis tool is a web-based application that allows researchers with any programming experience to deal with efficient database querying advantages. Its versatility and user-friendly interface makes easy to perform fast and accurate data screening by using complex queries. Once the analysis is finished, the result is delivered by e-mail. msBiodat analysis tool is freely available at http://msbiodata.irb.hr.
MitoMiner: a data warehouse for mitochondrial proteomics data
Smith, Anthony C.; Blackshaw, James A.; Robinson, Alan J.
2012-01-01
MitoMiner (http://mitominer.mrc-mbu.cam.ac.uk/) is a data warehouse for the storage and analysis of mitochondrial proteomics data gathered from publications of mass spectrometry and green fluorescent protein tagging studies. In MitoMiner, these data are integrated with data from UniProt, Gene Ontology, Online Mendelian Inheritance in Man, HomoloGene, Kyoto Encyclopaedia of Genes and Genomes and PubMed. The latest release of MitoMiner stores proteomics data sets from 46 studies covering 11 different species from eumetazoa, viridiplantae, fungi and protista. MitoMiner is implemented by using the open source InterMine data warehouse system, which provides a user interface allowing users to upload data for analysis, personal accounts to store queries and results and enables queries of any data in the data model. MitoMiner also provides lists of proteins for use in analyses, including the new MitoMiner mitochondrial proteome reference sets that specify proteins with substantial experimental evidence for mitochondrial localization. As further mitochondrial proteomics data sets from normal and diseased tissue are published, MitoMiner can be used to characterize the variability of the mitochondrial proteome between tissues and investigate how changes in the proteome may contribute to mitochondrial dysfunction and mitochondrial-associated diseases such as cancer, neurodegenerative diseases, obesity, diabetes, heart failure and the ageing process. PMID:22121219
Molecular Dynamics Simulations, Challenges and Opportunities: A Biologist's Prospective.
Kumari, Indu; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf
2017-08-30
Molecular dynamics (MD) is a computational technique which is used to study biomolecules in virtual environment. Each of the constituent atoms represents a particle and hence the biomolecule embodies a multi-particle mechanical system analyzed within a simulation box during MD analysis. The potential energies of the atoms are explained by a mathematical expression consisting of different forces and space parameters. There are various software and force fields that have been developed for MD studies of the biomolecules. MD analysis has unravelled the various biological mechanisms (protein folding/unfolding, protein-small molecule interactions, protein-protein interactions, DNA/RNA-protein interactions, proteins embedded in membrane, lipid-lipid interactions, drug transport etc.) operating at the atomic and molecular levels. However, there are still some parameters including torsions in amino acids, carbohydrates (whose structure is extended and not well defined like that of proteins) and single stranded nucleic acids for which the force fields need further improvement, although there are several workers putting in constant efforts in these directions. The existing force fields are not efficient for studying the crowded environment inside the cells, since these interactions involve multiple factors in real time. Therefore, the improved force fields may provide the opportunities for their wider applications on the complex biosystems in diverse cellular conditions. In conclusion, the intervention of MD in the basic sciences involving interdisciplinary approaches will be helpful for understanding many fundamental biological and physiological processes at the molecular levels that may be further applied in various fields including biotechnology, fisheries, sustainable agriculture and biomedical research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
A Focus on the Beneficial Effects of Alpha Synuclein and a Re-Appraisal of Synucleinopathies.
Ryskalin, Larisa; Busceti, Carla L; Limanaqi, Fiona; Biagioni, Francesca; Gambardella, Stefano; Fornai, Francesco
2018-01-01
Alpha synuclein (α-syn) belongs to a class of proteins which are commonly considered to play a detrimental role in neuronal survival. This assumption is based on the occurrence of a severe neuronal degeneration in patients carrying a multiplication of the α-syn gene (SNCA) and in a variety of experimental models, where overexpression of α-syn leads to cell death and neurological impairment. In these conditions, a higher amount of normally structured α-syn produces a damage, which is even worse compared with that produced by α-syn owning an abnormal structure (as occurring following point gene mutations). In line with this, knocking out the expression of α-syn is reported to protect from specific neurotoxins such as 1-methyl, 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP). In the present review we briefly discuss these well-known detrimental effects but we focus on findings showing that, in specific conditions α-syn is beneficial for cell survival. This occurs during methamphetamine intoxication which is counteracted by endogenous α-syn. Similarly, the dysfunction of the chaperone cysteine-string protein- alpha leads to cell pathology which is counteracted by over-expressing α-syn. In line with this, an increased expression of α-syn protects against oxidative damage produced by dopamine. Remarkably, when the lack of α-syn is combined with a depletion of β- and γ- synucleins, alterations in brain structure and function occur. This review tries to balance the evidence showing a beneficial effect with the bulk of data reporting a detrimental effect of endogenous α-syn. The specific role of α-syn as a chaperone protein is discussed to explain such a dual effect. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Cao, HuanHuan; Zhang, YuHang; Zhao, Jia; Zhu, Liucun; Wang, Yi; Li, JiaRui; Feng, Yuan-Ming; Zhang, Ning
2017-01-01
Ebola hemorrhagic fever (EHF) is caused by Ebola virus (EBOV). It is reported that human could be infected by EBOV with a high fatality rate. However, association factors between EBOV and host still tend to be ambiguous. According to the "guilt by association" (GBA) principle, proteins interacting with each other are very likely to function similarly or the same. Based on this assumption, we tried to obtain EBOV infection-related human genes in a protein-protein interaction network using Dijkstra algorithm. We hope it could contribute to the discovery of novel effective treatments. Finally, 15 genes were selected as potential EBOV infection-related human genes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues.
El-Manzalawy, Yasser; Abbas, Mostafa; Malluhi, Qutaibah; Honavar, Vasant
2016-01-01
A wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses are mediated by RNA-protein interactions. However, experimental determination of the structures of protein-RNA complexes is expensive and technically challenging. Hence, a number of computational tools have been developed for predicting protein-RNA interfaces. Some of the state-of-the-art protein-RNA interface predictors rely on position-specific scoring matrix (PSSM)-based encoding of the protein sequences. The computational efforts needed for generating PSSMs severely limits the practical utility of protein-RNA interface prediction servers. In this work, we experiment with two approaches, random sampling and sequence similarity reduction, for extracting a representative reference database of protein sequences from more than 50 million protein sequences in UniRef100. Our results suggest that random sampled databases produce better PSSM profiles (in terms of the number of hits used to generate the profile and the distance of the generated profile to the corresponding profile generated using the entire UniRef100 data as well as the accuracy of the machine learning classifier trained using these profiles). Based on our results, we developed FastRNABindR, an improved version of RNABindR for predicting protein-RNA interface residues using PSSM profiles generated using 1% of the UniRef100 sequences sampled uniformly at random. To the best of our knowledge, FastRNABindR is the only protein-RNA interface residue prediction online server that requires generation of PSSM profiles for query sequences and accepts hundreds of protein sequences per submission. Our approach for determining the optimal BLAST database for a protein-RNA interface residue classification task has the potential of substantially speeding up, and hence increasing the practical utility of, other amino acid sequence based predictors of protein-protein and protein-DNA interfaces.
Semantics-Based Intelligent Indexing and Retrieval of Digital Images - A Case Study
NASA Astrophysics Data System (ADS)
Osman, Taha; Thakker, Dhavalkumar; Schaefer, Gerald
The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they typically rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this chapter we present a semantically enabled image annotation and retrieval engine that is designed to satisfy the requirements of commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as presenting our initial thoughts on exploiting lexical databases for explicit semantic-based query expansion.
Hripcsak, George; Knirsch, Charles; Zhou, Li; Wilcox, Adam; Melton, Genevieve B
2007-03-01
Data mining in electronic medical records may facilitate clinical research, but much of the structured data may be miscoded, incomplete, or non-specific. The exploitation of narrative data using natural language processing may help, although nesting, varying granularity, and repetition remain challenges. In a study of community-acquired pneumonia using electronic records, these issues led to poor classification. Limiting queries to accurate, complete records led to vastly reduced, possibly biased samples. We exploited knowledge latent in the electronic records to improve classification. A similarity metric was used to cluster cases. We defined discordance as the degree to which cases within a cluster give different answers for some query that addresses a classification task of interest. Cases with higher discordance are more likely to be incorrectly classified, and can be reviewed manually to adjust the classification, improve the query, or estimate the likely accuracy of the query. In a study of pneumonia--in which the ICD9-CM coding was found to be very poor--the discordance measure was statistically significantly correlated with classification correctness (.45; 95% CI .15-.62).
Parida, Pratap; Yadav, Raj Narain Singh; Dehury, Budheswar; Ghosh, Debosree; Mahapatra, Namita; Mitra, Analava; Mohanta, Tapan Kumar
2017-01-01
The ligand PKP10 having substitution of Cl- at R2 and R3 positions of ring A of Panduratin A i.e., ((1R,2S,5S)-5-(2,3-dichlorophenyl)-3-methyl-2-(3-methylbut-2-nyl)cyclohex-3- enyl)(2,6-dihydroxy-4-methylphenyl)methanone hydrate) has been observed to block the Nuclear Receptor Binding Protein binding site of Non Structural protein 3 in all dengue serotypes. In continuation with our earlier study, we have reported sixty novel Panduratin A derivatives compounds where substitution was done in positions 2 and 3 position of the benzyl ring A of Panduratin A with various substituents. We selected ((1R,2S,5S)-5-(2,3-dichlorophenyl)-3-methyl-2-(3-methylbut-2-nyl)cyclohex-3- nyl) (2,6-dihydroxy-4-methylphenyl) methanone hydrate) (PKP10) for molecular dynamics (MD) simulations as it constantly produced lowest CDocker interaction energy of among all the sixty five derivatives. The CDocker interaction energy was predicted to be -140.804, -79.807, -78.217 and -84.073 Kcalmol-1 respectively against NS3 protein of dengue serotypes (DENV1-4). To understand the dynamics of the PKP10 with NS3 protein, each complex was subjected to molecular dynamics simulations of 50 ns in aqueous solution. MD (Molecular Dynamics) simulation study revealed that the binding of ligand PKP10 at the active site of NS3 induces a conformational change in all serotypes which was well supported by principal component analysis. To the best of our knowledge, this is first ever study which provided atomistic insights into the interaction of PKP10 with NS3 protein of dengue serotypes. The result from our study along with in vitro studies is expected to open up better avenues to develop inhibitors for dengue virus in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Reverse screening methods to search for the protein targets of chemopreventive compounds
NASA Astrophysics Data System (ADS)
Huang, Hongbin; Zhang, Guigui; Zhou, Yuquan; Lin, Chenru; Chen, Suling; Lin, Yutong; Mai, Shangkang; Huang, Zunnan
2018-05-01
This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and grasp the types of calculations used in protein target fishing. In addition, we review the main features of these methods, programs and databases and provide a variety of examples illustrating the application of one or a combination of reverse screening methods for accurate target prediction.
Reverse Screening Methods to Search for the Protein Targets of Chemopreventive Compounds.
Huang, Hongbin; Zhang, Guigui; Zhou, Yuquan; Lin, Chenru; Chen, Suling; Lin, Yutong; Mai, Shangkang; Huang, Zunnan
2018-01-01
This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget, and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB, and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and grasp the types of calculations used in protein target fishing. In addition, we review the main features of these methods, programs and databases and provide a variety of examples illustrating the application of one or a combination of reverse screening methods for accurate target prediction.
Reverse Screening Methods to Search for the Protein Targets of Chemopreventive Compounds
Huang, Hongbin; Zhang, Guigui; Zhou, Yuquan; Lin, Chenru; Chen, Suling; Lin, Yutong; Mai, Shangkang; Huang, Zunnan
2018-01-01
This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget, and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB, and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and grasp the types of calculations used in protein target fishing. In addition, we review the main features of these methods, programs and databases and provide a variety of examples illustrating the application of one or a combination of reverse screening methods for accurate target prediction. PMID:29868550
Research-IQ: Development and Evaluation of an Ontology-anchored Integrative Query Tool
Borlawsky, Tara B.; Lele, Omkar; Payne, Philip R. O.
2011-01-01
Investigators in the translational research and systems medicine domains require highly usable, efficient and integrative tools and methods that allow for the navigation of and reasoning over emerging large-scale data sets. Such resources must cover a spectrum of granularity from bio-molecules to population phenotypes. Given such information needs, we report upon the initial design and evaluation of an ontology-anchored integrative query tool, Research-IQ, which employs a combination of conceptual knowledge engineering and information retrieval techniques to enable the intuitive and rapid construction of queries, in terms of semi-structured textual propositions, that can subsequently be applied to integrative data sets. Our initial results, based upon both quantitative and qualitative evaluations of the efficacy and usability of Research-IQ, demonstrate its potential to increase clinical and translational research throughput. PMID:21821150
BP Spill Sampling and Monitoring Data April-September 2010 - Data Download Tool
This dataset analyzes waste from the the British Petroleum Deepwater Horizon Rig Explosion Emergency Response, providing opportunity to query data sets by metadata criteria and find resulting raw datasets in CSV format.The data query tool allows users to download air, water and sediment sampling and monitoring data that has been collected in response to the BP oil spill. All sampling and monitoring data that has been collected to date is available for download as raw structured data.The query tools enables CSV file creation to be refined based on the following search criteria: date range (between April 28, 2010 and 9/29/2010); location by zip, city, or county; media (solid waste, weathered oil, air, surface water, liquid waste, tar, sediment, water); substance categories (based on media selection) and substances (based on substance category selection).
A database de-identification framework to enable direct queries on medical data for secondary use.
Erdal, B S; Liu, J; Ding, J; Chen, J; Marsh, C B; Kamal, J; Clymer, B D
2012-01-01
To qualify the use of patient clinical records as non-human-subject for research purpose, electronic medical record data must be de-identified so there is minimum risk to protected health information exposure. This study demonstrated a robust framework for structured data de-identification that can be applied to any relational data source that needs to be de-identified. Using a real world clinical data warehouse, a pilot implementation of limited subject areas were used to demonstrate and evaluate this new de-identification process. Query results and performances are compared between source and target system to validate data accuracy and usability. The combination of hashing, pseudonyms, and session dependent randomizer provides a rigorous de-identification framework to guard against 1) source identifier exposure; 2) internal data analyst manually linking to source identifiers; and 3) identifier cross-link among different researchers or multiple query sessions by the same researcher. In addition, a query rejection option is provided to refuse queries resulting in less than preset numbers of subjects and total records to prevent users from accidental subject identification due to low volume of data. This framework does not prevent subject re-identification based on prior knowledge and sequence of events. Also, it does not deal with medical free text de-identification, although text de-identification using natural language processing can be included due its modular design. We demonstrated a framework resulting in HIPAA Compliant databases that can be directly queried by researchers. This technique can be augmented to facilitate inter-institutional research data sharing through existing middleware such as caGrid.
Persistent Identifiers for Improved Accessibility for Linked Data Querying
NASA Astrophysics Data System (ADS)
Shepherd, A.; Chandler, C. L.; Arko, R. A.; Fils, D.; Jones, M. B.; Krisnadhi, A.; Mecum, B.
2016-12-01
The adoption of linked open data principles within the geosciences has increased the amount of accessible information available on the Web. However, this data is difficult to consume for those who are unfamiliar with Semantic Web technologies such as Web Ontology Language (OWL), Resource Description Framework (RDF) and SPARQL - the RDF query language. Consumers would need to understand the structure of the data and how to efficiently query it. Furthermore, understanding how to query doesn't solve problems of poor precision and recall in search results. For consumers unfamiliar with the data, full-text searches are most accessible, but not ideal as they arrest the advantages of data disambiguation and co-reference resolution efforts. Conversely, URI searches across linked data can deliver improved search results, but knowledge of these exact URIs may remain difficult to obtain. The increased adoption of Persistent Identifiers (PIDs) can lead to improved linked data querying by a wide variety of consumers. Because PIDs resolve to a single entity, they are an excellent data point for disambiguating content. At the same time, PIDs are more accessible and prominent than a single data provider's linked data URI. When present in linked open datasets, PIDs provide balance between the technical and social hurdles of linked data querying as evidenced by the NSF EarthCube GeoLink project. The GeoLink project, funded by NSF's EarthCube initiative, have brought together data repositories include content from field expeditions, laboratory analyses, journal publications, conference presentations, theses/reports, and funding awards that span scientific studies from marine geology to marine ecosystems and biogeochemistry to paleoclimatology.
Srivastava, Ankita; Chandra, Deepak
2017-06-05
The unsatisfactory treatment options for Visceral Leishmaniasis (VL), needs identification of new drug targets. Among natural products, Alkaloids have been proved to be highly effective against number of diseases. In Leishmania UDP-galactopyranose mutase (UGM) is a critical enzyme required for cell wall synthesis and thus a drug target for structure based drug designing against L. donovani. To build the homology model of UDP galactopyranse mutase and investigate the interaction of selected alkaloids with this modeled UDP galactopyranose mutase by molecular docking. Since there is no crystal structure record has been found with this protein, a homology modeling was performed and a three dimensional structure of L. donovani UGM was created using MODELLER v9.9, structure quality was validated using PROCHECK and QMEAN programs which confirms that the structure is reliable. Further Molecular docking was performed with previously reported 15 alkaloids. It was found that Protopine shows a binding energy of -12.39Kcal/mole, binds at Flavin adenine dinucleotide (FAD) biding site. Concluding that Protopine, an alkaloid could interrupt the functional aspect of L. donovani UGM and thus may be useful for drug designing studies. These finding would contribute to the understanding of effect of drug on the parasite. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Indexing and retrieving point and region objects
NASA Astrophysics Data System (ADS)
Ibrahim, Azzam T.; Fotouhi, Farshad A.
1996-03-01
R-tree and its variants are examples of spatial data structures for paged-secondary memory. To process a query, these structures require multiple path traversals. In this paper, we present a new image access method, SB+-tree which requires a single path traversal to process a query. Also, SB+-tree will allow commercial databases an access method for spatial objects without a major change, since most commercial databases already support B+-tree as an access method for text data. The SB+-tree can be used for zero and non-zero size data objects. Non-zero size objects are approximated by their minimum bounding rectangles (MBRs). The number of SB+-trees generated is dependent upon the number of dimensions of the approximation of the object. The structure supports efficient spatial operations such as regions-overlap, distance and direction. In this paper, we experimentally and analytically demonstrate the superiority of SB+-tree over R-tree.
Butyaev, Alexander; Mavlyutov, Ruslan; Blanchette, Mathieu; Cudré-Mauroux, Philippe; Waldispühl, Jérôme
2015-09-18
Recent releases of genome three-dimensional (3D) structures have the potential to transform our understanding of genomes. Nonetheless, the storage technology and visualization tools need to evolve to offer to the scientific community fast and convenient access to these data. We introduce simultaneously a database system to store and query 3D genomic data (3DBG), and a 3D genome browser to visualize and explore 3D genome structures (3DGB). We benchmark 3DBG against state-of-the-art systems and demonstrate that it is faster than previous solutions, and importantly gracefully scales with the size of data. We also illustrate the usefulness of our 3D genome Web browser to explore human genome structures. The 3D genome browser is available at http://3dgb.cs.mcgill.ca/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Butyaev, Alexander; Mavlyutov, Ruslan; Blanchette, Mathieu; Cudré-Mauroux, Philippe; Waldispühl, Jérôme
2015-01-01
Recent releases of genome three-dimensional (3D) structures have the potential to transform our understanding of genomes. Nonetheless, the storage technology and visualization tools need to evolve to offer to the scientific community fast and convenient access to these data. We introduce simultaneously a database system to store and query 3D genomic data (3DBG), and a 3D genome browser to visualize and explore 3D genome structures (3DGB). We benchmark 3DBG against state-of-the-art systems and demonstrate that it is faster than previous solutions, and importantly gracefully scales with the size of data. We also illustrate the usefulness of our 3D genome Web browser to explore human genome structures. The 3D genome browser is available at http://3dgb.cs.mcgill.ca/. PMID:25990738
Molecular Docking and Drug Discovery in β-Adrenergic Receptors.
Vilar, Santiago; Sobarzo-Sanchez, Eduardo; Santana, Lourdes; Uriarte, Eugenio
2017-01-01
Evolution in computer engineering, availability of increasing amounts of data and the development of new and fast docking algorithms and software have led to improved molecular simulations with crucial applications in virtual high-throughput screening and drug discovery. Moreover, analysis of protein-ligand recognition through molecular docking has become a valuable tool in drug design. In this review, we focus on the applicability of molecular docking on a particular class of G protein-coupled receptors: the β-adrenergic receptors, which are relevant targets in clinic for the treatment of asthma and cardiovascular diseases. We describe the binding site in β-adrenergic receptors to understand key factors in ligand recognition along with the proteins activation process. Moreover, we focus on the discovery of new lead compounds that bind the receptors, on the evaluation of virtual screening using the active/ inactive binding site states, and on the structural optimization of known families of binders to improve β-adrenergic affinity. We also discussed strengths and challenges related to the applicability of molecular docking in β-adrenergic receptors. Molecular docking is a valuable technique in computational chemistry to deeply analyze ligand recognition and has led to important breakthroughs in drug discovery and design in the field of β-adrenergic receptors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Kirmitzoglou, Ioannis; Promponas, Vasilis J
2015-07-01
Local compositionally biased and low complexity regions (LCRs) in amino acid sequences have initially attracted the interest of researchers due to their implication in generating artifacts in sequence database searches. There is accumulating evidence of the biological significance of LCRs both in physiological and in pathological situations. Nonetheless, LCR-related algorithms and tools have not gained wide appreciation across the research community, partly due to the fact that only a handful of user-friendly software is currently freely available. We developed LCR-eXXXplorer, an extensible online platform attempting to fill this gap. LCR-eXXXplorer offers tools for displaying LCRs from the UniProt/SwissProt knowledgebase, in combination with other relevant protein features, predicted or experimentally verified. Moreover, users may perform powerful queries against a custom designed sequence/LCR-centric database. We anticipate that LCR-eXXXplorer will be a useful starting point in research efforts for the elucidation of the structure, function and evolution of proteins with LCRs. LCR-eXXXplorer is freely available at the URL http://repeat.biol.ucy.ac.cy/lcr-exxxplorer. vprobon@ucy.ac.cy Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
MIPS: analysis and annotation of proteins from whole genomes in 2005
Mewes, H. W.; Frishman, D.; Mayer, K. F. X.; Münsterkötter, M.; Noubibou, O.; Pagel, P.; Rattei, T.; Oesterheld, M.; Ruepp, A.; Stümpflen, V.
2006-01-01
The Munich Information Center for Protein Sequences (MIPS at the GSF), Neuherberg, Germany, provides resources related to genome information. Manually curated databases for several reference organisms are maintained. Several of these databases are described elsewhere in this and other recent NAR database issues. In a complementary effort, a comprehensive set of >400 genomes automatically annotated with the PEDANT system are maintained. The main goal of our current work on creating and maintaining genome databases is to extend gene centered information to information on interactions within a generic comprehensive framework. We have concentrated our efforts along three lines (i) the development of suitable comprehensive data structures and database technology, communication and query tools to include a wide range of different types of information enabling the representation of complex information such as functional modules or networks Genome Research Environment System, (ii) the development of databases covering computable information such as the basic evolutionary relations among all genes, namely SIMAP, the sequence similarity matrix and the CABiNet network analysis framework and (iii) the compilation and manual annotation of information related to interactions such as protein–protein interactions or other types of relations (e.g. MPCDB, MPPI, CYGD). All databases described and the detailed descriptions of our projects can be accessed through the MIPS WWW server (). PMID:16381839
Triage by ranking to support the curation of protein interactions
Pasche, Emilie; Gobeill, Julien; Rech de Laval, Valentine; Gleizes, Anne; Michel, Pierre-André; Bairoch, Amos
2017-01-01
Abstract Today, molecular biology databases are the cornerstone of knowledge sharing for life and health sciences. The curation and maintenance of these resources are labour intensive. Although text mining is gaining impetus among curators, its integration in curation workflow has not yet been widely adopted. The Swiss Institute of Bioinformatics Text Mining and CALIPHO groups joined forces to design a new curation support system named nextA5. In this report, we explore the integration of novel triage services to support the curation of two types of biological data: protein–protein interactions (PPIs) and post-translational modifications (PTMs). The recognition of PPIs and PTMs poses a special challenge, as it not only requires the identification of biological entities (proteins or residues), but also that of particular relationships (e.g. binding or position). These relationships cannot be described with onto-terminological descriptors such as the Gene Ontology for molecular functions, which makes the triage task more challenging. Prioritizing papers for these tasks thus requires the development of different approaches. In this report, we propose a new method to prioritize articles containing information specific to PPIs and PTMs. The new resources (RESTful APIs, semantically annotated MEDLINE library) enrich the neXtA5 platform. We tuned the article prioritization model on a set of 100 proteins previously annotated by the CALIPHO group. The effectiveness of the triage service was tested with a dataset of 200 annotated proteins. We defined two sets of descriptors to support automatic triage: the first set to enrich for papers with PPI data, and the second for PTMs. All occurrences of these descriptors were marked-up in MEDLINE and indexed, thus constituting a semantically annotated version of MEDLINE. These annotations were then used to estimate the relevance of a particular article with respect to the chosen annotation type. This relevance score was combined with a local vector-space search engine to generate a ranked list of PMIDs. We also evaluated a query refinement strategy, which adds specific keywords (such as ‘binds’ or ‘interacts’) to the original query. Compared to PubMed, the search effectiveness of the nextA5 triage service is improved by 190% for the prioritization of papers with PPIs information and by 260% for papers with PTMs information. Combining advanced retrieval and query refinement strategies with automatically enriched MEDLINE contents is effective to improve triage in complex curation tasks such as the curation of protein PPIs and PTMs. Database URL: http://candy.hesge.ch/nextA5 PMID:29220432
FTree query construction for virtual screening: a statistical analysis.
Gerlach, Christof; Broughton, Howard; Zaliani, Andrea
2008-02-01
FTrees (FT) is a known chemoinformatic tool able to condense molecular descriptions into a graph object and to search for actives in large databases using graph similarity. The query graph is classically derived from a known active molecule, or a set of actives, for which a similar compound has to be found. Recently, FT similarity has been extended to fragment space, widening its capabilities. If a user were able to build a knowledge-based FT query from information other than a known active structure, the similarity search could be combined with other, normally separate, fields like de-novo design or pharmacophore searches. With this aim in mind, we performed a comprehensive analysis of several databases in terms of FT description and provide a basic statistical analysis of the FT spaces so far at hand. Vendors' catalogue collections and MDDR as a source of potential or known "actives", respectively, have been used. With the results reported herein, a set of ranges, mean values and standard deviations for several query parameters are presented in order to set a reference guide for the users. Applications on how to use this information in FT query building are also provided, using a newly built 3D-pharmacophore from 57 5HT-1F agonists and a published one which was used for virtual screening for tRNA-guanine transglycosylase (TGT) inhibitors.
FTree query construction for virtual screening: a statistical analysis
NASA Astrophysics Data System (ADS)
Gerlach, Christof; Broughton, Howard; Zaliani, Andrea
2008-02-01
FTrees (FT) is a known chemoinformatic tool able to condense molecular descriptions into a graph object and to search for actives in large databases using graph similarity. The query graph is classically derived from a known active molecule, or a set of actives, for which a similar compound has to be found. Recently, FT similarity has been extended to fragment space, widening its capabilities. If a user were able to build a knowledge-based FT query from information other than a known active structure, the similarity search could be combined with other, normally separate, fields like de-novo design or pharmacophore searches. With this aim in mind, we performed a comprehensive analysis of several databases in terms of FT description and provide a basic statistical analysis of the FT spaces so far at hand. Vendors' catalogue collections and MDDR as a source of potential or known "actives", respectively, have been used. With the results reported herein, a set of ranges, mean values and standard deviations for several query parameters are presented in order to set a reference guide for the users. Applications on how to use this information in FT query building are also provided, using a newly built 3D-pharmacophore from 57 5HT-1F agonists and a published one which was used for virtual screening for tRNA-guanine transglycosylase (TGT) inhibitors.
Semantator: semantic annotator for converting biomedical text to linked data.
Tao, Cui; Song, Dezhao; Sharma, Deepak; Chute, Christopher G
2013-10-01
More than 80% of biomedical data is embedded in plain text. The unstructured nature of these text-based documents makes it challenging to easily browse and query the data of interest in them. One approach to facilitate browsing and querying biomedical text is to convert the plain text to a linked web of data, i.e., converting data originally in free text to structured formats with defined meta-level semantics. In this paper, we introduce Semantator (Semantic Annotator), a semantic-web-based environment for annotating data of interest in biomedical documents, browsing and querying the annotated data, and interactively refining annotation results if needed. Through Semantator, information of interest can be either annotated manually or semi-automatically using plug-in information extraction tools. The annotated results will be stored in RDF and can be queried using the SPARQL query language. In addition, semantic reasoners can be directly applied to the annotated data for consistency checking and knowledge inference. Semantator has been released online and was used by the biomedical ontology community who provided positive feedbacks. Our evaluation results indicated that (1) Semantator can perform the annotation functionalities as designed; (2) Semantator can be adopted in real applications in clinical and transactional research; and (3) the annotated results using Semantator can be easily used in Semantic-web-based reasoning tools for further inference. Copyright © 2013 Elsevier Inc. All rights reserved.
Preservation of the metaproteome: variability of protein preservation in ancient dental calculus.
Mackie, Meaghan; Hendy, Jessica; Lowe, Abigail D; Sperduti, Alessandra; Holst, Malin; Collins, Matthew J; Speller, Camilla F
2017-01-01
Proteomic analysis of dental calculus is emerging as a powerful tool for disease and dietary characterisation of archaeological populations. To better understand the variability in protein results from dental calculus, we analysed 21 samples from three Roman-period populations to compare: 1) the quantity of extracted protein; 2) the number of mass spectral queries; and 3) the number of peptide spectral matches and protein identifications. We found little correlation between the quantity of calculus analysed and total protein identifications, as well as no systematic trends between site location and protein preservation. We identified a wide range of individual variability, which may be associated with the mechanisms of calculus formation and/or post-depositional contamination, in addition to taphonomic factors. Our results suggest dental calculus is indeed a stable, long-term reservoir of proteins as previously reported, but further systematic studies are needed to identify mechanisms associated with protein entrapment and survival in dental calculus.
CORUM: the comprehensive resource of mammalian protein complexes
Ruepp, Andreas; Brauner, Barbara; Dunger-Kaltenbach, Irmtraud; Frishman, Goar; Montrone, Corinna; Stransky, Michael; Waegele, Brigitte; Schmidt, Thorsten; Doudieu, Octave Noubibou; Stümpflen, Volker; Mewes, H. Werner
2008-01-01
Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. The CORUM (http://mips.gsf.de/genre/proj/corum/index.html) database is a collection of experimentally verified mammalian protein complexes. Information is manually derived by critical reading of the scientific literature from expert annotators. Information about protein complexes includes protein complex names, subunits, literature references as well as the function of the complexes. For functional annotation, we use the FunCat catalogue that enables to organize the protein complex space into biologically meaningful subsets. The database contains more than 1750 protein complexes that are built from 2400 different genes, thus representing 12% of the protein-coding genes in human. A web-based system is available to query, view and download the data. CORUM provides a comprehensive dataset of protein complexes for discoveries in systems biology, analyses of protein networks and protein complex-associated diseases. Comparable to the MIPS reference dataset of protein complexes from yeast, CORUM intends to serve as a reference for mammalian protein complexes. PMID:17965090
A traveling salesman approach for predicting protein functions.
Johnson, Olin; Liu, Jing
2006-10-12
Protein-protein interaction information can be used to predict unknown protein functions and to help study biological pathways. Here we present a new approach utilizing the classic Traveling Salesman Problem to study the protein-protein interactions and to predict protein functions in budding yeast Saccharomyces cerevisiae. We apply the global optimization tool from combinatorial optimization algorithms to cluster the yeast proteins based on the global protein interaction information. We then use this clustering information to help us predict protein functions. We use our algorithm together with the direct neighbor algorithm 1 on characterized proteins and compare the prediction accuracy of the two methods. We show our algorithm can produce better predictions than the direct neighbor algorithm, which only considers the immediate neighbors of the query protein. Our method is a promising one to be used as a general tool to predict functions of uncharacterized proteins and a successful sample of using computer science knowledge and algorithms to study biological problems.
A traveling salesman approach for predicting protein functions
Johnson, Olin; Liu, Jing
2006-01-01
Background Protein-protein interaction information can be used to predict unknown protein functions and to help study biological pathways. Results Here we present a new approach utilizing the classic Traveling Salesman Problem to study the protein-protein interactions and to predict protein functions in budding yeast Saccharomyces cerevisiae. We apply the global optimization tool from combinatorial optimization algorithms to cluster the yeast proteins based on the global protein interaction information. We then use this clustering information to help us predict protein functions. We use our algorithm together with the direct neighbor algorithm [1] on characterized proteins and compare the prediction accuracy of the two methods. We show our algorithm can produce better predictions than the direct neighbor algorithm, which only considers the immediate neighbors of the query protein. Conclusion Our method is a promising one to be used as a general tool to predict functions of uncharacterized proteins and a successful sample of using computer science knowledge and algorithms to study biological problems. PMID:17147783
Real-time fiber selection using the Wii remote
NASA Astrophysics Data System (ADS)
Klein, Jan; Scholl, Mike; Köhn, Alexander; Hahn, Horst K.
2010-02-01
In the last few years, fiber tracking tools have become popular in clinical contexts, e.g., for pre- and intraoperative neurosurgical planning. The efficient, intuitive, and reproducible selection of fiber bundles still constitutes one of the main issues. In this paper, we present a framework for a real-time selection of axonal fiber bundles using a Wii remote control, a wireless controller for Nintendo's gaming console. It enables the user to select fiber bundles without any other input devices. To achieve a smooth interaction, we propose a novel spacepartitioning data structure for efficient 3D range queries in a data set consisting of precomputed fibers. The data structure which is adapted to the special geometry of fiber tracts allows for queries that are many times faster compared with previous state-of-the-art approaches. In order to extract reliably fibers for further processing, e.g., for quantification purposes or comparisons with preoperatively tracked fibers, we developed an expectationmaximization clustering algorithm that can refine the range queries. Our initial experiments have shown that white matter fiber bundles can be reliably selected within a few seconds by the Wii, which has been placed in a sterile plastic bag to simulate usage under surgical conditions.
One Shot Detection with Laplacian Object and Fast Matrix Cosine Similarity.
Biswas, Sujoy Kumar; Milanfar, Peyman
2016-03-01
One shot, generic object detection involves searching for a single query object in a larger target image. Relevant approaches have benefited from features that typically model the local similarity patterns. In this paper, we combine local similarity (encoded by local descriptors) with a global context (i.e., a graph structure) of pairwise affinities among the local descriptors, embedding the query descriptors into a low dimensional but discriminatory subspace. Unlike principal components that preserve global structure of feature space, we actually seek a linear approximation to the Laplacian eigenmap that permits us a locality preserving embedding of high dimensional region descriptors. Our second contribution is an accelerated but exact computation of matrix cosine similarity as the decision rule for detection, obviating the computationally expensive sliding window search. We leverage the power of Fourier transform combined with integral image to achieve superior runtime efficiency that allows us to test multiple hypotheses (for pose estimation) within a reasonably short time. Our approach to one shot detection is training-free, and experiments on the standard data sets confirm the efficacy of our model. Besides, low computation cost of the proposed (codebook-free) object detector facilitates rather straightforward query detection in large data sets including movie videos.
Embedding strategies for effective use of information from multiple sequence alignments.
Henikoff, S.; Henikoff, J. G.
1997-01-01
We describe a new strategy for utilizing multiple sequence alignment information to detect distant relationships in searches of sequence databases. A single sequence representing a protein family is enriched by replacing conserved regions with position-specific scoring matrices (PSSMs) or consensus residues derived from multiple alignments of family members. In comprehensive tests of these and other family representations, PSSM-embedded queries produced the best results overall when used with a special version of the Smith-Waterman searching algorithm. Moreover, embedding consensus residues instead of PSSMs improved performance with readily available single sequence query searching programs, such as BLAST and FASTA. Embedding PSSMs or consensus residues into a representative sequence improves searching performance by extracting multiple alignment information from motif regions while retaining single sequence information where alignment is uncertain. PMID:9070452
Real-time community detection in full social networks on a laptop
Chamberlain, Benjamin Paul; Levy-Kramer, Josh; Humby, Clive
2018-01-01
For a broad range of research and practical applications it is important to understand the allegiances, communities and structure of key players in society. One promising direction towards extracting this information is to exploit the rich relational data in digital social networks (the social graph). As global social networks (e.g., Facebook and Twitter) are very large, most approaches make use of distributed computing systems for this purpose. Distributing graph processing requires solving many difficult engineering problems, which has lead some researchers to look at single-machine solutions that are faster and easier to maintain. In this article, we present an approach for analyzing full social networks on a standard laptop, allowing for interactive exploration of the communities in the locality of a set of user specified query vertices. The key idea is that the aggregate actions of large numbers of users can be compressed into a data structure that encapsulates the edge weights between vertices in a derived graph. Local communities can be constructed by selecting vertices that are connected to the query vertices with high edge weights in the derived graph. This compression is robust to noise and allows for interactive queries of local communities in real-time, which we define to be less than the average human reaction time of 0.25s. We achieve single-machine real-time performance by compressing the neighborhood of each vertex using minhash signatures and facilitate rapid queries through Locality Sensitive Hashing. These techniques reduce query times from hours using industrial desktop machines operating on the full graph to milliseconds on standard laptops. Our method allows exploration of strongly associated regions (i.e., communities) of large graphs in real-time on a laptop. It has been deployed in software that is actively used by social network analysts and offers another channel for media owners to monetize their data, helping them to continue to provide free services that are valued by billions of people globally. PMID:29342158
Application of learning to rank to protein remote homology detection.
Liu, Bin; Chen, Junjie; Wang, Xiaolong
2015-11-01
Protein remote homology detection is one of the fundamental problems in computational biology, aiming to find protein sequences in a database of known structures that are evolutionarily related to a given query protein. Some computational methods treat this problem as a ranking problem and achieve the state-of-the-art performance, such as PSI-BLAST, HHblits and ProtEmbed. This raises the possibility to combine these methods to improve the predictive performance. In this regard, we are to propose a new computational method called ProtDec-LTR for protein remote homology detection, which is able to combine various ranking methods in a supervised manner via using the Learning to Rank (LTR) algorithm derived from natural language processing. Experimental results on a widely used benchmark dataset showed that ProtDec-LTR can achieve an ROC1 score of 0.8442 and an ROC50 score of 0.9023 outperforming all the individual predictors and some state-of-the-art methods. These results indicate that it is correct to treat protein remote homology detection as a ranking problem, and predictive performance improvement can be achieved by combining different ranking approaches in a supervised manner via using LTR. For users' convenience, the software tools of three basic ranking predictors and Learning to Rank algorithm were provided at http://bioinformatics.hitsz.edu.cn/ProtDec-LTR/home/ bliu@insun.hit.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.