Sample records for question general science

  1. Why cognitive science needs philosophy and vice versa.

    PubMed

    Thagard, Paul

    2009-04-01

    Contrary to common views that philosophy is extraneous to cognitive science, this paper argues that philosophy has a crucial role to play in cognitive science with respect to generality and normativity. General questions include the nature of theories and explanations, the role of computer simulation in cognitive theorizing, and the relations among the different fields of cognitive science. Normative questions include whether human thinking should be Bayesian, whether decision making should maximize expected utility, and how norms should be established. These kinds of general and normative questions make philosophical reflection an important part of progress in cognitive science. Philosophy operates best, however, not with a priori reasoning or conceptual analysis, but rather with empirically informed reflection on a wide range of findings in cognitive science. Copyright © 2009 Cognitive Science Society, Inc.

  2. A Twenty-Year Survey of Science Literacy among College Undergraduates

    ERIC Educational Resources Information Center

    Impey, Chris; Buxner, Sanlyn; Antonellis, Jessie; Johnson, Elizabeth; King, Courtney

    2011-01-01

    First results from a 20-year survey of science knowledge and attitudes toward science among undergraduates are presented. Nearly 10,000 students taking astronomy as part of a general education requirement answered a set of questions that overlap a science literacy instrument administered to the general public by the National Science Foundation.…

  3. Science Education for Everyone: Why and What?

    ERIC Educational Resources Information Center

    Trefil, James

    2008-01-01

    What the author explores in this essay is not so much the "whether" of general science education, but the "why." What exactly constitutes good science education, and how can one recognize when students have received it? Once this question has been answered, the answer to the "what" question--the actual content of the curriculum--is relatively easy…

  4. The role of questions in the science classroom - how girls and boys respond to teachers' questions

    NASA Astrophysics Data System (ADS)

    Eliasson, Nina; Karlsson, Karl Göran; Sørensen, Helene

    2017-03-01

    The purpose of this study was to explore (a) to what extent male and female science teachers pose different types of questions and (b) if the type of science question posed influences the extent to which boys or girls respond to them. Transcripts of the teacher-student interaction in a whole-class situation were analysed, with attention paid to interactions that involved science questions. Closed and open questions were used. Results revealed that the percentage of closed questions posed corresponded to 87%. Results show that teachers mainly use closed questions, and responses from boys to closed questions are in the majority regardless of if the question is posed by a female teacher (56%) or a male teacher (64%). Both categories of closed questions are mainly considered lower order questions that do not facilitate higher cognitive levels in students. Thus, a direct consequence of an excessive use of this type of questions may be that both boys and girls will be given less opportunities to practise their ability to talk about science. Less access to general classroom interaction may also affect girls' attitudes to science in a negative way which could ultimately hamper the recruitment of girls to higher scientific studies.

  5. Environmental Science Literacy in Science Education, Biology and Chemistry Majors.

    ERIC Educational Resources Information Center

    Robinson, Mike; Crowther, David

    2001-01-01

    Questions whether biology majors are more environmental science literate than chemistry majors, preservice science teachers, and a general population sample of 1,492 students. Indicates that preservice science teachers are significantly more environmental science literate than chemistry majors, but not more science literate than biology majors.…

  6. Children's Question Asking and Curiosity: A Training Study

    ERIC Educational Resources Information Center

    Jirout, Jamie; Klahr, David

    2011-01-01

    A primary instructional objective of most early science programs is to foster children's scientific curiosity and question-asking skills (Jirout & Klahr, 2011). However, little is known about the relationship between curiosity, question-asking behavior, and general inquiry skills. While curiosity and question asking are invariably mentioned in…

  7. Will the Real Author Come Forward? Questions of Ethics, Plagiarism, Theft and Collusion in Academic Research Writing

    ERIC Educational Resources Information Center

    Sikes, Pat

    2009-01-01

    This paper raises some questions about academic authorial honesty under the headings of Plagiarism (including self-plagiarism), Theft, and Collusion. Compared with the medical sciences, the social sciences in general and education specifically, lag behind in terms of critical attention being paid to the problem of plagiarism, the peer review…

  8. A cross-cultural comparison of high school students' responses to a science centre show on the physics of sound in South Africa.

    PubMed

    Fish, Derek; Allie, Saalih; Pelaez, Nancy; Anderson, Trevor

    2017-10-01

    We report on the attitudes and ideas developed by students from three distinct school groups to a science show about sound. We addressed two research questions: (1) How do the students compare with respect to their (a) attitudes to the sound show and to science in general and (b) changes in conceptual understanding as a result of the show and (2) what changes could be made to the show, and to science shows in general, that would be sensitive to the cultural and language differences of the groups? These were addressed by multiple-choice, pre- and post-tests comprising both attitudinal and conceptual questions. Our results pointed to a common enjoyment of the show but a different understanding of concepts and consequent learning, which suggest that science shows (and science teaching) need to be adjusted to accommodate different cultural groups for maximum impact.

  9. Using questions sent to an Ask-A-Scientist site to identify children's interests in science

    NASA Astrophysics Data System (ADS)

    Baram-Tsabari, Ayelet; Sethi, Ricky J.; Bry, Lynn; Yarden, Anat

    2006-11-01

    Interest is a powerful motivator; nonetheless, science educators often lack the necessary information to make use of the power of student-specific interests in the reform process of science curricula. This study suggests a novel methodology, which might be helpful in identifying such interests - using children's self-generated questions as an indication of their scientific interests. In this research, children's interests were measured by analyzing 1555 science-related questions submitted to an international Ask-A-Scientist Internet site. The analysis indicated that the popularity of certain topics varies with age and gender. Significant differences were found between children's spontaneous (intrinsically motivated) and school-related (extrinsically motivated) interests. Surprisingly, girls contributed most of the questions to the sample; however, the number of American girls dropped upon entering senior high school. We also found significant differences between girls' and boys' interests, with girls generally preferring biological topics. The two genders kept to their stereotypic fields of interest, in both their school-related and spontaneous questions. Children's science interests, as inferred from questions to Web sites, could ultimately inform classroom science teaching. This methodology extends the context in which children's interests can be investigated.

  10. Capturing Student Interest in Astrobiology through Dilemmas and Paradoxes

    NASA Astrophysics Data System (ADS)

    Slater, T. F.

    2005-12-01

    Traditionally, many non-science majoring undergraduates readily reveal fairly negative opinions about their introductory science survey courses that serve as general education distribution requirements. Often seen as unimportant and unrelated to helping them acquire knowledge and skills for the workplace, such general education courses carry nicknames such as "Physics for Poets" (PHYSICS101), "Bugs for Thugs" (BIOLOGY101), "Rocks for Jocks" (GEOLOGY101), and "Moons for Goons" or "Scopes for Dopes" (ASTRONOMY101). In response, many faculty are experimenting with more modern science course offerings as general education courses in an effort to improve students' attitudes, values, and interests. One might think that ASTROBIOLOGY has natural curb appeal for students. However, despite the seemingly innate appeal of a course on extraterrestrial life, when it comes right down to it, an astrobiology course is still a natural science course at its core. As such, it can suffer from the same student apathy that afflicts traditional science courses if students can not find some personal relevance or interest in the topics. One approach to more fully engaging students is to couch core course concepts in terms of what Grant Wiggin and Jay McTighe (2004, 2000) call "essential questions." Essential questions are intended create enduring understanding in students and help students find deeply meaningful personal relevance to concepts. In response, we have created a series of probing essential questions that tie central concepts in astrobiology to dilemmas, paradoxes, and moral questions with the goal of intellectually engaging our students in the human-side of the astrobiology enterprise.

  11. Teaching Evolution to Students with Compromised Backgrounds & Lack of Confidence about Evolution--Is It Possible?

    ERIC Educational Resources Information Center

    Schauer, Alexandria; Cotner, Sehoya; Moore, Randy

    2014-01-01

    Students regard evolutionary theory differently than science in general. Students' reported confidence in their ability to understand science in general (e.g., posing scientific questions, interpreting tables and graphs, and understanding the content of their biology course) significantly outweighed their confidence in understanding evolution. We…

  12. The Benchmarking Capacity of a General Outcome Measure of Academic Language in Science and Social Studies

    ERIC Educational Resources Information Center

    Mooney, Paul; Lastrapes, Renée E.

    2016-01-01

    The amount of research evaluating the technical merits of general outcome measures of science and social studies achievement is growing. This study targeted criterion validity for critical content monitoring. Questions addressed the concurrent criterion validity of alternate presentation formats of critical content monitoring and the measure's…

  13. A Comparative Study of Six Decades of General Science Textbooks: Evaluating the Evolution of Science Content

    ERIC Educational Resources Information Center

    Lewis, Anna

    2008-01-01

    This study examined science textbooks over time to better understand the "science content" expectations that the U.S. educational system deems appropriate for 8th and 9th grade science students. The study attempted to answer the questions: (1) What specific science content has been presented via the textbook from 1952 to 2008? (2) Within…

  14. Adults' Learning about Science in Free-Choice Settings

    ERIC Educational Resources Information Center

    Rennie, Leonie J.; Williams, Gina F.

    2006-01-01

    This paper synthesizes findings from three studies to answer a general question: What do casual, adult visitors learn about science from their science-related experiences in free-choice settings? Specifically we asked whether there are changes in how people think about science in their daily lives, the nature and use of scientific knowledge, and…

  15. A Framework for Applying History and Philosophy of Science to Science Education.

    ERIC Educational Resources Information Center

    Duschl, Richard A.

    Interest in the application of the history and philosophy of science to science education raises important questions about the effect such considerations will have on educational practice. In this paper, the application emphasizes concepts related to theory testing and theory development specifically and to the growth of knowledge generally. This…

  16. The knowledge most worth having: Otis W. Caldwell (1869 1947) and the rise of the general science course

    NASA Astrophysics Data System (ADS)

    Heffron, John M.

    1995-07-01

    In 1860 Herbert Spencer asked the famous rhetorical question ‘What Knowledge is of Most Worth?’ The unequivocal answer was science. Giving greater attention to science and scientific knowledge would not only produce additional scientists; more important, argued Spencer, it would make better parents, better church-goers, better citizens and workers, better artists and better consumers of art. It would lead to a ‘command of fundamental processes’, ‘worthy home membership’, ‘worthy use of leisure’, ‘ethical character’ — the goals of a general education spelled out by Spencerians within the National Educational Association in 1918. Here is our puzzle, then: how are we to interpret a definition of science, one widely accepted both in Spencer's time and in our own, that comes so close descriptively to a commonsensical view of what constitutes non-science? The answer to this question lies in part in the historical relationship between science and general education, a relationship established in the opening decades of this century, when the authority of science and scientific objectivity was in the minds of most educators unimpeachable. The high school general science course, developed in its early stages by the botanist and educator, Otis W. Caldwell, was a potent symbol of this new relationship. Organized around broad, topical issues and claiming to teach the mundane truths of life, general science was more than a loose collection of facts from the various earth, biological, and physical sciences. Its many advocates viewed the new unified science course as pedagogically independent of the specialties yet central to education in general. In 1949, two years after Caldwell's death, 72 percent of the total science enrollments in the United States were in general science and biology, its closest cognate. This paper examines the rise of the general science course and its implications for the reform of secondary school science education. It concludes that while recent reforms may impress students with the personal and social character of science, introducing them to a broad use of the scientific method, they will not necessarily make them more scientifically literate or train them to think about problems in anything like the way professional scientists do. Much less will they introduce students to alternative ways of problem-solving, arguably one of the most important goals of good science teaching.

  17. Laws, causation, and explanation in the special sciences.

    PubMed

    Kim, Jaegwon

    2005-01-01

    There is the general philosophical question concerning the relationship between physics, which is often taken to be our fundamental and all-encompassing science, on one hand and the special sciences, such as biology and psychology, each of which deals with phenomena in some specially restricted domain, on the other. This paper deals with a narrower question: Are there laws in the special sciences, laws like those we find, or expect to find, in basic physics? Three arguments that are intended to show that there are no such laws are presented and examined. The paper ends with brief remarks concerning the implications of these arguments for explanation and causation in the special sciences.

  18. Big Science and the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Giudice, Gian Francesco

    2012-03-01

    The Large Hadron Collider (LHC), the particle accelerator operating at CERN, is probably the most complex and ambitious scientific project ever accomplished by humanity. The sheer size of the enterprise, in terms of financial and human resources, naturally raises the question whether society should support such costly basic-research programs. I address this question by first reviewing the process that led to the emergence of Big Science and the role of large projects in the development of science and technology. I then compare the methodologies of Small and Big Science, emphasizing their mutual linkage. Finally, after examining the cost of Big Science projects, I highlight several general aspects of their beneficial implications for society.

  19. Quantitative Methods in Psychology: Inevitable and Useless

    PubMed Central

    Toomela, Aaro

    2010-01-01

    Science begins with the question, what do I want to know? Science becomes science, however, only when this question is justified and the appropriate methodology is chosen for answering the research question. Research question should precede the other questions; methods should be chosen according to the research question and not vice versa. Modern quantitative psychology has accepted method as primary; research questions are adjusted to the methods. For understanding thinking in modern quantitative psychology, two epistemologies should be distinguished: structural-systemic that is based on Aristotelian thinking, and associative-quantitative that is based on Cartesian–Humean thinking. The first aims at understanding the structure that underlies the studied processes; the second looks for identification of cause–effect relationships between the events with no possible access to the understanding of the structures that underlie the processes. Quantitative methodology in particular as well as mathematical psychology in general, is useless for answering questions about structures and processes that underlie observed behaviors. Nevertheless, quantitative science is almost inevitable in a situation where the systemic-structural basis of behavior is not well understood; all sorts of applied decisions can be made on the basis of quantitative studies. In order to proceed, psychology should study structures; methodologically, constructive experiments should be added to observations and analytic experiments. PMID:21833199

  20. Quantitative methods in psychology: inevitable and useless.

    PubMed

    Toomela, Aaro

    2010-01-01

    Science begins with the question, what do I want to know? Science becomes science, however, only when this question is justified and the appropriate methodology is chosen for answering the research question. Research question should precede the other questions; methods should be chosen according to the research question and not vice versa. Modern quantitative psychology has accepted method as primary; research questions are adjusted to the methods. For understanding thinking in modern quantitative psychology, two epistemologies should be distinguished: structural-systemic that is based on Aristotelian thinking, and associative-quantitative that is based on Cartesian-Humean thinking. The first aims at understanding the structure that underlies the studied processes; the second looks for identification of cause-effect relationships between the events with no possible access to the understanding of the structures that underlie the processes. Quantitative methodology in particular as well as mathematical psychology in general, is useless for answering questions about structures and processes that underlie observed behaviors. Nevertheless, quantitative science is almost inevitable in a situation where the systemic-structural basis of behavior is not well understood; all sorts of applied decisions can be made on the basis of quantitative studies. In order to proceed, psychology should study structures; methodologically, constructive experiments should be added to observations and analytic experiments.

  1. Capturing Parents' Individual and Institutional Interest Toward Involvement in Science Education

    NASA Astrophysics Data System (ADS)

    Kaya, Sibel; Lundeen, Cynthia

    2010-11-01

    Parents are generally less involved in their children’s science education (as compared to reading and mathematics) due to low self-efficacy and a lack of home-school communication. This study examined parental interest and attitudes in science as well as the nature of parent-to-child questioning during an interactive home, school, and community collaboration in the southeastern United States. Study results, compiled from observations, exit surveys, and interviews revealed largely positive family interactions and attitudes about science learning and increased parental interest toward involvement in elementary science. Parents frequently used productive questioning techniques during activities. These results imply that successful home, school, and community partnerships may elevate levels of parental participation in their children’s science education and the parents’ perception of themselves as being competent in assisting in science.

  2. Data Analysis Questions for Science Subjects: A Resource Booklet. Series of Caribbean Volunteer Publications, No. 2.

    ERIC Educational Resources Information Center

    Voluntary Services Overseas, Castries (St. Lucia).

    This resource booklet is designed to supplement standard textbooks used in a science curriculum. The material serves as a syllabus for Year One and Year Two in the secondary science curriculum. Some of the topics presented in this general science syllabus include being a scientist, looking at living things, solvents and solutions, energy,…

  3. The effectiveness of the 1996 Wood Magic Science Fair as an experiential field trip

    NASA Astrophysics Data System (ADS)

    Pearson, Robert Wayne

    In response to the need for evaluating the effectiveness of the 1996 Wood Magic Science Fair (WMSF) at Mississippi State University's Forest and Wildlife Research Center/Forest Products Laboratory, two tests were developed. One test was designed for third-grade students and one for fourth-grade students who would attend the WMSF. Both tests have multiple choice answers and contained thirteen questions each. Five of the questions addressed general issues of the forest products industry that would be mentioned in an opening video but not stressed in the oral presentations of the WMSF. The students would have no active involvement in these presentations. These general issue questions represent passive involvement teaching. The eight remaining questions addressed specific information that would be stressed in the WMSF oral presentations and would allow students to actively participate in the presentations. The participation of the students in these presentations represents participatory teaching. The tests were given to the students (third and fourth grades) both before they attended the fair as a pre-test and after their attendance as a post-test with the only difference being that the multiple choice answers were arranged in a different order. Classroom teachers administered the tests to the students. The test results were evaluated for each class individually. Each question was evaluated and the results recorded in a table. The general information questions were grouped together as were the specific information questions. This grouping allowed a comparison to be made between passive and participatory learning. The results from the tests will help those making the science fair presentations evaluate their materials and methods. Statistical analysis of the results would indicate which questions had a significant change in the number of correct answers between the pre-test and post-test. This information will help the Fair planners and presenters in developing future programs.

  4. Twenty-Year Survey of Scientific Literacy and Attitudes Toward Science - Investigating the Relationship Between Students' Knowledge and Attitudes

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Antonellis, J.; Impey, C.; CATS

    2010-01-01

    Data from a twenty-year investigation into the science literacy of undergraduates (see Impey et al., this meeting) was used to explore responses to questions, derived from policy driven projects (e.g. NSF Science Indicators). Responses from almost 10,000 undergraduate students enrolled in introductory astronomy courses from 1989 to 2009 have been analyzed based on students’ responses to forced-choice and open-ended science literacy questions as well as Likert scale belief questions about science and technology. Science literacy questions were scored based on work by Miller (1998, 2004). In addition, we developed an extensive emergent coding scheme for the four open-ended science questions. Unique results as well as trends in the student data based on subgroups of codes are presented. Responses to belief questions were categorized, using theoretically derived categories, remodeled and confirmed through factor analysis, into five main categories; belief in life on other planets, faith-based beliefs, belief in unscientific phenomena, general attitude toward science and technology, and ethical considerations. Analysis revealed that demographic information explained less than 10% of the overall variance in students’ forced-answer scientific literacy scores. We present how students’ beliefs in these categories relate to their scientific literacy scores. You can help! Stop by our poster and fill out a new survey that will give us important parallel information to help us continue to analyze our valuable data set. We acknowledge the NSF for funding under Award No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  5. Teaching science through literature

    NASA Astrophysics Data System (ADS)

    Barth, Daniel

    2007-12-01

    The hypothesis of this study was that a multidisciplinary, activity rich science curriculum based around science fiction literature, rather than a conventional text book would increase student engagement with the curriculum and improve student performance on standards-based test instruments. Science fiction literature was chosen upon the basis of previous educational research which indicated that science fiction literature was able to stimulate and maintain interest in science. The study was conducted on a middle school campus during the regular summer school session. Students were self-selected from the school's 6 th, 7th, and 8th grade populations. The students used the science fiction novel Maurice on the Moon as their only text. Lessons and activities closely followed the adventures of the characters in the book. The student's initial level of knowledge in Earth and space science was assessed by a pre test. After the four week program was concluded, the students took a post test made up of an identical set of questions. The test included 40 standards-based questions that were based upon concepts covered in the text of the novel and in the classroom lessons and activities. The test also included 10 general knowledge questions that were based upon Earth and space science standards that were not covered in the novel or the classroom lessons or activities. Student performance on the standards-based question set increased an average of 35% for all students in the study group. Every subgroup disaggregated by gender and ethnicity improved from 28-47%. There was no statistically significant change in the performance on the general knowledge question set for any subgroup. Student engagement with the material was assessed by three independent methods, including student self-reports, percentage of classroom work completed, and academic evaluation of student work by the instructor. These assessments of student engagement were correlated with changes in student performance on the standards-based assessment tests. A moderate correlation was found to exist between the level of student engagement with the material and improvement in performance from pre to post test.

  6. Science anxiety and social cognitive factors predicting STEM career aspirations of high school freshmen in general science class

    NASA Astrophysics Data System (ADS)

    Skells, Kristin Marie

    Extant data was used to consider the association between science anxiety, social cognitive factors and STEM career aspirations of high school freshmen in general science classes. An adapted model based on social cognitive career theory (SCCT) was used to consider these relationships, with science anxiety functioning as a barrier in the model. The study assessed the following research questions: (1) Do social cognitive variables relate in the expected way to STEM career aspirations based on SCCT for ninth graders taking general science classes? (2) Is there an association between science anxiety and outcomes and processes identified in the SCCT model for ninth graders taking general science classes? (3) Does gender moderate these relationships? Results indicated that support was found for many of the central tenants of the SCCT model. Science anxiety was associated with prior achievement, self-efficacy, and science interest, although it did not relate directly to STEM career goals. Gender was found to moderate only the relationship between prior achievement and science self-efficacy.

  7. [Opinions of a group of university students about science and technology].

    PubMed

    Lisker, Rubén; Carnevale, Alessandra; Pérez Vera, Patricia; Betancourt, Miguel

    2002-01-01

    To learn the opinions of university students of four different areas on the impact of science and technology on society. One Hundred and sixty three close to graduate students of the Universidad Autonoma Metropolitana campus Iztapalapa, distributed as follows: Administration 59, Biology 50, Social Sciences 36 and Engineering 18. For the survey we translated into spanish part of a questionnaire employed in several countries to explore ideas on the impact of science and technology on society of several groups. It contained general questions such as. Do you believe that science and technology are equally good or bad to society, or degree of knowledge of several technologies such as computation or in vitro fertilization. It includes also more specific questions, such as would your have problems with the use of genetically modified vegetables? The results suggested that Administration and Social Sciences students had less interest in Science and Technology than the other, and that in general, the knowledge of all students is rather limited including biotechnology, genetic enginering and gene therapy. We compared the results with those obtained previously in a group of Mexican Physicians and Biology students from India, Thailand and Singapor.

  8. 77 FR 43286 - Agency Forms Undergoing Paperwork Reduction Act Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... information are broken into nine separate questions (data fields) for computer entry. General information... Questions. Kimberly S. Lane, Deputy Director, Office of Science Integrity, Office of the Associate Director... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention [30-Day-12-0040...

  9. JUNIOR HIGH SCHOOL, GENERAL SCIENCE, COURSE OF STUDY.

    ERIC Educational Resources Information Center

    Los Angeles City Schools, CA.

    THE PURPOSE OF THIS NATURAL AND PHYSICAL SCIENCE COURSE IS TO INSTILL IN THE PUPILS AN UNDERSTANDING OF THE PURPOSES AND METHODS OF SCIENCE RATHER THAN TO IMPART A CERTAIN BODY OF FACTS. EMPHASIS IS PLACED UPON CLASSROOM DEMONSTRATION AND EXPERIMENTATION SO THAT THE PUPIL WILL LEARN TO THINK CRITICALLY AND TO DEVELOP A QUESTIONING MIND. CONTINUITY…

  10. State of the Science in Autism: Report to the National Institutes of Health.

    ERIC Educational Resources Information Center

    Bristol, Marie M.; And Others

    1996-01-01

    This report on the state of the science in autism contains responses to questions posed by the National Institutes of Health (NIH) and recommendations concerning diagnosis, epidemiology, pathophysiology, communication/social/emotional development, medical intervention, social and behavioral intervention, and biostatistics. General recommendations…

  11. China Report RED FLAG No 14, 6 JULY 1986

    DTIC Science & Technology

    1986-08-28

    sciences, literature, art , science , tech- nology, and morality, and must set new demands on them so as to meet the needs of carrying out reform...necessary patience and enthusiasm for the new atmosphere emerging in current studies in literary theory and in literature and art science . He is not...extremely important principles of Marxist aesthetics? Finally, a general question is: Is reform necessary in our literature and art science ? How

  12. Does science education need the history of science?

    PubMed

    Gooday, Graeme; Lynch, John M; Wilson, Kenneth G; Barsky, Constance K

    2008-06-01

    This essay argues that science education can gain from close engagement with the history of science both in the training of prospective vocational scientists and in educating the broader public about the nature of science. First it shows how historicizing science in the classroom can improve the pedagogical experience of science students and might even help them turn into more effective professional practitioners of science. Then it examines how historians of science can support the scientific education of the general public at a time when debates over "intelligent design" are raising major questions over the kind of science that ought to be available to children in their school curricula. It concludes by considering further work that might be undertaken to show how history of science could be of more general educational interest and utility, well beyond the closed academic domains in which historians of science typically operate.

  13. Grade 3 Science Curriculum Specifications.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Curriculum Branch.

    The specific content areas and objectives from which the Alberta, Canada, Grade 3 Science Achievement Test questions were derived are outlined in this bulletin. The document contains: (1) curriculum summary (providing a general listing of the process skills, psychomotor skills, attitudes, and subject matter covered at the grade 3 level); (2) a…

  14. Microelectronics in the Curriculum--The Science Teacher's Contribution.

    ERIC Educational Resources Information Center

    Association for Science Education, Cambridge (England).

    Rapid advances in microelectronics over the past few years have generally been beneficial, but they have also created some problems, and questions must be asked about the philosophy for including aspects of the new technology in the school curriculum. This statement, prepared by the Microelectronics and Science Education Subcommittee of the…

  15. The Outcome of Graduate Programs: A Question of Values

    ERIC Educational Resources Information Center

    LaPidus, Jules B.

    1977-01-01

    The issue of quality in graduate programs is discussed generally, so that programs in the pharmaceutical sciences can be viewed in the broad context of science, rather than in the narrower confines of the profession of pharmacy. Consideration is given to goals, faculty characteristics, student quality, and development procedures. (LBH)

  16. Science Advisory Panel Meets to Discuss HLB/ACP

    USDA-ARS?s Scientific Manuscript database

    A group of scientists met in December 2013 as a Science Advisory Panel (SAP) to listen to presentations by the Citrus Research Board (CRB) and the California Department of Food and Agriculture (CDFA) and to respond to questions posed by CDFA personnel and the general public. The goal of the meeting ...

  17. Marine mammal subspecies in the age of genetics: Introductory remarks from the Associate Editor and Editor-in-Chief of Marine Mammal Science

    Treesearch

    Michael K. Schwartz; Daryl J. Boness

    2017-01-01

    Almost every conservation genetics and evolutionary biology textbook has a section questioning: "What is a species or subspecies?" It has been one of the most discussed, nearly unanswerable questions in all of biology. At issue is how to logically divide a variable that is generally continuous, with some occasional discrete breaks. Answering this question is...

  18. The role of ethics in science and engineering.

    PubMed

    Johnson, Deborah G

    2010-12-01

    It is generally thought that science and engineering should never cross certain ethical lines. The idea connects ethics to science and engineering, but it frames the relationship in a misleading way. Moral notions and practices inevitably influence and are influenced by science and engineering. The important question is how such interactions should take place. Anticipatory ethics is a new approach that integrates ethics into technological development. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Frequently Asked Questions about Pharmacogenomics

    MedlinePlus

    ... the NHGRI's Talking Glossary of Genetic Terms Pharmacogenomics Fact Sheet [nigms.nih.gov] From the National Institute of General Medical Sciences What is pharmacogenomics? [ghr.nlm.nih.gov] From ...

  20. Managing ocean information in the digital era--events in Canada open questions about the role of marine science libraries.

    PubMed

    Wells, Peter G

    2014-06-15

    Information is the foundation of evidence-based policies for effective marine environmental protection and conservation. In Canada, the cutback of marine science libraries introduces key questions about the role of such institutions and the management of ocean information in the digital age. How vital are such libraries in the mission of studying and protecting the oceans? What is the fate and value of the massive grey literature holdings, including archival materials, much of which is not in digital form but which often contains vital data? How important is this literature generally in the marine environmental sciences? Are we likely to forget the history of the marine pollution field if our digital focus eclipses the need for and access to comprehensive collections and skilled information specialists? This paper explores these and other questions against the backdrop of unprecedented changes in the federal libraries, marine environmental science and legislation in Canada. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  1. Redesigning a General Education Science Course to Promote Critical Thinking

    PubMed Central

    Rowe, Matthew P.; Gillespie, B. Marcus; Harris, Kevin R.; Koether, Steven D.; Shannon, Li-Jen Y.; Rose, Lori A.

    2015-01-01

    Recent studies question the effectiveness of a traditional university curriculum in helping students improve their critical thinking and scientific literacy. We developed an introductory, general education (gen ed) science course to overcome both deficiencies. The course, titled Foundations of Science, differs from most gen ed science offerings in that it is interdisciplinary; emphasizes the nature of science along with, rather than primarily, the findings of science; incorporates case studies, such as the vaccine-autism controversy; teaches the basics of argumentation and logical fallacies; contrasts science with pseudoscience; and addresses psychological factors that might otherwise lead students to reject scientific ideas they find uncomfortable. Using a pretest versus posttest design, we show that students who completed the experimental course significantly improved their critical-thinking skills and were more willing to engage scientific theories the general public finds controversial (e.g., evolution), while students who completed a traditional gen ed science course did not. Our results demonstrate that a gen ed science course emphasizing the process and application of science rather than just scientific facts can lead to improved critical thinking and scientific literacy. PMID:26231561

  2. English Proficiency and Competency Background of Social Science and Humanities Students

    ERIC Educational Resources Information Center

    Pelayo, Jose Maria G., III; Kutschera, P. C.; Capili, Claire Ann P.

    2014-01-01

    The study focuses on the background of Social Science and Humanities students (specifically in the course General Psychology) on their English education and competence. This research aims to identify the common factors of these students in terms of their English Proficiency. The students will answer survey questions that will give us information…

  3. Trends in reference usage statistics in an academic health sciences library.

    PubMed

    De Groote, Sandra L; Hitchcock, Kristin; McGowan, Richard

    2007-01-01

    To examine reference questions asked through traditional means at an academic health sciences library and place this data within the context of larger trends in reference services. Detailed data on the types of reference questions asked were collected during two one-month periods in 2003 and 2004. General statistics documenting broad categories of questions were compiled over a fifteen-year period. Administrative data show a steady increase in questions from 1990 to 1997/98 (23,848 to 48,037, followed by a decline through 2004/05 to 10,031. The distribution of reference questions asked over the years has changed-including a reduction in mediated searches 2,157 in 1990/91 to 18 in 2004/05, an increase in instruction 1,284 in 1993/94 to 1,897 in 2004/05 and an increase in digital reference interactions 0 in 1999/2000 to 581 in 2004/05. The most commonly asked questions at the current reference desk are about journal holdings 19%, book holdings 12%, and directional issues 12%. This study provides a unique snapshot of reference services in the contemporary library, where both online and offline services are commonplace. Changes in questions have impacted the way the library provides services, but traditional reference remains the core of information services in this health sciences library.

  4. How could it be? calling for science curricula that cultivate morals and values towards other animals and nature

    NASA Astrophysics Data System (ADS)

    Logan, Marianne R.; Russell, Joshua J.

    2016-12-01

    Can science curricula truly cultivate morals and values towards nature? This is the question that is raised by Carolina Castano Rodriguez in her critique of the new Australian Science curriculum. In this response to Castano Rodriguez's paper we ask two questions relating to: the influence of curricula on the relationships of children and other animals; and other models of science education regarding animals and nature that may be more relevant, just, or caring. In responding to these questions stimulated by the reading of Castano Rodriguez's paper, we reflect on our own experiences. We note the conflict between the values depicted in the curriculum priorities and the underlying anthropocentric view that appears to be embedded in the Australian Science Curriculum and in curricula generally. With this conflict in mind we encourage educators to examine our own practices regarding how the relationships between humans and other animals are promoted. We put forward the idea of science education that responds to the shifting views of science and its applications outside the confines of the laboratory to one that encourages both ethical and political discussion that is already taking place in the community relating to the role of science and technology in our lives and the lives of other animals.

  5. Chemical Warfare: Many Unanswered Questions.

    DTIC Science & Technology

    1983-04-29

    of Defense DSB Defense Science Board GAO U.S. General Accounting Office IDA Institute for Defense Analyses JCS Joint Chiefs of Staff SIPRI Stockholm...Defense Science Board in 1980, DOD specifically asked it to review intelligence data on chemical warfare, and DSB’s 1981 report accordingly presents its...Defense Science Board report suggests, however, that its com- - ments are based on a composite of intelligence information on Soviet chemical warfare

  6. Evaluating Scientific Misconceptions and Scientific Literacy in a General Science Course

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Scott, T. J.

    2009-12-01

    The data used in this study were collected as part of the course assignments for General Education Science (GSci) 101: “Physics, Chemistry, and the Human Experience” at James Madison University. The course covers the basic principles of physics, chemistry, and astronomy. The primary goals of this study were to analyze student responses to general scientific questions, to identify scientific misconceptions, and to evaluate scientific literacy by comparing responses collected from different groups of students and from questions given during the course versus at the end of the course. While this project is focused on general scientific concepts, the misconceptions and patterns identified are particularly relevant for improving pedagogy in the geosciences as this field relies on multidisciplinary knowledge of fundamental physics, chemistry, and astronomy. We discuss differences in the results between the disciplines of physics, chemistry, and astronomy and their implications for general geology education and literacy, emphasizing the following questions: (a) What do students typically get wrong? (b) Did the overall scientific literacy of the students increase throughout the semester? Are the concepts discussed in answers provided at the end of class more accurate than those provided during class? (c) How do the before- and after- class responses change with respect to language and terminology? Did the students use more scientific terminology? Did the students use scientific terminology correctly?

  7. Science on the Fairgrounds: From Black to White Magic

    NASA Astrophysics Data System (ADS)

    Daniel, Raichvarg

    2007-06-01

    During the 18th and 19th centuries, numerous "entrepreneurs de spectacles scientifiques" — a new category of "stall-keepers" — travelled around France, displaying their scientific shows to the public. They turned out to be physics demonstrators, magicians, mechanical engineers or curators of museums of anatomy. A general survey of these shows is not easy because we have but few documents to consider. Through a various set of texts and pictures, we'll try to understand the general philosophy of these shows: the wonder, the novelty and the surprising are the key-ideas which prevail and not only the idea that these shows mostly deliver knowledge. But above all, we will see that these shows played an important part in popularizing the 19th century scientific achievement as well as achieving the 18th century goal of the Enlightenment. Finally, we may question and discuss the 21st century answer to the question of science understood as entertainment: "science'tainment" as we say: "info'tainment"!

  8. The State of Economic Science: Views of Six Nobel Laureates.

    ERIC Educational Resources Information Center

    Sichel, Werner, Ed.

    In this collection of essays six noted economists question the state of economic science today. Kenneth J. Arrow focuses on the theories of individual and social choice and general economic equilibrium. Arguing that macroeconomics is the key to understanding the modern economic system, Robert M. Solow provides an historical review of the ideas of…

  9. A Science of Social Work? Response to John Brekke

    ERIC Educational Resources Information Center

    Shaw, Ian

    2014-01-01

    I take the opportunity provided by John Brekke's (2012) article to respond to the general assumptions and approaches that may be brought when considering the question of a science of social work. I consider first, what should be our frames of reference, our communities of interest, or our boundaries of inclusion, for such a discussion?…

  10. The concepts of science in Japanese and Western education

    NASA Astrophysics Data System (ADS)

    Kawasaki, Ken

    1996-01-01

    Using structural linguistics, the present article offers an impartial frame of reference to analyze science education in the non-Western world. In Japan, science education has been free from epistemological reflection because Japan regards science only as effective technology for modernization. By not taking account of the world-view aspect of science, Japan can treat science as not self-referential. Issues of science education are then rather simple; they are only concerned with the question of ‘how to’, and answers to this question are judged according to the efficiency achieved for modernization. Science, however, is a way of seeing ‘nature’. This word is generally translated into Japanese as ‘shizen’ which has a totally different connotation and therefore does not lead to an understanding of the Western scientific spirit. Saussure's approach to language is used to expose the consequences of the misinterpretations that spring from this situation. In order to minimize or prevent these misinterpretations, it is emphasized that science education should be identified with foreign language education in the non-Western world.

  11. Panel Conditioning in the General Social Survey

    ERIC Educational Resources Information Center

    Halpern-Manners, Andrew; Warren, John Robert; Torche, Florencia

    2017-01-01

    Does participation in one wave of a survey have an effect on respondents' answers to questions in subsequent waves? In this article, we investigate the presence and magnitude of "panel conditioning" effects in one of the most frequently used data sets in the social sciences: the General Social Survey (GSS). Using longitudinal records…

  12. Information Resources in Clinical Medicine: Family Practice, Pediatrics, Obstetrics and Gynecology, General Surgery, Internal Medicine.

    ERIC Educational Resources Information Center

    Schwank, Jean; Allen, Joyce

    Designed for beginning health science librarians, this continuing education course syllabus presents a guide to information resources for answering physicians' questions about patient care. Sources from standard core lists, such as the Alfred Brandon list, are highlighted and described, along with additional titles. General resources covered…

  13. The Impact of Transformational Leadership, Experiential Learning, and Reflective Journaling on the Conservation Ethic of Tertiary-Level Non-Science Majors

    ERIC Educational Resources Information Center

    Reynolds, Bradley Robert

    2013-01-01

    The impact of transformational leadership, experiential learning, and reflective journaling on the conservation ethic of non-science majors in a general education survey course was investigated. The main research questions were: (1) Is the Conservation of Biodiversity professor a transformational leader? (2) Is there a difference in the…

  14. Certain Basic Concepts of Teaching Turkish as a Foreign Language

    ERIC Educational Resources Information Center

    Sen, Ülker

    2016-01-01

    Concept that is defined to be the intangible and general designs emerging in a mind that belongs to an object or thought, has become both subject and object of a very large field ranging from philosophy to linguistics, from social sciences to science. Regardless of which field is in question, the unity of concept is important in order to pave the…

  15. Molasses or Crowds: Making Sense of the Higgs Boson with Two Popular Analogies

    ERIC Educational Resources Information Center

    Alsop, S.; Beale, S.

    2013-01-01

    The recent discovery of the Higgs boson at the Large Hadron Collider (LHC) has contributed to a surge of interest in particle physics and science education in general. Given the conceptual difficulty of the phenomenon in question, it is inevitable that teachers and science communicators rely on analogies to explain the Higgs physics and its…

  16. Using NASA's Giovanni Web Portal to Access and Visualize Satellite-based Earth Science Data in the Classroom

    NASA Technical Reports Server (NTRS)

    Lloyd, Steven; Acker, James G.; Prados, Ana I.; Leptoukh, Gregory G.

    2008-01-01

    One of the biggest obstacles for the average Earth science student today is locating and obtaining satellite-based remote sensing data sets in a format that is accessible and optimal for their data analysis needs. At the Goddard Earth Sciences Data and Information Services Center (GES-DISC) alone, on the order of hundreds of Terabytes of data are available for distribution to scientists, students and the general public. The single biggest and time-consuming hurdle for most students when they begin their study of the various datasets is how to slog through this mountain of data to arrive at a properly sub-setted and manageable data set to answer their science question(s). The GES DISC provides a number of tools for data access and visualization, including the Google-like Mirador search engine and the powerful GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) web interface.

  17. Computational Science and Innovation

    NASA Astrophysics Data System (ADS)

    Dean, D. J.

    2011-09-01

    Simulations - utilizing computers to solve complicated science and engineering problems - are a key ingredient of modern science. The U.S. Department of Energy (DOE) is a world leader in the development of high-performance computing (HPC), the development of applied math and algorithms that utilize the full potential of HPC platforms, and the application of computing to science and engineering problems. An interesting general question is whether the DOE can strategically utilize its capability in simulations to advance innovation more broadly. In this article, I will argue that this is certainly possible.

  18. Heuristic and algorithmic processing in English, mathematics, and science education.

    PubMed

    Sharps, Matthew J; Hess, Adam B; Price-Sharps, Jana L; Teh, Jane

    2008-01-01

    Many college students experience difficulties in basic academic skills. Recent research suggests that much of this difficulty may lie in heuristic competency--the ability to use and successfully manage general cognitive strategies. In the present study, the authors evaluated this possibility. They compared participants' performance on a practice California Basic Educational Skills Test and on a series of questions in the natural sciences with heuristic and algorithmic performance on a series of mathematics and reading comprehension exercises. Heuristic competency in mathematics was associated with better scores in science and mathematics. Verbal and algorithmic skills were associated with better reading comprehension. These results indicate the importance of including heuristic training in educational contexts and highlight the importance of a relatively domain-specific approach to questions of cognition in higher education.

  19. Senate Confirmation Hearing IG

    NASA Image and Video Library

    2009-10-14

    Paul K. Martin, nominee for Inspector General for NASA, answers questions during his confirmation hearing in front of the Senate Committee on Commerce, Science and Transportation, Thursday, Oct. 15, 2009, on Capitol Hill in Washington. Photo Credit: (NASA/Paul E. Alers)

  20. Understanding Standards and Assessment Policy in Science Education: Relating and Exploring Variations in Policy Implementation by Districts and Teachers in Wisconsin

    NASA Astrophysics Data System (ADS)

    Anderson, Kevin John Boyett

    Current literature shows that many science teachers view policies of standards-based and test-based accountability as conflicting with research-based instruction in science education. With societal goals of improving scientific literacy and using science to spur economic growth, improving science education policy becomes especially important. To understand perceived influences of science education policy, this study looked at three questions: 1) How do teachers perceive state science standards and assessment and their influence on curriculum and instruction? 2) How do these policy perspectives vary by district and teacher level demographic and contextual differences? 3) How do district leaders' interpretations of and efforts within these policy realms relate to teachers' perceptions of the policies? To answer these questions, this study used a stratified sample of 53 districts across Wisconsin, with 343 middle school science teachers responding to an online survey; science instructional leaders from each district were also interviewed. Survey results were analyzed using multiple regression modeling, with models generally predicting 8-14% of variance in teacher perceptions. Open-ended survey and interview responses were analyzed using a constant comparative approach. Results suggested that many teachers saw state testing as limiting use of hands-on pedagogy, while standards were seen more positively. Teachers generally held similar views of the degree of influence of standards and testing regardless of their experience, background in science, credentials, or grade level taught. District SES, size and past WKCE scores had some limited correlations to teachers' views of policy, but teachers' perceptions of district policies and leadership consistently had the largest correlation to their views. District leadership views of these state policies correlated with teachers' views. Implications and future research directions are provided. Keywords: science education, policy, accountability, standards, assessment, district leadership

  1. Science Literacy and Prior Knowledge of Astronomy MOOC Students

    NASA Astrophysics Data System (ADS)

    Impey, Chris David; Buxner, Sanlyn; Wenger, Matthew; Formanek, Martin

    2018-01-01

    Many of science classes offered on Coursera fall into fall into the category of general education or general interest classes for lifelong learners, including our own, Astronomy: Exploring Time and Space. Very little is known about the backgrounds and prior knowledge of these students. In this talk we present the results of a survey of our Astronomy MOOC students. We also compare these results to our previous work on undergraduate students in introductory astronomy courses. Survey questions examined student demographics and motivations as well as their science and information literacy (including basic science knowledge, interest, attitudes and beliefs, and where they get their information about science). We found that our MOOC students are different than the undergraduate students in more ways than demographics. Many MOOC students demonstrated high levels of science and information literacy. With a more comprehensive understanding of our students’ motivations and prior knowledge about science and how they get their information about science, we will be able to develop more tailored learning experiences for these lifelong learners.

  2. Approaches to the Nature of Educational Sloyd and Craft. Sloyd Competence in Nordic Culture. Part III. Research in Sloyd Education and Crafts Science B:2.

    ERIC Educational Resources Information Center

    Lindfors, Linnea, Ed.; Peltonen, Juhani, Ed.; Porko, Mia, Ed.

    These nine articles deal with basic philosophical questions concerned with the general nature of sloyd or with the educational aspect of sloyd. (Sloyd, derived from a Swedish word, is an umbrella term for making or crafting things by hand.) They report research on cultural questions related to goals and contents, ranging from sociocultural…

  3. The Geospace Mission Definition Team report

    NASA Astrophysics Data System (ADS)

    Kintner, P.; Spann, J.

    The Geospace Mission Definition Team (GMDT) is the portion of the Living With a Star (LWS) Program that has been charged by NASA to examine how the Geospace environment responds to solar variability. The goal is to provide science recommendations that guide NASA in the formulation of Geospace missions. The GMDT's first meeting with September 10, 2001 and has met on four subsequent dates. The top level space weather effects were initially defined by the LWS Science Architecture Team (SAT). From these effects the GMDT has distilled general objectives and specific objectives. These objectives have been prioritized and compelling science questions have been identified that are required to address the objectives. A set of candidate missions has been defined with minimum, baseline, and augmentation measurements identified. The priority science questions focus on two broad areas: (1) ionospheric variability, especially at mid-latitudes, that affects navigation and communications and (2) the source, acceleration mechanisms, and sinks of the radiation belts that degrade satellite lifetimes, produce surface charging, and threaten manned space flight. In addition the measurements required for understanding ionospheric variability will also address science issues associated with thermospheric satellite drag and orbital prediction. Candidate missions to address these science focii have been developed and studied. The team concludes that it is possible to address the compelling science questions with a cost effective program that yields major advances in our understanding of space weather science, that inspires and validates better ionospheric and magnetospheric models, and that will enable operational advances mitigating the societal impacts of space weather.

  4. Exploring Aesthetic Experiences in the Undergraduate General Education Science Classroom

    NASA Astrophysics Data System (ADS)

    Biscotte, Stephen Michael

    Citizens must have a minimal level of STEM-literacy to work alongside scientists to tackle both current and future global challenges. How can general education, the one piece of the undergraduate experience every student completes, contribute to this development? And science learning is dependent on having transformative aesthetic experiences in the science classroom. These memorable experiences involve powerful connection between students and the world around them. If these types of experiences are necessary for science learning and growth, are students in introductory science courses having them? If so, what relationship might they have with students' desires to pursue further science study? This dissertation explores these questions through two manuscripts. The first, a theoretical piece published in the Journal of General Education in 2015, argues that non-STEM students must have transformative aesthetic experiences in their undergraduate general education science course to develop the level of understanding needed to engage with challenging scientific issues in the future. This claim is substantiated by bringing together the work of Dewey and Deweyan scholars on the nature and impact of aesthetic experiences in science and science education with the general education reform efforts and desired outcomes for an informed and engaged citizenry. The second manuscript, an empirical piece, explores the lived experience of non-STEM students in an introductory geosciences course. A phenomenological research methodology is deployed to capture the 'essence' of the lived experience of a STEM-philic student in general education science. In addition, Uhrmacher's CRISPA framework is used to analyze the participants' most memorable course moments for the presence or absence of aesthetic experiences. In explication of the data, it shows that students are in fact having aesthetic experiences (or connecting to prior aesthetic experiences) and these experiences are related to their desires to pursue further STEM study.

  5. Development and Validation of an Assessment Instrument for Course Experience in a General Education Integrated Science Course

    ERIC Educational Resources Information Center

    Liu, Juhong Christie; St. John, Kristen; Courtier, Anna M. Bishop

    2017-01-01

    Identifying instruments and surveys to address geoscience education research (GER) questions is among the high-ranked needs in a 2016 survey of the GER community (St. John et al., 2016). The purpose of this study was to develop and validate a student-centered assessment instrument to measure course experience in a general education integrated…

  6. [On the evolution of scientific thought].

    PubMed

    de Micheli, Alfredo; Iturralde Torres, Pedro

    2015-01-01

    The Nominalists of the XIV century, precursors of modern science, thought that science's object was not the general, vague and indeterminate but the particular, which is real and can be known directly. About the middle of the XVII Century the bases of the modern science became established thanks to a revolution fomented essentially by Galileo, Bacon and Descartes. During the XVIII Century, parallel to the development of the great current of English Empiricism, a movement of scientific renewal also arose in continental Europe following the discipline of the Dutch Physicians and of Boerhaave. In the XIX Century, Claude Bernard dominated the scientific medicine but his rigorous determinism impeded him from taking into account the immense and unforeseeable field of the random. Nowadays, we approach natural science and medicine, from particular groups of facts; that is, from the responses of Nature to specific questions, but not from the general laws. Furthermore, in recent epistemology, the concept that experimental data are not pure facts, but rather, facts interpreted within a hermeneutical context has been established. Finally a general tendency to retrieve philosophical questions concerning the understanding of essence and existence can frequently be seen in scientific inquiry. In the light of the evolution of medical thought, it is possible to establish the position of scientific medicine within the movement of ideas dominating in our time. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  7. Testability and epistemic shifts in modern cosmology

    NASA Astrophysics Data System (ADS)

    Kragh, Helge

    2014-05-01

    During the last decade new developments in theoretical and speculative cosmology have reopened the old discussion of cosmology's scientific status and the more general question of the demarcation between science and non-science. The multiverse hypothesis, in particular, is central to this discussion and controversial because it seems to disagree with methodological and epistemic standards traditionally accepted in the physical sciences. But what are these standards and how sacrosanct are they? Does anthropic multiverse cosmology rest on evaluation criteria that conflict with and go beyond those ordinarily accepted, so that it constitutes an "epistemic shift" in fundamental physics? The paper offers a brief characterization of the modern multiverse and also refers to a few earlier attempts to introduce epistemic shifts in the science of the universe. It further discusses the several meanings of testability, addresses the question of falsifiability as a sine qua non for a theory being scientific, and briefly compares the situation in cosmology with the one in systematic biology. Multiverse theory is not generally falsifiable, which has led to proposals from some physicists to overrule not only Popperian standards but also other evaluation criteria of a philosophical nature. However, this is hardly possible and nor is it possible to get rid of explicit philosophical considerations in some other aspects of cosmological research, however advanced it becomes.

  8. Teaching the Delightful Laws of Physics in a Survey Course

    NASA Astrophysics Data System (ADS)

    Hewitt, Paul G.

    2015-10-01

    How physics can be made interesting is a question that needs no answer. That's because physics is interesting! It's a field of study jam-packed with fascination and wonder. The general public has an enormous thirst for physics knowledge, as indicated by the great numbers who purchase science magazines and books and watch NOVA and other science specials. A related question, how to make a physics course interesting, is something that we can answer. All we have to do is present physics at a proper pace in the language of the learner. My adage has always been that if the first course in physics is delightful, the rigor of a follow-up course will be welcomed.

  9. Science Literacy of Undergraduates in the United States

    NASA Astrophysics Data System (ADS)

    Impey, Chris

    2013-01-01

    Science literacy is a matter of broad concern among scientists, educators, and many policy-makers. National Science Foundation surveys of the general public for biannual Science Indicators series show that respondents on average score less than 2/3 correct on a series of science knowledge questions, and less than half display an understanding of the process of scientific inquiry. Both measures are essentially unchanged over two decades. At the University of Arizona, we have gathered over 11,000 undergraduate student responses to a survey of knowledge and beliefs that is tethered in the NSF survey. This non-science major population demographically represents ten million students nationwide. There is a less than 10% gain in performance in the science knowledge score between the incoming freshmen and seniors who graduate having completed their requirement of three science classes. Belief levels in pseudoscience and supernatural phenomena are disconcertingly high, mostly resistant to college science instruction, and weakly correlated with performance on the science knowledge questions. The Internet is rapidly becoming the primary information source for anyone interested in science so students may not get most of their information from the classroom. Educators and policy makers need to decide what aspects of science knowledge and process are important for adults to know. College science educators have major challenges in better in preparing graduates for participation in a civic society largely driven by science and technology.

  10. [Cultural and trivial knowledge among Chilean university students].

    PubMed

    Vargas C, Nelson A; Pinochet T, Dante; Juárez E, Paula

    2010-03-01

    Culture is defined by the Webster's dictionary as acquaintance with and taste in fine arts, humanities, and broad aspects of science as distinguished from vocational and technical skills. To assess the general cultural knowledge of university students. A test containing 58 questions about art, national and universal literature, national and universal history, mythology science and trivial national issues was designed and applied to 251 medical students in Santiago (149 from first year and 86 from fifth year, Universidad de Chile) and 138 agronomy students in Valdivia (61 from first year and 77 from fifth year, Universidad Austral de Chile). All students answered the test. Medical students from first and fifth year omitted 19 and 15% of questions respectively The figures for first and fifth year agronomy students were 23% each. The percentage of cored answers among first and fifth year medical students was 50 and 59% respectively. The figures for first and fifth year agronomy students were 39 and 44% respectively. The questions with higher rates of cored answers were those about trivial issues. There was a high rate of omissions and wrong answers about general cultural issues among university students particularly in national cultural subjects.

  11. The Eternal Role of Astronomy in History and Civilization

    NASA Astrophysics Data System (ADS)

    Theodossiou, E.; Manimanis, V. N.

    2010-07-01

    Astronomy is the most ancient of all natural sciences. From its roots in ancient Babylonian and Egyptian stellar observations, and through its formulation into a science from the Greek natural philosophers, it defined the measurement of time. The stellar eras and the applications of Astronomy were incorporated in temples, paintings, sculptures and in art in general. Today, the value of Astronomy on practical matters, timekeeping or the navigation, has diminished. However, the eternal questions connected with Astronomy remain: Who are we and where did we come from? How and why was the Universe born? The greatest step to answer this kind of questions came with the so-called Copernican revolution, mostly in the 17th Century. The progress of Astronomy in the 400 years since then answered questions and gave an end to all kinds of superstitions, one more contribution to human civilization.

  12. Measuring Gains in Critical Thinking in Food Science and Human Nutrition Courses: The Cornell Critical Thinking Test, Problem-Based Learning Activities, and Student Journal Entries

    ERIC Educational Resources Information Center

    Iwaoka, Wayne T.; Li, Yong; Rhee, Walter Y.

    2010-01-01

    The Cornell Critical Thinking Test (CCTT) is one of the many multiple-choice tests with validated questions that have been reported to measure general critical thinking (CT) ability. One of the IFT Education Standards for undergraduate degrees in Food Science is the emphasis on the development of critical thinking. While this skill is easy to list…

  13. Investigating Turkish Primary School Students' Interest in Science by Using Their Self-Generated Questions

    ERIC Educational Resources Information Center

    Cakmakci, Gultekin; Sevindik, Hatice; Pektas, Meryem; Uysal, Asli; Kole, Fatma; Kavak, Gamze

    2012-01-01

    This paper reports on an attempt to investigate Turkish primary school students' interest in science by using their self-generated questions. We investigated students' interest in science by analyzing 1704 self-generated science-related questions. Among them, 826 questions were submitted to a popular science magazine called Science and Children.…

  14. Individualizing therapy, customizing clinical science.

    PubMed

    Evans, I M

    1996-06-01

    The focus of this paper is to propose that the question of standardized versus individualized therapy is part of a more general debate regarding the nature of inquiry, the use of empirical knowledge in practice, and the evaluation of professional activities-what collectively might be called clinical science. Exclusive reliance on traditional experimental research design, with its demand for procedural standardization, promotes a model of clinical behavior therapy as a technology. Such a perspective runs counter to the development of the special relationship between theory (generality) and practice (specificity) that represents one of behavior therapy's unique contributions and long term legacies. If behavior therapists treating individual clients are to adapt general principles to individual need, there must be a broader view of relevant sources of individual differences.

  15. Using Eight Key Questions as an Inquiry-Based Framework for Ethical Reasoning Issues in a General Education Earth Systems and Climate Change Course

    NASA Astrophysics Data System (ADS)

    Johnson, E. A.; Ball, T. C.

    2014-12-01

    An important objective in general education geoscience courses is to help students evaluate social and ethical issues based upon scientific knowledge. It can be difficult for instructors trained in the physical sciences to design effective ways of including ethical issues in large lecture courses where whole-class discussions are not practical. The Quality Enhancement Plan for James Madison University, "The Madison Collaborative: Ethical Reasoning in Action," (http://www.jmu.edu/mc/index.shtml) has identified eight key questions to be used as a framework for developing ethical reasoning exercises and evaluating student learning. These eight questions are represented by the acronym FOR CLEAR and are represented by the concepts of Fairness, Outcomes, Responsibilities, Character, Liberty, Empathy, Authority, and Rights. In this study, we use the eight key questions as an inquiry-based framework for addressing ethical issues in a 100-student general education Earth systems and climate change course. Ethical reasoning exercises are presented throughout the course and range from questions of personal behavior to issues regarding potential future generations and global natural resources. In the first few exercises, key questions are identified for the students and calibrated responses are provided as examples. By the end of the semester, students are expected to identify key questions themselves and justify their own ethical and scientific reasoning. Evaluation rubrics are customized to this scaffolding approach to the exercises. Student feedback and course data will be presented to encourage discussion of this and other approaches to explicitly incorporating ethical reasoning in general education geoscience courses.

  16. Taking evolution seriously in political science.

    PubMed

    Lewis, Orion; Steinmo, Sven

    2010-09-01

    In this essay, we explore the epistemological and ontological assumptions that have been made to make political science "scientific." We show how political science has generally adopted an ontologically reductionist philosophy of science derived from Newtonian physics and mechanics. This mechanical framework has encountered problems and constraints on its explanatory power, because an emphasis on equilibrium analysis is ill-suited for the study of political change. We outline the primary differences between an evolutionary ontology of social science and the physics-based philosophy commonly employed. Finally, we show how evolutionary thinking adds insight into the study of political phenomena and research questions that are of central importance to the field, such as preference formation.

  17. Nuclear Forensics: Scientific Analysis Supporting Law Enforcement and Nuclear Security Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keegan, Elizabeth; Kristo, Michael J.; Toole, Kaitlyn

    In Nuclear Forensic Science, analytical chemists join forces with nuclear physicists, material scientists, radiochemists, and traditional forensic scientists, as well as experts in nuclear security, nuclear safeguards, law enforcement, and policy development, in an effort to deter nuclear smuggling. Nuclear forensic science, or “nuclear forensics,” aims to answer questions about nuclear material found outside of regulatory control, questions such as ‘where did this material come from?’ and ‘what is the intended use of the material?’ In this Feature, we provide a general overview of nuclear forensics, selecting examples of key “nuclear forensic signatures” which have allowed investigators to determine themore » identity of unknown nuclear material in real investigations.« less

  18. Nuclear Forensics: Scientific Analysis Supporting Law Enforcement and Nuclear Security Investigations

    DOE PAGES

    Keegan, Elizabeth; Kristo, Michael J.; Toole, Kaitlyn; ...

    2015-12-24

    In Nuclear Forensic Science, analytical chemists join forces with nuclear physicists, material scientists, radiochemists, and traditional forensic scientists, as well as experts in nuclear security, nuclear safeguards, law enforcement, and policy development, in an effort to deter nuclear smuggling. Nuclear forensic science, or “nuclear forensics,” aims to answer questions about nuclear material found outside of regulatory control, questions such as ‘where did this material come from?’ and ‘what is the intended use of the material?’ In this Feature, we provide a general overview of nuclear forensics, selecting examples of key “nuclear forensic signatures” which have allowed investigators to determine themore » identity of unknown nuclear material in real investigations.« less

  19. Using the science writing heuristic approach as a tool for assessing and promoting students' conceptual understanding and perceptions in the general chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Mohammad, Elham Ghazi

    This thesis reports on a study that examined the impact of implementing SWH (inquiry-based approach) in a general chemistry lab on non-science-major students' understanding of chemistry concepts and students' perceptions toward writing in science and implementing SWH. This study was conducted in a large university in the Midwest of the United States in a college freshman chemistry laboratory for non-science-major students. The research framework is presented including the following: the qualitative research design with the observation as data collection method for this design and the criteria for teacher level of implementation and the ranking mechanism; and the quantitative research design with data collection and analysis methods including pre- and post-conceptual exams, lecture question, open-ended surveys. This research was based on a quasi-experimental mixed-method design a focus on student performance on higher order conceptual questions, and open-ended survey at the end of semester about their perception toward writing to learn ad implementing SWH. Results from the qualitative and quantitative component indicated that implementing SWH approach has notably enhanced both male and female conceptual understanding and perception toward chemistry and implementing SWH. It is known that there is gender gap in science, where female have lower perception and self confident toward science. Interestingly, my findings have showed that implementing SWH helped closing the gap between male and female who started the semester with a statistically significant lower level of conceptual understanding of chemistry concepts among females than males.

  20. Life sciences flight experiments program - Overview

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Dant, C. C.

    1981-01-01

    The considered LSFE program focuses on Spacelab life sciences missions planned for the 1984-1985 time frame. Life Sciences Spacelab payloads, launched at approximately 18-months intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and a variety of other life sciences. An overview is presented of the LSFE program that will take advantage of the unique opportunities for biological experimentation possible on Spacelab. Program structure, schedules, and status are considered along with questions of program selection, and the science investigator working groups. A description is presented of the life sciences laboratory equipment program, taking into account the general purpose work station, the research animal holding facility, and the plant growth unit.

  1. Systems and complexity thinking in general practice: part 1 - clinical application.

    PubMed

    Sturmberg, Joachim P

    2007-03-01

    Many problems encountered in general practice cannot be sufficiently explained within the Newtonian reductionist paradigm. Systems and complexity thinking - already widely adopted in most nonmedical disciplines - describes and explores the contextual nature of questions posed in medicine, and in general practice in particular. This article briefly describes the framework underpinning systems and complexity sciences. A case study illustrates how systems and complexity thinking can help to better understand the contextual nature of patient presentations, and how different approaches will lead to different outcomes.

  2. Questioning Questions: Elementary Teachers' Adaptations of Investigation Questions across the Inquiry Continuum

    ERIC Educational Resources Information Center

    Biggers, Mandy

    2018-01-01

    Questioning is a central practice in science classrooms. However, not every question translates into a "good" science investigation. Questions that drive science investigations can be provided by many sources including the teacher, the curriculum, or the student. The variations in the source of investigation questions were explored in…

  3. The NASA Beyond Einstein Program

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2006-01-01

    Einstein's legacy is incomplete, his theory of General relativity raises -- but cannot answer --three profound questions: What powered the big bang? What happens to space, time, and matter at the edge of a black hole? and What is the mysterious dark energy pulling the Universe apart? The Beyond Einstein program within NASA's Office of Space Science aims to answer these questions, employing a series of missions linked by powerful new technologies and complementary approaches towards shared science goals. The Beyond Einstein program has three linked elements which advance science and technology towards two visions; to detect directly gravitational wave signals from the earliest possible moments of the BIg Bang, and to image the event horizon of a black hole. The central element is a pair of Einstein Great Observatories, Constellation-X and LISA. Constellation-X is a powerful new X-ray observatory dedicated to X-Ray Spectroscopy. LISA is the first spaced based gravitational wave detector. These powerful facilities will blaze new paths to the questions about black holes, the Big Bang and dark energy. The second element is a series of competitively selected Einstein Probes, each focused on one of the science questions and includes a mission dedicated resolving the Dark Energy mystery. The third element is a program of technology development, theoretical studies and education. The Beyond Einstein program is a new element in the proposed NASA budget for 2004. This talk will give an overview of the program and the missions contained within it.

  4. Dinosaur Extinction, Early Childhood Style

    ERIC Educational Resources Information Center

    Murray, Mary; Valentine-Anand, Lesley

    2008-01-01

    Do dinosaurs have bellybuttons? This intriguing question launched a journey into inquiry science that captivated a class of four-year-olds for eight months. As students enjoyed dinosaur books, examined dinosaur artifacts, drew pictures, watched videos, and generally immersed themselves in all things dinosaur, the authors built a culture of…

  5. Flight. Science Series Grades 4, 5, 6.

    ERIC Educational Resources Information Center

    Frensch, Helen

    The activities in this book are designed to reinforce the elementary concepts of flight. General background information, suggested activities, questions for discussion, and answers are provided. Twenty-eight reproducible worksheets are contained in this guide. Topics include: hot air balloons, the physics of flight, air resistance, airplane…

  6. A 20-Year Survey of Scientific Literacy and Attitudes Toward Science_An Overview

    NASA Astrophysics Data System (ADS)

    Impey, Chris David; Antonellis, J.; Johnson, E.; King, C.; CATS

    2009-01-01

    This poster presents the results of a long-term investigation into the science literacy and attitudes toward science of University of Arizona non-science major undergraduates. The survey instrument utilized in this study was derived from measures of adults’ science literacy, as defined and assessed by the National Science Foundation in its biannual Science and Engineering Indicators reports to the National Science Board. In addition, the survey instrument measures attitudes toward science and technology and toward pseudoscience. Quantitative data from over 9000 questionnaires have been into a database, and qualitative data from four open-ended questions has been coded thematically (see Antonellis et al., this meeting). The data will be used to address a number of research questions in the area of science education and science policy, including (1) how the level of science literacy of undergraduates compares to the adult population; (2) how science literacy and attitudes towards science have changed since 1987; (3) the relationship between science knowledge and attitudes towards science; and (4) the extent to which General Education science requirements at a large State university affect science knowledge and attitudes. The data will also be used to critically examine the concept of science literacy. The results of this study are being used by CATS to develop a survey instrument designed specifically for use with Astro 101 students to diagnose the effect our instruction has on their scientific attitudes and beliefs. We acknowledge the NSF for funding under Award No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS).

  7. Effects of NIGMS Training Programs on Graduate Education in the Biomedical Sciences. An Evaluative Study of the Training Programs of the National Institute of General Medical Sciences 1958-1967.

    ERIC Educational Resources Information Center

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This report was prepared by the National Research Council, at the request of the National Institutes of Health, in an attempt to evaluate the Graduate Research Training Grant Program and Fellowship Program in bioscience. One of the purposes of the study was to collect objective data that would provide answers to such questions as: What have been…

  8. Redesigning a General Education Science Course to Promote Critical Thinking.

    PubMed

    Rowe, Matthew P; Gillespie, B Marcus; Harris, Kevin R; Koether, Steven D; Shannon, Li-Jen Y; Rose, Lori A

    2015-01-01

    Recent studies question the effectiveness of a traditional university curriculum in helping students improve their critical thinking and scientific literacy. We developed an introductory, general education (gen ed) science course to overcome both deficiencies. The course, titled Foundations of Science, differs from most gen ed science offerings in that it is interdisciplinary; emphasizes the nature of science along with, rather than primarily, the findings of science; incorporates case studies, such as the vaccine-autism controversy; teaches the basics of argumentation and logical fallacies; contrasts science with pseudoscience; and addresses psychological factors that might otherwise lead students to reject scientific ideas they find uncomfortable. Using a pretest versus posttest design, we show that students who completed the experimental course significantly improved their critical-thinking skills and were more willing to engage scientific theories the general public finds controversial (e.g., evolution), while students who completed a traditional gen ed science course did not. Our results demonstrate that a gen ed science course emphasizing the process and application of science rather than just scientific facts can lead to improved critical thinking and scientific literacy. © 2015 M. P. Rowe, B. M. Gillespie, et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Uncovering What Our Students Really Think About Science and Society -- Are We Doomed?

    NASA Astrophysics Data System (ADS)

    Teske, Johanna; Prather, E. E.; Wallace, C. S.; Meyers, M.; Collaboration of Astronomy Teaching Scholars (CATS)

    2012-10-01

    We present initial results from our study of how science does or does not influence the worldviews of introductory, general education college astronomy students. Our data were gathered over one course (one semester), and examine students' ideas on provocative topics such as the relationship between science and religion, comparisons between the return on investment from different government programs, the limits of scientific inquiry, and how/if science can help to solve critical problems facing our society today. Since this is the last formal science course many of these general education astronomy students will ever take, the experience they have during this course is crucial for developing an accurate and well-informed worldview that includes the role of science in society. With our research we aim to answer the question, “Can teaching help shape this worldview to incorporate science more positively?” This material is based in part upon work supported by the National Science Foundation under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

  10. Research in health sciences library and information science: a quantitative analysis.

    PubMed Central

    Dimitroff, A

    1992-01-01

    A content analysis of research articles published between 1966 and 1990 in the Bulletin of the Medical Library Association was undertaken. Four specific questions were addressed: What subjects are of interest to health sciences librarians? Who is conducting this research? How do health sciences librarians conduct their research? Do health sciences librarians obtain funding for their research activities? Bibliometric characteristics of the research articles are described and compared to characteristics of research in library and information science as a whole in terms of subject and methodology. General findings were that most research in health sciences librarianship is conducted by librarians affiliated with academic health sciences libraries (51.8%); most deals with an applied (45.7%) or a theoretical (29.2%) topic; survey (41.0%) or observational (20.7%) research methodologies are used; descriptive quantitative analytical techniques are used (83.5%); and over 25% of research is funded. The average number of authors was 1.85, average article length was 7.25 pages, and average number of citations per article was 9.23. These findings are consistent with those reported in the general library and information science literature for the most part, although specific differences do exist in methodological and analytical areas. PMID:1422504

  11. Secondary science teachers' attitudes toward and beliefs about science reading and science textbooks

    NASA Astrophysics Data System (ADS)

    Yore, Larry D.

    Science textbooks are dominant influences behind most secondary science instruction but little is known about teachers' approach to science reading. The purpose of this naturalistic study was to develop and validate a Science and Reading Questionnaire to assess secondary science teachers' attitudes toward science reading and their beliefs or informed opinions about science reading. A survey of 428 British Columbia secondary science teachers was conducted and 215 science teachers responded. Results on a 12-item Likert attitude scale indicated that teachers place high value on reading as an important strategy to promote learning in science and that they generally accept responsibility for teaching content reading skills to science students. Results on a 13-item Likert belief scale indicated that science teachers generally reject the text-driven model of reading, but they usually do not have well-formulated alternative models to guide their teaching practices. Teachers have intuitive beliefs about science reading that partially agree with many research findings, but their beliefs are fragmented and particularly sketchy in regard to the cognitive and metacognitive skills required by readers to learn from science texts. The findings for attitude, belief, and total scales were substantiated by further questions in the Science and Reading Questionnaire regarding classroom practice and by individual interviews and classroom observations of a 15-teacher subsample of the questionnaire respondents.

  12. Exploring the Universe. Science Series Grades 4, 5, 6.

    ERIC Educational Resources Information Center

    Giessow, Jean; Giessow, Fred

    The activities in this book are designed to reinforce elementary concepts in the study of the universe. General background information, suggested activities, questions for discussion, and answers are provided. Twenty-eight reproducible worksheets are contained in this guide. Topics include: the solar system, orbits, planets, the sun, forces in…

  13. Data Modeling for Preservice Teachers and Everyone Else

    ERIC Educational Resources Information Center

    Petrosino, Anthony J.; Mann, Michele J.

    2018-01-01

    Although data modeling, the employment of statistical reasoning for the purpose of investigating questions about the world, is central to both mathematics and science, it is rarely emphasized in K-16 instruction. The current work focuses on developing thinking about data modeling with undergraduates in general and preservice teachers in…

  14. 78 FR 29318 - Notice of Public Meeting of the Assembly of the Administrative Conference of the United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ...: articulation of questions to be informed by science information; attribution for agency personnel who... FURTHER INFORMATION CONTACT: Shawne McGibbon, General Counsel (Designated Federal Officer), Administrative...-480-2088; email [email protected] . SUPPLEMENTARY INFORMATION: The Administrative Conference of the...

  15. Why Liberals and Atheists Are More Intelligent

    ERIC Educational Resources Information Center

    Kanazawa, Satoshi

    2010-01-01

    The origin of values and preferences is an unresolved theoretical question in behavioral and social sciences. The Savanna-IQ Interaction Hypothesis, derived from the Savanna Principle and a theory of the evolution of general intelligence, suggests that more intelligent individuals may be more likely to acquire and espouse evolutionarily novel…

  16. Could HPS Improve Problem-Solving?

    ERIC Educational Resources Information Center

    Coelho, Ricardo Lopes

    2013-01-01

    It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem…

  17. The Montana Wild Virus Hunt | NIH MedlinePlus the Magazine

    MedlinePlus

    ... you respect (i.e., mentors), striking a productive balance between healthy skepticism and blind optimism (i.e., know when to walk away). Pursue your research with vigor and never stop asking questions. Find Out More National Institute of General Medical Sciences Summer 2017 Issue: Volume 12 Number ...

  18. Marli: Mars Lidar for Global Wind Profiles and Aerosol Profiles from Orbit

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Guzewich, S. D.; Smith, M. D.; Riris, H.; Sun, X.; Gentry, B. M.; Yu, A.; Allan, G. R.

    2016-01-01

    The Mars Exploration Analysis Group's Next Orbiter Science Analysis Group (NEXSAG) has recently identified atmospheric wind measurements as one of 5 top compelling science objectives for a future Mars orbiter. To date, only isolated lander observations of martian winds exist. Winds are the key variable to understand atmospheric transport and answer fundamental questions about the three primary cycles of the martian climate: CO2, H2O, and dust. However, the direct lack of observations and imprecise and indirect inferences from temperature observations leave many basic questions about the atmospheric circulation unanswered. In addition to addressing high priority science questions, direct wind observations from orbit would help validate 3D general circulation models (GCMs) while also providing key input to atmospheric reanalyses. The dust and CO2 cycles on Mars are partially coupled and their influences on the atmospheric circulation modify the global wind field. Dust absorbs solar infrared radiation and its variable spatial distribution forces changes in the atmospheric temperature and wind fields. Thus it is important to simultaneously measure the height-resolved wind and dust profiles. MARLI provides a unique capability to observe these variables continuously, day and night, from orbit.

  19. Neurotechnology and Society: Strengthening Responsible Innovation in Brain Science.

    PubMed

    Garden, Hermann; Bowman, Diana M; Haesler, Sebastian; Winickoff, David E

    2016-11-02

    Technological advances have the potential to dramatically increase our understanding of the human brain, treat and cure injury and disease, and enhance our general well-being. While advances in neuroscience hold great promise, they also raise profound ethical, legal, and social questions. In this vein, the Organization for Economic Co-operation and Development (OECD) convened an international workshop in September 2016 to explore responsible research and innovation in brain science. Copyright © 2016 OECD. Published by Elsevier Inc. All rights reserved.

  20. Science choices and preferences of middle and secondary school students in Utah

    NASA Astrophysics Data System (ADS)

    Baird, J. Hugh; Lazarowitz, Reuven; Allman, Verl

    This research sought to answer two questions: (1) What are Utah junior and senior high school students' preferences and choices regarding science subjects? (2) Could preferences and choices be related to the type of school, age or gender? Two thousand students from grades six through twelve participated in this study. Findings show that zoology and human anatomy and physiology were most preferred. Ecology was least prefered. Topics in the physical sciences were also low. There was a trend among girls to prefer natural sciences such as botany while boys tended to prefer the physical sciences. Generally, students' choices were limited to those subjects presently taught in the formal school curriculum. They appeared unaware of the many science related subjects outside the texts or the approved course of study.

  1. III. FROM SMALL TO BIG: METHODS FOR INCORPORATING LARGE SCALE DATA INTO DEVELOPMENTAL SCIENCE.

    PubMed

    Davis-Kean, Pamela E; Jager, Justin

    2017-06-01

    For decades, developmental science has been based primarily on relatively small-scale data collections with children and families. Part of the reason for the dominance of this type of data collection is the complexity of collecting cognitive and social data on infants and small children. These small data sets are limited in both power to detect differences and the demographic diversity to generalize clearly and broadly. Thus, in this chapter we will discuss the value of using existing large-scale data sets to tests the complex questions of child development and how to develop future large-scale data sets that are both representative and can answer the important questions of developmental scientists. © 2017 The Society for Research in Child Development, Inc.

  2. Concerns and professional development needs of science faculty at Taibah University in adopting blended learning

    NASA Astrophysics Data System (ADS)

    Al-Sarrani, Nauaf

    The purpose of this study was to obtain Science faculty concerns and professional development needs to adopt blended learning in their teaching at Taibah University. To answer these two research questions the survey instrument was designed to collect quantitative and qualitative data from close-ended and open-ended questions. The participants' general characteristics were first presented, then the quantitative measures were presented as the results of the null hypotheses. The data analysis for research question one revealed a statistically significant difference in the participants' concerns in adopting BL by their gender sig = .0015. The significances were found in stages one (sig = .000) and stage five (sig = .006) for female faculty. Therefore, null hypothesis 1.1 was rejected (There are no statistically significant differences between science faculty's gender and their concerns in adopting BL). The data analysis indicated also that there were no relationships between science faculty's age, academic rank, nationality, country of graduation and years of teaching experience and their concerns in adopting BL in their teaching, so the null hypotheses 1.2-7 were accepted (There are no statistically significant differences between Science faculty's age and their concerns in adopting BL, there are no statistically significant differences between Science faculty's academic rank and their concerns in adopting BL, there are no statistically significant differences between Science faculty's nationality and their concerns in adopting BL, there are no statistically significant differences between Science faculty's content area and their concerns in adopting BL, there are no statistically significant differences between Science faculty's country of graduation and their concerns in adopting BL and there are no statistically significant differences between Science faculty's years of teaching experience and their concerns in adopting BL). The data analyses for research question two revealed that there was a statistically significant difference between science faculty's use of technology in teaching by department and their attitudes towards technology integration in the Science curriculum. Lambda MANOVA test result was sig =.019 at the alpha = .05 level. Follow up ANOVA result indicated that Chemistry department was significant in the use of computer-based technology (sig =.049) and instructional technology use (sig =.041). Therefore, null hypothesis 2.1 was rejected (There are no statistically significant differences between science faculty's attitudes towards technology integration in the Science curriculum and faculty's use of technology in teaching by department). The data also revealed that there was no statistically significant difference (p<.05) between science faculty's use of technology in teaching by department and their instructional technology use on pedagogy. Therefore, null hypothesis 2.2 was accepted (There are no statistically significant differences between science faculty's perceptions of the effects of faculty IT use on pedagogy and faculty's use of technology in teaching by department). The data also revealed that there was a statistically significant difference between science faculty's use of technology in teaching by department and their professional development needs in adopting BL. Lambda MANOVA test result was .007 at the alpha = .05 level. The follow up ANOVA results showed that the value of significance of Science faculty's professional development needs for adopting BL was smaller than .05 in the Chemistry department with sig =.001 in instructional technology use. Therefore, null hypothesis 2.3 was rejected (There are no statistically significant differences between Science faculty's perceptions of technology professional development needs and faculty's use of technology in teaching by department). Qualitative measures included analyzing data based on answers to three open-ended questions, numbers thirty-six, seventy-four, and seventy-five. These three questions were on blended learning concerns comments (question 36, which had 10 units), professional development activities, support, or incentive requested (question 74, which had 28 units), and the most important professional development activities, support, or incentive (question 75, which had 37 units). These questions yielded 75 units, 23 categories and 8 themes that triangulated with the quantitative data. These 8 themes were then combined to obtain overall themes for all qualitative questions in the study. The two most important themes were "Professional development" with three categories; Professional development through workshops (10 units), Workshops (10 units), Professional development (5 units) and the second overall theme was "Technical support" with two categories: Internet connectivity (4 units), and Technical support (4 units). Finally, based on quantitative and qualitative data, the summary, conclusions, and recommendations for Taibah University regarding faculty adoption of BL in teaching were presented. The recommendations for future studies focused on Science faculty Level of Use and technology use in Saudi universities.

  3. Analysis of the basic science section of the orthopaedic in-training examination.

    PubMed

    Sheibani-Rad, Shahin; Arnoczky, Steven Paul; Walter, Norman E

    2012-08-01

    Since 1963, the Orthopaedic In-Training Examination (OITE) has been administered to orthopedic residents to assess residents' knowledge and measure the quality of teaching within individual programs. The OITE currently consists of 275 questions divided among 12 domains. This study analyzed all OITE basic science questions between 2006 and 2010. The following data were recorded: number of questions, question taxonomy, category of question, type of imaging modality, and recommended journal and book references. Between 2006 and 2010, the basic science section constituted 12.2% of the OITE. The assessment of taxonomy classification showed that recall-type questions were the most common, at 81.4%. Imaging modalities typically involved questions on radiographs and constituted 6.2% of the OITE basic science section. The majority of questions were basic science questions (eg, genetics, cell replication, and bone metabolism), with an average of 26.4 questions per year. The Journal of Bone & Joint Surgery (American Volume) and the American Academy of Orthopaedic Surgeons' Orthopaedic Basic Science were the most commonly and consistently cited journal and review book, respectively. This study provides the first review of the question content and recommended references of the OITE basic science section. This information will provide orthopedic trainees, orthopedic residency programs, and the American Academy of Orthopaedic Surgeons Evaluation Committee valuable information related to improving residents' knowledge and performance and optimizing basic science educational curricula. Copyright 2012, SLACK Incorporated.

  4. Scientific misconduct and science ethics: a case study based approach.

    PubMed

    Consoli, Luca

    2006-07-01

    The Schön misconduct case has been widely publicized in the media and has sparked intense discussions within and outside the scientific community about general issues of science ethics. This paper analyses the Report of the official Committee charged with the investigation in order to show that what at first seems to be a quite uncontroversial case, turns out to be an accumulation of many interesting and non-trivial questions (of both ethical and philosophical interest). In particular, the paper intends to show that daily scientific practices are structurally permeated by chronic problems; this has serious consequences for how practicing scientists assess their work in general, and scientific misconduct in particular. A philosophical approach is proposed that sees scientific method and scientific ethics as inextricably interwoven. Furthermore, the paper intends to show that the definition of co-authorship that the members of the Committee use, although perhaps clear in theory, proves highly problematic in practice and raises more questions that it answers. A final plea is made for a more self-reflecting attitude of scientists as far as the moral and methodological profile of science is concerned as a key element for improving not only their scientific achievements, but also their assessment of problematic cases.

  5. Secondary School Students' Knowledge and Opinions on Astrobiology Topics and Related Social Issues.

    PubMed

    Oreiro, Raquel; Solbes, Jordi

    2017-01-01

    Astrobiology is the study of the origin of life on Earth and the distribution of life in the Universe. Its multidisciplinary approach, social and philosophical implications, and appeal within the discipline and beyond make astrobiology a uniquely qualified subject for general science education. In this study, student knowledge and opinions on astrobiology topics were investigated. Eighty-nine students in their last year of compulsory education (age 15) completed a written questionnaire that consisted of 10 open questions on the topic of astrobiology. The results indicate that students have significant difficulties understanding the origin of life on Earth, despite exposure to the topic by way of the assigned textbooks. The students were often unaware of past or present achievements in the search for life within the Solar System and beyond, topics that are far less commonly seen in textbooks. Student questionnaire answers also indicated that students had problems in reasoning and critical thinking when asked for their opinions on issues such as the potential for life beyond Earth, the question of whether UFOs exist, or what our place is in the Universe. Astrobiology might help initiate student awareness as to current thinking on these matters and should be considered for general science education. Key Words: Astrobiology-Students' views-Science education. Astrobiology 17, 91-99.

  6. Forensic Entomologists: An Evaluation of their Status

    PubMed Central

    Magni, Paola; Guercini, Silvia; Leighton, Angela; Dadour, Ian

    2013-01-01

    The National Academy of Sciences (2009) published a review charting several key recommendations on strengthening the forensic sciences as an entity as part of an initiative put forth by the USA Congress to streamline and improve the quality of the forensic sciences and their impact on the judiciary process. Although the review was not totally inclusive, many of its sentiments have permeated into all the forensic sciences. The following paper is designed to determine who is practicing the science of forensic entomology, and in what capacity, by questioning practicing forensic entomologists about the type of education obtained, their countries' standards and accreditation processes, as well as general demographic information such as age and gender. A 28-question survey was sent out to 300 forensic entomologists worldwide in 2009. Of the 70 respondents, 80% had a formal education (either Masters or PhD), and 66% published their research. Approximately 50% of respondents were involved in the delivery of expert evidence and writing up case reports, and countries were actively involved with accrediting personnel, facilities, and entomology kits. Many discrepancies within the reported practices and accreditation processes highlight the need for the adoption of a standard code of practice among forensic entomologists. PMID:24219583

  7. Forensic entomologists: an evaluation of their status.

    PubMed

    Magni, Paola; Guercini, Silvia; Leighton, Angela; Dadour, Ian

    2013-01-01

    The National Academy of Sciences ( 2009 ) published a review charting several key recommendations on strengthening the forensic sciences as an entity as part of an initiative put forth by the USA Congress to streamline and improve the quality of the forensic sciences and their impact on the judiciary process. Although the review was not totally inclusive, many of its sentiments have permeated into all the forensic sciences. The following paper is designed to determine who is practicing the science of forensic entomology, and in what capacity, by questioning practicing forensic entomologists about the type of education obtained, their countries' standards and accreditation processes, as well as general demographic information such as age and gender. A 28-question survey was sent out to 300 forensic entomologists worldwide in 2009. Of the 70 respondents, 80% had a formal education (either Masters or PhD), and 66% published their research. Approximately 50% of respondents were involved in the delivery of expert evidence and writing up case reports, and countries were actively involved with accrediting personnel, facilities, and entomology kits. Many discrepancies within the reported practices and accreditation processes highlight the need for the adoption of a standard code of practice among forensic entomologists.

  8. The Kansas Collaborative Research Network, KanCRN: Teaching science content through process

    NASA Astrophysics Data System (ADS)

    Case, Steven B.

    The Kansas Collaborative Research Network, KanCRN is an Internet-based research community, in which citizens, teachers and students can engage in authentic, meaningful scientific inquiry. Recent efforts to reform science education in the United States have strongly emphasized that understanding of the nature of science is an essential component of general scientific literacy. The National Science Education Standards suggest that engaging students in scientific inquiry is one opportunity to develop an understanding of the nature of science. Extending the philosophical understanding of science to specific science classroom organization, KanCRN is large-scale, systemic project that attempts to achieve the vision of scientific inquiry in the National Science Education Standards. The underlying question of standards-based reform still remains; does participation in scientific inquiry provide compelling evidence of an increase in the understanding of the process of science and the ability to apply these skills in novel situations? This study took advantage of the Kansas City Kansas Public Schools involvement in districtwide systemic reform, First Things First. Each year the students in grades 3--12 complete a district First Things First questionnaire. Since longitudinal measures of student attitudes are generally difficult to obtain, this study tapped into this wealth of attitude measures gained from these questionnaires. These data sets include general demographics of the students, attitudinal data toward school and learning, and general achievement data. Running a factor analysis on these data sets allowed factoring out the influence of non-critical variables. In running this initial factor analysis of the First Things First data sets, several factors emerged as related to student's academic success on the Science Performance Assessment; Academic Effort, Teacher Quality, Project-based Learning, General Academic Ability (Self-Attitude Data), and Parental Support. Using the technique of Structural Equation Modeling, these factors were combined with participation in the KanCRN research model; this study created and tested a model of science classroom variables related to scores on a science performance assessment. Models were run separately for samples of middle school students (grades 6--8) and high school students (grades 9--12). The middle school model indicates that participation in the KanCRN research model is an independent, positive, direct, and meaningful predictor of science performance. Examination of the magnitude of the standardized coefficients and the R 2 values indicates that 27% of the variance on science achievement is accounted for by the middle school model. The high school model indicated that student attitudes were unrelated to KanCRN participation however, the relationship between participation in KanCRN and students performance on the assessment was not a significant path. Examination of the magnitude of the standardized coefficients and the R2 values for the high school model indicates that 7% of the variance on science achievement is accounted for by the model. This is identical the explanatory power of the high school model that only included information about KanCRN participation and student background characteristics, but leaving out the attitude data. The finding that KanCRN participation is significant at the middle school and is insignificant at the high school raises a number of interesting questions that requires further investigation.

  9. The Administration of Education for the Health Professions: A Time for Reappraisal.

    ERIC Educational Resources Information Center

    Hogness, John R.

    Past and current practices as well as anticipated changes in administrative patterns in the health sciences are reviewed in the general context of the changing patterns of administration in higher education. The changes discussed include those in financial support, priorities, controls, and expectations. Several specific questions are addressed:…

  10. Do the Brain Networks of Scientists Account for Their Superiority in Hypothesis-Generating?

    ERIC Educational Resources Information Center

    Lee, Jun-Ki

    2012-01-01

    Where do scientists' superior abilities originate from when generating a creative idea? What different brain functions are activated between scientists and i) general academic high school students and ii) science high school students when generating a biological hypothesis? To reveal brain level explanations for these questions, this paper…

  11. Informing Music Teaching and Learning Using Movement Analysis Technology

    ERIC Educational Resources Information Center

    Visentin, Peter; Shan, Gongbing; Wasiak, Edwin B.

    2008-01-01

    This study explores the utility of movement analysis technology as a means of contributing to a performance pedagogy informed in part by science. Two research questions were investigated: Can biomechanical skills needed for performance on the violin be accurately and objectively characterized and generalized? Can these data be used to inform…

  12. Who Studies Whom and Who Benefits from Sociolinguistic Research?

    ERIC Educational Resources Information Center

    Farfan, Jose Antonio Flores

    2006-01-01

    This article focuses on the papers presented in a colloquium on issues related to minority languages that constitute research topics. The papers from this colloquium touch upon a number of research issues and their social implications. In particular, the papers pay attention to ethical questions, which relate to the social sciences in general, but…

  13. A Computational Model of Early Argument Structure Acquisition

    ERIC Educational Resources Information Center

    Alishahi, Afra; Stevenson, Suzanne

    2008-01-01

    How children go about learning the general regularities that govern language, as well as keeping track of the exceptions to them, remains one of the challenging open questions in the cognitive science of language. Computational modeling is an important methodology in research aimed at addressing this issue. We must determine appropriate learning…

  14. What is the Purpose of Biology in Education?

    ERIC Educational Resources Information Center

    Oliver, J. Steve; Nichols, B. Kim

    1998-01-01

    Summarizes a debate over biology education that took place during a symposium sponsored by the School Science and Mathematics editors in 1908. The six published symposium contributions were meant to address such questions as whether zoology, botany, and human physiology should be studied in one biology course, and what the general purposes for…

  15. Referencing Science: Teaching Undergraduates to Identify, Validate, and Utilize Peer-Reviewed Online Literature

    ERIC Educational Resources Information Center

    Berzonsky, William A.; Richardson, Katherine D.

    2008-01-01

    Accessibility of online scientific literature continues to expand due to the advent of scholarly databases and search engines. Studies have shown that undergraduates favor using online scientific literature to address research questions, but they often do not have the skills to assess the validity of research articles. Undergraduates generally are…

  16. Senate Confirmation Hearing IG

    NASA Image and Video Library

    2009-10-14

    Paul K. Martin, nominee for Inspector General at NASA, right, answers questions during his confirmation hearing in front of the Senate Committee on Commerce, Science and Transportation, Thursday, Oct. 15, 2009, on Capitol Hill in Washington. At left is Dr. Elizabeth M. Robinson, nominee for Chief Financial Officer for NASA. Photo Credit: (NASA/Paul E. Alers)

  17. The comparison between science virtual and paper based test in measuring grade 7 students’ critical thinking

    NASA Astrophysics Data System (ADS)

    Dhitareka, P. H.; Firman, H.; Rusyati, L.

    2018-05-01

    This research is comparing science virtual and paper-based test in measuring grade 7 students’ critical thinking based on Multiple Intelligences and gender. Quasi experimental method with within-subjects design is conducted in this research in order to obtain the data. The population of this research was all seventh grade students in ten classes of one public secondary school in Bandung. There were 71 students within two classes taken randomly became the sample in this research. The data are obtained through 28 questions with a topic of living things and environmental sustainability constructed based on eight critical thinking elements proposed by Inch then the questions provided in science virtual and paper-based test. The data was analysed by using paired-samples t test when the data are parametric and Wilcoxon signed ranks test when the data are non-parametric. In general comparison, the p-value of the comparison between science virtual and paper-based tests’ score is 0.506, indicated that there are no significance difference between science virtual and paper-based test based on the tests’ score. The results are furthermore supported by the students’ attitude result which is 3.15 from the scale from 1 to 4, indicated that they have positive attitudes towards Science Virtual Test.

  18. The Scientific Approach Learning: How prospective science teachers understand about questioning

    NASA Astrophysics Data System (ADS)

    Wiyanto; Nugroho, S. E.; Hartono

    2017-04-01

    In the new curriculum, questioning is one of theaspects of scientific approach learning. It means teachers should facilitate students to ask their questions during science learning. The purpose of this research was to reveal the prospective science teachers’ understanding about questioning and how the science teachers implement of that in the scientific approach learning. Data of the prospective science teachers’ understanding was explored from their teaching plan that produced during microteaching. The microteaching is an activity that should be followed by students before they conduct partnership program in school. Data about theimplementation of questioning that conducted by theteacher was be collected by video-assisted observation in junior school science class. The results showed that majority of the prospective science teachers had difficulty to write down in their teaching plan about how to facilitate students to ask their questions, even majority of them understood that questioning is not students’ activity, but it is an activity that should be done by teachers. Based on the observation showed that majority of teachers did not yet implement a learning that facilitates students to ask their questions.

  19. Trends in Soil Science education: moving from teacher's questioning to student's questioning

    NASA Astrophysics Data System (ADS)

    Roca, Núria

    2017-04-01

    Soil science has suffered from communication problems within its own discipline, with other disciplines (except perhaps agronomy) and with the general public. Prof. Dennis Greenland wrote the following in the early 1990s: "…soil scientists have also been frustrated as their advice has gone apparently unheeded. This may be because the advice is couched in terms more easily understood by other soil scientists than by politicians and economists who control the disposition of land. If soil science is to serve society fully it is essential that its arguments are presented in terms readily understood by all and with both scientific and economic rigor so that they are not easily refuted". Soil is a 3-dimensional body with properties that reflect the impact of climate, vegetation, fauna, man and topography on the soil's parent material over a variable time span. Therefore, soil sciences must integrate different knowledge of many disciplines. How should one go about the teaching and learning of a subject like soil science? This is an ever present question resident in the mind of a soil science teacher who knows that students will find soil science an inherently difficult subject to understand. Therefore, Soil Science cannot be taught in the same way. This paper proposes a mural construction that allows to understand soil formation, soil evolution and soil distribution. This experience has been realized with secondary teachers to offer tools for active learning methodologies. Therefore, this teaching project starts with a box and a global soil map distribution in a wall mural. The box contains many cards with soil properties, soil factors, soil process, soils orders and different natural soil photos as the pieces of a big puzzle. All these pieces will be arranged in the wall mural. These environments imply a new perspective of teaching: moving from a teacher-centered teaching to a student-centered teaching. In contrast to learning-before-doing— the model of most educational settings. The main functions such as encouraging students to think, arousing interest and curiosity, developing students' reflection and stimulate students to ask questions of their own will be developed with the construction of the mural.

  20. Australian Item Bank Program: Science Item Bank. Book 3: Biology.

    ERIC Educational Resources Information Center

    Australian Council for Educational Research, Hawthorn.

    The Australian Science Item Bank consists of three volumes of multiple-choice questions. Book 3 contains questions on the biological sciences. The questions are designed to be suitable for high school students (year 8 to year 12 in Australian schools). The questions are classified by the subject content of the question, the cognitive skills…

  1. Coming to grips with autism: Parents engaging with science

    NASA Astrophysics Data System (ADS)

    Feinstein, Noah Robert

    When and how does science matter to people in their everyday lives? In this dissertation, I explore the importance of science to parents of young children recently diagnosed with autism. I examine the questions parents ask and the resources they use as they attempt to understand and advocate for their children, and use this data to develop a new conceptual model of engagement with science: the intrapersonal and interpersonal process through which people connect science with their lived experience. I recruited a socio-economically diverse sample of ten parents, each with at least one young child (18 months--7 years) who had been diagnosed with autism 6--24 months prior to recruitment. Each parent completed a series of 8--12 semi-structured interviews over a period of approximately six months. These interviews were analyzed using both grounded theory and conceptually driven coding strategies. Two findings stand out. First, only a small fraction of parents' questions (15%) and resources (11%) were directly related to science. A much larger fraction (41% and 42%) fell into the broader categories of near-science questions and resources. Second, half of the parents demonstrated an iterative pattern of activity that I referred to as progressive engagement with science. In each case, a science or near-science question led the parent to a science or near-science resource, which transformed the question. The new question led to different science or near-science resources, which led to new questions and so forth. Parents who did not undertake progressive engagement with science were also less interested in autism as an organizing construct for understanding their children. Drawing on the work of Peter Galison, I propose that the idea of autism helps create a "trading zone" between the distinct social systems of family life and medical science. Parents who ask near-science questions must find near-science resources to help them direct their questions appropriately. They must also re-articulate the answers in terms that are personally meaningful. Even when parents and doctors disagree on the meaning and significance of an autism diagnosis, their mutual investment in the idea of autism fosters conceptual "trading" and enables future engagement with science.

  2. Pedagogical Reflections by Secondary Science Teachers at Different NOS Implementation Levels

    NASA Astrophysics Data System (ADS)

    Herman, Benjamin C.; Clough, Michael P.; Olson, Joanne K.

    2017-02-01

    This study investigated what 13 secondary science teachers at various nature of science (NOS) instruction implementation levels talked about when they reflected on their teaching. We then determined if differences exist in the quality of those reflections between high, medium, and low NOS implementers. This study sought to answer the following questions: (1) What do teachers talk about when asked general questions about their pedagogy and NOS pedagogy and (2) what qualitative differences, if any, exist within variables across teachers of varying NOS implementation levels? Evidence derived from these teachers' reflections indicated that self-efficacy and perceptions of general importance for NOS instruction were poor indicators of NOS implementation. However, several factors were associated with the extent that these teachers implemented NOS instruction, including the utility value they hold for NOS teaching, considerations of how people learn, understanding of NOS pedagogy, and their ability to accurately and deeply self-reflect about teaching. Notably, those teachers who effectively implemented the NOS at higher levels value NOS instruction for reasons that transcend immediate instructional objectives. That is, they value teaching NOS for achieving compelling ends realized long after formal schooling (e.g., lifelong socioscientific decision-making for civic reasons), and they deeply reflect about how to teach NOS by drawing from research about how people learn. Low NOS implementers' simplistic notions and reflections about teaching and learning appeared to be impeding factors to accurate and consistent NOS implementation. This study has implications for science teacher education efforts that promote NOS instruction.

  3. Rethinking opportunities for special needs students to learn: A case study of collaboration between special and general educators

    NASA Astrophysics Data System (ADS)

    Lamb, Margaret Ann

    This study tells the story of three teachers: Lyle (a veteran science teacher), Holly (a novice science teacher), and (Jane, a special education teacher) and their collaborative efforts to develop a science curriculum for all students including those with disabilities. All three of the teachers were members of Hart High School, a Professional Development School (PDS) affiliated with Michigan State University (MSU). Hart High School was involved in two simultaneous reform efforts: the merger of students with disabilities into general education classrooms and the restructuring of teaching and learning in core academic subjects for all students with the support of MSU and PDS resources. Evidence suggests that the school has achieved some success in fully including special needs students in general education classrooms which exceeds the national norms. Data indicates that students with disabilities are selecting more challenging advanced college preparatory courses in increasing numbers and maintaining an average grade point. The question this study addresses is: what resources--environmental as well as, moral and intellectual--contribute to a schools capacity to support students with special needs? In addressing the question, I examine the professional knowledge and pedagogical reasoning that characterize the three teachers (Lyle, Holly, and Jane) involved in transforming the general education curriculum to include all students. Further, I discuss in detail the beliefs that appear critical, if teachers are to address the needs of all students and thereby teach with a moral purpose. Finally, I address the environmental resources that seem necessary for teachers, like Lyle, Holly, and Jane not only to restructure, but reculture a school towards a moral ecology. Lastly, I describe some of the pitfalls that may await those who embark on similar journeys of reform.

  4. Promoting innovation in pediatric nutrition.

    PubMed

    Bier, Dennis M

    2010-01-01

    Truly impactful innovation can only be recognized in retrospect. Moreover, almost by definition, developing algorithmic paths on roadmaps for innovation are likely to be unsuccessful because innovators do not generally follow established routes. Nonetheless, environments can be established within Departments of Pediatrics that promote innovating thinking. The environmental factors necessary to do so include: (1) demand that academic Pediatrics Departments function in an aggressively scholarly mode; (2) capture the most fundamental science in postnatal developmental biology; (3) focus education and training on the boundaries of our knowledge, rather than the almost exclusive attention to what we think we already know; (4) devote mentoring, time and resources to only the most compelling unanswered questions in the pediatric sciences, including nutrition; (5) accept only systematic, evidence-based answers to clinical questions; (6) if systematic, evidence-based data are not available, design the proper studies to get them; (7) prize questioning the answers to further move beyond the knowledge limit; (8) support the principle that experiments in children will be required to convincingly answer clinical questions important to children, and (9) establish the multicenter resources in pediatric scientist training, clinical study design and implementation, and laboratory and instrument technologies required to answer today's questions with tomorrow's methods. Copyright © 2010 S. Karger AG, Basel.

  5. Reflections on science and the communication sector

    NASA Astrophysics Data System (ADS)

    Raes, Frank

    2015-04-01

    Reflections on science and the communication sector. In this contribution I will reflect about successes and failures in communicating climate change and air pollution sciences to the general public. These communication efforts included writing popular articles, giving public presentations, working with people from the social scientists and artists. Giving the fact that communication is a very important (economic) sector on its own, the question is to what extent scientists should enter that sector, whether scientists are at all accepted in that sector, whether they should use the expertise in that sector, or whether they should merely provide the knowledge to be used by that sector.

  6. Investigating Turkish Primary School Students' Interest in Science by Using Their Self-Generated Questions

    NASA Astrophysics Data System (ADS)

    Cakmakci, Gultekin; Sevindik, Hatice; Pektas, Meryem; Uysal, Asli; Kole, Fatma; Kavak, Gamze

    2012-06-01

    This paper reports on an attempt to investigate Turkish primary school students' interest in science by using their self-generated questions. We investigated students' interest in science by analyzing 1704 self-generated science-related questions. Among them, 826 questions were submitted to a popular science magazine called Science and Children. Such a self-selected sample may represent a group of students who have a higher level of motivation to seek sources of information outside their formal education and have more access to resources than the students of low social classes. To overcome this problem, 739 students were asked to write a question that they wanted to learn from a scientist and as a result 878 questions were gathered. Those students were selected from 13 different schools at 9 cities in Turkey. These schools were selected to represent a mixture of socioeconomic areas and also to cover different students' profile. Students' questions were classified into two main categories: the field of interest and the cognitive level of the question. The results point to the popularity of biology, astrophysics, nature of scientific inquiry, technology and physics over other science areas, as well as indicating a difference in interest according to gender, grade level and the setting in which the questions were asked. However, our study suggests that only considering questions submitted to informal learning environments, such as popular science magazines or Ask-A-Scientist Internet sites has limitations and deficiencies. Other methodologies of data collection also need to be considered in designing teaching and school science curriculum to meet students' needs and interest. The findings from our study tend to challenge existing thinking from other studies. Our results show that self-generated questions asked in an informal and a formal setting have different patterns. Some aspects of students' self-generated questions and their implications for policy, science curriculum reform and teaching are discussed in this paper.

  7. Horizontal integration of the basic sciences in the chiropractic curriculum.

    PubMed

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  8. Is psychiatry an art or a science? The views of psychiatrists and trainees.

    PubMed

    Chur-Hansen, Anna; Parker, Damon

    2005-12-01

    It is generally considered by many practitioners that psychiatry is an art, that is, one of the humanities, as well as being a science. We systematically collected the views of practitioners and trainee psychiatrists regarding the question 'Is psychiatry an art or a science?' Eleven supervisors and nine trainees were interviewed and their responses analysed, using a qualitative method, the modified framework approach. Several themes emerged from the data: that 'art' and 'science' are different; psychiatry as a discipline is difficult to define; psychiatry demands a broader range of skills than other medical specialties; the relationship of psychology to psychiatry; supervisor cynicism to the 'science' of psychiatry; and the 'art' and 'science' of the assessment process. The tension that exists within the profession's identity as a discipline has important implications for teaching, learning, and clinical and research practices.

  9. Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum

    PubMed Central

    Ward, Kevin P.

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882

  10. Questioning Questions: Elementary Teachers' Adaptations of Investigation Questions Across the Inquiry Continuum

    NASA Astrophysics Data System (ADS)

    Biggers, Mandy

    2018-02-01

    Questioning is a central practice in science classrooms. However, not every question translates into a "good" science investigation. Questions that drive science investigations can be provided by many sources including the teacher, the curriculum, or the student. The variations in the source of investigation questions were explored in this study. A dataset of 120 elementary science classroom videos and associated lesson plans from 40 elementary teachers (K-5) across 21 elementary school campuses were scored on an instrument measuring the amount of teacher-direction or student-direction of the lessons' investigation questions. Results indicated that the investigation questions were overwhelmingly teacher directed in nature, with no opportunities for students to develop their own questions for investigation. This study has implications for researchers and practitioners alike, calling attention to the teacher-directed nature of investigation questions in existing science curriculum materials, and the need for teacher training in instructional strategies to adapt their existing curriculum materials across the continuum of teacher-directed and student-directed investigation questions. Teachers need strategies for adapting the teacher-directed questions provided in their existing curriculum materials in order to allow students the opportunity to engage in this essential scientific practice.

  11. Litigation-Generated Science: Why Should We Care?

    PubMed Central

    Boden, Leslie I.; Ozonoff, David

    2008-01-01

    Background In a 1994 Ninth Circuit decision on the remand of Daubert v. Merrell Dow Pharmaceuticals, Inc., Judge Alex Kosinski wrote that science done for the purpose of litigation should be subject to more stringent standards of admissibility than other science. Objectives We analyze this proposition by considering litigation-generated science as a subset of science involving conflict of interest. Discussion Judge Kosinski's formulation suggests there may be reasons to treat science involving conflict of interest differently but raises questions about whether litigation-generated science should be singled out. In particular we discuss the similar problems raised by strategically motivated science done in anticipation of possible future litigation or otherwise designed to benefit the sponsor and ask what special treatment, if any, should be given to science undertaken to support existing or potential future litigation. Conclusion The problems with litigation-generated science are not special. On the contrary, they are very general and apply to much or most science that is relevant and reliable in the courtroom setting. PMID:18197310

  12. Litigation-generated science: why should we care?

    PubMed

    Boden, Leslie I; Ozonoff, David

    2008-01-01

    In a 1994 Ninth Circuit decision on the remand of Daubert v. Merrell Dow Pharmaceuticals, Inc., Judge Alex Kosinski wrote that science done for the purpose of litigation should be subject to more stringent standards of admissibility than other science. We analyze this proposition by considering litigation-generated science as a subset of science involving conflict of interest. Judge Kosinski's formulation suggests there may be reasons to treat science involving conflict of interest differently but raises questions about whether litigation-generated science should be singled out. In particular we discuss the similar problems raised by strategically motivated science done in anticipation of possible future litigation or otherwise designed to benefit the sponsor and ask what special treatment, if any, should be given to science undertaken to support existing or potential future litigation. The problems with litigation-generated science are not special. On the contrary, they are very general and apply to much or most science that is relevant and reliable in the courtroom setting.

  13. Atoms in astronomy

    NASA Technical Reports Server (NTRS)

    Blanchard, P. A.

    1976-01-01

    Aspects of electromagnetic radiation and atomic physics needed for an understanding of astronomical applications are explored. Although intended primarily for teachers, this brochure is written so that it can be distributed to students if desired. The first section, Basic Topics, is suitable for a ninth-grade general science class; the style is simple and repetitive, and no mathematics or physics background is required. The second section, Intermediate and Advanced Topics, requires a knowledge of the material in the first section and assumes a generally higher level of achievement and motivation on the part of the student. These latter topics might fit well into junior-level physics, chemistry, or earth-science courses. Also included are a glossary, a list of references and teaching aids, class exercises, and a question and answer section.

  14. Guiding students towards sensemaking: teacher questions focused on integrating scientific practices with science content

    NASA Astrophysics Data System (ADS)

    Benedict-Chambers, Amanda; Kademian, Sylvie M.; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2017-10-01

    Science education reforms articulate a vision of ambitious science teaching where teachers engage students in sensemaking discussions and emphasise the integration of scientific practices with science content. Learning to teach in this way is complex, and there are few examples of sensemaking discussions in schools where textbook lessons and teacher-directed discussions are the norm. The purpose of this study was to characterise the questioning practices of an experienced teacher who taught a curricular unit enhanced with educative features that emphasised students' engagement in scientific practices integrated with science content. Analyses indicated the teacher asked four types of questions: explication questions, explanation questions, science concept questions, and scientific practice questions, and she used three questioning patterns including: (1) focusing students on scientific practices, which involved a sequence of questions to turn students back to the scientific practice; (2) supporting students in naming observed phenomena, which involved a sequence of questions to help students use scientific language; and (3) guiding students in sensemaking, which involved a sequence of questions to help students learn about scientific practices, describe evidence, and develop explanations. Although many of the discussions in this study were not yet student-centred, they provide an image of a teacher asking specific questions that move students towards reform-oriented instruction. Implications for classroom practice are discussed and recommendations for future research are provided.

  15. Assessment and Comparison of Student Engagement in a Variety of Physiology Courses

    ERIC Educational Resources Information Center

    Hopper, Mari K.

    2016-01-01

    Calls for reform in science education have promoted active learning as a means to improve student engagement (SENG). SENG is generally acknowledged to have a positive effect on student learning, satisfaction, and retention. A validated 14-question survey was used to assess SENG in a variety of upper- and lower-level physiology courses, including…

  16. Senate Hearing on Assured Access to Space

    NASA Image and Video Library

    2014-07-16

    General William Sherlton, Commander of the United States Air Force Space Command, answers a question during testimony in front of the Senate Subcommittee on Strategic Forces and Senate Committee on Commerce, Science, and Transportation on Wednesday, July 16, 2014, at the Hart Senate Office Building in Washington, DC. The Senate hearing focused on assured access to space.

  17. Senate Hearing on Assured Access to Space

    NASA Image and Video Library

    2014-07-16

    General William Sherlton, Commander of the United States Air Force Space Command, left; answers a question during testimony in front of the Senate Subcommittee on Strategic Forces and Senate Committee on Commerce, Science, and Transportation on Wednesday, July 16, 2014, at the Hart Senate Office Building in Washington, DC. The Senate hearing focused on assured access to space.

  18. Senate Hearing on Assured Access to Space

    NASA Image and Video Library

    2014-07-16

    General William Shelton, Commander of the United States Air Force Space Command, second from right, answers a question during testimony in front of the Senate Subcommittee on Strategic Forces and Senate Committee on Commerce, Science, and Transportation on Wednesday, July 16, 2014, at the Hart Senate Office Building in Washington, DC. The Senate hearing focused on assured access to space.

  19. FAQ's | College of Engineering & Applied Science

    Science.gov Websites

    zipped (compressed) format. This will help when the file is very large or created by one of the high end Milwaukee Engineer People Faculty and Staff Biomedical Engineering Civil & Environmental Engineering Computer Labs Technical Questions The labs are generally open 24/7, how will I know when a lab/system

  20. A Year in the Life: Two Seventh Grade Teachers Implement One-to-One Computing

    ERIC Educational Resources Information Center

    Garthwait, Abigail; Weller, Herman G.

    2005-01-01

    Maine was the first state to put laptops in the hands of an entire grade of students. This interpretive case study of two middle school science-math teachers was driven by the general question: Given ubiquitous computing, how do teachers use computers in constructing curriculum and delivering instruction? Specifically, the researchers sought to…

  1. Continuous gradient temperature Raman spectroscopy of n-6 DPA and DHA from -100 C to 20°C

    USDA-ARS?s Scientific Manuscript database

    One of the great unanswered questions with respect to biological science in general is the absolute necessity of DHA in fast signal processing tissues. N-6 DPA, with just one less diene, group, is fairly abundant in terrestrial food chains yet cannot substitute for DHA. Gradient Temperature Raman sp...

  2. Teaching the Delightful Laws of Physics in a Survey Course

    ERIC Educational Resources Information Center

    Hewitt, Paul G.

    2015-01-01

    How physics can be made interesting is a question that needs no answer. That's because physics is interesting! It's a field of study jam-packed with fascination and wonder. The general public has an enormous thirst for physics knowledge, as indicated by the great numbers who purchase science magazines and books and watch "NOVA" and other…

  3. Impact of SCALE-UP on science teaching self-efficacy of students in general education science courses

    NASA Astrophysics Data System (ADS)

    Cassani, Mary Kay Kuhr

    The objective of this study was to evaluate the effect of two pedagogical models used in general education science on non-majors' science teaching self-efficacy. Science teaching self-efficacy can be influenced by inquiry and cooperative learning, through cognitive mechanisms described by Bandura (1997). The Student Centered Activities for Large Enrollment Undergraduate Programs (SCALE-UP) model of inquiry and cooperative learning incorporates cooperative learning and inquiry-guided learning in large enrollment combined lecture-laboratory classes (Oliver-Hoyo & Beichner, 2004). SCALE-UP was adopted by a small but rapidly growing public university in the southeastern United States in three undergraduate, general education science courses for non-science majors in the Fall 2006 and Spring 2007 semesters. Students in these courses were compared with students in three other general education science courses for non-science majors taught with the standard teaching model at the host university. The standard model combines lecture and laboratory in the same course, with smaller enrollments and utilizes cooperative learning. Science teaching self-efficacy was measured using the Science Teaching Efficacy Belief Instrument - B (STEBI-B; Bleicher, 2004). A science teaching self-efficacy score was computed from the Personal Science Teaching Efficacy (PTSE) factor of the instrument. Using non-parametric statistics, no significant difference was found between teaching models, between genders, within models, among instructors, or among courses. The number of previous science courses was significantly correlated with PTSE score. Student responses to open-ended questions indicated that students felt the larger enrollment in the SCALE-UP room reduced individual teacher attention but that the large round SCALE-UP tables promoted group interaction. Students responded positively to cooperative and hands-on activities, and would encourage inclusion of more such activities in all of the courses. The large enrollment SCALE-UP model as implemented at the host university did not increase science teaching self-efficacy of non-science majors, as hypothesized. This was likely due to limited modification of standard cooperative activities according to the inquiry-guided SCALE-UP model. It was also found that larger SCALE-UP enrollments did not decrease science teaching self-efficacy when standard cooperative activities were used in the larger class.

  4. Book Review: Book review

    NASA Astrophysics Data System (ADS)

    Wald, Robert M.

    There is no question that the formulation of general relativity was one of the most remarkable episodes in the history of science. As a physicist and researcher in general relativity, the story of the formulation of general relativity that I have heard (and repeated) many times goes basically as follows: In 1907, Einstein obtained his fundamental insight-the "equivalence principle"-that gravitation and inertia are intimately connected; a freely falling observer does not "feel" gravitational force. It then took the genius of Einstein many years of "struggle"-during which he mastered the elements of differential geometry-to formulate a theory that properly incorporated this idea. In November, 1915, he finally succeeded in formulating general relativity.

  5. The Space Science Enterprise Strategic Plan

    NASA Technical Reports Server (NTRS)

    2000-01-01

    It is a pleasure to present our new Space Science Strategic Plan. It represents contributions by hundreds of members of the space science community, including researchers, technologists, and educators, working with staff at NASA, over a period of nearly two years. Our time is an exciting one for space science. Dramatic advances in cosmology, planetary research, and solar-terrestrial science form a backdrop for this ambitious plan. Our program boldly addresses the most fundamental questions that science can ask: (1) how the universe began and is changing, (2) what are the past and future of humanity, and (3) whether we are alone. In taking up these questions, researchers and the general public--for we are all seekers in this quest--will draw upon all areas of science and the technical arts. Our Plan outlines how we will communicate our findings to interested young people and adults. The program that you will read about in this Plan includes forefront research and technology development on the ground as well as development and operation of the most complex spacecraft conceived. The proposed flight program is a balanced portfolio of small missions and larger spacecraft. Our goal is to obtain the best science at the lowest cost, taking advantage of the most advanced technology that can meet our standards for expected mission success. In driving hard to achieve this goal, we experienced some very disappointing failures in 1999. But NASA, as a research and development agency, makes progress by learning also from mistakes, and we have learned from these.

  6. Relationship between consumer food safety knowledge and reported behavior among students from health sciences in one region of Spain.

    PubMed

    Garayoa, Roncesvalles; Córdoba, María; García-Jalón, Isabel; Sanchez-Villegas, Almudena; Vitas, Ana Isabel

    2005-12-01

    A survey was conducted to investigate the relationship between knowledge about food safety and actual food handling practices among Spanish university students (mainly from the health sciences disciplines) who usually prepare meals at home. Based on level of education in food safety topics, students were divided in three groups: high, which included students from Food Science and Nutrition; medium, which included students from other health sciences; and low, which included students from non-health-related studies. More than two thirds of the 562 people selected had an accurate knowledge of the eight foodborne pathogens included in the survey, but only 5.2% were able to identify Staphylococcus aureus as a foodborne pathogen. Significant differences in responses were found depending on educational level concerning the food safety topic. For food handling, up to 60% of the responses reflected accurate knowledge of proper storage of prepared meals and washing of hands and materials to avoid cross-contamination. However, with the exception of questions related to storage temperature, there was considerable difference between knowledge and reported behavior. Although 98.6% of the participants recognized the importance of hand washing before and during food preparation, only one quarter (24.4%) affirmed that they washed their hands with soap and water. On questions concerning food practices, more accurate answers were given by the older students. Women answered questions regarding cross-contamination more accurately, whereas men were more accurate in response to questions concerning temperature and food preservation. In general, students with more knowledge of food hygiene had better reported practices, but even these students reported some high-risk behaviors. These results confirm the need to improve educational programs, ensuring that the acquired knowledge actually modifies consumer behavior.

  7. Dawn Mission Education and Public Outreach: Science as Human Endeavor

    NASA Astrophysics Data System (ADS)

    Cobb, W. H.; Wise, J.; Schmidt, B. E.; Ristvey, J.

    2012-12-01

    Dawn Education and Public Outreach strives to reach diverse learners using multi-disciplinary approaches. In-depth professional development workshops in collaboration with NASA's Discovery Program, MESSENGER and Stardust-NExT missions focusing on STEM initiatives that integrate the arts have met the needs of diverse audiences and received excellent evaluations. Another collaboration on NASA ROSES grant, Small Bodies, Big Concepts, has helped bridge the learning sequence between the upper elementary and middle school, and the middle and high school Dawn curriculum modules. Leveraging the Small Bodies, Big Concepts model, educators experience diverse and developmentally appropriate NASA activities that tell the Dawn story, with teachers' pedagogical skills enriched by strategies drawn from NSTA's Designing Effective Science Instruction. Dawn mission members enrich workshops by offering science presentations to highlight events and emerging data. Teachers' awareness of the process of learning new content is heightened, and they use that experience to deepen their science teaching practice. Activities are sequenced to enhance conceptual understanding of big ideas in space science and Vesta and Ceres and the Dawn Mission 's place within that body of knowledge Other media add depth to Dawn's resources for reaching students. Instrument and ion engine interactives developed with the respective science team leads help audiences engage with the mission payload and the data each instrument collects. The Dawn Dictionary, an offering in both audio as well as written formats, makes key vocabulary accessible to a broader range of students and the interested public. Further, as Dawn E/PO has invited the public to learn about mission objectives as the mission explored asteroid Vesta, new inroads into public presentations such as the Dawn MissionCast tell the story of this extraordinary mission. Asteroid Mapper is the latest, exciting citizen science endeavor designed to invite the general public into the thrill of NASA science. Helping teachers develop a picture of the history and evolution of our understanding of the solar system, and honing in on the place of asteroids in helping us answer old questions and discover new ones, students and the general public sees the power and excitement underlying planetary science as human endeavor. Research indicates that science inquiry is powerful in the classroom and mission scientists are real-life models of science inquiry in action. Cross-curricular elements include examining research-based strategies for enhancing English language learners' ability to engage in higher order questions and a professional astronomy artist's insight into how visual analysis requires not just our eyes engaged, but our brains: comparing, synthesizing, questioning, evaluating, and wondering. Dawn Education and Public Outreach will share out perspectives and lessons learned, backed by extensive evaluation examining the efficacy of the mission's efforts.

  8. Using Art to Teach Students Science Outdoors: How Creative Science Instruction Influences Observation, Question Formation, and Involvement

    NASA Astrophysics Data System (ADS)

    Cone, Christina Schull

    Elementary education has become increasingly divided into subjects and focused on the demand for high math and reading scores. Consequently, teachers spend less time devoted to science and art instruction. However, teaching art and science is crucial to developing creative and rational thinking, especially for observation and questioning skills. In this study, third grade students attending an urban school in Portland, Oregon received instruction of an art strategy using observational and quantifying drawing techniques. This study examines, "Will an art strategy observing the local environment help students make observations and ask questions?" and "In what ways are student learning and perspectives of science affected by the art strategy?" The independent variable is the art strategy developed for this study. There are three dependent variables: quality of student observations, quality of questions, and themes on student learning and perspectives of science. I predicted students would develop strong observation and questioning skills and that students would find the strategy useful or have an increased interest in science. The art scores were high for relevance and detail, but not for text. There were significant correlations between art scores and questions. Interviews revealed three themes: observations create questions, drawing is helpful and challenging, and students connected to science. By examining science through art, students were engaged and created strong observations and questions. Teachers need to balance unstructured drawing time with scaffolding for optimal results. This study provides an integrated science and art strategy that teachers can use outdoors or adapt for the classroom.

  9. Reviews Book: Extended Project Student Guide Book: My Inventions Book: ASE Guide to Research in Science Education Classroom Video: The Science of Starlight Software: SPARKvue Book: The Geek Manifesto Ebook: A Big Ball of Fire Apps

    NASA Astrophysics Data System (ADS)

    2014-05-01

    WE RECOMMEND Level 3 Extended Project Student Guide A non-specialist, generally useful and nicely put together guide to project work ASE Guide to Research in Science Education Few words wasted in this handy introduction and reference The Science of Starlight Slow but steady DVD covers useful ground SPARKvue Impressive software now available as an app WORTH A LOOK My Inventions and Other Writings Science, engineering, autobiography, visions and psychic phenomena mixed in a strange but revealing concoction The Geek Manifesto: Why Science Matters More enthusiasm than science, but a good motivator and interesting A Big Ball of Fire: Your questions about the Sun answered Free iTunes download made by and for students goes down well APPS Collider visualises LHC experiments ... Science Museum app enhances school trips ... useful information for the Cambridge Science Festival

  10. The Priority of the Question: Focus Questions for Sustained Reasoning in Science

    NASA Astrophysics Data System (ADS)

    Lustick, David

    2010-08-01

    Science education standards place a high priority on promoting the skills and dispositions associated with inquiry at all levels of learning. Yet, the questions teachers employ to foster sustained reasoning are most likely borrowed from a textbook, lab manual, or worksheet. Such generic questions generated for a mass audience, lack authenticity and contextual cues that allow learners to immediately appreciate a question’s relevance. Teacher queries intended to motivate, guide, and foster learning through inquiry are known as focus questions. This theoretical article draws upon science education research to present a typology and conceptual framework intended to support science teacher educators as they identify, develop, and evaluate focus questions with their students.

  11. Space human factors discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive areas of behavior, performance, and human factors. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, defines critical questions in the subdiscipline areas, and identifies technological priorities. It covers the significant research areas critical to NASA's programmatic requirements for the Extended Duration Orbiter, Space Station Freedom, and Exploration mission science activities. These science activities include ground-based and flight; basic, applied and operational; and animal and human research and development. This document contains a general plan that will be used by both NASA Headquarters program offices and the field centers to review and plan basic, applied, and operational research and development activities, both intramural and extramural, in this area.

  12. Seeking a rapprochement between anthropology and the cognitive sciences: a problem-driven approach.

    PubMed

    Whitehouse, Harvey; Cohen, Emma

    2012-07-01

    Beller, Bender, and Medin question the necessity of including social anthropology within the cognitive sciences. We argue that there is great scope for fruitful rapprochement while agreeing that there are obstacles (even if we might wish to debate some of those specifically identified by Beller and colleagues). We frame the general problem differently, however: not in terms of the problem of reconciling disciplines and research cultures, but rather in terms of the prospects for collaborative deployment of expertise (methodological and theoretical) in problem-driven research. For the purposes of illustration, our focus in this article is on the evolution of cooperation. Copyright © 2012 Cognitive Science Society, Inc.

  13. Assessment of numeracy in sports and exercise science students at an Australian university

    NASA Astrophysics Data System (ADS)

    Green, Simon; McGlynn, Susan; Stuart, Deidre; Fahey, Paul; Pettigrew, Jim; Clothier, Peter

    2018-05-01

    The effect of high school study of mathematics on numeracy performance of sports and exercise science (SES) students is not clear. To investigate this further, we tested the numeracy skills of 401 students enrolled in a Bachelor of Health Sciences degree in SES using a multiple-choice survey consisting of four background questions and 39 numeracy test questions. Background questions (5-point scale) focused on highest level of mathematics studied at high school, self-perception of mathematics proficiency, perceived importance of mathematics to SES and likelihood of seeking help with mathematics. Numeracy questions focused on rational number, ratios and rates, basic algebra and graph interpretation. Numeracy performance was based on answers to these questions (1 mark each) and represented by the total score (maximum = 39). Students from first (n = 212), second (n = 78) and third (n = 111) years of the SES degree completed the test. The distribution of numeracy test scores for the entire cohort was negatively skewed with a median (IQR) score of 27(11). We observed statistically significant associations between test scores and the highest level of mathematics studied (P < 0.05), being lowest in students who studied Year 10 Mathematics (20 (9)), intermediate in students who studied Year 12 General Mathematics (26 (8)) and highest in two groups of students who studied higher-level Year 12 Mathematics (31 (9), 31 (6)). There were statistically significant associations between test scores and level of self-perception of mathematics proficiency and also likelihood of seeking help with mathematics (P < 0.05) but not with perceived importance of mathematics to SES. These findings reveal that the level of mathematics studied in high school is a critical factor determining the level of numeracy performance in SES students.

  14. Is Soliciting Important in Science? an Investigation of Science Teacher-Student Questioning Interactions

    ERIC Educational Resources Information Center

    Patrick, Ajaja O.; Urhievwejire, Eravwoke Ochuko

    2012-01-01

    The major purpose of this study was to determine the questioning patterns of teachers in science classes. The design employed for the study was a case study. To guide this study, five research questions were asked and answered. The samples of the study consisted of 20 senior secondary schools and 60 science teachers. The instruments used for data…

  15. Content Coverage and Students' Achievements in Secondary School Physics: The Delta State Example of Nigeria

    ERIC Educational Resources Information Center

    Abamba, Emmanuel Ikechuku

    2012-01-01

    The consistent poor achievement of students in physics tests and in science generally is one problem attracting researchers because of the danger it poses to the nation's technological advancement. This work focused on the effect of content thought on students' achievement. Two research questions were put forward which led to the formulation of…

  16. Issues for Libraries and Information Science in the Internet Age.

    ERIC Educational Resources Information Center

    Shuman, Bruce A.

    The immense changes wrought by the Internet pose many questions and dilemmas for today's librarians. The author's take on the Internet is one of an ever-evolving beast. The six chapters of this book take the reader from mastering the nature of the beast--including a discussion of online searching pitfalls and other more general hazards--to the…

  17. They'll Read if It Matters: Study Guides for Books about Pregnancy and Parenting.

    ERIC Educational Resources Information Center

    Lindsay, Jeanne

    This guide includes teaching suggestions for teachers of pregnant minors and other students and approximately 815 study questions and answers about the content of 26 books concerning pregnancy and babies. Part I indicates how the materials can be used for classroom instruction of pregnant minors and for other students in general science or social…

  18. Secondary School Students' Knowledge and Opinions on Astrobiology Topics and Related Social Issues

    NASA Astrophysics Data System (ADS)

    Oreiro, Raquel; Solbes, Jordi

    2017-01-01

    Astrobiology is the study of the origin of life on Earth and the distribution of life in the Universe. Its multidisciplinary approach, social and philosophical implications, and appeal within the discipline and beyond make astrobiology a uniquely qualified subject for general science education. In this study, student knowledge and opinions on astrobiology topics were investigated. Eighty-nine students in their last year of compulsory education (age 15) completed a written questionnaire that consisted of 10 open questions on the topic of astrobiology. The results indicate that students have significant difficulties understanding the origin of life on Earth, despite exposure to the topic by way of the assigned textbooks. The students were often unaware of past or present achievements in the search for life within the Solar System and beyond, topics that are far less commonly seen in textbooks. Student questionnaire answers also indicated that students had problems in reasoning and critical thinking when asked for their opinions on issues such as the potential for life beyond Earth, the question of whether UFOs exist, or what our place is in the Universe. Astrobiology might help initiate student awareness as to current thinking on these matters and should be considered for general science education.

  19. Levels of line graph question interpretation with intermediate elementary students of varying scientific and mathematical knowledge and ability: A think aloud study

    NASA Astrophysics Data System (ADS)

    Keller, Stacy Kathryn

    This study examined how intermediate elementary students' mathematics and science background knowledge affected their interpretation of line graphs and how their interpretations were affected by graph question levels. A purposive sample of 14 6th-grade students engaged in think aloud interviews (Ericsson & Simon, 1993) while completing an excerpted Test of Graphing in Science (TOGS) (McKenzie & Padilla, 1986). Hand gestures were video recorded. Student performance on the TOGS was assessed using an assessment rubric created from previously cited factors affecting students' graphing ability. Factors were categorized using Bertin's (1983) three graph question levels. The assessment rubric was validated by Padilla and a veteran mathematics and science teacher. Observational notes were also collected. Data were analyzed using Roth and Bowen's semiotic process of reading graphs (2001). Key findings from this analysis included differences in the use of heuristics, self-generated questions, science knowledge, and self-motivation. Students with higher prior achievement used a greater number and variety of heuristics and more often chose appropriate heuristics. They also monitored their understanding of the question and the adequacy of their strategy and answer by asking themselves questions. Most used their science knowledge spontaneously to check their understanding of the question and the adequacy of their answers. Students with lower and moderate prior achievement favored one heuristic even when it was not useful for answering the question and rarely asked their own questions. In some cases, if students with lower prior achievement had thought about their answers in the context of their science knowledge, they would have been able to recognize their errors. One student with lower prior achievement motivated herself when she thought the questions were too difficult. In addition, students answered the TOGS in one of three ways: as if they were mathematics word problems, science data to be analyzed, or they were confused and had to guess. A second set of findings corroborated how science background knowledge affected graph interpretation: correct science knowledge supported students' reasoning, but it was not necessary to answer any question correctly; correct science knowledge could not compensate for incomplete mathematics knowledge; and incorrect science knowledge often distracted students when they tried to use it while answering a question. Finally, using Roth and Bowen's (2001) two-stage semiotic model of reading graphs, representative vignettes showed emerging patterns from the study. This study added to our understanding of the role of science content knowledge during line graph interpretation, highlighted the importance of heuristics and mathematics procedural knowledge, and documented the importance of perception attentions, motivation, and students' self-generated questions. Recommendations were made for future research in line graph interpretation in mathematics and science education and for improving instruction in this area.

  20. The function of questions in Omani fourth grade inquiry-based science classrooms: A sociocultural perspective

    NASA Astrophysics Data System (ADS)

    Al-Shaibani, Madiha Ahmed

    2005-11-01

    Studies indicate that science education reforms are globally converging. Many countries are adopting the globally advocated science education reforms for the purpose of obtaining the competitive edge in science education and technology that are viewed as the driving forces of modern economies. Globally, science education reforms are emphasizing paradigm shifts in which constructivist instructional are foregrounded. Many science education curricular documents advocate teaching science through engaging students in scientific inquiry. As a result, science classrooms are becoming more student-centered where students are typically actively engaged in inquiry learning. Even though inquiry instruction has become the common approach in teaching science, the actual implementation of inquiry in classrooms indicates that there is a big gap between the intended inquiry advocated in curricula documents and the actual practices in classroom settings. One of the main features of inquiry instruction is student questions. Authentic student questions are essential for the initiating and main scientific inquiry. However, studies have also illustrated the rarity of student questions in classrooms. This dearth in student questions has been attributed to the discursive practices in classrooms. Classrooms that implement the traditional IRE discourse structure tend to have less student questions. On the other hand, reflective questioning is considered a more appropriate classroom discourse structure because it intentionally invites student questions and engages students in classroom discussions. This qualitative study addresses the issue of questioning in fourth grade inquiry-based science classrooms of the Omani Basic Education system. Methods employed in this study included: participant observation, individual interviews, focus group interviews and the collection of artifacts. Findings of this study illustrated the rarity of student questions in the classrooms. However this investigation also revealed the connection between teacher beliefs and implementation of reforms. Teachers whose beliefs were aligned with reforms came closer to implementing reform initiatives as opposed to teachers whose beliefs were not aligned with reform initiatives. The findings of this study were inconclusive when it came to linking teachers' questioning practices to teachers' understanding of inquiry methods.

  1. Mental models as indicators of scientific thinking

    NASA Astrophysics Data System (ADS)

    Derosa, Donald Anthony

    One goal of science education reform is student attainment of scientific literacy. Therefore, it is imperative for science educators to identify its salient elements. A dimension of scientific literacy that warrants careful consideration is scientific thinking and effective ways to foster scientific thinking among students. This study examined the use of mental models as evidence of scientific thinking in the context of two instructional approaches, transmissional and constructivist. Types of mental models, frequency of explanative information, and scores on problem solving transfer questions were measured and compared among subjects in each instructional context. Methods. Subjects consisted of sophomore biology students enrolled in general biology courses at three public high schools. The Group Assessment of Logical Thinking instrument was used to identify two equivalent groups with an N of 65. Each group was taught the molecular basis of sickle cell anemia and the principles of hemoglobin gel electrophoresis using one of the two instructional approaches at their schools during five instructional periods over the course of one week. Laboratory equipment and materials were provided by Boston University School of Medicine's MobileLab program. Following the instructional periods, each subject was asked to think aloud while responding to four problem solving transfer questions. Each response was audiotaped and videotaped. The interviews were transcribed and coded to identify types of mental models and explanative information. Subjects' answers to the problem solving transfer questions were scored using a rubric. Results. Students taught in a constructivist context tended to use more complete mental models than students taught in a transmissional context. Fifty-two percent of constructivist subjects and forty-four percent of transmissional subjects demonstrated evidence of relevant mental models. Overall fifty-two percent of the subjects expressed naive mental models with respect to content. There was no significant difference in the frequency of explanative information expressed by either group. Both groups scored poorly on the problem solving transfer problems. The average score for the constructivist group was 30% and the average score for the transmissional group was 34%. A significant correlation was found between the frequency of explanative information and scores on the problem-solving transfer questions, r = 0.766. Conclusion. The subjects exhibited difficulty in formulating and applying mental models to effectively answer problem solving transfer questions regardless of the context in which the subjects were taught. The results call into question the extent to which students have been taught to use mental models and more generally, the extent to which their prior academic experience has encouraged them to develop an awareness of scientific thinking skills. Implications of the study suggest further consideration of mental modeling in science education reform and the deliberate integration of an awareness of scientific thinking skills in the development of science curricula.

  2. The Role of Questions in the Science Classroom--How Girls and Boys Respond to Teachers' Questions

    ERIC Educational Resources Information Center

    Eliasson, Nina; Karlsson, Karl Göran; Sørensen, Helene

    2017-01-01

    The purpose of this study was to explore (a) to what extent male and female science teachers pose different types of questions and (b) if the type of science question posed influences the extent to which boys or girls respond to them. Transcripts of the teacher-student interaction in a whole-class situation were analysed, with attention paid to…

  3. Developing Atmospheric Science Tools for Teachers Based on Research at the Pico Mountain Observatory, Pico Island, Azores

    NASA Astrophysics Data System (ADS)

    Harkness, L.; Mazzoleni, L. R.; Dzepina, K.; Mazzoleni, C.; China, S.

    2013-12-01

    Atmospheric science and climate change are becoming increasingly important, especially in education, as the Next Generation Science Standards now include climate change. A collaborating team of research scientists and students are studying the free troposphere, specifically the aerosol composition and properties, on the island of Pico in the Azores Archipelago. The research station sits in the caldera of Mount Pico, 2225 meters above sea level. At this elevation, the station is above the marine boundary layer, thus placing it in the free troposphere. In this work, collaboration between a high school Earth Science teacher and university researchers was formed with the goal of developing classroom and outreach materials regarding atmospheric science. Among the materials, a video was created containing: site and project background, explanation of some of the instruments used and candid conversations regarding science and research. The video serves several purposes, such as informing students and the general public about what is happening in the atmosphere and informing students about the importance of science and research. The video could also be used to educate the local island community and tourists. Other materials designed include data directly obtained from the project, such as measurements of aerosol particles in electron microscopy photos (which were imaged for particle morphology and size), and composition of the aerosol particles. Students can use this evidence, as well as other data, to gain a better understanding of aerosols and the overall effect they have on the climate. Students will discover this evidence as they work through a series of experiments and activities. Using the strategy of Claim-Evidence-Reasoning as a way to answer scientific questions, students will use the evidence they gathered to explain their ideas. One such question could be, 'How do aerosols affect the climate?' and the student's 'claim' is their answer to that question. In the 'evidence' portion, the student lists the evidence they gathered that supports their claim. Some evidence could include the shape of the aerosol (has it traveled a long distance or is it local), the composition (does it contain carbon or mineral dust for example), the color (does it reflect or absorb light). Finally, the student explains how their evidence relates to the claim and question in the 'reasoning' section. While learning about the atmosphere, students would also be learning about science and the importance of research.

  4. Science outreach on tap: insights and practices from three years ofDartmouth Science Pubs.

    NASA Astrophysics Data System (ADS)

    Hawley, R. L.; Serrell, N.; Tobery, C. E.; Riordan, S. A.

    2015-12-01

    The "Cafe Scientifique" (or "Science Cafe") has existed around theworld for decades. In an informal setting, one or more scientistsengage with a lay audience, typically over refreshments of some kind.These Science Cafes have taken many formats and taken place in manyvenues. Some feature a single presenter, some multiple; somecongregate in large venues, some small; some restrict the use of thepowerpoint slides, some do not.Our team at Dartmouth has hosted "Science Pubs" for three years. OurScience Pub takes place in a local pub, from 5-7pm on a weekday once amonth. We choose a theme for a pub and select three presenters. Thecomposition of our panel varies, but we generally have at least onefaculty member and one "less-academic" member, such as a town plannerwhen discussing hurricanes or an organic farmer when discussingpesticides. Often we include a graduate student in the panel. ThePub takes place in three "acts": 1) the presenters each give a briefintroduction to thier take on the topic, usually 10-15 minutes,extemporaneous with no slides, 2) the "wedding reception" phase, whichis a break during which the presenters circulate to the pub tables,answering questions and chatting with the attendees informally, and 3)reconvening for a more 'formal' question and answer period duringwhich the presenters answer questions from the audience.Here, we outline the format that makes up a Dartmouth Science Pub andshare insignts and lessons learned. Among many findings, we havelearned: 1) a group of three presenters makes for a lively discussion,as often presenters 'riff' off one another's points, 2) it is cruicalto have a facilitator, to 'run the show', freeing the sciencepresenters to concentrate on thier audience engagement, and 3) a shortmeeting ahead of time with the presenters is simple and very importantin creating a smooth event, and serves to help the presenters 'codeswitch' and adapt language, in lieu of a formal 'training'.

  5. Increasing URM Undergraduate Student Success through Assessment-Driven Interventions: A Multiyear Study Using Freshman-Level General Biology as a Model System.

    PubMed

    Carmichael, Mary C; St Clair, Candace; Edwards, Andrea M; Barrett, Peter; McFerrin, Harris; Davenport, Ian; Awad, Mohamed; Kundu, Anup; Ireland, Shubha Kale

    2016-01-01

    Xavier University of Louisiana leads the nation in awarding BS degrees in the biological sciences to African-American students. In this multiyear study with ∼5500 participants, data-driven interventions were adopted to improve student academic performance in a freshman-level general biology course. The three hour-long exams were common and administered concurrently to all students. New exam questions were developed using Bloom's taxonomy, and exam results were analyzed statistically with validated assessment tools. All but the comprehensive final exam were returned to students for self-evaluation and remediation. Among other approaches, course rigor was monitored by using an identical set of 60 questions on the final exam across 10 semesters. Analysis of the identical sets of 60 final exam questions revealed that overall averages increased from 72.9% (2010) to 83.5% (2015). Regression analysis demonstrated a statistically significant correlation between high-risk students and their averages on the 60 questions. Additional analysis demonstrated statistically significant improvements for at least one letter grade from midterm to final and a 20% increase in the course pass rates over time, also for the high-risk population. These results support the hypothesis that our data-driven interventions and assessment techniques are successful in improving student retention, particularly for our academically at-risk students. © 2016 M. C. Carmichael et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Review of Research: Teacher Questioning Behavior in Science Classrooms.

    ERIC Educational Resources Information Center

    Blosser, Patricia E.

    Selected for this review are dissertations and other research reports related to science teacher questioning behavior, with particular emphasis on those studies designed to help teachers change their questioning behavior. Summarizing the section on observational studies (N=11), the author concludes that science teachers appear to function…

  7. The influence of question type, reasoning level, and wait time on student participation rates when using clicker questions with large classes

    NASA Astrophysics Data System (ADS)

    Hartman, K.; Koh, J.; Murty, S. A.; Ramos, R. D. P.; Goodkin, N.

    2017-12-01

    "Wait time" is defined as the length of the pause between an instructor initiating a question and either the student answering it or the instructor interjecting (Rowe, 1974). However, the nature of the question-answer dynamic changes with student response systems that allow hundreds of students to answer the same question simultaneously before displaying the results to the class. In this study, we looked at 129 student response questions asked across 240 minutes of class lectures to determine if longer wait times were associated with higher student response rates. We also examined whether the type and reasoning level of the questions were diagnostic of their response rates. 644 undergraduate science students enrolled in an interdisciplinary environmental science course. During each of the course's lessons, the instructor presented a mix of lecture content, short student response activities (clicker questions), and small group discussion opportunities. Using the recorded videos, we coded each student response question for its question type and reasoning level. We divided the question types into three categories: yes/no questions, yes/no/maybe questions, and other questions. To code for the reasoning level necessary to answer each question, we used a collapsed version of Bloom's Revised Taxonomy (Krathwohl, 2002). Questions that had a definite answer and relied on recalling facts or paraphrasing the lecture content were coded as "knowledge" questions. Questions that required students to apply what they had learned to analyze a new scenario, or come to a judgement were coded as "higher order" questions. An analysis of variance (ANOVA) using the question type and reasoning level as fixed factors and wait time as a covariate to predict student response rate indicated a strong interaction between question type and reasoning level F(6, 94) = 4.53, p<.01. In general, knowledge questions were answered by a higher percentage (M=91%) of students than higher order questions (M=85%). In particular, yes/no/maybe questions targeting higher order reasoning were the least answered (M=71%). Interestingly, wait time was not associated with increased response rates. The implication is certain types of yes/no/maybe questions may lend themselves to lower response rates due to the introduction of ambiguity into the question.

  8. Making Meaning of von Hagens' Body Worlds: Towards an Interdisciplinary Approach to Science Exhibitions

    NASA Astrophysics Data System (ADS)

    Dubek, Michelle Melodie

    Body Worlds is a traveling exhibition of plastinated human cadavers that offers the general public an opportunity to experience the human body in a unique way. It has been met with controversy and awe; public reactions and responses have been mixed. This case study research explored visitor responses to this controversial science exhibition, and examined the meaning visitors made of their experience. Specifically, the following research questions directed this study: Within the context of the Body Worlds exhibition: (a) What meaning did visitors make and how did they respond to the exhibits? (b) What tensions and issues arose for visitors? and (c) What did this type of exhibition convey about the changing role of science centres and the nature of their exhibitions? The primary sources of data for this study were 46 semi-structured interviews with visitors to the exhibition, observation notes, and 10 comment books including approximately 20 000 comments. Data suggested that the personal, physical, and sociocultural contexts (Falk & Dierking, 2000) contributed to visitor meaning meaning-making. The use of plastinated human cadavers within this exhibition raised ethical and moral questions and controversies about body procurement, use of human cadavers in display, representations of the bodies, and issues related to the sanctity of life. The tensions and issues identified by visitors demonstrated that messages (intended or unintended) located within Body Worlds were critically examined by visitors and called into question. Finally, data from this study suggested that an interdisciplinary approach to the presentation of science served to enhance accessibility for the viewer. This exhibition demonstrated that visitors responded positively and made personal connections when the arts, spirituality, edutainment, issues, and a combination of historical and contemporary museum practices were used to present science.

  9. Evaluation of Changes in Ghanaian Students' Attitudes Towards Science Following Neuroscience Outreach Activities: A Means to Identify Effective Ways to Inspire Interest in Science Careers.

    PubMed

    Yawson, Nat Ato; Amankwaa, Aaron Opoku; Tali, Bernice; Shang, Velma Owusua; Batu, Emmanuella Nsenbah; Asiemoah, Kwame; Fuseini, Ahmed Denkeri; Tene, Louis Nana; Angaandi, Leticia; Blewusi, Isaac; Borbi, Makafui; Aduku, Linda Nana Esi; Badu, Pheonah; Abbey, Henrietta; Karikari, Thomas K

    2016-01-01

    The scientific capacity in many African countries is low. Ghana, for example, is estimated to have approximately twenty-three researchers per a million inhabitants. In order to improve interest in science among future professionals, appropriate techniques should be developed and employed to identify barriers and correlates of science education among pre-university students. Young students' attitudes towards science may affect their future career choices. However, these attitudes may change with new experiences. It is, therefore, important to evaluate potential changes in students' attitudes towards science after their exposure to experiences such as science outreach activities. Through this, more effective means of inspiring and mentoring young students to choose science subjects can be developed. This approach would be particularly beneficial in countries such as Ghana, where: (i) documented impacts of outreach activities are lacking; and (ii) effective means to develop scientist-school educational partnerships are needed. We have established an outreach scheme, aimed at helping to improve interaction between scientists and pre-university students (and their teachers). Outreach activities are designed and implemented by undergraduate students and graduate teaching assistants, with support from faculty members and technical staff. Through this, we aim to build a team of trainee scientists and graduates who will become ambassadors of science in their future professional endeavors. Here, we describe an approach for assessing changes in junior high school students' attitudes towards science following classroom neuroscience outreach activities. We show that while students tended to agree more with questions concerning their perceptions about science learning after the delivery of outreach activities, significant improvements were obtained for only two questions, namely "I enjoy science lessons" and "I want to be a scientist in the future." Furthermore, there was a generally strong trend towards a change in attitude for questions that sought information about students' perceptions about scientists (both positive and negative perceptions). In addition, outreach providers reported that their involvement in this public engagement scheme helped them acquire several transferable skills that will be beneficial in their studies and career development. These include vital skills in project and time management, teamwork and public speaking. Altogether, our findings provide novel indications that the development of scientist-school outreach partnerships in Ghana has valuable implications for science education and capacity development.

  10. The six most essential questions in psychiatric diagnosis: a pluralogue part 3: issues of utility and alternative approaches in psychiatric diagnosis

    PubMed Central

    2012-01-01

    In face of the multiple controversies surrounding the DSM process in general and the development of DSM-5 in particular, we have organized a discussion around what we consider six essential questions in further work on the DSM. The six questions involve: 1) the nature of a mental disorder; 2) the definition of mental disorder; 3) the issue of whether, in the current state of psychiatric science, DSM-5 should assume a cautious, conservative posture or an assertive, transformative posture; 4) the role of pragmatic considerations in the construction of DSM-5; 5) the issue of utility of the DSM – whether DSM-III and IV have been designed more for clinicians or researchers, and how this conflict should be dealt with in the new manual; and 6) the possibility and advisability, given all the problems with DSM-III and IV, of designing a different diagnostic system. Part 1 of this article took up the first two questions. Part 2 took up the second two questions. Part 3 now deals with Questions 5 & 6. Question 5 confronts the issue of utility, whether the manual design of DSM-III and IV favors clinicians or researchers, and what that means for DSM-5. Our final question, Question 6, takes up a concluding issue, whether the acknowledged problems with the earlier DSMs warrants a significant overhaul of DSM-5 and future manuals. As in Parts 1 & 2 of this article, the general introduction, as well as the introductions and conclusions for the specific questions, are written by James Phillips, and the responses to commentaries are written by Allen Frances. PMID:22621419

  11. The six most essential questions in psychiatric diagnosis: A pluralogue part 2: Issues of conservatism and pragmatism in psychiatric diagnosis

    PubMed Central

    2012-01-01

    In face of the multiple controversies surrounding the DSM process in general and the development of DSM-5 in particular, we have organized a discussion around what we consider six essential questions in further work on the DSM. The six questions involve: 1) the nature of a mental disorder; 2) the definition of mental disorder; 3) the issue of whether, in the current state of psychiatric science, DSM-5 should assume a cautious, conservative posture or an assertive, transformative posture; 4) the role of pragmatic considerations in the construction of DSM-5; 5) the issue of utility of the DSM – whether DSM-III and IV have been designed more for clinicians or researchers, and how this conflict should be dealt with in the new manual; and 6) the possibility and advisability, given all the problems with DSM-III and IV, of designing a different diagnostic system. Part I of this article took up the first two questions. Part II will take up the second two questions. Question 3 deals with the question as to whether DSM-V should assume a conservative or assertive posture in making changes from DSM-IV. That question in turn breaks down into discussion of diagnoses that depend on, and aim toward, empirical, scientific validation, and diagnoses that are more value-laden and less amenable to scientific validation. Question 4 takes up the role of pragmatic consideration in a psychiatric nosology, whether the purely empirical considerations need to be tempered by considerations of practical consequence. As in Part 1 of this article, the general introduction, as well as the introductions and conclusions for the specific questions, are written by James Phillips, and the responses to commentaries are written by Allen Frances. PMID:22512887

  12. Fossils, Facies and Geologic Time: Active Learning Yields More Expert-Like Thinking in a Large Class for Senior Science Students

    NASA Astrophysics Data System (ADS)

    Sutherland, S.; Jones, F. M.

    2012-12-01

    Teaching and assessing concepts involving the relationships between deep time and the Earth System can be challenging. This is especially true in elective courses for senior general science students who should be starting to think more like experts, but lack background knowledge in geology. By comparing student activities and work, both before and after introducing active learning strategies, we show that increased maturity of thinking about geological time was achieved in the science elective "Earth and Life through Time" taken by 150 upper level general science students. Student demographics were very similar in 2010 and 2011 allowing comparison of data from a consistent end of term survey, classroom observations, and test or exercise questions used in both years. Students identified the workload as greater in 2011, yet they also gave the course a stronger overall rating of excellence. Also, students in 2011 felt assessments and homework were more appropriate and expressed a nearly unanimous preference for group versus solo class work. More objective indicators of improvement include item analysis on test questions which shows increased difficulty and discrimination without compromising overall scores. The wide variety of changes introduced in 2011 do make it difficult to rigorously ascribe specific causes for improvement in how students think about geologic time. However the shift towards more sophisticated thinking involving skills rather than recall can be demonstrated by comparing geological interpretations produced by students in early and improved versions of exercises. For example, labs have always involved basic identification of rocks and fossils. Now, the new in-class group-based activities enable students to use data to establish the relative history of a geologic section, including environments, ages of known materials, and time spans of materials missing at unconformities. In addition to activities, specific exam questions and corresponding results from both versions of the course also reveal improvements. In order to help educators improve teaching and assessment of geologic time in similar settings, we will offer some details about course modifications and activities. First, learning goals were adjusted to emphasize skills geologists use when interpreting the geological record, rather than focusing on specific knowledge such dates, time spans and rock or fossil names. Then, one third of the lectures were replaced with 50-minute guided group activities, higher level clicker-based questioning strategies were introduced, labs were restructured to include follow up in-class group activities, structured reading and homework exercises were added, and formative and evaluative assessments were diversified. In conclusion, we will show that introducing active learning strategies has helped meet the challenges of increasing the sophistication of students' thinking about geologic time, at the same time as increasing their satisfaction. The specific strategies should be transferrable to any course in which senior general science students learn to use the rock and fossil record to experience the ways in which geoscientists integrate geology and paleontology to interpret the Earth System's evolution.

  13. Crisis in science: in search for new theoretical foundations.

    PubMed

    Schroeder, Marcin J

    2013-09-01

    Recognition of the need for theoretical biology more than half century ago did not bring substantial progress in this direction. Recently, the need for new methods in science, including physics became clear. The breakthrough should be sought in answering the question "What is life?", which can help to explain the mechanisms of consciousness and consequently give insight into the way we comprehend reality. This could help in the search for new methods in the study of both physical and biological phenomena. However, to achieve this, new theoretical discipline will have to be developed with a very general conceptual framework and rigor of mathematical reasoning, allowing it to assume the leading role in science. Since its foundations are in the recognition of the role of life and consciousness in the epistemic process, it could be called biomathics. The prime candidates proposed here for being the fundamental concepts for biomathics are 'information' and 'information integration', with an appropriately general mathematical formalism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Inspiring future experimental scientists through questions related to colour

    NASA Astrophysics Data System (ADS)

    Fairchild, Mark D.; Melgosa, Manuel

    2014-07-01

    In general, it can be stated that unfortunately in most countries the number of students interested in traditional scientific disciplines (e.g. physics, chemistry, biology, mathematics, etc.) for his/her future professional careers has considerably decreased during the past years. It is likely that among the reasons of this trend we can find that many students feel that these disciplines are particularly difficult, complex, abstract, and even boring, while they consider applied sciences (e.g. engineering) as much more attractive options to them. Here we aim to attract people of very different ages to traditional scientific disciplines, and promote scientific knowledge, using a set of colour questions related to everyday experiences. From our answers to these questions we hope that people can understand and learn science in a rigorous, relaxed and amusing way, and hopefully they will be inspired to continue exploring on their own. Examples of such colour questions can be found at the free website http://whyiscolor.org from Mark D. Fairchild. For a wider dissemination, most contents of this website have been recently translated into Spanish language by the authors, and published in the book entitled "La tienda de las curiosidades sobre el color" (Editorial University of Granada, Spain, ISBN: 9788433853820). Colour is certainly multidisciplinary, and while it can be said that it is mainly a perception, optics is a key discipline to understand colour stimuli and phenomena. The classical first approach in colour science as the result of the interaction of light, objects, and the human visual system will be also reviewed.

  15. Citizen Science Data and Scaling

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Wasser, L. A.

    2013-12-01

    There is rapid growth in the collection of environmental data by non experts. So called ';citizen scientists' are collecting data on plant phenology, precipitation patterns, bird migration and winter feeding, mating calls of frogs in the spring, and numerous other topics and phenomena related to environmental science. This data is generally submitted to online programs (e.g Project BudBurst, COCORaHS, Project Feederwatch, Frogwatch USA, etc.)and is freely available to scientists, educators, land managers, and decisions makers. While the data is often used to address specific science questions, it also provides the opportunity to explore its utility in the context of ecosystem scaling. Citizen science data is being collected and submitted at an unprecedented rate and is of a spatial and temporal scale previously not possible. The amount of citizen science data vastly exceeds what scientists or land managers can collect on their own. As such, it provides opportunities to address scaling in the environmental sciences. This presentation will explore data from several citizen science programs in the context of scaling.

  16. Expanding forensic science through forensic intelligence.

    PubMed

    Ribaux, Olivier; Talbot Wright, Benjamin

    2014-12-01

    Research and Development ('R&D') in forensic science currently focuses on innovative technologies improving the efficiency of existing forensic processes, from the detection of marks and traces at the scene, to their presentation in Court. R&D approached from this perspective provides no response to doubts raised by recent criminological studies, which question the effective contribution of forensic science to crime reduction, and to policing in general. Traces (i.e. forensic case data), as remnants of criminal activity are collected and used in various forms of crime monitoring and investigation. The aforementioned doubts therefore need to be addressed by expressing how information is conveyed by traces in these processes. Modelling from this standpoint expands the scope of forensic science and provides new R&D opportunities. Twelve propositions for R&D are stated in order to pave the way. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Draft Plan for Characterizing Commercial Data Products in Support of Earth Science Research

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Terrie, Greg; Berglund, Judith

    2006-01-01

    This presentation introduces a draft plan for characterizing commercial data products for Earth science research. The general approach to the commercial product verification and validation includes focused selection of a readily available commercial remote sensing products that support Earth science research. Ongoing product verification and characterization will question whether the product meets specifications and will examine its fundamental properties, potential and limitations. Validation will encourage product evaluation for specific science research and applications. Specific commercial products included in the characterization plan include high-spatial-resolution multispectral (HSMS) imagery and LIDAR data products. Future efforts in this process will include briefing NASA headquarters and modifying plans based on feedback, increased engagement with the science community and refinement of details, coordination with commercial vendors and The Joint Agency Commercial Imagery Evaluation (JACIE) for HSMS satellite acquisitions, acquiring waveform LIDAR data and performing verification and validation.

  18. On Gene Concepts and Teaching Genetics: Episodes from Classical Genetics

    NASA Astrophysics Data System (ADS)

    Burian, Richard M.

    2013-02-01

    This paper addresses the teaching of advanced high school courses or undergraduate courses for non-biology majors about genetics or history of genetics. It will probably be difficult to take the approach described here in a high school science course, although the general approach could help improve such courses. It would be ideal for a college course in history of genetics or a course designed to teach non-science majors how science works or the rudiments of the genetics in a way that will help them as citizens. The approach aims to teach the processes of discovery, correction, and validation by utilizing illustrative episodes from the history of genetics. The episodes are treated in way that should foster understanding of basic questions about genes, the sorts of techniques used to answer questions about the constitution and structure of genes, how they function, and what they determine, and some of the major biological disagreements that arose in dealing with these questions. The material covered here could be connected to social and political issues raised by genetics, but these connections are not surveyed here. As it is, to cover this much territory, the article is limited to four major episodes from Mendel's paper to the beginning of World War II. A sequel will deal with the molecularization of genetics and with molecular gene concepts through the Human Genome Project.

  19. Working with Instruments: Ernst Mach as Material Epistemologist, a Short Introduction.

    PubMed

    Hoffmann, Christoph; Métraux, Alexandre

    2016-12-01

    With the death of Ernst Mach on February 19, 1916, one day after his seventy-eighth birthday, a question finally became explicit that had been looming for some time. It was as simple as it was fundamental: who, in the end, was this man, a scientist or a philosopher? The importance of this question for contemporaries can easily be gleaned from the obituaries that appeared in the weeks following Mach's death: one in the Physikalische Zeitschrift, written by Albert Einstein, and another in the Archiv für die Geschichte der Philosophie, written by Mach's former student Heinrich Gomperz. They both addressed this critical issue in plain words. Einstein stressed that Mach "was not a philosopher who chose the natural sciences as the object of his speculation, but a many-sided, interested, diligent scientist who also took visible pleasure in detailed questions outside the burning issues of general interest" (Einstein 1916, 104; translation cited in Blackmore 1992, 158). Gomperz in turn first emphasized the great loss science had experienced with Mach's death, asking subsequently whether "the suffering science is physics or philosophy?" (Gomperz 1916, 321). His answer broadly followed Einstein's conclusion; relying on Mach's own words, he reminded his readers that Mach never claimed to be a philosopher, but merely was looking for a viewpoint that transcended the disciplinary constraints of particular scientific activities.

  20. Science Fiction and the Big Questions

    NASA Astrophysics Data System (ADS)

    O'Keefe, M.

    Advocates of space science promote investment in science education and the development of new technologies necessary for space travel. Success in these areas requires an increase of interest and support among the general public. What role can entertainment media play in inspiring the public ­ especially young people ­ to support the development of space science? Such inspiration is badly needed. Science education and funding in the United States are in a state of crisis. This bleak situation exists during a boom in the popularity of science-oriented television shows and science fiction movies. This paper draws on interviews with professionals in science, technology, engineering and mathematics (STEM) fields, as well as students interested in those fields. The interviewees were asked about their lifelong media-viewing habits. Analysis of these interviews, along with examples from popular culture, suggests that science fiction can be a valuable tool for space advocates. Specifically, the aspects of character, story, and special effects can provide viewers with inspiration and a sense of wonder regarding space science and the prospect of long-term human space exploration.

  1. Performance on large-scale science tests: Item attributes that may impact achievement scores

    NASA Astrophysics Data System (ADS)

    Gordon, Janet Victoria

    Significant differences in achievement among ethnic groups persist on the eighth-grade science Washington Assessment of Student Learning (WASL). The WASL measures academic performance in science using both scenario and stand-alone question types. Previous research suggests that presenting target items connected to an authentic context, like scenario question types, can increase science achievement scores especially in underrepresented groups and thus help to close the achievement gap. The purpose of this study was to identify significant differences in performance between gender and ethnic subgroups by question type on the 2005 eighth-grade science WASL. MANOVA and ANOVA were used to examine relationships between gender and ethnic subgroups as independent variables with achievement scores on scenario and stand-alone question types as dependent variables. MANOVA revealed no significant effects for gender, suggesting that the 2005 eighth-grade science WASL was gender neutral. However, there were significant effects for ethnicity. ANOVA revealed significant effects for ethnicity and ethnicity by gender interaction in both question types. Effect sizes were negligible for the ethnicity by gender interaction. Large effect sizes between ethnicities on scenario question types became moderate to small effect sizes on stand-alone question types. This indicates the score advantage the higher performing subgroups had over the lower performing subgroups was not as large on stand-alone question types compared to scenario question types. A further comparison examined performance on multiple-choice items only within both question types. Similar achievement patterns between ethnicities emerged; however, achievement patterns between genders changed in boys' favor. Scenario question types appeared to register differences between ethnic groups to a greater degree than stand-alone question types. These differences may be attributable to individual differences in cognition, characteristics of test items themselves and/or opportunities to learn. Suggestions for future research are made.

  2. Silent and Vocal Students in a Large Active Learning Chemistry Classroom: Comparison of Performance and Motivational Factors

    ERIC Educational Resources Information Center

    Obenland, Carrie A.; Munson, Ashlyn H.; Hutchinson, John S.

    2013-01-01

    Active learning is becoming more prevalent in large science classrooms, and this study shows the impact on performance of being vocal during Socratic questioning in a General Chemistry course. 800 college students over a two year period were given a pre and post-test using the Chemistry Concept Reasoning Test. The pre-test results showed that…

  3. About the Differences of Teachers' Self-Perceptions to the Statements of Social Competence

    ERIC Educational Resources Information Center

    Krips, Heiki; Lehtsaar, Tonu; Kukemelk, Hasso

    2011-01-01

    In this study, 600 school teachers completed a 116-item questionnaire consisting of questions regarding classroom communication as well as a general list of social skills. The aim of the study was to compare the self-perceptions, given by the teachers of art and the teachers of science and the male and female teachers to the statements of social…

  4. Response to the Critique of the Huffman (2014) Article, "Reading Rate Gains during a One-Semester Extensive Reading Course"

    ERIC Educational Resources Information Center

    Huffman, Jeffrey

    2016-01-01

    In his critique of the Huffman (2014) article, McLean (2016) undertakes an important reflective exercise that is too often missing in the field of second language acquisition and in the social sciences in general: questioning whether the claims made by researchers are warranted by their results. In this article, Jeffrey Huffman says that McLean…

  5. Beyond patchwork precaution in the dual-use governance of synthetic biology.

    PubMed

    Kelle, Alexander

    2013-09-01

    The emergence of synthetic biology holds the potential of a major breakthrough in the life sciences by transforming biology into a predictive science. The dual-use characteristics of similar breakthroughs during the twentieth century have led to the application of benignly intended research in e.g. virology, bacteriology and aerobiology in offensive biological weapons programmes. Against this background the article raises the question whether the precautionary governance of synthetic biology can aid in preventing this techno-science witnessing the same fate? In order to address this question, this paper proceeds in four steps: it firstly introduces the emerging techno-science of synthetic biology and presents some of its potential beneficial applications. It secondly analyses contributions to the bioethical discourse on synthetic biology as well as precautionary reasoning and its application to life science research in general and synthetic biology more specifically. The paper then identifies manifestations of a moderate precautionary principle in the emerging synthetic biology dual-use governance discourse. Using a dual-use governance matrix as heuristic device to analyse some of the proposed measures, it concludes that the identified measures can best be described as "patchwork precaution" and that a more systematic approach to construct a web of dual-use precaution for synthetic biology is needed in order to guard more effectively against the field's future misuse for harmful applications.

  6. Assessing Teachers' Science Content Knowledge: A Strategy for Assessing Depth of Understanding

    NASA Astrophysics Data System (ADS)

    McConnell, Tom J.; Parker, Joyce M.; Eberhardt, Jan

    2013-06-01

    One of the characteristics of effective science teachers is a deep understanding of science concepts. The ability to identify, explain and apply concepts is critical in designing, delivering and assessing instruction. Because some teachers have not completed extensive courses in some areas of science, especially in middle and elementary grades, many professional development programs attempt to strengthen teachers' content knowledge. Assessing this content knowledge is challenging. Concept inventories are reliable and efficient, but do not reveal depth of knowledge. Interviews and observations are time-consuming. The Problem Based Learning Project for Teachers implemented a strategy that includes pre-post instruments in eight content strands that permits blind coding of responses and comparison across teachers and groups of teachers. The instruments include two types of open-ended questions that assess both general knowledge and the ability to apply Big Ideas related to specific science topics. The coding scheme is useful in revealing patterns in prior knowledge and learning, and identifying ideas that are challenging or not addressed by learning activities. The strengths and limitations of the scoring scheme are identified through comparison of the findings to case studies of four participating teachers from middle and elementary schools. The cases include examples of coded pre- and post-test responses to illustrate some of the themes seen in teacher learning. The findings raise questions for future investigation that can be conducted using analyses of the coded responses.

  7. The place of practical wisdom in science education: what can be learned from Aristotelian ethics and a virtue-based theory of knowledge

    NASA Astrophysics Data System (ADS)

    Salloum, Sara

    2017-06-01

    This conceptual paper aims to characterize science teachers' practical knowledge utilizing a virtue-based theory of knowledge and the Aristotelian notion of phronesis/practical wisdom. The article argues that a greater understanding of the concept of phronesis and its relevance to science education would enrich our understandings of teacher knowledge, its development, and consequently models of teacher education. Views of teacher knowledge presented in this paper are informed by philosophical literature that questions normative views of knowledge and argues for a virtue-based epistemology rather than a belief-based one. The paper first outlines general features of phronesis/practical wisdom. Later, a virtue-based view of knowledge is described. A virtue-based view binds knowledge with moral concepts and suggests that knowledge development is motivated by intellectual virtues such as intellectual sobriety, perseverance, fairness, and humility. A virtue-based theory of knowledge gives prominence to the virtue of phronesis/practical wisdom, whose primary function is to mediate among virtues and theoretical knowledge into a line of action that serves human goods. The role of phronesis and its relevance to teaching science are explained accordingly. I also discuss differences among various characterizations of practical knowledge in science education and a virtue-based characterization. Finally, implications and further questions for teacher education are presented.

  8. Introduction to the Science Teacher Training in an Information Society (STTIS) project

    NASA Astrophysics Data System (ADS)

    Pinto, Roser

    2002-03-01

    The cluster of papers in this Special Issue, contains some results from the Science Teacher Training in an Information Society (STTIS) project, which was funded by the European Commission. Five European universities were involved: Universite´ Denis Diderot-Paris 7 (France), Universita¤ 'Federico II da Napoli' (Italy), University of Oslo (Norway), Universitat Auto¤noma de Barcelona (Spain), and the University of Sussex (UK). The names of those involved are given in the Appendix. The following brief description of the aims and structure of the project sets the work reported here (in this cluster) in the context of the whole project. The project dealt with general questions and challenges that the Information Society poses to science educators.

  9. A Statistical Analysis of Student Questions in a Cell Biology Laboratory

    ERIC Educational Resources Information Center

    Keeling, Elena L.; Polacek, Kelly M.; Ingram, Ella L.

    2009-01-01

    Asking questions is an essential component of the practice of science, but question-asking skills are often underemphasized in science education. In this study, we examined questions written by students as they prepared for laboratory exercises in a senior-level cell biology class. Our goals were to discover 1) what types of questions students…

  10. Yes! There are resilient generalizations (or "laws") in ecology.

    PubMed

    Linquist, Stefan; Gregory, T Ryan; Elliott, Tyler A; Saylor, Brent; Kremer, Stefan C; Cottenie, Karl

    2016-06-01

    ABSTRACT It is often argued that ecological communities admit of no useful generalizations or "laws" because these systems are especially prone to contingent historical events. Detractors respond that this argument assumes an overly stringent definition of laws of nature. Under a more relaxed conception, it is argued that ecological laws emerge at the level of communities and elsewhere. A brief review of this debate reveals an issue with deep philosophical roots that is unlikely to be resolved by a better understanding of generalizations in ecology. We therefore propose a strategy for transforming the conceptual question about the nature of ecological laws into a set of empirically tractable hypotheses about the relative re- silience of ecological generalizations across three dimensions: taxonomy, habitat type, and scale. These hypotheses are tested using a survey of 240 meta-analyses in ecology. Our central finding is that generalizations in community ecology are just as prevalent and as resilient as those in population or ecosystem ecology. These findings should help to establish community ecology as a generality-seeking science as opposed to a science of case studies. It also supports the capacity for ecologists, working at any of the three levels, to inform matters of public policy.

  11. Health Technology Assessment - science or art?

    PubMed

    Hofmann, Bjørn

    2013-01-01

    The founding disciplines of HTA are clearly scientific, and have been firmly based among the natural sciences. However, common definitions of HTA indicate that HTA is something more than the "pure application of science". This article investigates whether this "something" also makes HTA an art. The question of whether HTA is a science or an art is pursued in two specific and historically rich directions. The first is whether HTA is an art in the same way that medicine is described as an art. It has been argued extensively that medicine is based on two different and partly incompatible cultures, i.e., the natural sciences and humanities. Medicine is based on disciplines within the natural sciences, while its value judgments have been placed in the humanities camp. This dichotomy is present in HTA as well, and the first part of the investigation illustrates how HTA is an art in terms of its inherent and constitutive value-judgments. The second part of the science/art-scrutiny leads us to the ancient (Hippocratic) concept of art, téchne, where we find an etymological and a conceptual link between HTA and art. It demonstrates HTA is not an arbitrary process, even though it involves value judgments and relates complex decision making processes. As an art (téchne) HTA has a specific subject matter, requires inquiry and mastery of general rational principles, and is oriented to a specific end. In conclusion, the science-or-art-question makes sense in two specific perspectives, illustrating that HTA is a science based art. This has implications for the practice of HTA, for its education, and for the status of its results.

  12. Physics and spirituality: the next grand unification?

    NASA Astrophysics Data System (ADS)

    Josephson, Brian

    1987-01-01

    In what light should a scientist regard the assertions of a religion, or of religions in general? One extreme position is the atheistic one of regarding the assertions of religion as falsehoods. Such a position can be sustained only by regarding the experiences which individuals consider as validating their religious beliefs as being explicable in other ways and, in the absence of an adequate research programme to support it, must be considered more as falling within the field of opinion that as within that of science. The alternative to this atheistic position is that there exists an aspect of reality-that one may for convenience call transcendental-which embraces the subject matter of religion (or as some may prefer to term it, the spiritual aspect of life) and which is not at present encompassed by science. The question then arises whether some future science may be able to cope with this aspect of reality, or whether it will remain forever beyond the scope of science. The author attempts to explain the ways in which current scientific orthodoxies are being challenged and to convey some idea of the alternatives presently emerging. A number of important themes here include the questions of the validity of reductionism and the universality of quantum mechanics, as well as that of the relevance of mystical experience.

  13. Questions That Science Teachers Find Difficult (II).

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2003-01-01

    Presents some questions that science teachers find difficult. Focuses on three further questions relating to "simple" everyday situations that are normally explained in terms of the kinetic theory of matter. Identifies looking at the difference between chemical and physical changes as the most problematic question. (Author/YDS)

  14. Assessment of Teaching Methods and Critical Thinking in a Course for Science Majors

    NASA Astrophysics Data System (ADS)

    Speck, Angela; Ruzhitskaya, L.; Whittington, A. G.

    2014-01-01

    Ability to think critically is a key ingredient to the scientific mindset. Students who take science courses may or may not be predisposed to critical thinking - the ability to evaluate information analytically. Regardless of their initial stages, students can significantly improve their critical thinking through learning and practicing their reasoning skills, critical assessments, conducting and reflecting on observations and experiments, building their questioning and communication skills, and through the use of other techniques. While, there are several of teaching methods that may help to improve critical thinking, there are only a few assessment instruments that can help in evaluating the efficacy of these methods. Critical thinking skills and improvement in those skills are notoriously difficult to measure. Assessments that are based on multiple-choice questions demonstrate students’ final decisions but not their thinking processes. In addition, during the course of studies students may develop subject-based critical thinking while not being able to extend the skills to the general critical thinking. As such, we wanted to design and conduct a study on efficacy of several teaching methods in which we would learn how students’ improve their thinking processes within a science discipline as well as in everyday life situations. We conducted a study among 20 astronomy, physics and geology majors-- both graduate and undergraduate students-- enrolled in our Solar System Science course (mostly seniors and early graduate students) at the University of Missouri. We used the Ennis-Weir Critical Thinking Essay test to assess students’ general critical thinking and, in addition, we implemented our own subject-based critical thinking assessment. Here, we present the results of this study and share our experience on designing a subject-based critical thinking assessment instrument.

  15. Using Mobile Devices to Facilitate Student Questioning in a Large Undergraduate Science Class

    ERIC Educational Resources Information Center

    Crompton, Helen; Burgin, Stephen R.; De Paor, Declan G.; Gregory, Kristen

    2018-01-01

    Asking scientific questions is the first practice of science and engineering listed in the Next Generation Science Standards. However, getting students to ask unsolicited questions in a large class can be difficult. In this qualitative study, undergraduate students sent SMS text messages to the instructor who received them on his mobile phone and…

  16. What's in a domain: Understanding how students approach questioning in history and science

    NASA Astrophysics Data System (ADS)

    Portnoy, Lindsay Blau

    During their education, students are presented with information across a variety of academic domains. How students ask questions as they learn has implications for understanding, retention, and problem solving. The current research investigates the influence of age and prior knowledge on the ways students approach questioning across history and science content. In two studies, students read history and science passages and then generated questions they would ask to make sense of the content. Nine categories of questions were identified to discern patterns of inquiry across both domains. Results indicate that while age and prior knowledge may play a role in the way students ask questions by domain there are persistent main effects of domain across both studies. Specifically, across both studies students ask questions regarding the purpose or function of ideas in science passages, whereas history passage are more regularly met with questions for supplemental information to complete a student's understanding. In contrast to extant research on developmental status or experience within a content area, current work suggests that domains themselves hold unique properties, which may influence how students approach questioning across domains.

  17. NASA 2014 The Hyperspectral Infrared Imager (HyspIRI) - Science Impact of Deploying Instruments on Separate Platforms

    NASA Technical Reports Server (NTRS)

    Turpie, Kevin; Veraverbeke, Sander; Wright, Robert; Anderson, Martha; Prakash, Anupma; Quattrochi, Dale

    2014-01-01

    The Hyperspectral Infrared Imager (HyspIRI) mission was recommended for implementation by the 2007 report from the U.S. National Research Council Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, also known as the Earth Science Decadal Survey. The HyspIRI mission is science driven and will address a set of science questions identified by the Decadal Survey and broader science community. The mission includes a visible shortwave infrared (VSWIR) imaging spectrometer, a multispectral thermal infrared (TIR) imager and an intelligent payload module (IPM). The IPM enables on-board processing and direct broadcast for those applications with short latency requirements. The science questions are organized as VSWIR-only, TIR-only and Combined science questions, the latter requiring data from both instruments. In order to prepare for the mission NASA is undertaking pre-phase A studies to determine the optimum mission implementation, in particular, cost and risk reduction activities. Each year the HyspIRI project is provided with feedback from NASA Headquarters on the pre-phase A activities in the form of a guidance letter which outlines the work that should be undertaken the subsequent year. The 2013 guidance letter included a recommendation to undertake a study to determine the science impact of deploying the instruments from separate spacecraft in sun synchronous orbits with various time separations and deploying both instruments on the International Space Station (ISS). This report summarizes the results from that study. The approach taken was to evaluate the impact on the combined science questions of time separations between the VSWIR and TIR data of <3 minutes, <1 week and a few months as well as deploying both instruments on the ISS. Note the impact was only evaluated for the combined science questions which require data from both instruments (VSWIR and TIR). The study concluded the impact of a separation of <3 minutes was minimal, e.g. if the instruments were on separate platforms that followed each other in a train. The impact of a separation of <1 week was strongly dependent on the question that was being addressed with no impact for some questions and a severe impact for others. The impact of a time separation of several months was severe and in many cases it was no longer possible to answer the sub-question. The impact of deploying the instruments on the ISS which is in a precessive (non-sun synchronous) orbit was also very question dependent, in some cases it was possible to go beyond the original question, e.g. to examine the impact of the diurnal cycle, whereas in other cases the question could not be addressed for example if the question required observations from the polar regions. As part of the study, the participants were asked to estimate, as a percentage, how completely a given sub-question could be answered with 100% indicating the question could be completely answered. These estimations should be treated with caution but nonetheless can be useful in assessing the impact. Averaging the estimates for each of the combined questions the results indicate that 97% of the questions could be answered with a separation of < 3 minutes. With a separation of < 1 week, 67% of the questions could be answered and with a separation of several months only 21% of the questions could be answered.

  18. Revisiting the Authoritative-Dialogic Tension in Inquiry-Based Elementary Science Teacher Questioning

    NASA Astrophysics Data System (ADS)

    Van Booven, Christopher D.

    2015-05-01

    Building on the 'questioning-based discourse analytical' framework developed by Singapore-based science educator and discourse analyst, Christine Chin, this study investigated the extent to which fifth-grade science teachers' use of questions with either an authoritative or dialogic orientation differentially restricted or expanded the quality and complexity of student responses in the USA. The author analyzed approximately 10 hours of classroom discourse from elementary science classrooms organized around inquiry-based science curricula and texts. Teacher questions and feedback were classified according to their dialogic orientation and contextually inferred structural purpose, while student understanding was operationalized as a dynamic interaction between cognitive process, syntacto-semantic complexity, and science knowledge type. The results of this study closely mirror Chin's and other scholars' findings that the fixed nature of authoritatively oriented questioning can dramatically limit students' opportunities to demonstrate higher order scientific understanding, while dialogically oriented questions, by contrast, often grant students the discursive space to demonstrate a greater breadth and depth of both canonical and self-generated knowledge. However, certain teacher questioning sequences occupying the 'middle ground' between maximal authoritativeness and dialogicity revealed patterns of meaningful, if isolated, instances of higher order thinking. Implications for classroom practice are discussed along with recommendations for future research.

  19. Questioning Profiles in Secondary Science Classrooms

    ERIC Educational Resources Information Center

    Almeida, Patricia; de Souza, Francisle Neri

    2010-01-01

    In this paper, we are concerned with the role of both teachers and students' questioning in classroom interaction. Bearing in mind that the current guidelines point out to student centred teaching, our aim is to analyse and characterise the questioning patterns of contemporary secondary science classes and compare them to the questioning profiles…

  20. Partners in Science: A Suggested Framework for Inclusive Research

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.

    2012-12-01

    Public participation in scientific research, also known as citizen science, is effective on many levels: it produces sound, publishable science and data, helps participants gain scientific knowledge and learn about the methods and practices of modern science, and can help communities advance their own priorities. Unfortunately, the demographics of citizen science programs do not reflect the demographics of the US; in general people of color and less affluent members of society are under-represented. To understand the reasons for this disparity, it is useful to look to the broader research about participation in science in a variety of informal and formal settings. From this research, the causes for unequal participation in science can be grouped into three broad categories: accessibility challenges, cultural differences, and a gap between scientific goals and community priorities. Many of these challenges are addressed in working with communities to develop an integrated program of scientific research, education, and community action that addresses community priorities and invites community participation at every stage of the process from defining the question to applying the results. In the spectrum of ways to engage the public in scientific research, this approach of "co-creation" is the most intensive. This talk will explore several examples of co-creation of science, including collaborations with tribal communities around climate change adaptation, work in the Louisiana Delta concerning land loss, and the link between weather and disease in Africa. We will articulate some of the challenges of working this intensively with communities, and suggest a general framework for guiding this kind of work with communities. This model of intensive collaboration at every stage is a promising one for adding to the diversity of citizen science efforts. It also provides a powerful strategy for science more generally, and may help us diversify our field, ensure the use and usability of our science, and help strengthen public support for and acceptance of scientific results.

  1. A Novel Multiple Choice Question Generation Strategy: Alternative Uses for Controlled Vocabulary Thesauri in Biomedical-Sciences Education.

    PubMed

    Lopetegui, Marcelo A; Lara, Barbara A; Yen, Po-Yin; Çatalyürek, Ümit V; Payne, Philip R O

    2015-01-01

    Multiple choice questions play an important role in training and evaluating biomedical science students. However, the resource intensive nature of question generation limits their open availability, reducing their contribution to evaluation purposes mainly. Although applied-knowledge questions require a complex formulation process, the creation of concrete-knowledge questions (i.e., definitions, associations) could be assisted by the use of informatics methods. We envisioned a novel and simple algorithm that exploits validated knowledge repositories and generates concrete-knowledge questions by leveraging concepts' relationships. In this manuscript we present the development and validation of a prototype which successfully produced meaningful concrete-knowledge questions, opening new applications for existing knowledge repositories, potentially benefiting students of all biomedical sciences disciplines.

  2. An Analysis of the Most Commonly Tested Topics and Their Taxonomy From Recent Self-Assessment Examinations.

    PubMed

    Krueger, Chad A; Moroze, Sean; Murtha, Andrew S; Rivera, Jessica C

    The purpose of this study is to determine the most commonly tested topics and the question taxonomy of the American Academy of Orthopaedic Surgeons Self-Assessment Examinations (SAE) from 2009 through 2014. All SAEs were analyzed from 2009 through 2014. The SAEs were separated by subject and the questions of each SAE were analyzed for topic, taxonomic classification, and question type. A total of 2107 questions were reviewed from 10 different subjects. In all, 6 of the 9 subjects had roughly 1/3 of their questions composed of the 3 most commonly tested topics. Each subject had at least 1 trauma-related question within its top 5 most commonly tested topics. Almost half (47%) of all questions were of taxonomy 1 classification and 29% were taxonomy 3. The Basic Science SAEs had the greatest percentage of taxonomy 1 questions of any subject (83%) whereas Trauma contained the highest percentage of taxonomy 3 questions (47%). Certain topics within each subject are consistently tested more often than other topics. In general, the 3 most commonly tested topics comprise about one-third of total questions and orthopedic surgeons should be very familiar with these topics in order to best prepare for standardized examinations. Published by Elsevier Inc.

  3. Strategic considerations for support of humans in space and Moon/Mars exploration missions. Life sciences research and technology programs, volume 2

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Summary charts of the following topics are presented: the Percentage of Critical Questions in Constrained and Robust Programs; the Executive Committee and AMAC Disposition of Critical Questions for Constrained and Robust Programs; and the Requirements for Ground-based Research and Flight Platforms for Constrained and Robust Programs. Data Tables are also presented and cover the following: critical questions from all Life Sciences Division Discipline Science Plans; critical questions listed by category and criticality; all critical questions which require ground-based research; critical questions that would utilize spacelabs listed by category and criticality; critical questions that would utilize Space Station Freedom (SSF) listed by category and criticality; critical questions that would utilize the SSF Centrifuge; facility listed by category and criticality; critical questions that would utilize a Moon base listed by category and criticality; critical questions that would utilize robotic missions listed by category and criticality; critical questions that would utilize free flyers listed by category and criticality; and critical questions by deliverables.

  4. Comparing Two Inquiry Professional Development Interventions in Science on Primary Students' Questioning and Other Inquiry Behaviours

    NASA Astrophysics Data System (ADS)

    Nichols, Kim; Burgh, Gilbert; Kennedy, Callie

    2017-02-01

    Developing students' skills to pose and respond to questions and actively engage in inquiry behaviours enables students to problem solve and critically engage with learning and society. The aim of this study was to analyse the impact of providing teachers with an intervention in inquiry pedagogy alongside inquiry science curriculum in comparison to an intervention in non-inquiry pedagogy alongside inquiry science curriculum on student questioning and other inquiry behaviours. Teacher participants in the comparison condition received training in four inquiry-based science units and in collaborative strategic reading. The experimental group, the community of inquiry (COI) condition, received training in facilitating a COI in addition to training in the same four inquiry-based science units. This study involved 227 students and 18 teachers in 9 primary schools across Brisbane, Australia. The teachers were randomly allocated by school to one of the two conditions. The study followed the students across years 6 and 7 and students' discourse during small group activities was recorded, transcribed and coded for verbal inquiry behaviours. In the second year of the study, students in the COI condition demonstrated a significantly higher frequency of procedural and substantive higher-order thinking questions and other inquiry behaviours than those in the comparison condition. Implementing a COI within an inquiry science curriculum develops students' questioning and science inquiry behaviours and allows teachers to foster inquiry skills predicated by the Australian Science Curriculum. Provision of inquiry science curriculum resources alone is not sufficient to promote the questioning and other verbal inquiry behaviours predicated by the Australian Science Curriculum.

  5. Upper secondary and first-year university students' explanations of animal behaviour: to what extent are Tinbergen's four questions about causation, ontogeny, function and evolution, represented?

    NASA Astrophysics Data System (ADS)

    Pinxten, Rianne; Desclée, Mathieu; Eens, Marcel

    2016-09-01

    In 1963, the Nobel Prize-winning ethologist Niko Tinbergen proposed a framework for the scientific study of animal behaviour by outlining four questions that should be answered to have a complete understanding: causation, ontogeny, function and evolution. At present, Tinbergen's framework is still considered the best way to guide animal behavioural research. Given the importance in science instruction of demonstrating how scientists work and ask questions, we investigated to what extent Tinbergen's questions are addressed in biology textbooks in secondary education in Flanders, Belgium, and represented in upper-secondary and first-year university students' explanations of behaviour in general and of specific animal behaviours. Our results revealed that teaching of animal behaviour mainly addresses ontogeny and causation, and that Tinbergen's framework is not explicitly referred to. Students typically addressed only one or two questions, with the majority addressing causation or both causation and ontogeny when explaining behaviour in general, but function or causation and function when explaining specific animal behaviours. This high prevalence of function may be due to teleological thinking. Evolution was completely neglected, even in university students who had recently completed an evolution course. Our results revealed that transfer of the concepts of ontogeny and evolution was (almost) absent. We argue why Tinbergen's framework should be an integral part of any biology curriculum.

  6. A Comparison of the Quality and Sequence of Television and Classroom Science Questions With a Proposed Strategy of Science Instruction

    ERIC Educational Resources Information Center

    Beisenherz, Paul C.

    1973-01-01

    Studied the utilization and effectiveness of a televised science series in 54 first through fourth-grade classrooms, using multiple category systems to analyze the questioning behavior of studio and classroom teachers. Concluded that questioning behaviors of teachers with or without the teachers' manual was influenced by the TV broadcast. (CC)

  7. Levinas's ethics as a basis of healthcare - challenges and dilemmas.

    PubMed

    Nordtug, Birgit

    2015-01-01

    Levinas's ethics has in the last decades exerted a significant influence on Nursing and Caring Science. The core of Levinas's ethics - his analyses of how our subjectivity is established in the ethical encounter with our neighbour or the Other - is applied both to healthcare practice and in the project of building an identity of Nursing and Caring Science. Levinas's analyses are highly abstract and metaphysical, and also non-normative. Thus, his analyses cannot be applied directly to practical problems and questions. Theorists in Nursing and Caring Science are generally aware of this. Nevertheless, many of them use Levinas's analyses to explore and solve questions of practical and normative character. This article focuses on the challenges and dilemmas of using Levinas in this manner. The article is divided into two parts. The first part presents some central ideas of Levinas's ethics based on the latter part of his authorship. The main focus is on the radicalism of Levinas's critique of the symbolic order (which includes concepts, categories, knowledge, etc.) - or as he puts it 'the said' - as a basis for subjectivity and responsibility. Levinas's notions of saying, anarchy, and singularity accentuate this point of view. These notions refer to conditions in the language, which counteract the symbolic order in the ethical encounter to such an extent that it becomes an incomprehensible. Levinas gives the argumentation a metaphysical frame: The encounter with the incomprehensible is an encounter with the Holy, which is not the ontological God, but a metaphysical desire. It is a mystery as to what this means, and herein lies possibly the main challenge when using Levinas's ethics in science and research: How to maintain the radicalism of his critique of the symbolic order when this is to be communicated in a scientific context that expects clarification of statements and ideas? The second part of the article explores this question by examining how some theorists use Levinas's ethics on questions and problems in the area of healthcare and Nursing and Caring Science. The focus is especially on the theorists' reception and use of the just mentioned notions. The study reveals that these theorists to a large extent transform Levinas's ethics according to their own approaches, with the result that his ethics loses its critical radicalism. Thus, I question the reason why they use Levinas. © 2014 John Wiley & Sons Ltd.

  8. Developing Earth System Science Courses and Programs at Minority Serving Institutions

    NASA Astrophysics Data System (ADS)

    Johnson, D. R.; Jackson, C.; Ruzek, M.

    2004-12-01

    In the current NASA/USRA ESSE21 Program, emphasis is placed on the development of Earth System Science courses and degree offerings in Minority Serving Institutions (MSIs). Of the 18 colleges/universities being supported by NASA through USRA, 10 colleges/universities are MSIs. While there is recognition of the need for Earth system science courses, minors and degree programs by NASA and other agencies, within MSIs, a central challenge is how to provide a vision of the future opportunities in ESS and STEM disciplines that attracts and motivates students to these studies. Students need career guidance, role models and mentoring to encourage entry into STEM in general, and Earth system science in particular. Then there is the question of how to bring interested faculty together in institutions to form a critical mass that would forego the breadth and depth of disciplinary interests to undertake the development of multi/cross and interdisciplinary courses, minors and degree programs in ESS. Within the ESSE21 Diversity Working Group, the question has been raised as to how will MSIs ever be mainstream participants in ESS without teaching and engaging in research in remote sensing, modeling of the Earth's climate system and other like endeavors. Two other related questions raised within the Working Group are what are the long-term objectives of MSI adoption of ESS and what course corrections are needed to make ESS viable at MSIs. Within these considerations there are unresolved questions concerning the need and availability of resources from NASA, other agencies and local institutions. Apart from these larger considerations, efforts are underway within the ESSE21 Program that provide for sharing of resources among participants, organization of and access to materials that already exist, online resources, course outlines and successful listings for online resources by topics for particular courses and subject areas. The Lesson Learned Working Group, as well as the program office continue with efforts in organization of the resources to foster availability and utilization. Then there is the emphasis on educational assessment, formative, ongoing and summative by the Evaluation Working Group. These challenges, questions and Working Group activities will be briefly reviewed in relation to the collaborative development of Earth System Science and STEM education within ESSE21 and its current focus on MSIs.

  9. PATHOGEN EQUIVALENCY COMMITTEE (MCEARD)

    EPA Science Inventory

    Science Questions:

    MYP Science Question: What is the current state of management practices for biosolids production and application, and how can those be made more effective?

    Research Questions: Are there innovative or alternative sludge disinfection processes that...

  10. The cultural production of "science" and "scientist" in high school physics: Girls' access, participation, and resistance

    NASA Astrophysics Data System (ADS)

    Carlone, Heidi Berenson

    2000-10-01

    For over three decades, the gender gap in science and science education has received attention from teachers, policy makers, and scholars of various disciplines. During this time, feminist scholars have posited many reasons why the gender gap in science and science education exists. Early feminist discourse focused on girls' "deficits," while more recent work has begun to consider the problems with science and school science in the quest for a more gender inclusive science. Specifically, feminist scholars advocate a transformation of both how students learn science and the science curriculum that students are expected to learn. This study was designed to examine more deeply this call for a changed science curriculum and its implications for girls' participation, interest, and scientist identities. If we reinvisioned ways to "do" science, "learn" science, and "be a scientist" in school science, would girls come to see science as something interesting and worth pursuing further? This question framed my ethnographic investigation. I examined the culturally produced meanings of "science" and "scientist" in two high school physics classrooms (one traditional and one non-traditional class framed around real-world themes), how these meanings reproduced and contested larger sociohistorical (and prototypical) meanings of science and scientist, and how girls participated within and against these meanings. The results complicate the assumption that a classroom that enacts a non-traditional curriculum is "better" for girls. This study explained how each classroom challenged sociohistorical legacies of school science in various "spaces of possibility" and how prototypical meanings pushed the potential of these spaces to the margins. Girls in the traditional physics class generally embraced prototypical meanings because they could easily access "good student" identities. Girls in the non-traditional class, though attracted to alternative practices, struggled with the conflicting promoted student identities that did not allow them easy access to "good student" identities. In neither class were girls' perceptions of what it meant to do science and be a scientist challenged. And, in neither class did girls connect to a legitimate scientist identity. These findings leave unanswered the question of whether changes in pedagogy and curriculum alone will produce more gender fair school science.

  11. Enhancing learning using questions, adjunct to science charts

    NASA Astrophysics Data System (ADS)

    Holliday, William G.; Benson, Garth

    This study supported two hypotheses. First, adjunct questions interacted with a science chart so powerfully that content established as difficult to learn in the pilot and in this study's control groups became easier to learn when charted. Second, students familiar with the chart test before instruction (test exposure) were better prepared to take this test after instruction. This adjunct-question study examined the generalizability of selective-attention and academic-studying hypotheses to a modified science chart medium. About 300 high school students were randomly assigned to four conditions each including a vitamin chart (chart only, test exposure, importance of questions emphasized to students by teachers, and combinational conditions - test exposure and question importance) across 16 biology classrooms. Then these same students were again randomly assigned within each classroom to a control and to four question treatments no questions, questions focusing on easy-to-learn charted content, questions focusing on difficult-to-learn charted content, and a combinational treatment.

  12. Enhancing learning using questions adjunct to science charts

    NASA Astrophysics Data System (ADS)

    Holliday, William G.; Benson, Garth

    This study supported two hypotheses. First, adjunct questions interacted with a science chart so powerfully that content established as difficult to learn in the pilot and in this study's control groups became easier to learn when charted. Second, students familiar with the chart test before instruction (test exposure) were better prepared to take this test after instruction. This adjunct-question study examined the generalizability of selective-attention and academic-studying hypotheses to a modified science chart medium. About 300 high school students were randomly assigned to four conditions each including a vitamin chart (chart only, test exposure, importance of questions emphasized to students by teachers, and combinational conditions--test exposure and question importance) across 16 biology classrooms. Then these same students were again randomly assigned within each classroom to a control and to four question treatments (no questions, questions focusing on easy-to-learn charted content, questions focusing on difficult-to-learn charted content, and a combinational treatment).

  13. Space Station Freedom Workshop Opportunities for Commercial Users and Providers: Issues and Recommendations

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The responses to issues and questions raised at the Space Station Freedom Workshops are compiled. The findings are presented under broad divisions of general, materials processing in space, commercial earth and ocean observations, life sciences, infrastructure services, and infrastructure policy. The responses represent the best answers available at this time and future modifications may be expected. Contact names, telephone numbers, and organizations are included.

  14. Continuous gradient temperature Raman spectroscopy of the long chain polyunsaturated fatty acids Docosapentaenoic (DPA, 22:5n-6) and Docosahexaenoic (DHA; 22:6n-3) from -100 to 20° C

    USDA-ARS?s Scientific Manuscript database

    The structural, cognitive and visual development of the human brain and retina strictly require long-chain polyunsaturated fatty acids (LC-PUFA). Excluding water, the mammalian brain is about 60% lipid. One of the great unanswered questions with respect to biological science in general is the absolu...

  15. Research in assessment: consensus statement and recommendations from the Ottawa 2010 Conference.

    PubMed

    Schuwirth, Lambert; Colliver, Jerry; Gruppen, Larry; Kreiter, Clarence; Mennin, Stewart; Onishi, Hirotaka; Pangaro, Louis; Ringsted, Charlotte; Swanson, David; Van Der Vleuten, Cees; Wagner-Menghin, Michaela

    2011-01-01

    Medical education research in general is a young scientific discipline which is still finding its own position in the scientific range. It is rooted in both the biomedical sciences and the social sciences, each with their own scientific language. A more unique feature of medical education (and assessment) research is that it has to be both locally and internationally relevant. This is not always easy and sometimes leads to purely ideographic descriptions of an assessment procedure with insufficient general lessons or generalised scientific knowledge being generated or vice versa. For medical educational research, a plethora of methodologies is available to cater to many different research questions. This article contains consensus positions and suggestions on various elements of medical education (assessment) research. Overarching is the position that without a good theoretical underpinning and good knowledge of the existing literature, good research and sound conclusions are impossible to produce, and that there is no inherently superior methodology, but that the best methodology is the one most suited to answer the research question unambiguously. Although the positions should not be perceived as dogmas, they should be taken as very serious recommendations. Topics covered are: types of research, theoretical frameworks, designs and methodologies, instrument properties or psychometrics, costs/acceptability, ethics, infrastructure and support.

  16. A review of research on formal reasoning and science teaching

    NASA Astrophysics Data System (ADS)

    Lawson, Anton E.

    A central purpose of education is to improve students' reasoning abilities. The present review examines research in developmental psychology and science education that has attempted to assess the validity of Piaget's theory of formal thought and its relation to educational practice. Should a central objective of schools be to help students become formal thinkers? To answer this question research has focused on the following subordinate questions: (1) What role does biological maturation play in the development of formal reasoning? (2) Are Piaget's formal tasks reliable and valid? (3) Does formal reasoning constitute a unified and general mode of intellectual functioning? (4) How does the presence or absence of formal reasoning affect school achievement? (5) Can formal reasoning be taught? (6) What is the structural or functional nature of advanced reasoning? The general conclusion drawn is that although Piaget's work and that which has sprung from it leaves a number of unresolved theoretical and methodological problems, it provides an important background from which to make substantial progress toward a most significant educational objective.All our dignity lies in thought. By thought we must elevate ourselves, not by space and time which we can not fill. Let us endeavor then to think well; therein lies the principle of morality. Blaise Pascal 1623-1662.

  17. The effects of question types in textual reading upon retention of biology concepts

    NASA Astrophysics Data System (ADS)

    Leonard, William H.; Lowery, Lawrence F.

    Do instructional questions to students enhance learning? If so, do certain types of questions cause greater learning outcomes than others? The area of instructional questions and questioning strategies has generated much research over the past two decades. A number of studies have found instructional questions to account for a large fraction of teaching time (Bellack et al., 1963; Schreiber, 1967; Moyer, 1967). Teacher use of oral questions in instruction, especially higher level cognitive questions, has consistently shown positive effects on student achievement (Redfield & Rousseau, 1981). Questions asked after oral prose presentations in psychology have been found to enhance recall of factual information (Sefkow & Meyers, 1980). Some large teacher training programs have specific instruction in questioning strategies (Lanier & Davis, 1972; Lowery, 1974). Questioning in textual reading has also been investigated, especially in the social sciences and languages, with respect to both the presence of questions in a text and the position and type of such questions. Although there are conflicting results, in general, questions placed within text materials have appeared to cause significantly higher performance than reading the materials without questions (Rothkopf & Bisbicos, 1967; Rothkopf & Bloom, 1970; Watts & Anderson, 1971; Quellmalz, 1972; Reynolds, Standiford, & Anderson, 1979; Corrozi, 1971). Questions placed after the reading have been found to be significantly more productive than prequestions, or questions placed immediately before the reading passages (Rothkopf & Bisbicos, 1967; Frase, Patrick, & Schumer, 1970; Watts & Anderson, 1971). In one study, placing questions before the associated information reduced paragraph reading time from the time required when questions followed the information passage (Morasky & Wilcox, 1970). Finally, higher level cognitive post- and prequestions (comprehensive and application) have consistently produced more learning than recall and factual questions (Watts & Anderson, 1971; Falker, 1974; Rickards, 1974, 1976). The effect of placing questions directly within textual narrative has been much less researched than the issue of placing questions before or after the reading passage. The effect of this interspersed questioning strategy as part of science textbooks is apparently unresearched to date. The purpose of the research reported here was to determine the relative effects of certain question types when these questions were interspersed throughout the reading passage in textual materials for students in university introductory biology. It was hypothesized for experimental purposes that students reading a passage in biology concepts with specific types of interspersed questions would comprehend and retain no more of that passge than students reading the same passage without interspersed questions.

  18. Measuring Science Literacy in College Undergraduates

    NASA Astrophysics Data System (ADS)

    Impey, Chris David; Buxner, S. R.; Antonellis, J.; King, C.; Johnson, E.; CATS

    2010-01-01

    Initial results from a major study of scientific literacy are presented, involving nearly 10,000 undergraduates in science classes at a large Southwestern Land Grant public university over a 20-year period. The science content questions overlap with those in the NSF's Science Indicators series. About 10% of all undergraduates in the US take a General Education astronomy course, and NSF data and the work of Jon Miller show that the number of college science courses taken is the strongest predictor of civic scientific literacy. Our data show that gains in knowledge on any particular item through the time students graduate are only 10-15%. Among students who have taken most or all of their science requirements, one-in-three think that antibiotics kill viruses as well as bacteria, one-in-four think lasers work by focusing sound waves, one-in-five think atoms are smaller than electrons, and the same fraction is unaware that humans evolved from earlier species of animals and that the Earth takes a year to go around the Sun. The fraction of undergraduates saying that astrology is "not at all” scientific increases from 17% to a still-low 34% as they move through the university. Equally worrying, half of all science majors say that astrology is "sort of” or "very” scientific. Education majors - the cohort of future teachers - perform worse than average on most individual questions and in terms of their overall scientific literacy. Assuming the study institution is representative of the nation's higher education institutions, our instruction is not raising students to the level we would expect for educated citizens who must vote on many issues that relate to science and technology. We acknowledge the NSF for funding under Award No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  19. Health Technology Assessment – science or art?

    PubMed Central

    Hofmann, Bjørn

    2013-01-01

    The founding disciplines of HTA are clearly scientific, and have been firmly based among the natural sciences. However, common definitions of HTA indicate that HTA is something more than the “pure application of science”. This article investigates whether this “something” also makes HTA an art. The question of whether HTA is a science or an art is pursued in two specific and historically rich directions. The first is whether HTA is an art in the same way that medicine is described as an art. It has been argued extensively that medicine is based on two different and partly incompatible cultures, i.e., the natural sciences and humanities. Medicine is based on disciplines within the natural sciences, while its value judgments have been placed in the humanities camp. This dichotomy is present in HTA as well, and the first part of the investigation illustrates how HTA is an art in terms of its inherent and constitutive value-judgments. The second part of the science/art-scrutiny leads us to the ancient (Hippocratic) concept of art, téchne, where we find an etymological and a conceptual link between HTA and art. It demonstrates HTA is not an arbitrary process, even though it involves value judgments and relates complex decision making processes. As an art (téchne) HTA has a specific subject matter, requires inquiry and mastery of general rational principles, and is oriented to a specific end. In conclusion, the science-or-art-question makes sense in two specific perspectives, illustrating that HTA is a science based art. This has implications for the practice of HTA, for its education, and for the status of its results. PMID:23935761

  20. The Priority of the Question: Focus Questions for Sustained Reasoning in Science

    ERIC Educational Resources Information Center

    Lustick, David

    2010-01-01

    Science education standards place a high priority on promoting the skills and dispositions associated with inquiry at all levels of learning. Yet, the questions teachers employ to foster sustained reasoning are most likely borrowed from a textbook, lab manual, or worksheet. Such generic questions generated for a mass audience, lack authenticity…

  1. Interactions between Classroom Discourse, Teacher Questioning, and Student Cognitive Engagement in Middle School Science

    ERIC Educational Resources Information Center

    Smart, Julie B.; Marshall, Jeff C.

    2013-01-01

    Classroom discourse can affect various aspects of student learning in science. The present study examines interactions between classroom discourse, specifically teacher questioning, and related student cognitive engagement in middle school science. Observations were conducted throughout the school year in 10 middle school science classrooms using…

  2. Unquestioned answers or unanswered questions: beliefs about science guide responses to uncertainty in climate change risk communication.

    PubMed

    Rabinovich, Anna; Morton, Thomas A

    2012-06-01

    In two experimental studies we investigated the effect of beliefs about the nature and purpose of science (classical vs. Kuhnian models of science) on responses to uncertainty in scientific messages about climate change risk. The results revealed a significant interaction between both measured (Study 1) and manipulated (Study 2) beliefs about science and the level of communicated uncertainty on willingness to act in line with the message. Specifically, messages that communicated high uncertainty were more persuasive for participants who shared an understanding of science as debate than for those who believed that science is a search for absolute truth. In addition, participants who had a concept of science as debate were more motivated by higher (rather than lower) uncertainty in climate change messages. The results suggest that achieving alignment between the general public's beliefs about science and the style of the scientific messages is crucial for successful risk communication in science. Accordingly, rather than uncertainty always undermining the effectiveness of science communication, uncertainty can enhance message effects when it fits the audience's understanding of what science is. © 2012 Society for Risk Analysis.

  3. Health and Well-Being in Emerging Adults’ Same-Sex Relationships: Critical Questions and Directions for Research in Developmental Science

    PubMed Central

    Frost, David M.; Meyer, Ilan H.; Hammack, Phillip L.

    2016-01-01

    Researchers have yet to account for the potentially unique experiences of emerging adults who are in or seeking to be in a relationship with a same-sex romantic partner. This paper articulates an agenda for research focused on better understanding and addressing the health and well-being of emerging adults in or pursuing same-sex romantic relationships. We provide a general summary of what is known about health and well-being in same-sex relationships, followed by an overview of the current and changing social climate surrounding same-sex relationships. We point out how recent historical changes present sexual minority emerging adults with unique relational benefits and challenges that have not been examined within the social and health sciences. We conclude by proposing a set of research questions to help develop knowledge needed to improve the health and well-being of emerging adults in or pursuing same-sex relationships. PMID:27588221

  4. Investigating Consistency of Questions in Primary and Middle School Science Textbooks with Objectives in Science Curriculum

    ERIC Educational Resources Information Center

    Yaman, Süleyman

    2017-01-01

    Due to problems related their content and use; textbooks do not achieve the expected effect in learning although they are one of the most important elements of the science curriculum. Questions in textbooks are also important criteria in determining the effect of textbooks. In this study, it was aimed to compare questions in four different science…

  5. Uncovering students' misconceptions by assessment of their written questions.

    PubMed

    Olde Bekkink, Marleen; Donders, A R T Rogier; Kooloos, Jan G; de Waal, Rob M W; Ruiter, Dirk J

    2016-08-24

    Misconceptions are ideas that are inconsistent with current scientific views. They are difficult to detect and refractory to change. Misconceptions can negatively influence how new concepts in science are learned, but are rarely measured in biomedical courses. Early identification of misconceptions is of critical relevance for effective teaching, but presents a difficult task for teachers as they tend to either over- or underestimate students' prior knowledge. A systematic appreciation of the existing misconceptions is desirable. This explorative study was performed to determine whether written questions generated by students can be used to uncover their misconceptions. During a small-group work (SGW) session on Tumour Pathology in a (bio)medical bachelor course on General Pathology, students were asked to write down a question about the topic. This concerned a deepening question on disease mechanisms and not mere factual knowledge. Three independent expert pathologists determined whether the content of the questions was compatible with a misconception. Consensus was reached in all cases. Study outcomes were to determine whether misconceptions can be identified in students' written questions, and if so, to measure the frequency of misconceptions that can be encountered, and finally, to determine if the presence of such misconceptions is negatively associated with the students' course formal examination score. A subgroup analysis was performed according to gender and discipline. A total of 242 students participated in the SGW sessions, of whom 221 (91 %) formulated a question. Thirty-six questions did not meet the inclusion criteria. Of the 185 questions rated, 11 % (n = 20) was compatible with a misconception. Misconceptions were only found in medical students' questions, not in biomedical science students' questions. Formal examination score on Tumour Pathology was 5.0 (SD 2.0) in the group with misconceptions and 6.7 (SD 2.4) in the group without misconceptions (p = 0.003). This study demonstrates that misconceptions can be uncovered in students' written questions. The occurrence of these misconceptions was negatively associated with the formal examination score. Identification of misconceptions creates an opportunity to repair them during the remaining course sessions, in advance of the formal examination.

  6. Towards an understanding of the role of language in the science classroom and its association with cultural identity development in the context of Mozambique

    NASA Astrophysics Data System (ADS)

    Cupane, Alberto Felisberto

    2011-06-01

    I am reflecting here my struggle to understand the issue of language in the science classroom and in our lives from three different perspectives: before and after Mozambican independence and after completion of my doctoral research. The main method used is auto|ethnographic inquiry in which I use the events in my life to question what is happening in my society. I have used Maria Rivera Maulucci's paper, Language experience narratives and the role of autobiographical reasoning in becoming an urban science teacher as a reference. This paper helps me to show how isolated and generalized is the Mozambican situation and the value of our struggle in giving value to local languages.

  7. Science and Faith: Discussing Astronomy Research with Religious Audiences

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton M.

    2006-12-01

    An important component of our outreach as research astronomers involves interaction with the religious community. From my personal perspective, being an active research astronomer who is also a practicing Christian, I am sometimes invited to present the latest astronomical research to church audiences and other religious groups; belonging to both communities thereby provides a valuable means of contributing to the dialogue between science and religion. These opportunities can be used to explain that science and religion are not necessarily in conflict but can be considered to be quite complementary. For instance, an important aspect of religion deals with the purpose of our existence, while science is more focussed on providing physical explanations for what we observe in the world, using a well-defined scientific process. Hence, religious believers need not necessarily abandon their faith in order to accept mainstream scientific research; these address very different and complementary aspects of our existence. Recent ideas such as Intelligent Design attempt to address the scientific method, but do not address the ultimate religious question of purpose and do not contribute towards reconciling science and religion in this sense. Ultimately, every individual arrives at their own understanding of this rather complex interplay; I will present some personal reflections on general approaches for discussing mainstream astronomical research with religious audiences, aimed at helping to advance the dialogue between religion and science in general.

  8. Opposing ends of the spectrum: Exploring trust in scientific and religious authorities.

    PubMed

    Cacciatore, Michael A; Browning, Nick; Scheufele, Dietram A; Brossard, Dominique; Xenos, Michael A; Corley, Elizabeth A

    2018-01-01

    Given the ethical questions that surround emerging science, this study is interested in studying public trust in scientific and religious authorities for information about the risks and benefits of science. Using data from a nationally representative survey of American adults, we employ regression analysis to better understand the relationships between several variables-including values, knowledge, and media attention-and trust in religious organizations and scientific institutions. We found that Evangelical Christians are generally more trusting of religious authority figures to tell the truth about the risks and benefits of science and technology, and only slightly less likely than non-Evangelicals to trust scientific authorities for the same information. We also found that many Evangelicals use mediated information and science knowledge differently than non-Evangelicals, with both increased knowledge and attention to scientific media having positive impacts on trust in scientific authorities among the latter, but not the former group.

  9. Environmental health discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of this plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in environmental health. It covers the significant research areas critical to NASA's programmatic requirements for the Extended Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; animal and human subjects; and research and development. This document summarizes the history and current status of the program elements, outlines available knowledge, establishes goals and objectives, identifies scientific priorities, and defines critical questions in the three disciplines: (1) Barophysiology, (2) Toxicology, and (3) Microbiology. This document contains a general plan that will be used by both NASA Headquarters Program Officers and the field centers to review and plan basic, applied, and operational research and development activities, both intramural and extramural, in this area. The document is divided into sections addressing these three disciplines.

  10. A Collaboratively-Derived Science-Policy Research Agenda

    PubMed Central

    Sutherland, William J.; Bellingan, Laura; Bellingham, Jim R.; Blackstock, Jason J.; Bloomfield, Robert M.; Bravo, Michael; Cadman, Victoria M.; Cleevely, David D.; Clements, Andy; Cohen, Anthony S.; Cope, David R.; Daemmrich, Arthur A.; Devecchi, Cristina; Anadon, Laura Diaz; Denegri, Simon; Doubleday, Robert; Dusic, Nicholas R.; Evans, Robert J.; Feng, Wai Y.; Godfray, H. Charles J.; Harris, Paul; Hartley, Sue E.; Hester, Alison J.; Holmes, John; Hughes, Alan; Hulme, Mike; Irwin, Colin; Jennings, Richard C.; Kass, Gary S.; Littlejohns, Peter; Marteau, Theresa M.; McKee, Glenn; Millstone, Erik P.; Nuttall, William J.; Owens, Susan; Parker, Miles M.; Pearson, Sarah; Petts, Judith; Ploszek, Richard; Pullin, Andrew S.; Reid, Graeme; Richards, Keith S.; Robinson, John G.; Shaxson, Louise; Sierra, Leonor; Smith, Beck G.; Spiegelhalter, David J.; Stilgoe, Jack; Stirling, Andy; Tyler, Christopher P.; Winickoff, David E.; Zimmern, Ron L.

    2012-01-01

    The need for policy makers to understand science and for scientists to understand policy processes is widely recognised. However, the science-policy relationship is sometimes difficult and occasionally dysfunctional; it is also increasingly visible, because it must deal with contentious issues, or itself becomes a matter of public controversy, or both. We suggest that identifying key unanswered questions on the relationship between science and policy will catalyse and focus research in this field. To identify these questions, a collaborative procedure was employed with 52 participants selected to cover a wide range of experience in both science and policy, including people from government, non-governmental organisations, academia and industry. These participants consulted with colleagues and submitted 239 questions. An initial round of voting was followed by a workshop in which 40 of the most important questions were identified by further discussion and voting. The resulting list includes questions about the effectiveness of science-based decision-making structures; the nature and legitimacy of expertise; the consequences of changes such as increasing transparency; choices among different sources of evidence; the implications of new means of characterising and representing uncertainties; and ways in which policy and political processes affect what counts as authoritative evidence. We expect this exercise to identify important theoretical questions and to help improve the mutual understanding and effectiveness of those working at the interface of science and policy. PMID:22427809

  11. A collaboratively-derived science-policy research agenda.

    PubMed

    Sutherland, William J; Bellingan, Laura; Bellingham, Jim R; Blackstock, Jason J; Bloomfield, Robert M; Bravo, Michael; Cadman, Victoria M; Cleevely, David D; Clements, Andy; Cohen, Anthony S; Cope, David R; Daemmrich, Arthur A; Devecchi, Cristina; Anadon, Laura Diaz; Denegri, Simon; Doubleday, Robert; Dusic, Nicholas R; Evans, Robert J; Feng, Wai Y; Godfray, H Charles J; Harris, Paul; Hartley, Sue E; Hester, Alison J; Holmes, John; Hughes, Alan; Hulme, Mike; Irwin, Colin; Jennings, Richard C; Kass, Gary S; Littlejohns, Peter; Marteau, Theresa M; McKee, Glenn; Millstone, Erik P; Nuttall, William J; Owens, Susan; Parker, Miles M; Pearson, Sarah; Petts, Judith; Ploszek, Richard; Pullin, Andrew S; Reid, Graeme; Richards, Keith S; Robinson, John G; Shaxson, Louise; Sierra, Leonor; Smith, Beck G; Spiegelhalter, David J; Stilgoe, Jack; Stirling, Andy; Tyler, Christopher P; Winickoff, David E; Zimmern, Ron L

    2012-01-01

    The need for policy makers to understand science and for scientists to understand policy processes is widely recognised. However, the science-policy relationship is sometimes difficult and occasionally dysfunctional; it is also increasingly visible, because it must deal with contentious issues, or itself becomes a matter of public controversy, or both. We suggest that identifying key unanswered questions on the relationship between science and policy will catalyse and focus research in this field. To identify these questions, a collaborative procedure was employed with 52 participants selected to cover a wide range of experience in both science and policy, including people from government, non-governmental organisations, academia and industry. These participants consulted with colleagues and submitted 239 questions. An initial round of voting was followed by a workshop in which 40 of the most important questions were identified by further discussion and voting. The resulting list includes questions about the effectiveness of science-based decision-making structures; the nature and legitimacy of expertise; the consequences of changes such as increasing transparency; choices among different sources of evidence; the implications of new means of characterising and representing uncertainties; and ways in which policy and political processes affect what counts as authoritative evidence. We expect this exercise to identify important theoretical questions and to help improve the mutual understanding and effectiveness of those working at the interface of science and policy.

  12. Mainstreaming Gender Analysis Into Science

    NASA Astrophysics Data System (ADS)

    Schiebinger, Londa

    This essay considers the question, Has feminism changed science? After three decades of active research, what new insights, questions, and priorities have feminists - men or women - brought to the sciences? The author provides examples of change from three areas: women's health research, primatology, and archaeology. The essay concludes with a discussion of mainstreaming gender analysis into science.

  13. Social Work and Science

    ERIC Educational Resources Information Center

    Gehlert, Sarah

    2016-01-01

    Interest has grown in the past few years about the place of social work in science. Questions remain, such as whether social work should be considered a science, and if so, where it fits into the constellation of sciences. This article attempts to shed light on these questions. After briefly considering past and present constructions of science…

  14. Is Knowledge of Science Associated with Higher Skepticism of Pseudoscientific Claims?

    ERIC Educational Resources Information Center

    Johnson, Matthew; Pigliucci, Massimo

    2004-01-01

    The study conducted addresses issues associated with the relationships among science factual knowledge, conceptual understanding of science, and belief in pseudoscience by means of a 30-question survey. The survey consists of three types of questions asked of students enrolled in a science major and compares the responses to these obtained by…

  15. How to identify science being bent: the tobacco industry's fight to deny second-hand smoking health hazards as an example.

    PubMed

    De Camargo, Kenneth Rochel

    2012-10-01

    Social studies of science have produced a critical description of science that challenges traditional ideas about "objectivity" and "neutrality". Given evidence that scientific tools have been used to undermine solid science against the interests of the general public as opposed to protecting society from findings prematurely declared to be facts, this article asks: how can one differentiate between the usual proceedings of scientists and deliberate attempts to distort science? In order to respond to this question, the author presents systematic studies of the distortion (or "bending") of science, with special attention to the role of public relation firms in the process. Drawing on examples from the tobacco industry, the article concludes that there are two key features of the tobacco industry case that indicate that distortions in science may have taken place: the fact that controversies surrounding tobacco has been centered in public forums, and legal or regulatory arenas more than scientific domains; and the presence of conflicts of interest in authorship and funding. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Linking Classroom Environment with At-Risk Engagement in Science: A Mixed Method Approach

    NASA Astrophysics Data System (ADS)

    Collins, Stephen Craig

    This explanatory sequential mixed-method study analyzed how the teacher created learning environment links to student engagement for students at-risk across five science classroom settings. The learning environment includes instructional strategies, differentiated instruction, positive learning environment, and an academically challenging environment. Quantitative and qualitative data were gathered in the form of self-reporting surveys and a follow-up interview. The researcher aimed to use the qualitative results to explain the quantitative data. The general research question was "What are the factors of the teacher-created learning environment that were best suited to maximize engagement of students at-risk?" Specifically explaining, (1) How do the measured level of teacher created learning environment link to the engagement level of students at-risk in science class? and (2) What relationship exists between the student perception of the science classroom environment and the level of behavioral, cognitive, emotional, and social engagement for students at-risk in science class? This study took place within a large school system with more than 20 high schools, most having 2000-3000 students. Participating students were sent to a panel hearing that determined them unfit for the regular educational setting, and were given the option of attending one of the two alternative schools within the county. Students in this alternative school were considered at-risk due to the fact that 98% received free and reduced lunch, 97% were minority population, and all have been suspended from the regular educational setting. Pairwise comparisons of the SPS questions between teachers using t-test from 107 students at-risk and 40 interviews suggest that each category of the learning environment affects the level of behavioral, cognitive, emotional, and social engagement in science class for students at-risk in an alternative school setting. Teachers with higher student perceptions of learning environment showed increased levels of all types of engagement over the teachers with a lower perception of learning environment. Qualitative data suggested that teachers who created a more positive learning environment had increased student engagement in their class. Follow-up questions also revealed that teachers who incorporated a wider variety of classroom instructional strategies increased behavioral engagement of students at-risk in science class.

  17. "Everybody knows psychology is not a real science": Public perceptions of psychology and how we can improve our relationship with policymakers, the scientific community, and the general public.

    PubMed

    Ferguson, Christopher J

    2015-09-01

    In a recent seminal article, Lilienfeld (2012) argued that psychological science is experiencing a public perception problem that has been caused by both public misconceptions about psychology, as well as the psychological science community's failure to distinguish itself from pop psychology and questionable therapeutic practices. Lilienfeld's analysis is an important and cogent synopsis of external problems that have limited psychological science's penetration into public knowledge. The current article expands upon this by examining internal problems, or problems within psychological science that have potentially limited its impact with policymakers, other scientists, and the public. These problems range from the replication crisis and defensive reactions to it, overuse of politicized policy statements by professional advocacy groups such as the American Psychological Association (APA), and continued overreliance on mechanistic models of human behavior. It is concluded that considerable problems arise from psychological science's tendency to overcommunicate mechanistic concepts based on weak and often unreplicated (or unreplicable) data that do not resonate with the everyday experiences of the general public or the rigor of other scholarly fields. It is argued that a way forward can be seen by, on one hand, improving the rigor and transparency of psychological science, and making theoretical innovations that better acknowledge the complexities of the human experience. (PsycINFO Database Record (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  18. [The function of a general concept of disease from an historical perspective].

    PubMed

    Hess, V; Herrn, R

    2015-01-01

    This article questions why medicine fails to provide a general concept of disease for use by doctors, patients and society because the lack of such a unified concept inhibits any definitive distinction between "deviant" and "disease". By providing an historical overview of the particularities related to this question the authors demonstrate that the ever-changing concepts of disease were not driven by the process through which medicine became a science. In contrast to naturalistic concepts of disease, anthropological, sociocultural and psychosomatic concepts are grounded in an understanding of disease that cannot be determined, described and categorized by pathology alone. As a consequence, disease can only be determined or defined in relation to social and scientific frames of reference, as illustrated by an example from the Berlin Nervenklinik (psychiatric clinic) in the early twentieth century. The ways in which the definition of a disease concept represents a normative interpretation can be observed. The authors of this paper argue for the acceptance of this normative definition as a matter of societal agreement. Consequently, transparency is required in the shaping of general disease concepts.

  19. Grappling with the Literature of Education Research and Practice

    PubMed Central

    2007-01-01

    The absence of a central database and use of specialized language hinder nonexperts in becoming familiar with the science teaching and learning literature and using it to inform their work. The challenge of locating articles related to a specific question or problem, coupled with the difficulty of comprehending findings based on a variety of different perspectives and practices, can be prohibitively difficult. As I have transitioned from bench to classroom-based research, I have become familiar with how to locate, decipher, and evaluate the education research literature. In this essay, I point out analogies to the literature of science research and practice, and I reference some of the literature that I have found useful in becoming an education researcher. I also introduce a new regular feature, “Current Insights: Recent Research in Science Teaching and Learning,” which is designed to point CBE—Life Sciences Education (CBE-LSE) readers to current articles of interest in life sciences education, as well as more general and noteworthy publications in education research. PMID:18056300

  20. Grappling with the literature of education research and practice.

    PubMed

    Dolan, Erin L

    2007-01-01

    The absence of a central database and use of specialized language hinder nonexperts in becoming familiar with the science teaching and learning literature and using it to inform their work. The challenge of locating articles related to a specific question or problem, coupled with the difficulty of comprehending findings based on a variety of different perspectives and practices, can be prohibitively difficult. As I have transitioned from bench to classroom-based research, I have become familiar with how to locate, decipher, and evaluate the education research literature. In this essay, I point out analogies to the literature of science research and practice, and I reference some of the literature that I have found useful in becoming an education researcher. I also introduce a new regular feature, "Current Insights: Recent Research in Science Teaching and Learning," which is designed to point CBE--Life Sciences Education (CBE-LSE) readers to current articles of interest in life sciences education, as well as more general and noteworthy publications in education research.

  1. Liftings and stresses for planar periodic frameworks

    PubMed Central

    Borcea, Ciprian; Streinu, Ileana

    2015-01-01

    We formulate and prove a periodic analog of Maxwell’s theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks. PMID:26973370

  2. Senate Confirmation Hearing IG

    NASA Image and Video Library

    2009-10-14

    Paul K. Martin, nominee for Inspector General at NASA, far right, answers questions during his confirmation hearing in front of the Senate Committee on Commerce, Science and Transportation, Thursday, Oct. 15, 2009, on Capitol Hill in Washington. Looking on are Dr. Elizabeth M. Robinson, nominee for Chief Financial Officer for NASA, center, and Dr. Patrick Gallagher, nominee to be Assistant Secretary of the Transportation Security Administration at the U.S. Department of Commerce. Photo Credit: (NASA/Paul E. Alers)

  3. Science for the Masses: A Public Lecture Series and Associated Course for K-12 Educators at the University of Arizona

    NASA Astrophysics Data System (ADS)

    Mangin, K.; Wilch, M. H.; Thompson, R. M.; Ruiz, J.

    2008-12-01

    The College of Science at the University of Arizona in Tucson offers a series of free public lectures each year centered on a science theme of high general interest. Themes have been Evolution (2006), Global Climate Change (2007), and Edges of Life (2008). Speakers are UA faculty members. We have seen an overwhelming response from the public to each lecture series, with a typical audience size of 800-1200. Features that make the lecture series successful are careful choice of the themes, previews of lecture drafts by a panel, and the participation of a graphic design firm in the planning process, from the series title to the design of posters, bookmarks, and postcards used to advertise the series. This model could be successfully transferred to many universities. We offer a course for K-12 grade teachers in association with each lecture series. Teachers attend each public lecture, and participate in inquiry-based classroom activities and discussions of papers related to lecture topics. After each lecture, the speaker answers questions from the public, and then accompanies the teachers to a classroom to hold a private question and answer session lasting 45 minutes. The course and lecture series has been influential in changing attitudes about the nature of science research among teacher participants. In 2006, evolution was the lecture series topic, a science concept whose foundation in authentic science research has been difficult to communicate to the general public. Pre- and post- questionnaires on attitudes towards the science of evolution administered to the teacher participants showed a dramatic increase after the course in their view of the robustness of the theory of evolution, its testable nature, the amount of data supporting the theory, and its degree of consensus among scientists. A pre-course survey of the background of teachers in the course, mostly biology teachers, showed a need for more formal instruction in evolution: 76 percent had no formal course in evolution as part of their teacher training, and 76 percent disagreed or strongly disagreed that their undergraduate courses had prepared them to teach evolution. In addition, 53 percent do not teach, or only briefly mention, evolution in their middle and high school science classrooms.

  4. Differences in gender performance on competitive physics selection tests

    NASA Astrophysics Data System (ADS)

    Wilson, Kate; Low, David; Verdon, Matthew; Verdon, Alix

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] We have investigated gender differences in performance over the past eight years on the Australian Science Olympiad Exam (ASOE) for physics, which is taken by nearly 1000 high school students each year. The ASOE, run by Australian Science Innovations (ASI), is the initial stage of the process of selection of teams to represent Australia at the Asian and International Physics Olympiads. Students taking the exam are generally in their penultimate year of school and selected by teachers as being high performing in physics. Together with the overall differences in facility, we have investigated how the content and presentation of multiple-choice questions (MCQs) affects the particular answers selected by male and female students. Differences in the patterns of responses by male and female students indicate that males and females might be modeling situations in different ways. Some strong patterns were found in the gender gaps when the questions were categorized in five broad dimensions: content, process required, difficulty, presentation, and context. Almost all questions saw male students performing better, although gender differences were relatively small for questions with a more abstract context. Male students performed significantly better on most questions with a concrete context, although notable exceptions were found, including two such questions where female students performed better. Other categories that showed consistently large gaps favoring male students include questions with projectile motion and other two-dimensional motion or forces content, and processes involving interpreting diagrams. Our results have important implications, suggesting that we should be able to reduce the gender gaps in performance on MCQ tests by changing the way information is presented and setting questions in contexts that are less likely to favor males over females. This is important as MCQ tests are frequently used as diagnostic tests and aptitude tests as well as to assess learning.

  5. The use of handwriting examinations beyond the traditional court purpose.

    PubMed

    Agius, Anna; Jones, Kylie; Epple, Rochelle; Morelato, Marie; Moret, Sébastien; Chadwick, Scott; Roux, Claude

    2017-09-01

    Traditionally, forensic science has predominantly focused its resources and objectives on addressing court related questions. However, this view restricts the contribution of forensic science to one function and results in lost opportunities as investigative and intelligence roles are often overlooked. A change of perspective and expansion of the contributions of forensic science is required to take advantage of the benefits of abductive and inductive thought processes throughout the investigative and intelligence functions. One forensic discipline that has the potential to broaden its traditional focus is handwriting examination. Typically used in investigations that are focused on both criminal and civil cases, the examination procedure and outcome are time consuming and subjective, requiring a detailed study of the features of the handwriting in question. Traditionally, the major handwriting features exploited are characteristics that are often considered individual (or at least highly polymorphic) and habitual. However, handwriting can be considered as an information vector in an intelligence framework. One such example is the recognition of key elements related to the author's native language. This paper discusses the traditional method generally used around the world and proposes a theoretical approach to expand the application of handwriting examination towards gaining additional information for intelligence purposes. This concept will be designed and tested in a future research project. Copyright © 2017 The Chartered Society of Forensic Sciences. All rights reserved.

  6. Investigating Education and Immediate Career Paths of Master's and Doctoral Graduates over the Past Few Decades

    NASA Astrophysics Data System (ADS)

    Wilson, C. E.; Keane, C. M.

    2016-12-01

    Students enter into geoscience graduate degree programs have specific expectations of the type of career they are working towards. Are the graduate degree programs effectively serving these students through the development of necessary skills and experiences for their desired career pathway? This question is of particular interest to parties like the National Science Foundation and other STEM agencies who are concerned about the optimal investment in the development of the science and engineering workforce. To address this question, investigation on the general trends of education and immediate career paths over time is needed. The National Science Foundation has been collecting data on education and career paths of science and engineering graduates for decades. Since 2013, AGI has been collecting data from geoscience graduates since 2013 on their education, skills development, and immediate plans after graduation through AGI's Geoscience Student Exit Survey. This presentation synthesizes the data from these two sources related to geoscience master's and doctoral graduates to look at education and career paths over time to see how they have changed over the past few decades, as well as look specifically at the immediate plans of recent graduates as they enter the geoscience workforce. This data will also give some indication of the development of skills gained from these programs through activities such as field work and research.

  7. Sports-science roundtable: does sports-science research influence practice?

    PubMed

    Bishop, David; Burnett, Angus; Farrow, Damian; Gabbett, Tim; Newton, Robert

    2006-06-01

    As sports scientists, we claim to make a significant contribution to the body of knowledge that influences athletic practice and performance. Is this the reality? At the inaugural congress of the Australian Association for Exercise and Sports Science, a panel of well-credentialed academic experts with experience in the applied environment debated the question, Does sports-science research influence practice? The first task was to define "sports-science research," and it was generally agreed that it is concerned with providing evidence that improves sports performance. When practices are equally effective, sports scientists also have a role in identifying practices that are safer, more time efficient, and more enjoyable. There were varying views on the need for sports-science research to be immediately relevant to coaches or athletes. Most agreed on the importance of communicating the results of sports-science research, not only to the academic community but also to coaches and athletes, and the need to encourage both short- and long-term research. The panelists then listed examples of sports-science research that they believe have influenced practice, as well as strategies to ensure that sports-science research better influences practice.

  8. Toward making the invisible visible: Studying science teaching self-efficacy beliefs

    NASA Astrophysics Data System (ADS)

    Perkins, Catherine J.

    This dissertation consists of two articles to be submitted for publication. The first, a literature review, makes visible common influences on science teaching self-efficacy beliefs and also points to potentially invisible validation concerns regarding the instrument used. The second investigates the participants' invisible science teaching self-efficacy beliefs and, through the use of a more focused interview, makes those beliefs visible. Science teaching self-efficacy beliefs are science teachers' perceptions of their abilities to teach science effectively. The construct "teaching self-efficacy" originated in social cognitive theory (Bandura, 1977). The first article reviews the mixed results from teaching self-efficacy research in science contexts. The review focuses upon factors that facilitate or inhibit the development of self-efficacy beliefs among science teachers across stages of their careers. Although many studies of science teaching self-efficacy beliefs have utilized the Science Teaching Efficacy Belief Instrument - STEBI (Enochs & Riggs, 1990; Riggs & Enochs, 1990), this review also includes non-STEBI studies in order to represent diverse lines of research methodology. The review's findings indicate that antecedent factors such as science activities in and out of school, teacher preparation, science teaching experiences and supportive job contexts are significant influences on the development of science teaching self-efficacy beliefs. The review also indicates that the majority of these studies are short term and rely on a single STEBI administration with the collection of antecedent/demographic and/or interview data. The second article documents a study that responded to the above literature review findings. This study utilized multiple STEBI administrations during the preservice and beginning year of teaching for two science teachers. Rather than general questions, these participants were asked item specific, yet open-ended, questions to determine what events or experiences the participants felt influenced their survey answers. This methodological approach was chosen to add clarity to the STEBI scores and to add another layer in the ongoing process of instrument validation. Unlike some studies in science teaching self-efficacy, both participants' STEBI scores continued to increase as they transitioned from preservice to beginning teachers. The participant responses to the focused interview probes also validated their STEBI scores 77% of the time.

  9. Can Questions Facilitate Learning from Illustrated Science Texts?

    ERIC Educational Resources Information Center

    Iding, Marie K.

    1997-01-01

    Examines the effectiveness of using questions to facilitate processing of diagrams in science texts. Investigates three different elements in experiments on college students. Finds that questions about illustrations do not facilitate learning. Discusses findings with reference to cognitive load theory, the dual coding perspective, and the…

  10. Comparing the performance and preference of students experiencing a Reading Aloud Accommodation to those who do not on a virtual science assessment

    NASA Astrophysics Data System (ADS)

    Shelton, Angela

    Many United States secondary students perform poorly on standardized summative science assessments. Situated Assessments using Virtual Environments (SAVE) Science is an innovative assessment project that seeks to capture students' science knowledge and understanding by contextualizing problems in a game-based virtual environment called Scientopolis. Within Scientopolis, students use an "avatar" to interact with non-player characters (NPCs), artifacts, embedded clues and "sci-tools" in order to help solve the problems of the townspeople. In an attempt to increase students' success on assessments, SAVE science places students in an environment where they can use their inquiry skills to solve problems instead of reading long passages which attempt to contextualize questions but ultimately cause construct-irrelevant variance. However, within these assessments reading is still required to access the test questions and character interactions. This dissertation explores how students' in-world performances differ when exposed to a Reading Aloud Accommodation (RAA) treatment in comparison to a control group. Student perceptions of the treatment are also evaluated. While a RAA is typically available for students with learning disabilities or English language learners, within this study, all students were randomly assigned to either the treatment or control, regardless of any demographic factors or learning barriers. The theories of Universal design for learning and brain-based learning advocate for multiple ways for students to engage, comprehend, and illustrate their content knowledge. Further, through providing more ways for students to interact with content, all students should benefit, not just those with learning disabilities. Students in the experimental group listened to the NPCs speak the dialogue that provides them with the problem, clues, and assessment questions, instead of relying on reading skills to gather the information. Overall, students in the treatment group statistically outperformed those in the control. Student perceptions of using the reading aloud accommodation were generally positive. Ideas for future research are presented to investigate the accommodation further.

  11. The nature of advanced reasoning and science instruction

    NASA Astrophysics Data System (ADS)

    Lawson, Anton E.

    Although the development of reasoning is recognized as an important goal of science instruction, its nature remains somewhat of a mystery. This article discusses two key questions: Does formal thought constitute a structured whole? And what role does propositional logic play in advanced reasoning? Aspects of a model of advanced reasoning are presented in which hypothesis generation and testing are viewed as central processes in intellectual development. It is argued that a number of important advanced reasoning schemata are linked by these processes and should be made a part of science instruction designed to improve students' reasoning abilities.Concerning students' development and use of formal reasoning, Linn (1982) calls for research into practical issues such as the roles of task-specific knowledge and individual differences in performance, roles not emphasized by Piaget in his theory and research. From a science teacher's point of view, this is good advice. Accordingly, this article will expand upon some of the issues raised by Linn in a discussion of the nature of advanced reasoning which attempts to reconcile the apparent contradiction between students' differential use of advanced reasoning schemata in varying contexts with the notion of a general stage of formal thought. Two key questions will be discussed: Does formal thought constitute a structured whole? And what role does propositional logic play in advanced reasoning? The underlying assumption of the present discussion is that, among other things, science instruction should concern itself with the improvement of students' reasoning abilities (cf. Arons, 1976; Arons & Karplus, 1976; Bady, 1979; Bauman, 1976; Educational Policies Commission, 1966; Herron, 1978; Karplus, 1979; Kohlberg & Mayer, 1972; Moshman & Thompson, 1981; Lawson, 1979; Levine & linn, 1977; Pallrand, 1977; Renner & Lawson, 1973; Sayre & Ball, 1975; Schneider & Renner, 1980; Wollman, 1978). The questions are of interest because to date they lack clear answers, yet clear answers are necessary if we hope to design effective instruction in reasoning.

  12. Participation in a coteaching classroom and students' end-of-course test scores

    NASA Astrophysics Data System (ADS)

    Debro, Ava

    General education students consistently perform poorly on standardized science tests. Coteaching is an instructional strategy that improves the achievement of students with disabilities, but very little research exists that examines the effect of coteaching classrooms on the performance of general education students. The purpose of this study was to examine the effect of coteaching classrooms on the performance of general education students. The constructivist theoretical framework provided the foundation for this research. The research question examined the effect that coteaching classrooms had on the performance of general education biology students. In this experimental design utilizing a posttest-only control group, coteaching instructional strategy was the treatment, and student performance was measured using the scores obtained from the biology end-of-course test. Data for this study was analyzed using an independent t-test. The results of this study revealed that there was not a statistically significant difference in student performance on the biology end-of-course test between treatment and control groups. More than half of the general education biology students enrolled in coteaching classrooms failed the end-of-course test. Researchers may use this study as a catalyst to examine other instructional practices that may improve student performance in science courses. The results of this study may be used to persuade coteachers of the importance of attending frequent professional development opportunities that examine a variety of coteaching instructional strategies. Improving the performance of general education students in science may improve standardized test scores, afford more students the opportunity to attend college, and ensure that students are able to compete on a global level.

  13. How commercial and ``violent'' video games can promote culturally sensitive science learning: some questions and challenges

    NASA Astrophysics Data System (ADS)

    Kwah, Helen

    2012-12-01

    In their paper, Muñoz and El-Hani propose to bring video games into science classrooms to promote culturally sensitive ethics and citizenship education. Instead of bringing "educational" games, Muñoz and El-Hani take a more creative route and include games such as Fallout 3® precisely because they are popular and they reproduce ideological and violent representations of gender, race, class, nationality, science and technology. However, there are many questions that arise in bringing these commercial video games into science classrooms, including the questions of how students' capacities for critical reflection can be facilitated, whether traditional science teachers can take on the role of using such games in their classrooms, and which video games would be most appropriate to use. In this response, I raise these questions and consider some of the challenges in order to further the possibility of implementing Muñoz and El-Hani's creative proposal for generating culturally sensitive science classrooms.

  14. To appreciate variation between scientists: A perspective for seeing science's vitality

    NASA Astrophysics Data System (ADS)

    Wong, E. David

    2002-05-01

    At the heart of theoretical and practical ideas about science education is an image of scientific work. This image draws attention to particular features of scientific work, which then guides scholarship and pedagogy in science education. In the field of science education, much discussion in this vein focuses on the question, What is the nature of science? Most images of science found in education, psychology, and philosophy emerge from conceptual and methodological perspectives that emphasize norms, conventions, and broad trends. Some groups are motivated to distinguish science from other activities while some groups work in the opposite direction and blur the lines between science and others ways of knowing. Underlying both perspectives is an implicit focus on general qualities common to groups or subgroups (e.g. believing that ideas are subject to change, explanations demand evidence, science is a complex social activities, etc.). I propose that the vital qualities of science are best illuminated by just the opposite process: by appreciating the uncommon, rather than common, features. By attending to individual variation, we are more likely to understand what makes science a creative, motivating, and deeply personal enterprise. In addition, appreciating these variations reveals judgment, creativity, adaptation - the hallmark of scientific work. Implications of this perspective for science education are discussed.

  15. Why and How. The Future of the Central Questions of Consciousness

    PubMed Central

    Havlík, Marek; Kozáková, Eva; Horáček, Jiří

    2017-01-01

    In this review, we deal with two central questions of consciousness how and why, and we outline their possible future development. The question how refers to the empirical endeavor to reveal the neural correlates and mechanisms that form consciousness. On the other hand, the question why generally refers to the “hard problem” of consciousness, which claims that empirical science will always fail to provide a satisfactory answer to the question why is there conscious experience at all. Unfortunately, the hard problem of consciousness will probably never completely disappear because it will always have its most committed supporters. However, there is a good chance that its weight and importance will be highly reduced by empirically tackling consciousness in the near future. We expect that future empirical endeavor of consciousness will be based on a unifying brain theory and will answer the question as to what is the function of conscious experience, which will in turn replace the implications of the hard problem. The candidate of such a unifying brain theory is predictive coding, which will have to explain both perceptual consciousness and conscious mind-wandering in order to become the truly unifying theory of brain functioning. PMID:29075226

  16. Biotechnology awareness study, Part 2: Meeting the information needs of biotechnologists.

    PubMed Central

    Cunningham, D; Grefsheim, S; Simon, M; Lansing, P S

    1991-01-01

    The second part of the biotechnology awareness study focused on health sciences libraries and how well they are meeting the needs of biotechnologists working in the study's nine medical centers. A survey was conducted over a three-month period to assess the demand for biotechnology-related reference services at nine libraries and the sources the librarians used to answer the questions. Data on monographic and current serial holdings were also collected. At the end of the survey period, librarians were asked for their perceptions about biotechnology research at their institutions and in their geographic areas. Their responses were compared to the responses the scientists at the nine schools gave to the same or similar questions. Results showed few biotechnology-related reference questions were asked of the librarians. The recorded questions dealt with a range of biotechnology subjects. MEDLINE was used to answer 77% of the questions received during the survey period. More detailed notes in MeSH and a guide to online searching for biotechnology topics were suggested by the librarians as ways to improve reference service to this group of researchers. Journal collections were generally strong, with libraries owning from 50% to 87% of the titles on a core list of biotechnology journals compiled for this study. All libraries subscribed to the five titles most often cited by the scientists surveyed. Generally, librarians were unaware of the biotechnology-related research being done on their campuses or in their geographic areas. PMID:1998819

  17. Exploring Pre-Service Science Teacher Methods and Strategies for the Driving Questions in Research Inquiry: From Consulting an Instructor to Group Discussion

    ERIC Educational Resources Information Center

    Aydin, Miraç

    2016-01-01

    An important stage in any research inquiry is the development of research questions that need to be answered. The strategies to develop research questions should be defined and described, but few studies have considered this process in greater detail. This study explores pre-service science teachers' research questions and the strategies they can…

  18. Copyright information queries in the health sciences: trends and implications from the Ohio State University

    PubMed Central

    Gilliland, Anne T.; Bradigan, Pamela S.

    2014-01-01

    Objective: This paper presents the results of data gathered on copyright questions asked at an academic health sciences library. Methods: Collected data include questioner's status or discipline, the subject of the questions, the types of activities that the questioners were engaged in, the communication mode, and the length of time it took to answer the questions. Results: Overall results showed most questions were about permissions. Staff asked the most questions, followed by faculty and students. Conclusions: Copyright education is needed at universities, and further analysis of queries will determine the direction of the education. PMID:24860269

  19. Enhancing Science Kits with the Driving Question Board

    ERIC Educational Resources Information Center

    Nordine, Jeff; Torres, Ruben

    2013-01-01

    This article describes the driving question board (DQB), a visual organizer that supports inquiry-based instruction through the use of guiding questions. The DQB is a teaching aid designed to increase student engagement alongside science kits. Information is provided on its application to a lesson on buoyancy, highlighting how it improved…

  20. Medical sociology as a vocation.

    PubMed

    Bosk, Charles L

    2014-12-01

    This article extends Weber's discussion of science as a vocation by applying it to medical sociology. Having used qualitative methods for nearly 40 years to interpret problems of meaning as they arise in the context of health care, I describe how ethnography, in particular, and qualitative inquiry, more generally, may be used as a tool for understanding fundamental questions close to the heart but far from the mind of medical sociology. Such questions overlap with major policy questions such as how do we achieve a higher standard for quality of care and assure the safety of patients. Using my own research, I show how this engagement takes the form of showing how simple narratives of policy change fail to address the complexities of the problems that they are designed to remedy. I also attempt to explain how I balance objectivity with a commitment to creating a more equitable framework for health care. © American Sociological Association 2014.

  1. How Should We Treat the Vulnerable?: Qualitative Study of Authoritative Ethics Documents.

    PubMed

    Zagorac, Ivana

    2016-01-01

    The aim of this study is to explore what actual guidance is provided by authoritative ethics documents regarding the recognition and protection of the vulnerable. The documents included in this analysis are the Belmont Report, the Declaration of Helsinki, The Council for International Organizations of Medical Sciences (CIOMS) Guidelines, and the UNESCO Universal Declaration on Bioethics and Human Rights, including its supplementary report on vulnerability. A qualitative analysis of these documents was conducted in light of three questions: what is vulnerability, who are the vulnerable, and how should the vulnerable be protected? The results show significant differences among the documents regarding the first two questions. None of the documents provides any guidance on the third question (how to protect the vulnerable). These results suggest a great discrepancy between the acknowledged importance of the concept of vulnerability and a general understanding of the scope, content, and practical implications of vulnerability.

  2. Assessing the need for a new nationally representative household panel survey in the United States

    PubMed Central

    Moffitt, Robert; Schoeni, Robert F.; Brown, Charles; Chase-Lansdale, P. Lindsay; Couper, Mick P.; Diez-Roux, Ana V.; Hurst, Erik; Seltzer, Judith A.

    2015-01-01

    We introduce this special issue on the critical matter of whether the existing household panel surveys in the U.S. are adequate to address the important emerging social science and policy questions of the next few decades. We summarize the conference papers which address this issue in different domains. The papers detail many new and important emerging research questions but also identify key limitations in existing panels in addressing those questions. To address these limitations, we consider the advantages and disadvantages of initiating a new, general-purpose omnibus household panel in the U.S. We also discuss the particular benefits of starting new panels that have specific targeted domains such as child development, population health and health care. We also develop a list of valuable enhancements to existing panels which could address many of their limitations. PMID:26688609

  3. Trapped between the two cultures: Urban college students' attitudes toward science

    NASA Astrophysics Data System (ADS)

    Dawson, Roy Edward

    Most Americans agree that science plays an important part in maintaining our leadership role in economics, health, and security. Yet when it comes to science and math we appear to be baffled. Only 25% of Americans understand the process of science well enough to make informed judgment about scientific research reported in the media (National Science Foundation, 1998). What is it that turns Americans away from science? Is it our culture, schools, families, or friends? This study investigates urban college students' attitudes toward science to determine what changes might promote increased participation in the questions, ethical implications and culture of science. Volunteers completed a science questionnaire which included multiple-choice and open-answer questions. The questions were divided into the categories of individual characteristics, home/family, peers, and school/teachers. The multiple-choice questions were analyzed with quantitative statistical techniques. The open-answer questions were used to rate each student's attitude toward science and then analyzed with qualitative methods. Thirteen factors were significant in predicting science attitude but none of them, by itself, explained a large amount of variation. A multiple regression model indicated that the significant factors (in order of importance) were watching science television with your family, having a father not employed in science, having friends who like science, and imagining yourself to be a successful student. A hierarchical multiple regression analysis indicated that the categories of individual characteristics, family, and peers were all significant contributors to the model's prediction of science attitude. School environment/teachers did not add significant predictive power to the model. The qualitative results indicated that the factors of (1) a student's previous experience in science classes and (2) the curriculum philosophy which his or her science teachers employed appeared to be the most important factors in determining a student's feelings toward science. Outliers to the science attitude profile were interviewed to determine how they maintained a positive attitude toward science when the profile predicted a negative attitude. These students appeared to be resilient and it is not clear if resiliency is a way of defeating the profile, or if resilient students incorrectly identified themselves as outliers to the profile.

  4. An analysis of Science Olympiad participants' perceptions regarding their experience with the science and engineering academic competition

    NASA Astrophysics Data System (ADS)

    Wirt, Jennifer L.

    Science education and literacy, along with a focus on the other STEM fields, have been a center of attention on the global scale for decades. The 1950's race to space is often considered the starting point. Through the years, the attention has spread to highlight the United States' scientific literacy rankings on international testing. The ever-expanding global economy and global workplace make the need for literacy in the STEM fields a necessity. Science and academic competitions are worthy of study to determine the overall and specific positive and negative aspects of their incorporation in students' educational experiences. Science Olympiad is a national science and engineering competition that engages thousands of students each year. The purpose of this study was to analyze the perceptions of Science Olympiad participants, in terms of science learning and interest, 21st century skills and abilities, perceived influence on careers, and the overall benefits of being involved in Science Olympiad. The study sought to determine if there were any differences of perception when gender was viewed as a factor. Data was acquired through the Science Olympiad survey database. It consisted of 635 usable surveys, split evenly between males and females. This study employed a mixed methods analysis. The qualitative data allowed the individual perceptions of the respondents to be highlighted and acknowledged, while the quantitative data allowed generalizations to be identified. The qualitative and quantitative data clearly showed that Science Olympiad had an impact on the career choices of participants. The qualitative data showed that participants gained an increased level of learning and interest in science and STEM areas, 21st century skills, and overall positive benefits as a result of being involved. The qualitative data was almost exclusively positive. The quantitative data however, did not capture the significance of each researched category that the qualitative anecdotal evidence depicted. The data showed that females were engaged in STEM areas when involved in Science Olympiad. Recommendations were made for further study to help delineate the data using different research questions and to further study the impact of Science Olympiad utilizing the same research questions used in this study.

  5. Encouraging Citizenship in Science Education: Continuing Questions and Hopeful Possibilities

    ERIC Educational Resources Information Center

    Blades, David

    2015-01-01

    This special issue of the "Canadian Journal of Science, Mathematics and Technology Education" invokes questions intended to further the discourse of citizenship in science and mathematics education, such as, How do we define "citizen" and "democracy"? Is our call for student action hypocritical? Does positioning…

  6. Science Learning: A Path Analysis of Its Links with Reading Comprehension, Question-Asking in Class and Science Achievement

    ERIC Educational Resources Information Center

    Cano, Francisco; García, Ángela; Berbén, A. B. G.; Justicia, Fernando

    2014-01-01

    The purpose of this research was to build and test a conceptual model of the complex interrelationships between students' learning in science (learning approaches and self-regulation), their reading comprehension, question-asking in class and science achievement. These variables were measured by means of a test and a series of questionnaires…

  7. The need for transparency and reproducibility in documenting values for regulatory decision making and evaluating causality: The example of formaldehyde.

    PubMed

    Van Landingham, Cynthia; Mundt, Kenneth A; Allen, Bruce C; Gentry, P Robinan

    2016-11-01

    Reproducibility and transparency in scientific reporting is paramount to advancing science and providing the foundation required for sound regulation. Recent examples demonstrate that pivotal scientific findings cannot be replicated, due to poor documentation or methodological bias, sparking debate across scientific and regulatory communities. However, there is general agreement that improvements in communicating and documenting research and risk assessment methods are needed. In the case of formaldehyde, the peer-review conducted by a National Academy of Sciences (NAS) Committee questioned the approaches used by the Integrated Risk Information System (IRIS) in developing draft unit risk values. Using the original data from the key study (Beane Freeman et al., 2009) and documentation provided in the draft IRIS profile, we attempted to duplicate the reported inhalation unit risk values and address the NAS Committee's questions regarding application of the appropriate dose-response model. Overall, documentation of the methods lacked sufficient detail to allow for replication of the unit risk estimates, specifically for Hodgkin lymphoma and leukemias, the key systemic endpoints selected by IRIS. The lack of apparent exposure-response relationships for selected endpoints raises the question whether quantitative analyses are appropriate for these endpoints, and if so, how results are to be interpreted. Copyright © 2016. Published by Elsevier Inc.

  8. Differences in gender participation in college physical science laboratory as perceived by students and instructors

    NASA Astrophysics Data System (ADS)

    Gifford, Fay Evan

    The purpose of this study was to determine the difference in gender participation in the college physical science laboratory as perceived by students. The sample n this study consisted of 168 college sophomore architecture students (56 males and 33 females) and engineering students (61 males and 18 females). Depending on the type of information desired, a number of analyses were used including independent samples t-test, two-way Anova, general linear model analysis, Univariate analysis of variance, and descriptive statistics. In the analysis of data for the first fourteen questions of the questionnaire, which are called descriptive data, both gender and academic discipline differences were examined. It was found both genders picked personal choice as the role they played in the lab, and they were recorder, computer operator, and set up. There was no major difference here for the two disciplines except for engineers (by four to one over the architectures), who thought one member took the lead and assigned the role. There was no statistically significant difference in attitude toward group laboratory work between the two genders, but there was a significant difference by academic discipline here. There was a significant difference between genders for the way that students were assigned to small groups (i.e., the females would prefer the professor assign the role). For the open-ended student question dealing with suggestions for improving student participation in the labs, about one-third responded. One major difference between the disciplines was the architectural students by a twenty to one ratio over the engineers thought they didn't need a physics lab. For Hypothesis 4, there was a general agreement between the students' and the instructors' that there was not a difference in the students' gender responses and the instructors'. For Hypothesis 5, the responses from the four special gender questions for the students and instructors show that the males don't agree with the instructors on any of the four questions, but the females agree with the instructors on two of the questions.

  9. A study of preservice elementary teachers enrolled in a discrepant-event-based physical science class

    NASA Astrophysics Data System (ADS)

    Lilly, James Edward

    This research evaluated the POWERFUL IDEAS IN PHYSICAL SCIENCE (PIiPS) curriculum model used to develop a physical science course taken by preservice elementary teachers. The focus was on the evaluation of discrepant events used to induce conceptual change in relation to students' ideas concerning heat, temperature, and specific heat. Both quantitative and qualitative methodologies were used for the analysis. Data was collected during the 1998 Fall semester using two classes of physical science for elementary school teachers. The traditionally taught class served as the control group and the class using the PIiPS curriculum model was the experimental group. The PIiPS curriculum model was evaluated quantitatively for its influence on students' attitude toward science, anxiety towards teaching science, self efficacy toward teaching science, and content knowledge. An analysis of covariance was performed on the quantitative data to test for significant differences between the means of the posttests for the control and experimental groups while controlling for pretest. It was found that there were no significant differences between the means of the control and experimental groups with respect to changes in their attitude toward science, anxiety toward teaching science and self efficacy toward teaching science. A significant difference between the means of the content examination was found (F(1,28) = 14.202 and p = 0.001), however, the result is questionable. The heat and energy module was the target for qualitative scrutiny. Coding for discrepant events was adapted from Appleton's 1996 work on student's responses to discrepant event science lessons. The following qualitative questions were posed for the investigation: (1) what were the ideas of the preservice elementary students prior to entering the classroom regarding heat and energy, (2) how effective were the discrepant events as presented in the PIiPS heat and energy module, and (3) how much does the "risk taking factor" associated with not telling the students the answer right away, affect the learning of the material. It was found that preservice elementary teachers harbor similar preconceptions as the general population according to the literature. The discrepant events used in this module of the PIiPS curriculum model met with varied results. It appeared that those students who had not successfully confronted their preconceptions were less likely to accept the new concepts that were to be developed using the discrepant events. Lastly, students had shown great improvement in content understanding and developed the ability to ask deep and probing questions.

  10. Experiments in Computing: A Survey

    PubMed Central

    Moisseinen, Nella

    2014-01-01

    Experiments play a central role in science. The role of experiments in computing is, however, unclear. Questions about the relevance of experiments in computing attracted little attention until the 1980s. As the discipline then saw a push towards experimental computer science, a variety of technically, theoretically, and empirically oriented views on experiments emerged. As a consequence of those debates, today's computing fields use experiments and experiment terminology in a variety of ways. This paper analyzes experimentation debates in computing. It presents five ways in which debaters have conceptualized experiments in computing: feasibility experiment, trial experiment, field experiment, comparison experiment, and controlled experiment. This paper has three aims: to clarify experiment terminology in computing; to contribute to disciplinary self-understanding of computing; and, due to computing's centrality in other fields, to promote understanding of experiments in modern science in general. PMID:24688404

  11. Everyone Learns: The Joys of Sharing Your Science with Students and Educators

    NASA Technical Reports Server (NTRS)

    deColstounBrown, Eric

    2010-01-01

    Have you found yourself asking questions such as: "What needs to be considered when working with students? How can I best communicate my science to the public? I have an idea for an educational project, but how do I get money to make it happen?"? During this presentation, we will present case studies where scientists have engaged in meaningful dialogues and experiences with students, teachers, museum and science center staff, and the general public. We will also present products and programs that are ready-made opportunities for scientists looking to get their feet wet in education and public outreach. As a result of this presentation, attendees will be made aware of existing efforts that enable scientists to get involved in education and public outreach as well as NASA opportunities for scientists to fund their educational projects.

  12. Experiments in computing: a survey.

    PubMed

    Tedre, Matti; Moisseinen, Nella

    2014-01-01

    Experiments play a central role in science. The role of experiments in computing is, however, unclear. Questions about the relevance of experiments in computing attracted little attention until the 1980s. As the discipline then saw a push towards experimental computer science, a variety of technically, theoretically, and empirically oriented views on experiments emerged. As a consequence of those debates, today's computing fields use experiments and experiment terminology in a variety of ways. This paper analyzes experimentation debates in computing. It presents five ways in which debaters have conceptualized experiments in computing: feasibility experiment, trial experiment, field experiment, comparison experiment, and controlled experiment. This paper has three aims: to clarify experiment terminology in computing; to contribute to disciplinary self-understanding of computing; and, due to computing's centrality in other fields, to promote understanding of experiments in modern science in general.

  13. On the substance of a sophisticated epistemology

    NASA Astrophysics Data System (ADS)

    Elby, Andrew; Hammer, David

    2001-09-01

    Among researchers who study students' epistemologies, a consensus has emerged about what constitutes a sophisticated stance toward scientific knowledge. According to this community consensus, students should understand scientific knowledge as tentative and evolving, rather than certain and unchanging; subjectively tied to scientists' perspectives, rather than objectively inherent in nature; and individually or socially constructed, rather than discovered. Surveys, interview protocols, and other methods used to probe students' beliefs about scientific knowledge broadly reflect this outlook. This article questions the community consensus about epistemological sophistication. We do not suggest that scientific knowledge is objective and fixed; if forced to choose whether knowledge is certain or tentative, with no opportunity to elaborate, we would choose tentative. Instead, our critique consists of two lines of argument. First, the literature fails to distinguish between the correctness and productivity of an epistemological belief. For instance, elementary school students who believe that science is about discovering objective truths to questions, such as whether the earth is round or flat, or whether an asteroid led to the extinction of the dinosaurs, may be more likely to succeed in science than students who believe science is about telling stories that vary with one's perspective. Naïve realism, although incorrect (according to a broad consensus of philosophers and social scientists), may nonetheless be productive for helping those students learn. Second, according to the consensus view as reflected in commonly used surveys, epistemological sophistication consists of believing certain blanket generalizations about the nature of knowledge and learning, generalizations that do not attend to context. These generalizations are neither correct nor productive. For example, it would be unsophisticated for students to view as tentative the idea that the earth is round rather than flat. By contrast, they should take a more tentative stance toward theories of mass extinction. Nonetheless, many surveys and interview protocols tally students as sophisticated not for attending to these contextual nuances, but for subscribing broadly to the view that knowledge is tentative.

  14. Becoming allies: Combining social science and technological perspectives to improve energy research and policy making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, Rick; Moezzi, Mithra

    Within the energy research community, social sciences tends to be viewed fairly narrowly, often as simply a marketing tool to change the behavior of consumers and decision makers, and to ''attack market barriers''. As we see it, social sciences, which draws on sociology, psychology, political science, business administration, and other academic disciplines, is capable of far more. A social science perspective can re-align questions in ways that can lead to the development of technologies and technology policy that are much stronger and potentially more successful than they would be otherwise. In most energy policies governing commercial buildings, the prevailing Rmore » and D directives are firmly rooted in a technology framework, one that is generally more quantitative and evaluative than that fostered by the social sciences. To illustrate how social science thinking would approach the goal of achieving high energy performance in the commercial building sector, they focus on the US Department of Energy's Roadmap for commercial buildings (DOE 2000) as a starting point. By ''deconstructing'' the four strategies provided by the Roadmap, they set the stage for proposing a closer partnership between advocates of technology-based and social science-based approaches.« less

  15. Molecularization in nutritional science: a view from philosophy of science.

    PubMed

    Ströhle, Alexander; Döring, Frank

    2010-10-01

    Over the past decade, a trend toward molecularization, which could be observed in almost all bioscientific disciplines, now appears to have also developed in nutritional science. However, molecular nutrition research gives birth to a series of questions. Therefore, we take a look at the epistemological foundation of (molecular) nutritional science. We (i) analyze the scientific status of (molecular) nutritional science and its position in the canon of other scientific disciplines, (ii) focus on the cognitive aims of nutritional science in general and (iii) on the chances and limits of molecular nutrition research in particular. By taking up the thoughts of an earlier work, we are analyzing (molecular) nutritional science from a strictly realist and emergentist-naturalist perspective. Methodologically, molecular nutrition research is bound to a microreductive research approach. We emphasize, however, that it need not be a radical microreductionism whose scientific reputation is not the best. Instead we favor moderate microreductionism, which combines reduction with integration. As mechanismic explanations are one of the primary aims of factual sciences, we consider it as the task of molecular nutrition research to find profound, i.e. molecular-mechanismic, explanations for the conditions, characteristics and changes of organisms related to the organism-nutrition environment interaction.

  16. Forensic culture as epistemic culture: the sociology of forensic science.

    PubMed

    Cole, Simon A

    2013-03-01

    This paper explores whether we can interpret the notion of 'forensic culture' as something akin to what Knorr-Cetina called an 'epistemic culture'. Can we speak of a 'forensic culture', and, if so, how is it similar to, or different from, other epistemic cultures that exist in what is conventionally called 'science'? This question has important policy implications given the National Academy Science's (NAS) recent identification of 'culture' as one of the problems at the root of what it identified as 'serious deficiencies' in U.S. forensic science and 'scientific culture' as an antidote to those problems. Finding the NAS's characterisation of 'scientific culture' overly general and naïve, this paper offers a preliminary exploration of what might be called a 'forensic culture'. Specifically, the paper explores the way in which few of the empirical findings accumulated by sociologists of science about research science seem to apply to forensic science. Instead, forensic science seems to have developed a distinct culture for which a sociological analysis will require new explanatory tools. Faithful sociological analysis of 'forensic culture' will be a necessary prerequisite for the kind of culture change prescribed by external reformist bodies like the NAS. Copyright © 2012. Published by Elsevier Ltd.

  17. Quasi-appropriation of dialectical materialism: a critical reading of Marxism in Vygotskian approaches to cultural studies in science education

    NASA Astrophysics Data System (ADS)

    Rodrigues, André; Camillo, Juliano; Mattos, Cristiano

    2014-09-01

    In this review essay we examine five categories of dialectical materialism proposed by Paulo Lima Junior, Fernanda Ostermann, and Flavia Rezende in their study of the extent to which the articles published in Cultural Studies of Science Education, that use a Vygotskian approach, are committed to Marxism/dialectical materialism. By closely examining these categories ("thesis, antithesis and synthesis," "unity of analysis," "History," "revolution," "materialism") we expect to enrich the general discussion about the possible contributions of Marxism to science education. We perceive part of science education practice as orientating toward positivism, which reduces human beings—teachers, learners and researchers—to isolated individuals who construct knowledge by themselves. The very same approach aggravates the inner contradiction of the capitalist society demanding commitments from researchers to continually build innovative science education from human praxis. Nevertheless, it is necessary to situate ourselves beyond a formal commitment with dialectical materialism and hence reach the heart of this method. Besides understanding the researchers' commitments, we question the extent to which the respective research helps to radically refresh the current view on science, science education practice, and research in science education.

  18. A case study of Markdale High School's implementation of heterogeneously-grouped classes in English, mathematics, science, and social studies

    NASA Astrophysics Data System (ADS)

    Pierre-Louis, Fred

    The purpose of this study was to describe Markdale High School's change from separate college preparatory and general level classes to heterogeneously-grouped classes in English, mathematics, science, and social studies, with particular emphasis on the principal's leadership style, change process, and teacher concerns (Hall & Hord, 2006) experienced during this effort. The researcher used Hall and Hord's (2006) Concern-Based Adoption Model (CBAM) as a conceptual framework. Specifically, the researcher applied three elements of the CBAM model: (a) the Twelve Principles of Change, (b) the Change Facilitator Styles, and (c) the Stages of Concerns. Hall and Hord's framework served as a lens through which the researcher analyzed all data. The researcher used a mixed-method (qualitative and quantitative) approach to answer the four research questions. The participants completed three instruments: (a) the Stages of Concern Questionnaire (SoCQ), (b) the Principles of Change Survey, and (c) the Facilitator Style Survey. All three instruments were self-report, paper-pencil surveys. The sample included 72 faculty members who experienced the change over the past three years. Findings from the three data sources and the school principal's comments during debriefing are indicated for each research question and reported by unit of analysis. Respective to the research questions, the researcher concluded that: (1) Markdale High School accomplished the change by implementing both structural and instructional changes supporting to the change to heterogeneous grouping; (2) even though teachers had divergent opinions on the school principal's facilitation style, the principal thought of himself as an incrementalist and a practitioner of differentiated facilitation styles; (3) while half of the faculty felt that they received formal training on heterogeneous grouping, (4) half felt that they did not have a choice in the decision-making process as it occurred with college preparatory and general level classes' and (5) even though members of the faculty had strong ideas about how to do things differently, the majority of faculty members from the English, mathematics, and social studies departments at Markdale High School were experiencing management concerns while faculty members from the science departments were experiencing personal concerns as described by Hall and Hord (2006). Finally, conclusions and recommendations for practice and future research are presented for each of the four research questions.

  19. Clickers don't always help: Classroom context and goals can mitigate clicker effects on student learning

    NASA Astrophysics Data System (ADS)

    Shapiro, Amy; O'Rielly, Grant; Sims-Knight, Judith

    2014-03-01

    Clickers are commonly used in large-enrollment introductory courses in order to encourage attendance, increase student engagement and improve learning. We report the results from a highly controlled study of factual and conceptual clicker questions in calculus-based introductory physics courses, on students' performance on the factual and conceptual exam questions they targeted. We found that clicker questions did not enhance student performance on either type of exam question. The use of factual clicker questions actually decreased student performance on conceptual exam questions, however. Directing students' attention to surface features of the course content may distract them from the important underlying concepts. The conceptual clicker questions were likely ineffective because the practice students got on homework questions had a stronger effect than the single question posed in class. Interestingly, the same studies in general education biology and psychology courses show a strong, positive effect of clickers on student learning. This study suggest that the usefulness of clickers should be weighed in the context of other course activities and goals. Secondary analyses will explore the effect of students' GPA, motivation and study strategies on the results. This work was supported by the Institute of Education Sciences, US Dept. of Education, through Grant R305A100625 to UMass Dartmouth. The opinions expressed are those of the authors and do not represent views of the Institute or the US Dept. of Education.

  20. Epistemology Shock: English Professors Confront Science

    ERIC Educational Resources Information Center

    Barnard, Ian; Osborn, Jan

    2017-01-01

    This article raises questions and concerns regarding students from the sciences working with faculty in the humanities in interdisciplinary settings. It explores the experience of two English professors facing the privileging of "facts" and a science-based understanding of the world in their own classrooms. It poses both questions and…

  1. Ethics and Social Responsibility in Science Education.

    ERIC Educational Resources Information Center

    Frazer, M. J., Ed.; Kornhauser, A., Ed.

    Questions of ethics and social responsibility are considered by many to be important issues in science education. Teachers are being exposed to the difficult task of dealing with global problems and values. This book contains papers which deal with this apparent dilemma, raising questions about the responsibilities of science educators in the…

  2. Senate Confirmation Hearing CFO

    NASA Image and Video Library

    2009-10-14

    Dr. Elizabeth M. Robinson, nominee for Chief Financial Officer for NASA, center, answers questions during her confirmation hearing in front of the Senate Committee on Commerce, Science and Transportation, Thursday, Oct. 15, 2009, on Capitol Hill in Washington. Robinson is flanked by Dr. Patrick Gallagher, nominee to be Assistant Secretary of the Transportation Security Administration at the U.S. Department of Commerce, far left, and Paul K. Martin, nominee to be Inspector General at NASA. Photo Credit: (NASA/Paul E. Alers)

  3. Differences within: A comparative analysis of women in the physical sciences --- Motivation and background factors

    NASA Astrophysics Data System (ADS)

    Dabney, Katherine Patricia Traudel

    Science, technology, engineering, and mathematics (STEM) education has become a critical focus in the United States due to economic concerns and public policy (National Academy of Sciences, 2007; U.S. Department of Education, 2006). Part of this focus has been an emphasis on encouraging and evaluating career choice and persistence factors among underrepresented groups such as females in the physical sciences (Hill et al., 2010; National Academy of Sciences, 2007). The majority of existing STEM research studies compare women to men, yet a paucity of research exists that examines what differentiates female career choice within the physical sciences. In light of these research trends and recommendations, this study examines the following questions: 1. On average, do females who select chemistry or physics doctoral programs differ in their reported personal motivations and background factors prior to entering the field? 2. Do such variables as racial and ethnic background, age, highest level of education completed by guardians/parents, citizenship status, family interest in science, first interest in general science, first interest in the physical sciences, average grades in high school and undergraduate studies in the physical sciences, and experiences in undergraduate physical science courses explain a significant amount of variance in female physical scientists' years to Ph.D. completion? These questions are analyzed using variables from the Project Crossover Survey dataset through a subset of female physical science doctoral students and scientists. Logistic regression analyses are performed to uncover what differentiates women in the physical sciences based on their background, interest, academic achievement, and experiences ranging prior to elementary school through postsecondary education. Significant variables that positively predict a career choice in chemistry or physics include content specific high school and undergraduate academic achievement and positive undergraduate experiences. Two multiple regression models, one composed of female chemists and one of female physicists, examine significant predictors that positively associated with time to doctoral degree completion. The models account for little differentiation in the outcome of time to doctoral completion. In addition, significant predictors are based on demographic and achievement factors that were not paralleled in the two multiple regressions.

  4. Probing the limits of reality: the metaphysics in science fiction

    NASA Astrophysics Data System (ADS)

    Taylor, John L.

    2003-01-01

    Science fiction provides a genre in which metaphysical questions concerning the ultimate structure of reality regularly arise. In addressing these questions, contemporary scientists tend to assume that the questions are of a scientific nature and should be handled solely by reference to our best theories. In this paper, it is argued that we cannot afford to neglect the role of conceptual analysis - a distinctively philosophical task - in thinking critically about the possibilities that science fiction claims to describe.

  5. Characterizing Children's Spontaneous Interests in Science and Technology. Research Report

    ERIC Educational Resources Information Center

    Baram-Tsabari, Ayelet; Yarden, Anat

    2005-01-01

    This article reports the results of an analysis of 1676 science and technology questions submitted by Israeli children to a series of television programmes. It categorizes the children's questions with reference to five different coding schemes: field of interest, motivation for asking the question, type of information requested, country-specific…

  6. The Development of Paranormal Belief Scale (PBS) for Science Education in the Context of Turkey

    ERIC Educational Resources Information Center

    Sen, Mehmet; Yesilyurt, Ezgi

    2014-01-01

    Present study aims to translate and develop Paranormal Belief Questions (Rice, 2003) measuring students' non-scientific beliefs which threat science education. Original version of these questions was asked in Southern Focus Poll (1998). 17 questions about paranormal beliefs were administered to 114 university students from different departments.…

  7. Increasing URM Undergraduate Student Success through Assessment-Driven Interventions: A Multiyear Study Using Freshman-Level General Biology as a Model System

    PubMed Central

    Carmichael, Mary C.; St. Clair, Candace; Edwards, Andrea M.; Barrett, Peter; McFerrin, Harris; Davenport, Ian; Awad, Mohamed; Kundu, Anup; Ireland, Shubha Kale

    2016-01-01

    Xavier University of Louisiana leads the nation in awarding BS degrees in the biological sciences to African-American students. In this multiyear study with ∼5500 participants, data-driven interventions were adopted to improve student academic performance in a freshman-level general biology course. The three hour-long exams were common and administered concurrently to all students. New exam questions were developed using Bloom’s taxonomy, and exam results were analyzed statistically with validated assessment tools. All but the comprehensive final exam were returned to students for self-evaluation and remediation. Among other approaches, course rigor was monitored by using an identical set of 60 questions on the final exam across 10 semesters. Analysis of the identical sets of 60 final exam questions revealed that overall averages increased from 72.9% (2010) to 83.5% (2015). Regression analysis demonstrated a statistically significant correlation between high-risk students and their averages on the 60 questions. Additional analysis demonstrated statistically significant improvements for at least one letter grade from midterm to final and a 20% increase in the course pass rates over time, also for the high-risk population. These results support the hypothesis that our data-driven interventions and assessment techniques are successful in improving student retention, particularly for our academically at-risk students. PMID:27543637

  8. Intersection of opposing pedagogical frameworks: Native Hawaiian ancestral stories and scientific inquiry in a high school science class

    NASA Astrophysics Data System (ADS)

    Kanahele-Mossman, Huihui

    Inquiry is defined as "an examination into facts and principles." In science education science inquiry is a process through which important discoveries are made by students through scientific methodology. The most important step in this process is forming the right question. The questions formed by students are usually the wrong questions which deem the remainder of the inquiry process impotent. This research will look at the pedagogy of ancestral stories for a solution. For the researcher, ancestral stories were a source of wonderment and learning not only from the lessons the stories revealed but mainly from the questions that still remained after the stories were told. Questions such as "why does the eel only swim near that part?", or "why does the story only talk about the uhu?" are examples of questions that remained after experiencing an ancestral narrative. The research questions were composed for the purpose of finding compatibility between the two pedagogies. The first research question which reads "how can Native Hawaiian ancestral stories encourage an increased level of student driven interactions at all levels of feedback from Native Hawaiian students in science classroom" focuses the research on the level of student feedback that initiate questions. Question two which reads "how can teachers of Native Hawaiian students facilitate the construction of science inquiry projects from ancestral stories" addresses the skill of the teacher and imbeds the concept of pedagogical knowledge into the literature. The last research question "how do analysis and discussion of the stories connect Native Hawaiian students to their ancestral intelligence" examines the role of identity and identity to ancestral intelligence. The method intended for this research was Grounded theory which allows the researcher to develop principles, concepts and theories based on the data presented. Another method utilized in this research is an undocumented but culturally imbedded method identified as the Native Hawaiian Research method for lack of a better title. The result of the data analysis was the development of the intersection of story and science that occurs when the story line is stripped away to reveal an interconnection of natural phenomena.

  9. A brief philosophical encounter with science and medicine.

    PubMed

    Karbasizadeh, Amir Ehsan

    2013-08-01

    We show a lot of respect for science today. To back up our claims, we tend to appeal to scientific methods. It seems that we all agree that these methods are effective for gaining the truth. We can ask why science has its special status as a supplier of knowledge about our external world and our bodies. Of course, one should not always trust what scientists say. Nonetheless, epistemological justification of scientific claims is really a big project for philosophers of science. Philosophers of science are interested in knowing how science proves what it does claim and why it gives us good reasons to take these claims seriously. These questions are epistemological questions. Epistemology is a branch of philosophy which deals with knowledge claims and justification. Besides epistemological questions, metaphysical and ethical issues in science are worthy of philosophical scrutiny. This paper gives a short survey of these intellectually demanding issues.

  10. The evolution of complex life.

    PubMed

    Billingham, J

    1989-01-01

    In considering the probabilities that intelligent life might exist elsewhere in the Universe, it is important to ask questions about the factors governing the emergence of complex living organisms in the context of evolutionary biology, planetary environments and events in space. Two important problems arise. First, what can be learned about the general laws governing the evolution of complex life anywhere in space by studying its history on the Earth? Second, how is the evolution of complex life affected by events in space? To address these problems, a series of Science Workshops on the Evolution of Complex Life was held at the Ames Research Center. Included in this paper are highlights of those workshops, with particular emphasis on the first question, namely the evolution of complex extraterrestrial life.

  11. How Climate Change Beliefs among U.S. Teachers Do and Do Not Translate to Students

    PubMed Central

    Peterson, M. Nils; Bradshaw, Amy

    2016-01-01

    Research suggests climate change beliefs among science teachers mirror those of the general public, raising questions of whether teachers may be perpetuating polarization of public opinion through their classrooms. We began answering these questions with a survey of middle school science teachers (n = 24) and their students (n = 369) in North Carolina, USA. Similar to previous studies, we found that though nearly all (92.1%) of students had teachers who believe that global warming is happening, few (12%) are in classrooms with teachers who recognize that global warming is anthropogenic. We found that teacher beliefs that global warming is happening and student climate change knowledge were the strongest predictors of student belief that global warming is happening and human caused. Conversely, teacher beliefs about human causes of global warming had no relationship with student beliefs, suggesting that science teachers’ low recognition of the causes of global warming is not necessarily problematic in terms of student outcomes. These findings may be explained by previous research suggesting adolescents interpret scientific information relatively independently of ideological constraints. Though teacher polarization may be problematic in its own right, it appears that as long as climate change information is presented in classrooms, students deduce anthropogenic causes. PMID:27603667

  12. How Climate Change Beliefs among U.S. Teachers Do and Do Not Translate to Students.

    PubMed

    Stevenson, Kathryn T; Peterson, M Nils; Bradshaw, Amy

    2016-01-01

    Research suggests climate change beliefs among science teachers mirror those of the general public, raising questions of whether teachers may be perpetuating polarization of public opinion through their classrooms. We began answering these questions with a survey of middle school science teachers (n = 24) and their students (n = 369) in North Carolina, USA. Similar to previous studies, we found that though nearly all (92.1%) of students had teachers who believe that global warming is happening, few (12%) are in classrooms with teachers who recognize that global warming is anthropogenic. We found that teacher beliefs that global warming is happening and student climate change knowledge were the strongest predictors of student belief that global warming is happening and human caused. Conversely, teacher beliefs about human causes of global warming had no relationship with student beliefs, suggesting that science teachers' low recognition of the causes of global warming is not necessarily problematic in terms of student outcomes. These findings may be explained by previous research suggesting adolescents interpret scientific information relatively independently of ideological constraints. Though teacher polarization may be problematic in its own right, it appears that as long as climate change information is presented in classrooms, students deduce anthropogenic causes.

  13. Plan for a Sierra Nevada Hydrologic Observatory: Science Aims, Measurement Priorities, Research Opportunities and Expected Impacts

    NASA Astrophysics Data System (ADS)

    Bales, R.; Dozier, J.; Famiglietti, J.; Fogg, G.; Hopmans, J.; Kirchner, J.; Meixner, T.; Molotch, N.; Redmond, K.; Rice, R.; Sickman, J.; Warwick, J.

    2004-12-01

    In response to NSF's plans to establish a network of hydrologic observatories, a planning group is proposing a Sierra Nevada Hydrologic Observatory (SNHO). As argued in multiple consensus planning documents, the semi-arid mountain West is perhaps the highest priority for new hydrologic understanding. Based on input from over 100 individuals, it is proposed to initiate a mountain-range-scale study of the snow-dominated hydrology of the region, focusing on representative 1,000-5,000 km2 river basins originating in the Sierra Nevada and tributary to the Sacramento-San-Joaquin Delta. The SNHO objective is to provide the necessary infrastructure for improved understanding of surface-water and ground-water systems, their interactions and their linkages with ecosystems, biogeochemistry, agriculture, urban areas and water resources in semi-arid regions. The SNHO will include east-west transects of hydrological observations across the Sierra Nevada and into the basin and range system, in four distinct latitude bands that span much of the variability found in the semi-arid West. At least one transect will include agricultural and urban landscapes of the Great Central Valley. Investments in measurement systems will address scales from the mountain range down to the basin, headwater catchment and study plot. The intent is to provide representative measurements that will yield general knowledge as opposed to site-specific problem solving of a unique system. The broader, general science question posed by the planning group is: How do mountain hydrologic processes vary across landscapes, spanning a range of latitudes, elevations and thus climate, soils, geology and vegetation zones?\\" Embodied are additional broad questions for the hydrologic science community as a whole: (i) How do hydrologic systems that are subjected to multiple perturbations respond? (ii) How do pulses and changes propagate through the hydrologic system? (iii) What are the time lags and delays of stresses in different systems? (iv) How can the predictive ability for these responses be improved? The water resources question is then "how can new information inform decision-making aimed at achieving water resources sustainability?" The planning group is soliciting participation from the wider community with a stake in mountain hydrology and related fields, in order to develop a focused yet broadly useful infrastructure that will accelerate science scientific progress for years and decades to come.

  14. Soft Skills for Hard Impact

    NASA Astrophysics Data System (ADS)

    Grigorov, Ivo; Davidson, Joy; Knoth, Petr; Kuchma, Iryna; Schmidt, Birgit; Rettberg, Najla; Rogrigues, Eloy

    2015-04-01

    Marine and Earth Science graduates will be under increasing pressure in future to delve into research questions of relevance to societal challenges. Even fundamental research focused on basic processes of the environment and universe will in the coming decade need to justify their societal impact. As the Research Excellence Frameworks (REF) for research evaluation shift more and more away from the classical Impact Factor and number of peer-reviewed publications to "societal impact", the question remains whether the current graduates, and future researchers, are sufficiently prepared to deal with this reality. The essential compliment of skills beyond research excellence, rigor and method are traditionally described as "soft skills". This includes how to formulate an argument, how to construct a scientific publication, how to communicate such publications to non-experts, place them in context of societal challenges and relevant policies, how to write a competitive proposal and "market" one's research idea to build a research group around an interesting research topic. Such "soft skills" can produce very measurable and concrete impact for career development, but are rarely provided systematically and coherently by graduate schools in general. The presentation will focus on Open Science as a set of "soft skills", and demonstrate why graduate schools should train Open Science competencies alongside research excellence by default. Open Science is about removing all barriers to research process and outputs, both published and unpublished, and directly supports transparency and reproducibility of the research process. Open Science as a set of news competencies can also foster unexpected collaborations, engage citizen scientists into co-creation of solutions to societal challenges, as well as use concepts of Open Science to transfer new knowledge to the knowledge-based private sector, and help them with formulating more competitive research proposals in future.

  15. Space Science for the 21st Century. Strategic Plan for 1995-2000

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This publication is one of three volumes in 'Space Science for the 21st Century', the Office of Space Science Strategic plan for 1995-2000. The other two volumes are the recently released Integrated Technology Strategy and the Education Plan, which is in preparation at this publication date. The Science Plan was developed by the Office of Space Science (OSS) in partnership with the Space Science Advisory Committee. The mission of the OSS is to seek answers to fundamental questions about: the galaxy and the universe; the connection between the Sun, Earth, and Heliosphere; the origin and evolution of planetary systems; and the origin and distribution of life in the universe. The strategy to answer these questions includes completing the means to survey the universe across the entire electromagnetic spectrum; completing the survey of cosmic rays through their highest energies, and of interstellar gas; carrying out a basic new test of the Theory of General Relativity; completing development of the means to understand the mechanisms of solar variability and its effects on Earth; completing the first exploration of the inner and outer frontiers of the heliosphere; determining the plasma environments of the solar system planets and how those environments are affected by solar activity; completing development of the means to finish the reconnaissance of the entire solar system from the Sun to Pluto; beginning the comprehensive search for other planets around other stars; resuming surface exploration of solar system bodies to understand the origin and evolution of the Sun's planetary system; continuing the study of biogenic compounds and their evolution in the universe; and searching for indicators of past and present conditions conducive to life.

  16. Teaching research methodology in medical schools: students' attitudes towards and knowledge about science.

    PubMed

    Hren, Darko; Lukić, Ivan Kresimir; Marusić, Ana; Vodopivec, Ivana; Vujaklija, Ana; Hrabak, Maja; Marusić, Matko

    2004-01-01

    To explore the relationship between teaching scientific methodology in Year 2 of the medical curriculum and student attitudes towards and knowledge about science and scientific methodology. Anonymous questionnaire survey developed for this purpose. Zagreb University School of Medicine, Croatia. A total of 932 students (response rate 58%) from all 6 years were invited to participate. Score on attitude scale with 45 Likert-type statements and score on knowledge test consisting of 8 multiple choice questions. The average attitude score for all students was 166 +/- 22 out of a maximum of 225, indicating a positive attitude towards science and scientific research. The students' average score on the knowledge test was 3.2 +/- 1.7 on 8 questions. Students who had finished Year 2 had the highest mean attitude (173 +/- 24) and knowledge (4.7 +/- 1.7) scores compared with other year groups (P < 0.001, anova and Tukey posthoc test). For students who had attended a mandatory Year 2 course on the principles of scientific research in medicine (Years 3 to 6), multiple linear regression analysis showed that knowledge test score (B = 3.4; SE = 0.4; 95% confidence interval 2.5-4.2; P < 0.001) and average grades (B = 7.6; SE = 1.5; 95% CI 4.6-10.6; P < 0.001) were significant predictors of attitude towards science, but not sex or failure to pass a year (B = - 0.6; SE = 1.7; 95% CI - 3.9-2.6; P = 0.707; and B = - 3.1; SE = 1.9; 95% CI - 6.8-5.7; P = 0.097, respectively). Medical students have generally positive attitudes towards science and scientific research in medicine. Attendance of a course on research methodology is related to a positive attitude towards science.

  17. Goethe's phenomenology of nature: a juvenilization of science.

    PubMed

    Skaftnesmo, Trond

    2009-01-01

    Empirical science is not a mere collection of facts. It builds theories and frames hypotheses within those theories. Empirical theories are stated as plausible answers to questions we pose to nature. According to the Galilean-Baconian tradition within science, these questions should basically explore the causes of observed phenomena, and further be restricted to the measurable and quantitative realm. Thus, the answers are generally expected to explain the effective causes behind the actual phenomena. By framing falsifiable hypotheses, the theories are tested against the empirical foundation on which they rest. In this way we try to relieve science from false theories. Thus, we have two epistemological levels: First, the theoretical level; the scientific theory explaining the phenomena, and second, the empirical level; the phenomena or facts verifying or falsifying those theories. According to the poet and multi-scientist Johann Wolfgang von Goethe (1749-1832), there is however another way of science, namely an approach where these two levels fuse and become one. Goethe intended this approach to be a complementation of the Galilean-Baconian method, more than an alternative. He considered his "hypothesis-free method" to be a more comprehensive and secure way to understand nature. Whereas the Galilean-Baconian method aimed at explaining the effective causes of natural phenomena, in order to control and exploit nature for technical and industrial purposes, Goethe aimed at an exposition of the inherent meaning of the phenomena.We will explore, exemplify and discuss this approach with reference to the inherently Goethean phenomenology of evolution credited to the Dutch anatomist Louis Bolk (1866-1930), later commented and complemented by Stephen Jay Gould (1941-2002) and Jos Verhulst (1949 ). In the course of this presentation we will outline the Goethean approach as a method representing a juvenilization or in Bolk's terms, a fetalization of science.

  18. Chefs' attitudes toward healthful food preparation are more positive than their food science knowledge and practices.

    PubMed

    Reichler, G; Dalton, S

    1998-02-01

    To determine if chefs' and student chefs' attitudes, knowledge, and practices regarding healthful food preparation are consistent with the Dietary Guidelines for Americans. An analytical survey questionnaire was distributed to 4 chef groups. Sections 1 and 2 of the survey measured chefs' food science knowledge (13 questions) and likelihood of using food preparation practices (15 questions) necessary to meet the 1990 Dietary Guidelines for Americans. Section 3 (22 questions) measured chefs' attitudes toward nutrition in general, toward the importance of healthful food preparation practices, and toward the US Dietary Guidelines. Of 512 surveys distributed by mail, at culinary meetings, and in classes at 2 culinary schools, 447 (86%) were returned (158 from practicing chefs and 289 from student chefs). Practicing chefs included chef educators, foodservice chefs from a national corporation, and independent chef members of the American Culinary Federation of New York City. Descriptive statistics included frequencies, means, and standard deviations of survey items and of individual survey sections. Reliability and validity were determined using alpha coefficients and principal components analysis. Analysis of variance was used to examine differences in practice, attitudes, and knowledge among chef groups. Both practicing chefs and student chefs answered more than 70% of the food science questions correctly; independent chefs scored significantly lower than educator and corporate chefs. More than two thirds of the chefs and student chefs correctly responded to questions about the nutrient composition of food and how cooking affects the nutrient content of food. All chef groups were confused about fat and cholesterol in food and in the body. Few healthful food preparation practices were likely to be used by any chef group more than two thirds of the time, although the subscale of the attitude toward the importance of these practices was very positive. The majority of practicing chefs thought that customers do not care about the US Dietary Guidelines and nutrition; student chefs thought that customers do care. Both groups strongly agreed that, as chefs, they are responsible for the nutritional content of the food they prepared. Both chefs and student chefs are willing to learn about food science and recipe modification principles as they apply to healthful cooking practices. The opportunities are clear: Dietitians have the expertise to teach chefs healthful food preparation techniques, recipe modification, and food composition information.

  19. Earth Science Europe "Is Earth Science Europe an interesting and useful construct?"

    NASA Astrophysics Data System (ADS)

    Ludden, John

    2015-04-01

    In 2014 we managed to have a group of earth scientists from across the spectrum: from academic, survey, industry and government, pull together to create the first output for Earth Science Europe http://www.bgs.ac.uk/earthScienceEurope/downloads/EarthScienceEuropeBrochure.pdf In this document we stated that Earth scientists need a united, authoritative voice to enhance the status and impact of Earth science across Europe. The feeling was that there were many diverse infrastructure and research initiatives spanning the terrestrial and oceanic realms and science ranged from historical geology to active dynamics on Earth, and that a level of coordination and mutual knowledge sharing was necessary. In addition to a better understanding of the Earth in general, we thought there was a need to have Earth Science Europe develop a strategic research capacity in geohazards, georesources and environmental earth sciences, through a roadmap addressing fundamental and societal challenges. This would involve a robust research infrastructure to deliver strategic goals, enabling inspirational research and promoting solutions to societal challenges. In this talk I will propose some next steps and discuss what this "authoritative voice" could look like and ask the question - "is Earth Science Europe and interesting and useful concept?"

  20. AGU Climate Scientists Offer Question-and-Answer Service for Media

    NASA Astrophysics Data System (ADS)

    Jackson, Stacy

    2010-03-01

    In fall 2009, AGU launched a member-driven pilot project to improve the accuracy of climate science coverage in the media and to improve public understanding of climate science. The project's goal was to increase the accessibility of climate science experts to journalists across the full spectrum of media outlets. As a supplement to the traditional one-to-one journalist-expert relationship model, the project tested the novel approach of providing a question-and-answer (Q&A) service with a pool of expert scientists and a Web-based interface with journalists. Questions were explicitly limited to climate science to maintain a nonadvocacy, nonpartisan perspective.

  1. Results from the Science Instrument Definition Team for the Gondola for High Altitude Planetary Science Project

    NASA Astrophysics Data System (ADS)

    Chanover, Nancy J.; Aslam, Shahid; DiSanti, Michael A.; Hibbitts, Charles A.; Honniball, Casey I.; Paganini, Lucas; Parker, Alex; Skrutskie, Michael F.; Young, Eliot F.

    2016-10-01

    The Gondola for High Altitude Planetary Science (GHAPS) is an observing asset under development by NASA's Planetary Science Division that will be hosted on stratospheric balloon missions intended for use by the broad planetary science community. GHAPS is being designed in a modular fashion to interface to a suite of instruments as called for by science needs. It will operate at an altitude of 30+ km and will include an optical telescope assembly with a 1-meter aperture and a pointing stability of approximately 1 arcsecond with a flight duration of ~100 days. The spectral grasp of the system is envisaged to include wavelengths spanning the near-ultraviolet to near/mid-infrared (~0.3-5 µm) and possibly to longer wavelengths.The GHAPS Science Instrument Definition Team (SIDT) was convened in May 2016 to define the scope of science investigations, derive the science requirements and instrument concepts for GHAPS, prioritize the instruments according to science priorities that address Planetary Science Decadal Survey questions, and generate a report that is broadly disseminated to the planetary science community. The SIDT examined a wide range of solar system targets and science questions, focusing on unique measurements that could be made from a balloon-borne platform to address high-priority planetary science questions for a fraction of the cost of space missions. The resulting instrument concepts reflect unique capabilities offered by a balloon-borne platform (e.g., observations at spectral regions inaccessible from the ground due to telluric absorption, diffraction-limited imaging, and long duration uninterrupted observations of a target). We discuss example science cases that can be addressed with GHAPS and describe a notional instrument suite that can be used by guest observers to pursue decadal-level science questions.

  2. Earth Science Content Guidelines Grades K-12.

    ERIC Educational Resources Information Center

    American Geological Inst., Alexandria, VA.

    Teams of teachers, other science educators, and scientists selected from a national search for project writers have proposed using the following set of questions to guide the inclusion of earth science content into the kindergarten through grade 12 curriculum. The Essential Questions are organized in a K-12 sequence by six content areas: (1) Solid…

  3. Science Subject Knowledge of Pre-Service Postgraduate Science Teachers.

    ERIC Educational Resources Information Center

    Ratcliffe, Mary

    For the past eight years postgraduate science teachers in training (approximately 50 each year) have been given Assessment of Performance Unit (APU) questions under strict test conditions as part of an initial learning experience in an education course. The APU questions were originally devised to explore the range of understanding of 15-year-old…

  4. Science teachers' knowledge, beliefs, values, and concerns of teaching through inquiry

    NASA Astrophysics Data System (ADS)

    Assiri, Yahya Ibrahim

    This study investigated elementary science teachers' knowledge, beliefs, values, and concerns of teaching through inquiry. A mixed-methods research design was utilized to address the research questions. Since this study was designed as a mixed-methods research approach, the researcher gathered two type of data: quantitative and qualitative. The study was conducted in Mohayel School District, Saudi Arabia. The information was collected from 51 participants using a questionnaire with multiple choice questions; also, 11 participants were interviewed. After collecting the data, descriptive and comparative approaches were used. In addition, themes and codes were used to obtain the results. The results indicated that the mean of elementary science teachers' knowledge was 51.23%, which was less than 60% which was the acceptable score. Also, the qualitative results showed that science teachers had a limited background of teaching through inquiry. In addition, the elementary science teachers had a high level of belief to teach science through inquiry since the mean was 3.99 out of 5.00. These quantitative results were confirmed by the qualitative data. Moreover, the overall mean of elementary science teachers was 4.01, which indicated that they believed in the importance of teaching science through inquiry which was also confirmed by the responses of teachers in the interviews. Also, the findings indicated that elementary school science teachers had concerns about teaching science through inquiry since the overall mean was 3.53. In addition, the interviewees mentioned that they faced some obstacles when they teach by inquiry, such as time, resources, class size, and the teachers' background. Generally, the results did not show any significant differences among elementary science teachers' knowledge, beliefs, values, and concerns depending on gender, level of education, and teaching experience. However, the findings indicated there was one significant difference which was the level of teaching experience between groups: (6-10) years and (11-15) years, and (16- more) and (11-15) years. In addition, the implications and suggestions for future research were provided to enhance teaching science through inquiry.

  5. An exploration of the relationship between metacomprehension strategy awareness and reading comprehension performance with narrative and science texts

    NASA Astrophysics Data System (ADS)

    York, Kathleen Christine

    This mixed method study explored the relationship between metacomprehension strategy awareness and reading comprehension performance with narrative and science texts. Participants, 132 eighth-grade, predominately African American students, attending one middle school in a southeastern state, were administered a narrative and science version of the Metacomprehension Strategy Index (MSI) and asked to identify helpful strategic behaviors from six clustered subcategories (predicting and verifying; previewing; purpose setting; self-questioning; drawing from background knowledge; and summarizing and applying fix-up strategies). Participants also read and answered comprehension questions about narrative and science passages. Findings revealed no statistically significant differences in overall metacomprehension awareness with narrative and science texts. Statistically significant (p<.05) differences were found for two of the six subcategories, indicating students preview and set purpose more often with science than narrative texts. Findings also indicated overall narrative and science metacomprehension awareness and comprehension performance scores were statistically significantly (p<.01) related. Specifically, the category of summarizing and applying fix-up strategies was the strongest predictor of comprehension performance for both narrative and science texts. The qualitative phase of this study explored the relationship between metacomprehension awareness with narrative and science texts and the comprehension performance of six middle school students, three of whom scored high overall on the narrative and science text comprehension assessments in phase one of the study, and three of whom scored low. A qualitative analysis of multiple sources of data, including video-taped interviews and think-alouds, revealed the three high scoring participants engaged in competent school-based, metacognitive conversations infused with goal, self, and narrative talk and demonstrated multi-strategic engagements with narrative and science texts. In stark contrast, the three low scoring participants engaged in dissonant school-based talk infused with disclaimers, over-generalized, decontextualized, and literalized answers and demonstrated robotic, limited (primarily rereading and restating), and frustrated strategic acts when interacting with both narrative and science texts. The educational implications are discussed. This dissertation was funded by the Office of Special Education Programs, Federal Office Grant Award No. 324E031501.

  6. The future of philosophy.

    PubMed Central

    Searle, J R

    1999-01-01

    There is no sharp dividing line between science and philosophy, but philosophical problems tend to have three special features. First, they tend to concern large frameworks rather than specific questions within the framework. Second, they are questions for which there is no generally accepted method of solution. And third they tend to involve conceptual issues. For these reasons a philosophical problem such as the nature of life can become a scientific problem if it is put into a shape where it admits of scientific resolution. Philosophy in the 20th century was characterized by a concern with logic and language, which is markedly different from the concerns of earlier centuries of philosophy. However, it shared with the European philosophical tradition since the 17th century an excessive concern with issues in the theory of knowledge and with scepticism. As the century ends, we can see that scepticism no longer occupies centre stage, and this enables us to have a more constructive approach to philosophical problems than was possible for earlier generations. This situation is somewhat analogous to the shift from the sceptical concerns of Socrates and Plato to the constructive philosophical enterprise of Aristotle. With that in mind, we can discuss the prospects for the following six philosophical areas: (1) the traditional mind-body problem; (ii) the philosophy of mind and cognitive science; (iii) the philosophy of language; (iv) the philosophy of society; (v) ethics and practical reasons; (vi) the philosophy of science. The general theme of these investigations, I believe, is that the appraisal of the true significance of issues in the philosophy of knowledge enables us to have a more constructive account of various other philosophical problems than has typically been possible for the past three centuries. PMID:10670025

  7. Public Knowledge, Private Minds: Meaning Making on the Pathways of Science Communication

    NASA Astrophysics Data System (ADS)

    Davis, Pryce R.

    Every day people are inundated with news reports about the latest scientific research. The ways in which these texts enlighten or misinform the general public is a central question in both the research literature and discussions in popular culture. However, both research and popular discussion often take on deficit views of these texts, and the capabilities of readers to critically engage with them, and treat them as static, one-way conduits that transfer information to a passive audience. In contrast, I advocate treating popular science texts as the result of a chain of consumption and production that are actively shaped by the varied perspectives of scientists, communicators, and members of the general public. My work envisions all of these actors as science learners who simultaneously act as both producers and consumers of science, and who interact with one another through in-the-moment meaning making. This dissertation examines how the meaning of scientific research is filtered and transformed in moments of interaction and knowledge construction as it moves along this pathway of science communication from scientists to the general public. I present the results of a study that attempts to follow pieces of recent scientific research as they work their way from scientists to publication as popular science news stories, and ultimately to the public. To that end, I collected data from three types of actors involved in the paths of science communication, as well as the texts they read and generate. These actors include (1) the scientists who performed the research, (2) the reporters tasked with writing about it for popular dissemination, and (3) members of the public who must read and interpret the research. The texts I analyze include: peer-reviewed scientific journal articles, university-produced news briefs, popular press science stories, and various text-based conversations between scientists and reporters. Through an analysis of texts, individual interviews, and video-recorded interactions between actors, I demonstrate how individual meaning making shapes scientific understanding and how the problems observed in the public's understanding of science are by-products of properties of the process of science communication itself rather than the fault of individual actors.

  8. Can Industrial Physics Avoid Being Creatively Destroyed?

    NASA Astrophysics Data System (ADS)

    Hass, Kenneth C.

    2004-03-01

    Opportunities abound for physics and physicists to remain vital contributors to industrial innovation throughout the 21st century. The key questions are whether those trained in physics are sufficiently willing and flexible to continuously enhance their value to their companies by adapting to changing business priorities and whether business leaders are sufficiently enlightened to recognize and exploit the unique skills and creativity that physicists often provide. "Industrial physics" today is more diverse than ever, and answers to the above questions will vary with sector, company, and even individual physicists. Such heterogeneity creates new challenges for the physics community in general, which may need to undergo significant cultural change to maintain strong ties between physicists in industry, academia, and government. Insights from the emerging science of complex systems will be used to emphasize the importance of realistic mental models for the interactions between science and technology and the pathways from scientific advance to successful commercialization. Examples will be provided of the ongoing value of physics-based research in the auto industry and of the growing importance of interdisciplinary approaches to the technical needs of industry.

  9. Interests and attitudes of engineering students

    NASA Astrophysics Data System (ADS)

    Rutherford, Brian

    2007-12-01

    Engineering programs have been less successful than other professions in achieving gender equity. Analyses of gender differences in the attitudes and interests of engineering students may help illuminate ways to combat the underrepresentation of women in engineering. This study examined data collected from 863 engineering students who attended 15 American universities from fall 2005 through spring 2006 using an online survey. The survey was designed to understand the backgrounds, academic preparation, motivation, interests, and attitudes of engineering students. To determine whether males and females received different academic preparation prior to entering engineering, the survey examined participants' mathematics, science, and technical coursework taken in high school. The questions probed students' comfort and interest level in mathematics, science, and technology/engineering and investigated student interest in the three fundamental engineering activities by asking 49 design, build, and analyze questions on topics covering a variety of engineering disciplines. A combination of question formats was used including pre-categorized demographic information, 5-point Likert scales, and open-ended responses. Gender similarities and differences were identified and their implications were considered for the recruitment and retention of engineers. Female engineering students in this study were equally or better prepared than males to major in engineering based on the number and types of science and mathematics classes taken in high school. However, statistically significant gender differences were found in the attitudes and interests of engineering students. The difference in the comfort level, interest in learning, being able to demonstrate, or in performing stem skills depended on the question topic rather than gender. The areas with the highest comfort and interest level were often different for females and males. Several topics and curriculum areas of high interest to both genders related to engineering education in several engineering disciplines were identified. It appears that females and males were motivated to choose engineering as a career for different reasons. Analysis revealed that female engineering students are generally more altruistic and less interested in "things" than male engineering students. This study also found that females were comfortable in mathematics or science, but were less comfortable using computers, tools, and machines---all essential engineering skills.

  10. Managing the space sciences

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In April 1994 the National Research Council received a request from NASA that the NRC's Space Studies Board provide guidance on questions relating to the management of NASA's programs in the space sciences. The issues raised in the request closely reflect questions posed in the agency's fiscal year 1994 Senate appropriations report. These questions included the following: Should all the NASA space science programs be gathered into a 'National Institute for Space Science'? What other organizational changes might be made to improve the coordination and oversight of NASA space science programs? What processes should be used for establishing interdisciplinary science priorities based on scientific merit and other criteria, while ensuring opportunities for newer fields and disciplines to emerge? And what steps could be taken to improve utilization of advanced technologies in future space scienc missions? This report details the findings of the Committee on the Future of Space Science (FOSS) and its three task groups: the Task Group on Alternative Organizations, Task Group on Research Prioritization, and the Task Group on Technology.

  11. Adult Science Learners' Mathematical Mistakes: An Analysis of Responses to Computer-Marked Questions

    ERIC Educational Resources Information Center

    Jordan, Sally

    2014-01-01

    Inspection of thousands of student responses to computer-marked assessment questions has brought insight into the errors made by adult distance learners of science. Most of the questions analysed were in summative use and required students to construct their own response. Both of these things increased confidence in the reliability of the…

  12. Supporting Argumentation through Students' Questions: Case Studies in Science Classrooms

    ERIC Educational Resources Information Center

    Chin, Christine; Osborne, Jonathan

    2010-01-01

    This study explores how student-generated questions can support argumentation in science. Students were asked to discuss which of two graphs showing the change in temperature with time when ice is heated to steam was correct. Four classes of students, aged 12-14 years, from two countries, first wrote questions about the phenomenon. Then, working…

  13. A Template for Open Inquiry: Using Questions to Encourage and Support Inquiry in Earth and Space Science

    ERIC Educational Resources Information Center

    Hermann, Ronald S.; Miranda, Rommel J.

    2010-01-01

    This article provides an instructional approach to helping students generate open-inquiry research questions, which the authors call the "open-inquiry question template." This template was created based on their experience teaching high school science and preservice university methods courses. To help teachers implement this template, they…

  14. What's in a Domain: Understanding How Students Approach Questioning in History and Science

    ERIC Educational Resources Information Center

    Portnoy, Lindsay Blau; Rabinowitz, Mitchell

    2014-01-01

    How students ask questions as they learn has implications for understanding, retention, and problem solving. The current research investigates the influence of domain, age, and previous experience with content on the ways students approach questioning across history and science texts. In 3 experiments, 3rd-, 8th-, and 10th-grade students in large…

  15. ASAS centennial paper: Farm animal welfare science in the United States.

    PubMed

    Johnson, A K

    2009-06-01

    Compared with the more traditional sciences of nutrition, physiology, and reproduction, the acceptance of animal welfare science in its own right is still relatively new. Seven colleagues, who had an average of 10 yr experience with beef (n = 5), swine (n = 5), dairy (n = 2), poultry (n = 1), and sheep (n = 1) were asked several questions on the opportunities and challenges facing the field. The information collected was pooled for anonymity. General challenges identified by the group were (1) are we making progress and how can this be defined, (2) demand for information has outpaced the science, and (3) pressures from stakeholders. Solutions were (1) to continue providing sound science that has been validated, measured objectively, and is reliable; and (2) to continue to have animal science and veterinary medicine departments employ faculty trained in farm animal welfare. Highlights for the future were willingness for animal welfare scientists to work across disciplines and across departments, within the same institution, and enthusiastically across state lines, and expansion of new teaching models. In conclusion, new and innovative tools, personalities, and dedication to the field of animal welfare will continue to provide scientific information and direction for farm animal welfare science.

  16. Doing Science and Asking Questions II: An Exercise That Generates Questions

    NASA Astrophysics Data System (ADS)

    Hurt Middlecamp, Catherine; Nickel, Anne-Marie L.

    2005-08-01

    Given the importance of questions in science, it is critical that students learn to ask questions as well as learning to answer them. This paper describes a classroom exercise to help students better ask their own questions. It has been classroom-tested in multiple formats and has also been used for curriculum development workshops for faculty. This exercise in creating questions can be easily customized to suit different instructional contexts; some variations are outlined. More broadly, this paper also discusses the pedagogical significance of questioning, raising four salient points: (1) learners are more likely to have a personal interest in the questions they raise; (2) questions can serve as entry points for issues relating to ethnicity and gender; (3) questions give control to the person who asks them; and (4) questions can challenge existing structures, categories, and norms.

  17. Student questions in urban middle school science communities of practice

    NASA Astrophysics Data System (ADS)

    Groome, Meghan

    This dissertation examines student questions within three Communities of Practice (CoP), all urban middle school science environments. The study analyzed student questions from a sociocultural perspective and used ethnographic research techniques to detail how the CoP's shaped questions in the classroom. In the first study, two case study girls attempted to navigate questioning events that required them to negotiation participation. Their access to participation was blocked by participation frameworks that elevated some students as "gatekeepers" while suppressing the participation of others. The next two studies detail the introduction of written questioning opportunities, one into a public middle school classroom and the other into an informal classroom. In both studies, students responded to the interventions differently, most notable the adoption of the opportunity by female students who do not participate orally. Dissertation-wide findings indicate all students were able to ask questions, but varied in level of cognitive complexity, and the diagnostic interventions were able to identify students who were not known to be "target students", students who asked a high number of questions and were considered "interested in science". Some students' roles were as "gatekeepers" to participation of their peers. Two out of three teachers in the studies reported major shifts in their teaching practice due to the focus on questions and the methods used here have been found to be effective in producing educational research as well as supporting high-need classrooms in prior research. In conclusion, these studies indicate that social factors, including participation frameworks, gender dynamics, and the availability of alternative participation methods, play an important role in how students ask science-related questions. It is recommended that researchers continue to examine social factors that reduce student questions and modify their teaching strategies to facilitate questioning. This data should be shared with teachers and teacher educators to inform them how to increase and use student questions as well as alternate participation methods that strive for "science for all". Future research should focus on how students act as "gatekeepers" for the participation and potential ways to shift underrepresented students into the STEM pipeline.

  18. Reviews Equipment: Data logger Book: Imagined Worlds Equipment: Mini data loggers Equipment: PICAXE-18M2 data logger Books: Engineering: A Very Short Introduction and To Engineer Is Human Book: Soap, Science, & Flat-Screen TVs Equipment: uLog and SensorLab Web Watch

    NASA Astrophysics Data System (ADS)

    2012-07-01

    WE RECOMMEND Data logger Fourier NOVA LINK: data logging and analysis To Engineer is Human Engineering: essays and insights Soap, Science, & Flat-Screen TVs People, politics, business and science overlap uLog sensors and sensor adapter A new addition to the LogIT range offers simplicity and ease of use WORTH A LOOK Imagined Worlds Socio-scientific predictions for the future Mini light data logger and mini temperature data logger Small-scale equipment for schools SensorLab Plus LogIT's supporting software, with extra features HANDLE WITH CARE CAXE110P PICAXE-18M2 data logger Data logger 'on view' but disappoints Engineering: A Very Short Introduction A broad-brush treatment fails to satisfy WEB WATCH Two very different websites for students: advanced physics questions answered and a more general BBC science resource

  19. Moving Green Chemistry Forward: Networks as a Foundation

    NASA Astrophysics Data System (ADS)

    Carter, T.; Lough, G.

    2014-12-01

    Green chemistry is a growing discipline, but for a variety of reasons, it has not yet become integrated into science curriculum and the greater societal conscience. With its increasing economic benefits to many sectors including business, industry, and academia and its potential to make science more accessible not only to science students but also to the general citizenry, we suggested answers to the questions: Why has greater success not been realized? What are the particular barriers to wider implementation? And what are incentives and ways to move green chemistry forward? We suggest some strategies and options to both increase the use of green chemistry principles and to also increase stakeholders' understanding of the importance and utility of green chemistry in their daily lives. For example, our main suggestions are that an inclusive, multidisciplinary network would aid in coordinating data and in translating the science into user friendly tools, and that an educational component embedded in this greater effort would also serve to move green chemistry forward.

  20. Diagnostic Tests for Entering and Departing Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Waltham, Chris; Kotlicki, A.

    2006-12-01

    A diagnostic test administered at the start of a class should test basic concepts which are recognized as course prerequisites. The questions should not be over-packaged: e.g. students should be required to create models, rather than this being done for them each time. Students should be allowed great latitude in their answers, so we can discover what they are thinking. When administered at the end of a class the goals should be similar: testing concepts taught in the class itself and the retention of necessary concepts from previous classes. Great care has to be taken to avoid teaching to the test. In assessing an entire program, for example an undergraduate majors degree in physics, then one looks for very general skills and knowledge not specific to any one course. The purpose of an undergraduate degree in physics (or indeed any science) is to equip the students with a set of problem-solving skills and basic knowledge which can be applied in a large variety of workplace settings and to allow that student to contribute to civic society as a science-literate person. The creator of any diagnostic test should always have these big goals in mind. We have developed a set of questions which we think fulfill these criteria, yet are not specific to any particular level of science education. They have been administered to students in secondary schools across Canada, incoming first-year science students and final-year physics students at the University of British Columbia. The results will be presented.

  1. What are Middle School Students Talking About During Clicker Questions? Characterizing Small-Group Conversations Mediated by Classroom Response Systems

    NASA Astrophysics Data System (ADS)

    Barth-Cohen, Lauren A.; Smith, Michelle K.; Capps, Daniel K.; Lewin, Justin D.; Shemwell, Jonathan T.; Stetzer, MacKenzie R.

    2016-02-01

    There is a growing interest in using classroom response systems or clickers in science classrooms at both the university and K-12 levels. Typically, when instructors use this technology, students are asked to answer and discuss clicker questions with their peers. The existing literature on using clickers at the K-12 level has largely focused on the efficacy of clicker implementation, with few studies investigating collaboration and discourse among students. To expand on this work, we investigated the question: Does clicker use promote productive peer discussion among middle school science students? Specifically, we collected data from middle school students in a physical science course. Students were asked to answer a clicker question individually, discuss the question with their peers, answer the same question again, and then subsequently answer a new matched-pair question individually. We audio recorded the peer conversations to characterize the nature of the student discourse. To analyze these conversations, we used a grounded analysis approach and drew on literature about collaborative knowledge co-construction. The analysis of the conversations revealed that middle school students talked about science content and collaboratively discussed ideas. Furthermore, the majority of conversations, both ones that positively and negatively impacted student performance, contained evidence of collaborative knowledge co-construction.

  2. Differences in short-term memory span of social sciences, science and engineering, and business majors

    NASA Astrophysics Data System (ADS)

    Khan, Naeem Ullah

    This study investigated the difference in the short-term memory span of students of three major groups, namely Social Sciences, Science and Engineering, and Business. This study was designed to answer the following two questions: (1) Is there a difference between short-term memory span, measured by digit span, among the students in or intended for Social Sciences, Science and Engineering, and Business majors? (2) Is there a difference of short-term memory span, measured by word span, among students in or intended for Social Sciences, Science and Engineering, and Business majors? For answering these two questions, inferential and descriptive statistics were used. Analysis of Variance (ANOVA) was used to compare the means of the scores of digit span and word span among the three major groups. The means of digit span and word span among the three groups were compared to find out if a statistically significant difference existed among them or not. The observations were recorded at the level of significance at alpha = .05, and highly significant at alpha = .01. The answer to the first question is yes. The results of this study showed a statistically significant difference in the means of the digit span of the three major groups of students in or intended for Social Sciences, Science and Engineering, and Business. The mean scaled score for digit span was 12.88 for Social Sciences, 14.27 for Science and Engineering, and 15.33 for Business majors, respectively. The means of the free recalls word span of the three groups was 7.23 for Social Sciences, 7.89 for Science and Engineering, and 7.12 for Business majors, respectively. No significant difference was observed in the means of the word span of the three groups. In general observations, it is noted that students want to stay in the subjects or majors in which they can perform well or feel comfortable. In addition to this, students are screened in the school system due to levels of performance or selection pressure. Students' academic performances are dependent on their academic environment and on their inherited construct of short-term and long-term memory span. The use of the memory in certain majors, such as Science and Engineering and Business, are more demanding as compared to Social Science majors. For example, for Science and Engineering majors, students need to memorize complex structures and also need to keep larger information at a stretch in their short-term memory to incorporate it into incoming and outgoing information. Of the other memory related constructs, the present study examined only the short-term memory of the students of different majors, and it was found that the students of the Social Sciences had a shorter digit span as compared to the Science and Engineering and Business majors. Business major students had the largest digit span as compared to the Social Sciences and Science and Engineering majors. This supports the idea that memory construct plays a role in the selection of student majors.

  3. Perspectives of Science Teacher Candidates Regarding Scientific Creativity and Critical Thinking

    ERIC Educational Resources Information Center

    Demir, Sibel

    2015-01-01

    This study was performed with the participation of 31 science teacher candidates in their second year of higher education, enrolled in the science education department of a university in Turkey. During the study, the teacher candidates were asked two open-ended questions. The validity of these questions developed specifically for this study was…

  4. K-5 Mentor Teachers' Journeys toward Reform-Oriented Science within a Professional Development School Context

    ERIC Educational Resources Information Center

    Manno, Jacqueline L.

    2011-01-01

    Reform-oriented science teaching with a specific focus on evidence and explanation provides a student-centered learning environment which encourages children to question, seek answers to those questions, experience phenomena, share ideas, and develop explanations of science concepts based on evidence. One of the ways schools have risen to meet the…

  5. Experiencing Child-Led Science in Science Week

    ERIC Educational Resources Information Center

    Bostrom, Carol

    2016-01-01

    In this article, Carol Bostrom shares how child-led enquiry, with children choosing their own questions to research, can work in a primary classroom. Children in three year 1 classes (ages 5-6) chose three areas of their own interest or hobby and then composed three questions for investigation for each area to be used during science week. This…

  6. Planetary Balloon-Based Science Platform Evaluation and Program Implementation

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Kremic, Tibor; Hibbitts, Karl; Young, Eliot F.; Landis, Rob

    2016-01-01

    This report describes a study evaluating the potential for a balloon-based optical telescope as a planetary science asset to achieve decadal class science. The study considered potential science achievable and science traceability relative to the most recent planetary science decadal survey, potential platform features, and demonstration flights in the evaluation process. Science Potential and Benefits: This study confirms the cost the-benefit value for planetary science purposes. Forty-four (44) important questions of the decadal survey are at least partially addressable through balloon based capabilities. Planetary science through balloon observations can provide significant science through observations in the 300 nm to 5 m range and at longer wavelengths as well. Additionally, balloon missions have demonstrated the ability to progress from concept to observation to publication much faster than a space mission increasing the speed of science return. Planetary science from a balloon-borne platform is a relatively low-cost approach to new science measurements. This is particularly relevant within a cost-constrained planetary science budget. Repeated flights further reduce the cost of the per unit science data. Such flights offer observing time at a very competitive cost. Another advantage for planetary scientists is that a dedicated asset could provide significant new viewing opportunities not possible from the ground and allow unprecedented access to observations that cannot be realized with the time allocation pressures faced by current observing assets. In addition, flight systems that have a relatively short life cycle and where hardware is generally recovered, are excellent opportunities to train early career scientists, engineers, and project managers. The fact that balloon-borne payloads, unlike space missions, are generally recovered offers an excellent tool to test and mature instruments and other space craft systems. Desired Gondola Features: Potential gondola characteristics are assessed in this study and a concept is recommended, the Gondola for High-Altitude Planetary Science (GHAPS). This first generation platform is designed around a 1 m or larger aperture, narrow-field telescope with pointing accuracies better than one arc-second. A classical Cassegrain, or variant like Ritchey-Chretien, telescope is recommended for the primary telescope. The gondola should be designed for multiple flights so it must be robust and readily processed at recovery. It must be light-weighted to the extent possible to allow for long-duration flights on super-pressure balloons. Demonstration Flights: Recent demonstration flights achieved several significant accomplishments that can feed forward to a GHAPS gondola project. Science results included the first ever Earth-based measurements for CO2 in a comet, first measurements for CO2 and H2O in an Oort cloud comet, and the first measurement of 1 Ceres at 2.73 m to refine the shape of the infrared water absorption feature. The performance of the Fine Steering Mirror (FSM) was also demonstrated. The BOPPS platform can continue to be leveraged on future flights even as GHAPS is being developed. The study affirms the planetary decadal recommendations, and shows that a number of Top Priority science questions can be achieved. A combination GHAPS and BOPPS would provide the best value for PSD for realizing that science.

  7. Sociological and Communication-Theoretical Perspectives on the Commercialization of the Sciences

    NASA Astrophysics Data System (ADS)

    Leydesdorff, Loet

    2013-10-01

    Both self-organization and organization are important for the further development of the sciences: the two dynamics condition and enable each other. Commercial and public considerations can interact and "interpenetrate" in historical organization; different codes of communication are then "recombined". However, self-organization in the symbolically generalized codes of communication can be expected to operate at the global level. The Triple Helix model allows for both a neo-institutional appreciation in terms of historical networks of university-industry-government relations and a neo-evolutionary interpretation in terms of three functions: (1) novelty production, (2) wealth generation, and (3) political control. Using this model, one can appreciate both subdynamics. The mutual information in three dimensions enables us to measure the trade-off between organization and self-organization as a possible synergy. The question of optimization between commercial and public interests in the different sciences can thus be made empirical.

  8. Making sense of the complex entanglement between emotion and pedagogy: contributions of the affective turn

    NASA Astrophysics Data System (ADS)

    Zembylas, Michalinos

    2016-09-01

    The purpose of this paper is to highlight three recent contributions of the affective turn: moving beyond the emotion/reason dichotomy; highlighting the politics of emotion and affect; and, strengthening the intersections of the psychic and the social. While these contributions are not necessarily paradigmatic of scholarship in the affective turn, they do highlight some important threads of thinking about affect theory in several fields of study, and thus they can be insightful in the context of science education as well. This discussion is motivated by the notion that science teaching and learning can benefit theoretically from these latest developments of affect theory. Although the question of why science teaching and learning has not paid so much attention to emotion and affect in the past is no less important, this paper will move past this in an effort to focus on the openings that are created for pedagogy in general.

  9. Eighth-grade science teachers use of instructional time: Examining questions from the Third International Mathematics and Science Study (TIMSS) and comparing TIMSS and National Science Foundation questionnaires

    NASA Astrophysics Data System (ADS)

    Davidson, Anne Burgess

    Did the Third International Mathematics and Science Study (TIMSS) ask science teachers the right questions about their use of instructional time? Part I of this 2-part study used the TIMSS database to answer the question: Do 8th grade science teachers in the U.S., Czech Republic, Hungary, Japan, and Korea differ significantly in their perceived use of instructional time? Using the instructional activities in the TIMSS teacher question "How did the lesson proceed?" the teacher-reported times were analyzed using a repeated measures multivariate analysis. Significant differences were found between teacher-reported times in the U.S. and the other 4 TIMSS countries, whose 8th grade students outperformed U.S. students on TIMSS achievement tests. Post-hoc analysis indicated that TIMSS U.S. 8th grade science teachers report spending more time on homework in class, on group activities, and on lab activities, but less time on topic development, than TIMSS teachers from some or all of the other countries. Part II of this study further examined the question "How did the lesson proceed?" by videotaping 6 classes of 8th grade science in Alabama and Virginia and comparing observer coding of the video to the teachers' recalled descriptions of the same class. The difference between observer and teacher responses using TIMSS categories was not significant; however, 43% of the total variance was explained by whether the teacher or the observer reported the times for the instructional activities. The teachers also responded to questions from the NSF Local Systemic Change Through Teacher Enhancement K--8 Teacher Questionnaire to describe the same class. The difference found between the teacher and the observer coding was not significant, but the amount of variance explained by the data source (observer or teacher) dropped to 33% when using NSF student activity categories and to 26% when using NSF teacher activity categories. The conclusion of this study was that questionnaires to survey science teachers about their instructional activities should include operational definitions, methods of classifying single activities into 2 or more instructional categories, and questions that are more accurate in describing quality science instructional activities.

  10. An examination of key experiences which contribute to a positive change in attitude toward science in two elementary education teacher candidates at the University of Wyoming

    NASA Astrophysics Data System (ADS)

    Cason, Maggie A.

    This investigation utilized life history methodology (Armstrong, 1987; Bogdan & Biklen, 1998; Lawrence-Lightfoot, 1977; Marshall & Rossman, 1995; Patton, 1987; Taylor & Bogdan; 1984) to examine lifelong science experiences of two elementary education teacher candidates at a land grant institution with a large, undergraduate teacher education program. Purposive sampling techniques (Bogdan & Biklen, 1998) led to the selection of two teacher candidates who reported high science anxiety when they began university coursework. The investigation focused on five broad questions: (a) What were key experiences in the elementary teacher education program which contributed to a positive change in attitude toward science? (b) What science experiences, in and out of school, did the teacher candidates encounter while they were in elementary school, junior high school, high school, and college? (c) How did the elementary education program's science course structure, professors, and field experiences contribute to the change in attitude toward science? (d) How much time was involved in the change in attitude toward science? and (e) What were the effects of the change in attitude on the teaching of science in the elementary classroom? Each candidate completed approximately twenty hours of interviews yielding rich descriptions of their lifelong science experiences. Data also included interviews with science and science education professors, journaling, and observations of student teaching experiences. Data analysis revealed four over-arching themes with implications for teacher educators. First, data showed the importance of relationship building between professors and teacher candidates. Professors must know and work with teacher candidates, and provide a structure that encourages question asking. Second, course structure including hands-on teaching strategies and students working in small groups over an extended period of time was vital. Third, integrating language arts with science proved important because the generally high comfort level experienced by elementary teacher candidates toward language arts may be extended to the teaching of science. Teacher candidates realize the benefits for both teaching and learning when the two subjects are integrated. Last, the study revealed the powerful effects of field experiences which include teaching science in the public schools and demonstrated the drawbacks of field experiences which do not include teaching science.

  11. The Pasteurization of Marie Curie: A (meta)biographical experiment.

    PubMed

    Wirtén, Eva Hemmungs

    2015-08-01

    Biographies of scientists occupy a liminal space, highly popular with general readers but questioned in academia. Nonetheless, in recent years, historians of science have not only embraced the genre with more enthusiasm and less guilt, they have also turned to the metabiography in order to renew the study and story of scientists' roles. This essay focuses on Marie Curie, the world's most famous female scientist, in order to unpack some of the theoretical and methodological claims of the science biography, and especially to address the sexing mechanisms at play in the construction of the biographical subject. Pierre Curie (1923), Marie's biography of her husband Pierre, paid tribute to her dead husband and collaborator, but also allowed Curie a legitimate outlet to construct her own persona and legacy. Categories such as personhood, person, and persona are not only central to the biography genre but also are essential to the sense of self and self-fashioning of scientists. Looking at how Marie Curie negotiated these categories in Pierre Curie not only gives new insight into Curie's self-fashioning strategies but may also shed some light on the more general analytical lacunae of the science biography.

  12. Predictors of obesity bias among exercise science students.

    PubMed

    Langdon, Jody; Rukavina, Paul; Greenleaf, Christy

    2016-06-01

    The purpose of the present study was to investigate particular psychosocial predictors of obesity bias in prehealth professionals, which include the internalization of athletic and general body ideals, perceived media pressure and information, and achievement goal orientations. Exercise science undergraduate students (n= 242) filled out a survey containing questions of demographic characteristics, achievement goals, social-cultural attitudes toward appearance (using Sociocultural Attitudes Towards Appearance Questionnaire-3), and obesity bias measurements (using the antifat attitudes test and fat phobia scale). The results indicated that students were explicitly biased toward overweight and obese individuals, held had high task and ego goals, and had high internalization of an athletic body type ideal, as determined by mean scores being above the median values for each scale. Internalization of the athletic body type predicted obesity bias for fat phobia, weight control blame, and physical/romantic attractiveness. In conclusion, exercise science students may enter programs socialized from society and sport, and, potentially, these psychosocial attitudes and beliefs may have implications to working with future clients, especially for those of the general population and those whose body shape and size are different than themselves. Copyright © 2016 The American Physiological Society.

  13. Professional Ethics for Astronomers

    NASA Astrophysics Data System (ADS)

    Marvel, K. B.

    2005-05-01

    There is a growing recognition that professional ethics is an important topic for all professional scientists, especially physical scientists. Situations at the National Laboratories have dramatically proven this point. Professional ethics is usually only considered important for the health sciences and the legal and medical professions. However, certain aspects of the day to day work of professional astronomers can be impacted by ethical issues. Examples include refereeing scientific papers, serving on grant panels or telescope allocation committees, submitting grant proposals, providing proper references in publications, proposals or talks and even writing recommendation letters for job candidates or serving on search committees. This session will feature several speakers on a variety of topics and provide time for questions and answers from the audience. Confirmed speakers include: Kate Kirby, Director Institute for Theoretical Atomic and Molecular Physics - Professional Ethics in the Physical Sciences: An Overview Rob Kennicutt, Astrophysical Journal Editor - Ethical Issues for Publishing Astronomers Peggy Fischer, Office of the NSF Inspector General - Professional Ethics from the NSF Inspector General's Point of View

  14. At the Crossroads of Art and Science: A New Course for University Non-Science Majors

    NASA Astrophysics Data System (ADS)

    Blatt, S. Leslie

    2004-03-01

    How much did Seurat know about the physics, physiology, and perceptual science of color mixing when he began his experiments in pointillism? Did Vermeer have a camera obscura built into his studio to create the perfect perspective and luminous effects of his canvases? Early in the 20th century, consequences of the idea that "no single reference point is to be preferred above any other" were worked out in physics by Einstein (special and general relativity), in art by Picasso (early cubism), and in music by Schoenberg (12-tone compositions); did this same paradigm-shifting concept arise, in three disparate fields, merely by coincidence? We are developing a new course, aimed primarily at non-science majors, that addresses questions like these through a combination of hands-on experiments on the physics of light, investigations in visual perception, empirical tests of various drawing and painting techniques, and field trips to nearby museums. We will show a few examples of the kinds of art/science intersections our students will be exploring, and present a working outline for the course.

  15. The depth of fields: Managing focus in the epistemic subcultures of mind and brain science.

    PubMed

    Peterson, David

    2017-02-01

    The 'psy' sciences emerged from the tangled roots of philosophy, physiology, biology and medicine, and these origins have produced heterogeneous fields. Scientists in these areas work in a complex, overlapping ecology of fields that results in the constant co-presence of dissonant theories, methods and research objects. This raises questions regarding how conceptual clarity is maintained. Using the optical metaphor 'depth of field', I show how researchers in all fields marginalize potential threats to routine scientific work by framing them as either too broad and imprecise or too narrow and technical. The appearance of this defocusing and devaluing across sites suggests a general aspect of scientific cognition, rather than a by-product of any specific scientific dispute.

  16. Questioning in Tongan Science Classrooms: A Pilot Study to Identify Current Practice, Barriers and Facilitators

    ERIC Educational Resources Information Center

    Bay, Jacquie L.; Fohoko, Fehi; La'Akulu, Mumui; Leota, Ofa; Pulotu, Lesieli; Tu'Ipuloto, Sina; Tutoe, Salesi; Tovo, Oliveti; Vekoso, Ana; Pouvalu, Emeli H.

    2016-01-01

    Questioning is central to the development of scientific and health literacies. In exploring this concept, Tongan science teachers hypothesized that their ability to use and encourage questioning presented challenges in the context of Tongan social and cultural norms. This study set out to develop a peer-to-peer protocol to enable teachers to…

  17. Adding to the mix: integrating ELSI into a National Nanoscale Science and Technology Center.

    PubMed

    Bjornstad, David J; Wolfe, Amy K

    2011-12-01

    This paper describes issues associated with integrating the study of Ethical, Legal and Social Issues (ELSI) into ongoing scientific and technical research and describes an approach adopted by the authors for their own work with the center for nanophase materials sciences (CNMS) at the Oak Ridge national laboratory (ORNL). Four key questions are considered: (a) What is ELSI and how should it identify and address topics of interest for the CNMS? (b) What advantages accrue to incorporating ELSI into the CNMS? (c) How should the integration of ELSI into the CNMS take place? (d) How should one judge the effectiveness of the activity? We conclude that ELSI research is not a monolithic body of knowledge, but should be adapted to the question at hand. Our approach focuses on junctures in the R&D continuum at which key decisions occur, avoids topics of a purely ethical nature or advocacy, and seeks to gather data in ways that permit testing the validity of generalization. Integrating ELSI into the CNMS allows dealing with topics firmly grounded in science, offers concrete examples of potential downstream applications and provides access to the scientists using the CNMS and their insights and observations. As well, integration provides the opportunity for R&D managers to benefit from ELSI insights and the potential to modify R&D agendas. Successful integration is dependent on the particular ELSI question set that drives the project. In this case questions sought to identify key choices, information of value to scientists, institutional attributes, key attributes of the CNMS culture, and alternatives for communicating results. The opportunity to consult with scientists on ELSI implications is offered, but not promoted. Finally, ELSI effectiveness is judged by observing the use to which research products are put within the CNMS, ORNL, and the community of external scholars.

  18. Book Review: Book review

    NASA Astrophysics Data System (ADS)

    Roberts, John T.

    Mauro Dorato's new book is subtitled "An Introduction to the History and Philosophy of Laws of Nature". This is a bit misleading: a reader previously unacquainted with any of the literature on the topic of laws of nature and related problems in the philosophy of science will find much of the book prohibitively challenging. But the book does aim for the kind of breadth and generality that one would expect from an introduction to the subject, and it serves well as a compact overview of the issues, views, arguments, and counter-arguments that have shaped the contemporary philosophical debate on laws of nature. Almost no important facet of the debate goes untouched. There are chapters or sections on: recent scholarship on the history of the notion of a law and its role in the study of nature; the characteristics of the things called "laws" in a wide range of sciences; the relations among laws, algorithmic compressibility of information, and the theory of measurement; the puzzling question of why so many laws of nature should be mathematical in form; regularity theories of laws; the universals approach to laws; the necessitarian approach to laws; skeptical eliminativism about laws; non-reductive realism about laws; the question of the supervenience of laws on non-nomic facts; the relations of laws to counterfactuals, causality, dispositions, explanation, chance, symmetry, and necessity; ceteris paribus clauses; the evolutionary contingency thesis and the question of biological laws; Wilhelm Dilthey and the alleged distinction between "nomothetic" sciences and "historical" ones; the question of psychophysical laws and the relation between this question and the problems of mental causation and free will; even the connection between the issue of psychophysical laws and Gibson's ecological theory of perception. This is an impressive range of topics, especially considering that they are all treated in only 174 pages. One result is that not all of them are treated with as much balance and thoroughness as one might like. Another is that readers will have it forcefully brought to their attention just how much is at stake in the philosophical debate over the nature of laws.

  19. Investigation of Inquiry-based Science Pedagogy among Middle Level Science Teachers: A Qualitative Study

    NASA Astrophysics Data System (ADS)

    Weiland, Sunny Minelli

    This study implemented a qualitative approach to examine the phenomenon of "inquiry-based science pedagogy or inquiry instruction" as it has been experienced by individuals. Data was collected through online open-ended surveys, focus groups, and teacher reported self-reflections to answer the research questions: 1) How do middle level science teachers conceptualize "inquiry-based instruction?" 2) What are preferred instructional strategies for implementation in middle level science classrooms? And 3) How do middle level science teachers perceive the connection between science instruction and student learning? The participants within this research study represent 33 percent of teachers in grades 5 through 9 within six school districts in northeastern Pennsylvania. Of the 12 consent forms originally obtained, 10 teachers completed all three phases of the data collection, including the online survey, participation in focus groups, and teacher self-reflection. 60 percent of the participants taught only science, and 40 percent taught all content areas. Of the ten participants, 50 percent were certified teachers of science and 50 percent were certified as teachers of elementary education. 70 percent of the research participants reflected having obtained a master's, with 60 percent of these degrees being received in areas of education, and 10 percent in the area of science. The research participants have a total of 85 collective years of experience as professional educators, with the average years of experience being 8.5 years. Analysis of data revealed three themes related to research question #1) How do middle-level science teachers conceptualize inquiry-based instruction? and sub-question #1) How do middle-level science teachers characterize effective instruction? The themes that capture the essence of teachers' formulation of inquiry-based instruction that emerged in this study were student centered, problem solving, and hands-on . Analysis of data revealed one theme related to research question #2) What are preferred instructional strategies for implementation in middle level science classrooms? and topical sub-question #2) How do middle level science teachers structure instruction. The theme that emerged was needs of students. Analysis of the data revealed one theme related to research question #3) How do middle level science teachers perceive the relationship between science instruction and student learning? and topical sub-question #3) How do middle level science teachers view their role in relation to student learning? This theme is meaning making. Analysis of the data related to meaning making revealed two sub-themes of application and relationships. It is clear that middle level science teachers have a vision for inquiry-based science instruction, but implementation is inhibited by a variety of factors including curricular programming that is very broad and lacks depth, the scheduling of time and resources for science, and the absence of a clear model of inquiry-based instruction. In addition, only one participant referenced students investigating their own authentic questions and no participants reflected on the importance of students using evidence in their explanations of scientific phenomenon. Additionally, participants continually reflected on the needs of their students informing instructional practices, and it is wondered if there is a clear understanding among middle level teachers of how students learn science. Real world applications were recognized as important within science learning and the researcher questions whether teachers of science have adequate opportunities to explore real world application of science concepts throughout their careers in order to foster connections within the classroom. These findings support the need for strong, job-embedded professional development, the cultivation of learning communities dedicated to the investigation and implementation of inquiry-based science, the focusing of curricular programming to allow for in depth investigation of scientific concepts, and the commitment of time and resources to support effective science instruction. In addition, it is recommended that additional support be provided to teachers of science to engage in job shadowing, field experiences and internships to allow for the uncovering of applications of science beyond the classroom. Throughout the United States, there continues to be a clear call for reform in the area of science education. These research findings must inform the work of the educational reformers, professional developers, teacher preparation programmers, and researchers as they aspire to improve the quality of student learning and science instruction. In addition, this research supports the need for ongoing reform efforts to science curriculum, instruction and assessment and the need for more effective teacher preparation programs and professional development programs for teachers of science.

  20. What does the American Board of Surgery In-Training/Surgical Basic Science Examination tell us about graduate surgical education?

    PubMed

    DaRosa, D A; Shuck, J M; Biester, T W; Folse, R

    1993-01-01

    This research sought to identify the strengths and weakness in residents' basic science knowledge and, second, to determine whether they progressively improve in their abilities to recall basic science information and clinical management facts, to analyze cause-effect relationships, and to solve clinical problems. Basic science knowledge was assessed by means of the results of the January 1990 American Board of Surgery's In-Training/Surgical Basic Science Exam (IT/SBSE). Postgraduate year (PGY) 1 residents' scores were compared with those of PGY5 residents. Content related to a question was considered "known" if 67% or more of the residents in each of the two groups answered it correctly. Findings showed 44% of the content tested by the basic science questions were unknown by new and graduating residents. The second research question required the 250 IT/SBSE questions to be classified into one of three levels of thinking abilities: recall, analysis, and inferential thinking. Profile analysis (split-plot analysis of variance) for each pair of resident levels indicated significant (P < 0.001) differences in performance on questions requiring factual recall, analysis, and inference between all levels except for PGY3s and PGY4s. The results of this research enable program directors to evaluate strengths and weaknesses in residency training curricula and the cognitive development of residents.

  1. A question of style: method, integrity and the meaning of proper science.

    PubMed

    Penders, Bart; Vos, Rein; Horstman, Klasien

    2009-09-01

    Controversies in science often centre on methodology and integrity; these are the gatekeepers of proper science. But what exactly defines proper science as proper is not universal, especially in collaborative fields of enquiry where different perspectives meet. These encounters often result in friction, yet may equally give rise to new perspectives on proper science. A tour of collaborative endeavours like structural biology and nutrigenomics highlights some of those frictions and the controversies that can result from the encounter of 'wet' and 'dry' science. Attuning scientists to the plurality of proper science may safeguard many a scientist's integrity from being questioned unjustly.

  2. Teacher beliefs in contemporary science education goals and classroom practice: The case of Souhegan High School

    NASA Astrophysics Data System (ADS)

    Mueller, Jennifer Creed

    The central research question for this study was: To what extent is a teacher's purported beliefs in contemporary science education goals embedded in his/her routine classroom practice? Two sub-research questions were necessary to investigate this central research question: (1) To what degree do Souhegan High School science teachers believe in the contemporary goals of science education? (2) What is a Souhegan High School science teacher's degree of conviction to his/her beliefs of particular goals? The goal of this study was to develop grounded hypotheses/research questions. Given the stated research questions, a case study design most appropriately met the intended purpose of this study. The study was initiated with the science teachers at Souhegan High School taking the survey of Contemporary Goals of Science Education (Zeidler & Duffy, 1994). Following analysis of the group's responses, two equal ranges of scores were established. In addition, a weighted mean provided data on a teacher's degree of conviction to his/her beliefs of particular goals. Three teachers were invited to continue with the study, each range represented. Classroom observations provided data in the next phase of inquiry. Samples of assessment tasks were also collected as data. Following classroom observations, interviews were conducted. These interviews were semi-structured, with the use of Newmann, Secada, and Wehlage (1995), Standards and Scoring Criteria for Classroom Instruction and Assessment Tasks as a vehicle for teacher reflection. Data collection and analyses occurred simultaneously as characterized by the constant comparative method in accordance with grounded theory (Glaser & Strauss, 1967). Spradley's Developmental Research Sequence (1980) provided a framework and process for implementing grounded theory which was modified to meet the goals of this study. Analysis of the data from the Survey of Contemporary Goals of Science Education showed strong preference for the contemporary goals of science education over past goals (n = 9). In addition, teachers showed a high degree of conviction in their beliefs of contemporary goals (average weighted mean for contemporary goals = 2.52) and a much lower degree of conviction in their beliefs of past goals (average weighted mean for past goals =.67). While addressing the main research question, the study's methodology was allowed to emerge from the interactions between researcher, participant, the data collection and analysis. This provided the researcher the opportunity to develop a research question from the data as outlined in grounded theory by Glaser and Strauss (1967). The study generated the grounded research question: What role do authentic science research projects play in a teacher's ability to embed his/her beliefs of science education in routine classroom practice? Authentic science research projects are investigations and lines of inquiry relating to an issue relevant to students' lives which, through research and experimentation, would demand engagement in the knowledge and processes of science (observing, hypothesizing, collecting data, inferring, etc.) and have value or meaning beyond school (Newmann, Secada, & Wehlage, 1995). By investigating science teachers' beliefs in the contemporary goals of science education and their classroom practice, this line of inquiry not only benefited the participants and the researcher in their pursuit of effective science education, but increased our knowledge base of science education reform and helped to provide a foundation for research in the future. (Abstract shortened by UMI.)

  3. Riddles of the Sphinx: Titan Science Questions at the End of Cassini-Huygens

    NASA Astrophysics Data System (ADS)

    Nixon, C. A.; Achterberg, R. K.; Buch, A.; Clark, R. N.; Coll, P.; Flasar, F. M.; Hayes, A. G.; Iess, L.; Lorenz, R. D.; Lopes, R.; Mastroguiseppe, M.; Raulin, F.; Smith, T.; Solomidou, A.; Sotin, C.; Strobel, D. F.; Turtle, E. P.; Vuitton, V.; West, R. A.; Yelle, R.

    2017-02-01

    The paper will describe the outstanding high-level questions for Titan science that are remaining at the end of the Cassini-Huygens mission, compiled by a cross-section of scientists from multiple instrument teams.

  4. The Big Science Questions About Mercury's Ice-Bearing Polar Deposits After MESSENGER

    NASA Astrophysics Data System (ADS)

    Chabot, N. L.; Lawrence, D. J.

    2018-05-01

    Mercury’s polar deposits provide many well-characterized locations that are known to have large expanses of exposed water ice and/or other volatile materials — presenting unique opportunities to address fundamental science questions.

  5. Enabling Research without Geographical Boundaries via Collaborative Research Infrastructures

    NASA Astrophysics Data System (ADS)

    Gesing, S.

    2016-12-01

    Collaborative research infrastructures on global scale for earth and space sciences face a plethora of challenges from technical implementations to organizational aspects. Science gateways - also known as virtual research environments (VREs) or virtual laboratories - address part of such challenges by providing end-to-end solutions to aid researchers to focus on their specific research questions without the need to become acquainted with the technical details of the complex underlying infrastructures. In general, they provide a single point of entry to tools and data irrespective of organizational boundaries and thus make scientific discoveries easier and faster. The importance of science gateways has been recognized on national as well as on international level by funding bodies and by organizations. For example, the US NSF has just funded a Science Gateways Community Institute, which offers support, consultancy and open accessible software repositories for users and developers; Horizon 2020 provides funding for virtual research environments in Europe, which has led to projects such as VRE4EIC (A Europe-wide Interoperable Virtual Research Environment to Empower Multidisciplinary Research Communities and Accelerate Innovation and Collaboration); national or continental research infrastructures such as XSEDE in the USA, Nectar in Australia or EGI in Europe support the development and uptake of science gateways; the global initiatives International Coalition on Science Gateways, the RDA Virtual Research Environment Interest Group as well as the IEEE Technical Area on Science Gateways have been founded to provide global leadership on future directions for science gateways in general and facilitate awareness for science gateways. This presentation will give an overview on these projects and initiatives aiming at supporting domain researchers and developers with measures for the efficient creation of science gateways, for increasing their usability and sustainability under consideration of the breadth of topics in the context of science gateways. It will go into detail for the challenges the community faces for collaborative research on global scale without geographical boundaries and will provide suggestions for further enhancing the outreach to domain researchers.

  6. On the Science of Embodied Cognition in the 2010s: Research Questions, Appropriate Reductionism, and Testable Explanations

    ERIC Educational Resources Information Center

    Nunez, Rafael

    2012-01-01

    "The Journal of the Learning Sciences" has devoted this special issue to the study of embodied cognition (as it applies to mathematics), a topic that for several decades has gained attention in the cognitive sciences and in mathematics education, in particular. In this commentary, the author aims to address crucial questions in embodied…

  7. Science at Age 13. Assessment of Performance Unit. Science Report for Teachers: 3.

    ERIC Educational Resources Information Center

    Murphy, Patricia; Schofield, Beta

    This report presents some of the results of two national surveys which assessed the performance of 13-year-old students in science. It includes an outline of the assessment framework; some of the questions which were written to match it; a description of how well, and how differently, students responded to the questions; and suggests how the…

  8. Questioning Reality, Questioning Science: Teaching Students in the Food and Agricultural Sciences about Epistemological, Ethical, and Empirical Controversies

    ERIC Educational Resources Information Center

    Chiles, Roburt; Coupland, John Neil

    2017-01-01

    The effective application of food science depends on social constraints, yet the training for food scientists does not adequately consider the contested social context under which food is processed, packaged, and prepared. We recently co-taught a new course ("Arguing about food") intended to introduce students to critical perspectives on…

  9. Identifying Meta-Clusters of Students' Interest in Science and Their Change with Age

    ERIC Educational Resources Information Center

    Baram-Tsabari, Ayelet; Yarden, Anat

    2009-01-01

    Nearly 6,000 science questions collected from five different web-based, TV-based and school-based sources were rigorously analyzed in order to identify profiles of K-12 students' interest in science, and how these profiles change with age. The questions were analyzed according to their topic, thinking level, motivation for and level of autonomy in…

  10. The Inclusion of Science Process Skills in Multiple Choice Questions: Are We Getting Any Better?

    ERIC Educational Resources Information Center

    Elmas, Ridvan; Bodner, George M.; Aydogdu, Bulent; Saban, Yakup

    2018-01-01

    The goal of this study was to analyze the science and technology questions with respect to science process skills (SPS) included in the "Transition from Primary to Secondary Education" (TEOG) examination developed for use with 8th-grade students in Turkey. The 12 TEOG exams administered in the course of three academic years from 2014…

  11. Learning by exploring planets, plate tectonics, and the process of inquiry

    NASA Astrophysics Data System (ADS)

    Bartlett, M. G.

    2006-12-01

    Inquiry-based instruction should be question driven, involve good triggers for learning, emphasize researchable questions, build research skills, provide mechanisms for students to monitor their progress, and draw on the expertise of the instruction to promote inquiry and reflection. At Brigham Young University Hawaii, we have implemented an inquiry based approach to teaching introductory Earth science which provides students with little or no background in the sciences immediate access to participation in current research of genuine scientific interest. An example of this process is presented in which students are engaged in reflecting on whether plate tectonics is a general theory of planetary organization and evolution. Students use topographic, magnetic, spectral, and other data from NASA and ESA missions to determine whether "Earth-style" plate tectonics is functional on planets and moons elsewhere in the solar system. Students are engaged in a data- rich environment from which they must formulate and test multiple hypotheses. Throughout the process, students are engaged in small groups to identify what they need to learn to answer their questions, what resources are available to them, how best to report their findings, and how they can assess the amount of learning that is taking place. Students' responses to the course have been overwhelmingly positive and suggest that many of the students are internalizing the meta-cognitive skills the course is designed to inculcate.

  12. Web-based pathology practice examination usage.

    PubMed

    Klatt, Edward C

    2014-01-01

    General and subject specific practice examinations for students in health sciences studying pathology were placed onto a free public internet web site entitled web path and were accessed four clicks from the home web site menu. Multiple choice questions were coded into. html files with JavaScript functions for web browser viewing in a timed format. A Perl programming language script with common gateway interface for web page forms scored examinations and placed results into a log file on an internet computer server. The four general review examinations of 30 questions each could be completed in up to 30 min. The 17 subject specific examinations of 10 questions each with accompanying images could be completed in up to 15 min each. The results of scores and user educational field of study from log files were compiled from June 2006 to January 2014. The four general review examinations had 31,639 accesses with completion of all questions, for a completion rate of 54% and average score of 75%. A score of 100% was achieved by 7% of users, ≥90% by 21%, and ≥50% score by 95% of users. In top to bottom web page menu order, review examination usage was 44%, 24%, 17%, and 15% of all accessions. The 17 subject specific examinations had 103,028 completions, with completion rate 73% and average score 74%. Scoring at 100% was 20% overall, ≥90% by 37%, and ≥50% score by 90% of users. The first three menu items on the web page accounted for 12.6%, 10.0%, and 8.2% of all completions, and the bottom three accounted for no more than 2.2% each. Completion rates were higher for shorter 10 questions subject examinations. Users identifying themselves as MD/DO scored higher than other users, averaging 75%. Usage was higher for examinations at the top of the web page menu. Scores achieved suggest that a cohort of serious users fully completing the examinations had sufficient preparation to use them to support their pathology education.

  13. Teacher-student interaction in contemporary science classrooms: is participation still a question of gender?†

    NASA Astrophysics Data System (ADS)

    Eliasson, Nina; Sørensen, Helene; Göran Karlsson, Karl

    2016-07-01

    We show that boys still have a greater access to the space for interaction in science classrooms, which is unexpected since in Sweden today girls perform better in these subjects than boys. Results from video-recorded verbal communication, referred to here as interaction, show that the distribution of teacher-student interaction in the final year of lower secondary school follows the same patterns as in the 1980s. The interaction space for all kinds of talk continues to be distributed according to the two-thirds rule for communication in science classrooms as described by previous research. We also show that the overall interaction space in science classrooms has increased for both boys and girls when talk about science alone is considered. Another finding which follows old patterns is that male teachers still address boys more often than girls. This holds true both for general talk and for talk about science. If a more even distribution of teacher-student interaction is desirable, these results once again need to be considered. More research needs to be undertaken before the association between girls' attitudes and interest in science in terms of future career choice and the opportunity to participate in teacher-student interaction is more clearly understood. Research conducted at Mid Sweden University, Department of Science Education and Mathematics.

  14. Safe and Sound? Scientists’ Understandings of Public Engagement in Emerging Biotechnologies

    PubMed Central

    Braun, Matthias; Starkbaum, Johannes; Dabrock, Peter

    2015-01-01

    Science communication is a widely debated issue, particularly in the field of biotechnology. However, the views on the interface between science and society held by scientists who work in the field of emerging biotechnologies are currently insufficiently explored. Therefore filling this gap is one of the urgent desiderata in the further development of a dialogue-oriented model of science-public interaction. Against this background, this article addresses two main questions: (1) How do the persons who work in the field of science perceive the public and its involvement in science? (2) What preferred modes of communication are stressed by those scientists? This research is based on a set of interviews with full professors from the field of biotechnology with a special focus on synthetic biology. The results show that scientists perceive the public as holding a primarily risk-focused view of science. On the one hand, different forms of science communication are thereby either seen as a chance to improve the public acceptance of science in general and one field of research in particular. On the other hand, the exchange with the public is seen as a duty because the whole of society is affected by scientific innovation. Yet, some of the stakeholders’ views discussed here conflict with debates on public engagement in technological innovation. PMID:26660160

  15. Library learning space--empirical research and perspective.

    PubMed

    Littleton, Dawn; Rethlefsen, Melissa

    2008-01-01

    Navigate the Net columns offer navigation to Web sites of value to medical librarians. For this issue, the authors recognize that librarians are frequently challenged to justify the need for the physical space occupied by a library in the context of the wide availability of electronic resources, ubiquitous student laptops, and competition for space needed by other institutional priorities. While this trend started years ago, it continues to raise a number of important practical and philosophical questions for libraries and the institutions they serve. What is the library for? What is library space best used for? How does the concept of "Library as Place" support informed decisions for librarians and space planners? In this issue, Web-based resources are surveyed that address these questions for libraries generally and health sciences libraries more specifically.

  16. Cosmology. A first course

    NASA Astrophysics Data System (ADS)

    Lachieze-Rey, Marc

    This book delivers a quantitative account of the science of cosmology, designed for a non-specialist audience. The basic principles are outlined using simple maths and physics, while still providing rigorous models of the Universe. It offers an ideal introduction to the key ideas in cosmology, without going into technical details. The approach used is based on the fundamental ideas of general relativity such as the spacetime interval, comoving coordinates, and spacetime curvature. It provides an up-to-date and thoughtful discussion of the big bang, and the crucial questions of structure and galaxy formation. Questions of method and philosophical approaches in cosmology are also briefly discussed. Advanced undergraduates in either physics or mathematics would benefit greatly from use either as a course text or as a supplementary guide to cosmology courses.

  17. The theoretical cognitive process of visualization for science education.

    PubMed

    Mnguni, Lindelani E

    2014-01-01

    The use of visual models such as pictures, diagrams and animations in science education is increasing. This is because of the complex nature associated with the concepts in the field. Students, especially entrant students, often report misconceptions and learning difficulties associated with various concepts especially those that exist at a microscopic level, such as DNA, the gene and meiosis as well as those that exist in relatively large time scales such as evolution. However the role of visual literacy in the construction of knowledge in science education has not been investigated much. This article explores the theoretical process of visualization answering the question "how can visual literacy be understood based on the theoretical cognitive process of visualization in order to inform the understanding, teaching and studying of visual literacy in science education?" Based on various theories on cognitive processes during learning for science and general education the author argues that the theoretical process of visualization consists of three stages, namely, Internalization of Visual Models, Conceptualization of Visual Models and Externalization of Visual Models. The application of this theoretical cognitive process of visualization and the stages of visualization in science education are discussed.

  18. Turkish preservice science teachers' socioscientific issues-based teaching practices in middle school science classrooms

    NASA Astrophysics Data System (ADS)

    Genel, Abdulkadir; Sami Topçu, Mustafa

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle school science classrooms, and the research question that guided the present study is: How can we characterize Turkish PSTs' SSI-based teaching practices in middle school science classrooms (ages 11-14)? Sample: In order to address the research question of this study, we explored 10 Turkish PSTs' SSI-based teaching practices in middle school science classrooms. A purposeful sampling strategy was used, thus, PSTs were specifically chosen because they were ideal candidates to teach SSI and to integrate SSI into the science curricula since they were seniors in the science education program who had to take the field experience courses. Design and method: The participants' SSI teaching practices were characterized in light of qualitative research approach. SSI-based teaching practices were analyzed, and the transcripts of all videotape recordings were coded by two researchers. Results: The current data analysis describes Turkish PSTs' SSI-based teaching practices under five main categories: media, argumentation, SSI selection and presentation, risk analysis, and moral perspective. Most of PSTs did not use media resources in their lesson and none of them considered moral perspective in their teaching. While the risk analyses were very simple and superficial, the arguments developed in the classrooms generally remained at a simple level. PSTs did not think SSI as a central topic and discussed these issues in a very limited time and at the end of the class period. Conclusions: The findings of this study manifest the need of the reforms in science education programs. The present study provides evidence that moral, media, argumentation, risk analysis, and pedagogical aspects of SSI-based instruction should be incorporated into educational courses designed for the Turkish teacher education programs such as the science teaching methods course. When we find ways to improve PSTs or science teachers' SSI teaching practices in terms of these components, we can provide useful information for curriculum developers, policy-makers, and science educators in Turkey and other countries, that are facing similar problems. We believe that this study would initiate more investigative and exploratory studies toward this goal.

  19. [The mixed design in nursing sciences or when a question of research calls for qualitative and quantitative strategies].

    PubMed

    Bourgault, Patricia; Gallagher, Frances; Michaud, Cécile; Saint-Cyr-Tribble, Denise

    2010-12-01

    The use of a mixed method research design raises many questions, especially regarding the paradigmatic position. With this paradigm, we may consider the mixed method design as the best way of answering a research question and the latter orients to one of the different subtypes of mixed method design. To illustrate the use of this kind of design, we propose a study such as conducted in nursing sciences. In this article, the challenges raised by the mixed method design, and the place of this type of research in nursing sciences is discussed.

  20. CosmoQuest: Creative Engagement & Citizen Science Ignite Authentic Science

    NASA Astrophysics Data System (ADS)

    Cobb, W. H.; Noel-Storr, J.; Tweed, A.; Asplund, S.; Aiello, M. P.; Lebofsky, L. A.; Chilton, H.; Gay, P.

    2016-12-01

    The CosmoQuest Virtual Research Facility offers in-depth experiences to diverse audiences nationally and internationally through pioneering citizen science. An endeavor between universities, research institutes, and NASA centers, CosmoQuest brings together scientists, educators, researchers, programmers—and individuals of all ages—to explore and make sense of our solar system and beyond. CosmoQuest creates pathways for engaging diverse audiences in authentic science, encouraging scientists to engage with learners, and learners to engage with scientists. Here is a sequence of activities developed by CosmoQuest, leveraging a NASA Discovery and New Frontiers Programs activity developed for the general STEAM community, that activates STEM learning. The Spark: Igniting Curiosity Art and the Cosmic Connection uses the elements of art—shape, line, color, texture, value—to hone observation skills and inspire questions. Learners explore NASA image data from celestial bodies in our solar system—planets, asteroids, moons. They investigate their geology, analyzing features and engaging in scientific discourse rising from evidence while creating a beautiful piece of art. The Fuel: Making Connections Crater Comparisons explore authentic NASA image data sets, engrossing learners at a deeper level. With skills learned in Art and the Cosmic Connection, learners analyze specific image sets with the feedback of mission team members. The Burn: Evolving Community Become a Solar System Mapper. Investigate and analyze NASA mission image data of Mars, Mercury, the Moon and Vesta through CosmoQuest's citizen science projects. Learners make real-world connections while contributing to NASA science. Scaffolded by an educational framework that inspires 21st century learners, CosmoQuest engages people in analyzing and interpreting real NASA data, inspiring questions, defining problems, and realizing their potential to contribute to genuine scientific results. Through social channels, CosmoQuest empowers and expands its community, including science and education-focused hangouts, virtual star parties, and diverse social media. CosmoQuest offers a hub for excellent resources throughout NASA and the larger astronomy community and fosters the conversations they inspire.

  1. Intelligent Design, A Young Universe, Astrology, UFO's, and More: Tackling Astronomical Pseudo-science

    NASA Astrophysics Data System (ADS)

    Fraknoi, A.

    2008-11-01

    During IYA educators and scientists will interact with the public in many ways. There will likely be public questions at IYA events about pseudo-scientific topics. While the particular pseudo-sciences that are in vogue change with time, these days popular astronomical pseudo-science includes creationism and intelligent design (and their denial of the age of the universe), astrology, UFO's as extra-terrestrial spaceships, selling star names, the ``face'' on Mars, the claim that the moon landings were a hoax, etc. We discuss some of the recent surveys of belief in pseudo-science and some ways to respond to questions about these topics. A separate resource guide to help answer questions about astronomical pseudoscience is also included in this volume.

  2. ArtArctic Science: a polarTREC effort to educate about Antarctica through art

    NASA Astrophysics Data System (ADS)

    Botella, J.; Racette, B.

    2013-12-01

    Formal scientific education is as important as ever for raising awarness about Antarctic issues, but some people resistance to learning about scienctific issues demands novel approaches for reaching people who are not in the classroom. ArtArctic Science is an interactive exhibit of photography and paintings presented at the Overture Center for the Arts, in Madison, WI by Monona Grove High School students and a science teacher that attempts to educate the general audience about Antarctic science. The exhibit explores art as a form of perceiving and understanding the world around us, and as a way of igniting the spark of curiosity that can lead to scientific inquiries. Antarctica has inspired explorers and scientists for over 100 years, and we add our work to efforts that share scientific results with common people. Antarctica offers stunning views of amazing geometric ice structures complemented and contrasted by the organisms that inhabit it that fascinate most everyone. We probe these scenes through photography and paintings knowing that there is more in each image than what the eye can 'see'. We invite the viewer to discover these secrets by engaging the observer in a mimicking of the scientific method (observation, questioning, finding an explanation, revising the explanation). Each art piece has a question and a scientific explanation hidden under a wooden lid. The observer is invited to explore the scene, involve itself with the scientific query, come up with an answer, and compare his or her idea with the hidden explanation. The exhibit is inspired by an Antarctic PolarTREC expedition in which our science teacher participated as a member of a scientific research team. In this presentation we share the knowledge acquired through this experience in hopes that it will help others attempting a similar Project.

  3. Generalized Information Theory Meets Human Cognition: Introducing a Unified Framework to Model Uncertainty and Information Search.

    PubMed

    Crupi, Vincenzo; Nelson, Jonathan D; Meder, Björn; Cevolani, Gustavo; Tentori, Katya

    2018-06-17

    Searching for information is critical in many situations. In medicine, for instance, careful choice of a diagnostic test can help narrow down the range of plausible diseases that the patient might have. In a probabilistic framework, test selection is often modeled by assuming that people's goal is to reduce uncertainty about possible states of the world. In cognitive science, psychology, and medical decision making, Shannon entropy is the most prominent and most widely used model to formalize probabilistic uncertainty and the reduction thereof. However, a variety of alternative entropy metrics (Hartley, Quadratic, Tsallis, Rényi, and more) are popular in the social and the natural sciences, computer science, and philosophy of science. Particular entropy measures have been predominant in particular research areas, and it is often an open issue whether these divergences emerge from different theoretical and practical goals or are merely due to historical accident. Cutting across disciplinary boundaries, we show that several entropy and entropy reduction measures arise as special cases in a unified formalism, the Sharma-Mittal framework. Using mathematical results, computer simulations, and analyses of published behavioral data, we discuss four key questions: How do various entropy models relate to each other? What insights can be obtained by considering diverse entropy models within a unified framework? What is the psychological plausibility of different entropy models? What new questions and insights for research on human information acquisition follow? Our work provides several new pathways for theoretical and empirical research, reconciling apparently conflicting approaches and empirical findings within a comprehensive and unified information-theoretic formalism. Copyright © 2018 Cognitive Science Society, Inc.

  4. The Forman Thesis: 40 Years After

    NASA Astrophysics Data System (ADS)

    Carson, Cathryn; Kojevnikov, Alexei; Trischler, Helmuth

    Forty years ago, in 1971, Paul Forman published Weimar Culture, Causality, and Quantum Theory, 1918-1927: Adaptation by German Physicists and Mathematicians to a Hostile Intellectual Environment. His landmark study (too long, too thorough and too fundamental to be called simply an article) became immediately famous, and famously controversial. It has remained at the heart of debates about the historical relationship between science and culture ever since. The controversy surrounding the Forman Thesis was practically unavoidable, for Forman's work put forward and placed at the centre of a broader discussion the argument that the cultural values prevalent in a given place and time could influence the results of discipline-bound research, i.e. the very content of scientific knowledge. This idea, if still controversial, has since become commonly used in cultural studies of science, but at the time of its introduction it created uproar as it explicitly contradicted generally accepted and cherished beliefs about science. Yet tectonic shifts were already underway, if not always visible, that would eventually put those very beliefs into question. The Forman study both reflected and forwarded these shifts in our general perspectives on the nature and practice of science. Despite some heated objections to its findings, Forman's work has fundamentally changed directions of research in the history, sociology and philosophy of science and established itself as a classic in this group of fields, sometimes collectively called science studies. In subsequent decades it has been read and discussed in practically every graduate program that trains students in those fields, circulating in numerous copies and translated into many languages, while the original publication in the journal Historical Studies in the Physical Sciences has long become a bibliographic rarity…

  5. Is astronomical research appropriate for developing countries?

    NASA Astrophysics Data System (ADS)

    Snowden, Michael S.

    An unproductive 45-cm astronomical telescope, given by JICA (Japan) to Sri Lanka, raises general questions as to the reasons for unproductive pure science in developing countries. Before installation, site, maintenance, and scientific objectives were discussed. The facility was launched with a conference organised by the UN Office for Outer Space Affairs. Unfortunately, no research or significant education has resulted after four years. The annual operating cost is U.S. $5000 per year, including salary for a trainee, maintenance, and a modest promotional programme. Comparison with a similar installation in Auckland suggests lack of funding or technical competence do not explain the failure in Sri Lanka. The facility in New Zealand, on the roof of Auckland University's Physics Department, has a slightly smaller budget but has led to modest but useful research and teaching. Lack of financial backing and expertise are often blamed for weak science in developing countries, but examination shows most of these countries have adequately skilled people, and plenty of resources for religion and military. General lack of motivation for science appears to be the principal reason. This lack of interest and highly inefficient bureaucracies are common to scientifically unproductive countries. They mostly lack the cultural and philosophical base of the European Renaissance that motivate the pursuit of modern science, an activity that violates human preferences. There are excellent facilities (ESO, SAAO, Cerro Tololo, and GONG) in some of these same countries, when administered from the West.

  6. How Could It Be? Calling for Science Curricula That Cultivate Morals and Values towards Other Animals and Nature

    ERIC Educational Resources Information Center

    Logan, Marianne R.; Russell, Joshua J.

    2016-01-01

    Can science curricula truly cultivate morals and values towards nature? This is the question that is raised by Carolina Castano Rodriguez in her critique of the new Australian Science curriculum. In this response to Castano Rodriguez's paper we ask two questions relating to: the influence of curricula on the relationships of children and other…

  7. Language Everywhere--Science. [Compiled from Columns in Six Issues of "Live Wire," August, October, and December 1984 and February, April, and August 1985.

    ERIC Educational Resources Information Center

    Live Wire, 1985

    1985-01-01

    The teaching activities presented in this document focus on teaching students the language of science through reading and writing. The first activity engages students in writing everything they know about a particular science topic, devising questions for further study, reading and gathering information to answer the questions, developing specific…

  8. Uncertainty vs. Information (Invited)

    NASA Astrophysics Data System (ADS)

    Nearing, Grey

    2017-04-01

    Information theory is the branch of logic that describes how rational epistemic states evolve in the presence of empirical data (Knuth, 2005), and any logic of science is incomplete without such a theory. Developing a formal philosophy of science that recognizes this fact results in essentially trivial solutions to several longstanding problems are generally considered intractable, including: • Alleviating the need for any likelihood function or error model. • Derivation of purely logical falsification criteria for hypothesis testing. • Specification of a general quantitative method for process-level model diagnostics. More generally, I make the following arguments: 1. Model evaluation should not proceed by quantifying and/or reducing error or uncertainty, and instead should be approached as a problem of ensuring that our models contain as much information as our experimental data. I propose that the latter is the only question a scientist actually has the ability to ask. 2. Instead of building geophysical models as solutions to differential equations that represent conservation laws, we should build models as maximum entropy distributions constrained by conservation symmetries. This will allow us to derive predictive probabilities directly from first principles. Knuth, K. H. (2005) 'Lattice duality: The origin of probability and entropy', Neurocomputing, 67, pp. 245-274.

  9. SPOKES: An end-to-end simulation facility for spectroscopic cosmological surveys

    DOE PAGES

    Nord, B.; Amara, A.; Refregier, A.; ...

    2016-03-03

    The nature of dark matter, dark energy and large-scale gravity pose some of the most pressing questions in cosmology today. These fundamental questions require highly precise measurements, and a number of wide-field spectroscopic survey instruments are being designed to meet this requirement. A key component in these experiments is the development of a simulation tool to forecast science performance, define requirement flow-downs, optimize implementation, demonstrate feasibility, and prepare for exploitation. We present SPOKES (SPectrOscopic KEn Simulation), an end-to-end simulation facility for spectroscopic cosmological surveys designed to address this challenge. SPOKES is based on an integrated infrastructure, modular function organization, coherentmore » data handling and fast data access. These key features allow reproducibility of pipeline runs, enable ease of use and provide flexibility to update functions within the pipeline. The cyclic nature of the pipeline offers the possibility to make the science output an efficient measure for design optimization and feasibility testing. We present the architecture, first science, and computational performance results of the simulation pipeline. The framework is general, but for the benchmark tests, we use the Dark Energy Spectrometer (DESpec), one of the early concepts for the upcoming project, the Dark Energy Spectroscopic Instrument (DESI). As a result, we discuss how the SPOKES framework enables a rigorous process to optimize and exploit spectroscopic survey experiments in order to derive high-precision cosmological measurements optimally.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nord, B.; Amara, A.; Refregier, A.

    The nature of dark matter, dark energy and large-scale gravity pose some of the most pressing questions in cosmology today. These fundamental questions require highly precise measurements, and a number of wide-field spectroscopic survey instruments are being designed to meet this requirement. A key component in these experiments is the development of a simulation tool to forecast science performance, define requirement flow-downs, optimize implementation, demonstrate feasibility, and prepare for exploitation. We present SPOKES (SPectrOscopic KEn Simulation), an end-to-end simulation facility for spectroscopic cosmological surveys designed to address this challenge. SPOKES is based on an integrated infrastructure, modular function organization, coherentmore » data handling and fast data access. These key features allow reproducibility of pipeline runs, enable ease of use and provide flexibility to update functions within the pipeline. The cyclic nature of the pipeline offers the possibility to make the science output an efficient measure for design optimization and feasibility testing. We present the architecture, first science, and computational performance results of the simulation pipeline. The framework is general, but for the benchmark tests, we use the Dark Energy Spectrometer (DESpec), one of the early concepts for the upcoming project, the Dark Energy Spectroscopic Instrument (DESI). As a result, we discuss how the SPOKES framework enables a rigorous process to optimize and exploit spectroscopic survey experiments in order to derive high-precision cosmological measurements optimally.« less

  11. Lessons Don't Have To Be Rocket Science!

    ERIC Educational Resources Information Center

    Morris, Andrew

    2002-01-01

    Describes an experimental program to teach adults who are curious about, but poorly educated in, science. Learning began with questions arising from that curiosity and discussion was encouraged by the teacher. Students felt empowered by the process and freely asked questions. (JOW)

  12. The six most essential questions in psychiatric diagnosis: a pluralogue part 1: conceptual and definitional issues in psychiatric diagnosis

    PubMed Central

    2012-01-01

    In face of the multiple controversies surrounding the DSM process in general and the development of DSM-5 in particular, we have organized a discussion around what we consider six essential questions in further work on the DSM. The six questions involve: 1) the nature of a mental disorder; 2) the definition of mental disorder; 3) the issue of whether, in the current state of psychiatric science, DSM-5 should assume a cautious, conservative posture or an assertive, transformative posture; 4) the role of pragmatic considerations in the construction of DSM-5; 5) the issue of utility of the DSM - whether DSM-III and IV have been designed more for clinicians or researchers, and how this conflict should be dealt with in the new manual; and 6) the possibility and advisability, given all the problems with DSM-III and IV, of designing a different diagnostic system. Part I of this article will take up the first two questions. With the first question, invited commentators express a range of opinion regarding the nature of psychiatric disorders, loosely divided into a realist position that the diagnostic categories represent real diseases that we can accurately name and know with our perceptual abilities, a middle, nominalist position that psychiatric disorders do exist in the real world but that our diagnostic categories are constructs that may or may not accurately represent the disorders out there, and finally a purely constructivist position that the diagnostic categories are simply constructs with no evidence of psychiatric disorders in the real world. The second question again offers a range of opinion as to how we should define a mental or psychiatric disorder, including the possibility that we should not try to formulate a definition. The general introduction, as well as the introductions and conclusions for the specific questions, are written by James Phillips, and the responses to commentaries are written by Allen Frances. PMID:22243994

  13. A qualitative study of the instructional behaviors and practices of a dyad of educators in self-contained and inclusive co-taught secondary biology classrooms during a nine-week science instruction grading period

    NASA Astrophysics Data System (ADS)

    Hardy, Shanon D.

    The Individuals with Disabilities Education Act (IDEA) (1997) mandates that students with disabilities have access to the general education curriculum. School districts have developed a variety of service delivery models to provide challenging educational experiences for all students. Co-teaching or collaborative teaching is the most widely used of the different service delivery models. While the philosophy of inclusion is widely accepted, the efficacy of the various inclusion models has recently been the focus of educational research. Researchers have questioned whether the presence of a special educator in the general education classroom has resulted in students with high incidence disabilities receiving specialized instruction. A qualitative study was designed to examine the instructional behaviors and practices exhibited and used by a dyad of educators in self-contained learning disabilities and inclusive co-taught secondary Biology classrooms during a nine-week science instruction grading period. In addition to utilizing interviews, observations, and classroom observation scales to answer the research questions, supporting student data (time-sampling measurement/opportunity to learn and student grades) were collected. The study concluded that the presence of a special educator in a co-taught classroom: (1) did contribute to the creation of a new learning environment, and notable changes in the instructional behaviors and practices of a general educator; (2) did contribute to limited specialized instruction for students with disabilities in the co-taught classrooms and embedded (not overt) special education practices related to the planning and decision-making of the educators; (3) did contribute to the creation of a successful co-teaching partnership including the use of effective teaching behaviors; and (4) did impact success for some of the students with disabilities in the co-taught classrooms; but (5) did not ensure the continuation of some of the new instructional behaviors and practices in the general education classroom if the collaboration ended.

  14. Website for the Space Science Division

    NASA Technical Reports Server (NTRS)

    Schilling, James; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.

  15. Providing Opportunities for Argumentation in Science Exam Settings

    ERIC Educational Resources Information Center

    Swanson, Lauren; Solorza, Ruben; Fissore, Cinzia

    2018-01-01

    This article explores undergraduates' efforts to engage in scientific argumentation during exam settings. Thirteen undergraduate students enrolled in an environmental science course completed exams with questions linked around a central theme. Three types of questions were used, including those that prompted students to construct scientific…

  16. THE STRESSOR IDENTIFICATION GUIDANCE DOCUMENT

    EPA Science Inventory

    THE STRESSOR IDENTIFICATION GUIDANCE DOCUMENT

    Susan M. Cormier, ORD/NRMRL, Susan B. Norton, ORD/NCEA, Glenn W. Suter, II ORD/NCEA, William Swietlik, OW lOST

    Science Question(s):

    MYP Science Question: How can multiple and possibly related causes of biological ...

  17. The Complexity of Primary Care Psychology: Theoretical Foundations.

    PubMed

    Smit, E H; Derksen, J J L

    2015-07-01

    How does primary care psychology deal with organized complexity? Has it escaped Newtonian science? Has it, as Weaver (1991) suggests, found a way to 'manage problems with many interrelated factors that cannot be dealt by statistical techniques'? Computer simulations and mathematical models in psychology are ongoing positive developments in the study of complex systems. However, the theoretical development of complex systems in psychology lags behind these advances. In this article we use complexity science to develop a theory on experienced complexity in the daily practice of primary care psychologists. We briefly answer the ontological question of what we see (from the perspective of primary care psychology) as reality, the epistemological question of what we can know, the methodological question of how to act, and the ethical question of what is good care. Following our empirical study, we conclude that complexity science can describe the experienced complexity of the psychologist and offer room for personalized client-centered care. Complexity science is slowly filling the gap between the dominant reductionist theory and complex daily practice.

  18. Novelty and Inductive Generalization in Human Reinforcement Learning.

    PubMed

    Gershman, Samuel J; Niv, Yael

    2015-07-01

    In reinforcement learning (RL), a decision maker searching for the most rewarding option is often faced with the question: What is the value of an option that has never been tried before? One way to frame this question is as an inductive problem: How can I generalize my previous experience with one set of options to a novel option? We show how hierarchical Bayesian inference can be used to solve this problem, and we describe an equivalence between the Bayesian model and temporal difference learning algorithms that have been proposed as models of RL in humans and animals. According to our view, the search for the best option is guided by abstract knowledge about the relationships between different options in an environment, resulting in greater search efficiency compared to traditional RL algorithms previously applied to human cognition. In two behavioral experiments, we test several predictions of our model, providing evidence that humans learn and exploit structured inductive knowledge to make predictions about novel options. In light of this model, we suggest a new interpretation of dopaminergic responses to novelty. Copyright © 2015 Cognitive Science Society, Inc.

  19. 2015 Science Mission Directorate Technology Highlights

    NASA Technical Reports Server (NTRS)

    Seablom, Michael S.

    2016-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation, e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  20. Inquiry based learning with a virtual microscope

    NASA Astrophysics Data System (ADS)

    Kelley, S. P.; Sharples, M.; Tindle, A.; Villasclaras-Fernández, E.

    2012-12-01

    As part of newly funded initiative, the Wolfson OpenScience Laboratory, we are linking a tool for inquiry based learning, nQuire (http://www.nquire.org.uk) with the virtual microscope for Earth science (http://www.virtualmicroscope.co.uk) to allow students to undertake projects and gain from inquiry based study thin sections of rocks without the need for a laboratory with expensive petrological microscopes. The Virtual Microscope (VM) was developed for undergraduate teaching of petrology and geoscience, allowing students to explore rock hand specimens and thin sections in a browser window. The system is based on HTML5 application and allows students to scan and zoom the rocks in a browser window, view in ppl and xpl conditions, and rotate specific areas to view birefringence and pleochroism. Importantly the VM allows students to gain access to rare specimens such as Moon rocks that might be too precious to suffer loss or damage. Experimentation with such specimens can inspire the learners' interest in science and allows them to investigate relevant science questions. Yet it is challenging for learners to engage in scientific processes, as they may lack scientific investigation skills or have problems in planning their activities; for teachers, managing inquiry activities is a demanding task (Quintana et al., 2004). To facilitate the realization of inquiry activities, the VM is being integrated with the nQuire tool. nQuire is a web tool that guides and supports students through the inquiry process (Mulholland et al., 2011). Learners are encouraged to construct their own personally relevant hypothesis, pose scientific questions, and plan the method to answer them. Then, the system enables users to collect and analyze data, and share their conclusions. Teachers can monitor their students' progress through inquiries, and give them access to new parts of inquiries as they advance. By means of the integration of nQuire and the VM, inquiries that involve collecting data through a microscope can be created and supported. To illustrate the possibilities of these tools, we have designed two inquiries that engage learners in the study of Moon rock samples under the microscope, starting from general questions such as comparison of Moon rocks or determining the origin of meteorites. One is aimed at undergraduate Geology students; the second has been conceived for the general public. Science teachers can reuse these inquiries, adapt them as they need, or create completely new inquiries using nQuire's authoring tool. We will report progress and demonstrate the combination of these two on-line tools to create an open educational resource allowing educators to design and run science inquiries for Earth and planetary science in a range of settings from schools to universities. Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., Kyza, E., et al. (2004). A scaffolding design framework for software to support science inquiry. Journal of the Learning Sciences, 13(3), 337-386. Mulholland, P., Anastopoulou, S., Collins, T., FeiBt, M., Gaved, M., Kerawalla, L., Paxton, M., et al. (2011). nQuire: Technological support for personal inquiry learning. IEEE Transactions on Learning Technologies. First published online, December 5, 2011, http://doi.ieeecomputersociety.org/10.1109/TLT.2011.32.

  1. Science in the Eyes of Preschool Children: Findings from an Innovative Research Tool

    NASA Astrophysics Data System (ADS)

    Dubosarsky, Mia D.

    How do young children view science? Do these views reflect cultural stereotypes? When do these views develop? These fundamental questions in the field of science education have rarely been studied with the population of preschool children. One main reason is the lack of an appropriate research instrument that addresses preschool children's developmental competencies. Extensive body of research has pointed at the significance of early childhood experiences in developing positive attitudes and interests toward learning in general and the learning of science in particular. Theoretical and empirical research suggests that stereotypical views of science may be replaced by authentic views following inquiry science experience. However, no preschool science intervention program could be designed without a reliable instrument that provides baseline information about preschool children's current views of science. The current study presents preschool children's views of science as gathered from a pioneering research tool. This tool, in the form of a computer "game," does not require reading, writing, or expressive language skills and is operated by the children. The program engages children in several simple tasks involving picture recognition and yes/no answers in order to reveal their views about science. The study was conducted with 120 preschool children in two phases and found that by the age of 4 years, participants possess an emergent concept of science. Gender and school differences were detected. Findings from this interdisciplinary study will contribute to the fields of early childhood, science education, learning technologies, program evaluation, and early childhood curriculum development.

  2. SciStarter 2.0: A Digital Platform to Foster and Study Sustained Engagement in Citizen Science

    NASA Astrophysics Data System (ADS)

    Hoffman, C.

    2016-12-01

    SciStarter is a popular online hotspot for citizen science. As a Match.com meets Amazon for citizen science projects, we connect the millions of citizen scientists to thousands of projects and events, and to the resources they need to participate. These opportunities represent ways for the general public from kids to adults to get involved in scientific research. Recently, SciStarter developed a new digital infrastructure to support sustained engagement in citizen science, and research into the behaviors and motivations of participants. The new digital infrastructure of SciStarter includes contribution tracking tools to make it easier to participate in multiple projects, enhanced GIS information to promote locally relevant projects, an online personal dashboard to keep track of contributions, and the use of these tools (contribution tracking, GIS, dashboard) by project owners and researchers to better understand and respond to the needs and interests of citizen science participants. We will provide an overview of these tools and the research behind their development. We will then explore how these new tools advance citizen science towards a future with more pathways to participatory policymaking, expanded access to informal STEM experiences, and lowered barriers to citizen science. Finally, we will present the research questions that can and will be answered through the site by practitioners in the diverse science and citizen science fields.

  3. Instructional leaders for all? High school science department heads and instructional leadership across all science disciplines

    NASA Astrophysics Data System (ADS)

    Sanborn, Stephen

    Many high school science departments are responding to changes in state standards with respect to both curricular content and instructional practices. In the typical American high school organization, the academic department head is ideally positioned to influence change in the instructional practices of teachers within the department. Even though science department heads are well situated to provide leadership during this period of transition, the literature has not addressed the question of how well science department heads believe they can provide instructional leadership for all of the teachers in their department, whether they are teaching within and outside of the head's own sub-discipline. Nor is it known how science department heads view the role of pedagogical content knowledge in teaching different science disciplines. Using an online survey comprised of 26 objective questions and one open response question, a 54-respondent sample of science department heads provided no strong consensus regarding their beliefs about the role of pedagogical content knowledge in science instruction. However, science department heads expressed a significant difference in their views about their capacity to provide instructional leadership for teachers sharing their science content area compared to teachers instructing other science content areas. Given wide-spread science education reform efforts introduced in response to the Next Generation Science Standards, these findings may serve to provide some direction for determining how to best support the work of science department heads as they strive to provide instructional leadership for the teachers in their departments.

  4. You Asked, We Answered! A Podcasting Series by Scientists for K-12 Teachers Through the Pennsylvania Earth Science Teachers Association (PAESTA)

    NASA Astrophysics Data System (ADS)

    Guertin, L. A.; Tait, K.

    2015-12-01

    The Pennsylvania Earth Science Teachers Association (PAESTA) recently initiated a podcasting series "You Asked, We Answered!" for K-12 teachers to increase their science content knowledge through short audio podcasts, supplemented with relevant resources. The 2015-2016 PAESTA President Kathy Tait generated the idea of tapping in to the content expertise of higher education faculty, post-doctoral researchers, and graduate students to assist K-12 teachers with increasing their own Earth and space content knowledge. As time and resources for professional development are decreasing for K-12 teachers, PAESTA is committed to not only providing curricular resources through our online database of inquiry-based exercises in the PAESTA Classroom, but providing an opportunity to learn science content from professionals in an audio format.Our goal at PAESTA has been to release at least one new podcast per month that answers the questions asked by PAESTA members. Each podcast is recorded by an Earth/space science professional with content expertise and placed online with supporting images, links, and relevant exercises found in the PAESTA Classroom. Each podcast is available through the PAESTA website (http://www.paesta.psu.edu/podcasts) and PAESTA iTunes channel (https://itunes.apple.com/us/podcast/paesta-podcasts/id1017828453). For ADA compliance, the PAESTA website has a transcript for each audio file. In order to provide these podcasts, we need the participation of both K-12 teachers and science professionals. On the PAESTA Podcast website, K-12 teachers can submit discipline questions for us to pass along to our content experts, questions relating to the "what" and "how" of the Earth and space sciences, as well as questions about Earth and space science careers. We ask science professionals for help in answering the questions posed by teachers. We include online instructions and tips to help scientists generate their podcast and supporting materials.

  5. Research perspectives on the public and fire management: a synthesis of current social science on eight essential questions

    Treesearch

    Sarah M. McCaffrey; Christine S. Olsen

    2012-01-01

    As part of a Joint Fire Science Program project, a team of social scientists reviewed existing fire social science literature to develop a targeted synthesis of scientific knowledge on the following questions: 1. What is the public's understanding of fire's role in the ecosystem? 2. Who are trusted sources of information about fire? 3. What are the public...

  6. Science Questions and Broad Outline of Technology Needs of the Decade 2013-2022

    NASA Technical Reports Server (NTRS)

    SlIllon-Miller, A. A.

    2012-01-01

    We present an overview of the top priority science questions outlined in the Planetary Exploration Decadal Survey, "Vision and Voyages for Planetary Science in the Decade 2013-2022." The recommended mission portfolio, along with expected infrastructure challenges, should drive investments over the decade. The instrument and technology needs for the next decade will be presented, with a summary of progress since the Decadal.

  7. Biology and data-intensive scientific discovery in the beginning of the 21st century.

    PubMed

    Smith, Arnold; Balazinska, Magdalena; Baru, Chaitan; Gomelsky, Mark; McLennan, Michael; Rose, Lynn; Smith, Burton; Stewart, Elizabeth; Kolker, Eugene

    2011-04-01

    The life sciences are poised at the beginning of a paradigm-changing evolution in the way scientific questions are answered. Data-Intensive Science (DIS) promise to provide new ways of approaching scientific challenges and answering questions. This article is a summary of the life sciences issues and challenges as discussed in the DIS workshop in Seattle, September 19-20, 2010. © Mary Ann Liebert, Inc.

  8. The Mysterious Universe - Exploring Our World with Particle Accelerators

    ScienceCinema

    Brau, James E [University of Oregon

    2018-04-24

    The universe is dark and mysterious, more so than even Einstein imagined. While modern science has established deep understanding of ordinary matter, unidentified elements ("Dark Matter" and "Dark Energy") dominate the structure of the universe, its behavior and its destiny. What are these curious elements? We are now working on answers to these and other challenging questions posed by the universe with experiments at particle accelerators on Earth. Results of this research may revolutionize our view of nature as dramatically as the advances of Einstein and other quantum pioneers one hundred years ago. Professor Brau will explain for the general audience the mysteries, introduce facilities which explore them experimentally and discuss our current understanding of the underlying science. The presentation is at an introductory level, appropriate for anyone interested in physics and astronomy.

  9. Physical Chemistry for the Chemical and Biological Sciences (by Raymond Chang)

    NASA Astrophysics Data System (ADS)

    Pounds, Andrew

    2001-05-01

    This book does offer an alternative approach to physical chemistry that is particularly well suited for those who want to pursue a course of study more focused on the biological sciences. It could also be an excellent choice for schools that mainly serve preprofessional programs or for schools that have split physical chemistry tracks to independently serve the B.S. and B.A. degrees. Since the book focuses on single-variable mathematics, schools that require only one year of calculus for their chemistry degree could also think about adopting it. However, in general, the use of the text as a drop-in replacement for physical chemistry for the B.S. degree is questionable owing to its lack of focus on quantum mechanics and its implications for spectroscopy.

  10. STS-107 Crew Interviews: David Brown MS1

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-107 Mission Specialist 1 David Brown is seen during this preflight interview where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career. Brown outlines his role in the mission in general, and specifically during the conducting of on-board science experiments. Brown discusses the following instruments and experiments in detail: ARMS (Advanced Respiratory Monitoring System), MEIDEX (Mediterranean Israeli Dust Experiment), Combustion Module 2, and FREESTAR (Fast Reaction Enables Science Technology and Research). He also describes the new primary payload carrier, the SPACEHAB research double module which doubles the amount of space available for research. Brown shares his thoughts about the importance of international cooperation in mission planning and the need for scientific research in space.

  11. Island biogeography: Taking the long view of nature's laboratories.

    PubMed

    Whittaker, Robert J; Fernández-Palacios, José María; Matthews, Thomas J; Borregaard, Michael K; Triantis, Kostas A

    2017-09-01

    Islands provide classic model biological systems. We review how growing appreciation of geoenvironmental dynamics of marine islands has led to advances in island biogeographic theory accommodating both evolutionary and ecological phenomena. Recognition of distinct island geodynamics permits general models to be developed and modified to account for patterns of diversity, diversification, lineage development, and trait evolution within and across island archipelagos. Emergent patterns of diversity include predictable variation in island species-area relationships, progression rule colonization from older to younger land masses, and syndromes including loss of dispersability and secondary woodiness in herbaceous plant lineages. Further developments in Earth system science, molecular biology, and trait data for islands hold continued promise for unlocking many of the unresolved questions in evolutionary biology and biogeography. Copyright © 2017, American Association for the Advancement of Science.

  12. The Science Shop for Physics: an interface between practical problems in society and physical knowledge

    NASA Astrophysics Data System (ADS)

    van den Berg, G. P.

    1998-03-01

    Since some 20 years most Dutch universities have one or more science shops. Central shops handle research questions for all disciplines. Specialized shops are part of a department of chemistry or medicine, history, social science, etc. The shops have evolved rather differently, but their main mission still is to help social groups that lack money and have no easy access to scientific knowledge, e.g. neighbourhood, environmental, third world or patient groups. Most also help non-commercial organizations such as schools, trade unions or local authorities. Low-cost help can be provided because students do the work as part of their training, mainly in student projects (literature search, practical work, graduation, etc.). A total staff of 80, helped by 600 students, 250 voluntary and 50 paid researchers, handle 1500 questions resulting in 300 reports (estimated figures 1995). Science shops for physics (`Physics Shop', PS) have to deal with practical problems, generally involving classical physics. Major topics are noise, vibration, radiation, indoor climate and energy: most of the work lies in estimating/measuring relevant parameters, assessing impact, seeking solutions. The 3 Dutch PS's have developed in different directions. One is run entirely by students and deals with small, concrete problems. The second PS is managed by a co-ordinator who mediates between client groups and physics staff members who assist students in small and larger projects. The third has a lot of in-house expertise, and the shop staff is in direct contact with client groups as well as students who work in the PS itself. In questions submitted to the PS it is not always immediately clear what to do or how to do it because of the non-scientific phrasing of the problems and problems include non-physical (e.g. technical, health or legal) aspects. Also, difficulties in solving the problems are typically not in the underlying physics, but in the lack of accurate data and of control of the complex environment. However, these very aspects are important from an educational point of view. Through these problems students (and physicists) may gain more insight into how lay people percieve and make use of science, and into the position of science in relation to other ways in which people try to understand their world.

  13. Science education: A meta-analysis of major questions

    NASA Astrophysics Data System (ADS)

    Anderson, Ronald D.; Kahl, Stuart R.; Glass, Gene V.; Smith, Mary Lee

    A multi-institutional endeavor was initiated to integrate the findings of extant research studies directed toward the major science education research questions. The research questions were selected by a largely empirical process of identifiying the most frequently researched questions in the literature. These questions were assigned to various researchers who developed coding sheets and procedures with many features in common. This article describes the overall operation of the project, the research questions identified, and some rudiments of meta-analysis. The results of the several meta-analysis are reported in the other articles of this issue of the Journal. The final article in this issue deals with research topics for which data are drawn from one or more of the separate meta-analyses.

  14. Promoting an active form of learning out-of-class via answering online "study questions" leads to higher than expected exam scores in General Biology.

    PubMed

    Gibson, Susan I

    2015-01-01

    A rising need for workers in science, technology, engineering and mathematics (STEM) fields has fueled interest in improving teaching within STEM disciplines. Numerous studies have demonstrated the benefits of active learning approaches on student learning outcomes. However, many of these studies have been conducted in experimental, rather than real-life class, settings. In addition, most of these studies have focused on in-class active learning exercises. This study tested the effects of answering questions outside of class on exam performance for General Biology students at the University of Minnesota. An online database of 1,020 multiple-choice questions covering material from the first half of the course was generated. Students in seven course sections (with an average of ∼265 students per section) were given unlimited access to the online study questions. These students made extensive use of the online questions, with students answering an average of 1,323 questions covering material from the half of the semester for which the questions were available. After students answered a set of questions, they were shown the correct answers for those questions. More specific feedback describing how to arrive at the correct answer was provided for the 73% of the questions for which the correct answers were not deemed to be self-explanatory. The extent to which access to the online study questions improved student learning outcomes was assessed by comparing the performance on exam questions of students in the seven course sections with access to the online study questions with the performance of students in course sections without access to the online study questions. Student performance was analyzed for a total of 89 different exams questions that were not included in the study questions, but that covered the same material covered by the study questions. Each of these 89 questions was used on one to five exams given to students in course sections that had access to the online study questions and on three to 77 exams given to students in sections that lacked such access. Data from over 1,800 students in sections with access to the online study questions show that those students scored a statistically significant average of 6.6% points higher on the exam questions analyzed than students in sections without access to the study questions. This difference was greater than the average amount necessary to raise students' exam grades by one grade (e.g., from a "B-" to a "B"). In addition, there was a higher correlation between number of questions answered and success on exam questions on material related to the study questions than between number of questions answered and success on exam questions on material unrelated to the study questions. The online study question system required substantial effort to set up, but required minimal effort to maintain and was effective in significantly raising average exam scores for even very large course sections.

  15. Experiment-o-mania

    NASA Astrophysics Data System (ADS)

    Drndarski, Marina

    2015-04-01

    Every 21st century student is expected to develop science literacy skills. As this is not part of Serbian national curriculum yet, we decided to introduce it with this project. Experiment-o-mania provides students to experience science in different and exciting way. It makes opportunity for personalized learning offering space and time to ask (why, where, how, what if) and to try. Therefore, we empower young people with skills of experimenting, and they love science back. They ask questions, make hypothesis, make problems and solve them, make mistakes, discuss about the results. Subsequently this raises the students' interest for school curriculum. This vision of science teaching is associated with inquiry-based learning. Experiment-o-mania is the unique and recognizable teaching methodology for the elementary school Drinka Pavlović, Belgrade, Serbia. Experiment-o-mania implies activities throughout the school year. They are held on extra class sessions, through science experiments, science projects or preparations for School's Days of science. Students learn to ask questions, make observations, classify data, communicate ideas, conduct experiments, analyse results and make conclusions. All science teachers participate in designing activities and experiments for students in Experiment-o-mania teaching method. But they are not alone. Teacher of fine arts, English teachers and others also take part. Students have their representatives in this team, too. This is a good way to blend knowledge among different school subject and popularize science in general. All the experiments are age appropriate and related to real life situations, local community, society and the world. We explore Fibonacci's arrays, saving energy, solar power, climate change, environmental problems, pollution, daily life situations in the country or worldwide. We introduce great scientists as Nikola Tesla, Milutin Milanković and sir Isaac Newton. We celebrate all relevant international days, weeks, months or years (this year, 2015. the students will prepare opera science for celebrate the International Year of Light and International Year of Soils). Experiment-o-mania makes science teaching and learning exciting for teachers as well as for students. The acquisition of this kind of teaching method (and its frequency) empowers students and become self-regulated learners, independent, to creatively solve problems, to innovate, to truly understand and appreciate science and to better understand themselves and the world around them.

  16. How to Talk About Science: Lessons from a Middle School Science Classroom

    NASA Astrophysics Data System (ADS)

    Cushman-Patz, B. J.

    2010-12-01

    Middle school students are curious, energetic, and impatient. A middle school science teacher is always challenged to find ways to relate the content she’d like to convey to the students’ everyday lives, working to both satiate and foster their natural curiosity. She must communicate science in language appropriate for her audience, teaching new vocabulary words the first time she uses them, and reviewing them often. A thriving middle school science classroom is noisy, messy, and fun. Understanding what makes this classroom dynamic work can lead to better communication about science to any audience. 1) Know your bottom-line message, and keep it simple. Research science is complicated and nuanced. Your audience may be interested in some of these details, but start with the big picture first, and fill in the details as appropriate. 2) Avoid jargon. Use language that you would use to explain science to your 13-year-old neighbor or your 85-year old grandmother. They know what a volcano is, but they may not know the difference between a crater and a caldera. They definitely don’t know what a phreatomagmatic eruption is. As you introduce necessary jargon into your discussion, define it clearly in terms of something you are sure they do know and understand. 3) Engage the audience. Use pictures; use your hands; use common-reference points. Whenever possible, get the audience members to use their hands to mimic your motion. Encourage them to try to reframe what you say in terms that they’re comfortable with. Make it a two-way conversation 4) Pause. New concepts take time to absorb. Take a breath; give your audience a moment to absorb what you just explained and to formulate questions they may have. 5) Pay attention to cues. Middle school students make it obvious when they’re bored; adults tend to be more subtle. When eyes wander or eyelids droop, ask a question that engages your audience, even if it’s just, “do you follow?” or, “where did I lose you?” Communicating about science requires us to remember what it was like before we became experts in our disciplines. Middle school students think science is fun; let’s use the lessons from a successful middle school classroom to model our communication about science in general. We can work together towards a more science-literate society.

  17. A Thesaurus-Linked Science Question-Banking System.

    ERIC Educational Resources Information Center

    Johnson, Sandra; Maher, Brian

    1984-01-01

    Outlines implementation and uses of the computerized question-banking system of the thesaurus-linked browse procedure used by APU National Assessment in Science Programme. The ROOT Thesaurus, a comprehensive indexing and searching tool for technological applications, is described and its modifications are discussed as the basis for the…

  18. An exploratory study of the impact of an inquiry-based professional development course on the beliefs and instructional practices of urban inservice teachers

    NASA Astrophysics Data System (ADS)

    Suters, Leslie Ann

    Five urban teachers completed a total of 50 contact hours of professional development in which they: participated in authentic, inquiry-based experiences facilitated by a scientist; learned new science content related to the nature of science and scientific inquiry; developed inquiry-based lesson plans to implement in their classrooms; and developed science-specific strategies to mentor novice and experienced teachers. The focus of this research was to determine changes in their: beliefs and instructional practices; understanding of scientific literacy; and efficacy toward mentoring other teachers. A collective case study methodology was used in which participants completed questionnaires and were observed and interviewed, prior to and at the completion of the course. They were also asked to complete reflective journal questions during the course. While the teachers' beliefs did not change as measured by the Teacher's Pedagogical Philosophy Interview (TPPI) (teacher-centered beliefs for "Teacher Actions" and "Teacher and Content"; conceptual/student-centered for "Student Actions" and "Philosophy of Teaching"), their teacher-centered behaviors changed to conceptual/student-centered as measured by the Secondary Science Teachers Analysis Matrix (STAM). Their responses to the Constructivist Learning Environment Survey (CLES) generally correlated with their post-STAM results. Participants gained a better understanding of the creative aspect of the nature of science as measured by the Modified Nature of Scientific Knowledge Scale (MNSKS) instrument, while two novice teachers improved their personal science teaching efficacy after participation in the course as measured by the Science Teaching Efficacy Belief Instrument (STEBI). Four of the five teachers felt better prepared to mentor others to use inquiry-based instruction. In contrast to these positive trends, their outcome expectancy beliefs (STEBI subscale) were generally lower than their perceived personal teaching efficacy before and after the course, which could be an indicator of the environment in urban schools where there is often little support or equipment for innovative practices in science. Generally there was a shift from traditional to constructivist instructional practices as measured by the STAM, while results varied for teacher beliefs and efficacy regarding science instruction as measured by the TPPI, CLES, and STEBI and teachers' understanding of the nature of science as measured by the MNSKS.

  19. SMD Technology Development Story for NASA Annual Technology report

    NASA Technical Reports Server (NTRS)

    Seablom, Michael S.

    2017-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community-including the recommendations set forth in the National Research Council (NRC) decadal surveys-and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions-Heliophysics, Earth Science, Planetary Science, and Astrophysics-develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation-e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  20. Core List of Astronomy and Physics Journals

    NASA Astrophysics Data System (ADS)

    Bryson, Liz; Fortner, Diane; Yorks, Pamela

    This is a list of highly-used and highly-cited physics and astronomy journals. "Use" is measured largely on paper-journal counts from selective academic research-level libraries. Citation count titles are drawn from Institute for Scientific Information (ISI) data. Recognition is given to entrepreneurial electronic-only or new-style electronic journals. Selective news, magazine, and general science journals are omitted. The compilers welcome questions, suggestions for additions, or other advice. Comments may be sent c/o Diane Fortner, Physics Library, University of California, Berkeley. Dfortner@library.berkeley.edu

  1. The use of Second Life as an effective means of providing informal science education to secondary school students

    NASA Astrophysics Data System (ADS)

    Amous, Haytham

    This research study evaluated the use of Second Life and its virtual museums as a means of providing effective informal science education for both junior high and high school students. This study investigated whether the attitudes of students toward science change as a result of scholastic exposure to the science museums in Second Life. The dependence between attitudes and learning styles was also investigated. The data gathered from the experiences and the perceptions of students using Second Life in informal science education were analyzed to address the questions of the study. The researcher used qualitative and quantitative research methodologies to investigate the research questions. The first and second research questions were quantitative and used TOSRA2 research instrument to assess attitude and perceptions and learning style questionnaire scores. The attitudes toward science before and after visiting the Second Life museums showed no significant change. A weak relationship between the attitudes toward science and the participants learning styles was found. The researcher therefore concluded that no relationship existed between the average of the TOSRA scores and the learning styles questionnaire scores. To address questions research three and four, a collective qualitative case study approach (Creswell, 2007), as well as a structured interviews focusing on the students' perspectives about using Second Life for informal science education was used. The students did not prefer informal science education using second life over formal education. This was in part attributed to the poor usability and/or familiarity with the program. Despite the students' technical difficulties confronted in visiting Second Life the perception of student about their learning experiences and the use of Second Life on informal science environment were positive.

  2. Literacy, science, and science education

    NASA Astrophysics Data System (ADS)

    McVittie, Janet Elizabeth

    In examining the connections between literacy, science and science education, I laid out a number of questions. For example, what sorts of literate tools might facilitate writing to learn, and do children who are just becoming literate use these tools? I then examined the writing of children in science class in an attempt to determine if their writing can indeed facilitate their learning. The results of this research could help teachers make decisions about the use of writing in the learning of science. The kinds of literate tools I identified as being potentially helpful were transitionals---those words or grammatical devices which demonstrate how ideas are connected. Also, I suggested that data tables, sentences and paragraphs were also useful for students to learn. I found that grade 5/6 students used a wide range of literate tools, but that they were much more competent with those tools which were both oral and literate than those which could only be used for writing (punctuation, sentences, paragraphs, and data tables). When I attempted to determine if the children used their writing to learn, I found very little evidence that this was certainly so. However, there was some evidence that paragraphs had the potential to create a "dialogue" between student writing and thinking, so the students could make more explicit connections between science ideas. Lastly, I noticed certain gender difference in the classroom. Because of this, I contrasted the writing of the girls with the writing of the boys. I learned the girls were generally much more capable writers than the boys. More interesting, however, was that the girls generally attempted to explain their science concepts in different ways than did the boys. The girls were more likely to rely on their own reasoning, whereas the boys were more likely to persist in using culturally created science explanations. The research findings have important implications for analyzing students' learning and for finding ways to facilitate learning for both girls and boys.

  3. Exploring spiritual value in earth science concept through learning using chain till unanswered questions

    NASA Astrophysics Data System (ADS)

    Johan, Henny; Suhandi, Andi; Samsudin, Ahmad; Ratna Wulan, Ana

    2017-08-01

    Now days, the youth's moral decline is an urgent problem in our country. Natural science especially earth and space science learning is potential to insert spirituality value in its learning activities. The aim of this study is to explore concept of planet earth to embed spirituality attitude through earth science learning. Interactive conceptual learning model using chain till unanswered questions (CTUQ) with help visualizations was implemented in this study. 23 pre-service physics teacher in Bengkulu, Indonesia participated in this study. A sixth indicator of spiritual aspect about awareness of divinity were used to identify the shifted of students' spirituality. Quasi experimental research design had been utilized to implement the learning model. The data were collected using a questionnaire in pretest and posttest. Open ended question was given at post-test only. Questionnaire was analyzed quantitative while open ended question was analyzed qualitatively. The results show that after implementation student's spiritual shifted to be more awareness of divinity. Students' response at scale 10 increased been 97.8% from 87.5% of total responses. Based on analysis of open ended question known that the shifted was influenced by spiritual value inserted in concepts, CTUQ, and media visualization used to show unobservable earth phenomenon during learning activities. It can be concluded that earth science concepts can be explored to embed spiritual aspect.

  4. Question Asking in the Science Classroom: Teacher Attitudes and Practices

    NASA Astrophysics Data System (ADS)

    Eshach, Haim; Dor-Ziderman, Yair; Yefroimsky, Yana

    2014-02-01

    Despite the wide agreement among educators that classroom learning and teaching processes can gain much from student and teacher questions, their potential is not fully utilized. Adopting the view that reporting both teachers' (of varying age groups) views and actual classroom practices is necessary for obtaining a more complete view of the phenomena at hand, the present study closely examines both cognitive and affective domains of: (a) teachers' views (via interviews) concerning: (1) importance and roles of teacher and student questions, (2) teacher responses, and (3) planning and teacher training; and (b) teachers' actual practices (via classroom observations) concerning: (1) number and (2) level of teacher and student questions, as well as (3) teachers' responses to questions. The data were collected from 3 elementary, 3 middle, and 3 high school science teachers and their respective classroom students. The findings lay out a wide view of classroom questioning and teachers' responses, and relate what actually occurs in classes to teachers' stated views. Some of the study's main conclusions are that a gap exists between how science researchers and teachers view the role of teacher questions: the former highlight the cognitive domain, while the latter emphasize the affective domain.

  5. Analyzing arguments in science classroom discourse: Can teachers' questions distort scientific authority?

    NASA Astrophysics Data System (ADS)

    Russell, Thomas L.

    Teaching commonly involves asking questions, in sequences that enable a teacher to control the direction and duration of subject-matter discussion, while also maintaining attention and order. The form of questions and their role as means of instruction have received more study and discussion than the function of questions and their role in achieving particular ends of instruction. This study examines qualitatively the function of questions in developing arguments that establish scientific knowledge claims on the basis of reasons and evidence, and thereby suggest a rational attitude toward authority. Peters' (1966) distinction between a teacher's (rational) authority of knowledge and (traditional) authority of position is linked with Toulmin's (1958) pattern for rational arguments to establish a qualitative framework for judging the function of questions in arguments. Episodes from three science lessons are presented in verbatim transcription and analyzed to reveal three different ways in which teachers did not achieve the standard of suggesting a rational attitude toward authority. Question sequences such as these have a clear potential for distorting student understanding of the nature of scientific authority, with possible negative consequences for students' attitudes toward science.Received: 30 November 1981;

  6. Questions as indicators of ocean literacy: students' online asynchronous discussion with a marine scientist

    NASA Astrophysics Data System (ADS)

    Fauville, Géraldine

    2017-11-01

    In this article, 61 high-school students learned about ocean acidification through a virtual laboratory followed by a virtual lecture and an asynchronous discussion with a marine scientist on an online platform: VoiceThread. This study focuses on the students' development of ocean literacy when prompted to ask questions to the scientist. The students' questions were thematically analysed to assess (1) the kind of reasoning that can be discerned as premises of the students' questions and (2) what possibilities for enhancing ocean literacy emerge in this instructional activity. The results show how interacting with a scientist gives the students an entry point to the world of natural sciences with its complexity, uncertainty and choices that go beyond the idealised form in which natural sciences often are presented in school. This activity offers an affordable way of bringing marine science to school by providing extensive expertise from a marine scientist. Students get a chance to mobilise their pre-existing knowledge in the field of marine science. The holistic expertise of the marine scientist allows students to explore and reason around a very wide range of ideas and aspect of natural sciences that goes beyond the range offered by the school settings.

  7. Negotiating the Inquiry Question: A Comparison of Whole Class and Small Group Strategies in Grade Five Science Classrooms

    NASA Astrophysics Data System (ADS)

    Cavagnetto, Andy R.; Hand, Brian; Norton-Meier, Lori

    2011-03-01

    The purpose of this study is to examine the effect of two strategies for negotiating the question for exploration during science inquiry on student achievement and teachers' perceptions. The study is set in the context of the Science Writing Heuristic. The first strategy (small group) consisted of each group of four students negotiating a question for inquiry with the teacher while the second strategy (whole class) consisted of the entire class negotiating a single question for inquiry with the teacher. The study utilized a mixed-method approach. A quasi-experimental repeated measures design was used to determine the effect of strategy on student achievement and semi-structured teacher interviews were used to probe the question of teacher perceptions of the two strategies. Teacher observations were conducted using the Reformed Teaching Observation Protocol (RTOP) to check for variation in implementation of the two strategies. Iowa Test of Basic Skills Science (ITBSS) (2005 and 2006) and teacher/researcher developed unit exams (pre and post) were used as student achievement measures. No statistically significant differences were found among students in the two treatment groups on the ITBSS or unit exams. RTOP observations suggest that teacher implementation was consistent across the two treatment strategies. Teachers disclosed personal preferences for the two strategies, indicating the whole class treatment was easier to manage (at least at the beginning of the school year) as students gained experience with science inquiry and the associated increased responsibility. Possible mechanisms linking the two strategies, negotiated questions, and student outcomes are discussed.

  8. Whither prometheus' liver? Greek myth and the science of regeneration.

    PubMed

    Power, Carl; Rasko, John E J

    2008-09-16

    Stem-cell biologists and those involved in regenerative medicine are fascinated by the story of Prometheus, the Greek god whose immortal liver was feasted on day after day by Zeus' eagle. This myth invariably provokes the question: Did the ancient Greeks know about the liver's amazing capacity for self-repair? The authors address this question by exploring the origins of Greek myth and medicine, adopting a 2-fold strategy. First, the authors consider what opportunities the ancient Greeks had to learn about the liver's structure and function. This involves a discussion of early battlefield surgery, the beginnings of anatomical research, and the ancient art of liver augury. In addition, the authors consider how the Greeks understood Prometheus' immortal liver. Not only do the authors examine the general theme of regeneration in Greek mythology, they survey several scholarly interpretations of Prometheus' torture.

  9. Using climate models to estimate the quality of global observational data sets.

    PubMed

    Massonnet, François; Bellprat, Omar; Guemas, Virginie; Doblas-Reyes, Francisco J

    2016-10-28

    Observational estimates of the climate system are essential to monitoring and understanding ongoing climate change and to assessing the quality of climate models used to produce near- and long-term climate information. This study poses the dual and unconventional question: Can climate models be used to assess the quality of observational references? We show that this question not only rests on solid theoretical grounds but also offers insightful applications in practice. By comparing four observational products of sea surface temperature with a large multimodel climate forecast ensemble, we find compelling evidence that models systematically score better against the most recent, advanced, but also most independent product. These results call for generalized procedures of model-observation comparison and provide guidance for a more objective observational data set selection. Copyright © 2016, American Association for the Advancement of Science.

  10. Is Seeing Believing?: Observation in Physics

    NASA Astrophysics Data System (ADS)

    Franklin, Allan David

    2017-12-01

    In 2016 the LIGO-Virgo collaboration announced "the first direct detection of gravitational waves." This was to distinguish their result from the indirect observation of Russell Hulse, Joel Weisberg, and Joseph Taylor, which used the decrease in the period of a binary pulsar to "establish, with a high degree of confidence the existence of gravitational radiation as predicted by general relativity." This raises several interesting questions. One might ask how one can distinguish between direct and indirect observation and whether that distinction is exemplified in the practice of science. One might also ask whether a direct observation has more epistemic weight than an indirect observation. In this essay, I briefly discuss several episodes from the history of modern physics in an attempt to answer those questions. These episodes include Galileo and falling bodies, the discovery of the neutrino, the Higgs boson, and gravitational radiation.

  11. Facing the grand challenges through heuristics and mindfulness

    NASA Astrophysics Data System (ADS)

    Powietrzynska, Malgorzata; Tobin, Kenneth; Alexakos, Konstantinos

    2015-03-01

    We address the nature of mindfulness and its salience to education generally and to science education specifically. In a context of the historical embeddedness of mindfulness in Buddhism we discuss research in social neuroscience, presenting evidence for neuronal plasticity of the brain and six emotional styles, which are not biologically predetermined, but are responsive to adaptation through life experiences. We raise questions about the role of science education in mediating the structure and function of the brain. Also, we discuss interventions to increase Mindfulness in Education, including meditation and heuristics, that act as reflexive objects to heighten awareness of characteristics of mindfulness and increase the likelihood of changes in the conduct of social life—increasing the mindfulness of those who engage the characteristics included in the heuristic. We present mindfulness and the development of a toolkit for ameliorating emotions when and as necessary as a component of a science curriculum that orientates toward wellness and sustainability. We advocate for changes in the nature of science education to reflect the priorities of the twenty first century that relate to sustainability of the living and nonliving universe and wellness of sentient beings.

  12. Students' Comprehension of Science Textbooks Using a Question-Based Reading Strategy

    ERIC Educational Resources Information Center

    Smith, Betty Lou; Holliday, William G.; Austin, Homer W.

    2010-01-01

    Despite the heavy reliance on textbooks in college courses, research indicates that college students enrolled in first-year science courses are not proficient at comprehending informational text. The present study investigated a reading comprehension questioning strategy with origins in clinical research based in elaboration interrogation theory,…

  13. Cognitive Neuroimaging: Cognitive Science out of the Armchair

    ERIC Educational Resources Information Center

    de Zubicaray, Greig I.

    2006-01-01

    Cognitive scientists were not quick to embrace the functional neuroimaging technologies that emerged during the late 20th century. In this new century, cognitive scientists continue to question, not unreasonably, the relevance of functional neuroimaging investigations that fail to address questions of interest to cognitive science. However, some…

  14. Fermilab | Science at Fermilab | Experiments & Projects | Intensity

    Science.gov Websites

    Search Search Go Science at Fermilab Fermilab and the Higgs Boson Frontiers of Particle Physics and Answers Submit a Question Frontiers of Particle Physics Benefits to Society Benefits to Society Results Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle

  15. Science and Society Test for Scientists: The Energy Crisis

    ERIC Educational Resources Information Center

    Hafemeister, David

    1974-01-01

    Presents a test stressing back-of-the-envelope questions most academic scientists should be able to answer. Topics include laser fusion, emergency core cooling, solar sea power, urban transportation, etc. Suggests that question-answer format can be used to transmit science and society subject matter more effectively than sophisticated computer…

  16. Primary Students and Informational Texts

    ERIC Educational Resources Information Center

    Yopp, Hallie Kay; Yopp, Ruth Helen

    2006-01-01

    Anyone who has spent time looking at science books with young children has no doubt experienced the endless questions that the information and visuals in the books can stimulate. Books prompt questions, which can lead to further reading about and investigation of science topics. Whether from a textbook or a nonfiction trade book, informational…

  17. Differential Effects of Science Study Questions.

    ERIC Educational Resources Information Center

    Holliday, William G.; And Others

    The purpose of this study was to investigate the differential effects on low and high verbal students of verbatim study questions adjunct to a text describing science concepts. The sample consisted of 217 eighth grade students enrolled in twelve Calgary (Alberta, Canada) schools. Materials developed for the study included an introduction to the…

  18. Cohort studies in health sciences librarianship

    PubMed Central

    Eldredge, Jonathan

    2002-01-01

    Question: What are the key characteristics of the cohort study design and its varied applications, and how can this research design be utilized in health sciences librarianship? Data Sources: The health, social, behavioral, biological, library, earth, and management sciences literatures were used as sources. Study Selection: All fields except for health sciences librarianship were scanned topically for either well-known or diverse applications of the cohort design. The health sciences library literature available to the author principally for the years 1990 to 2000, supplemented by papers or posters presented at annual meetings of the Medical Library Association. Data Extraction: A narrative review for the health, social, behavioral, biological, earth, and management sciences literatures and a systematic review for health sciences librarianship literature for the years 1990 to 2000, with three exceptions, were conducted. The author conducted principally a manual search of the health sciences librarianship literature for the years 1990 to 2000 as part of this systematic review. Main Results: The cohort design has been applied to answer a wide array of theoretical or practical research questions in the health, social, behavioral, biological, and management sciences. Health sciences librarianship also offers several major applications of the cohort design. Conclusion: The cohort design has great potential for answering research questions in the field of health sciences librarianship, particularly evidence-based librarianship (EBL), although that potential has not been fully explored. PMID:12398244

  19. General experiences + race + racism = Work lives of Black faculty in postsecondary science education

    NASA Astrophysics Data System (ADS)

    Parsons, Eileen R. C.; Bulls, Domonique L.; Freeman, Tonjua B.; Butler, Malcolm B.; Atwater, Mary M.

    2016-12-01

    Existent research indicates that postsecondary Black faculty members, who are sorely underrepresented in the academy especially in STEM fields, assume essential roles; chief among these roles is diversifying higher education. Their recruitment and retention become more challenging in light of research findings on work life for postsecondary faculty. Research has shown that postsecondary faculty members in general have become increasingly stressed and job satisfaction has declined with dissatisfaction with endeavors and work overload cited as major stressors. In addition to the stresses managed by higher education faculty at large, Black faculty must navigate diversity-related challenges. Illuminating and understanding their experiences can be instrumental in lessening stress and job dissatisfaction, outcomes that facilitate recruitment and retention. This study featured the experiences and perceptions of Black faculty in science education. This study, framed by critical race theory, examines two questions: What characterizes the work life of some Black faculty members who teach, research, and serve in science education? How are race and racism present in the experiences of these postsecondary Black faculty members? A phenomenological approach to the study situates the experiences of the Black participants as valid phenomena worthy of investigation, illuminates their experiences, and seeks to retain the authenticity of their voices.

  20. Philosophical Concepts in Physics

    NASA Astrophysics Data System (ADS)

    Cushing, James T.

    1998-01-01

    Preface; Part I. The Scientific Enterprise: 1. Ways of knowing; 2. Aristotle and Francis Bacon; 3. Science and metaphysics; Part II. Ancient and Modern Models of the Universe: 4. Observational astronomy and the Ptolemaic model; 5. The Copernican model and Kepler's laws; 6. Galileo on motion; Part III. The Newtonian Universe: 7. Newton's Principia; 8. Newton's law of universal gravitation; 9. Some old questions revisited; Part IV. A Perspective: 10. Galileo's Letter to the Grand Duchess; 11. An overarching Newtonian framework; 12. A view of the world based on science: determinism; Part V. Mechanical Versus Electrodynamical World Views: 13. Models of the aether; 14. Maxwell's theory; 15. The Kaufmann experiments; Part VI. The Theory of Relativity: 16. The background to and essentials of special relativity; 17. Further logical consequences of Einstein's postulates; 18. General relativity and the expanding universe; Part VII. The Quantum World and the Completeness of Quantum Mechanics: 19. The road to quantum mechanics; 20. 'Copenhage' quantum mechanics; 21. Is quantum mechanics complete?; Part VIII. Some Philosophical Lessons from Quantum Mechanics: 22. The EPR paper and Bell's theorem; 23. An alternative version of quantum mechanics; 24. An essential role for historical contingency?; Part IX. A Retrospective: 25. The goals of science and the status of its knowledge; Notes; General references; Bibliography; Author index; Subject index.

  1. Intelligence-led crime scene processing. Part I: Forensic intelligence.

    PubMed

    Ribaux, Olivier; Baylon, Amélie; Roux, Claude; Delémont, Olivier; Lock, Eric; Zingg, Christian; Margot, Pierre

    2010-02-25

    Forensic science is generally defined as the application of science to address questions related to the law. Too often, this view restricts the contribution of science to one single process which eventually aims at bringing individuals to court while minimising risk of miscarriage of justice. In order to go beyond this paradigm, we propose to refocus the attention towards traces themselves, as remnants of a criminal activity, and their information content. We postulate that traces contribute effectively to a wide variety of other informational processes that support decision making in many situations. In particular, they inform actors of new policing strategies who place the treatment of information and intelligence at the centre of their systems. This contribution of forensic science to these security oriented models is still not well identified and captured. In order to create the best condition for the development of forensic intelligence, we suggest a framework that connects forensic science to intelligence-led policing (part I). Crime scene attendance and processing can be envisaged within this view. This approach gives indications about how to structure knowledge used by crime scene examiners in their effective practice (part II). 2009 Elsevier Ireland Ltd. All rights reserved.

  2. Science, democracy, and the right to research.

    PubMed

    Brown, Mark B; Guston, David H

    2009-09-01

    Debates over the politicization of science have led some to claim that scientists have or should have a "right to research." This article examines the political meaning and implications of the right to research with respect to different historical conceptions of rights. The more common "liberal" view sees rights as protections against social and political interference. The "republican" view, in contrast, conceives rights as claims to civic membership. Building on the republican view of rights, this article conceives the right to research as embedding science more firmly and explicitly within society, rather than sheltering science from society. From this perspective, all citizens should enjoy a general right to free inquiry, but this right to inquiry does not necessarily encompass all scientific research. Because rights are most reliably protected when embedded within democratic culture and institutions, claims for a right to research should be considered in light of how the research in question contributes to democracy. By putting both research and rights in a social context, this article shows that the claim for a right to research is best understood, not as a guarantee for public support of science, but as a way to initiate public deliberation and debate about which sorts of inquiry deserve public support.

  3. Using science and psychology to improve the dissemination and evaluation of scientific work.

    PubMed

    Buttliere, Brett T

    2014-01-01

    Here I outline some of what science can tell us about the problems in psychological publishing and how to best address those problems. First, the motivation behind questionable research practices is examined (the desire to get ahead or, at least, not fall behind). Next, behavior modification strategies are discussed, pointing out that reward works better than punishment. Humans are utility seekers and the implementation of current change initiatives is hindered by high initial buy-in costs and insufficient expected utility. Open science tools interested in improving science should team up, to increase utility while lowering the cost and risk associated with engagement. The best way to realign individual and group motives will probably be to create one, centralized, easy to use, platform, with a profile, a feed of targeted science stories based upon previous system interaction, a sophisticated (public) discussion section, and impact metrics which use the associated data. These measures encourage high quality review and other prosocial activities while inhibiting self-serving behavior. Some advantages of centrally digitizing communications are outlined, including ways the data could be used to improve the peer review process. Most generally, it seems that decisions about change design and implementation should be theory and data driven.

  4. From "does it work?" to "what is 'it'?": implications for voodoo, psychotherapy, pop-psychology, regular, and alternative medicine.

    PubMed

    Mommaerts, Jean-Luc; Devroey, Dirk

    2013-01-01

    In this article, a "healing method" (HM) is defined as any method intended to improve health through non-somatic means. For many healing methods, especially within the realm of complementary and alternative medicine (CAM), there is mounting debate over the question "Does it work?" Indeed, this seems to be the primary question for most stakeholders. Yet in light of the well-documented effects of nonspecific factors, particularly empathy and placebo (EP), we contend that the basic question is: "What is 'it'?" Without answering this question, scientific progress is impossible, and research costs will spiral upwards without producing tangible results. Furthermore, it is impossible to characterize the potential side effects of healing methods without a full understanding of the underlying mechanisms through which they act. It is generally acknowledged that many healing methods are sociohistorical artifacts, based on underlying theoretical models that are divorced from established science. There is a need for healing method research that is accommodating of such methods' fluid nature while being congruent with accepted scientific practices. "It works" is no longer an adequate justification for any healing method, as "it" often turns out to be a combination of nonspecific factors.

  5. A Nominal Balloon Instrument Payload to Address Questions from the Planetary Decadal Survey

    NASA Astrophysics Data System (ADS)

    Young, Eliot; Kremic, Tibor; Dankanich, John

    The Planetary Science Decadal Survey (entitled "Visions and Voyages for Planetary Science in the Decade 2013 - 2022", available online at https://solarsystem.nasa.gov/2013decadal/) serves as a roadmap for activities to be pursued by the Planetary Science Division of NASA's Science Mission Directorate. This document outlines roughly 200 key research areas and questions in chapters covering different parts of the solar system (e.g., Mars, Small Bodies, etc.). We have reviewed the Decadal Survey to assess whether any of the key questions can be addressed by high altitude balloon-borne payloads. Although some questions can only be answered by in situ experiments, we found that approximately one quarter of the key questions were well suited to balloon payloads. In many of those cases, balloons were competitive or superior to other existing facilities, including HST, SOFIA or Keck telescopes. We will present specific telescope and instrument bench designs that are capable of addressing key questions in the Decadal Survey. The instrument bench takes advantage of two of the main benefits of high-altitude observations: diffraction-limited imaging in visible and UV wavelengths and unobstructed spectroscopy in near-IR (1 - 5 microns) wavelengths. Our optical prescription produces diffraction-limited PSFs in both visible and IR beams. We will discuss pointing and thermal stability, two of the main challenges facing a balloon-borne telescope.

  6. Space Science Division cumulative bibliography: 1989-1994

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1995-01-01

    The Space Science Division at NASA's Ames Research Center is dedicated to research in astrophysics, exobiology, and planetary science. These research programs are structured around the study of origins and evolution of stars, planets, planetary atmospheres, and life, and address some of the most fundamental questions pursued by science; questions that examine the origin of life and of our place in the universe. This bibliography is the accumulation of peer-reviewed publications authored by Division scientists for the years 1989 through 1994. The list includes 777 papers published in over 5 dozen scientific journals representing the high productivity and interdisciplinary nature of the Space Science Division.

  7. Implementing an International Consultation on Earth System Research Priorities Using Web 2.0 Tools

    NASA Astrophysics Data System (ADS)

    Goldfarb, L.; Yang, A.

    2009-12-01

    Leah Goldfarb, Paul Cutler, Andrew Yang*, Mustapha Mokrane, Jacinta Legg and Deliang Chen The scientific community has been engaged in developing an international strategy on Earth system research. The initial consultation in this “visioning” process focused on gathering suggestions for Earth system research priorities that are interdisciplinary and address the most pressing societal issues. It was implemented this through a website that utilized Web 2.0 capabilities. The website (http://www.icsu-visioning.org/) collected input from 15 July to 1 September 2009. This consultation was the first in which the international scientific community was asked to help shape the future of a research theme. The site attracted over 7000 visitors from 133 countries, more than 1000 of whom registered and took advantage of the site’s functionality to contribute research questions (~300 questions), comment on posts, and/or vote on questions. To facilitate analysis of results, the site captured a small set of voluntary information about each contributor and their contribution. A group of ~50 international experts were invited to analyze the inputs at a “Visioning Earth System Research” meeting held in September 2009. The outcome of this meeting—a prioritized list of research questions to be investigated over the next decade—was then posted on the visioning website for additional comment from the community through an online survey tool. In general, many lessons were learned in the development and implementation of this website, both in terms of the opportunities offered by Web 2.0 capabilities and the application of these capabilities. It is hoped that this process may serve as a model for other scientific communities. The International Council for Science (ICSU) in cooperation with the International Social Science Council (ISSC) is responsible for organizing this Earth system visioning process.

  8. Integrated Science Assessment (ISA) for Sulfur Oxides ...

    EPA Pesticide Factsheets

    EPA announced the availability of the final report, Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria final assessment. This report represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA’s decision regarding whether the current standard for oxides of sulfur (SO2) sufficiently protects public health. The Integrated Plan for Review of the Primary NAAQS for SOx U.S. 2: EPA (2007) identifies key policy-relevant questions that provide a framework for this review of the scientific evidence. These questions frame the entire review of the NAAQS, and thus are informed by both science and policy considerations. The ISA organizes and presents the scientific evidence such that, when considered along with findings from risk analyses and policy considerations, will help the EPA address these questions in completing the NAAQS review.

  9. Research methods from social science can contribute much to the health sciences.

    PubMed

    Wensing, Michel

    2008-06-01

    Research methods from social science, such as social network analysis, random coefficient modeling, and advanced measurement techniques, can contribute much to the health sciences. There is, however, a slow rate of transmission of social science methodology into the health sciences. This paper identifies some of the barriers for adoption and proposes ideas for the future. Commentary. Contributions of social science to the health sciences are not always recognized as such. It may help if the professional profile of social science in the health sciences would be higher and if its focus would be more on making useful predictions. Clinical epidemiologists may assume that their discipline includes all relevant methods and that social science is largely based on qualitative research. These perceptions need to be challenged in order to widen the scope of clinical epidemiology and include relevant methods from other sciences. New methods help to ask new research questions and to provide better to old questions. This paper has sketched challenges for both social science researchers and clinical epidemiologists.

  10. Scientific perspectives on music therapy.

    PubMed

    Hillecke, Thomas; Nickel, Anne; Bolay, Hans Volker

    2005-12-01

    What needs to be done on the long road to evidence-based music therapy? First of all, an adequate research strategy is required. For this purpose the general methodology for therapy research should be adopted. Additionally, music therapy needs a variety of methods of allied fields to contribute scientific findings, including mathematics, natural sciences, behavioral and social sciences, as well as the arts. Pluralism seems necessary as well as inevitable. At least two major research problems can be identified, however, that make the path stony: the problem of specificity and the problem of eclecticism. Neuroscientific research in music is giving rise to new ideas, perspectives, and methods; they seem to be promising prospects for a possible contribution to a theoretical and empirical scientific foundation for music therapy. Despite the huge heterogeneity of theoretical approaches in music therapy, an integrative model of working ingredients in music therapy is useful as a starting point for empirical studies in order to question what specifically works in music therapy. For this purpose, a heuristic model, consisting of five music therapy working factors (attention modulation, emotion modulation, cognition modulation, behavior modulation, and communication modulation) has been developed by the Center for Music Therapy Research (Viktor Dulger Institute) in Heidelberg. Evidence shows the effectiveness of music therapy for treating certain diseases, but the question of what it is in music therapy that works remains largely unanswered. The authors conclude with some questions to neuroscientists, which we hope may help elucidate relevant aspects of a possible link between the two disciplines.

  11. The effects of higher-order questioning strategies on nonscience majors' achievement in an introductory environmental science course and their attitudes toward the environment

    NASA Astrophysics Data System (ADS)

    Eason, Grace Teresa

    The purpose of this quasi-experimental study was to determine the effect a higher-order questioning strategy (Bloom, 1956) had on undergraduate non-science majors' attitudes toward the environment and their achievement in an introductory environmental science course, EDS 1032, "Survey of Science 2: Life Science," which was offered during the Spring 2000 term. Students from both treatment and control groups (N = 63), which were determined using intact classes, participated in eight cooperative group activities based on the Biological Sciences Curriculum Studies (BSCS) 5E model (Bybee, 1993). The treatment group received a higher-order questioning method combined with the BSCS 5E model. The control group received a lower-order questioning method, combined with the BSCS 5E model. Two instruments were used to measure students' attitude and achievement changes. The Ecology Issue Attitude (EIA) survey (Schindler, 1995) and a comprehensive environmental science final exam. Kolb's Learning Style Inventory (KLSI, 1985) was used to measure students' learning style type. After a 15-week treatment period, results were analyzed using MANCOVA. The overall MANCOVA model used to test the statistical difference between the collective influences of the independent variables on the three dependent variables simultaneously was found to be not significant at alpha = .05. This differs from findings of previous studies in which higher-order questioning techniques had a significant effect on student achievement (King 1989 & 1992; Blosser, 1991; Redfield and Rousseau, 1981; Gall 1970). At the risk of inflated Type I and Type II error rates, separate univariate analyses were performed. However, none of the research factors, when examined collectively or separately, made any significant contribution to explaining the variability in EIA attitude, EIA achievement, and comprehensive environmental science final examination scores. Nevertheless, anecdotal evidence from student's self-reported behavior changes indicated favorable responses to an increased awareness of and positive action toward the environment.

  12. Teaching Energy to a General Audience

    NASA Astrophysics Data System (ADS)

    Baski, Alison; Hunnicutt, Sally

    2010-02-01

    A new, interdisciplinary course entitled ``Energy!'' has been developed by faculty in the physics and chemistry departments to meet the university's science and technology general education requirement. This course now enrolls over 400 students each semester in a single lecture where faculty from both departments co-teach throughout the term. Topics include the fundamentals of energy, fossil fuels, global climate change, nuclear energy, and renewable energy sources. The students represent an impressive range of majors (science, engineering, business, humanities, etc.) and comprise freshmen to seniors. To effectively teach this diverse audience and increase classroom engagement, in-class ``clickers'' are used with guided questions to teach concepts, which are then explicitly reinforced with online LON-CAPAfootnotetextFree open-source distributed learning content management and assessment system (www.lon-capa.org) homework. This online system enables immediate feedback in a structured manner, where students can practice randomized versions of problems for homework, quizzes, and exams. The course is already in high demand after only two semesters, in part because it is particularly relevant to students given the challenging energy and climate issues facing the nation and world. )

  13. Critical neuroscience—or critical science? A perspective on the perceived normative significance of neuroscience

    PubMed Central

    Schleim, Stephan

    2014-01-01

    Members of the Critical Neuroscience initiative raised the question whether the perceived normative significance of neuroscience is justified by the discipline’s actual possibilities. In this paper I show how brain research was assigned the ultimate political, social, and moral authority by some leading researchers who suggested that neuroscientists should change their research priorities, promising solutions to social challenges in order to increase research funds. Discussing the two examples of cognitive enhancement and the neuroscience of (im)moral behavior I argue that there is indeed a gap between promises and expectations on the one hand and knowledge and applications on the other. However it would be premature to generalize this to the neurosciences at large, whose knowledge-producing, innovative, and economic potentials have just recently been confirmed by political and scientific decision-makers with the financial support for the Human Brain Project and the BRAIN Initiative. Finally, I discuss two explanations for the analyzed communication patterns and argue why Critical Neuroscience is necessary, but not sufficient. A more general Critical Science movement is required to improve the scientific incentive system. PMID:24904376

  14. Final Results from a Large-Scale National Study of General Education Astronomy Students' Learning Difficulties with Cosmology

    NASA Astrophysics Data System (ADS)

    Wallace, Colin; Prather, Edward; Duncan, Douglas

    2011-10-01

    We recently completed a large-scale, systematic study of general education introductory astronomy students' conceptual and reasoning difficulties related to cosmology. As part of this study, we analyzed a total of 4359 surveys (pre- and post-instruction) containing students' responses to questions about the Big Bang, the evolution and expansion of the universe, using Hubble plots to reason about the age and expansion rate of the universe, and using galaxy rotation curves to infer the presence of dark matter. We also designed, piloted, and validated a new suite of five cosmology Lecture-Tutorials. We found that students who use the new Lecture-Tutorials can achieve larger learning gains than their peers who did not. This material is based in part upon work supported by the National Science Foundation under Grant Nos. 0833364 and 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

  15. Final Results from a Large-Scale National Study of General Education Astronomy Students’ Learning Difficulties with Cosmology

    NASA Astrophysics Data System (ADS)

    Wallace, Colin Scott; Prather, E. E.; Duncan, D. K.; Collaboration of Astronomy Teaching Scholars CATS

    2012-01-01

    We recently completed a large-scale, systematic study of general education introductory astronomy students’ conceptual and reasoning difficulties related to cosmology. As part of this study, we analyzed a total of 4359 surveys (pre- and post-instruction) containing students’ responses to questions about the Big Bang, the evolution and expansion of the universe, using Hubble plots to reason about the age and expansion rate of the universe, and using galaxy rotation curves to infer the presence of dark matter. We also designed, piloted, and validated a new suite of five cosmology Lecture-Tutorials. We found that students who use the new Lecture-Tutorials can achieve larger learning gains than their peers who did not. This material is based in part upon work supported by the National Science Foundation under Grant Nos. 0833364 and 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

  16. 6th international conference on Mars polar science and exploration: Conference summary and five top questions

    NASA Astrophysics Data System (ADS)

    Smith, Isaac B.; Diniega, Serina; Beaty, David W.; Thorsteinsson, Thorsteinn; Becerra, Patricio; Bramson, Ali M.; Clifford, Stephen M.; Hvidberg, Christine S.; Portyankina, Ganna; Piqueux, Sylvain; Spiga, Aymeric; Titus, Timothy N.

    2018-07-01

    We provide a historical context of the International Conference on Mars Polar Science and Exploration and summarize the proceedings from the 6th iteration of this meeting. In particular, we identify five key Mars polar science questions based primarily on presentations and discussions at the conference and discuss the overlap between some of those questions. We briefly describe the seven scientific field trips that were offered at the conference, which greatly supplemented conference discussion of Mars polar processes and landforms. We end with suggestions for measurements, modeling, and laboratory and field work that were highlighted during conference discussion as necessary steps to address key knowledge gaps.

  17. 6th international conference on Mars polar science and exploration: Conference summary and five top questions

    USGS Publications Warehouse

    Smith, Isaac B.; Diniega, Serina; Beaty, David W.; Thorsteinsson, Thorsteinn; Becerra, Patricio; Bramson, Ali; Clifford, Stephen M.; Hvidberg, Christine S.; Portyankina, Ganna; Piqueux, Sylvain; Spiga, Aymeric; Titus, Timothy N.

    2018-01-01

    We provide a historical context of the International Conference on Mars Polar Science and Exploration and summarize the proceedings from the 6th iteration of this meeting. In particular, we identify five key Mars polar science questions based primarily on presentations and discussions at the conference and discuss the overlap between some of those questions. We briefly describe the seven scientific field trips that were offered at the conference, which greatly supplemented conference discussion of Mars polar processes and landforms. We end with suggestions for measurements, modeling, and laboratory and field work that were highlighted during conference discussion as necessary steps to address key knowledge gaps.

  18. NASA Earthdata Forums: An Interactive Venue for Discussions of NASA Data and Earth Science

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas J., III; Acker, James; Meyer, Dave; Northup, Emily A.; Bagwell, Ross E.

    2017-01-01

    We demonstrate how students and teachers can register to use the NASA Earthdata Forums. The NASA Earthdata forums provide a venue where registered users can pose questions regarding NASA Earth science data in a moderated forum, and have their questions answered by data experts and scientific subject matter experts connected with NASA Earth science missions and projects. Since the forums are also available for research scientists to pose questions and discuss pertinent topics, the NASA Earthdata Forums provide a unique opportunity for students and teachers to gain insight from expert scientists and enhance their knowledge of the many different ways that NASA Earth observations can be used in research and applications.

  19. NEWS: Web's wonders!

    NASA Astrophysics Data System (ADS)

    2000-07-01

    Introducing this month's collection of useful websites for physics teachers. If you have any suggestions for this column then please send them to us at ped@ioppublishing.co.uk Dave Pickersgill has drawn our attention to the following: www.sheffcol.ac.uk/links/ which has annotated, classified and searchable links to over 1700 educational sites. Included are around 500 science links. Members of the American Association of Physics Teachers were recently informed of a website for those hoping to arouse interest and knowledge of astronomy in their students. Space.com, a comprehensive space news website, had launched `spaceKids', a new channel specifically targeted at children complete with a gallery of space images, space and science news, stories, a space question and answer section hosted by a team of science teachers, interactive games, weekly polls and competitions. The website can be found at www.spacekids.com Those fascinated by all aspects of nuclear fusion should take a look at the General Atomics educational site: FusionEd.gat.com as well as the national site fusion.gat.com/PlasmaOutreach

  20. Biomedical scientists' perception of the social sciences in health research.

    PubMed

    Albert, Mathieu; Laberge, Suzanne; Hodges, Brian D; Regehr, Glenn; Lingard, Lorelei

    2008-06-01

    The growing interest in interdisciplinary research within the Canadian health sciences sector has been manifested by initiatives aimed at increasing the involvement of the social sciences in this sector. Drawing on Bourdieu's concept of field and Knorr-Cetina's concept of epistemic culture, this study explores the extent to which it is possible for the social sciences to integrate into, and thrive in, a field in which the experimental paradigm occupies a hegemonic position. Thirty-one semi-structured interviews were conducted to explore biomedical scientists' receptiveness toward the social sciences in general and to qualitative research in particular. We found that these respondents exhibited a predominantly negative posture toward the social sciences; however, we also found considerable variation in their judgments and explanations. Eight biomedical scientists tended to be receptive to the social sciences, 7 ambivalent, and 16 unreceptive. The main rationale expressed by receptive respondents is that the legitimacy of a method depends on its capacity to adequately respond to a research question and not on its conformity to the experimental canon. Unreceptive respondents maintained that the social sciences cannot generate valid and reliable results because they are not conducive to the experimental design as a methodological approach. Ambivalent respondents were characterized by their cautiously accepting posture toward the social sciences and, especially, by their reservations about qualitative methods. Based on the biomedical scientists' limited receptiveness, we can anticipate that the growth of the social sciences will continue to meet obstacles within the health research field in the near future in Canada.

  1. Provocative Questions in Cancer: NCI Seminar

    Cancer.gov

    science writers' seminar to discuss various aspects of one of NCI’s signature efforts -- the Provocative Questions project. Discussion will focus on the scientific research that surrounds some of these questions.

  2. Understanding adolescent student perceptions of science education

    NASA Astrophysics Data System (ADS)

    Ebert, Ellen Kress

    This study used the Relevance of Science Education (ROSE) survey (Sjoberg & Schreiner, 2004) to examine topics of interest and perspectives of secondary science students in a large school district in the southwestern U.S. A situated learning perspective was used to frame the project. The research questions of this study focused on (a) perceptions students have about themselves and their science classroom and how these beliefs may influence their participation in the community of practice of science; (b) consideration of how a future science classroom where the curriculum is framed by the Next Generation Science Standards might foster students' beliefs and perceptions about science education and their legitimate peripheral participation in the community of practice of science; and (c) reflecting on their school science interests and perspectives, what can be inferred about students' identities as future scientists or STEM field professionals? Data were collected from 515 second year science students during a 4-week period in May of 2012 using a Web-based survey. Data were disaggregated by gender and ethnicity and analyzed descriptively and by statistical comparison between groups. Findings for Research Question 1 indicated that boys and girls showed statistically significant differences in scientific topics of interest. There were no statistical differences between ethnic groups although. For Research Question 2, it was determined that participants reported an increase in their interest when they deemed the context of the content to be personally relevant. Results for Research Question 3 showed that participants do not see themselves as youthful scientists or as becoming scientists. While participants value the importance of science in their lives and think all students should take science, they do not aspire to careers in science. Based on this study, a need for potential future work has been identified in three areas: (a) exploration of the perspectives and interests of non-mainstream students and urban students whose representation in this study was limited; (b) investigation of topics where students expressed low interests topics; and (c) development and design of authentic communities of practice in the science classroom.

  3. Between the Under-Labourer and the Master-Builder: Observations on Bunge's Method

    NASA Astrophysics Data System (ADS)

    Agassi, Joseph

    2012-10-01

    Mario Bunge has repeatedly discussed contributions to philosophy and to science that are worthless at best and dangerous at worst, especially cases of pseudo-science. He clearly gives his reason in his latest essay on this matter: "The fact that science can be faked to the point of deceiving science lovers suggests the need for a rigorous sifting device". Moreover, this sifting has its rewards, as "sometimes intellectual gold comes mixed with muck". Furthermore, the sifting device is a demarcation of science, which answers interesting questions: what is valuable in science and what makes it tick? The question is under dispute. So before coming to it we should admit a few preliminary ideas that are more difficult to contest than ideas that purport to demarcate science.

  4. Art, science and social science in nursing: occupational origins and disciplinary identity.

    PubMed

    Rafferty, A M

    1995-09-01

    This paper forms part of a wider study examining the history and sociology of nursing education in England between 1860 and 1948. It argues that the question of whether nursing was an art, science and/or social science has been at the 'heart' of a wider debate on the occupational status and disciplinary identity of nursing. The view that nursing was essentially an art and a 'calling', was championed by Florence Nightingale. Ethel Bedford Fenwick and her allies insisted that nursing, like other professions, was a 'scientific' and technical enterprise. Social scientists later came to challenge nursing's claim to professionalism by analysing nursing work first within the context of industrial psychology. But they also advocated a rapprochement between nursing, health services and social science research, a challenge which we are in nursing, still striving to meet. This paper argues for a strong coalition of nursing with its former nineteenth century ally, social science, in the continuing struggle for change within nursing and health care policy. Rather than searching for some rarified and purified essence of nursing knowledge, it argues that nurses need to join forces with sociologists and economists in striving to shape the agenda for health services research and provide the evidential basis for health policy transformation more generally.

  5. Identifying Student Difficulties with Control of Variables Reasoning

    NASA Astrophysics Data System (ADS)

    Boudreaux, Andrew

    2005-03-01

    Emerging standards for the science learning of precollege students can be regarded as a statement of what constitutes science literacy.^1 These standards emphasize basic concepts such as mass, volume and density, and fundamental process skills such as proportional reasoning, the interpretation of graphs and other representations, and the control of variables in the design of experiments. At Western Washington University, the liberal arts physics course is a general university requirement and for many students one of the only physical science course taken between high school and college graduation. Thus the pre-course understandings of these students can be taken as a measure of the level of science literacy attained in precollege education. An effort is underway at Western Washington University to examine what students know and are able to do both before and after course instruction. Preliminary results indicate that in many cases students have serious conceptual and reasoning difficulties with the material. An example that involves the interpretation of experimental results in deciding whether a particular variable influences (i.e., affects) or determines (i.e., predicts) a given result will be discussed. Evidence from written questions will be presented to identify specific student difficulties.^1See, for example, Project 2061, American Association for the Advancement of Science. 1990. Science for All Americans.New York, NY: Oxford University Press.

  6. Enhancing students' critical thinking in science: A two-year design based exploration in a large undergraduate science course

    NASA Astrophysics Data System (ADS)

    Yoo, Suhyun

    The purpose of this study was to explore how to enhance students' critical thinking in an introductory undergraduate science course. As a design experiment, this study aimed to design, develop, implement, and refine learning activities, and investigate how the learning activities worked in fostering students' critical thinking in a large size classroom context. In this study, critical thinking in science was framed with six categories, 1) identifying decisions, 2) evaluating decisions, 3) providing own decision, 4) argument and justification for own decision, 5) presenting supporting data/evidence, and 6) integrating other perspectives, as the result of literature review. To enhance critical thinking, three design principles, 1) authentic task, 2) question prompts, and 3) peer interaction, were associated with the learning activities for two consecutive years. The research context was within a large general science course and the learning activities for a module were designed, implemented and refined for two years. Specially, changes in design strategies were made in the two design principles, question prompts and peer interaction, after the 1st implementation. With regard to the use of question prompts, the students of the 2nd year were provided with procedural and elaborative question prompts, while those of the 1st year only received procedural question prompts embedded in the Group and Community Discussion Charts. Second, instead of being engaged six times in two types of discussions, group and community discussions, the students of the 2nd year were required to take part in a community discussion twice and to prepare for the discussion by learning about and understanding important aspects of dealing with the hurricane situation. For individual preparation, elaborative question prompts were embedded in the Individual Worksheet. Quantitative and qualitative research methods were taken to investigate how the two different designs of the 1st and 2nd years worked for enhancing critical thinking in a large-size classroom. Data came from the students' written documents during and after the learning activities. The result from the descriptive and comparative analysis on the written documents for two years indicated that there were changes in patterns of reasoning between the two years. It was evident that the groups engaged in decision-making for communities of the 2nd year showed more concrete and shaped reasoning than those of the 1st year. The result of the t-test indicated that there was a significant difference in critical thinking demonstrated in individual reports between the students of the 1st and the 2nd years. The students of the 2nd year demonstrated better levels of critical thinking than those of the 1st year. Specially, among the six categories of critical thinking, the students of the 2nd year demonstrated better levels in three categories, 1) providing one's own decision, 2) argumentation and justification for one's own decision, and 3) integrating other perspectives, than those of the 1st year. By the multiple-case study method, four themes were found to explain what made students demonstrated higher levels of critical thinking: 1) understanding of one's assigned role, 2) linking roles to make decisions, 3) answers to the question prompts, and 4) use of data and source, were raised in explaining the different pattern between the students with higher and lower levels of critical thinking. Also, a trend was visible across artifacts for higher performing students in both years.

  7. Statistical reporting inconsistencies in experimental philosophy

    PubMed Central

    Colombo, Matteo; Duev, Georgi; Nuijten, Michèle B.; Sprenger, Jan

    2018-01-01

    Experimental philosophy (x-phi) is a young field of research in the intersection of philosophy and psychology. It aims to make progress on philosophical questions by using experimental methods traditionally associated with the psychological and behavioral sciences, such as null hypothesis significance testing (NHST). Motivated by recent discussions about a methodological crisis in the behavioral sciences, questions have been raised about the methodological standards of x-phi. Here, we focus on one aspect of this question, namely the rate of inconsistencies in statistical reporting. Previous research has examined the extent to which published articles in psychology and other behavioral sciences present statistical inconsistencies in reporting the results of NHST. In this study, we used the R package statcheck to detect statistical inconsistencies in x-phi, and compared rates of inconsistencies in psychology and philosophy. We found that rates of inconsistencies in x-phi are lower than in the psychological and behavioral sciences. From the point of view of statistical reporting consistency, x-phi seems to do no worse, and perhaps even better, than psychological science. PMID:29649220

  8. A Framework for Designing Effective Professional Development: Science Teachers' Perspectives in a Context of Reform

    ERIC Educational Resources Information Center

    EL-Deghaidy, Heba; Mansour, Nasser; Aldahmash, Abdulwali; Alshamrani, Saeed

    2015-01-01

    This paper explores science teachers' experiences, views, and preferences of what constitutes effective teacher professional development. The research method utilised both quantitative and qualitative analyses. The former was used with responses from closed-ended questions while responses to an open-ended question were analysed qualitatively. The…

  9. Why Aren’t Lightsabers Real Yet? Get the Lowdown from a Laser Physicist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunsberger, Maren; Liao, Zhi

    The release of "Star Wars: The Force Awakens" begs the obvious question: Why aren't lightsabers real yet? LLNL science communicator Maren Hunsberger gets the lowdown from laser physicist Zhi Liao in this first installment of "Inside the Lab," a new YouTube series exploring crazy-cool science questions.

  10. A Careful Look at Modern Case Selection Methods

    ERIC Educational Resources Information Center

    Herron, Michael C.; Quinn, Kevin M.

    2016-01-01

    Case studies appear prominently in political science, sociology, and other social science fields. A scholar employing a case study research design in an effort to estimate causal effects must confront the question, how should cases be selected for analysis? This question is important because the results derived from a case study research program…

  11. Fermilab | Science at Fermilab | Experiments & Projects | Energy Frontier

    Science.gov Websites

    Go Science at Fermilab Fermilab and the Higgs Boson Frontiers of Particle Physics Experiments & Answers Submit a Question Frontiers of Particle Physics Benefits to Society Benefits to Society Medicine Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle Physics Library

  12. Fermilab | Science at Fermilab | Experiments & Projects

    Science.gov Websites

    Go Science at Fermilab Fermilab and the Higgs Boson Frontiers of Particle Physics Experiments & Answers Submit a Question Frontiers of Particle Physics Benefits to Society Benefits to Society Medicine Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle Physics Library

  13. Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction

    ERIC Educational Resources Information Center

    Imbens, Guido W.; Rubin, Donald B.

    2015-01-01

    Most questions in social and biomedical sciences are causal in nature: what would happen to individuals, or to groups, if part of their environment were changed? In this groundbreaking text, two world-renowned experts present statistical methods for studying such questions. This book starts with the notion of potential outcomes, each corresponding…

  14. Inquiry and Learning: Realizing Science Standards in the Classroom. The Thinking Series.

    ERIC Educational Resources Information Center

    Layman, John W.; And Others

    This book provides a focused, extended response to the question How does standards-based science instruction look and feel in the classroom? This question is addressed by considering two related issues: (1) "How can teachers cultivate the quality of scientific thinking and understanding defined by standards?" and (2) "How can…

  15. Dynamic Variables of Science Classroom Discourse in Relation to Teachers' Instructional Beliefs

    ERIC Educational Resources Information Center

    Kaya, Sibel

    2014-01-01

    The current study examines if the occurrence of dynamic variables namely, authentic questions, uptake, high-level evaluation and student questions in primary science classrooms vary by teachers' instructional beliefs. Twelve 4th grade teachers from two different schools volunteered to participate in the study. Data was collected through…

  16. Teaching solar astronomy on march 21 th in a multicultural village during IYA 2009 Mexico

    NASA Astrophysics Data System (ADS)

    Zueck, S.; Lara, A.

    2009-12-01

    We describe activities and resources at a popularization of science event that was organized in a multicultural mystical small village and the response of the audience that attended it. On March 21 Th. 2009 (spring equinox) we conducted a social experiment of science outreach. Scientists, educators and graduate students interacted with general public at a village named Tepoztlan, State of Morelos, Mexico, that is a former farmers town in process of urbanization, which depends to an extended degree of thousands of tourists which frequents the place, most of all during the equinox day. A team of scientists and their graduate students that belong to the solar physics program of Instituto de Geofísica (UNAM)organized a solar observation, setting at the garden of an old Hispanic dominican convent (XVI century), 10 telescopes with solar filters to show on real time to the general audience, our principal star : The Sun. We also prepared a free separate resource guide to help answer questions about basic information about our star like his structure, sun spots,age,diameter,evolution etc and two researchers offer conferences to the local elementary school children. The main audience came from the local people like bakers, open market workers or home makers that after finish his labor day went to the Museum to observe the Sun trough the telescopes or to attend the conferences with their children. They have several questions about scientific and pseudo-scientific topics related not just to the solar equinox, but about the earth's magnetic field, planets etc. We also discuss our experiences communicating science face to face to an audience that came to a town that is famous for his widely mystical legends related to solar energy or vibration that humans can use to get luck or health especially on this date.

  17. Instructional leadership in elementary science: How are school leaders positioned to lead in a next generation science standards era?

    NASA Astrophysics Data System (ADS)

    Winn, Kathleen Mary

    The Next Generation Science Standards (NGSS) are the newest K-12 science content standards created by a coalition of educators, scientists, and researchers available for adoption by states and schools. Principals are important actors during policy implementation especially since principals are charged with assuming the role of an instructional leader for their teachers in all subject areas. Science poses a unique challenge to the elementary curricular landscape because traditionally, elementary teachers report low levels of self-efficacy in the subject. Support in this area therefore becomes important for a successful integration of a new science education agenda. This study analyzed self-reported survey data from public elementary principals (N=667) to address the following three research questions: (1) What type of science backgrounds do elementary principals have? (2) What indicators predict if elementary principals will engage in instructional leadership behaviors in science? (3) Does self-efficacy mediate the relationship between science background and a capacity for instructional leadership in science? The survey data were analyzed quantitatively. Descriptive statistics address the first research question and inferential statistics (hierarchal regression analysis and a mediation analysis) answer the second and third research questions.The sample data show that about 21% of elementary principals have a formal science degree and 26% have a degree in a STEM field. Most principals have not had recent experience teaching science, nor were they every exclusively a science teacher. The analyses suggests that demographic, experiential, and self-efficacy variables predict instructional leadership practices in science.

  18. Forensic intelligence framework. Part II: Study of the main generic building blocks and challenges through the examples of illicit drugs and false identity documents monitoring.

    PubMed

    Baechler, Simon; Morelato, Marie; Ribaux, Olivier; Beavis, Alison; Tahtouh, Mark; Kirkbride, K Paul; Esseiva, Pierre; Margot, Pierre; Roux, Claude

    2015-05-01

    The development of forensic intelligence relies on the expression of suitable models that better represent the contribution of forensic intelligence in relation to the criminal justice system, policing and security. Such models assist in comparing and evaluating methods and new technologies, provide transparency and foster the development of new applications. Interestingly, strong similarities between two separate projects focusing on specific forensic science areas were recently observed. These observations have led to the induction of a general model (Part I) that could guide the use of any forensic science case data in an intelligence perspective. The present article builds upon this general approach by focusing on decisional and organisational issues. The article investigates the comparison process and evaluation system that lay at the heart of the forensic intelligence framework, advocating scientific decision criteria and a structured but flexible and dynamic architecture. These building blocks are crucial and clearly lay within the expertise of forensic scientists. However, it is only part of the problem. Forensic intelligence includes other blocks with their respective interactions, decision points and tensions (e.g. regarding how to guide detection and how to integrate forensic information with other information). Formalising these blocks identifies many questions and potential answers. Addressing these questions is essential for the progress of the discipline. Such a process requires clarifying the role and place of the forensic scientist within the whole process and their relationship to other stakeholders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Rules of the Game: Effects of a Game-based Metaphor on Instructional Activity Design and the Use of Student Mentors on Learning Outcomes in a Middle School General Science Class

    NASA Astrophysics Data System (ADS)

    Dowling, Angie

    This study investigated the effects of a game-like environment on instructional activity design and the use of student mentors on learning outcomes in a middle school general science class. The participants for this study were 165 students, ages 13-14 years old, who were enrolled in 8th grade at a mid-Atlantic middle school. Two research questions were used to conduct the research: 1. Can science content be designed and successfully delivered instructionally using a game-like learning environment? 2. Does the use of student mentors/assistants help direct and maintain the flow of the class away from the technological issues toward the necessary learning outcomes while also increasing the science content understanding acquired by the mentors while also increasing class and student engagement? For this study an introductory biology unit was designed using a game-like curricular structure. Student mentors were utilized in order to aid focus on the content and not the technology. The results indicated that the instructional design of the unit using a game-like environment was successful and students exhibited learning. The mentor students were instrumental in steering their fellow students away from the “Siren’s Call” of the instrument (in this case StarLogo) and enabled increased focus on the content. Keywords: Trivial games, Serious Games, Epistemic Games, Student Mentors, StarLogo, Elaboration Theory.

  20. A study of performance assessment task organization in high school optics

    NASA Astrophysics Data System (ADS)

    Zawicki, Joseph Leo

    2002-01-01

    This investigation was undertaken to validate three performance assessment tasks in high school physics. The tasks that were studied were developed around three organizational models of performance assessments: integrated, independent and surrogate. The integrated model required students to answer questions, make observations and demonstrate skills related to the index of refraction of a particular material. All of the questions and activities the students completed were related to a sample of a particular plastic sample that was the focus of this task. The independent model is analogous to the station model that is currently used on three New York State assessments: the Grade 4 - Elementary Science Program Evaluation Test, the Intermediate Level Science (ILS) Test, and the Physical Setting: Earth Science Regents Exam. Students took measurements related to the index of refraction of a plastic sample that was the focus of the initial portion of this task; the remaining questions on the assessment were generally related to the concept of the index of refraction but did not refer back to the initial sample. The final task organization followed the surrogate model. In this model, students reviewed data that was collected and analyzed by other (fictitious) students. The students completing this task were asked to review the work presented on this assessment for errors; they evaluated the conclusions and statements presented on the assessment. Students were also asked to determine if the student work was acceptable or if this investigation should be repeated. Approximately 300 students from urban, suburban and rural districts across Western New York State participated in the study. The tasks were administered during the spring semester of the 2000--2001 school year. The participating schools had at least covered the topic of refraction, both in classroom lectures and in laboratory activities. Each student completed only one form of the task---either the integrated, the independent or the surrogate form. A set of ten questions, compiled from past New York State Regents Examinations in Physics, was used as an additional measurement of student conceptual understanding. This question set was identified as the "Optics Baseline Test" (OBT). Additionally, classroom teachers ranked the academic performance of each of the students in their classroom on the outcomes of the physics course; these rankings were compared with student scores on the performance assessment tasks. The process skills incorporated within the individual questions on each task were reviewed by a panel of expert teachers. Student scores on the tasks themselves were examined using a principal component analysis. This analysis provided support for the process skill subtests organized around the general process skills of planning, performing, and reasoning. Scoring guides and inter-rater reliabilities were established for each task. The reliabilities for tasks, subtests and questions were fairly high, indicting adequate task reliability. Correlations between student performance on the individual tasks and the OBT were not significant. Teacher ranking of student achievement in individual classrooms also failed to correlate significantly with student performance on tasks. The lack of correlation could be attributed to several factors, including (among others) a wide range of student opportunities to learn from the seven schools in the sample. As has been reported in the performance assessment literature, there were no significant differences between the performance of male and female students. (Abstract shortened by UMI.)

  1. Mathematics, structuralism and biology.

    PubMed

    Saunders, P T

    1988-01-01

    A new approach is gaining ground in biology, one that has much in common with the structuralist tradition in other fields. It is very much in the spirit of an earlier view of biology and indeed of science in general. It is also, though this is not generally recognized, in the spirit of twentieth century physics. As in modern physics, however, it is not a question of ignoring all the progress that has been made within the former paradigm. On the contrary, the aim is to use it as a basis for setting out in a somewhat different direction. Complex phenomena do not generally lend themselves to reductionist analyses which seek explanation only in terms of detailed mechanisms, but a proper scientific discussion of structure must make full use of what we have already learned - by whatever means - about the processes that underly the phenomena we are trying to understand.

  2. Dive and Discover: Bringing Oceanographic Research into the Classroom and to the General Public

    NASA Astrophysics Data System (ADS)

    Fornari, D. J.; Fino, D.; Humphris, S. E.; Fruth, L. L.; Dean, S.

    2001-12-01

    We have developed the "Dive and Discover" web site for use in classrooms and for the general public to provide near real-time, daily access to oceanographic research expeditions, particularly those using deep submergence vehicles operated by Woods Hole Oceanographic Institution. The site was one of five science sites nominated for a 2001 Webby Award, was selected by Scientific American as one of the top five sites in the category of earth and environmental science, and was one of Eisenhower National Clearinghouse's "digital dozen" for science resources. The web site consists of two major components. A series of educational modules provide both general educational information about the oceans and the people that study them, as well as cruise-specific information about the natural systems being studied, the participating scientists, and the data and sample-collecting methodologies and technologies being used. The second component consists of modules that allow access to near real-time updates of the progress of the cruise, images of seafloor features and animals, samples of data being collected and used on board, and general information about life on board. In addition, a Mail Buoy provides e-mail access for students to ask questions of the scientists on board the ship during the course of the expedition. COSI Toledo have a linked Educator's Companion that gives access to COSI project management tips, background information, activities, correlations to national science education standards, assessment tools, and a vast array of resources to assist educators in using the web site. We have worked with teachers and students from all over the United States to test, evaluate, and refine the web site during five cruises in the Pacific and Indian Oceans over the last two years. These cruises focused on various problems associated with mid-ocean ridge volcanism, and the chemical, physical and biological processes associated with seafloor hydrothermal activity. Our intention is that the conceptual approach we have developed will have broad application for marine scientists to promote ocean science education and public outreach in the future.

  3. First Contact: Expectations of Beginning Astronomy Students

    NASA Astrophysics Data System (ADS)

    Lacey, T. L.; Slater, T. F.

    1999-05-01

    Three hundred seven undergraduate students enrolled in Introductory Astronomy were surveyed at the beginning of class to determine their expectations for course content. The course serves as a survey of astronomy for non-science majors and is a distribution course for general education core requirements. The course has no prerequisites, meets three times each week for 50 minutes, and represents three semester credit hours. The university catalog describes the course with the title "PHYSICS 101 - Mysteries of the Sky" and the official course description is: a survey of the struggle to understand the Universe and our place therein. The structure, growth, methods, and limitations of science will be illustrated using the development of astronomy as a vehicle. Present day views of the Universe are presented. Two questions were asked as open response items: What made you decide to take this course? and What do you expect to learn in this course? The reasons that students cited to take the course, in order of frequency, were: interested in astronomy, interesting or fun sounding course, required general education fulfillment, recommendation by peer. Secondary reasons cited were required for major or minor, general interest in science, and was available in the schedule. Tertiary reasons listed were recommendation by advisor or orientation leader, inflate grade point average, and heard good things about the teacher. The students' expectations about what they would learn in the course were numerous. The most common objects listed, in order of frequency, were: stars, constellations, planets, galaxies, black holes, solar system, comets, galaxies, asteroids, moon, and Sun. More interesting were the aspects not specifically related to astronomy. These were weather, atmosphere, UFOs and the unexplained, generally things in the sky. A mid-course survey suggests that students expected to learn more constellations and that the topics would be less in-depth.

  4. The Role of Science in Culture.

    ERIC Educational Resources Information Center

    Desanti, Jean-Toussaint

    1986-01-01

    Through the use of analogies and analytical philosophy, this article explores the question in what way does science belong to our cultural world. Notes the fragmentation of science and provides recommendations for integrating science and culture. (JDH)

  5. Data and Science: GES DISC Users' Data Usage and Science Exploration

    NASA Astrophysics Data System (ADS)

    Shie, C. L.; Greene, M.; Acker, J. G.; Lei, G. D.; Al-Jazrawi, A. F.; Meyer, D. J.

    2017-12-01

    Motivation: Recall the arguably most renowned anecdote in the history of science: the young Isaac Newton was hit on his head by a falling apple (the data!) when he sat in his garden, which inspired Newton's brilliant insight and his eventually understanding and demonstrating of gravitational force (the science!). This well-known "coupling" of "data" and "science" can be considered as the trigger for this study (as well as its title). The NASA Goddard Earth Sciences Data and Information Service Center (GES DISC) has provided massive amounts of Earth science data, information, and services to diverse research communities and the general public for decades. How much those data products from different missions or projects have been used by diverse user communities, as well as how they have been used by our various user categories (such as research scientists, applications scientists, general public, and students) for different science research or/and applications are the primary focus of this study. We have performed an integrated analysis on "data usage" vs. "science research/application" by investigating three different, yet related, groups of records, i.e., user Help Tickets (the questions and feedback from the users), user publications (info acquired especially via users' acknowledgments of using Giovanni, our powerful in-house visualization tool, in their papers), and user metrics (the collected information of data and service usage by the users) in recent years (2013-2017). For example, precipitation, hydrology, and atmospheric chemistry have been found as frequently applied science variables or/and science areas that have been exploited or/and explored by the users based on the user tickets we have analyzed so far. With regard to Giovanni, a significant minority of the users are applications users (air quality, water quality, agriculture, natural disasters, etc.) in contrast to the majority of basic research users. More users employ Giovanni as an adjunct data source than as the primary source of data and visualizations for their specific research topic. Our overall findings from this integrated analysis will be presented at the meeting.

  6. Moon 101: Introducing Students to Lunar Science and Exploration

    NASA Astrophysics Data System (ADS)

    Shaner, A. J.; Shipp, S. S.; Allen, J. S.; Kring, D. A.

    2011-12-01

    Moon 101 is designed with the purpose of familiarizing students with lunar geology and exploration. Armed with guiding questions, students read articles covering various lunar science topics and browse images from past and current lunar missions to familiarize themselves with available lunar data sets. Moon 101 was originally created for high school students preparing to conduct open-inquiry, lunar research. Most high school students' knowledge of lunar science is limited to lunar phases and tides, and their knowledge of lunar exploration is close to non-existent. Moon 101 provides a summary of the state of knowledge of the Moon's formation and evolution, and the exploration that has helped inform the lunar science community. Though designed for high school students, Moon 101 is highly appropriate for the undergraduate classroom, especially at the introductory level where resources for teaching lunar science are scarce. Moon 101 is comprised of two sections covering lunar science (formation and geologic evolution of the Moon) and one section covering lunar exploration. Students read information on the formation and geologic evolution of the Moon from sources such as the Planetary Science Research Discoveries (PSRD) website and the USGS professional paper A Geologic History of the Moon by Wilhelms. While these resources are not peer-reviewed journals, the information is presented at a level more advanced than articles from newspapers and popular science magazines. This ensures that the language is accessible to students who do not have a strong lunar/planetary science background, or a strong science background in general. Formation readings include information on older and current formation hypotheses, including the Giant Impact Hypothesis, the Magma Ocean hypothesis, and the age of the lunar crust. Lunar evolution articles describe ideas such as the Late Heavy Bombardment and geologic processes such as volcanism and impact cratering. After reading the articles, students are asked a series of questions which help reinforce the lunar science concepts they should take away from the readings. Students then use their new knowledge of the Moon in the final section of Moon 101 where they are asked to characterize the geology of the region surrounding the Apollo 11 landing site. To do this, they conduct a survey of available lunar data, examining imagery from lunar missions as recent as the Lunar Reconnaissance Orbiter and as old as the Ranger missions of the 1960s. This allows students to explore the available datasets and identify the advantages and disadvantages of each. Pre/post test questions have also been developed to assess changes in student understanding of the formation and evolution of the Moon, and lunar exploration. Moon 101 is a framework for introducing students to lunar science, and can be followed up with student-driven research. Moon 101 can be easily modified to suit the needs of the students and the instructor. Because lunar science is an evolving field of study, the use of resources such as the PSRD allows Moon 101 to be flexible and to change as the lunar community re-discovers our celestial neighbor.

  7. The correlation between academic achievements, self-esteem and motivation of female seventh grade students: A mixed methods approach

    NASA Astrophysics Data System (ADS)

    Henman, Karen

    During the early grades, female students generally display enthusiasm for learning science. As these same students go though school, however, their level of motivation changes. Once female students reach high school, many lack the confidence to take chemistry and physics. Then, in college they lack the background necessary to major in chemistry, physics, and engineering. This study used quantitative data to investigate the correlation between female students' motivation, self-esteem, and standards-based state science achievement tests combined with a qualitative survey of student's perceptions of parents' attitudes toward science. The Children's Science Motivation Inventory (CAIMI) determined students' levels of motivation toward science. The Coopersmith Self-esteem Inventory (CSEI) ascertained female students' overall self-esteem. The ISTEP+ exam given in the 6th grade measured the students' academic achievement in science. Trained examiners who interviewed students comprised the qualitative component of the study. Each examiner elaborated on selected questions from the CSEI and CAIMI to determine the students' perceptions of parental attitudes toward science. A multiple regression was used to determine the correlation between self-esteem, motivation, and achievement in science. The correlation was strongest between motivation. Interviews revealed parents and teachers had the most influence on students' perception of science. In understanding the correlation between female students' motivation, achievement, and self-esteem, schools will gain further knowledge into how students relate to the academic field of science and can thus promote females' participation in more science courses in high school. This then will provide females the necessary background knowledge to pursue a greater number of science majors in college.

  8. Preschool Teachers' Attitudes and Beliefs Toward Science

    NASA Astrophysics Data System (ADS)

    Lloyd, Sharon Henry

    In the United States, a current initiative, Advancing Active STEM Education for Our Youngest Learners, aims to advance science, technology, engineering, and math (STEM) education in early childhood. The purpose of this study was to understand preschool teachers' proficiency with science and address the problem of whether or not science learning opportunities are provided to young children based on teachers' attitudes and beliefs. A theoretical framework for establishing teachers' attitudes toward science developed by van Aalderen-Smeets, van der Molen, and Asma, along with Bandura's theory of self-efficacy were the foundations for this research. Research questions explored preschool teachers' attitudes and beliefs toward science in general and how they differed based on education level and years of preschool teaching experience. Descriptive comparative data were collected from 48 preschool teacher participants using an online format with a self-reported measure and were analyzed using nonparametric tests to describe differences between groups based on identified factors of teacher comfort, child benefit, and challenges. Results indicated that the participants believed that early childhood science is developmentally appropriate and that young children benefit from science instruction through improved school-readiness skills. Preschool teachers with a state credential or an associate's degree and more teaching experience had more teacher comfort toward science based on attitudes and beliefs surveyed. The data indicated participating preschool teachers experienced few challenges in teaching science. The study may support positive social change through increased awareness of strengths and weaknesses of preschool teachers for the development of effective science professional development. Science is a crucial component of school-readiness skills, laying a foundation for success in later grades.

  9. Quality of evidence revealing subtle gender biases in science is in the eye of the beholder.

    PubMed

    Handley, Ian M; Brown, Elizabeth R; Moss-Racusin, Corinne A; Smith, Jessi L

    2015-10-27

    Scientists are trained to evaluate and interpret evidence without bias or subjectivity. Thus, growing evidence revealing a gender bias against women-or favoring men-within science, technology, engineering, and mathematics (STEM) settings is provocative and raises questions about the extent to which gender bias may contribute to women's underrepresentation within STEM fields. To the extent that research illustrating gender bias in STEM is viewed as convincing, the culture of science can begin to address the bias. However, are men and women equally receptive to this type of experimental evidence? This question was tested with three randomized, double-blind experiments-two involving samples from the general public (n = 205 and 303, respectively) and one involving a sample of university STEM and non-STEM faculty (n = 205). In all experiments, participants read an actual journal abstract reporting gender bias in a STEM context (or an altered abstract reporting no gender bias in experiment 3) and evaluated the overall quality of the research. Results across experiments showed that men evaluate the gender-bias research less favorably than women, and, of concern, this gender difference was especially prominent among STEM faculty (experiment 2). These results suggest a relative reluctance among men, especially faculty men within STEM, to accept evidence of gender biases in STEM. This finding is problematic because broadening the participation of underrepresented people in STEM, including women, necessarily requires a widespread willingness (particularly by those in the majority) to acknowledge that bias exists before transformation is possible.

  10. How random is a random vector?

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2015-12-01

    Over 80 years ago Samuel Wilks proposed that the "generalized variance" of a random vector is the determinant of its covariance matrix. To date, the notion and use of the generalized variance is confined only to very specific niches in statistics. In this paper we establish that the "Wilks standard deviation" -the square root of the generalized variance-is indeed the standard deviation of a random vector. We further establish that the "uncorrelation index" -a derivative of the Wilks standard deviation-is a measure of the overall correlation between the components of a random vector. Both the Wilks standard deviation and the uncorrelation index are, respectively, special cases of two general notions that we introduce: "randomness measures" and "independence indices" of random vectors. In turn, these general notions give rise to "randomness diagrams"-tangible planar visualizations that answer the question: How random is a random vector? The notion of "independence indices" yields a novel measure of correlation for Lévy laws. In general, the concepts and results presented in this paper are applicable to any field of science and engineering with random-vectors empirical data.

  11. National Science Bowl | NREL

    Science.gov Websites

    and high school student teams on science and math topics. The National Science Bowl provides an opportunity for students to develop science, technology, engineering, and math (STEM) skills in a non tournament challenges students' knowledge of science. Student teams are questioned on life science, math

  12. Developing Online Oceanography at UCSB

    NASA Astrophysics Data System (ADS)

    Prothero, W. A.; Dodson, H.

    2001-12-01

    Oceanography at UCSB is an introductory general education science course taken by up to 200 students per quarter. The emphasis is on learning science process by engaging in authentic science activities that use real earth data. Recently, to increase student motivation, the course has been modified to include an Earth Summit framework. The online support being developed for this course is the first step in the creation of a completely online oceanography class. Foundation software was first tested in the class during Spring 2001. Online activities that are supported are writing and instructor feedback, online threaded discussion with live chat and graphics, automatically graded homeworks and games, auto graded quizzes with questions randomly selected from a database, and thought problems graded by the instructor(s). Future plans include integration with commercial course management software. To allow choice of assignments, all course activities totaled110%. Since grades were based on A=90-100, B=80-90, C= 70-80, etc, it was possible to get a better than A grade. Students see the effect (on their grade) of each assignment by calculating their current course grade. Course activities included (most of which are automatically graded): weekly lab homeworks, weekly mini-quizzes (10 multiple choice questions selected at random from a topic database), weekly thought questions (graded by the TA), 3 written assignments, and "Question of the Day" from lecture (credit given for handing it in), The online writing software allowed students to enter their writing, edit and link to graphic images, print the paper, and electronically hand it in. This has the enormous advantage of allowing the instructor and TA's convenient access to all student papers. At the end of the course, students were asked how effective each of the course activities were in learning the course material. On a five point scale, ranging from highest contribution to lowest, the percentage of students giving ratings of 4 or 5 (highest) were: lectures: 27%, labs: 70%, earth summit activities: 57%, weekly thought questions: 36%, Questions of the day: 34%, weekly quizzes: 51%, weekly homeworks: 48%, writing assignments: 68%. Course difficulty responses were symmetrically peaked at a rating of 3, indicating that the course was taught at the right level. 64% of the students responded with 4 or 5 level to "I worked very hard in this class." Join the DLESE "Oceanography" interest group (www.dlese.org) to discuss and help develop oceanography course materials. >http://oceanography.geol.ucsb.edu/Support/CourseWare/Index.html

  13. LLNL Mercury Project Trinity Open Science Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brantley, Patrick; Dawson, Shawn; McKinley, Scott

    2016-04-20

    The Mercury Monte Carlo particle transport code developed at Lawrence Livermore National Laboratory (LLNL) is used to simulate the transport of radiation through urban environments. These challenging calculations include complicated geometries and require significant computational resources to complete. As a result, a question arises as to the level of convergence of the calculations with Monte Carlo simulation particle count. In the Trinity Open Science calculations, one main focus was to investigate convergence of the relevant simulation quantities with Monte Carlo particle count to assess the current simulation methodology. Both for this application space but also of more general applicability, wemore » also investigated the impact of code algorithms on parallel scaling on the Trinity machine as well as the utilization of the Trinity DataWarp burst buffer technology in Mercury via the LLNL Scalable Checkpoint/Restart (SCR) library.« less

  14. STS-107 Crew Interviews: Ilan Ramon, Mission Specialist

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-107 Mission Specialist Ilan Ramon is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. He outlines his role in the mission in general, and specifically in conducting on-board science experiments. He discusses the following instruments and sets of experiments in detail: CM2 (Combustion Module 2), FREESTAR (Fast Reaction Enabling Science Technology and Research), MEIDEX (Mediterranean Israeli Dust Experiment) and MGM (Mechanics of Granular Materials). Ramon also mentions on-board activities during launch and reentry, mission training and microgravity research. In addition, he touches on the dual work-shift nature of the mission, the use of crew members as research subjects including pre and postflight monitoring activities, the emphasis on crew safety during training and the value of international cooperation.

  15. The effects of question-generation training on metacognitive knowledge, self regulation and learning approaches in science.

    PubMed

    Cano García, Francisco; García, Ángela; Berbén, A B G; Pichardo, M C; Justicia, Fernando

    2014-01-01

    Although much research has examined the impact of question generation on students' reading comprehension and learning from lectures, far less research has analysed its influence on how students learn and study science. The present study aims to bridge this knowledge gap. Using a quasi-experimental design, three complete ninth-grade science classes, with a total of 72 students, were randomly assigned to three conditions (groups): (G1) questioning-training by providing prompts; (G2) question-generation without any explicit instruction; and (G3) no question control. Participants' pre-test and post-test self-reported measures of metacognitive knowledge, self-regulation and learning approaches were collected and data analysed with multivariate and univariate analyses of covariance. (a) MANCOVA revealed a significant effect for group; (b) ANCOVAs showed the highest average gains for G1 and statistically significant between-group differences in the two components of metacognition: metacognitive knowledge and self-regulation; and (c) the direction of these differences seemed to vary in each of these components. Question-generation training influenced how students learned and studied, specifically their metacognition, and it had a medium to large effect size, which was somewhat related to the prompts used.

  16. Integrated Science Assessment (ISA) for Carbon Monoxide ...

    EPA Pesticide Factsheets

    EPA announced that the First External Review Draft of the Integrated Science Assessment (ISA) for Carbon Monoxide (CO) and related Annexes was made available for independent peer review and public review. This draft ISA document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA's decision regarding whether the current standards for CO sufficiently protect public health and the environment. The Integrated Plan for Review of the NAAQS for CO {U.S. EPA, 2008 #8615} identifies key policy-relevant questions that provide a framework for this review of the scientific evidence. These questions frame the entire review of the NAAQS, and thus are informed by both science and policy considerations. The ISA organizes and presents the scientific evidence such that it, when considered along with findings from risk analyses and policy considerations, will help the EPA address these questions during the NAAQS review:

  17. Assessing Multimedia Influences on Student Responses Using a Personal Response System

    NASA Astrophysics Data System (ADS)

    Gray, Kyle; Owens, Katharine; Liang, Xin; Steer, David

    2012-06-01

    To date, research to date on personal response systems (clickers) has focused on external issues pertaining to the implementation of this technology or broadly measured student learning gains rather than investigating differences in the responses themselves. Multimedia learning makes use of both words and pictures, and research from cognitive psychology suggests that using both words and illustrations improves student learning. This study analyzed student response data from 561 students taking an introductory earth science course to determine whether including an illustration in a clicker question resulted in a higher percentage of correct responses than questions that did not include a corresponding illustration. Questions on topics pertaining to the solid earth were categorized as illustrated questions if they contained a picture, or graph and text- only if the question only contained text. For each type of question, we calculated the percentage of correct responses for each student and compared the results to student ACT-reading, math, and science scores. A within-groups, repeated measures analysis of covariance with instructor as the covariate yielded no significant differences between the percentage of correct responses to either the text-only or the illustrated questions. Similar non-significant differences were obtained when students were grouped into quartiles according to their ACT-reading, -math, and -science scores. These results suggest that the way in which a conceptest question is written does not affect student responses and supports the claim that conceptest questions are a valid formative assessment tool.

  18. Microgravity

    NASA Image and Video Library

    2001-05-02

    Suzarne Nichols (12th grade) from DuPont Manual High School in Louisville, Kentucky, asks a question of on of the on-line lecturers during the Pan-Pacific Basin Workshop on Microgravity Sciences held in Pasadena, California. The event originated at the California Science Center in Los Angeles. The DuPont Manual students patched in to the event through the distance learning lab at the Louisville Science Center. Jie Ma (grade 10, at right) waits her turn to ask a question. This image is from a digital still camera; higher resolution is not available.

  19. On the Meaning of Element in the Science of Italic Tradition, the Question of Physical Objectivity (and/or Physical Meaning) and Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Boscarino, Giuseppe

    2006-06-01

    It is questioned: Is quantum mechanics a new science or a new (or rather old) philosophy of physical science? It is shown that Einstein's attempt in his article of 1935 to bring the concept of "element" from the classical (we call it Italic) philosophical-epistemological tradition, which goes under the names of Pythagoras Parmenides, Democritus, and Newton, into quantum mechanical theory is unclear, inadequate and contradictory.

  20. Assessment of Biology Majors' Versus Nonmajors' Views on Evolution, Creationism, and Intelligent Design.

    PubMed

    Paz-Y-Miño C, Guillermo; Espinosa, Avelina

    2009-03-01

    The controversy around evolution, creationism, and intelligent design resides in a historical struggle between scientific knowledge and popular belief. Four hundred seventy-six students (biology majors n =237, nonmajors n =239) at a secular liberal arts private university in Northeastern United States responded to a five-question survey to assess their views about: (1) evolution, creationism, and intelligent design in the science class; (2) students' attitudes toward evolution; (3) students' position about the teaching of human evolution; (4) evolution in science exams; and (5) students' willingness to discuss evolution openly. There were 60.6% of biology majors and 42% of nonmajors supported the exclusive teaching of evolution in the science class, while 45.3% of nonmajors and 32% of majors were willing to learn equally about evolution, creationism, and intelligent design (question 1); 70.5% of biology majors and 55.6% of nonmajors valued the factual explanations evolution provides about the origin of life and its place in the universe (question 2); 78% of the combined responders (majors plus nonmajors) preferred science courses where evolution is discussed comprehensively and humans are part of it (question 3); 69% of the combined responders (majors plus nonmajors) had no problem answering questions concerning evolution in science exams (question 4); 48.1% of biology majors and 26.8% of nonmajors accepted evolution and expressed it openly, but 18.2% of the former and 14.2% of the latter accepted evolution privately; 46% of nonmajors and 29.1% of biology majors were reluctant to comment on this topic (question 5). Combined open plus private acceptance of evolution within biology majors increased with seniority, from freshman (60.7%) to seniors (81%), presumably due to gradual exposure to upper-division biology courses with evolutionary content. College curricular/pedagogical reform should fortify evolution literacy at all education levels, particularly among nonbiologists.

  1. Assessment of Biology Majors’ Versus Nonmajors’ Views on Evolution, Creationism, and Intelligent Design

    PubMed Central

    Paz-y-Miño C., Guillermo

    2016-01-01

    The controversy around evolution, creationism, and intelligent design resides in a historical struggle between scientific knowledge and popular belief. Four hundred seventy-six students (biology majors n=237, nonmajors n=239) at a secular liberal arts private university in Northeastern United States responded to a five-question survey to assess their views about: (1) evolution, creationism, and intelligent design in the science class; (2) students’ attitudes toward evolution; (3) students’ position about the teaching of human evolution; (4) evolution in science exams; and (5) students’ willingness to discuss evolution openly. There were 60.6% of biology majors and 42% of nonmajors supported the exclusive teaching of evolution in the science class, while 45.3% of nonmajors and 32% of majors were willing to learn equally about evolution, creationism, and intelligent design (question 1); 70.5% of biology majors and 55.6% of nonmajors valued the factual explanations evolution provides about the origin of life and its place in the universe (question 2); 78% of the combined responders (majors plus nonmajors) preferred science courses where evolution is discussed comprehensively and humans are part of it (question 3); 69% of the combined responders (majors plus nonmajors) had no problem answering questions concerning evolution in science exams (question 4); 48.1% of biology majors and 26.8% of nonmajors accepted evolution and expressed it openly, but 18.2% of the former and 14.2% of the latter accepted evolution privately; 46% of nonmajors and 29.1% of biology majors were reluctant to comment on this topic (question 5). Combined open plus private acceptance of evolution within biology majors increased with seniority, from freshman (60.7%) to seniors (81%), presumably due to gradual exposure to upper-division biology courses with evolutionary content. College curricular/pedagogical reform should fortify evolution literacy at all education levels, particularly among nonbiologists. PMID:26973732

  2. Critical issues in the history, philosophy, and sociology of astrobiology.

    PubMed

    Dick, Steven J

    2012-10-01

    Fifty years after serious scientific research began in the field of exobiology, and forty years after serious historical research began on the subject of extraterrestrial life, this paper identifies and examines some of the most important issues in the history, philosophy, and sociology of what is today known as astrobiology. As in the philosophy of science in general, and in the philosophies of particular sciences, critical issues in the philosophy and sociology of astrobiology are both stimulated and illuminated by history. Among those issues are (1) epistemological issues such as the status of astrobiology as a science, the problematic nature of evidence and inference, and the limits of science; (2) metaphysical/scientific issues, including the question of defining the fundamental concepts of life, mind, intelligence, and culture in a universal context; the role of contingency and necessity in the origin of these fundamental phenomena; and whether or not the universe is in some sense fine-tuned for life and perhaps biocentric; (3) societal issues such as the theological, ethical, and worldview impacts of the discovery of microbial or intelligent life; and the question of whether the search for extraterrestrial life should be pursued at all, and with what precautions; and (4) issues related to the sociology of scientific knowledge, including the diverse attitudes and assumptions of different scientific communities and different cultures to the problem of life beyond Earth, the public "will to believe," and the formation of the discipline of astrobiology. All these overlapping issues are framed by the concept of cosmic evolution-the 13.7 billion year Master Narrative of the Universe-which may result in a physical, biological, or postbiological universe and determine the long-term destiny of humanity.

  3. The survival of 19th-century scientific optimism: the public discourse on science in Belgium in the aftermath of the Great War (ca. 1919-1930).

    PubMed

    Onghena, Sofie

    2011-01-01

    In historiography there is a tendency to see the Great War as marking the end of scientific optimism and the period that followed the war as a time of discord. Connecting to current (inter)national historiographical debate on the question of whether the First World War meant a disruption from the pre-war period or not, this article strives to prove that faith in scientific progress still prevailed in the 1920s. This is shown through the use of Belgium as a case study, which suggests that the generally adopted cultural pessimism in the post-war years did not apply to the public rhetoric of science in this country. Diverse actors -- scientists, industrialists, politicians, the public opinion, and the military staff -- declared a confidence in science, enhanced by wartime results. Furthermore, belief in science in Belgium was not affected by public outcry over the use of mustard gas, unlike in the former belligerent countries where the gas became an unpleasant reminder of how science was used during the war. Even German science with its industrial applications remained the norm after 1918. In fact, the faith in science exhibited during the pre-war years continued to exist, at least until the 1920s, despite anti-German sentiments being voiced by many sections of Belgian society in the immediate aftermath of the war.

  4. Cardiopulmonary discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Life sciences research in the cardiopulmonary discipline must identify possible consequences of space flight on the cardiopulmonary system, understand the mechanisms of these effects, and develop effective and operationally practical countermeasures to protect crewmembers inflight and upon return to a gravitational environment. The long-range goal of the NASA Cardiopulmonary Discipline Research Program is to foster research to better understand the acute and long-term cardiovascular and pulmonary adaptation to space and to develop physiological countermeasures to ensure crew health in space and on return to Earth. The purpose of this Discipline Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of cardiopulmonary sciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of both cardiovascular and pulmonary function. It contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational (intramural and extramural) research and development activities in this area.

  5. Science, Worldviews and Education: An Introduction

    NASA Astrophysics Data System (ADS)

    Matthews, Michael R.

    2009-06-01

    This special issue of Science & Education deals with the theme of ‘Science, Worldviews and Education’. The theme is of particular importance at the present time as many national and provincial education authorities are requiring that students learn about the Nature of Science (NOS) as well as learning science content knowledge and process skills. NOS topics are being written into national and provincial curricula. Such NOS matters give rise to questions about science and worldviews: What is a worldview? Does science have a worldview? Are there specific ontological, epistemological and ethical prerequisites for the conduct of science? Does science lack a worldview but nevertheless have implications for worldviews? How can scientific worldviews be reconciled with seemingly discordant religious and cultural worldviews? In addition to this major curricular impetus for refining understanding of science and worldviews, there are also pressing cultural and social forces that give prominence to questions about science, worldviews and education. There is something of an avalanche of popular literature on the subject that teachers and students are variously engaged by. Additionally the modernisation and science-based industrialisation of huge non-Western populations whose traditional religions and beliefs are different from those that have been associated with orthodox science, make very pressing the questions of whether, and how, science is committed to particular worldviews. Hugh Gauch Jr. provides a long and extensive lead essay in the volume, and 12 philosophers, educators, scientists and theologians having read his paper, then engage with the theme. Hopefully the special issue will contribute to a more informed understanding of the relationship between science, worldviews and education, and provide assistance to teachers who are routinely engaged with the subject.

  6. [Thought Experiments in Historiographic Function: Max Weber on Eduard Meyer and the Question of Counterfactuality].

    PubMed

    Ernst, Florian

    2015-03-01

    Thought Experiments in Historiographic Function: Max Weber on Eduard Meyer and the Question of Counterfactuality. Max Weber's remarks on his colleague Eduard Meyer regarding counterfactual reasoning in history reflects a significant shift during the Methodenstreit around 1900. The question of attributing historical change strictly to either individual causes or abstract general laws has been tackled in a new way: By counterfactual reasoning a historian should be able to detect the most significant (and therefore meaningful) cause, event, or action for a certain historical outcome. Following Fritz Ringer, this paper argues that given the predominating methods of the natural sciences, scholars of the humanities conducted historical research by counterfactual thought experiments. This way, Weber pried open contemporary narratives (e.g. historicism), and by employing a unique historical causal analysis he made way for refined concepts to offer a model of interpretation that gave hope for a more feasible, practice-oriented approach to historical research than the epistemological discussions had hitherto offered. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Advances in Intelligence Research: What Should be Expected in the XXI Century (Questions & Answers).

    PubMed

    Colom, Roberto

    2016-12-06

    Here I briefly delineate my view about the main question of this International Seminar, namely, what should we expecting from the XXI Century regarding the advancements in intelligence research. This view can be summarized as 'The Brain Connection' (TBC), meaning that neuroscience will be of paramount relevance for increasing our current knowledge related to the key question: why are some people smarter than others? We need answers to the issue of what happens in our brains when the genotype and the environment are integrated. The scientific community has devoted great research efforts, ranging from observable behavior to hidden genetics, but we are still far from having a clear general picture of what it means to be more or less intelligent. After the discussion held with the panel of experts participating in the seminar, it is concluded that advancements will be more solid and safe increasing the collaboration of scientists with shared research interests worldwide. Paralleling current sophisticated analyses of how the brain computes, nowadays science may embrace a network approach.

  8. Announcing a Hydrogeology Journal theme issue on "The future of hydrogeology"

    USGS Publications Warehouse

    Voss, Clifford I.

    2003-01-01

    What is the future of hydrogeology? Are most of the fundamental scientific problems in hydrogeology already solved? Is there really any need for more fundamental research, field measurements, or method development? Have recent scientific advances really added capabilities and tools for our practical needs? Are there any unsolved hydrogeologic questions still remaining that are vital to our optimal use and management of subsurface resources or does the remaining work only fill in some details to a story essentially already told? Will the science of hydrogeology soon become primarily an applied field, where the main task is to use known methods to solve practical problems of water supply and water quality? For other questions involving subsurface fluids, for example, waste isolation, understanding of geological processes and climate changes, are current hydrogeologic capabilities sufficient and is there any possibility for improvement? These are the types of questions that will be dealt with by an upcoming theme issue of Hydrogeology Journal (HJ) to appear in early 2005 [HJ 13(1)]. This issue will contain 10–20 peer-reviewed invited articles on both general topics and specific subject areas of hydrogeology.

  9. Beyond postcolonialism ... and postpositivism: circulation and the global history of science.

    PubMed

    Raj, Kapil

    2013-06-01

    This essay traces the parallel, but unrelated, evolution of two sets of reactions to traditional idealist history of science in a world-historical context. While the scholars who fostered the postcolonial approach, in dealing with modern science in the non-West, espoused an idealist vision, they nevertheless stressed its political and ideological underpinnings and engaged with the question of its putative Western roots. The postidealist history of science developed its own vision with respect to the question of the global spread of modern science, paying little heed to postcolonial debates. It then proposes a historiographical approach developed in large part by historians of South Asian politics, economics, and science that, without compromising the preoccupations of each of the two groups, could help construct a mutually comprehensible and connected framework for the understanding of the global workings of the sciences.

  10. Neoliberal ideology, global capitalism, and science education: engaging the question of subjectivity

    NASA Astrophysics Data System (ADS)

    Bazzul, Jesse

    2012-12-01

    This paper attempts to add to the multifaceted discussion concerning neoliberalism and globalization out of two Cultural Studies of Science Education journal issues along with the recent Journal of Research in Science Teaching devoted to these topics. However, confronting the phenomena of globalization and neoliberalism will demand greater engagement with relevant sociopolitical thought in fields typically outside the purview of science education. Drawing from thinkers Michel Foucault, Jean Baudrillard, Judith Butler, and Louis Althusser this paper attempts to extend some key ideas coming from Ken Tobin, Larry Bencze, and Lyn Carter and advocates science educators taking up notions of ideology, discourse, and subjectivity to engage globalization and neoliberalism. Subjectivity (and its constitution in science education) is considered alongside two relevant textbook examples and also in terms of its importance in formulating political and culturally relevant questions in science education.

  11. Promoting an active form of learning out-of-class via answering online “study questions” leads to higher than expected exam scores in General Biology

    PubMed Central

    2015-01-01

    A rising need for workers in science, technology, engineering and mathematics (STEM) fields has fueled interest in improving teaching within STEM disciplines. Numerous studies have demonstrated the benefits of active learning approaches on student learning outcomes. However, many of these studies have been conducted in experimental, rather than real-life class, settings. In addition, most of these studies have focused on in-class active learning exercises. This study tested the effects of answering questions outside of class on exam performance for General Biology students at the University of Minnesota. An online database of 1,020 multiple-choice questions covering material from the first half of the course was generated. Students in seven course sections (with an average of ∼265 students per section) were given unlimited access to the online study questions. These students made extensive use of the online questions, with students answering an average of 1,323 questions covering material from the half of the semester for which the questions were available. After students answered a set of questions, they were shown the correct answers for those questions. More specific feedback describing how to arrive at the correct answer was provided for the 73% of the questions for which the correct answers were not deemed to be self-explanatory. The extent to which access to the online study questions improved student learning outcomes was assessed by comparing the performance on exam questions of students in the seven course sections with access to the online study questions with the performance of students in course sections without access to the online study questions. Student performance was analyzed for a total of 89 different exams questions that were not included in the study questions, but that covered the same material covered by the study questions. Each of these 89 questions was used on one to five exams given to students in course sections that had access to the online study questions and on three to 77 exams given to students in sections that lacked such access. Data from over 1,800 students in sections with access to the online study questions show that those students scored a statistically significant average of 6.6% points higher on the exam questions analyzed than students in sections without access to the study questions. This difference was greater than the average amount necessary to raise students’ exam grades by one grade (e.g., from a “B-” to a “B”). In addition, there was a higher correlation between number of questions answered and success on exam questions on material related to the study questions than between number of questions answered and success on exam questions on material unrelated to the study questions. The online study question system required substantial effort to set up, but required minimal effort to maintain and was effective in significantly raising average exam scores for even very large course sections. PMID:26500828

  12. Chicken Eggs: Which Comes First--The Expected Results or the Science?

    ERIC Educational Resources Information Center

    Haydock, Karen

    2014-01-01

    We sometimes struggle with the question of whether our primary goal is for students to recall or understand answers to questions, or for students to do science and improve their "scientific temper". This article describes how an enquiry-based laboratory experiment was carried out in which the stress was on the latter. The students…

  13. What Do the Prospective Science Teachers Know about the Human Eye?

    ERIC Educational Resources Information Center

    Sahin, Çigdem

    2014-01-01

    In this study, the views of the Prospective Science Teacher (PST)s about the human eye were examined. The following data collection tools were used: the Word Association Test (WAT), open ended questions, drawing technique, two tiered question item and an interview about concepts. The data of the study whose sample consisted of 34 PSTs were…

  14. Civil Rights Questions: Where Race, Economics, and Criminal Justice Intersect.

    ERIC Educational Resources Information Center

    Dutton, Marghi

    This curriculum unit on civil rights questions in the United States was developed as a history-social science project at San Jose State University. The unit is intended for high school students and needs one or two class periods to complete. It provides the teacher with a rationale, a framework, history-social science standards, student outcomes,…

  15. Patterns of Response Times and Response Choices to Science Questions: The Influence of Relative Processing Time

    ERIC Educational Resources Information Center

    Heckler, Andrew F.; Scaife, Thomas M.

    2015-01-01

    We report on five experiments investigating response choices and response times to simple science questions that evoke student "misconceptions," and we construct a simple model to explain the patterns of response choices. Physics students were asked to compare a physical quantity represented by the slope, such as speed, on simple physics…

  16. 41 CFR Appendix A to Subpart E of... - 3-Key Points and Principles

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Academy of Sciences or the National Academy of Public Administration? Pt. 102-3, Subpt. E, App. A Appendix... principles Section(s) Question(s) Guidance I. Section 15 of the Act allows the National Academy of Sciences... these circumstances, neither the existence of the funding agreement nor the fact that it contemplates...

  17. 41 CFR Appendix A to Subpart E of... - 3-Key Points and Principles

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Academy of Sciences or the National Academy of Public Administration? Pt. 102-3, Subpt. E, App. A Appendix... principles Section(s) Question(s) Guidance I. Section 15 of the Act allows the National Academy of Sciences... these circumstances, neither the existence of the funding agreement nor the fact that it contemplates...

  18. 41 CFR Appendix A to Subpart E of... - 3-Key Points and Principles

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Academy of Sciences or the National Academy of Public Administration? Pt. 102-3, Subpt. E, App. A Appendix... principles Section(s) Question(s) Guidance I. Section 15 of the Act allows the National Academy of Sciences... these circumstances, neither the existence of the funding agreement nor the fact that it contemplates...

  19. 41 CFR Appendix A to Subpart E of... - 3-Key Points and Principles

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Academy of Sciences or the National Academy of Public Administration? Pt. 102-3, Subpt. E, App. A Appendix... principles Section(s) Question(s) Guidance I. Section 15 of the Act allows the National Academy of Sciences... these circumstances, neither the existence of the funding agreement nor the fact that it contemplates...

  20. 41 CFR Appendix A to Subpart E of... - 3-Key Points and Principles

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Academy of Sciences or the National Academy of Public Administration? Pt. 102-3, Subpt. E, App. A Appendix... principles Section(s) Question(s) Guidance I. Section 15 of the Act allows the National Academy of Sciences... these circumstances, neither the existence of the funding agreement nor the fact that it contemplates...

Top