Science.gov

Sample records for quorum sensing molecule

  1. Quorum sensing and Bacterial Pathogenicity: From Molecules to Disease

    PubMed Central

    Deep, Antariksh; Chaudhary, Uma; Gupta, Varsha

    2011-01-01

    Quorum sensing in prokaryotic biology refers to the ability of a bacterium to sense information from other cells in the population when they reach a critical concentration (i.e. a Quorum) and communicate with them. The “language” used for this intercellular communication is based on small, self-generated signal molecules called as autoinducers. Quorum sensing is thought to afford pathogenic bacteriaa mechanism to minimize host immune responses by delaying theproduction of tissue-damaging virulence factors until sufficientbacteria have amassed and are prepared to overwhelm host defensemechanisms and establish infection. Quorum sensing systems are studied in a large number of gram-negative bacterial species belonging to α, β, and γ subclasses of proteobacteria. Among the pathogenic bacteria, Pseudomonas aeruginosa is perhaps the best understood in terms of the virulence factors regulated and the role the Quorum sensing plays in pathogenicity. Presently, Quorum sensing is considered as a potential novel target for antimicrobial therapy to control multi/all drug-resistant infections. This paper reviews Quorum sensing in gram positive and gram negative bacteria and its role in biofilm formation. PMID:21701655

  2. Quorum sensing and Bacterial Pathogenicity: From Molecules to Disease.

    PubMed

    Deep, Antariksh; Chaudhary, Uma; Gupta, Varsha

    2011-01-01

    Quorum sensing in prokaryotic biology refers to the ability of a bacterium to sense information from other cells in the population when they reach a critical concentration (i.e. a Quorum) and communicate with them. The "language" used for this intercellular communication is based on small, self-generated signal molecules called as autoinducers. Quorum sensing is thought to afford pathogenic bacteriaa mechanism to minimize host immune responses by delaying theproduction of tissue-damaging virulence factors until sufficientbacteria have amassed and are prepared to overwhelm host defensemechanisms and establish infection. Quorum sensing systems are studied in a large number of gram-negative bacterial species belonging to α, β, and γ subclasses of proteobacteria. Among the pathogenic bacteria, Pseudomonas aeruginosa is perhaps the best understood in terms of the virulence factors regulated and the role the Quorum sensing plays in pathogenicity. Presently, Quorum sensing is considered as a potential novel target for antimicrobial therapy to control multi/all drug-resistant infections. This paper reviews Quorum sensing in gram positive and gram negative bacteria and its role in biofilm formation.

  3. Detection of quorum-sensing-related molecules in Vibrio scophthalmi

    PubMed Central

    García-Aljaro, Cristina; Eberl, Leo; Riedel, Kathrin; Blanch, Anicet R

    2008-01-01

    Background Cell-to-cell communication (also referred to as quorum sensing) based on N-acyl-homoserine lactones (AHLs) is a widespread response to environmental change in Gram-negative bacteria. AHLs seem to be highly variable, both in terms of the acyl chain length and in the chemical structure of the radicals. Another quorum sensing pathway, the autoinducer-2-based system, is present both in Gram-positive and Gram-negative bacteria. In this study the presence of signal molecules belonging to both quorum sensing signalling pathways was analysed in the marine symbiotic species Vibrio scophthalmi. Results Three AHL-like signal molecules were detected in V. scophthalmi supernatants with the Agrobacterium tumefaciens sensor assay. This observation was further supported by the decrease in the presence of these signal molecules after cloning and expression of lactonase AiiA from Bacillus cereus in the V. scophthalmi strains. One of the signal molecules was identified as N-(3-hydroxy dodecanoyl)-L-homoserine lactone. V. scophthalmi was also shown to carry a functional LuxS synthase. The coding sequence for a luxS-like gene was obtained showing a maximum similarity of 78% with Vibrio vulnificus. Analysis of the translated sequence revealed that the sequenced luxS gene carried the conserved domain, which is common to luxS sequences found in other species, and which is essential for LuxS enzymatic activity. Conclusion The data are consistent with the presence of quorum-sensing signal molecules from both AHL- and autoinducer 2-based quorum sensing systems in V. scophthalmi, which are homologous to others previously described in various Vibrio species. How this bacterium interacts with other bacteria and eukaryotic cells to compete ecologically with other intestinal bacteria present in the fish Scophthalmus maximus warrants further investigation. PMID:18700048

  4. Functional Amyloids Keep Quorum-sensing Molecules in Check*

    PubMed Central

    Seviour, Thomas; Hansen, Susan Hove; Yang, Liang; Yau, Yin Hoe; Wang, Victor Bochuan; Stenvang, Marcel R.; Christiansen, Gunna; Marsili, Enrico; Givskov, Michael; Chen, Yicai; Otzen, Daniel E.; Nielsen, Per Halkjær; Geifman-Shochat, Susana; Kjelleberg, Staffan; Dueholm, Morten S.

    2015-01-01

    The mechanism by which extracellular metabolites, including redox mediators and quorum-sensing signaling molecules, traffic through the extracellular matrix of biofilms is poorly explored. We hypothesize that functional amyloids, abundant in natural biofilms and possessing hydrophobic domains, retain these metabolites. Using surface plasmon resonance, we demonstrate that the quorum-sensing (QS) molecules, 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone, and the redox mediator pyocyanin bind with transient affinity to functional amyloids from Pseudomonas (Fap). Their high hydrophobicity predisposes them to signal-amyloid interactions, but specific interactions also play a role. Transient interactions allow for rapid association and dissociation kinetics, which make the QS molecules bioavailable and at the same time secure within the extracellular matrix as a consequence of serial bindings. Retention of the QS molecules was confirmed using Pseudomonas aeruginosa PAO1-based 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone reporter assays, showing that Fap fibrils pretreated with the QS molecules activate the reporters even after sequential washes. Pyocyanin retention was validated by electrochemical analysis of pyocyanin-pretreated Fap fibrils subjected to the same washing process. Results suggest that QS molecule-amyloid interactions are probably important in the turbulent environments commonly encountered in natural habitats. PMID:25586180

  5. Functional amyloids keep quorum-sensing molecules in check.

    PubMed

    Seviour, Thomas; Hansen, Susan Hove; Yang, Liang; Yau, Yin Hoe; Wang, Victor Bochuan; Stenvang, Marcel R; Christiansen, Gunna; Marsili, Enrico; Givskov, Michael; Chen, Yicai; Otzen, Daniel E; Nielsen, Per Halkjær; Geifman-Shochat, Susana; Kjelleberg, Staffan; Dueholm, Morten S

    2015-03-06

    The mechanism by which extracellular metabolites, including redox mediators and quorum-sensing signaling molecules, traffic through the extracellular matrix of biofilms is poorly explored. We hypothesize that functional amyloids, abundant in natural biofilms and possessing hydrophobic domains, retain these metabolites. Using surface plasmon resonance, we demonstrate that the quorum-sensing (QS) molecules, 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone, and the redox mediator pyocyanin bind with transient affinity to functional amyloids from Pseudomonas (Fap). Their high hydrophobicity predisposes them to signal-amyloid interactions, but specific interactions also play a role. Transient interactions allow for rapid association and dissociation kinetics, which make the QS molecules bioavailable and at the same time secure within the extracellular matrix as a consequence of serial bindings. Retention of the QS molecules was confirmed using Pseudomonas aeruginosa PAO1-based 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone reporter assays, showing that Fap fibrils pretreated with the QS molecules activate the reporters even after sequential washes. Pyocyanin retention was validated by electrochemical analysis of pyocyanin-pretreated Fap fibrils subjected to the same washing process. Results suggest that QS molecule-amyloid interactions are probably important in the turbulent environments commonly encountered in natural habitats.

  6. Fungal quorum sensing molecules: Role in fungal morphogenesis and pathogenicity.

    PubMed

    Wongsuk, Thanwa; Pumeesat, Potjaman; Luplertlop, Natthanej

    2016-05-01

    When microorganisms live together in high numbers, they need to communicate with each other. To achieve cell-cell communication, microorganisms secrete molecules called quorum-sensing molecules (QSMs) that control their biological activities and behaviors. Fungi secrete QSMs such as farnesol, tyrosol, phenylethanol, and tryptophol. The role of QSMs in fungi has been widely studied in both yeasts and filamentous fungi, for example in Candida albicans, C. dubliniensis, Aspergillus niger, A. nidulans, and Fusarium graminearum. QSMs impact fungal morphogenesis (yeast-to-hypha formation) and also play a role in the germination of macroconidia. QSMs cause fungal cells to initiate programmed cell death, or apoptosis, and play a role in fungal pathogenicity. Several types of QSMs are produced during stages of biofilm development to control cell population or morphology in biofilm communities. This review article emphasizes the role of fungal QSMs, especially in fungal morphogenesis, biofilm formation, and pathogenicity. Information about QSMs may lead to improved measures for controlling fungal infection.

  7. More than a signal: non-signaling properties of quorum sensing molecules.

    PubMed

    Schertzer, Jeffrey W; Boulette, Megan L; Whiteley, Marvin

    2009-05-01

    Quorum sensing in bacteria serves as an example of the adaptation of single-celled organisms to engage in cooperative group behaviors. This phenomenon is much more widespread than originally thought, with many different species 'speaking' through various secreted small molecules. Despite some variation in signaling molecules, the principles of quorum sensing are conserved across a wide range of organisms. Small molecules, secreted into the environment, are detected by neighbors who respond by altering gene expression and, as a consequence, behavior. However, it is not known whether these systems evolved specifically for this purpose, or even if their role is exclusive to information trafficking. Rather, clues exist that many quorum sensing molecules function as more than just signals. Here, we discuss non-signaling roles for quorum sensing molecules in such important processes as nutrient scavenging, ultrastructure modification and competition.

  8. Monitoring of quorum-sensing molecules during minifermentation studies in wine yeast.

    PubMed

    Zupan, Jure; Avbelj, Martina; Butinar, Bojan; Kosel, Janez; Šergan, Matej; Raspor, Peter

    2013-03-13

    At high cell density or under low nutrient conditions, yeasts collectively adapt their metabolism by secreting aromatic alcohols in what is known as quorum sensing. However, the mechanisms and role of quorum sensing in yeast are poorly understood, and the methodology behind this process is not well established. This paper describes an effective approach to study quorum sensing in yeast fermentations. The separation, detection, and quantification of the putative quorum-sensing molecules 2-phenylethanol, tryptophol, and tyrosol have been optimized on a simple HPLC-based system. With the use of a phenyl HPLC column and a fluorescence detector, the sensitivity of the system was significantly increased. This allowed extraction and concentration procedures to be eliminated and the process to be scaled down to 2 mL minifermentations. Additionally, an innovative method for rapid viable-cell counting is presented. This study forms the basis for detailed studies in kinetics and regulation of quorum sensing in yeast fermentation.

  9. Peptides as Quorum Sensing Molecules: Measurement Techniques and Obtained Levels In vitro and In vivo

    PubMed Central

    Verbeke, Frederick; De Craemer, Severine; Debunne, Nathan; Janssens, Yorick; Wynendaele, Evelien; Van de Wiele, Christophe; De Spiegeleer, Bart

    2017-01-01

    The expression of certain bacterial genes is regulated in a cell-density dependent way, a phenomenon called quorum sensing. Both Gram-negative and Gram-positive bacteria use this type of communication, though the signal molecules (auto-inducers) used by them differ between both groups: Gram-negative bacteria use predominantly N-acyl homoserine lacton (AHL) molecules (autoinducer-1, AI-1) while Gram-positive bacteria use mainly peptides (autoinducer peptides, AIP or quorum sensing peptides). These quorum sensing molecules are not only involved in the inter-microbial communication, but can also possibly cross-talk directly or indirectly with their host. This review summarizes the currently applied analytical approaches for quorum sensing identification and quantification with additionally summarizing the experimentally found in vivo concentrations of these molecules in humans. PMID:28446863

  10. Peptides as Quorum Sensing Molecules: Measurement Techniques and Obtained Levels In vitro and In vivo.

    PubMed

    Verbeke, Frederick; De Craemer, Severine; Debunne, Nathan; Janssens, Yorick; Wynendaele, Evelien; Van de Wiele, Christophe; De Spiegeleer, Bart

    2017-01-01

    The expression of certain bacterial genes is regulated in a cell-density dependent way, a phenomenon called quorum sensing. Both Gram-negative and Gram-positive bacteria use this type of communication, though the signal molecules (auto-inducers) used by them differ between both groups: Gram-negative bacteria use predominantly N-acyl homoserine lacton (AHL) molecules (autoinducer-1, AI-1) while Gram-positive bacteria use mainly peptides (autoinducer peptides, AIP or quorum sensing peptides). These quorum sensing molecules are not only involved in the inter-microbial communication, but can also possibly cross-talk directly or indirectly with their host. This review summarizes the currently applied analytical approaches for quorum sensing identification and quantification with additionally summarizing the experimentally found in vivo concentrations of these molecules in humans.

  11. Significant immunomodulatory effects of Pseudomonas aeruginosa quorum-sensing signal molecules: possible link in human sepsis.

    PubMed

    Boontham, Pisake; Robins, Adrian; Chandran, Palanichamy; Pritchard, David; Cámara, Miguel; Williams, Paul; Chuthapisith, Suebwong; McKechnie, Alasdair; Rowlands, Brian J; Eremin, Oleg

    2008-12-01

    Pathogenic bacteria use quorum-sensing signal molecules to co-ordinate the expression of virulence genes. Animal-based studies have demonstrated the immunomodulatory effects of quorum-sensing signal molecules. In the present study, we have examined the impact of these molecules on normal human immune function in vitro and compared this with immune changes in patients with sepsis where quorum-sensing signal molecules were detected in the sera of patients. Quorum-sensing signal molecules inhibited normal dendritic cell and T-cell activation and proliferation, and down-regulated the expression of co-stimulatory molecules on dendritic cells; in MLDCRs (mixed lymphocyte dendritic cell reactions), secretion of IL (interleukin)-4 and IL-10 was enhanced, but TNF-alpha (tumour necrosis factor-alpha), IFN-gamma (interferon-gamma) and IL-6 was reduced. Quorum-sensing signal molecules induced apoptosis in dendritic cells and CD4(+) cells, but not CD8(+) cells. Dendritic cells from patients with sepsis were depleted and ex vivo showed defective expression of co-stimulatory molecules and dysfunctional stimulation of allogeneic T-lymphocytes. Enhanced apoptosis of dendritic cells and differential CD4(+) Th1/Th2 (T-helper 1/2) cell apoptotic rate, and modified Th1/Th2 cell cytokine profiles in MLDCRs were also demonstrated in patients with sepsis. The pattern of immunological changes in patients with sepsis mirrors the effects of quorum-sensing signal molecules on responses of immune cells from normal individuals in vitro, suggesting that quorum-sensing signal molecules should be investigated further as a cause of immune dysfunction in sepsis.

  12. Targeting Staphylococcus aureus Quorum Sensing with Nonpeptidic Small Molecule Inhibitors

    PubMed Central

    2014-01-01

    A series of 3-oxo-C12-HSL, tetramic acid, and tetronic acid analogues were synthesized to gain insights into the structural requirements for quorum sensing inhibition in Staphylococcus aureus. Compounds active against agr were noncompetitive inhibitors of the autoinducing peptide (AIP) activated AgrC receptor, by altering the activation efficacy of the cognate AIP-1. They appeared to act as negative allosteric modulators and are exemplified by 3-tetradecanoyltetronic acid 17, which reduced nasal cell colonization and arthritis in a murine infection model. PMID:24592914

  13. Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection.

    PubMed

    Chen, Fang; Gao, Yuxin; Chen, Xiaoyi; Yu, Zhimin; Li, Xianzhen

    2013-08-26

    With the emergence of antibiotic-resistant strains of bacteria, the available options for treating bacterial infections have become very limited, and the search for a novel general antibacterial therapy has received much greater attention. Quorum quenching can be used to control disease in a quorum sensing system by triggering the pathogenic phenotype. The interference with the quorum sensing system by the quorum quenching enzyme is a potential strategy for replacing traditional antibiotics because the quorum quenching strategy does not aim to kill the pathogen or limit cell growth but to shut down the expression of the pathogenic gene. Quorum quenching enzymes have been identified in quorum sensing and non-quorum sensing microbes, including lactonase, acylase, oxidoreductase and paraoxonase. Lactonase is widely conserved in a range of bacterial species and has variable substrate spectra. The existence of quorum quenching enzymes in the quorum sensing microbes can attenuate their quorum sensing, leading to blocking unnecessary gene expression and pathogenic phenotypes. In this review, we discuss the physiological function of quorum quenching enzymes in bacterial infection and elucidate the enzymatic protection in quorum sensing systems for host diseases and their application in resistance against microbial diseases.

  14. Identification of quorum sensing signal molecules and oligolignols associated with watermark disease in willow (Salix sp.).

    PubMed

    Huvenne, Hanneke; Goeminne, Geert; Maes, Martine; Messens, Eric

    2008-09-01

    The bacterium Brenneria salicis is the causal agent of watermark disease in willow. This work shows the importance of in situ studies and high-resolution separation of biological samples with ultrahigh performance liquid chromatography combined with ion trap mass spectrometry to unambiguously identify molecular compounds associated with this disease. Approximately 40 oligolignols accumulated in wood sap of watermark diseased willow, and are indicative for degradation of the xylem cell wall, of which 15 were structurally assigned based on an earlier study. Many bacteria are known to produce and release quorum sensing signal molecules that switch on the expression of specific, sometimes pathogenic functions. Two quorum sensing signal molecules, N-(3-oxohexanoyl)-l-homoserine lactone and N-(hexanoyl)-l-homoserine lactone, were present in 4/1 ratios in diseased wood and in high-density in vitro cultures of B. salicis at 0.13-1.2 microM concentrations, and absent in healthy wood and in low-density in vitro cultures of B. salicis. Although it is not a proof, it can be an indication for involvement of quorum sensing in B. salicis pathogenesis. Cyclic dipeptides were present at high concentrations in high-density in vitro cultures of B. salicis, but not in situ, and were found not to be involved in quorum sensing signaling, therefore, the attribution of quorum signal properties to cyclic dipeptides isolated from in vitro cultures of pathogenic bacteria should be reconsidered.

  15. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis

    PubMed Central

    Halliday, Nigel; Cámara, Miguel; Barrett, David A.; Williams, Paul; Forrester, Douglas L.; Simms, Rebecca; Smyth, Alan R.; Honeybourne, David; Whitehouse, Joanna L.; Nash, Edward F.; Dewar, Jane; Clayton, Andrew; Knox, Alan J.; Fogarty, Andrew W.

    2015-01-01

    Pseudomonas aeruginosa produces quorum sensing signal molecules that are potential biomarkers for infection. A prospective study of 60 cystic fibrosis patients with chronic P. aeruginosa, who required intravenous antibiotics for pulmonary exacerbations, was undertaken. Clinical measurements and biological samples were obtained at the start and end of the treatment period. Additional data were available for 29 of these patients when they were clinically stable. Cross-sectionally, quorum sensing signal molecules were detectable in the sputum, plasma and urine of 86%, 75% and 83% patients, respectively. They were positively correlated between the three biofluids. Positive correlations were observed for most quorum sensing signal molecules in sputum, plasma and urine, with quantitative measures of pulmonary P. aeruginosa load at the start of a pulmonary exacerbation. Plasma concentrations of 2-nonyl-4-hydroxy-quinoline (NHQ) were significantly higher at the start of a pulmonary exacerbation compared to clinical stability (p<0.01). Following the administration of systemic antibiotics, plasma 2-heptyl-4-hydroxyquinoline (p=0.02) and NHQ concentrations (p<0.01) decreased significantly. In conclusion, quorum sensing signal molecules are detectable in cystic fibrosis patients with pulmonary P. aeruginosa infection and are positively correlated with quantitative measures of P. aeruginosa. NHQ correlates with clinical status and has potential as a novel biomarker for P. aeruginosa infection. PMID:26022946

  16. SigMol: repertoire of quorum sensing signaling molecules in prokaryotes.

    PubMed

    Rajput, Akanksha; Kaur, Karambir; Kumar, Manoj

    2016-01-04

    Quorum sensing is a widespread phenomenon in prokaryotes that helps them to communicate among themselves and with eukaryotes. It is driven through quorum sensing signaling molecules (QSSMs) in a density dependent manner that assists in numerous biological functions like biofilm formation, virulence factors secretion, swarming motility, bioluminescence, etc. Despite immense implications, dedicated resources of QSSMs are lacking. Therefore, we have developed SigMol (http://bioinfo.imtech.res.in/manojk/sigmol), a specialized repository of these molecules in prokaryotes. SigMol harbors information on QSSMs pertaining to different quorum sensing signaling systems namely acylated homoserine lactones (AHLs), diketopiperazines (DKPs), 4-hydroxy-2-alkylquinolines (HAQs), diffusible signal factors (DSFs), autoinducer-2 (AI-2) and others. Database contains 1382: entries of 182: unique signaling molecules from 215: organisms. It encompasses biological as well as chemical aspects of signaling molecules. Biological information includes genes, preliminary bioassays, identification assays and applications, while chemical detail comprises of IUPAC name, SMILES and structure. We have provided user-friendly browsing and searching facilities for easy data retrieval and comparison. We have gleaned information of diverse QSSMs reported in literature at a single platform 'SigMol'. This comprehensive resource will assist the scientific community in understanding intraspecies, interspecies or interkingdom networking and further help to unfold different facets of quorum sensing and related therapeutics. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis.

    PubMed

    Barr, Helen L; Halliday, Nigel; Cámara, Miguel; Barrett, David A; Williams, Paul; Forrester, Douglas L; Simms, Rebecca; Smyth, Alan R; Honeybourne, David; Whitehouse, Joanna L; Nash, Edward F; Dewar, Jane; Clayton, Andrew; Knox, Alan J; Fogarty, Andrew W

    2015-10-01

    Pseudomonas aeruginosa produces quorum sensing signal molecules that are potential biomarkers for infection.A prospective study of 60 cystic fibrosis patients with chronic P. aeruginosa, who required intravenous antibiotics for pulmonary exacerbations, was undertaken. Clinical measurements and biological samples were obtained at the start and end of the treatment period. Additional data were available for 29 of these patients when they were clinically stable.Cross-sectionally, quorum sensing signal molecules were detectable in the sputum, plasma and urine of 86%, 75% and 83% patients, respectively. They were positively correlated between the three biofluids. Positive correlations were observed for most quorum sensing signal molecules in sputum, plasma and urine, with quantitative measures of pulmonary P. aeruginosa load at the start of a pulmonary exacerbation. Plasma concentrations of 2-nonyl-4-hydroxy-quinoline (NHQ) were significantly higher at the start of a pulmonary exacerbation compared to clinical stability (p<0.01). Following the administration of systemic antibiotics, plasma 2-heptyl-4-hydroxyquinoline (p=0.02) and NHQ concentrations (p<0.01) decreased significantly.In conclusion, quorum sensing signal molecules are detectable in cystic fibrosis patients with pulmonary P. aeruginosa infection and are positively correlated with quantitative measures of P. aeruginosa. NHQ correlates with clinical status and has potential as a novel biomarker for P. aeruginosa infection.

  18. Quorum Sensing of Periodontal Pathogens.

    PubMed

    Plančak, Darije; Musić, Larisa; Puhar, Ivan

    2015-09-01

    The term 'quorum sensing' describes intercellular bacterial communication which regulates bacterial gene expression according to population cell density. Bacteria produce and secrete small molecules, named autoinducers, into the intercellular space. The concentration of these molecules increases as a function of population cell density. Once the concentration of the stimulatory threshold is reached, alteration in gene expression occurs. Gram-positive and Gram-negative bacteria possess different types of quorum sensing systems. Canonical LuxI/R-type/acyl homoserine lactone mediated quorum sensing system is the best studied quorum sensing circuit and is described in Gram-negative bacteria which employ it for inter-species communication mostly. Gram-positive bacteria possess a peptide-mediated quorum sensing system. Bacteria can communicate within their own species (intra-species) but also between species (inter-species), for which they employ an autoinducer-2 quorum sensing system which is called the universal language of the bacteria. Periodontal pathogenic bacteria possess AI-2 quorum sensing systems. It is known that they use it for regulation of biofilm formation, iron uptake, stress response and virulence factor expression. A better understanding of bacterial communication mechanisms will allow the targeting of quorum sensing with quorum sensing inhibitors to prevent and control disease.

  19. Quorum sensing in bacteria.

    PubMed

    Miller, M B; Bassler, B L

    2001-01-01

    Quorum sensing is the regulation of gene expression in response to fluctuations in cell-population density. Quorum sensing bacteria produce and release chemical signal molecules called autoinducers that increase in concentration as a function of cell density. The detection of a minimal threshold stimulatory concentration of an autoinducer leads to an alteration in gene expression. Gram-positive and Gram-negative bacteria use quorum sensing communication circuits to regulate a diverse array of physiological activities. These processes include symbiosis, virulence, competence, conjugation, antibiotic production, motility, sporulation, and biofilm formation. In general, Gram-negative bacteria use acylated homoserine lactones as autoinducers, and Gram-positive bacteria use processed oligo-peptides to communicate. Recent advances in the field indicate that cell-cell communication via autoinducers occurs both within and between bacterial species. Furthermore, there is mounting data suggesting that bacterial autoinducers elicit specific responses from host organisms. Although the nature of the chemical signals, the signal relay mechanisms, and the target genes controlled by bacterial quorum sensing systems differ, in every case the ability to communicate with one another allows bacteria to coordinate the gene expression, and therefore the behavior, of the entire community. Presumably, this process bestows upon bacteria some of the qualities of higher organisms. The evolution of quorum sensing systems in bacteria could, therefore, have been one of the early steps in the development of multicellularity.

  20. Quorum Sensing and Phytochemicals

    PubMed Central

    Nazzaro, Filomena; Fratianni, Florinda; Coppola, Raffaele

    2013-01-01

    Most infectious diseases are caused by bacteria, which proliferate within quorum sensing (QS)-mediated biofilms. Efforts to block QS in bacteria and disrupt biofilms have enabled the identification of bioactive molecules that are also produced by plants. This mini review primarily focuses on natural QS inhibitors, which display potential for treating bacterial infections and also enhance the safety of food supply. PMID:23774835

  1. Quorum Sensing of Periodontal Pathogens

    PubMed Central

    Plančak, Darije; Musić, Larisa

    2015-01-01

    The term ‘quorum sensing’ describes intercellular bacterial communication which regulates bacterial gene expression according to population cell density. Bacteria produce and secrete small molecules, named autoinducers, into the intercellular space. The concentration of these molecules increases as a function of population cell density. Once the concentration of the stimulatory threshold is reached, alteration in gene expression occurs. Gram-positive and Gram-negative bacteria possess different types of quorum sensing systems. Canonical LuxI/R-type/acyl homoserine lactone mediated quorum sensing system is the best studied quorum sensing circuit and is described in Gram-negative bacteria which employ it for inter-species communication mostly. Gram-positive bacteria possess a peptide-mediated quorum sensing system. Bacteria can communicate within their own species (intra-species) but also between species (inter-species), for which they employ an autoinducer-2 quorum sensing system which is called the universal language of the bacteria. Periodontal pathogenic bacteria possess AI-2 quorum sensing systems. It is known that they use it for regulation of biofilm formation, iron uptake, stress response and virulence factor expression. A better understanding of bacterial communication mechanisms will allow the targeting of quorum sensing with quorum sensing inhibitors to prevent and control disease. PMID:27688408

  2. Bacterial quorum sensing and biofilm formation

    USDA-ARS?s Scientific Manuscript database

    Quorum sensing is a cell density-dependent signaling system by which bacteria can regulate gene expression through the production, secretion, and subsequent detection of extracellular signaling molecules called autoinducers. Bacteria use quorum sensing to regulate various physiological activities, ...

  3. Modulation of Host Biology by Pseudomonas aeruginosa Quorum Sensing Signal Molecules: Messengers or Traitors

    PubMed Central

    Liu, Yi-Chia; Chan, Kok-Gan; Chang, Chien-Yi

    2015-01-01

    Bacterial cells sense their population density and respond accordingly by producing various signal molecules to the surrounding environments thereby trigger a plethora of gene expression. This regulatory pathway is termed quorum sensing (QS). Plenty of bacterial virulence factors are controlled by QS or QS-mediated regulatory systems and QS signal molecules (QSSMs) play crucial roles in bacterial signaling transduction. Moreover, bacterial QSSMs were shown to interfere with host cell signaling and modulate host immune responses. QSSMs not only regulate the expression of bacterial virulence factors but themselves act in the modulation of host biology that can be potential therapeutic targets. PMID:26617576

  4. Modulation of Host Biology by Pseudomonas aeruginosa Quorum Sensing Signal Molecules: Messengers or Traitors.

    PubMed

    Liu, Yi-Chia; Chan, Kok-Gan; Chang, Chien-Yi

    2015-01-01

    Bacterial cells sense their population density and respond accordingly by producing various signal molecules to the surrounding environments thereby trigger a plethora of gene expression. This regulatory pathway is termed quorum sensing (QS). Plenty of bacterial virulence factors are controlled by QS or QS-mediated regulatory systems and QS signal molecules (QSSMs) play crucial roles in bacterial signaling transduction. Moreover, bacterial QSSMs were shown to interfere with host cell signaling and modulate host immune responses. QSSMs not only regulate the expression of bacterial virulence factors but themselves act in the modulation of host biology that can be potential therapeutic targets.

  5. Coprinopsis cinerea intracellular lactonases hydrolyze quorum sensing molecules of Gram-negative bacteria.

    PubMed

    Stöckli, Martina; Lin, Chia-Wei; Sieber, Ramon; Plaza, David F; Ohm, Robin A; Künzler, Markus

    2017-05-01

    Biofilm formation on fungal hyphae and production of antifungal molecules are strategies of bacteria in their competition with fungi for nutrients. Since these strategies are often coordinated and under control of quorum sensing by the bacteria, interference with this bacterial communication system can be used as a counter-strategy by the fungi in this competition. Hydrolysis of N-acyl-homoserine lactones (HSL), a quorum sensing molecule used by Gram-negative bacteria, by fungal cultures has been demonstrated. However, the enzymes that are responsible for this activity, have not been identified. In this study, we identified and characterized two paralogous HSL hydrolyzing enzymes from the coprophilous fungus Coprinopsis cinerea. The C. cinerea HSL lactonases belong to the metallo-β-lactamase family and show sequence homology to and a similar biochemical activity as the well characterized lactonase AiiA from Bacillus thuringiensis. We show that the fungal lactonases, similar to the bacterial enzymes, are kept intracellularly and act as a sink for the bacterial quorum sensing signals both in C. cinerea and in Saccharomyces cerevisiae expressing C. cinerea lactonases, due to the ability of these signal molecules to diffuse over the fungal cell wall and plasma membrane. The two isogenes coding for the C. cinerea HSL lactonases are arranged in the genome as a tandem repeat and expressed preferentially in vegetative mycelium. The occurrence of orthologous genes in genomes of other basidiomycetes appears to correlate with a saprotrophic lifestyle. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Identification of Quorum Sensing Signal Molecule of Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Pang, Xiaoyang; Liu, Cuiping; Lyu, Pengcheng; Zhang, Shuwen; Liu, Lu; Lu, Jing; Ma, Changlu; Lv, Jiaping

    2016-12-14

    Many bacteria in nature use quorum sensing (QS) to regulate gene expression. The quorum sensing system plays critical roles in the adaptation of bacteria to the surrounding environment. Previous studies have shown that during high-density fermentation, the autolysis of lactic acid bacteria was regulated by the QS system, and the two-component system (TCS, LBUL_RS00115/LBUL_RS00110) is involved in the autolysis of Lactobacillus delbrueckii subsp. bulgaricus. However, the QS signal molecule, which regulates this pathway, has not been identified. In this study, we compared the genome of Lactobacillus bulgaricus ATCC BAA-365 with the locus of seven lactobacillus QS systems; the position of the QS signal molecule of Lactobacillus bulgaricus ATCC BAA-365 was predicted by bioinformatics tool. Its function was identified by in vitro experiments. Construction of TCS mutant by gene knockout of LBUL_RS00115 confirmed that the signal molecule regulates the density of the flora by the TCS (LBUL_RS00115/LBUL_RS00110). This study indicated that quorum quenching and inhibition based on the signal molecule might serve as an approach to reduce the rate of autolysis of LAB and increase the number of live bacteria in fermentation.

  7. Whole-Cell Biosensors as Tools for the Detection of Quorum-Sensing Molecules: Uses in Diagnostics and the Investigation of the Quorum-Sensing Mechanism.

    PubMed

    O'Connor, Gregory; Knecht, Leslie D; Salgado, Nelson; Strobel, Sebastian; Pasini, Patrizia; Daunert, Sylvia

    2015-10-17

    Genetically engineered bacterial whole-cell biosensors are powerful tools that take advantage of bacterial proteins and pathways to allow for detection of a specific analyte. These biosensors have been employed for a broad range of applications, including the detection of bacterial quorum-sensing molecules (QSMs). Bacterial QSMs are the small molecules bacteria use for population density-dependent communication, a process referred to as quorum sensing (QS). Various research groups have investigated the presence of QSMs, including N-acyl homoserine lactones (AHLs) and autoinducer-2 (AI-2), in physiological samples in attempts to enhance our knowledge of the role of bacteria and QS in disease states. Continued studies in these fields may allow for improved patient care and therapeutics based upon QSMs. Furthermore, bacterial whole-cell biosensors have elucidated the roles of some antibiotics as QS agonists and antagonists. Graphical Abstract.

  8. Detection, purification and characterisation of quorum-sensing signal molecules in plant-associated bacteria.

    PubMed

    Brelles-Mariño, G; Bedmar, E J

    2001-10-04

    Quorum sensing (also called autoinduction) is a term that describes an environmental sensing system that allows bacteria to monitor their own population density. Autoinduction relies upon the interaction of a small diffusible signal molecule (the autoinducer) with a transcriptional activator protein to couple gene expression with cell population density. These signal molecules diffuse from bacterial cells and accumulate in the environment as a function of cell growth. Once a threshold concentration is reached, these signals serve as co-inducers to regulate the transcription of (a) set(s) of target genes. In Gram-negative bacteria, most autoinducers belong to the family of N-acylhomoserine lactones (AHLs). The detection of AHLs (or AHL-like activities) has been greatly facilitated by the development of sensitive bioassays that allow fast screening of microorganisms for diffusible signal molecules. AHL or diketopiperazine-mediated cell-cell signalling play roles in regulating different bacterial functions, such as antibiotic biosynthesis, production of virulence factors, exopolysaccharide biosynthesis, bacterial swarming, plasmid conjugal transfer and transition into the stationary phase. Several bacterial species that interact with plants produce AHL-like compounds. In this review, we will summarise the current knowledge about the detection, characterisation and purification of quorum-sensing molecules from plant-associated bacteria. We will also discuss some of the future prospects and biotechnological applications of autoinducers.

  9. Nonenzymatic Turnover of an Erwinia carotovora Quorum-Sensing Signaling Molecule

    PubMed Central

    Byers, Joseph T.; Lucas, Claire; Salmond, George P. C.; Welch, Martin

    2002-01-01

    The production of virulence factors and carbapenem antibiotic in the phytopathogen Erwinia carotovora is under the control of quorum sensing. The quorum-sensing signaling molecule, N-(3-oxohexanoyl)-l-homoserine lactone (OHHL), accumulates in log-phase culture supernatants of E. carotovora but diminishes in concentration during the stationary phase. In this study, we show that the diminution in OHHL was not due to sequestration of the ligand by the cells, although some partitioning did occur. Rather, it was caused by degradation of the molecule. The rate of stationary-phase degradation of OHHL was as rapid as the rate of log-phase accumulation of the ligand, but it was nonenzymatic and led to a decrease in the expression of selected genes known to be under the control of quorum sensing. The degradation of OHHL was dependent on the pH of the supernatant, which increased as the growth curve progressed in cultures grown in Luria-Bertani medium from pH 7 to ∼8.5. OHHL became unstable over a narrow pH range (pH 7 to 8). Instability was increased at high temperatures even at neutral pH but could be prevented at the growth temperature (30°C) by buffering the samples at pH 6.8. These results may provide a rationale for the observation that an early response of plants which are under attack by Erwinia is to activate a proton pump which alkalizes the site of infection to a pH of >8.2. PMID:11807077

  10. Label-free critical micelle concentration determination of bacterial quorum sensing molecules.

    PubMed

    Davis, B M; Richens, J L; O'Shea, P

    2011-07-06

    A practical label-free method for the rapid determination of small-molecule critical micelle concentration (CMC) using a fixed-angle light-scattering technique is described. Change in 90° light scattering at a fixed wavelength of incident radiation with increasing bacterial quorum molecule concentration and the observation of a break point is used to determine CMC. In our study, this technique is utilized to investigate the aqueous CMC of previously uncharacterized Pseudomonas aeruginosa quorum sensing signaling molecules (QSSM) belonging to the n-acylhomoserine lactone and 2-alkyl-4-quinolone classes. Several were found to form micelles within a physiologically relevant concentration range and potential roles of these micelles as QSSM transporters are discussed. The influence of temperature and the presence of biological membranes or serum proteins on QSSM CMC are also investigated and evidence is obtained to suggest the QSSMs studied are capable of both membrane and serum protein interaction. This demonstrates that the fixed-angle light-scattering technique outlined can be used simply and rapidly to determine small-molecule CMC under a variety of conditions. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Label-Free Critical Micelle Concentration Determination of Bacterial Quorum Sensing Molecules

    PubMed Central

    Davis, B.M.; Richens, J.L.; O'Shea, P.

    2011-01-01

    A practical label-free method for the rapid determination of small-molecule critical micelle concentration (CMC) using a fixed-angle light-scattering technique is described. Change in 90° light scattering at a fixed wavelength of incident radiation with increasing bacterial quorum molecule concentration and the observation of a break point is used to determine CMC. In our study, this technique is utilized to investigate the aqueous CMC of previously uncharacterized Pseudomonas aeruginosa quorum sensing signaling molecules (QSSM) belonging to the n-acylhomoserine lactone and 2-alkyl-4-quinolone classes. Several were found to form micelles within a physiologically relevant concentration range and potential roles of these micelles as QSSM transporters are discussed. The influence of temperature and the presence of biological membranes or serum proteins on QSSM CMC are also investigated and evidence is obtained to suggest the QSSMs studied are capable of both membrane and serum protein interaction. This demonstrates that the fixed-angle light-scattering technique outlined can be used simply and rapidly to determine small-molecule CMC under a variety of conditions. PMID:21723835

  12. Genomic and molecular characterization of a novel quorum sensing molecule in Bacillus licheniformis.

    PubMed

    Esmaeilishirazifard, Elham; De Vizio, Daniela; Moschos, Sterghios A; Keshavarz, Tajalli

    2017-12-01

    Quorum sensing molecules (QSMs) are involved in the regulation of complicated processes helping bacterial populations respond to changes in their cell-density. Although the QS gene cluster (comQXPA) has been identified in the genome sequence of some bacilli, the QS system B. licheniformis has not been investigated in detail, and its QSM (ComX pheromone) has not been identified. Given the importance of this antagonistic bacterium as an industrial workhorse, this study was aimed to elucidate B. licheniformis NCIMB-8874 QS. The results obtained from bioinformatics studies on the whole genome sequence of this strain confirmed the presence of essential quorum sensing-related genes. Although polymorphism was verified in three proteins of this cluster, ComQ, precursor-ComX and ComP, the transcription factor ComA was confirmed as the most conserved protein. The cell-cell communication of B. licheniformis NCIMB-8874 was investigated through further elucidation of the ComX pheromone as 13-amino acid peptide. The peptide sequence of the pheromone has been described through biochemical characterisation.

  13. Detection of Quorum Sensing Molecules and Biofilm Formation in Ralstonia solanacearum.

    PubMed

    Kumar, J Shiva; Umesha, S; Prasad, K Shiva; Niranjana, P

    2016-03-01

    Many bacteria use small diffusible signaling molecules to communicate each other termed as quorum sensing (QS). Most Gram-negative bacteria use acyl homoserine lactone (AHL) as QS signal molecules. Using these signaling molecules, bacteria are able to express specific genes in response to population density. This work aimed to detect the production of QS signal molecules and biofilm formation in Ralstonia solanacearum isolated from various diseased tomato plants with symptoms of bacterial wilt. A total of 30 R. solanacearum strains were investigated for the production of QS signal molecules using Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NT1 (pZLR4) biosensor systems. All 30 bacterial isolates from various bacterial wilt-affected tomato plants produced AHL molecules that induced the biosensor. The microtiter plate assay demonstrated that of the 30 bacterial isolates, 60 % formed biofilm, among which four isolates exhibited a higher degree of biofilm formation. The biofilm-inducing factor was purified from these four culture supernatants. The structure of the responsible molecule was solved using nuclear magnetic resonance and mass spectroscopy and was determined to be 2-hydroxy-4-((methylamino)(phenyl)methyl) cyclopentanone (HMCP), which was confirmed by chemical synthesis and NMR. The Confocal laser scanning microscopic analysis showed well-developed biofilm architecture of bacteria when treated with HMCP. The knowledge we obtained from this study will be useful for further researcher on the role of HMCP molecule in biofilm formation.

  14. Differential Immune Modulatory Activity of Pseudomonas aeruginosa Quorum-Sensing Signal Molecules

    PubMed Central

    Hooi, Doreen S. W.; Bycroft, Barrie W.; Chhabra, Siri Ram; Williams, Paul; Pritchard, David I.

    2004-01-01

    Pseudomonas aeruginosa releases a spectrum of well-regulated virulence factors, controlled by intercellular communication (quorum sensing) and mediated through the production of small diffusible quorum-sensing signal molecules (QSSM). We hypothesize that QSSM may in fact serve a dual purpose, also allowing bacterial colonization via their intrinsic immune-modulatory capacity. One class of signal molecule, the N-acylhomoserine lactones, has pleiotropic effects on eukaryotic cells, particularly those involved in host immunity. In the present study, we have determined the comparative effects of two chemically distinct and endobronchially detectable QSSM, N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) and 2-heptyl-3-hydroxy-4 (1H)-quinolone or the Pseudomonas quinolone signal (PQS), on human leukocytes exposed to a series of stimuli designed to detect differential immunological activity in vitro. 3-Oxo-C12-HSL and PQS displayed differential effects on the release of interleukin-2 (IL-2) when human T cells were activated via the T-cell receptor and CD28 (a costimulatory molecule). 3-Oxo-C12-HSL inhibited cell proliferation and IL-2 release; PQS inhibited cell proliferation without affecting IL-2 release. Both molecules inhibited cell proliferation and the release of IL-2 following mitogen stimulation. Furthermore, in the presence of Escherichia coli lipopolysaccharide, 3-oxo-C12-HSL inhibited tumor necrosis factor alpha release from human monocytes, as reported previously (K. Tateda et al., Infect. Immun. 64:37-43, 1996), whereas PQS did not inhibit in this assay. These data highlight the presence of two differentially active immune modulatory QSSM from P. aeruginosa, which are detectable endobronchially and may be active at the host/pathogen interface during infection with P. aeruginosa, should the bronchial airway lymphoid tissues prove to be accessible to QSSM. PMID:15501777

  15. Differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules.

    PubMed

    Hooi, Doreen S W; Bycroft, Barrie W; Chhabra, Siri Ram; Williams, Paul; Pritchard, David I

    2004-11-01

    Pseudomonas aeruginosa releases a spectrum of well-regulated virulence factors, controlled by intercellular communication (quorum sensing) and mediated through the production of small diffusible quorum-sensing signal molecules (QSSM). We hypothesize that QSSM may in fact serve a dual purpose, also allowing bacterial colonization via their intrinsic immune-modulatory capacity. One class of signal molecule, the N-acylhomoserine lactones, has pleiotropic effects on eukaryotic cells, particularly those involved in host immunity. In the present study, we have determined the comparative effects of two chemically distinct and endobronchially detectable QSSM, N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) and 2-heptyl-3-hydroxy-4 (1H)-quinolone or the Pseudomonas quinolone signal (PQS), on human leukocytes exposed to a series of stimuli designed to detect differential immunological activity in vitro. 3-Oxo-C12-HSL and PQS displayed differential effects on the release of interleukin-2 (IL-2) when human T cells were activated via the T-cell receptor and CD28 (a costimulatory molecule). 3-Oxo-C12-HSL inhibited cell proliferation and IL-2 release; PQS inhibited cell proliferation without affecting IL-2 release. Both molecules inhibited cell proliferation and the release of IL-2 following mitogen stimulation. Furthermore, in the presence of Escherichia coli lipopolysaccharide, 3-oxo-C12-HSL inhibited tumor necrosis factor alpha release from human monocytes, as reported previously (K. Tateda et al., Infect. Immun. 64:37-43, 1996), whereas PQS did not inhibit in this assay. These data highlight the presence of two differentially active immune modulatory QSSM from P. aeruginosa, which are detectable endobronchially and may be active at the host/pathogen interface during infection with P. aeruginosa, should the bronchial airway lymphoid tissues prove to be accessible to QSSM.

  16. Programmed Lab Experiments for Biochemical Investigation of Quorum-Sensing Signal Molecules in Rhizospheric Soil Bacteria.

    PubMed

    Nievas, Fiorela L; Bogino, Pablo C; Giordano, Walter

    2016-05-06

    Biochemistry courses in the Department of Molecular Biology at the National University of Río Cuarto, Argentina, are designed for undergraduate students in biology, microbiology, chemistry, agronomy, and veterinary medicine. Microbiology students typically have previous coursework in general, analytical, and organic chemistry. Programmed sequences of lab experiments allow these students to investigate biochemical problems whose solution is feasible within the context of their knowledge and experience. We previously designed and reported a programmed lab experiment that familiarizes microbiology students with techniques for detection and characterization of quorum-sensing (QS) and quorum-quenching (QQ) signal molecules. Here, we describe a sequence of experiments designed to expand the understanding and capabilities of biochemistry students using techniques for extraction and identification of QS and QQ signal molecules from peanut rhizospheric soil bacteria, including culturing and manipulation of bacteria under sterile conditions. The program provides students with an opportunity to perform useful assays, draw conclusions from their results, and discuss possible extensions of the study. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:256-262, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  17. Pseudomonas cremoricolorata Strain ND07 Produces N-acyl Homoserine Lactones as Quorum Sensing Molecules

    PubMed Central

    Yunos, Nina Yusrina Muhamad; Tan, Wen-Si; Koh, Chong-Lek; Sam, Choon-Kook; Mohamad, Nur Izzati; Tan, Pui-Wan; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Quorum sensing (QS) is a bacterial cell-to-cell communication system controlling QS-mediated genes which is synchronized with the population density. The regulation of specific gene activity is dependent on the signaling molecules produced, namely N-acyl homoserine lactones (AHLs). We report here the identification and characterization of AHLs produced by bacterial strain ND07 isolated from a Malaysian fresh water sample. Molecular identification showed that strain ND07 is clustered closely to Pseudomonas cremoricolorata. Spent culture supernatant extract of P. cremoricolorata strain ND07 activated the AHL biosensor Chromobacterium violaceum CV026. Using high resolution triple quadrupole liquid chromatography-mass spectrometry, it was confirmed that P. cremoricolorata strain ND07 produced N-octanoyl-l-homoserine lactone (C8-HSL) and N-decanoyl-l-homoserine lactone (C10-HSL). To the best of our knowledge, this is the first documentation on the production of C10-HSL in P. cremoricolorata strain ND07. PMID:24984061

  18. Quorum sensing by farnesol revisited.

    PubMed

    Polke, Melanie; Jacobsen, Ilse D

    2017-02-28

    Quorum sensing, a form of molecular communication in microbial communities, is relatively well studied in bacterial species, but poorly understood in fungi. Farnesol, a quorum sensing molecule secreted by the opportunistic human pathogenic fungus Candida albicans, was the first quorum sensing molecule described in a eukaryotic organism. However, despite considerable research efforts and advances in recent years, the mechanisms behind its action remain largely elusive. Only recently, we showed that deletion of the C. albicans gene EED1 (eed1Δ), which is essential for hyphal maintenance, resulted in both increased farnesol production and hypersensitivity to farnesol, providing a link between farnesol signaling and elongated hyphal growth. This finding raised several questions concerning farnesol signaling. In this short review we use the unique phenotype of the eed1Δ mutant to summarize current hypotheses and to speculate on possible mechanisms of quorum sensing in C. albicans and its implication in fungus-host interaction, by drawing comparisons to comparatively well-studied quorum sensing systems in bacteria.

  19. Quorum sensing in bacterial virulence.

    PubMed

    Antunes, L Caetano M; Ferreira, Rosana B R; Buckner, Michelle M C; Finlay, B Brett

    2010-08-01

    Bacteria communicate through the production of diffusible signal molecules termed autoinducers. The molecules are produced at basal levels and accumulate during growth. Once a critical concentration has been reached, autoinducers can activate or repress a number of target genes. Because the control of gene expression by autoinducers is cell-density-dependent, this phenomenon has been called quorum sensing. Quorum sensing controls virulence gene expression in numerous micro-organisms. In some cases, this phenomenon has proven relevant for bacterial virulence in vivo. In this article, we provide a few examples to illustrate how quorum sensing can act to control bacterial virulence in a multitude of ways. Several classes of autoinducers have been described to date and we present examples of how each of the major types of autoinducer can be involved in bacterial virulence. As quorum sensing controls virulence, it has been considered an attractive target for the development of new therapeutic strategies. We discuss some of the new strategies to combat bacterial virulence based on the inhibition of bacterial quorum sensing systems.

  20. The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans.

    PubMed

    Hall, Rebecca A; Turner, Kara J; Chaloupka, James; Cottier, Fabien; De Sordi, Luisa; Sanglard, Dominique; Levin, Lonny R; Buck, Jochen; Mühlschlegel, Fritz A

    2011-08-01

    Living as a commensal, Candida albicans must adapt and respond to environmental cues generated by the mammalian host and by microbes comprising the natural flora. These signals have opposing effects on C. albicans, with host cues promoting the yeast-to-hyphal transition and bacteria-derived quorum-sensing molecules inhibiting hyphal development. Hyphal development is regulated through modulation of the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, and it has been postulated that quorum-sensing molecules can affect filamentation by inhibiting the cAMP pathway. Here, we show that both farnesol and 3-oxo-C(12)-homoserine lactone, a quorum-sensing molecule secreted by Pseudomonas aeruginosa, block hyphal development by affecting cAMP signaling; they both directly inhibited the activity of the Candida adenylyl cyclase, Cyr1p. In contrast, the 12-carbon alcohol dodecanol appeared to modulate hyphal development and the cAMP signaling pathway without directly affecting the activity of Cyr1p. Instead, we show that dodecanol exerted its effects through a mechanism involving the C. albicans hyphal repressor, Sfl1p. Deletion of SFL1 did not affect the response to farnesol but did interfere with the response to dodecanol. Therefore, quorum sensing in C. albicans is mediated via multiple mechanisms of action. Interestingly, our experiments raise the possibility that the Burkholderia cenocepacia diffusible signal factor, BDSF, also mediates its effects via Sfl1p, suggesting that dodecanol's mode of action, but not farnesol or 3-oxo-C(12)-homoserine lactone, may be used by other quorum-sensing molecules.

  1. Quorum sensing inhibitors: an overview.

    PubMed

    Kalia, Vipin Chandra

    2013-01-01

    Excessive and indiscriminate use of antibiotics to treat bacterial infections has lead to the emergence of multiple drug resistant strains. Most infectious diseases are caused by bacteria which proliferate within quorum sensing (QS) mediated biofilms. Efforts to disrupt biofilms have enabled the identification of bioactive molecules produced by prokaryotes and eukaryotes. These molecules act primarily by quenching the QS system. The phenomenon is also termed as quorum quenching (QQ). In addition, synthetic compounds have also been found to be effective in QQ. This review focuses primarily on natural and synthetic quorum sensing inhibitors (QSIs) with the potential for treating bacterial infections. It has been opined that the most versatile prokaryotes to produce QSI are likely to be those, which are generally regarded as safe. Among the eukaryotes, certain legumes and traditional medicinal plants are likely to act as QSIs. Such findings are likely to lead to efficient treatments with much lower doses of drugs especially antibiotics than required at present.

  2. Complete genome sequence of Rhodococcus erythropolis BG43 (DSM 46869), a degrader of Pseudomonas aeruginosa quorum sensing signal molecules.

    PubMed

    Rückert, Christian; Birmes, Franziska S; Müller, Christine; Niewerth, Heiko; Winkler, Anika; Fetzner, Susanne; Kalinowski, Jörn

    2015-10-10

    Rhodococcus erythropolis BG43 was isolated from soil and characterized as a degrader of the quorum sensing signal molecules 2-heptyl-3-hydroxy-4(1H)-quinolone (the Pseudomonas quinolone signal, PQS) and 2-heptyl-4(1H)-quinolone, produced by Pseudomonas aeruginosa. The complete genome of R. erythropolis BG43 consists of a circular chromosome and three plasmids, one of them circular and two linear ones. In total, 6158 protein-coding regions were identified. With this genome sequence, the genetic basis of its quorum-quenching ability and possible biotechnological applications can be explored further.

  3. Optimal Census by Quorum Sensing

    PubMed Central

    Taillefumier, Thibaud; Wingreen, Ned S.

    2015-01-01

    Quorum sensing is the regulation of gene expression in response to changes in cell density. To measure their cell density, bacterial populations produce and detect diffusible molecules called autoinducers. Individual bacteria internally represent the external concentration of autoinducers via the level of monitor proteins. In turn, these monitor proteins typically regulate both their own production and the production of autoinducers, thereby establishing internal and external feedbacks. Here, we ask whether feedbacks can increase the information available to cells about their local density. We quantify available information as the mutual information between the abundance of a monitor protein and the local cell density for biologically relevant models of quorum sensing. Using variational methods, we demonstrate that feedbacks can increase information transmission, allowing bacteria to resolve up to two additional ranges of cell density when compared with bistable quorum-sensing systems. Our analysis is relevant to multi-agent systems that track an external driver implicitly via an endogenously generated signal. PMID:25965377

  4. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules

    PubMed Central

    Dourado, Manuella Nóbrega; Bogas, Andrea Cristina; Pomini, Armando M.; Andreote, Fernando Dini; Quecine, Maria Carolina; Marsaioli, Anita J.; Araújo, Welington Luiz

    2013-01-01

    Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically) with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules) and/or by the plant roots (e.g. flavonoids, ethanol and methanol), respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones) and plant exudates (including ethanol) in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF), adaptation to stressful environment (crtI, phoU and sss), to interactions with plant metabolism compounds (acdS) and pathogenicity (patatin and phoU). Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization), which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction. PMID:24688531

  5. Presence of quorum sensing signal molecules in minced beef stored under various temperature and packaging conditions.

    PubMed

    Blana, Vasiliki A; Nychas, George-John E

    2014-03-03

    The presence of acylated homoserine lactones (AHLs) and autoinducer-2 (AI-2)-like activity was observed in meat stored under various temperatures (0, 5, 10 and 15°C) and packaging (air, modified atmospheres and modified atmospheres with oregano essential oil) conditions, and correlated with the ephemeral spoilage organisms that comprise the microbial community generally associated with this product. Quorum sensing signal molecules were found to be affected by the packaging conditions e.g. temperature and atmosphere used for meat preservation as a consequence of the development of a distinct microbial community. AHL signal molecules were detected at all incubation temperatures in minced beef samples, both stored aerobically and under modified atmospheres, when both pseudomonads and Enterobacteriaceae populations ranged from 10(7) to 10(9)CFU/g, but no signal molecules were detected in minced beef stored under modified atmospheres in the presence of volatile compounds of oregano essential oil, where both these groups failed to grow in high numbers. Additionally, no significant AI-2 activity was observed in the tested cell-free meat extracts (CFME), regardless of the indigenous bacterial populations. The presence of N-(β-ketocaproyl)-homoserine lactone was confirmed with TLC analysis of CFME.

  6. Detection of Quorum Sensing Signal Molecules in Edwardsiella ictaluri Ei-151.

    PubMed

    Yang, Qian; Han, Yin; Tinh, Nguyen Thi Ngoc; Hien, Nguyen Thi; Bossier, Peter

    2012-12-01

    Edwardsiella ictaluri is a Gram-negative pathogenic bacterium in the family Enterobacteriaceae that causes enteric septicemia of catfish, which has become a significant problem in the aquaculture of striped catfish (Pangasianodon hypophthalmus) in Vietnam. In this study, a bacterium designated as Ei-151 was isolated from diseased striped catfish and proved to be virulent. Based on 16S rDNA sequencing and phenotypic tests, the pathogenic bacterium was identified as Edw. ictaluri. The presence of quorum sensing signal molecules in Edw. ictaluri Ei-151 was detected with different biosensor strains. The results showed that Ei-151 produced at least three kinds of acylated homoserine lactone (AHL) signal molecules as detected with the biosensor Agrobacterium tumefaciens KYC55, and the AHLs fingerprint was similar to that of Edw. tarda. During its entire growth, the levels of AHLs and autoinducer-2 produced by Ei-151 peaked at the stationary phase (OD600 1.8), which suggested that both of them may function at the stationary phase. No Cholerae autoinducer-1-like activity (including Edw. ictaluri LMG7860(T)) was detected.

  7. Environmental modification via a quorum sensing molecule influences the social landscape of siderophore production

    PubMed Central

    Popat, Roman; Harrison, Freya; da Silva, Ana C.; Easton, Scott A. S.; McNally, Luke; Williams, Paul

    2017-01-01

    Bacteria produce a wide variety of exoproducts that favourably modify their environment and increase their fitness. These are often termed ‘public goods’ because they are costly for individuals to produce and can be exploited by non-producers (cheats). The outcome of conflict over public goods is dependent upon the prevailing environment and the phenotype of the individuals in competition. Many bacterial species use quorum sensing (QS) signalling molecules to regulate the production of public goods. QS, therefore, determines the cooperative phenotype of individuals, and influences conflict over public goods. In addition to their regulatory functions, many QS molecules have additional properties that directly modify the prevailing environment. This leads to the possibility that QS molecules could influence conflict over public goods indirectly through non-signalling effects, and the impact of this on social competition has not previously been explored. The Pseudomonas aeruginosa QS signal molecule PQS is a powerful chelator of iron which can cause an iron starvation response. Here, we show that PQS stimulates a concentration-dependent increase in the cooperative production of iron scavenging siderophores, resulting in an increase in the relative fitness of non-producing siderophore cheats. This is likely due to an increased cost of siderophore output by producing cells and a concurrent increase in the shared benefits, which accrue to both producers and cheats. Although PQS can be a beneficial signalling molecule for P. aeruginosa, our data suggest that it can also render a siderophore-producing population vulnerable to competition from cheating strains. More generally, our results indicate that the production of one social trait can indirectly affect the costs and benefits of another social trait. PMID:28404780

  8. Environmental modification via a quorum sensing molecule influences the social landscape of siderophore production.

    PubMed

    Popat, Roman; Harrison, Freya; da Silva, Ana C; Easton, Scott A S; McNally, Luke; Williams, Paul; Diggle, Stephen P

    2017-04-12

    Bacteria produce a wide variety of exoproducts that favourably modify their environment and increase their fitness. These are often termed 'public goods' because they are costly for individuals to produce and can be exploited by non-producers (cheats). The outcome of conflict over public goods is dependent upon the prevailing environment and the phenotype of the individuals in competition. Many bacterial species use quorum sensing (QS) signalling molecules to regulate the production of public goods. QS, therefore, determines the cooperative phenotype of individuals, and influences conflict over public goods. In addition to their regulatory functions, many QS molecules have additional properties that directly modify the prevailing environment. This leads to the possibility that QS molecules could influence conflict over public goods indirectly through non-signalling effects, and the impact of this on social competition has not previously been explored. The Pseudomonas aeruginosa QS signal molecule PQS is a powerful chelator of iron which can cause an iron starvation response. Here, we show that PQS stimulates a concentration-dependent increase in the cooperative production of iron scavenging siderophores, resulting in an increase in the relative fitness of non-producing siderophore cheats. This is likely due to an increased cost of siderophore output by producing cells and a concurrent increase in the shared benefits, which accrue to both producers and cheats. Although PQS can be a beneficial signalling molecule for P. aeruginosa, our data suggest that it can also render a siderophore-producing population vulnerable to competition from cheating strains. More generally, our results indicate that the production of one social trait can indirectly affect the costs and benefits of another social trait. © 2017 The Authors.

  9. Arachis hypogaea L. produces mimic and inhibitory quorum sensing like molecules.

    PubMed

    Nievas, F; Vilchez, L; Giordano, W; Bogino, P

    2017-03-29

    A wide variety of plant-associated soil bacteria (rhizobacteria) communicate with each other by quorum sensing (QS). Plants are able to detect and produce mimics and inhibitor molecules of the QS bacterial communicative process. Arachis hypogaea L. (peanut) establishes a nitrogen-fixing symbiosis with rhizobia belonging to the genus Bradyrhizobium. These bacteria use a QS mechanism dependent on the synthesis of N-acyl homoserine lactones (AHLs). Given the relevance that plant-rhizobacteria interactions have at the ecological level, this work addresses the involvement of peanut in taking part in the QS mechanism. By using biosensor bacterial strains capable of detecting AHLs, a series of standard and original bioassays were performed in order to determine both (i) the production of QS-like molecules in vegetal materials and (ii) the expression of the QS mechanism throughout plant-bacteria interaction. Mimic QS-like molecules (mQS) linked to AHLs with long acyl chains (lac-AHL), and inhibitor QS-like molecules (iQS) linked to AHLs with short acyl chains (sac-AHL) were detected in seed and root exudates. The results revealed that synthesis of specific signaling molecules by the plant (such as mQS and iQS) probably modulates the function and composition of the bacterial community established in its rhizosphere. Novel bioassays of QS detection during peanut-Bradyrhizobium interaction showed an intense production of QS signals in the contact zone between root and bacteria. It is demonstrated that root exudates stimulate the root colonization and synthesis of lac-AHL by Bradyrhizobium strains in the plant rhizosphere, which leads to the early stages of the development of beneficial plant-bacteria interactions.

  10. Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group.

    PubMed

    Schikora, Adam; Schenk, Sebastian T; Hartmann, Anton

    2016-04-01

    Bacterial quorum sensing (QS) mechanisms play a crucial role in the proper performance and ecological fitness of bacterial populations. Many key physiological processes are regulated in a QS-dependent manner by auto-inducers, like the N-acyl homoserine lactones (AHLs) in numerous Gram-negative bacteria. In addition, also the interaction between bacteria and eukaryotic hosts can be regulated by AHLs. Those mechanisms gained much attention, because of the positive effects of different AHL molecules on plants. This positive impact ranges from growth promotion to induced resistance and is quite contrasting to the rather negative effects observed in the interactions between bacterial AHL molecules and animals. Only very recently, we began to understand the molecular mechanisms underpinning plant responses to AHL molecules. In this review, we gathered the latest information in this research field. The first part gives an overview of the bacterial aspects of quorum sensing. Later we focus on the impact of AHLs on plant growth and AHL-priming, as one of the most understood phenomena in respect to the inter-kingdom interactions based on AHL-quorum sensing molecules. Finally, we discuss the potential benefits of the understanding of bacteria-plant interaction for the future agricultural applications.

  11. Degradation of bacterial quorum sensing signaling molecules by the microscopic yeast Trichosporon loubieri isolated from tropical wetland waters.

    PubMed

    Wong, Cheng-Siang; Koh, Chong-Lek; Sam, Choon-Kook; Chen, Jian Woon; Chong, Yee Meng; Yin, Wai-Fong; Chan, Kok-Gan

    2013-09-25

    Proteobacteria produce N-acylhomoserine lactones as signaling molecules, which will bind to their cognate receptor and activate quorum sensing-mediated phenotypes in a population-dependent manner. Although quorum sensing signaling molecules can be degraded by bacteria or fungi, there is no reported work on the degradation of such molecules by basidiomycetous yeast. By using a minimal growth medium containing N-3-oxohexanoylhomoserine lactone as the sole source of carbon, a wetland water sample from Malaysia was enriched for microbial strains that can degrade N-acylhomoserine lactones, and consequently, a basidiomycetous yeast strain WW1C was isolated. Morphological phenotype and molecular analyses confirmed that WW1C was a strain of Trichosporon loubieri. We showed that WW1C degraded AHLs with N-acyl side chains ranging from 4 to 10 carbons in length, with or without oxo group substitutions at the C3 position. Re-lactonisation bioassays revealed that WW1C degraded AHLs via a lactonase activity. To the best of our knowledge, this is the first report of degradation of N-acyl-homoserine lactones and utilization of N-3-oxohexanoylhomoserine as carbon and nitrogen source for growth by basidiomycetous yeast from tropical wetland water; and the degradation of bacterial quorum sensing molecules by an eukaryotic yeast.

  12. Degradation of Bacterial Quorum Sensing Signaling Molecules by the Microscopic Yeast Trichosporon loubieri Isolated from Tropical Wetland Waters

    PubMed Central

    Wong, Cheng-Siang; Koh, Chong-Lek; Sam, Choon-Kook; Chen, Jian Woon; Chong, Yee Meng; Yin, Wai-Fong; Chan, Kok-Gan

    2013-01-01

    Proteobacteria produce N-acylhomoserine lactones as signaling molecules, which will bind to their cognate receptor and activate quorum sensing-mediated phenotypes in a population-dependent manner. Although quorum sensing signaling molecules can be degraded by bacteria or fungi, there is no reported work on the degradation of such molecules by basidiomycetous yeast. By using a minimal growth medium containing N-3-oxohexanoylhomoserine lactone as the sole source of carbon, a wetland water sample from Malaysia was enriched for microbial strains that can degrade N-acylhomoserine lactones, and consequently, a basidiomycetous yeast strain WW1C was isolated. Morphological phenotype and molecular analyses confirmed that WW1C was a strain of Trichosporon loubieri. We showed that WW1C degraded AHLs with N-acyl side chains ranging from 4 to 10 carbons in length, with or without oxo group substitutions at the C3 position. Re-lactonisation bioassays revealed that WW1C degraded AHLs via a lactonase activity. To the best of our knowledge, this is the first report of degradation of N-acyl-homoserine lactones and utilization of N-3-oxohexanoylhomoserine as carbon and nitrogen source for growth by basidiomycetous yeast from tropical wetland water; and the degradation of bacterial quorum sensing molecules by an eukaryotic yeast. PMID:24072030

  13. Production of quorum-sensing-related signal molecules by epiphytic bacteria inhabiting wheat heads.

    PubMed

    Yoshida, Shigenobu; Kinkel, Linda L; Shinohara, Hirosuke; Numajiri, Nobutaka; Hiradate, Syuntaro; Koitabashi, Motoo; Suyama, Kazuo; Negishi, Hiromitsu; Tsushima, Seiya

    2006-05-01

    The production of quorum-sensing-related signal molecules (QSRMs) among culturable bacteria comprising the community on wheat heads was investigated. The taxonomic position of 186 bacterial isolates obtained from ten heads was inferred based on 16S rRNA gene sequences, and their QSRM production was determined using two bioreporter strains of N-acylhomoserine lactones. Approximately 33% of isolates produced QSRMs, though the proportion of QSRM-producing isolates on a wheat head was significantly negatively correlated with population size. Most of the producing isolates were Pantoea species, most commonly Pantoea ananatis. Furthermore, the proportion of Pantoea ananatis that produced QSRMs was significantly negatively correlated with the number of bacterial genera (community richness) on each head. Finally, community richness was positively correlated with population size. Qualitative analysis using thin-layer-chromatography revealed that the QSRMs of Pantoea isolates were composed of at least two compounds. This is the first report indicating that Pantoea ananatis isolates inhabiting wheat heads are capable of producing QSRMs. QSRM production by Pantoea spp. may contribute to the predominance of this genus on wheat heads, particularly at relatively low population densities and community diversity.

  14. Microbial inhibition of oral epithelial wound recovery: potential role for quorum sensing molecules?

    PubMed

    De Ryck, Tine; Vanlancker, Eline; Grootaert, Charlotte; Roman, Bart I; De Coen, Laurens M; Vandenberghe, Isabel; Stevens, Christian V; Bracke, Marc; Van de Wiele, Tom; Vanhoecke, Barbara

    2015-01-01

    Awareness of the impact of microbiota in both health and disease is growing. Using a new in vitro oral mucosa co-culture model, we recently showed a clear inhibition of epithelial wound healing in the presence of an oral microbial community. In this paper, we have used the same model in combination with specific oral microbial species to obtain a better insight into the role of the oral microbiota in wound healing. Monocultures of Klebsiella oxytoca and Lactobacillus salivarius significantly inhibited wound healing with ~20%, whereas Streptococcus mitis and S. oralis enhanced the healing process with ~15% in 24 h. Yet, neither S. oralis or S. mitis were able to counteract the inhibitory effects from K. oxytoca on wound healing. Other tested microbial species had no effect on wound healing. Apart from this species-dependency, the inhibitory effect on wound healing depended on a microbial threshold concentration. Further mechanistic experiments with K. oxytoca excluded different microbial factors and hypothesized that quorum sensing molecules might play a role in the inter-kingdom signalling during wound healing. These results are important for the development of new strategies for the management of (infected) wounds and ulcerations.

  15. Probing autoinducer-2 based quorum sensing: the biological consequences of molecules unable to traverse equilibrium states.

    PubMed

    Tsuchikama, Kyoji; Lowery, Colin A; Janda, Kim D

    2011-09-02

    Bacteria have developed a cell-to-cell communication system, termed quorum sensing (QS), which allows for the population-dependent coordination of their behavior via the exchange of chemical signals. Autoinducer-2 (AI-2), a class of QS signals derived from 4,5-dihydroxy-2,3-pentandione (DPD), has been revealed as a universal signaling molecule in a variety of bacterial species. In spite of considerable interest, the study of putative AI-2 based QS systems remains a challenging topic in part due to the rapid interconversion between the linear and cyclic forms of DPD. Herein, we report the design and development of efficient syntheses of carbocyclic analogues of DPD, which are locked in the cyclic form. The synthetic analogues were evaluated for the modulation of AI-2-based QS in Vibrio harveyi and Salmonella typhimurium. No agonists were uncovered in either V. harveyi or S. typhimurium assay, whereas weak to moderate antagonists were found against V. harveyi. On the basis of NMR analyses and DFT calculations, the heterocyclic oxygen atom within DPD appears necessary to promote hydration at the C3 position of cyclic DPD to afford the active tetrahydroxy species. These results also shed light on the interaction between the heterocyclic oxygen atom and receptor proteins as well as the importance of the linear form and dynamic equilibrium of DPD as crucial requirements for activation of AI-2 based QS circuits.

  16. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity.

    PubMed

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin; Kurzai, Oliver

    2015-03-17

    Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. Farnesol is a quorum-sensing molecule which controls morphological plasticity of the pathogenic yeast Candida albicans. As such, it is a major mediator of intraspecies communication. Here, we investigated the impact of farnesol on human innate immune cells known to be

  17. The Fungal Quorum-Sensing Molecule Farnesol Activates Innate Immune Cells but Suppresses Cellular Adaptive Immunity

    PubMed Central

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin

    2015-01-01

    ABSTRACT Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. PMID:25784697

  18. Quorum sensing and microbial drug resistance.

    PubMed

    Yufan, Chen; Shiyin, Liu; Zhibin, Liang; Mingfa, Lv; Jianuan, Zhou; Lianhui, Zhang

    2016-10-20

    Microbial drug resistance has become a serious problem of global concern, and the evolution and regulatory mechanisms of microbial drug resistance has become a hotspot of research in recent years. Recent studies showed that certain microbial resistance mechanisms are regulated by quorum sensing system. Quorum sensing is a ubiquitous cell-cell communication system in the microbial world, which associates with cell density. High-density microbial cells produce sufficient amount of small signal molecules, activating a range of downstream cellular processes including virulence and drug resistance mechanisms, which increases bacterial drug tolerance and causes infections on host organisms. In this review, the general mechanisms of microbial drug resistance and quorum-sensing systems are summarized with a focus on the association of quorum sensing and chemical signaling systems with microbial drug resistance mechanisms, including biofilm formation and drug efflux pump. The potential use of quorum quenching as a new strategy to control microbial resistance is also discussed.

  19. Quorum sensing and bacterial biofilms.

    PubMed

    Dickschat, Jeroen S

    2010-03-01

    This review describes the chemistry of the bacterial biofilms including the chemistry of their constituents and signalling compounds that mediate or inhibit the formation of biofilms. Systems are described with special emphasis, in which quorum sensing molecules (autoinducers) trigger the formation of biofilms. In the first instance, N-acyl-L-homoserine lactones (AHLs) are the focus of this review, whereas the inter-species signal known as furanosyl borate diester and peptide autoinducers used by Gram-positive bacteria are not discussed in detail. Since the first discovery of an AHL autoinducer from Vibrio fischeri a large and further increasing number of different AHL structures from Gram-negative bacteria have been identified. This review gives a summary of all known AHL autoinducers and producing bacterial species. A few systems are discussed, where biofilm formation is suppressed by enzymatic degradation of AHL molecules or interference of secondary metabolites from other species with the quorum sensing systems of communicating bacteria. Finally, the multi-channel quorum sensing system, the intracellular downstream processing of the signal, and the resulting response of whole populations including biofilm formation are discussed for the Vibrio genus that has been extensively investigated.

  20. Quorum sensing and microbial biofilms.

    PubMed

    Irie, Y; Parsek, M R

    2008-01-01

    Some bacterial species engage in two well-documented social behaviors: the formation of surface-associated communities known as biofilms, and intercellular signaling, or quorum sensing. Recent studies have begun to reveal how these two social behaviors are related in different species. This chapter will review the role quorum sensing plays in biofilm formation for different species. In addition, different aspects of quorum sensing in the context of multispecies biofilms will be discussed.

  1. Paradigm shift in discovering next-generation anti-infective agents: targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules.

    PubMed

    Sintim, Herman O; Smith, Jacqueline A I; Wang, Jingxin; Nakayama, Shizuka; Yan, Lei

    2010-06-01

    Small molecules that can attenuate bacterial toxin production or biofilm formation have the potential to solve the bacteria resistance problem. Although several molecules, which inhibit bacterial cell-to-cell communication (quorum sensing), biofilm formation and toxin production, have been discovered, there is a paucity of US FDA-approved drugs that target these processes. Here, we review the current understanding of quorum sensing in important pathogens such as Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus and provide examples of experimental molecules that can inhibit both known and unknown targets in bacterial virulence factor production and biofilm formation. Structural data for protein targets that are involved in both quorum sensing and cyclic diguanylic acid signaling are needed to aid the development of molecules with drug-like properties in order to target bacterial virulence factors production and biofilm formation.

  2. Quorum sensing: a quantum perspective.

    PubMed

    Majumdar, Sarangam; Pal, Sukla

    2016-09-01

    Quorum sensing is the efficient mode of communication in the bacterial world. After a lot of advancements in the classical theory of quorum sensing few basic questions of quorum sensing still remain unanswered. The sufficient progresses in quantum biology demands to explain these questions from the quantum perspective as non trivial quantum effects already have manifested in various biological processes like photosynthesis, magneto-reception etc. Therefore, it's the time to review the bacterial communications from the quantum view point. In this article we carefully accumulate the latest results and arguments to strengthen quantum biology through the addition of quorum sensing mechanism in the light of quantum mechanics.

  3. Antimicrobial effect of farnesol, a Candida albicans quorum sensing molecule, on Paracoccidioides brasiliensis growth and morphogenesis

    PubMed Central

    Derengowski, Lorena S; De-Souza-Silva, Calliandra; Braz, Shélida V; Mello-De-Sousa, Thiago M; Báo, Sônia N; Kyaw, Cynthia M; Silva-Pereira, Ildinete

    2009-01-01

    Background Farnesol is a sesquiterpene alcohol produced by many organisms, and also found in several essential oils. Its role as a quorum sensing molecule and as a virulence factor of Candida albicans has been well described. Studies revealed that farnesol affect the growth of a number of bacteria and fungi, pointing to a potential role as an antimicrobial agent. Methods Growth assays of Paracoccidioides brasiliensis cells incubated in the presence of different concentrations of farnesol were performed by measuring the optical density of the cultures. The viability of fungal cells was determined by MTT assay and by counting the colony forming units, after each farnesol treatment. The effects of farnesol on P. brasiliensis dimorphism were also evaluated by optical microscopy. The ultrastructural morphology of farnesol-treated P. brasiliensis yeast cells was evaluated by transmission and scanning electron microscopy. Results In this study, the effects of farnesol on Paracoccidioides brasiliensis growth and dimorphism were described. Concentrations of this isoprenoid ranging from 25 to 300 μM strongly inhibited P. brasiliensis growth. We have estimated that the MIC of farnesol for P. brasiliensis is 25 μM, while the MLC is around 30 μM. When employing levels which don't compromise cell viability (5 to 15 μM), it was shown that farnesol also affected the morphogenesis of this fungus. We observed about 60% of inhibition in hyphal development following P. brasiliensis yeast cells treatment with 15 μM of farnesol for 48 h. At these farnesol concentrations we also observed a significant hyphal shortening. Electron microscopy experiments showed that, despite of a remaining intact cell wall, P. brasiliensis cells treated with farnesol concentrations above 25 μM exhibited a fully cytoplasmic degeneration. Conclusion Our data indicate that farnesol acts as a potent antimicrobial agent against P. brasiliensis. The fungicide activity of farnesol against this pathogen is

  4. [Bacterial communication: quorum-sensing].

    PubMed

    Cakar, Asli

    2004-07-01

    The interaction between the host and a pathogenic bacterium is mainly controlled by the bacterial population size. An individual bacterial cell is able to sense other members of the same species and in response, differentially expresses specific genes. Such cell to cell communication is called quorum sensing (QS) and involves the direct or indirect activation of a response regulator by a signal molecule. The major QS signal molecules are N-acyl homoserine lactones in Gram negative bacteria and post-translationally modified peptides in Gram positive bacteria. QS system is used by a wide variety of bacteria including human pathogens. QS genes are important for the pathogenic potential of Pseudomonas aeruginosa and Staphylococcus aureus, as well as other invasive bacteria. Thus QS interfering molecules promise new therapeutic strategies or prophylactic measures in infectious diseases. In this review article, the role of QS system on bacterial virulence, its effects on the host immune response and QS inhibitors for prophylaxis and therapy are discussed.

  5. Quorum sensing inhibition, relevance to periodontics.

    PubMed

    Yada, Sudheer; Kamalesh, B; Sonwane, Siddharth; Guptha, Indra; Swetha, R K

    2015-01-01

    Quorum sensing helps bacteria to communicate with each other and in coordinating their behavior. Many diseases of human beings, plants, and animals are mediated by quorum sensing. Various approaches are being tried to inhibit this communication to control the diseases caused by bacteria. Periodontal pathogens also communicate through quorum sensing and new approaches to treat periodontal disease using quorum sensing inhibition need to explored.

  6. Identification of Quorum-Sensing Signal Molecules and a Biosynthetic Gene in Alicycliphilus sp. Isolated from Activated Sludge.

    PubMed

    Morohoshi, Tomohiro; Okutsu, Noriya; Xie, Xiaonan; Ikeda, Tsukasa

    2016-08-02

    Activated sludge is a complicated mixture of various microorganisms that is used to treat sewage and industrial wastewater. Many bacteria produce N-acylhomoserine lactone (AHL) as a quorum-sensing signal molecule to regulate the expression of the exoenzymes used for wastewater treatment. Here, we isolated an AHL-producing bacteria from an activated sludge sample collected from an electronic component factory, which we named Alicycliphilus sp. B1. Clone library analysis revealed that Alicycliphilus was a subdominant genus in this sample. When we screened the activated sludge sample for AHL-producing strains, 12 of 14 the AHL-producing isolates were assigned to the genus Alicycliphilus. A putative AHL-synthase gene, ALISP_0667, was cloned from the genome of B1 and transformed into Escherichia coli DH5α. The AHLs were extracted from the culture supernatants of the B1 strain and E. coli DH5α cells harboring the ALISP_0667 gene and were identified by liquid chromatography-mass spectrometry as N-(3-hydroxydecanoyl)-l-homoserine lactone and N-(3-hydroxydodecanoyl)-l-homoserine lactone. The results of comparative genomic analysis suggested that the quorum-sensing genes in the B1 strain might have been acquired by horizontal gene transfer within activated sludge.

  7. Small molecules modulating AHL-based quorum sensing to attenuate bacteria virulence and biofilms as promising antimicrobial drugs.

    PubMed

    Wang, Y; Ma, S

    2014-01-01

    Clinically significant antibiotic resistance is one of the greatest challenges of the twenty-first century. Yet new antibiotics are currently being developed at a much slower pace than our growing need for such drugs. Instead of focusing on conventional therapeutics that target in vitro bacterial viability, an alternative therapy is to target virulence factors and biofilms. Such anti-virulence strategies have attracted more and more attention recently, for it would add both supplement and diversity to our current antimicrobial library. This approach has several potential advantages including imposing less evolutionary pressure on the development of antibiotic resistance, increasing the antibacterial targets and preserving the host endogenous microbiome. Quorum sensing is an intercellular communication process in bacterial communities, which can regulate coordinated expression of virulence factors and biofilms. N-Acyl homoserine lactones (AHLs) are autoinducers generated by a variety of Gram-negative bacteria. These signals combining with their cognate LuxR-type receptors trigger the expression of virulence genes. In this critical review, we summarize various structural types of small molecules targeting AHL-based quorum sensing to attenuate bacteria virulence factors and biofilms.

  8. Identification of Quorum-Sensing Signal Molecules and a Biosynthetic Gene in Alicycliphilus sp. Isolated from Activated Sludge

    PubMed Central

    Morohoshi, Tomohiro; Okutsu, Noriya; Xie, Xiaonan; Ikeda, Tsukasa

    2016-01-01

    Activated sludge is a complicated mixture of various microorganisms that is used to treat sewage and industrial wastewater. Many bacteria produce N-acylhomoserine lactone (AHL) as a quorum-sensing signal molecule to regulate the expression of the exoenzymes used for wastewater treatment. Here, we isolated an AHL-producing bacteria from an activated sludge sample collected from an electronic component factory, which we named Alicycliphilus sp. B1. Clone library analysis revealed that Alicycliphilus was a subdominant genus in this sample. When we screened the activated sludge sample for AHL-producing strains, 12 of 14 the AHL-producing isolates were assigned to the genus Alicycliphilus. A putative AHL-synthase gene, ALISP_0667, was cloned from the genome of B1 and transformed into Escherichia coli DH5α. The AHLs were extracted from the culture supernatants of the B1 strain and E. coli DH5α cells harboring the ALISP_0667 gene and were identified by liquid chromatography-mass spectrometry as N-(3-hydroxydecanoyl)-l-homoserine lactone and N-(3-hydroxydodecanoyl)-l-homoserine lactone. The results of comparative genomic analysis suggested that the quorum-sensing genes in the B1 strain might have been acquired by horizontal gene transfer within activated sludge. PMID:27490553

  9. Detection of Quorum Sensing Signal Molecules and Identification of an Autoinducer Synthase Gene among Biofilm Forming Clinical Isolates of Acinetobacter spp.

    PubMed Central

    Anbazhagan, Deepa; Mansor, Marzida; Yan, Gracie Ong Siok; Md Yusof, Mohd Yasim; Hassan, Hamimah; Sekaran, Shamala Devi

    2012-01-01

    Background Quorum sensing is a term that describes an environmental sensing system that allows bacteria to monitor their own population density which contributes significantly to the size and development of the biofilm. Many gram negative bacteria use N-acyl-homoserine lactones as quorum sensing signal molecules. In this study, we sought to find out if the biofilm formation among clinical isolates of Acinetobacter spp. is under the control of autoinducing quorum sensing molecules. Methodology/Principal Findings Biofilm formation among clinical isolates of Acinetobacter spp. was assessed and the production of signal molecules were detected with Chromobacterium violaceum CV026 biosensor system. Characterisation of autoinducers was carried out by mass spectrometric analysis. We have also reported the identification of an autoinducer synthase gene, abaΙ among the isolates that produce quorum sensing signal molecules and have reported that the mutation in the abaI gene influences their biofilm forming capabilities. Using a microtitre-plate assay it was shown that 60% of the 50 Acinetobacter spp. isolates significantly formed biofilms. Further detection with the biosensor strain showed that some of these isolates produced long chain signal molecules. Mass spectrometric analysis revealed that five of these isolates produced N-decanoyl homoserine lactone and two isolates produced acyl-homoserine lactone with a chain length equal to C12. The abaΙ gene was identified and a tetracycline mutant of the abaΙ gene was created and the inhibition in biofilm formation in the mutant was shown. Conclusions/Significance These data are of great significance as the signal molecules aid in biofilm formation which in turn confer various properties of pathogenicity to the clinical isolates including drug resistance. The use of quorum sensing signal blockers to attenuate bacterial pathogenicity is therefore highly attractive, particularly with respect to the emergence of multi antibiotic

  10. Detection of quorum sensing signal molecules and identification of an autoinducer synthase gene among biofilm forming clinical isolates of Acinetobacter spp.

    PubMed

    Anbazhagan, Deepa; Mansor, Marzida; Yan, Gracie Ong Siok; Md Yusof, Mohd Yasim; Hassan, Hamimah; Sekaran, Shamala Devi

    2012-01-01

    Quorum sensing is a term that describes an environmental sensing system that allows bacteria to monitor their own population density which contributes significantly to the size and development of the biofilm. Many gram negative bacteria use N-acyl-homoserine lactones as quorum sensing signal molecules. In this study, we sought to find out if the biofilm formation among clinical isolates of Acinetobacter spp. is under the control of autoinducing quorum sensing molecules. Biofilm formation among clinical isolates of Acinetobacter spp. was assessed and the production of signal molecules were detected with Chromobacterium violaceum CV026 biosensor system. Characterisation of autoinducers was carried out by mass spectrometric analysis. We have also reported the identification of an autoinducer synthase gene, abaΙ among the isolates that produce quorum sensing signal molecules and have reported that the mutation in the abaI gene influences their biofilm forming capabilities. Using a microtitre-plate assay it was shown that 60% of the 50 Acinetobacter spp. isolates significantly formed biofilms. Further detection with the biosensor strain showed that some of these isolates produced long chain signal molecules. Mass spectrometric analysis revealed that five of these isolates produced N-decanoyl homoserine lactone and two isolates produced acyl-homoserine lactone with a chain length equal to C(12). The abaΙ gene was identified and a tetracycline mutant of the abaΙ gene was created and the inhibition in biofilm formation in the mutant was shown. These data are of great significance as the signal molecules aid in biofilm formation which in turn confer various properties of pathogenicity to the clinical isolates including drug resistance. The use of quorum sensing signal blockers to attenuate bacterial pathogenicity is therefore highly attractive, particularly with respect to the emergence of multi antibiotic resistant bacteria.

  11. Ajoene, a Sulfur-Rich Molecule from Garlic, Inhibits Genes Controlled by Quorum Sensing

    PubMed Central

    Jakobsen, Tim Holm; van Gennip, Maria; Phipps, Richard Kerry; Shanmugham, Meenakshi Sundaram; Christensen, Louise Dahl; Alhede, Morten; Skindersoe, Mette Eline; Rasmussen, Thomas Bovbjerg; Friedrich, Karlheinz; Uthe, Friedrich; Jensen, Peter Østrup; Moser, Claus; Nielsen, Kristian Fog; Eberl, Leo; Larsen, Thomas Ostenfeld; Tanner, David; Høiby, Niels; Bjarnsholt, Thomas

    2012-01-01

    In relation to emerging multiresistant bacteria, development of antimicrobials and new treatment strategies of infections should be expected to become a high-priority research area. Quorum sensing (QS), a communication system used by pathogenic bacteria like Pseudomonas aeruginosa to synchronize the expression of specific genes involved in pathogenicity, is a possible drug target. Previous in vitro and in vivo studies revealed a significant inhibition of P. aeruginosa QS by crude garlic extract. By bioassay-guided fractionation of garlic extracts, we determined the primary QS inhibitor present in garlic to be ajoene, a sulfur-containing compound with potential as an antipathogenic drug. By comprehensive in vitro and in vivo studies, the effect of synthetic ajoene toward P. aeruginosa was elucidated. DNA microarray studies of ajoene-treated P. aeruginosa cultures revealed a concentration-dependent attenuation of a few but central QS-controlled virulence factors, including rhamnolipid. Furthermore, ajoene treatment of in vitro biofilms demonstrated a clear synergistic, antimicrobial effect with tobramycin on biofilm killing and a cease in lytic necrosis of polymorphonuclear leukocytes. Furthermore, in a mouse model of pulmonary infection, a significant clearing of infecting P. aeruginosa was detected in ajoene-treated mice compared to a nontreated control group. This study adds to the list of examples demonstrating the potential of QS-interfering compounds in the treatment of bacterial infections. PMID:22314537

  12. Caenorhabditis elegans Recognizes a Bacterial Quorum-sensing Signal Molecule through the AWCON Neuron*

    PubMed Central

    Werner, Kristen M.; Perez, Lark J.; Ghosh, Rajarshi; Semmelhack, Martin F.; Bassler, Bonnie L.

    2014-01-01

    In a process known as quorum sensing, bacteria use chemicals called autoinducers for cell-cell communication. Population-wide detection of autoinducers enables bacteria to orchestrate collective behaviors. In the animal kingdom detection of chemicals is vital for success in locating food, finding hosts, and avoiding predators. This behavior, termed chemotaxis, is especially well studied in the nematode Caenorhabditis elegans. Here we demonstrate that the Vibrio cholerae autoinducer (S)-3-hydroxytridecan-4-one, termed CAI-1, influences chemotaxis in C. elegans. C. elegans prefers V. cholerae that produces CAI-1 over a V. cholerae mutant defective for CAI-1 production. The position of the CAI-1 ketone moiety is the key feature driving CAI-1-directed nematode behavior. CAI-1 is detected by the C. elegans amphid sensory neuron AWCON. Laser ablation of the AWCON cell, but not other amphid sensory neurons, abolished chemoattraction to CAI-1. These analyses define the structural features of a bacterial-produced signal and the nematode chemosensory neuron that permit cross-kingdom interaction. PMID:25092291

  13. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing.

    PubMed

    Jakobsen, Tim Holm; van Gennip, Maria; Phipps, Richard Kerry; Shanmugham, Meenakshi Sundaram; Christensen, Louise Dahl; Alhede, Morten; Skindersoe, Mette Eline; Rasmussen, Thomas Bovbjerg; Friedrich, Karlheinz; Uthe, Friedrich; Jensen, Peter Østrup; Moser, Claus; Nielsen, Kristian Fog; Eberl, Leo; Larsen, Thomas Ostenfeld; Tanner, David; Høiby, Niels; Bjarnsholt, Thomas; Givskov, Michael

    2012-05-01

    In relation to emerging multiresistant bacteria, development of antimicrobials and new treatment strategies of infections should be expected to become a high-priority research area. Quorum sensing (QS), a communication system used by pathogenic bacteria like Pseudomonas aeruginosa to synchronize the expression of specific genes involved in pathogenicity, is a possible drug target. Previous in vitro and in vivo studies revealed a significant inhibition of P. aeruginosa QS by crude garlic extract. By bioassay-guided fractionation of garlic extracts, we determined the primary QS inhibitor present in garlic to be ajoene, a sulfur-containing compound with potential as an antipathogenic drug. By comprehensive in vitro and in vivo studies, the effect of synthetic ajoene toward P. aeruginosa was elucidated. DNA microarray studies of ajoene-treated P. aeruginosa cultures revealed a concentration-dependent attenuation of a few but central QS-controlled virulence factors, including rhamnolipid. Furthermore, ajoene treatment of in vitro biofilms demonstrated a clear synergistic, antimicrobial effect with tobramycin on biofilm killing and a cease in lytic necrosis of polymorphonuclear leukocytes. Furthermore, in a mouse model of pulmonary infection, a significant clearing of infecting P. aeruginosa was detected in ajoene-treated mice compared to a nontreated control group. This study adds to the list of examples demonstrating the potential of QS-interfering compounds in the treatment of bacterial infections.

  14. Shoot the Message, Not the Messenger—Combating Pathogenic Virulence in Plants by Inhibiting Quorum Sensing Mediated Signaling Molecules

    PubMed Central

    Alagarasan, Ganesh; Aswathy, Kumar S.

    2017-01-01

    Immunity, virulence, biofilm formation, and survival in the host environment are regulated by the versatile nature of density dependent microbial cell signaling, also called quorum sensing (QS). The QS molecules can associate with host plant tissues and, at times, cause a change in its gene expression at the downstream level through inter-kingdom cross talking. Progress in controlling QS through fungicide/bactericide in pathogenic microscopic organisms has lead to a rise of antibiotic resistance pathogens. Here, we review the application of selective quorum quenching (QQ) endophytes to control phytopathogens that are shared by most, if not all, terrestrial plant species as well as aquatic plants. Allowing the plants to posses endophytic colonies through biotization will be an additional and a sustainable encompassing methodology resulting in attenuated virulence rather than killing the pathogens. Furthermore, the introduced endophytes could serve as a potential biofertilizer and bioprotection agent, which in turn increases the PAMP- triggered immunity and hormonal systemic acquired resistance (SAR) in plants through SA-JA-ET signaling systems. This paper discusses major challenges imposed by QS and QQ application in biotechnology. PMID:28446917

  15. A Cell-Free Biosensor for Detecting Quorum Sensing Molecules in P. aeruginosa-Infected Respiratory Samples.

    PubMed

    Wen, Ke Yan; Cameron, Loren; Chappell, James; Jensen, Kirsten; Bell, David J; Kelwick, Richard; Kopniczky, Margarita; Davies, Jane C; Filloux, Alain; Freemont, Paul S

    2017-10-05

    Synthetic biology designed cell-free biosensors are a promising new tool for the detection of clinically relevant biomarkers in infectious diseases. Here, we report that a modular DNA-encoded biosensor in cell-free protein expression systems can be used to measure a bacterial biomarker of Pseudomonas aeruginosa infection from human sputum samples. By optimizing the cell-free system and sample extraction, we demonstrate that the quorum sensing molecule 3-oxo-C12-HSL in sputum samples from cystic fibrosis lungs can be quantitatively measured at nanomolar levels using our cell-free biosensor system, and is comparable to LC-MS measurements of the same samples. This study further illustrates the potential of modular cell-free biosensors as rapid, low-cost detection assays that can inform clinical practice.

  16. Quorum sensing in staphylococci.

    PubMed

    Novick, Richard P; Geisinger, Edward

    2008-01-01

    The staphylococcal agr locus encodes a quorum sensing (QS) system that controls the expression of virulence and other accessory genes by a classical two-component signaling module. Like QS modalities in other Gram-positive bacteria, agr encodes an autoactivating peptide (AIP) that is the inducing ligand for AgrC, the agr signal receptor. Unlike other such systems, agr variants have arisen that show strong cross-inhibition in heterologous combinations, with important evolutionary implications. Also unlike other systems, the effector of global gene regulation in the agr system is a major regulatory RNA, RNAIII. In this review, we describe the functions of the agr system's elements, show how they interact to bring about the regulatory response, and discuss the role of QS in staphylococcal pathobiology. We conclude with the suggestion that agr autoactivation, unlike classical enzyme induction, can occur under suboptimal conditions and can distinguish self from non-self by inducing an exclusive and coordinated population wide response.

  17. Microbial metabolism of quorum-sensing molecules acyl-homoserine lactones, γ-heptalactone and other lactones.

    PubMed

    Safari, Maryam; Amache, Rana; Esmaeilishirazifard, Elham; Keshavarz, Tajalli

    2014-04-01

    The cell-to-cell communication of microorganisms is known to be via exertion of certain chemical compounds (signal molecules) and is referred to as quorum sensing (QS). QS phenomenon is widespread in microbial communities. Several Gram-positive and Gram-negative bacteria and fungi use lactone-containing compounds (e.g. acyl-homoserine lactones (AHLs), γ-heptalactone, butyrolactone-I) as signalling molecules. The ability of microorganisms to metabolise these compounds and the mechanisms they employ for this purpose are not clearly understood. Many studies, however, have focused on identifying AHL and other lactone-degrading enzymes produced by bacteria and fungi. Various strains that are able to utilise these signalling molecules as carbon and energy sources have also been isolated. In addition, several reports have provided evidence on the involvement of lactones and lactone-degrading enzymes in numerous biological functions. These studies, although focused on processes other than metabolism of lactone signalling molecules, still provide insights into further understanding of the mechanisms employed by various microorganisms to metabolise the QS compounds. In this review, we consider conceivable microbial strategies to metabolise AHL and other lactone-containing signalling molecules such as γ-heptalactones.

  18. Insights into the role of quorum sensing in food spoilage.

    PubMed

    Ammor, Mohammed Salim; Michaelidis, Christos; Nychas, George-John E

    2008-07-01

    Food spoilage is a consequence of the degrading enzymatic activity of some food-associated bacteria. Several proteolytic, lipolytic, chitinolytic, and pectinolytic activities associated with the deterioration of goods are regulated by quorum sensing, suggesting a potential role of such cell-to-cell communication in food spoilage. Here we review quorum sensing signaling molecules and methods of their detection and quantification, and we provide insights into the role of quorum sensing in food spoilage and address potential quorum sensing inhibitors that might be used as biopreservatives.

  19. Biofilm Formation and Quorum-Sensing-Molecule Production by Clinical Isolates of Serratia liquefaciens

    PubMed Central

    Remuzgo-Martínez, Sara; Lázaro-Díez, María; Mayer, Celia; Aranzamendi-Zaldumbide, Maitane; Padilla, Daniel; Calvo, Jorge; Marco, Francesc; Martínez-Martínez, Luis; Icardo, José Manuel; Otero, Ana

    2015-01-01

    Serratia spp. are opportunistic human pathogens responsible for an increasing number of nosocomial infections. However, little is known about the virulence factors and regulatory circuits that may enhance the establishment and long-term survival of Serratia liquefaciens in the hospital environment. In this study, two reporter strains, Chromobacterium violaceum CV026 and VIR24, and high-resolution triple-quadrupole liquid chromatography–mass spectrometry (LC-MS) were used to detect and to quantify N-acyl-homoserine lactone (AHL) quorum-sensing signals in 20 S. liquefaciens strains isolated from clinical samples. Only four of the strains produced sufficient amounts of AHLs to activate the sensors. Investigation of two of the positive strains by high-performance liquid chromatography (HPLC)-MS confirmed the presence of significant amounts of short-acyl-chain AHLs (N-butyryl-l-homoserine lactone [C4-HSL] and N-hexanoyl-l-homoserine lactone [C6-HSL]) in both strains, which exhibited a complex and strain-specific signal profile that included minor amounts of other short-acyl-chain AHLs (N-octanoyl-l-homoserine lactone [C8-HSL] and N-3-oxohexanoyl-l-homoserine lactone [OC6-HSL]) and long-acyl-chain (C10, C12, and C14) AHLs. No correlation between biofilm formation and the production of large amounts of AHLs could be established. Fimbria-like structures were observed by transmission electron microscopy, and the presence of the type 1 fimbrial adhesin gene fimH in all strains was confirmed by PCR. The ability of S. liquefaciens to adhere to abiotic surfaces and to form biofilms likely contributes to its persistence in the hospital environment, increasing the probability of causing nosocomial infections. Therefore, a better understanding of the adherence properties of this species will provide greater insights into the diseases it causes. PMID:25746999

  20. Noisy neighbourhoods: quorum sensing in fungal-polymicrobial infections.

    PubMed

    Dixon, Emily F; Hall, Rebecca A

    2015-10-01

    Quorum sensing was once considered a way in which a species was able to sense its cell density and regulate gene expression accordingly. However, it is now becoming apparent that multiple microbes can sense particular quorum-sensing molecules, enabling them to sense and respond to other microbes in their neighbourhood. Such interactions are significant within the context of polymicrobial disease, in which the competition or cooperation of microbes can alter disease progression. Fungi comprise a small but important component of the human microbiome and are in constant contact with bacteria and viruses. The discovery of quorum-sensing pathways in fungi has led to the characterization of a number of interkingdom quorum-sensing interactions. Here, we review the recent developments in quorum sensing in medically important fungi, and the implications these interactions have on the host's innate immune response.

  1. Detection and quantification of quinolone signalling molecule: a third quorum sensing molecule of Pseudomonas aeruginosa by high performance-thin layer chromatography.

    PubMed

    Bala, Anju; Gupta, Ravi Kumar; Chhibber, Sanjay; Harjai, Kusum

    2013-07-01

    Sophisticated network of quorum sensing involves the production of chemical signals which regulate the combined expression of virulence genes and biofilm formation in Pseudomonas aeruginosa. Two well-characterized acyl homoserine lactone based las and rhl systems together with alkyl quinolone based Pseudomonas quinolone signalling (PQS) are fundamental components of this network. Third signalling molecule, 2-heptyl-3-hydroxy-4-quinolone (PQS) is of paramount importance because of its interconnecting role in quorum sensing hierarchy in P. aeruginosa. Accurate detection of PQS molecule is very important to understand the involvement of this system in infection process of P. aeruginosa. In this study, high performance-thin layer chromatography (HP-TLC) method was developed for detection as well as quantification of PQS signal molecules in P. aeruginosa, which combines conventional method like TLC with sophisticated instrumentation. This method was validated using parameters like linearity, accuracy, precision, reproducibility and sensitivity. Intra- and inter-day accuracy and precision values were determined which were found to be within acceptable level and hence showed reproducibility. Measurement of PQS in the range of 0.01nmol indicated excellent sensitivity of this approach for quantifying PQS molecule. Automated sampling, rapid and simultaneous analysis of large number of samples and minimal errors make this method more suitable for analysis of PQS signalling molecules. Production of PQS was found to be strain dependent since variation in amount of PQS was observed among different P. aeruginosa isolates. Further, PQS production was also dependent on growth phase of P. aeruginosa with maximum production in late stationary phase.

  2. Quorum sensing and swarming migration in bacteria.

    PubMed

    Daniels, Ruth; Vanderleyden, Jos; Michiels, Jan

    2004-06-01

    Bacterial cells can produce and sense signal molecules, allowing the whole population to initiate a concerted action once a critical concentration (corresponding to a particular population density) of the signal has been reached, a phenomenon known as quorum sensing. One of the possible quorum sensing-regulated phenotypes is swarming, a flagella-driven movement of differentiated swarmer cells (hyperflagellated, elongated, multinucleated) by which bacteria can spread as a biofilm over a surface. The glycolipid or lipopeptide biosurfactants thereby produced function as wetting agent by reducing the surface tension. Quorum sensing systems are almost always integrated into other regulatory circuits. This effectively expands the range of environmental signals that influence target gene expression beyond population density. In this review, we first discuss the regulation of AHL-mediated surface migration and the involvement of other low-molecular-mass signal molecules (such as the furanosyl borate diester AI-2) in biosurfactant production of different bacteria. In addition, population density-dependent regulation of swarmer cell differentiation is reviewed. Also, several examples of interspecies signalling are reported. Different signal molecules either produced by bacteria (such as other AHLs and diketopiperazines) or excreted by plants (such as furanones, plant signal mimics) might influence the quorum sensing-regulated swarming behaviour in bacteria different from the producer. On the other hand, specific bacteria can reduce the local available concentration of signal molecules produced by others. In the last part, the role and regulation of a surface-associated movement in biofilm formation is discussed. Here we also describe how quorum sensing may disperse existing biofilms and control the interaction between bacteria and higher organisms (such as the Rhizobium-bean symbiosis).

  3. Engineered biological nanofactories trigger quorum sensing response in targeted bacteria

    NASA Astrophysics Data System (ADS)

    Fernandes, Rohan; Roy, Varnika; Wu, Hsuan-Chen; Bentley, William E.

    2010-03-01

    Biological nanofactories, which are engineered to contain modules that can target, sense and synthesize molecules, can trigger communication between different bacterial populations. These communications influence biofilm formation, virulence, bioluminescence and many other bacterial functions in a process called quorum sensing. Here, we show the assembly of a nanofactory that can trigger a bacterial quorum sensing response in the absence of native quorum molecules. The nanofactory comprises an antibody (for targeting) and a fusion protein that produces quorum molecules when bound to the targeted bacterium. Our nanofactory selectively targets the appropriate bacteria and triggers a quorum sensing response when added to two populations of bacteria. The nanofactories also trigger communication between two bacterial populations that are otherwise non-communicating. We envision the use of these nanofactories in generating new antimicrobial treatments that target the communication networks of bacteria rather than their viability.

  4. Novel insights from molecular docking of SdiA from Salmonella Enteritidis and Escherichia coli with quorum sensing and quorum quenching molecules.

    PubMed

    Almeida, Felipe Alves de; Pinto, Uelinton Manoel; Vanetti, Maria Cristina Dantas

    2016-10-01

    Quorum sensing is a cell-to-cell communication mechanism leading to differential gene expression in response to high population density. The autoinducer-1 (AI-1) type quorum sensing system is incomplete in Escherichia coli and Salmonella due to the lack of the AI-1 synthase (LuxI homolog) responsible for acyl homoserine lactone (AHL) synthesis. However, these bacteria encode the AHL receptor SdiA (a LuxR homolog) leading to gene regulation in response to AI-1 produced by other bacteria. This study aimed to model the SdiA protein of Salmonella enterica serovar Enteritidis PT4 578 based on three crystallized SdiA structures from Enterohemorrhagic E. coli (EHEC) with different ligands. Molecular docking of these predicted structures with AHLs, furanones and 1-octanoyl-rac-glycerol were also performed. The available EHEC SdiA structures provided good prototypes for modeling SdiA from Salmonella. The molecular docking of these proteins showed that residues Y63, W67, Y71, D80 and S134 are common binding sites for different quorum modulating signals, besides being conserved among other LuxR type proteins. We also show that AHLs with twelve carbons presented better binding affinity to SdiA than AHLs with smaller side chains in our docking analysis, regardless of the protein structures used. Interestingly, the conformational changes provided by AHL binding resulted in structural models with increased affinities to brominated furanones. These results suggest that the use of brominated furanones to inhibit phenotypes controlled by quorum sensing in Salmonella and EHEC may present a good strategy since these inhibitors seem to specifically compete with AHLs for binding to SdiA in both pathogens.

  5. Quorum Sensing in Nitrogen-Fixing Rhizobia

    PubMed Central

    González, Juan E.; Marketon, Melanie M.

    2003-01-01

    Members of the rhizobia are distinguished for their ability to establish a nitrogen-fixing symbiosis with leguminous plants. While many details of this relationship remain a mystery, much effort has gone into elucidating the mechanisms governing bacterium-host recognition and the events leading to symbiosis. Several signal molecules, including plant-produced flavonoids and bacterially produced nodulation factors and exopolysaccharides, are known to function in the molecular conversation between the host and the symbiont. Work by several laboratories has shown that an additional mode of regulation, quorum sensing, intercedes in the signal exchange process and perhaps plays a major role in preparing and coordinating the nitrogen-fixing rhizobia during the establishment of the symbiosis. Rhizobium leguminosarum, for example, carries a multitiered quorum-sensing system that represents one of the most complex regulatory networks identified for this form of gene regulation. This review focuses on the recent stream of information regarding quorum sensing in the nitrogen-fixing rhizobia. Seminal work on the quorum-sensing systems of R. leguminosarum bv. viciae, R. etli, Rhizobium sp. strain NGR234, Sinorhizobium meliloti, and Bradyrhizobium japonicum is presented and discussed. The latest work shows that quorum sensing can be linked to various symbiotic phenomena including nodulation efficiency, symbiosome development, exopolysaccharide production, and nitrogen fixation, all of which are important for the establishment of a successful symbiosis. Many questions remain to be answered, but the knowledge obtained so far provides a firm foundation for future studies on the role of quorum-sensing mediated gene regulation in host-bacterium interactions. PMID:14665677

  6. Novel linear polymers able to inhibit bacterial quorum sensing.

    PubMed

    Cavaleiro, Eliana; Duarte, Ana Sofia; Esteves, Ana Cristina; Correia, António; Whitcombe, Michael J; Piletska, Elena V; Piletsky, Sergey A; Chianella, Iva

    2015-05-01

    Bacterial phenotypes, such as biofilm formation, antibiotic resistance and virulence expression, are associated with quorum sensing. Quorum sensing is a density-dependent regulatory system of gene expression controlled by specific signal molecules, such as N-acyl homoserine lactones (AHLs), produced and released by bacteria. This study reports the development of linear polymers capable to attenuate quorum sensing by adsorption of AHLs. Linear polymers were synthesized using MMA as backbone monomer and methacrylic acid and itaconic acid as functional monomers. Two different quorum sensing-controlled phenotypes, Vibrio fischeri bioluminescence and Aeromonas hydrophila biofilm formation, were evaluated to test the polymers' efficiency. Results showed that both phenotypes were significantly affected by the polymers, with the itaconic acid-containing material being more effective than the methacrylic acid one. The polymer inhibitory effects were reverted by the addition of lactones, confirming attenuation of quorum sensing through sequestration of signal molecules. The polymers also showed no cytotoxicity when tested using a mammalian cell line.

  7. Quorum Sensing Inhibition, Relevance to Periodontics

    PubMed Central

    Yada, Sudheer; Kamalesh, B; Sonwane, Siddharth; Guptha, Indra; Swetha, R K

    2015-01-01

    Quorum sensing helps bacteria to communicate with each other and in coordinating their behavior. Many diseases of human beings, plants, and animals are mediated by quorum sensing. Various approaches are being tried to inhibit this communication to control the diseases caused by bacteria. Periodontal pathogens also communicate through quorum sensing and new approaches to treat periodontal disease using quorum sensing inhibition need to explored. PMID:25709373

  8. Small Molecule Disruption of Quorum Sensing Cross-Regulation in Pseudomonas aeruginosa Causes Major and Unexpected Alterations to Virulence Phenotypes

    PubMed Central

    Welsh, Michael A.; Eibergen, Nora R.; Moore, Joseph D.; Blackwell, Helen E.

    2015-01-01

    The opportunistic pathogen Pseudomonas aeruginosa uses three interwoven quorum-sensing (QS) circuits—Las, Rhl, and Pqs—to regulate the global expression of myriad virulence-associated genes. Interception of these signaling networks with small molecules represents an emerging strategy for the development of anti-infective agents against this bacterium. In the current study, we applied a chemical approach to investigate how the Las-Rhl-Pqs QS hierarchy coordinates key virulence phenotypes in wild-type P. aeruginosa. We screened a focused library of synthetic, non-native N-acyl l-homoserine lactones and identified compounds that can drastically alter production of two important virulence factors: pyocyanin and rhamnolipid. We demonstrate that these molecules act by targeting RhlR in P. aeruginosa, a QS receptor that has seen far less scrutiny to date relative to other circuitry. Unexpectedly, modulation of RhlR activity by a single compound induces inverse regulation of pyocyanin and rhamnolipid, a result that was not predicted using genetic approaches to interrogate QS in P. aeruginosa. Further, we show that certain RhlR agonists strongly repress Pqs signaling, revealing disruption of Rhl-Pqs cross-regulation as a novel mechanism for QS inhibition. These compounds significantly expand the known repertoire of chemical probes available to study RhlR in P. aeruginosa. Moreover, our results suggest that designing chemical agents to disrupt Rhl-Pqs crosstalk could be an effective antivirulence strategy to fight this common pathogen. PMID:25574853

  9. Isolation and characterization of quorum-sensing signalling molecules in Pseudomonas aeruginosa isolates recovered from nosocomial infections.

    PubMed

    Lakshmana Gowda, Krishnappa; John, James; Marie, Mohammed A M; Sangeetha, Gopalkrishnan; Bindurani, Shanta Range

    2013-09-01

    Pseudomonas aeruginosa is one of the most common pathogens in nosocomial infections. Many studies have documented the role of quorum-sensing (QS) systems in antibiotic tolerance of P. aeruginosa. N-acyl homoserine lactones (AHLs) serve as QS signalling molecules and can be a target for modulating bacterial pathogenicity. In this study, nosocomial isolates of P. aeruginosa were characterized for the presence of different types of QS signalling molecules. AHLs were solvent extracted and quantified by determination of β-galactosidase activity using the Escherichia coli MG4 reporter strain. Further characterization was performed by analytical thin layer chromatography coupled with detection using the Agrobacterium tumefaciens A136 biosensor strain. All P. aeruginosa isolates produced AHLs, but there were differences in the quantity and nature of AHLs. We identified AHLs belonging to C4-homoserine lactone (HSL), C6-HSL, C8-HSL, C10-HSL and C12-HSL. AHL profiling of P. aeruginosa isolates showed differences in the amounts and types of AHLs, suggesting differences in the virulence factors and the potential for infection. Our results may be investigated further using animal model systems.

  10. Characterisation of a marine bacterium Vibrio brasiliensis T33 producing N-acyl homoserine lactone quorum sensing molecules.

    PubMed

    Tan, Wen-Si; Yunos, Nina Yusrina Muhamad; Tan, Pui-Wan; Mohamad, Nur Izzati; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-07-08

    N-acylhomoserine lactones (AHL) plays roles as signal molecules in quorum sensing (QS) in most Gram-negative bacteria. QS regulates various physiological activities in relation with population density and concentration of signal molecules. With the aim of isolating marine water-borne bacteria that possess QS properties, we report here the preliminary screening of marine bacteria for AHL production using Chromobacterium violaceum CV026 as the AHL biosensor. Strain T33 was isolated based on preliminary AHL screening and further identified by using 16S rDNA sequence analysis as a member of the genus Vibrio closely related to Vibrio brasiliensis. The isolated Vibrio sp. strain T33 was confirmed to produce N-hexanoyl-L-homoserine lactone (C6-HSL) and N-(3-oxodecanoyl)-L-homoserine lactone (3-oxo-C10 HSL) through high resolution tandem mass spectrometry analysis. We demonstrated that this isolate formed biofilms which could be inhibited by catechin. To the best of our knowledge, this is the first report that documents the production of these AHLs by Vibrio brasiliensis strain T33.

  11. Mouse nasal epithelial innate immune responses to Pseudomonas aeruginosa quorum-sensing molecules require taste signaling components.

    PubMed

    Lee, Robert J; Chen, Bei; Redding, Kevin M; Margolskee, Robert F; Cohen, Noam A

    2014-08-01

    We previously observed that the human bitter taste receptor T2R38 is an important component of upper respiratory innate defense because it detects acyl homoserine lactone (AHL) quorum-sensing molecules secreted by Gram-negative bacteria. T2R38 activation in human sinonasal epithelial cells stimulates calcium and NO signals that increase mucociliary clearance, the major physical respiratory defense against inhaled pathogens. While mice do not have a clear T2R38 ortholog, they do have bitter taste receptors capable of responding to T2R38 agonists, suggesting that T2R-mediated innate immune mechanisms may be conserved in mice. We examined whether AHLs activate calcium and NO signaling in mouse nasal epithelial cells, and utilized pharmacology, as well as cells from knockout mice lacking important components of canonical taste signal transduction pathways, to determine if AHL-stimulated responses require taste signaling molecules. We found that AHLs stimulate calcium-dependent NO production that increases mucociliary clearance and thus likely serves an innate immune role against Gram-negative bacteria. These responses require PLCβ2 and TRPM5 taste signaling components, but not α-gustducin. These data suggest the mouse may be a useful model for further studies of T2R-mediated innate immunity.

  12. Isolation and Molecular Characterization of Biofouling Bacteria and Profiling of Quorum Sensing Signal Molecules from Membrane Bioreactor Activated Sludge

    PubMed Central

    Lade, Harshad; Paul, Diby; Kweon, Ji Hyang

    2014-01-01

    The formation of biofilm in a membrane bioreactor depends on the production of various signaling molecules like N-acyl homoserine lactones (AHLs). In the present study, a total of 200 bacterial strains were isolated from membrane bioreactor activated sludge and screened for AHLs production using two biosensor systems, Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136. A correlation between AHLs production and biofilm formation has been made among screened AHLs producing strains. The 16S rRNA gene sequence analysis revealed the dominance of Aeromonas and Enterobacter sp. in AHLs production; however few a species of Serratia, Leclercia, Pseudomonas, Klebsiella, Raoultella and Citrobacter were also identified. The chromatographic characterization of sludge extract showed the presence of a broad range of quorum sensing signal molecules. Further identification of sludge AHLs by thin layer chromatography bioassay and high performance liquid chromatography confirms the presence of C4-HSL, C6-HSL, C8-HSL, 3-oxo-C8-HSL, C10-HSL, C12-HSL, 3-oxo-C12-HSL and C14-HSL. The occurrence of AHLs in sludge extract and dominance of Aeromonas and Enterobacter sp. in activated sludge suggests the key role of these bacterial strains in AHLs production and thereby membrane fouling. PMID:24499972

  13. A Strategy for Antagonizing Quorum Sensing

    SciTech Connect

    G Chen; L Swem; D Swem; D Stauff; C OLoughlin; P Jeffrey; B Bassler; F Hughson

    2011-12-31

    Quorum-sensing bacteria communicate via small molecules called autoinducers to coordinate collective behaviors. Because quorum sensing controls virulence factor expression in many clinically relevant pathogens, membrane-permeable quorum sensing antagonists that prevent population-wide expression of virulence genes offer a potential route to novel antibacterial therapeutics. Here, we report a strategy for inhibiting quorum-sensing receptors of the widespread LuxR family. Structure-function studies with natural and synthetic ligands demonstrate that the dimeric LuxR-type transcription factor CviR from Chromobacterium violaceum is potently antagonized by molecules that bind in place of the native acylated homoserine lactone autoinducer, provided that they stabilize a closed conformation. In such conformations, each of the two DNA-binding domains interacts with the ligand-binding domain of the opposing monomer. Consequently, the DNA-binding helices are held apart by {approx}60 {angstrom}, twice the {approx}30 {angstrom} separation required for operator binding. This approach may represent a general strategy for the inhibition of multidomain proteins.

  14. Optimal census by quorum sensing

    NASA Astrophysics Data System (ADS)

    Taillefumier, Thibaud

    Bacteria regulate their gene expression in response to changes in local cell density in a process called quorum sensing. To synchronize their gene-expression programs, these bacteria need to glean as much information as possible about local density. Our study is the first to physically model the flow of information in a quorum-sensing microbial community, wherein the internal regulator of the individual's response tracks the external cell density via an endogenously generated shared signal. Combining information theory and Lagrangian optimization, we find that quorum-sensing systems can improve their information capabilities by tuning circuit feedbacks. At the population level, external feedback adjusts the dynamic range of the shared input to individuals' detection channels. At the individual level, internal feedback adjusts the regulator's response time to dynamically balance output noise reduction and signal tracking ability. Our analysis suggests that achieving information benefit via feedback requires dedicated systems to control gene expression noise, such as sRNA-based regulation.

  15. Characterization of bacteria degrading 3-hydroxy palmitic acid methyl ester (3OH-PAME), a quorum sensing molecule of Ralstonia solanacearum.

    PubMed

    Achari, G A; Ramesh, R

    2015-05-01

    Bacterial wilt pathogen Ralstonia solanacearum causes severe crop loss of eggplant, which is of economic importance in India. 3-hydroxy palmitic acid methyl ester (3OH-PAME) is the main quorum sensing molecule governing the expression of virulence factors in R. solanacearum. Ability of 164 bacterial isolates from the xylem of eggplant (Solanum melongena L.), chilli pepper (Capsicum annuum L.) and wild eggplant (Solanum torvum Sw.) to degrade 3OH-PAME was tested by disc diffusion assay. Enzymatic degradation of 3OH-PAME by five bacteria was confirmed by High-Performance Liquid Chromatography-Mass Spectrometry analysis. 3OH-PAME degrading bacteria were identified as Stenotrophomonas maltophilia, Pseudomonas aeruginosa and Rhodococcus corynebacterioides. 3OH-PAME degrading bacteria reduced the expression of virulence factors (exopolysaccharides and endoglucanase) of R. solanacearum in vitro and reduced wilt incidence in eggplant seedlings under greenhouse conditions. Isolates with quorum quenching activity successfully re-colonized eggplant seedlings. Quorum quenching bacteria produced antagonistic compounds, which may act synergistically with quorum quenching in reducing bacterial wilt in eggplant. This is the first report on endophytic bacteria of class Gammaproteobacteria and phylum Actinobacteria having 3OH-PAME degrading activity. This study demonstrates the potential use of endophytic bacteria as quorum quenching biocontrol agents for management of bacterial wilt in eggplant. © 2015 The Society for Applied Microbiology.

  16. Surface-enhanced Raman spectroscopy for in situ measurements of signaling molecules (autoinducers) relevant to bacteria quorum sensing.

    PubMed

    Pearman, William F; Lawrence-Snyder, Marion; Angel, S Michael; Decho, Alan W

    2007-12-01

    Autoinducer (AI) molecules are used by quorum sensing (QS) bacteria to communicate information about their environment and are critical to their ability to coordinate certain physiological activities. Studying how these organisms react to environmental stresses could provide insight into methods to control these activities. To this end, we are investigating spectroscopic methods of analysis that allow in situ measurements of these AI molecules under different environmental conditions. We found that for one class of AIs, N-acyl-homoserine lactones (AHLs), surface-enhanced Raman spectroscopy (SERS) is a method capable of performing such measurements in situ. SERS spectra of seven different AHLs with acyl chain lengths from 4 to 12 carbons were collected for the first time using Ag colloidal nanoparticles synthesized via both citrate and borohydride reduction methods. Strong SERS spectra were obtained in as little as 10 seconds for 80 microM solutions of AI that exhibited the strongest SERS response, whereas 20 seconds was typical for most AI SERS spectra collected during this study. Although all spectra were similar, significant differences were detected in the SERS spectra of C4-AHL and 3-oxo-C6-AHL and more subtle differences were noted between all AHLs. Initial results indicate a detection limit of approximately 10(-6)M for C6-AHL, which is within the limits of biologically relevant concentrations of AI molecules (nM-microM). Based on these results, the SERS method shows promise for monitoring AI molecule concentrations in situ, within biofilms containing QS bacteria. This new capability offers the possibility to "listen in" on chemical communications between bacteria in their natural environment as that environment is stressed.

  17. Diverse Profiles of AI-1 Type Quorum Sensing Molecules in Cultivable Bacteria from the Mangrove (Kandelia obovata) Rhizosphere Environment

    PubMed Central

    Ma, Zhi P.; Lao, Yong M.; Jin, Hui; Lin, Guang H.; Cai, Zhong H.; Zhou, Jin

    2016-01-01

    Mangrove rhizosphere environment harbors diverse populations of microbes, and some evidence showed that rhizobacteria behavior was regulated by quorum sensing (QS). Investigating the diverse profiles of QS molecules in mangrove ecosystems may shed light on the bacterial roles and lead to a better understanding of the symbiotic interactions between plants and microbes. The aims of the current study focus on identifying AI-1 type QS signals, i.e., acyl homoserine lactones (AHLs), in Kandelia obovata rhizosphere environment. Approximately 1200 rhizobacteria were screened and 184 strains (15.3%) tested were positive. Subsequent 16s rRNA gene sequencing and dereplication analyses identified 24 species from the positive isolates, which were affiliated to three different phyla, including Proteobacteria, Firmicutes, and Actinobacteria. Thin-layer chromatography separation of extracts revealed diverse AHL profiles and detected at least one active compound in the supernatant of these 24 cultivable AHL-producers. The active extracts from these bacterial isolates were further evaluated by ultra performance liquid chromatography-mass spectrometry, and the carbon side chain length ranged from C4 to C14. This is the first report on the diversity of AI-1 type auto-inducers in the mangrove plant K. obovata, and it is imperative to expand our knowledge of plant-bacteria interactions with respect to the maintenance of wetland ecosystem health. PMID:27994584

  18. The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment.

    PubMed

    Diggle, Stephen P; Matthijs, Sandra; Wright, Victoria J; Fletcher, Matthew P; Chhabra, Siri Ram; Lamont, Iain L; Kong, Xiaole; Hider, Robert C; Cornelis, Pierre; Cámara, Miguel; Williams, Paul

    2007-01-01

    Pseudomonas aeruginosa produces 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), a quorum-sensing (QS) signal that regulates numerous virulence genes including those involved in iron scavenging. Biophysical analysis revealed that 2-alkyl-3-hydroxy-4-quinolones form complexes with iron(III) at physiological pH. The overall stability constant of 2-methyl-3-hydroxy-4-quinolone iron(III) complex was log beta(3) = 36.2 with a pFe(3+) value of 16.6 at pH 7.4. PQS was found to operate via at least three distinct signaling pathways, and its precursor, 2-heptyl-4-quinolone (HHQ), which does not form an iron complex, was discovered to function as an autoinducer molecule per se. When PQS was supplied to a P. aeruginosa mutant unable to make pyoverdine or pyochelin, PQS associated with the cell envelope and inhibited bacterial growth, a finding that reveals a secondary function for PQS in iron entrapment to facilitate siderophore-mediated iron delivery.

  19. Diverse Profiles of AI-1 Type Quorum Sensing Molecules in Cultivable Bacteria from the Mangrove (Kandelia obovata) Rhizosphere Environment.

    PubMed

    Ma, Zhi P; Lao, Yong M; Jin, Hui; Lin, Guang H; Cai, Zhong H; Zhou, Jin

    2016-01-01

    Mangrove rhizosphere environment harbors diverse populations of microbes, and some evidence showed that rhizobacteria behavior was regulated by quorum sensing (QS). Investigating the diverse profiles of QS molecules in mangrove ecosystems may shed light on the bacterial roles and lead to a better understanding of the symbiotic interactions between plants and microbes. The aims of the current study focus on identifying AI-1 type QS signals, i.e., acyl homoserine lactones (AHLs), in Kandelia obovata rhizosphere environment. Approximately 1200 rhizobacteria were screened and 184 strains (15.3%) tested were positive. Subsequent 16s rRNA gene sequencing and dereplication analyses identified 24 species from the positive isolates, which were affiliated to three different phyla, including Proteobacteria, Firmicutes, and Actinobacteria. Thin-layer chromatography separation of extracts revealed diverse AHL profiles and detected at least one active compound in the supernatant of these 24 cultivable AHL-producers. The active extracts from these bacterial isolates were further evaluated by ultra performance liquid chromatography-mass spectrometry, and the carbon side chain length ranged from C4 to C14. This is the first report on the diversity of AI-1 type auto-inducers in the mangrove plant K. obovata, and it is imperative to expand our knowledge of plant-bacteria interactions with respect to the maintenance of wetland ecosystem health.

  20. Enzymatic hydrolysis of molecules associated with bacterial quorum sensing using an acyl homoserine lactonase from a novel Bacillus thuringiensis strain.

    PubMed

    Pedroza, Carmen Julia; Flórez, Alvaro Mauricio; Ruiz, Orlando S; Orduz, Sergio

    2014-01-01

    N-acyl homoserine lactones are key components of quorum sensing, the bacterial communication system. This communication mechanism regulates the expression of genes, including those involved in virulence and biofilm formation. This system can be interrupted by the action of enzymes that hydrolyze the signaling molecules. In this work, we studied the enzymatic properties of a recombinant AHL-lactonase from Bacillus thuringiensis strain 147-11516, using substrates with acyl chains of different length (C4-HSL, C6-HSL, C7-HSL, C8-HSL and C10-HSL), we also investigated the effect of pH (5.0–9.0), temperature (20–70 °C), concentration of monovalent, divalent and trivalent metals ions (0.2 and 2.0 mM) and EDTA. The results showed that the recombinant AHL-lactonase had biological activity in alkaline pH conditions (8.0) and high temperature (47 % of hydrolyzed substrate at 60 °C). The recombinant AHL-lactonase has activity on substrates with different acyl chain length. However, the activity of the recombinant enzyme was decreased in the two concentrations of all metal ions evaluated but was not inhibited by EDTA. The affinity of the enzyme for all substrates tested and its performance, in the evaluated conditions, suggest that the AHL-lactonase from B. thuringiensis strain 147-11516 could be used as a strategy for disruption of the Gram-negative bacteria communication system under normal and challenging conditions.

  1. Production of the quorum-sensing molecules N-acylhomoserine lactones by endobacteria associated with Mortierella alpina A-178.

    PubMed

    Kai, Kenji; Furuyabu, Kana; Tani, Ayaka; Hayashi, Hideo

    2012-08-13

    Gram-negative bacteria communicate with one another using N-acylhomoserine lactones (AHLs) as signaling molecules. This mechanism, known as quorum sensing (QS), is needed to develop pathogenicity, as well as symbiotic interactions with eukaryotic hosts, such as animals and plants. Increasing evidence indicates that certain bacteria, namely endobacteria, also inhabit fungal cells and establish symbiotic relationships with their hosts. However, it has not been clear whether bacterial QS acts in developing the relationships. Here we describe the isolation and identification of N-heptanoylhomoserine lactone and N-octanoylhomoserine lactone from the culture broth of the zygomycete fungus Mortierella alpina A-178. This suggested the presence of endobacteria in the fungus, as was confirmed by PCR, fluorescence in situ hybridization, and transmission electron microscopy. Two major bands obtained by PCR-denaturing gradient gel electrophoresis showed sequence identity to genes in the β-proteobacterium Castellaniella defragrans (100 %) and the Gram-positive bacterium Cryobacterium sp. (99.8 %). The production of AHLs depended on the presence of endobacteria and was induced in response to the increase in the concentration of AHLs, suggesting that the bacterium conducts AHL-mediated QS in the fungus. This paper is the first to report the production of AHLs by endofungal bacteria and raises the possibility that QS plays roles in the development of fungus-endobacterium symbiosis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Screening & profiling of quorum sensing signal molecules in Pseudomonas aeruginosa isolates from catheterized urinary tract infection patients

    PubMed Central

    Kumar, Ravi; Chhibber, Sanjay; Gupta, Varsha; Harjai, Kusum

    2011-01-01

    Background & objectives: Catheter associated urinary tract infections are the second most common nosocomial infections and Pseudomonas aeruginosa is the third most common organism responsible for these infections. In this study P. aeruginosa isolates from catheterized urinary tract infection patients were screened and profiled for the presence of different type of quorum sensing (QS) signal molecules. Methods: Screening and quantitation of AHLs was done by using cross feeding assay and by determining β-galactosidase activity respectively using Escherichia coli MG4 as reporter strain. Further, AHL profiles were determined by separating AHLs on TLC coupled with their detection using Chromobacterium violaceum CV026 and Agrobacterium tumifaciens A136 biosensor strains. Results: All uroisolates from catheterized patients having urinary tract infections were found to be producers of QS signal molecules. There were differences in amounts and type of AHL produced amongst uroisolates of P. aeruginosa. Several AHLs belonging to C4-HSL, C6-HSL, oxo-C6-HSL, C8-HSL, C10-HSL and C12-HSL were determined in these strains. Interpretation & conclusions: Simultaneous use of more than one reporter strain and assay method proved useful in determining the AHLs profile in uroisolates of P. aeruginosa. Observed differences in the amounts and types of AHLs may reflect differences in virulence potential of P. aeruginosa to cause UTIs which can be further confirmed by employing animal model system. The present study speculates that production of QS signal molecules may act as a new virulence marker of P. aeruginosa responsible for causing catheter associated UTIs and can be considered as futuristic potential drug targets towards treatment of UTIs. PMID:21911974

  3. Screening & profiling of quorum sensing signal molecules in Pseudomonas aeruginosa isolates from catheterized urinary tract infection patients.

    PubMed

    Kumar, Ravi; Chhibber, Sanjay; Gupta, Varsha; Harjai, Kusum

    2011-08-01

    Catheter associated urinary tract infections are the second most common nosocomial infections and Pseudomonas aeruginosa is the third most common organism responsible for these infections. In this study P. aeruginosa isolates from catheterized urinary tract infection patients were screened and profiled for the presence of different type of quorum sensing (QS) signal molecules. Screening and quantitation of AHLs was done by using cross feeding assay and by determining β-galactosidase activity respectively using Escherichia coli MG4 as reporter strain. Further, AHL profiles were determined by separating AHLs on TLC coupled with their detection using Chromobacterium violaceum CV026 and Agrobacterium tumifaciens A136 biosensor strains. All uroisolates from catheterized patients having urinary tract infections were found to be producers of QS signal molecules. There were differences in amounts and type of AHL produced amongst uroisolates of P. aeruginosa. Several AHLs belonging to C4-HSL, C6-HSL, oxo-C6-HSL, C8-HSL, C10-HSL and C12-HSL were determined in these strains. Simultaneous use of more than one reporter strain and assay method proved useful in determining the AHLs profile in uroisolates of P. aeruginosa. Observed differences in the amounts and types of AHLs may reflect differences in virulence potential of P. aeruginosa to cause UTIs which can be further confirmed by employing animal model system. The present study speculates that production of QS signal molecules may act as a new virulence marker of P. aeruginosa responsible for causing catheter associated UTIs and can be considered as futuristic potential drug targets towards treatment of UTIs.

  4. Quorum sensing inhibitors: how strong is the evidence?

    PubMed

    Defoirdt, Tom; Brackman, Gilles; Coenye, Tom

    2013-12-01

    Because of its promising effect as an alternative to antibiotics, quorum sensing disruption is an intensively studied field, and there are many studies that describe the quorum sensing inhibitory activity of natural and synthetic compounds. In this opinion article, we present an overview of recent literature with respect to quorum sensing inhibitors. Most of this research is based on experiments with quorum sensing signal molecule reporter strains. However, these experiments are prone to bias due to other effects compounds may have on reporter strains. We argue that researchers should perform adequate control experiments and should carefully assess toxicity of the compounds in the bacterial species they are working with in order to confirm that what they observe really is quorum sensing inhibition.

  5. Turing Patterning Using Gene Circuits with Gas-Induced Degradation of Quorum Sensing Molecules

    PubMed Central

    Hasty, Jeff; Tsimring, Lev

    2016-01-01

    The Turing instability was proposed more than six decades ago as a mechanism leading to spatial patterning, but it has yet to be exploited in a synthetic biology setting. Here we characterize the Turing instability in a specific gene circuit that can be implemented in vitro or in populations of clonal cells producing short-range activator N-Acyl homoserine lactone (AHL) and long-range inhibitor hydrogen peroxide (H2O2) gas. Slowing the production rate of the AHL-degrading enzyme, AiiA, generates stable fixed states, limit cycle oscillations and Turing patterns. Further tuning of signaling parameters determines local robustness and controls the range of unstable wavenumbers in the patterning regime. These findings provide a roadmap for optimizing spatial patterns of gene expression based on familiar quorum and gas sensitive E. coli promoters. The circuit design and predictions may be useful for (re)programming spatial dynamics in synthetic and natural gene expression systems. PMID:27148743

  6. Quorum sensing: implications on rhamnolipid biosurfactant production.

    PubMed

    Dusane, Devendra H; Zinjarde, Smita S; Venugopalan, Vayalam P; McLean, Robert J C; Weber, Mary M; Rahman, Pattanathu K S M

    2010-01-01

    Quorum sensing (QS) has received significant attention in the past few decades. QS describes population density dependent cell to cell communication in bacteria using diffusible signal molecules. These signal molecules produced by bacterial cells, regulate various physiological processes important for social behavior and pathogenesis. One such process regulated by quorum sensing molecules is the production of a biosurfactant, rhamnolipid. Rhamnolipids are important microbially derived surface active agents produced by Pseudomonas spp. under the control of two interrelated quorum sensing systems; namely las and rhl. Rhamnolipids possess antibacterial, antifungal and antiviral properties. They are important in motility, cell to cell interactions, cellular differentiation and formation of water channels that are characteristics of Pseudomonas biofilms. Rhamnolipids have biotechnological applications in the uptake of hydrophobic substrates, bioremediation of contaminated soils and polluted waters. Rhamnolipid biosurfactants are biodegradable as compared to chemical surfactants and hence are more preferred in environmental applications. In this review, we examine the biochemical and genetic mechanism of rhamnolipid production by P. aeruginosa and propose the application of QS signal molecules in enhancing the rhamnolipid production.

  7. Role of Pseudomonas aeruginosa quorum sensing (QS) molecules on the viability and cytokine profile of human mesenchymal stem cells.

    PubMed

    Holban, Alina-Maria; Bleotu, Coralia; Chifiriuc, Mariana Carmen; Bezirtzoglou, Eugenia; Lazar, Veronica

    2014-02-15

    Pseudomonas aeruginosa infections represent one of the major threats for injured or transplanted lungs and for their healing. Considering that the mesenchymal stem cells (MSCs) are a major tool for the regenerative medicine, including therapy of lung damaging diseases, the aim of this paper was to investigate the effects of P. aeruginosa quorum sensing signaling molecules (QSSMs) on human MSCs death signaling pathways and cytokine profile. Our data revealed that N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL), N-butanoyl-L-homoserine lactone (C4-HSL), 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), and its precursor, 2-heptyl-4-quinolone (HHQ), significantly impact on several core signaling mechanisms of MSCs in a specific and time-dependent manner. Even if all tested autoinducers interfered with the MSCs apoptotic genes expression, only OdDHL and HHQ significantly promoted MSCs apoptosis, by 14- and 23-fold respectively, this aspect being confirmed by the flow cytometry assay. The tested QSSMs induced a heterogeneous cytokine profile of the treated MSCs. The level of IL-1β was increased by OdDHL, IL-8 production was stimulated by all tested autoinducers, IL-6 was modulated mostly by PQS and IL-10 by HHQ. The significant influence of the purified bacterial autoinducers on the MSCs signaling pathways may suggest that the accumulation of these mediators could interfere with the normal function of these cells in the human body, and eventually, impair or abolish the success of the stem cells therapy during P. aeruginosa infections.

  8. Role of Pseudomonas aeruginosa quorum sensing (QS) molecules on the viability and cytokine profile of human mesenchymal stem cells

    PubMed Central

    Holban, Alina-Maria; Bleotu, Coralia; Chifiriuc, Mariana Carmen; Bezirtzoglou, Eugenia; Lazar, Veronica

    2014-01-01

    Pseudomonas aeruginosa infections represent one of the major threats for injured or transplanted lungs and for their healing. Considering that the mesenchymal stem cells (MSCs) are a major tool for the regenerative medicine, including therapy of lung damaging diseases, the aim of this paper was to investigate the effects of P. aeruginosa quorum sensing signaling molecules (QSSMs) on human MSCs death signaling pathways and cytokine profile. Our data revealed that N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL), N-butanoyl-L-homoserine lactone (C4-HSL), 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), and its precursor, 2-heptyl-4-quinolone (HHQ), significantly impact on several core signaling mechanisms of MSCs in a specific and time-dependent manner. Even if all tested autoinducers interfered with the MSCs apoptotic genes expression, only OdDHL and HHQ significantly promoted MSCs apoptosis, by 14- and 23-fold respectively, this aspect being confirmed by the flow cytometry assay. The tested QSSMs induced a heterogeneous cytokine profile of the treated MSCs. The level of IL-1β was increased by OdDHL, IL-8 production was stimulated by all tested autoinducers, IL-6 was modulated mostly by PQS and IL-10 by HHQ. The significant influence of the purified bacterial autoinducers on the MSCs signaling pathways may suggest that the accumulation of these mediators could interfere with the normal function of these cells in the human body, and eventually, impair or abolish the success of the stem cells therapy during P. aeruginosa infections. PMID:24398422

  9. Interfering with Bacterial Quorum Sensing

    PubMed Central

    Reuter, Kerstin; Steinbach, Anke; Helms, Volkhard

    2016-01-01

    Quorum sensing (QS) describes the exchange of chemical signals in bacterial populations to adjust the bacterial phenotypes according to the density of bacterial cells. This serves to express phenotypes that are advantageous for the group and ensure bacterial survival. To do so, bacterial cells synthesize autoinducer (AI) molecules, release them to the environment, and take them up. Thereby, the AI concentration reflects the cell density. When the AI concentration exceeds a critical threshold in the cells, the AI may activate the expression of virulence-associated genes or of luminescent proteins. It has been argued that targeting the QS system puts less selective pressure on these pathogens and should avoid the development of resistant bacteria. Therefore, the molecular components of QS systems have been suggested as promising targets for developing new anti-infective compounds. Here, we review the QS systems of selected gram-negative and gram-positive bacteria, namely, Vibrio fischeri, Pseudomonas aeruginosa, and Staphylococcus aureus, and discuss various antivirulence strategies based on blocking different components of the QS machinery. PMID:26819549

  10. De Novo Assembly of the Quorum-Sensing Pandoraea sp. Strain RB-44 Complete Genome Sequence Using PacBio Single-Molecule Real-Time Sequencing Technology.

    PubMed

    Ee, Robson; Lim, Yan-Lue; Yin, Wai-Fong; Chan, Kok-Gan

    2014-04-03

    We report the first complete genome sequence of Pandoraea sp. strain RB-44, which was found to possess quorum-sensing properties. To the best of our knowledge, this is the first documentation of both a complete genome sequence and quorum-sensing properties of a Pandoraea species.

  11. Social Evolution Selects for Redundancy in Bacterial Quorum Sensing.

    PubMed

    Even-Tov, Eran; Bendori, Shira Omer; Valastyan, Julie; Ke, Xiaobo; Pollak, Shaul; Bareia, Tasneem; Ben-Zion, Ishay; Bassler, Bonnie L; Eldar, Avigdor

    2016-02-01

    Quorum sensing is a process of chemical communication that bacteria use to monitor cell density and coordinate cooperative behaviors. Quorum sensing relies on extracellular signal molecules and cognate receptor pairs. While a single quorum-sensing system is sufficient to probe cell density, bacteria frequently use multiple quorum-sensing systems to regulate the same cooperative behaviors. The potential benefits of these redundant network structures are not clear. Here, we combine modeling and experimental analyses of the Bacillus subtilis and Vibrio harveyi quorum-sensing networks to show that accumulation of multiple quorum-sensing systems may be driven by a facultative cheating mechanism. We demonstrate that a strain that has acquired an additional quorum-sensing system can exploit its ancestor that possesses one fewer system, but nonetheless, resume full cooperation with its kin when it is fixed in the population. We identify the molecular network design criteria required for this advantage. Our results suggest that increased complexity in bacterial social signaling circuits can evolve without providing an adaptive advantage in a clonal population.

  12. Social Evolution Selects for Redundancy in Bacterial Quorum Sensing

    PubMed Central

    Valastyan, Julie; Ke, Xiaobo; Pollak, Shaul; Bareia, Tasneem; Ben-Zion, Ishay; Bassler, Bonnie L.; Eldar, Avigdor

    2016-01-01

    Quorum sensing is a process of chemical communication that bacteria use to monitor cell density and coordinate cooperative behaviors. Quorum sensing relies on extracellular signal molecules and cognate receptor pairs. While a single quorum-sensing system is sufficient to probe cell density, bacteria frequently use multiple quorum-sensing systems to regulate the same cooperative behaviors. The potential benefits of these redundant network structures are not clear. Here, we combine modeling and experimental analyses of the Bacillus subtilis and Vibrio harveyi quorum-sensing networks to show that accumulation of multiple quorum-sensing systems may be driven by a facultative cheating mechanism. We demonstrate that a strain that has acquired an additional quorum-sensing system can exploit its ancestor that possesses one fewer system, but nonetheless, resume full cooperation with its kin when it is fixed in the population. We identify the molecular network design criteria required for this advantage. Our results suggest that increased complexity in bacterial social signaling circuits can evolve without providing an adaptive advantage in a clonal population. PMID:26927849

  13. Antisense RNA that Affects Rhodopseudomonas palustris Quorum-Sensing Signal Receptor Expression

    DTIC Science & Technology

    2012-01-01

    these molecules . Because asrpaR expression is quorum sensing dependent, we sought to characterize its production and function. We show that asrpaR is...but little is known about the function of these molecules . Because asrpaR expression is quorum sensing dependent, we sought to character- ize its...detection of N-acylhomoserine lactone-type quorum - sensing molecules : Detection of autoinducers in Mesorhizobium huakuii. Appl Environ Microbiol 69: 6949

  14. Global convergence of quorum-sensing networks

    NASA Astrophysics Data System (ADS)

    Russo, Giovanni; Slotine, Jean Jacques E.

    2010-10-01

    In many natural synchronization phenomena, communication between individual elements occurs not directly but rather through the environment. One of these instances is bacterial quorum sensing, where bacteria release signaling molecules in the environment which in turn are sensed and used for population coordination. Extending this motivation to a general nonlinear dynamical system context, this paper analyzes synchronization phenomena in networks where communication and coupling between nodes are mediated by shared dynamical quantities, typically provided by the nodes’ environment. Our model includes the case when the dynamics of the shared variables themselves cannot be neglected or indeed play a central part. Applications to examples from system biology illustrate the approach.

  15. [Research advance in the function of quorum sensing in the biological aggregates].

    PubMed

    Dai, Xin; Zhou, Jia-Heng; Zhu, Liang; Xu, Xiang-Yang

    2014-04-01

    Quorum sensing is a microbial phenomenon that microorganisms use signal molecules to perceive environmental conditions and regulate specific gene expressions. As the communication function of quorum sensing is increasingly highlighted in the microbial field, researches on quorum sensing in the formation process of biological aggregates (biofilm and granules) attract wide attentions. The paper reviewed autoinducers (AI) classification and the corresponding regulation methods in quorum sensing, and provided an up-to-date account on research progress of AIs regulating biological aggregates formation and structural stability. New territories and future of quorum sensing were also outlined.

  16. Social cheating in Pseudomonas aeruginosa quorum sensing.

    PubMed

    Sandoz, Kelsi M; Mitzimberg, Shelby M; Schuster, Martin

    2007-10-02

    In a process termed quorum sensing, bacteria use diffusible chemical signals to coordinate cell density-dependent gene expression. In the human pathogen Pseudomonas aeruginosa, quorum sensing controls hundreds of genes, many of which encode extracellular virulence factors. Quorum sensing is required for P. aeruginosa virulence in animal models. Curiously, quorum sensing-deficient variants, most of which carry a mutation in the gene encoding the central quorum sensing regulator lasR, are frequently isolated from acute and chronic infections. The mechanism for their emergence is not known. Here we provide experimental evidence suggesting that these lasR mutants are social cheaters that cease production of quorum-controlled factors and take advantage of their production by the group. We detected an emerging subpopulation of lasR mutants after approximately 100 generations of in vitro evolution of the P. aeruginosa wild-type strain under culture conditions that require quorum sensing for growth. Under such conditions, quorum sensing appears to impose a metabolic burden on the proliferating bacterial cell, because quorum-controlled genes not normally induced until cessation of growth were highly expressed early in growth, and a defined lasR mutant showed a growth advantage when cocultured with the parent strain. The emergence of quorum-sensing-deficient variants in certain environments is therefore an indicator of high quorum sensing activity of the bacterial population as a whole. It does not necessarily indicate that quorum sensing is insignificant, as has previously been suggested. Thus, novel antivirulence strategies aimed at disrupting bacterial communication may be particularly effective in such clinical settings.

  17. Induction of Plasmid-Carried qnrS1 in Escherichia coli by Naturally Occurring Quinolones and Quorum-Sensing Signal Molecules

    PubMed Central

    Kwak, Yee Gyung; Jacoby, George A.

    2013-01-01

    Naturally occurring quinolone and quinolone-like compounds, such as quinine, 2-hydroxyquinoline, 4-hydroxyquinoline, and 2-heptyl-3-hydroxy-4(1H)-quinolone, increased expression of qnrS1 in Escherichia coli 2.3- to 11.2-fold, similar to the synthetic quinolone ciprofloxacin. In contrast, chromosomal qnrVS1 of Vibrio splendidus was not induced by these compounds. Molecules associated with quorum sensing, such as N-3-hydroxybutyryl-homoserine lactone (HSL), N-hexanoyl-HSL, and N-3-(oxododecanoyl)-HSL, did not show an induction effect on either qnrS1 or qnrVS1 at the tested concentrations. PMID:23689721

  18. Induction of plasmid-carried qnrS1 in Escherichia coli by naturally occurring quinolones and quorum-sensing signal molecules.

    PubMed

    Kwak, Yee Gyung; Jacoby, George A; Hooper, David C

    2013-08-01

    Naturally occurring quinolone and quinolone-like compounds, such as quinine, 2-hydroxyquinoline, 4-hydroxyquinoline, and 2-heptyl-3-hydroxy-4(1H)-quinolone, increased expression of qnrS1 in Escherichia coli 2.3- to 11.2-fold, similar to the synthetic quinolone ciprofloxacin. In contrast, chromosomal qnrVS1 of Vibrio splendidus was not induced by these compounds. Molecules associated with quorum sensing, such as N-3-hydroxybutyryl-homoserine lactone (HSL), N-hexanoyl-HSL, and N-3-(oxododecanoyl)-HSL, did not show an induction effect on either qnrS1 or qnrVS1 at the tested concentrations.

  19. Exploiting Quorum Sensing To Confuse Bacterial Pathogens

    PubMed Central

    LaSarre, Breah

    2013-01-01

    SUMMARY Cell-cell communication, or quorum sensing, is a widespread phenomenon in bacteria that is used to coordinate gene expression among local populations. Its use by bacterial pathogens to regulate genes that promote invasion, defense, and spread has been particularly well documented. With the ongoing emergence of antibiotic-resistant pathogens, there is a current need for development of alternative therapeutic strategies. An antivirulence approach by which quorum sensing is impeded has caught on as a viable means to manipulate bacterial processes, especially pathogenic traits that are harmful to human and animal health and agricultural productivity. The identification and development of chemical compounds and enzymes that facilitate quorum-sensing inhibition (QSI) by targeting signaling molecules, signal biogenesis, or signal detection are reviewed here. Overall, the evidence suggests that QSI therapy may be efficacious against some, but not necessarily all, bacterial pathogens, and several failures and ongoing concerns that may steer future studies in productive directions are discussed. Nevertheless, various QSI successes have rightfully perpetuated excitement surrounding new potential therapies, and this review highlights promising QSI leads in disrupting pathogenesis in both plants and animals. PMID:23471618

  20. Pseudomonas aeruginosa quorum-sensing molecule homoserine lactone modulates inflammatory signaling through PERK and eI-F2α.

    PubMed

    Grabiner, Mark A; Fu, Zhu; Wu, Tara; Barry, Kevin C; Schwarzer, Christian; Machen, Terry E

    2014-08-01

    Pseudomonas aeruginosa secrete N-(3-oxododecanoyl)-homoserine lactone (HSL-C12) as a quorum-sensing molecule to regulate bacterial gene expression. Because HSL-C12 is membrane permeant, multiple cell types in P. aeruginosa-infected airways may be exposed to HSL-C12, especially adjacent to biofilms where local (HSL-C12) may be high. Previous reports showed that HSL-C12 causes both pro- and anti-inflammatory effects. To characterize HSL-C12's pro- and anti-inflammatory effects in host cells, we measured protein synthesis, NF-κB activation, and KC (mouse IL-8) and IL-6 mRNA and protein secretion in wild-type mouse embryonic fibroblasts (MEF). To test the role of the endoplasmic reticulum stress inducer, PERK we compared these responses in PERK(-/-) and PERK-corrected PERK(-/-) MEF. During 4-h treatments of wild-type MEF, HSL-C12 potentially activated NF-κB p65 by preventing the resynthesis of IκB and increased transcription of KC and IL-6 genes (quantitative PCR). HSL-C12 also inhibited secretion of KC and/or IL-6 into the media (ELISA) both in control conditions and also during stimulation by TNF-α. HSL-C12 also activated PERK (as shown by increased phosphorylation of eI-F2α) and inhibited protein synthesis (as measured by incorporation of [(35)S]methionine by MEF). Comparisons of PERK(-/-) and PERK-corrected MEF showed that HSL-C12's effects were explained in part by activation of PERK→phosphorylation of eI-F2α→inhibition of protein synthesis→reduced IκBα production→activation of NF-κB→increased transcription of the KC gene but reduced translation and secretion of KC. HSL-C12 may be an important modulator of early (up to 4 h) inflammatory signaling in P. aeruginosa infections.

  1. P. aeruginosa quorum-sensing systems and virulence.

    PubMed

    Smith, Roger S; Iglewski, Barbara H

    2003-02-01

    Quorum sensing is an important mechanism for the regulation of genes in many Gram-negative and Gram-positive bacteria. In the opportunistic pathogen Pseudomonas aeruginosa, the absence of one or more components of the quorum-sensing system results in a significant reduction in virulence. Recent advances in the past year have demonstrated that the quorum-sensing signal molecule 3O-C(12)-HSL is also a potent stimulator of multiple eukaryotic cells and thus may alter the host response during P. aeruginosa infections. Therefore, via the regulation of multiple factors and the production of 3O-C(12)-HSL, quorum-sensing systems have a significant effect on the virulence of the bacteria and also on how the host responds to P. aeruginosa infections.

  2. A Mathematical Model of Quorum Sensing Induced Biofilm Detachment.

    PubMed

    Emerenini, Blessing O; Hense, Burkhard A; Kuttler, Christina; Eberl, Hermann J

    2015-01-01

    Cell dispersal (or detachment) is part of the developmental cycle of microbial biofilms. It can be externally or internally induced, and manifests itself in discrete sloughing events, whereby many cells disperse in an instance, or in continuous slower dispersal of single cells. One suggested trigger of cell dispersal is quorum sensing, a cell-cell communication mechanism used to coordinate gene expression and behavior in groups based on population densities. To better understand the interplay of colony growth and cell dispersal, we develop a dynamic, spatially extended mathematical model that includes biofilm growth, production of quorum sensing molecules, cell dispersal triggered by quorum sensing molecules, and re-attachment of cells. This is a highly nonlinear system of diffusion-reaction equations that we study in computer simulations. Our results show that quorum sensing induced cell dispersal can be an efficient mechanism for bacteria to control the size of a biofilm colony, and at the same time enhance its downstream colonization potential. In fact we find that over the lifetime of a biofilm colony the majority of cells produced are lost into the aqueous phase, supporting the notion of biofilms as cell nurseries. We find that a single quorum sensing based mechanism can explain both, discrete dispersal events and continuous shedding of cells from a colony. Moreover, quorum sensing induced cell dispersal affects the structure and architecture of the biofilm, for example it might lead to the formation of hollow inner regions in a biofilm colony.

  3. A Mathematical Model of Quorum Sensing Induced Biofilm Detachment

    PubMed Central

    Emerenini, Blessing O.; Hense, Burkhard A.; Kuttler, Christina; Eberl, Hermann J.

    2015-01-01

    Background Cell dispersal (or detachment) is part of the developmental cycle of microbial biofilms. It can be externally or internally induced, and manifests itself in discrete sloughing events, whereby many cells disperse in an instance, or in continuous slower dispersal of single cells. One suggested trigger of cell dispersal is quorum sensing, a cell-cell communication mechanism used to coordinate gene expression and behavior in groups based on population densities. Method To better understand the interplay of colony growth and cell dispersal, we develop a dynamic, spatially extended mathematical model that includes biofilm growth, production of quorum sensing molecules, cell dispersal triggered by quorum sensing molecules, and re-attachment of cells. This is a highly nonlinear system of diffusion-reaction equations that we study in computer simulations. Results Our results show that quorum sensing induced cell dispersal can be an efficient mechanism for bacteria to control the size of a biofilm colony, and at the same time enhance its downstream colonization potential. In fact we find that over the lifetime of a biofilm colony the majority of cells produced are lost into the aqueous phase, supporting the notion of biofilms as cell nurseries. We find that a single quorum sensing based mechanism can explain both, discrete dispersal events and continuous shedding of cells from a colony. Moreover, quorum sensing induced cell dispersal affects the structure and architecture of the biofilm, for example it might lead to the formation of hollow inner regions in a biofilm colony. PMID:26197231

  4. Quorum-sensing in yeast and its potential in wine making.

    PubMed

    Avbelj, Martina; Zupan, Jure; Raspor, Peter

    2016-09-01

    This mini-review synthesises the present knowledge of microbial quorum-sensing, with a specific focus on quorum-sensing in yeast, and especially in wine yeast. In vine and wine ecosystems, yeast co-interact with a large variety of microorganisms, thereby affecting the fermentation process and, consequently, the flavour of the wine. The precise connections between microbial interactions and quorum-sensing remain unclear, but we describe here how and when some species start to produce quorum-sensing molecules to synchronously adapt their collective behaviour to new conditions. In Saccharomyces cerevisiae, the quorum-sensing molecules were identified as 2-phenylethanol and tryptophol. However, it was recently shown that also a quorum-sensing molecule formerly identified only in Candida albicans, tyrosol, appears to be regulated in S. cerevisiae according to cell density. This review describes the methods for detection and quantification of those quorum-sensing molecules, their underlying mechanisms of action, and their genetic background. It also examines the external stimuli that evoke the quorum-sensing mechanism in the wine-processing environment. The review closes with insight into the biotechnological applications that are already making use of the advantages of quorum-sensing systems and indicates the important questions that still need to be addressed in future research into quorum-sensing.

  5. The bacterial quorum-sensing molecule, N-3-oxo-dodecanoyl-L-homoserine lactone, inhibits mediator release and chemotaxis of murine mast cells.

    PubMed

    Khambati, Ibrahim; Han, Sangsu; Pijnenburg, Daniëlle; Jang, Hannah; Forsythe, Paul

    2017-03-01

    Bacterial colonization relies on communication between bacteria via so-called "quorum-sensing molecules", which include the acyl-homoserine lactone group. Certain acyl-homoserine lactones can modulate mammalian cell function and are thought to contribute to bacterial pathogenicity. Given the role of mast cells in host defense, we investigated the ability of acyl-homoserine lactones to modulate mast cell function. We utilized murine primary mast cell cultures to assess the effect of acyl-homoserine lactones on degranulation and cytokine release in response to different stimuli. We also assessed cell migration in response to chemoattractants. The effect of acyl-homoserine lactones in vivo was tested using a passive cutaneous anaphylaxis model. Two of the tested quorum-sensing molecules, N-3-oxo-dodecanoyl-L-homoserine lactone and N-Dodecanoyl-L-homoserine lactone, inhibited IgE dependent and independent degranulation and mediator release from primary mast cells. Further testing of N-3-oxo-dodecanoyl-L-homoserine lactone, the most potent inhibitor and a product of Pseudomonas aeruginosa, revealed that it also attenuated chemotaxis and LPS induced cytokine production. In vivo, N-3-oxo-dodecanoyl-L-homoserine lactone inhibited the passive cutaneous anaphylaxis response in mice. The ability of N-3-oxo-dodecanoyl-L-homoserine lactone to stabilize mast cells may contribute to the pathogenicity of P. aeruginosa but could potentially be exploited therapeutically in allergic disease.

  6. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa.

    PubMed

    Kumar, Lokender; Chhibber, Sanjay; Kumar, Rajnish; Kumar, Manoj; Harjai, Kusum

    2015-04-01

    Quorum sensing in Pseudomonas aeruginosa plays an imperative role in virulence factor, biofilm formation and antimicrobial resistance. Blocking quorum sensing pathways are viewed as viable anti-virulent therapy in association with traditional antimicrobial therapy. Anti-quorum sensing dietary phytochemicals with may prove to be a safe and viable choice as anti-virulent drug candidates. Previously, our lab proved zingerone as potent anti-biofilm agent hence; further its anti-virulent and anti-quorum activities were evaluated. Zingerone, besides decreasing swimming, swarming and twitching phenotypes of P. aeruginosa PAO1, reduced biofilm forming capacity and production of virulence factors including rhamnolipid, elastase, protease, pyocyanin, cell free and cell bound hemolysin (p<0.001) indicating anti-virulent property attributing towards attenuation of virulence of P. aeruginosa. Further zingerone not only had marked effect on the production of quorum sensing signal molecules by clinical isolates of P. aeruginosa but also showed significant interference with the activation of QS reporter strains. To study the mechanism of blocking quorum sensing cascade, in silico analysis was carried out. Anti-QS activity was attributed to interference with the ligand receptor interaction of zingerone with QS receptors (TraR, LasR, RhlR and PqsR). Zingerone showed a good comparative docking score to respective autoinducer molecules which was even higher than that of vanillin, a proven anti-quorum sensing phytochemical. The results of the present study revealed the anti-quorum sensing activity of zingerone targeting ligand-receptor interaction, hence proposing zingerone as a suitable anti-virulent drug candidate against P. aeruginosa infections.

  7. Quorum Sensing in Extreme Environments

    PubMed Central

    Montgomery, Kate; Charlesworth, James C.; LeBard, Rebecca; Visscher, Pieter T.; Burns, Brendan P.

    2013-01-01

    Microbial communication, particularly that of quorum sensing, plays an important role in regulating gene expression in a range of organisms. Although this phenomenon has been well studied in relation to, for example, virulence gene regulation, the focus of this article is to review our understanding of the role of microbial communication in extreme environments. Cell signaling regulates many important microbial processes and may play a pivotal role in driving microbial functional diversity and ultimately ecosystem function in extreme environments. Several recent studies have characterized cell signaling in modern analogs to early Earth communities (microbial mats), and characterization of cell signaling systems in these communities may provide unique insights in understanding the microbial interactions involved in function and survival in extreme environments. Cell signaling is a fundamental process that may have co-evolved with communities and environmental conditions on the early Earth. Without cell signaling, evolutionary pressures may have even resulted in the extinction rather than evolution of certain microbial groups. One of the biggest challenges in extremophile biology is understanding how and why some microbial functional groups are located where logically they would not be expected to survive, and tightly regulated communication may be key. Finally, quorum sensing has been recently identified for the first time in archaea, and thus communication at multiple levels (potentially even inter-domain) may be fundamental in extreme environments. PMID:25371335

  8. Immunosuppressive but non-LasR-inducing analogues of the Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone.

    PubMed

    Jadhav, Gopal P; Chhabra, Siri Ram; Telford, Gary; Hooi, Doreen S W; Righetti, Karima; Williams, Paul; Kellam, Barrie; Pritchard, David I; Fischer, Peter M

    2011-05-12

    The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone (1) is involved not only in bacterial activation but also in subversion of the host immune system, and this compound might thus be used as a template to design immunosuppressive agents, provided derivatives devoid of quorum-sensing activity could be discovered. By use of a leukocyte proliferation assay and a newly developed bioluminescent P. aeruginosa reporter assay, systematic modification of 1 allowed us to delineate the bacterial LasR-induction and host immunosuppressive activities. The main determinant is replacement of the methylene group proximal to the β-ketoamide in the acyl chain of 1 with functions containing heteroatoms, especially an NH group. This modification can be combined with replacement of the homoserine lactone system in 1 with stable cyclic groups. For example, we found the simple compound N(1)-(5-chloro-2-hydroxyphenyl)-N(3)-octylmalonamide (25d) to be over twice as potent as 1 as an immune suppressor while displaying LasR-induction antagonist activity.

  9. Effect of low Reynolds number flow on the quorum sensing behavior of sessile bacteria

    NASA Astrophysics Data System (ADS)

    Ingremeau, Francois; Minyoung, Kevin Kim; Bassler, Bonnie; Stone, Howard; Mechanical; Aerospace Engineering, Complex fluids Group Team; Molecular Biology Lab Team

    2014-11-01

    Sessile and planktonic bacteria can be sensitive to the bacteria cell density around them through a chemical mediated communication called quorum sensing. When the quorum sensing molecules reach a certain value, the metabolism of the bacteria changes. Quorum sensing is usually studied in static conditions or in well mixed environments. However, bacteria biofilms can form in porous media or in the circulatory system of an infected body: quorum sensing in such flowing environment at low Reynolds number is not well studied. Using microfluidic devices, we observe how the flow of a pure media affects quorum sensing of bacteria attached to the wall. The biofilm formation is quantified by measuring the optical density in brightfield microscopy and the quorum sensing gene expression is observed through the fluorescence of a green fluorescent protein, which is a reporter for one of the quorum sensing genes. We measured without flow the amount of Staphylococcus aureus biofilm when the quorum sensing gene expression starts. In contrast, when the media is flowing in the microchannel, the quorum sensing expression is delayed. This effect can be understood and modelled by considering the diffusion of the quorum sensing molecules in the biofilm and their convection by the flowing media.

  10. Quorum sensing and the confusion about diffusion.

    PubMed

    West, Stuart A; Winzer, Klaus; Gardner, Andy; Diggle, Stephen P

    2012-12-01

    Two hypotheses, termed quorum sensing (QS) and diffusion sensing (DS), have been suggested as competing explanations for why bacterial cells use the local concentration of small molecules to regulate numerous extracellular behaviours. Here, we show that: (i) although there are important differences between QS and DS, they are not diametrically opposed; (ii) empirical attempts to distinguish between QS and DS are misguided and will lead to confusion; (iii) the fundamental distinction is not between QS and DS, but whether or not the trait being examined is social; (iv) empirical data are consistent with both social interactions and a role of diffusion; (v) alternate hypotheses, such as efficiency sensing (ES), are not required to unite QS and DS. More generally, work in this area illustrates how the use of jargon can obscure the underlying concepts and key questions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Microbial quorum sensing: a tool or a target for antimicrobial therapy?

    PubMed

    Raina, Sheetal; De Vizio, Daniela; Odell, Mark; Clements, Mark; Vanhulle, Sophie; Keshavarz, Tajalli

    2009-07-14

    Inter-cell communication aided by released chemical signals when cell density reaches a critical concentration has been investigated for over 30 years as quorum sensing. Originally discovered in Gram-negative bacteria, quorum-sensing systems have also been studied extensively in Gram-positive bacteria and dimorphic fungi. Microbial communities communicating via quorum sensing employ various chemical signals to supervise their surrounding environment, alter genetic expression and gain advantage over their competitors. These signals vary from acylhomoserine lactones to small modified or unmodified peptides to complex gamma-butyrolactone molecules. The scope of this review is to give an insight into some of the quorum-sensing systems now known and to explore their role in microbial physiology and development of pathogenesis. Particular attention will be dedicated to the signalling molecules involved in quorum-sensing-mediated processes and the potential shown by some of their natural and synthetic analogues in the treatment of infections triggered by quorum sensing.

  12. Quorum Sensing Peptides Selectively Penetrate the Blood-Brain Barrier.

    PubMed

    Wynendaele, Evelien; Verbeke, Frederick; Stalmans, Sofie; Gevaert, Bert; Janssens, Yorick; Van De Wiele, Christophe; Peremans, Kathelijne; Burvenich, Christian; De Spiegeleer, Bart

    2015-01-01

    Bacteria communicate with each other by the use of signaling molecules, a process called 'quorum sensing'. One group of quorum sensing molecules includes the oligopeptides, which are mainly produced by Gram-positive bacteria. Recently, these quorum sensing peptides were found to biologically influence mammalian cells, promoting i.a. metastasis of cancer cells. Moreover, it was found that bacteria can influence different central nervous system related disorders as well, e.g. anxiety, depression and autism. Research currently focuses on the role of bacterial metabolites in this bacteria-brain interaction, with the role of the quorum sensing peptides not yet known. Here, three chemically diverse quorum sensing peptides were investigated for their brain influx (multiple time regression technique) and efflux properties in an in vivo mouse model (ICR-CD-1) to determine blood-brain transfer properties: PhrCACET1 demonstrated comparatively a very high initial influx into the mouse brain (Kin = 20.87 μl/(g×min)), while brain penetrabilities of BIP-2 and PhrANTH2 were found to be low (Kin = 2.68 μl/(g×min)) and very low (Kin = 0.18 μl/(g×min)), respectively. All three quorum sensing peptides were metabolically stable in plasma (in vitro) during the experimental time frame and no significant brain efflux was observed. Initial tissue distribution data showed remarkably high liver accumulation of BIP-2 as well. Our results thus support the potential role of some quorum sensing peptides in different neurological disorders, thereby enlarging our knowledge about the microbiome-brain axis.

  13. Quorum Sensing and Quorum Quenching in the Phycosphere of Phytoplankton: a Case of Chemical Interactions in Ecology.

    PubMed

    Rolland, Jean Luc; Stien, Didier; Sanchez-Ferandin, Sophie; Lami, Raphaël

    2016-12-01

    The interactions between bacteria and phytoplankton regulate many important biogeochemical reactions in the marine environment, including those in the global carbon, nitrogen, and sulfur cycles. At the microscopic level, it is now well established that important consortia of bacteria colonize the phycosphere, the immediate environment of phytoplankton cells. In this microscale environment, abundant bacterial cells are organized in a structured biofilm, and exchange information through the diffusion of small molecules called semiochemicals. Among these processes, quorum sensing plays a particular role as, when a sufficient abundance of cells is reached, it allows bacteria to coordinate their gene expression and physiology at the population level. In contrast, quorum quenching mechanisms are employed by many different types of microorganisms that limit the coordination of antagonistic bacteria. This review synthesizes quorum sensing and quorum quenching mechanisms evidenced to date in the phycosphere, emphasizing the implications that these signaling systems have for the regulation of bacterial communities and their activities. The diversity of chemical compounds involved in these processes is examined. We further review the bacterial functions regulated in the phycosphere by quorum sensing, which include biofilm formation, nutrient acquisition, and emission of algaecides. We also discuss quorum quenching compounds as antagonists of quorum sensing, their function in the phycosphere, and their potential biotechnological applications. Overall, the current state of the art demonstrates that quorum sensing and quorum quenching regulate a balance between a symbiotic and a parasitic way of life between bacteria and their phytoplankton host.

  14. Exposure of airway epithelial cells to Pseudomonas aeruginosa biofilm-derived quorum sensing molecules decrease the activity of the anti-oxidant response element bound by NRF2.

    PubMed

    Roussel, Lucie; Rousseau, Simon

    2017-02-05

    Chronic bacterial infections in cystic fibrosis lung disease are often characterized by Pseudomonas aeruginosa biofilms that are regulated by bacterial intercellular signals termed quorum sensing (QS), such as N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL). This study reports that biofilm-derived exoproducts decrease the transcriptional activity of the anti-oxidant response element in bronchial epithelial cells. In a live co-culture assay of BEAS-2B cells and P. aeruginosa biofilm, the QS molecule 3OC12-HSL was an important but not sole contributor to the inhibition of basal NRF2 luciferase reporter activity. Moreover, biofilm-derived exoproducts and 3OC12-HSL decrease the expression of endogenous antioxidant response element-regulated genes hemeoxygenase-1 (HO-1) and NAD(P)H Quinone Dehydrogenase-1 (NQO-1) while they increase IL-8 expression. As previously reported, IL-8 expression is partially dependent on p38 MAPK activity, but the inhibitory effect of biofilm QS molecules on HO-1 and NQO-1 expression occurs independently of this protein kinase. Finally, the transfection of CFTRdelF508 but not its wild type counterpart decreases basal, planktonic PsaDM and sulforaphane-driven NRF2 luciferase reporter activity in BEAS-2B cells. Therefore, the presence of quorum sensing molecules derived from bacterial biofilms lowers the transcriptional activity of the anti-oxidant response element, which may contribute to the establishment of chronic bacterial infections, especially in the presence of mutated CFTR. Increasing NRF2 activity may thus be a promising strategy to potentiate anti-biofilm activity in cystic fibrosis lung disease.

  15. Recent progresses on AI-2 bacterial quorum sensing inhibitors.

    PubMed

    Zhu, Peng; Li, Minyong

    2012-01-01

    Quorum sensing (QS) is a communication procedure that predominates gene expression in response to cell density and fluctuations in the neighboring environment as a result of discerning molecules termed autoinducers (AIs). It has been embroiled that QS can govern bacterial behaviors such as the secretion of virulence factors, biofilm formation, bioluminescence production, conjugation, sporulation and swarming motility. Autoinducer 2 (AI-2), a QS signaling molecule brought up to be involved in interspecies communication, exists in both gram-negative and -positive bacteria. Therefore, novel approaches to interrupt AI-2 quorum sensing are being recognized as next generation antimicrobials. In the present review article, we summarized recent progresses on AI-2 bacterial quorum sensing inhibitors and discussed their potential as the antibacterial agents.

  16. Quorum Sensing Peptides Selectively Penetrate the Blood-Brain Barrier

    PubMed Central

    Wynendaele, Evelien; Verbeke, Frederick; Stalmans, Sofie; Gevaert, Bert; Janssens, Yorick; Van De Wiele, Christophe; Peremans, Kathelijne; Burvenich, Christian; De Spiegeleer, Bart

    2015-01-01

    Bacteria communicate with each other by the use of signaling molecules, a process called ‘quorum sensing’. One group of quorum sensing molecules includes the oligopeptides, which are mainly produced by Gram-positive bacteria. Recently, these quorum sensing peptides were found to biologically influence mammalian cells, promoting i.a. metastasis of cancer cells. Moreover, it was found that bacteria can influence different central nervous system related disorders as well, e.g. anxiety, depression and autism. Research currently focuses on the role of bacterial metabolites in this bacteria-brain interaction, with the role of the quorum sensing peptides not yet known. Here, three chemically diverse quorum sensing peptides were investigated for their brain influx (multiple time regression technique) and efflux properties in an in vivo mouse model (ICR-CD-1) to determine blood-brain transfer properties: PhrCACET1 demonstrated comparatively a very high initial influx into the mouse brain (Kin = 20.87 μl/(g×min)), while brain penetrabilities of BIP-2 and PhrANTH2 were found to be low (Kin = 2.68 μl/(g×min)) and very low (Kin = 0.18 μl/(g×min)), respectively. All three quorum sensing peptides were metabolically stable in plasma (in vitro) during the experimental time frame and no significant brain efflux was observed. Initial tissue distribution data showed remarkably high liver accumulation of BIP-2 as well. Our results thus support the potential role of some quorum sensing peptides in different neurological disorders, thereby enlarging our knowledge about the microbiome-brain axis. PMID:26536593

  17. A genetic circuit system based on quorum sensing signaling for directed evolution of quorum-quenching enzymes.

    PubMed

    Kim, Jin-Hyun; Lee, Sang-Chul; Kyeong, Hyun-Ho; Kim, Hak-Sung

    2010-08-16

    Quorum sensing is a cell-cell communication mechanism that is involved in the regulation of biological functions such as luminescence, virulence, and biofilm formation. Quorum-quenching enzymes, which interrupt quorum-sensing signaling through degradation of quorum-sensing molecules, have emerged as a new approach to controlling and preventing bacterial virulence and pathogenesis. In an effort to develop quorum-quenching enzymes with improved catalytic activities, a genetic circuit system based on acylhomoserine-lactone (AHL)-mediated quorum-sensing signaling was constructed. The genetic circuit system was composed of lux-R, lux-I promoter, beta-lactamase, and beta-lactamase inhibitor, and designed to confer antibiotic resistance on host cells expressing an AHL-degrading enzyme, thereby enabling rapid screening of quorum-quenching enzymes. To demonstrate the utility of the genetic circuit system, we attempted the directed evolution of the AHL hydrolase from Bacillus sp. The genetic circuit system was shown to be effective in screening of quorum-quenching enzymes with high catalytic efficiency. From these results it is expected that the genetic circuit system can be widely used for the isolation and directed evolution of quorum-quenching enzymes with greater potential.

  18. Computational modeling of the quorum-sensing network in bacteria

    NASA Astrophysics Data System (ADS)

    Fenley, Andrew; Banik, Suman; Kulkarni, Rahul

    2007-03-01

    Certain species of bacteria are able produce and sense the concentration of small molecules called autodinducers in order to coordinate gene regulation in response to population density, a process known as ``quorum-sensing''. The resulting regulation of gene expression involves both transcriptional and post-transcriptional regulators. In particular, the species of bacteria in the Vibrio genus use small RNAs to regulate the master protein controlling the quorum-sensing response (luminescence, biofilm formation, virulence...). We model the network of interactions using a modular approach which provides a quantitative understanding of how signal transduction occurs. The parameters of the input-module are fit to current experimental results allowing for testable predictions to be made for future experiments. The results of our analysis offer a revised perspective on quorum-sensing based regulation.

  19. Caffeine as a Potential Quorum Sensing Inhibitor

    PubMed Central

    Norizan, Siti Nur Maisarah; Yin, Wai-Fong; Chan, Kok-Gan

    2013-01-01

    Quorum sensing enables bacteria to control the gene expression in response to the cell density. It regulates a variety of bacterial physiological functions such as biofilm formation, bioluminescence, virulence factors and swarming which has been shown contribute to bacterial pathogenesis. The use of quorum sensing inhibitor would be of particular interest in treating bacterial pathogenicity and infections. In this work, we have tested caffeine as quorum sensing inhibitor by using Chromobacterium violaceum CV026 as a biosensor. We verified that caffeine did not degrade the N-acyl homoserine lactones tested. In this work, it is shown that caffeine could inhibit N-acyl homoserine lactone production and swarming of a human opportunistic pathogen, namely Pseudomonas aeruginosa PA01. To the best of our knowledge, this is the first documentation providing evidence on the presence of anti-quorum sensing activity in caffeine. Our work will allow caffeine to be explored as anti-infective drugs. PMID:23598500

  20. Quorum sensing in Acinetobacter: an emerging pathogen.

    PubMed

    Bhargava, Nidhi; Sharma, Prince; Capalash, Neena

    2010-11-01

    Acinetobacter is emerging as one of the major nosocomial infectious pathogens, facilitated by tolerance to desiccation and multidrug resistance. Quorum sensing (autoinducer-receptor mechanism) plays role in biofilm formation in Acinetobacter, though its role in regulation of other virulence factors is yet to be established. Phylogenetic studies indicate that Acinetobacter baumannii is closely related to Burkholderia ambifaria but its quorum sensing genes (abaI and abaR) were acquired horizontally from Halothiobacillus neapolitanus. The prospects of quorum quenching to control the infections caused by Acinetobacter have also been discussed.

  1. How to desynchronize quorum-sensing networks

    NASA Astrophysics Data System (ADS)

    Russo, Giovanni

    2017-04-01

    In this paper we investigate how so-called quorum-sensing networks can be desynchronized. Such networks, which arise in many important application fields, such as systems biology, are characterized by the fact that direct communication between network nodes is superimposed to communication with a shared, environmental variable. In particular, we provide a new sufficient condition ensuring that the trajectories of these quorum-sensing networks diverge from their synchronous evolution. Then, we apply our result to study two applications.

  2. Applications of quorum sensing in biotechnology.

    PubMed

    Choudhary, Swati; Schmidt-Dannert, Claudia

    2010-05-01

    Many unicellular microorganisms use small signaling molecules to determine their local concentration. The processes involved in the production and recognition of these signals are collectively known as quorum sensing (QS). This form of cell-cell communication is used by unicellular microorganisms to co-ordinate their activities, which allows them to function as multi-cellular systems. Recently, several groups have demonstrated artificial intra-species and inter-species communication through synthetic circuits which incorporate components of bacterial QS systems. Engineered QS-based circuits have a wide range of applications such as production of biochemicals, tissue engineering, and mixed-species fermentations. They are also highly useful in designing microbial biosensors to identify bacterial species present in the environment and within living organisms. In this review, we first provide an overview of bacterial QS systems and the mechanisms developed by bacteria and higher organisms to obstruct QS communications. Next, we describe the different ways in which researchers have designed QS-based circuits and their applications in biotechnology. Finally, disruption of quorum sensing is discussed as a viable strategy for preventing the formation of harmful biofilms in membrane bioreactors and marine transportation.

  3. Noisy neighbourhoods: quorum sensing in fungal–polymicrobial infections

    PubMed Central

    Dixon, Emily F.

    2015-01-01

    Summary Quorum sensing was once considered a way in which a species was able to sense its cell density and regulate gene expression accordingly. However, it is now becoming apparent that multiple microbes can sense particular quorum‐sensing molecules, enabling them to sense and respond to other microbes in their neighbourhood. Such interactions are significant within the context of polymicrobial disease, in which the competition or cooperation of microbes can alter disease progression. Fungi comprise a small but important component of the human microbiome and are in constant contact with bacteria and viruses. The discovery of quorum‐sensing pathways in fungi has led to the characterization of a number of interkingdom quorum‐sensing interactions. Here, we review the recent developments in quorum sensing in medically important fungi, and the implications these interactions have on the host's innate immune response. PMID:26243526

  4. RND efflux pump and its interrelationship with quorum sensing system.

    PubMed

    Zhibin, Liang; Yumei, Chen; Yufan, Chen; Yingying, Cheng; Lianhui, Zhang

    2016-10-20

    Antibiotic resistance has become a serious concern in treatment of bacterial infections. Overexpression of efflux pump is one of the important mechanisms in antibiotic resistance. In Gram negative bacteria, RND (Resistance-nodulation-cell division) superfamily efflux pump plays a vital important role in antibiotics resistance. Recent research progress unveils an intriguing interrelationship between RND efflux pump and the bacterial quorum sensing system, whose regulation is dependent on small signal molecules. This article reviews the latest findings on the structure and transport mechanism of RND efflux pump, as well as the general features and regulatory mechanisms of quorum sensing, with a special focus on the role and mechanism of quorum sensing system in regulation of RND efflux pump, and the influence of efflux pump on quorum sensing signal transportation. Further investigation of the interrelationship between RND efflux pumps and the bacterial quorum sensing systems is critical for elucidation of the regulatory mechanisms that govern the expression of the RND efflux pumps genes, and may also provide useful clues to overcome the efflux pump mediated antibiotic resistance.

  5. Quorum Sensing Activity in Pandoraea pnomenusa RB38

    PubMed Central

    Ee, Robson; Lim, Yan-Lue; Kin, Lin-Xin; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Strain RB38 was recovered from a former dumping area in Malaysia. MALDI-TOF mass spectrometry and genomic analysis identified strain RB-38 as Pandoraea pnomenusa. Various biosensors confirmed its quorum sensing properties. High resolution triple quadrupole liquid chromatography–mass spectrometry analysis was subsequently used to characterize the N-acyl homoserine lactone production profile of P. pnomenusa strain RB38, which validated that this isolate produced N-octanoyl homoserine lactone as a quorum sensing molecule. This is the first report of the production of N-octanoyl homoserine lactone by P. pnomenusa strain RB38. PMID:24919016

  6. Quorum sensing activity in Pandoraea pnomenusa RB38.

    PubMed

    Ee, Robson; Lim, Yan-Lue; Kin, Lin-Xin; Yin, Wai-Fong; Chan, Kok-Gan

    2014-06-10

    Strain RB38 was recovered from a former dumping area in Malaysia. MALDI-TOF mass spectrometry and genomic analysis identified strain RB-38 as Pandoraea pnomenusa. Various biosensors confirmed its quorum sensing properties. High resolution triple quadrupole liquid chromatography-mass spectrometry analysis was subsequently used to characterize the N-acyl homoserine lactone production profile of P. pnomenusa strain RB38, which validated that this isolate produced N-octanoyl homoserine lactone as a quorum sensing molecule. This is the first report of the production of N-octanoyl homoserine lactone by P. pnomenusa strain RB38.

  7. Helicobacter pylori perceives the quorum-sensing molecule AI-2 as a chemorepellent via the chemoreceptor TlpB

    PubMed Central

    Rader, Bethany A.; Wreden, Christopher; Hicks, Kevin G.; Sweeney, Emily Goers; Ottemann, Karen M.

    2011-01-01

    Helicobacter pylori moves in response to environmental chemical cues using a chemotaxis two-component signal-transduction system. Autoinducer-2 (AI-2) is a quorum-sensing signal produced by the LuxS protein that accumulates in the bacterial environment in a density-dependent manner. We showed previously that a H. pylori luxS mutant was defective in motility on soft agar plates. Here we report that deletion of the luxS gene resulted in swimming behaviour with a reduced frequency of stops as compared to the wild-type strain. Stopping frequency was restored to wild-type levels by genetic complementation of the luxS mutation or by addition of synthetic 4,5-dihydroxy-2,3-pentanedione (DPD), which cyclizes to form AI-2. Synthetic DPD also increased the frequency of stops in wild-type H. pylori, similar to the behaviour induced by the known chemorepellent HCl. We found that whereas mutants lacking the chemoreceptor genes tlpA, tlpC or tlpD responded to an exogenous source of synthetic DPD, the chemoreceptor mutant tlpB was non-responsive to a gradient or uniform distribution of the chemical. Furthermore, a double mutant lacking both tlpB and luxS exhibited chemotactic behaviour similar to the tlpB single mutant, whereas a double mutant lacking both tlpB and the chemotransduction gene cheA behaved like a nonchemotactic cheA single mutant, supporting the model that tlpB functions in a signalling pathway downstream of luxS and upstream of cheA. We conclude that H. pylori perceives LuxS-produced AI-2 as a chemorepellent via the chemoreceptor TlpB. PMID:21602215

  8. The Pseudomonas aeruginosa N-Acylhomoserine Lactone Quorum Sensing Molecules Target IQGAP1 and Modulate Epithelial Cell Migration

    PubMed Central

    Karlsson, Thommie; Turkina, Maria V.; Yakymenko, Olena; Magnusson, Karl-Eric; Vikström, Elena

    2012-01-01

    Quorum sensing (QS) signaling allows bacteria to control gene expression once a critical population density is achieved. The Gram-negative human pathogen Pseudomonas aeruginosa uses N-acylhomoserine lactones (AHL) as QS signals, which coordinate the production of virulence factors and biofilms. These bacterial signals can also modulate human cell behavior. Little is known about the mechanisms of the action of AHL on their eukaryotic targets. Here, we found that N-3-oxo-dodecanoyl-L-homoserine lactone 3O-C12-HSL modulates human intestinal epithelial Caco-2 cell migration in a dose- and time-dependent manner. Using new 3O-C12-HSL biotin and fluorescently-tagged probes for LC-MS/MS and confocal imaging, respectively, we demonstrated for the first time that 3O-C12-HSL interacts and co-localizes with the IQ-motif-containing GTPase-activating protein IQGAP1 in Caco-2 cells. The interaction between IQGAP1 and 3O-C12-HSL was further confirmed by pull-down assay using a GST-tagged protein with subsequent Western blot of IQGAP1 and by identifying 3O-C12-HSL with a sensor bioassay. Moreover, 3O-C12-HSL induced changes in the phosphorylation status of Rac1 and Cdc42 and the localization of IQGAP1 as evidenced by confocal and STED microscopy and Western blots. Our findings suggest that the IQGAP1 is a novel partner for P.aeruginosa 3O-C12-HSL and likely the integrator of Rac1 and Cdc42- dependent altered cell migration. We propose that the targeting of IQGAP1 by 3O-C12-HSL can trigger essential changes in the cytoskeleton network and be an essential component in bacterial – human cell communication. PMID:23071436

  9. Modeling of signal transduction in bacterial quorum-sensing

    NASA Astrophysics Data System (ADS)

    Fenley, Andrew; Banik, Suman; Kulkarni, Rahul

    2006-03-01

    Several species of bacteria are able to coordinate gene regulation in response to population density, a process known as ``quorum-sensing''. Quorum-sensing bacteria produce, secrete, and detect signal molecules called autoinducers. For several species of bacteria in the Vibrio genus, recent results have shown that the external autoinducer concentrations control the expression of regulatory small RNA(s) which are critical to the process of quorum-sensing. We present a theoretical analysis of the network which relates the rate of small RNA expression to the external autoinducer concentrations. We relate the results from our modeling to previous experimental observations and suggest new experiments based on testable predictions of the model.

  10. Diffusible signal factor (DSF) quorum sensing signal and structurally related molecules enhance the antimicrobial efficacy of antibiotics against some bacterial pathogens

    PubMed Central

    2014-01-01

    Background Extensive use of antibiotics has fostered the emergence of superbugs that are resistant to multidrugs, which becomes a great healthcare and public concern. Previous studies showed that quorum sensing signal DSF (diffusible signal factor) not only modulates bacterial antibiotic resistance through intraspecies signaling, but also affects bacterial antibiotic tolerance through interspecies communication. These findings motivate us to exploit the possibility of using DSF and its structurally related molecules as adjuvants to influence antibiotic susceptibility of bacterial pathogens. Results In this study, we have demonstrated that DSF signal and its structurally related molecules could be used to induce bacterial antibiotic susceptibility. Exogenous addition of DSF signal (cis-11-methyl-2-dodecenoic acid) and its structural analogues could significantly increase the antibiotic susceptibility of Bacillus cereus, possibly through reducing drug-resistant activity, biofilm formation and bacterial fitness. The synergistic effect of DSF and its structurally related molecules with antibiotics on B. cereus is dosage-dependent. Combination of DSF with gentamicin showed an obviously synergistic effect on B. cereus pathogenicity in an in vitro model. We also found that DSF could increase the antibiotic susceptibility of other bacterial species, including Bacillus thuringiensis, Staphylococcus aureus, Mycobacterium smegmatis, Neisseria subflava and Pseudomonas aeruginosa. Conclusion The results indicate a promising potential of using DSF and its structurally related molecules as novel adjuvants to conventional antibiotics for treatment of infectious diseases caused by bacterial pathogens. PMID:24575808

  11. Diffusible signal factor (DSF) quorum sensing signal and structurally related molecules enhance the antimicrobial efficacy of antibiotics against some bacterial pathogens.

    PubMed

    Deng, Yinyue; Lim, Amy; Lee, Jasmine; Chen, Shaohua; An, Shuwen; Dong, Yi-Hu; Zhang, Lian-Hui

    2014-02-27

    Extensive use of antibiotics has fostered the emergence of superbugs that are resistant to multidrugs, which becomes a great healthcare and public concern. Previous studies showed that quorum sensing signal DSF (diffusible signal factor) not only modulates bacterial antibiotic resistance through intraspecies signaling, but also affects bacterial antibiotic tolerance through interspecies communication. These findings motivate us to exploit the possibility of using DSF and its structurally related molecules as adjuvants to influence antibiotic susceptibility of bacterial pathogens. In this study, we have demonstrated that DSF signal and its structurally related molecules could be used to induce bacterial antibiotic susceptibility. Exogenous addition of DSF signal (cis-11-methyl-2-dodecenoic acid) and its structural analogues could significantly increase the antibiotic susceptibility of Bacillus cereus, possibly through reducing drug-resistant activity, biofilm formation and bacterial fitness. The synergistic effect of DSF and its structurally related molecules with antibiotics on B. cereus is dosage-dependent. Combination of DSF with gentamicin showed an obviously synergistic effect on B. cereus pathogenicity in an in vitro model. We also found that DSF could increase the antibiotic susceptibility of other bacterial species, including Bacillus thuringiensis, Staphylococcus aureus, Mycobacterium smegmatis, Neisseria subflava and Pseudomonas aeruginosa. The results indicate a promising potential of using DSF and its structurally related molecules as novel adjuvants to conventional antibiotics for treatment of infectious diseases caused by bacterial pathogens.

  12. Inter-kingdom Signaling by the Legionella Quorum Sensing Molecule LAI-1 Modulates Cell Migration through an IQGAP1-Cdc42-ARHGEF9-Dependent Pathway.

    PubMed

    Simon, Sylvia; Schell, Ursula; Heuer, Natalie; Hager, Dominik; Albers, Michael F; Matthias, Jan; Fahrnbauer, Felix; Trauner, Dirk; Eichinger, Ludwig; Hedberg, Christian; Hilbi, Hubert

    2015-12-01

    Small molecule signaling promotes the communication between bacteria as well as between bacteria and eukaryotes. The opportunistic pathogenic bacterium Legionella pneumophila employs LAI-1 (3-hydroxypentadecane-4-one) for bacterial cell-cell communication. LAI-1 is produced and detected by the Lqs (Legionella quorum sensing) system, which regulates a variety of processes including natural competence for DNA uptake and pathogen-host cell interactions. In this study, we analyze the role of LAI-1 in inter-kingdom signaling. L. pneumophila lacking the autoinducer synthase LqsA no longer impeded the migration of infected cells, and the defect was complemented by plasmid-borne lqsA. Synthetic LAI-1 dose-dependently inhibited cell migration, without affecting bacterial uptake or cytotoxicity. The forward migration index but not the velocity of LAI-1-treated cells was reduced, and the cell cytoskeleton appeared destabilized. LAI-1-dependent inhibition of cell migration involved the scaffold protein IQGAP1, the small GTPase Cdc42 as well as the Cdc42-specific guanine nucleotide exchange factor ARHGEF9, but not other modulators of Cdc42, or RhoA, Rac1 or Ran GTPase. Upon treatment with LAI-1, Cdc42 was inactivated and IQGAP1 redistributed to the cell cortex regardless of whether Cdc42 was present or not. Furthermore, LAI-1 reversed the inhibition of cell migration by L. pneumophila, suggesting that the compound and the bacteria antagonistically target host signaling pathway(s). Collectively, the results indicate that the L. pneumophila quorum sensing compound LAI-1 modulates migration of eukaryotic cells through a signaling pathway involving IQGAP1, Cdc42 and ARHGEF9.

  13. Inter-kingdom Signaling by the Legionella Quorum Sensing Molecule LAI-1 Modulates Cell Migration through an IQGAP1-Cdc42-ARHGEF9-Dependent Pathway

    PubMed Central

    Simon, Sylvia; Schell, Ursula; Heuer, Natalie; Hager, Dominik; Albers, Michael F.; Matthias, Jan; Fahrnbauer, Felix; Trauner, Dirk; Eichinger, Ludwig; Hedberg, Christian; Hilbi, Hubert

    2015-01-01

    Small molecule signaling promotes the communication between bacteria as well as between bacteria and eukaryotes. The opportunistic pathogenic bacterium Legionella pneumophila employs LAI-1 (3-hydroxypentadecane-4-one) for bacterial cell-cell communication. LAI-1 is produced and detected by the Lqs (Legionella quorum sensing) system, which regulates a variety of processes including natural competence for DNA uptake and pathogen-host cell interactions. In this study, we analyze the role of LAI-1 in inter-kingdom signaling. L. pneumophila lacking the autoinducer synthase LqsA no longer impeded the migration of infected cells, and the defect was complemented by plasmid-borne lqsA. Synthetic LAI-1 dose-dependently inhibited cell migration, without affecting bacterial uptake or cytotoxicity. The forward migration index but not the velocity of LAI-1-treated cells was reduced, and the cell cytoskeleton appeared destabilized. LAI-1-dependent inhibition of cell migration involved the scaffold protein IQGAP1, the small GTPase Cdc42 as well as the Cdc42-specific guanine nucleotide exchange factor ARHGEF9, but not other modulators of Cdc42, or RhoA, Rac1 or Ran GTPase. Upon treatment with LAI-1, Cdc42 was inactivated and IQGAP1 redistributed to the cell cortex regardless of whether Cdc42 was present or not. Furthermore, LAI-1 reversed the inhibition of cell migration by L. pneumophila, suggesting that the compound and the bacteria antagonistically target host signaling pathway(s). Collectively, the results indicate that the L. pneumophila quorum sensing compound LAI-1 modulates migration of eukaryotic cells through a signaling pathway involving IQGAP1, Cdc42 and ARHGEF9. PMID:26633832

  14. Responses of the Microalga Chlorophyta sp. to Bacterial Quorum Sensing Molecules (N-Acylhomoserine Lactones): Aromatic Protein-Induced Self-Aggregation.

    PubMed

    Zhou, Dandan; Zhang, Chaofan; Fu, Liang; Xu, Liang; Cui, Xiaochun; Li, Qingcheng; Crittenden, John C

    2017-03-21

    Bacteria and microalgae often coexist during the recycling of microalgal bioresources in wastewater treatment processes. Although the bacteria may compete with the microalgae for nutrients, they could also facilitate microalgal harvesting by forming algal-bacterial aggregates. However, very little is known about interspecies interactions between bacteria and microalgae. In this study, we investigated the responses of a model microalga, Chlorophyta sp., to the typical quorum sensing (QS) molecules N-acylhomoserine lactones (AHLs) extracted from activated sludge bacteria. Chlorophyta sp. self-aggregated in 200 μm bioflocs by secreting 460-1000 kDa aromatic proteins upon interacting with AHLs, and the settling efficiency of Chlorophyta sp. reached as high as 41%. However, Chlorophyta sp. cells were essentially in a free suspension in the absence of AHLs. Fluorescence intensity of the aromatic proteins had significant (P < 0.05) relationship with the Chlorophyta sp. settleability, and showed a positive correlation, indicating that aromatic proteins helped aggregate microalga. Transcriptome results further revealed up-regulation of synthesis pathways for aromatic proteins from tyrosine and phenylalanine that was assisted by anthranilate accumulation. To the best of our knowledge, this is the first study to confirm that eukaryotic microorganisms can sense and respond to prokaryotic QS molecules.

  15. Evolution of resistance to quorum sensing inhibitors

    PubMed Central

    Kalia, Vipin C.; Wood, Thomas K.; Kumar, Prasun

    2013-01-01

    The major cause of mortality and morbidity in human beings is bacterial infection. Bacteria have developed resistance to most of the antibiotics primarily due to large scale and “indiscriminate” usage. The need is to develop novel mechanisms to treat bacterial infections. The expression of pathogenicity during bacterial infections is mediated by a cell density dependent phenomenon known as quorum sensing (QS). A wide array of QS systems (QSS) is operative in expressing the virulent behavior of bacterial pathogens. Each QSS may be mediated largely by a few major signals along with others produced in minuscule quantities. Efforts to target signal molecules and their receptors have proved effective in alleviating the virulent behavior of such pathogenic bacteria. These QS inhibitors (QSIs) have been reported to be effective in influencing the pathogenicity without affecting bacterial growth. However, evidence is accumulating that bacteria may develop resistance to QSIs. The big question is whether QSIs will meet the same fate as antibiotics? PMID:24194099

  16. Quorum Sensing in Marine Microbial Environments

    NASA Astrophysics Data System (ADS)

    Hmelo, Laura R.

    2017-01-01

    Quorum sensing (QS) is a form of chemical communication used by certain bacteria that regulates a wide range of biogeochemically important bacterial behaviors. Although QS was first observed in a marine bacterium nearly four decades ago, only in the past decade has there been a rise in interest in the role that QS plays in the ocean. It has become clear that QS, regulated by signals such as acylated homoserine lactones (AHLs) or furanosyl-borate diesters [autoinducer-2 (AI-2) molecules], is involved in important processes within the marine carbon cycle, in the health of coral reef ecosystems, and in trophic interactions between a range of eukaryotes and their bacterial associates. The most well-studied QS systems in the ocean occur in surface-attached (biofilm) communities and rely on AHL signaling. AHL-QS is highly sensitive to the chemical and biological makeup of the environment and may respond to anthropogenic change, including ocean acidification and rising sea surface temperatures.

  17. Information processing and signal integration in bacterial quorum sensing

    NASA Astrophysics Data System (ADS)

    Mehta, Pankaj

    2009-03-01

    Bacteria communicate with each other using secreted chemical signaling molecules called autoinducers (AIs) in a process known as quorum sensing. Quorum sensing enables bacteria to collectively regulate their behavior depending on the number and/or species of bacteria present. The quorum-sensing network of the marine-bacteria Vibrio harveyi consists of three AIs encoding distinct ecological information, each detected by its own histidine-kinase sensor protein. The sensor proteins all phosphorylate a common response regulator and transmit sensory information through a shared phosphorelay that regulates expression of downstream quorum-sensing genes. Despite detailed knowledge of the Vibrio quorum-sensing circuit, it is still unclear how and why bacteria integrate information from multiple input signals to coordinate collective behaviors. Here we develop a mathematical framework for analyzing signal integration based on Information Theory and use it to show that bacteria must tune the kinase activities of sensor proteins in order to transmit information from multiple inputs. This is demonstrated within a quantitative model that allows us to quantify how much Vibrio's learn about individual inputs and explains experimentally measured input-output relations. Furthermore, we predicted and experimentally verified that bacteria manipulate the production rates of AIs in order to increase information transmission and argue that the quorum-sensing circuit is designed to coordinate a multi-cellular developmental program. Our results show that bacteria can successfully learn about multiple signals even when they are transmitted through a shared pathway and suggest that Information Theory may be a powerful tool for analyzing biological signaling networks.

  18. Quorum sensing control of Type VI secretion factors restricts the proliferation of quorum-sensing mutants.

    PubMed

    Majerczyk, Charlotte; Schneider, Emily; Greenberg, E Peter

    2016-05-16

    Burkholderia thailandensis uses acyl-homoserine lactone-mediated quorum sensing systems to regulate hundreds of genes. Here we show that cell-cell contact-dependent type VI secretion (T6S) toxin-immunity systems are among those activated by quorum sensing in B. thailandensis. We also demonstrate that T6S is required to constrain proliferation of quorum sensing mutants in colony cocultures of a BtaR1 quorum-sensing signal receptor mutant and its parent. However, the BtaR1 mutant is not constrained by and outcompetes its parent in broth coculture, presumably because no cell contact occurs and there is a metabolic cost associated with quorum sensing gene activation. The increased fitness of the wild type over the BtaR1 mutant during agar surface growth is dependent on an intact T6SS-1 apparatus. Thus, quorum sensing activates B. thailandensis T6SS-1 growth inhibition and this control serves to police and constrain quorum-sensing mutants. This work defines a novel role for T6SSs in intraspecies mutant control.

  19. Quorum sensing control of Type VI secretion factors restricts the proliferation of quorum-sensing mutants

    PubMed Central

    Majerczyk, Charlotte; Schneider, Emily; Greenberg, E Peter

    2016-01-01

    Burkholderia thailandensis uses acyl-homoserine lactone-mediated quorum sensing systems to regulate hundreds of genes. Here we show that cell-cell contact-dependent type VI secretion (T6S) toxin-immunity systems are among those activated by quorum sensing in B. thailandensis. We also demonstrate that T6S is required to constrain proliferation of quorum sensing mutants in colony cocultures of a BtaR1 quorum-sensing signal receptor mutant and its parent. However, the BtaR1 mutant is not constrained by and outcompetes its parent in broth coculture, presumably because no cell contact occurs and there is a metabolic cost associated with quorum sensing gene activation. The increased fitness of the wild type over the BtaR1 mutant during agar surface growth is dependent on an intact T6SS-1 apparatus. Thus, quorum sensing activates B. thailandensis T6SS-1 growth inhibition and this control serves to police and constrain quorum-sensing mutants. This work defines a novel role for T6SSs in intraspecies mutant control. DOI: http://dx.doi.org/10.7554/eLife.14712.001 PMID:27183270

  20. Draft Genome Sequence of Pantoea sp. Strain A4, a Rafflesia-Associated Bacterium That Produces N-Acylhomoserine Lactones as Quorum-Sensing Molecules

    PubMed Central

    Hong, Kar-Wai; Gan, Han Ming; Low, Siew-Moon; Lee, Patrick Kok Yuen; Chong, Yee-Meng; Yin, Wai-Fong

    2012-01-01

    Pantoea sp. strain A4 is a Gram-negative bacterium isolated from the Rafflesia flower. We present here, for the first time, the genome sequence of Rafflesia-associated Pantoea sp. strain A4, which exhibited quorum-sensing activity. PMID:23144374

  1. Draft genome sequence of Pantoea sp. strain A4, a Rafflesia-associated bacterium that produces N-acylhomoserine lactones as quorum-sensing molecules.

    PubMed

    Hong, Kar-Wai; Gan, Han Ming; Low, Siew-Moon; Lee, Patrick Kok Yuen; Chong, Yee-Meng; Yin, Wai-Fong; Chan, Kok-Gan

    2012-12-01

    Pantoea sp. strain A4 is a Gram-negative bacterium isolated from the Rafflesia flower. We present here, for the first time, the genome sequence of Rafflesia-associated Pantoea sp. strain A4, which exhibited quorum-sensing activity.

  2. Quorum sensing in plant-associated bacteria.

    PubMed

    Loh, John; Pierson, Elizabeth A; Pierson, Leland S; Stacey, Gary; Chatterjee, Arun

    2002-08-01

    N-acyl homoserine lactone (AHL)-mediated quorum sensing by bacteria regulates traits that are involved in symbiotic, pathogenic and surface-associated relationships between microbial populations and their plant hosts. Recent advances demonstrate deviations from the classic LuxR/LuxI paradigm, which was first developed in Vibrio. For example, LuxR homologs can repress as well as activate gene expression, and non-AHL signals and signal mimics can affect the expression of genes that are controlled by quorum sensing. Many bacteria utilize multiple quorum-sensing systems, and these may be modulated via post-transcriptional and other global regulatory mechanisms. Microbes inhabiting plant surfaces also produce and respond to a diverse mixture of AHL signals. The production of AHL mimics by plants and the identification of AHL degradative pathways suggest that bacteria and plants utilize this method of bacterial communication as a key control point for influencing the outcome of their interactions.

  3. Autocrine Signaling and Quorum Sensing: Extreme Ends of a Common Spectrum.

    PubMed

    Doğaner, Berkalp A; Yan, Lawrence K Q; Youk, Hyun

    2016-04-01

    'Secrete-and-sense cells' can communicate by secreting a signaling molecule while also producing a receptor that detects the molecule. The cell can potentially 'talk' to itself ('self-communication') or talk to neighboring cells with the same receptor ('neighbor communication'). The predominant forms of secrete-and-sense cells are self-communicating 'autocrine cells', which are largely found in animals, and neighbor-communicating 'quorum sensing cells', which are mostly associated with bacteria. While assumed to function independently of one another, recent studies have discovered quorum-sensing organs and autocrine-signaling microbes. Moreover, similar types of genetic circuit control many autocrine and quorum-sensing cells. Here, we outline these recent findings and explain how autocrine and quorum sensing are two sides of a many-sided 'dice' created by the versatile secrete-and-sense cell.

  4. RETRACTED ARTICLE: Quorum-sensing of bacteria and its application

    NASA Astrophysics Data System (ADS)

    Jiang, Guoliang; Su, Mingxia

    2009-12-01

    Quorum sensing, or auto induction, as a cell density dependent signaling mechanism in many microorganisms, is triggered via auto inducers which passively diffuse across the bacterial envelope and therefore intracellulaly accumulate only at higher bacterial densities to regulate specialized processes such as genetic competence, bioluminescence, virulence and sporulation. N-acyl homoserine lactones are the most common type of signal molecules. Aquaculture is one of the fastest-growing food-producing industries, but disease outbreaks caused by pathogenic bacteria are a significant constraint on the development of the sector worldwide. Many of these pathogens have been found to be controlled by their quorum sensing systems. As there is relevance between the pathogenic bacteria's virulence factor expression and their auto inducers, quorum quenching is a new effective anti-infective strategy to control infections caused by bacterial pathogens in aquaculture. The techniques used to do this mainly include the following: (1) the inhibition of signal molecule biosynthesis, (2) blocking signal transduction, and (3) chemical inactivation and biodegradation of signal molecules. To provide a basis for finding alternative means of controlling aquatic diseases by quorum quenching instead of treatment by antibiotics and disinfectants, we will discuss the examination, purification and identification of auto inducers in this paper.

  5. Exploring the chemical space of quorum sensing peptides.

    PubMed

    Wynendaele, Evelien; Gevaert, Bert; Stalmans, Sofie; Verbeke, Frederick; De Spiegeleer, Bart

    2015-09-01

    Quorum sensing peptides are signalling molecules that are produced by mainly gram-positive bacteria. These peptides can exert different effects, ranging from intra- and interspecies bacterial virulence to bacterial-host interactions. To better comprehend these functional differences, we explored their chemical space, bacterial species distribution and receptor-binding properties using multivariate data analyses, with information obtained from the Quorumpeps database. The quorum sensing peptides can be categorized into three main clusters, which, in turn, can be divided into several subclusters: the classification is based on characteristic chemical properties, including peptide size/compactness, hydrophilicity/lipophilicity, cyclization and the presence of (unnatural) S-containing and aromatic amino acids. Most of the bacterial species synthesize peptides located into one cluster. However, some Streptococcus, Stapylococcus, Clostridium, Bacillus and Lactobacillus species produce peptides that are distributed over more than one cluster, with the quorum sensing peptides of Bacillus subtilis even occupying the total peptide space. The AgrC, FsrC and LamC receptors are only activated by cyclic (thio)lacton or lactam quorum sensing peptides, while the lipophilic isoprenyl-modified peptides solely bind the ComP receptor in Bacillus species.

  6. The potential role of quorum-sensing peptides in oncology.

    PubMed

    Wynendaele, E; Pauwels, E; Van de Wiele, C; Burvenich, C; De Spiegeleer, B

    2012-06-01

    Cancer is a leading cause of death worldwide, with a limited cure rate and late diagnosis for certain types of cancer (e.g. pancreatic cancer). As this disease presents an enormous challenge for scientists, new paradigms in oncology are needed to defeat this serious disease. Currently, several peptide drugs are investigated for their preventive, diagnostic and therapeutic properties in oncology, with already 15 peptide drugs marketed for cancer therapy. However, we suggest that quorum-sensing peptide agonists and antagonists can be used in oncology as well, resulting in a larger potential peptide space. This hypothesis is based on (1) the recent evidence of prokaryote-eukaryote signalling by the use of quorum-sensing signalling molecules, (2) the apoptotic phenomenon seen in bacteria, (3) the clear similarities between the bacterial quorum-sensing mechanisms and the metastatic process tumor cells initiate, (4) the multiple receptor targeting and (5) the possibility of pharmacologic manipulation of peptides, resulting in increased receptor targeting. Up till now, however, the use of quorum-sensing signalling peptides in oncology has not yet been investigated, despite the urgent need for new insights in oncology and the promising perspectives. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Interaction of a P. aeruginosa Quorum Sensing Signal with Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Morrison, Rebecca; Hall, Amelia; Hutchison, Ellen; Nguyen, Thuc; Cooley, Benjamin; Gordon, Vernita

    2011-03-01

    Bacteria use a signaling and regulatory system called ``quorum sensing'' to alter their gene expressions in response to the concentration of neighboring bacteria and to environmental conditions that make collective activity favorable for bacteria. P. aeruginosa is an opportunistic human pathogen that uses quorum sensing to govern processes such as virulence and biofilm formation. This organism's two main quorum sensing circuits use two different signaling molecules that are amphiphilic and differ primarily in the length of their hydrocarbon side chain and thus in their hydrophobic physical chemistry. How these physical chemistries govern the propagation and spatial localization of signals and thus of quorum sensing is not known. We present preliminary results showing that signals preferentially sequester to amphiphilic lipid membranes, which can act as reservoirs for signal. This is promising for future characterization of how the quorum sensing signals of many bacteria and yeast partition to spatially-differentiated amphiphilic environments, in a host or biofilm.

  8. Microwave-assisted preparation of the quorum-sensing molecule 2-heptyl-3-hydroxy-4(1H)-quinolone and structurally related analogs.

    PubMed

    Hodgkinson, James T; Galloway, Warren R J D; Welch, Martin; Spring, David R

    2012-05-24

    An optimized procedure for the efficient preparation of 2-heptyl-3-hydroxy-4(1H)-quinolone (Pseudomonas quinolone signal or PQS) and a diverse range of structurally related 2-alkyl-4-quinolones with biological activity is presented. The two-step synthesis begins with the formation of α-chloro ketones by the coupling of a Weinreb amide (2-chloro-N-methoxy-N-methylacetamide) and an appropriate Grignard reagent. The resulting α-chloro ketones can be reacted with commercially available anthranilic acids under microwave irradiation conditions to furnish the desired 2-alkyl-4-quinolone products. As a typical example, the synthesis of PQS, a molecule involved in quorum sensing in the pathogenic bacterium Pseudomonas aeruginosa, is described in detail. The first step of this process (α-chloro ketone formation) takes ∼10 h in total to complete from commercially available bromoheptane and 2-chloro-N-methoxy-N-methylacetamide. The second step (microwave-assisted reaction with anthranilic acid) takes ∼14 h in total to complete (the reaction typically proceeds in ∼30 min, with work-up and purification requiring ∼13 h).

  9. Quorum sensing and bacterial social interactions in biofilms.

    PubMed

    Li, Yung-Hua; Tian, Xiaolin

    2012-01-01

    Many bacteria are known to regulate their cooperative activities and physiological processes through a mechanism called quorum sensing (QS), in which bacterial cells communicate with each other by releasing, sensing and responding to small diffusible signal molecules. The ability of bacteria to communicate and behave as a group for social interactions like a multi-cellular organism has provided significant benefits to bacteria in host colonization, formation of biofilms, defense against competitors, and adaptation to changing environments. Importantly, many QS-controlled activities have been involved in the virulence and pathogenic potential of bacteria. Therefore, understanding the molecular details of quorum sensing mechanisms and their controlled social activities may open a new avenue for controlling bacterial infections.

  10. Quorum Sensing and Bacterial Social Interactions in Biofilms

    PubMed Central

    Li, Yung-Hua; Tian, Xiaolin

    2012-01-01

    Many bacteria are known to regulate their cooperative activities and physiological processes through a mechanism called quorum sensing (QS), in which bacterial cells communicate with each other by releasing, sensing and responding to small diffusible signal molecules. The ability of bacteria to communicate and behave as a group for social interactions like a multi-cellular organism has provided significant benefits to bacteria in host colonization, formation of biofilms, defense against competitors, and adaptation to changing environments. Importantly, many QS-controlled activities have been involved in the virulence and pathogenic potential of bacteria. Therefore, understanding the molecular details of quorum sensing mechanisms and their controlled social activities may open a new avenue for controlling bacterial infections. PMID:22736963

  11. Pseudomonas aeruginosa quorum-sensing signaling molecule N-3-oxododecanoyl homoserine lactone induces matrix metalloproteinase 9 expression via the AP1 pathway in rat fibroblasts.

    PubMed

    Nakagami, Gojiro; Minematsu, Takeo; Morohoshi, Tomohiro; Yamane, Takumi; Kanazawa, Toshiki; Huang, Lijuan; Asada, Mayumi; Nagase, Takashi; Ikeda, Shin-ichi; Ikeda, Tsukasa; Sanada, Hiromi

    2015-01-01

    Quorum sensing is a cell-to-cell communication mechanism, which is responsible for regulating a number of bacterial virulence factors and biofilm maturation and therefore plays an important role for establishing wound infection. Quorum-sensing signals may induce inflammation and predispose wounds to infection by Pseudomonas aeruginosa; however, the interaction has not been well investigated. We examined the effects of the P. aeruginosa las quorum-sensing signal, N-3-oxo-dodecanoyl homoserine lactone (3OC12-HSL), on matrix metalloproteinase (MMP) 9 expression in Rat-1 fibroblasts. 3OC12-HSL upregulated the expression of the MMP9 gene bearing an activator protein-1 (AP-1) binding site in the promoter region. We further investigated the mechanism underlying this effect. c-Fos gene expression increased rapidly after exposure to 3OC12-HSL, and nuclear translocation of c-Fos protein was observed; both effects were reduced by pretreatment with an AP-1 inhibitor. These results suggest that 3OC12-HSL can alter MMP9 gene expression in fibroblasts via the AP-1 signaling pathway.

  12. The Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone enhances keratinocyte migration and induces Mmp13 gene expression in vitro

    SciTech Connect

    Paes, Camila

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer An evidence of the positive effect of AHL on epithelialization process is provided. Black-Right-Pointing-Pointer AHL enhances keratinocyte's ability to migrate in an in vitro scratch wound model. Black-Right-Pointing-Pointer AHL induces the expression of Mmp13. Black-Right-Pointing-Pointer Topical application of AHL represents a possible strategy to treat chronic wounds. -- Abstract: Re-epithelialization is an essential step of wound healing involving three overlapping keratinocyte functions: migration, proliferation and differentiation. While quorum sensing (QS) is a cell density-dependent signaling system that enables bacteria to regulate the expression of certain genes, the QS molecule N-(3-oxododecanoyl) homoserine lactone (AHL) exerts effects also on mammalian cells in a process called inter-kingdom signaling. Recent studies have shown that AHL improves epithelialization in in vivo wound healing models but detailed understanding of the molecular and cellular mechanisms are needed. The present study focused on the AHL as a candidate reagent to improve wound healing through direct modulation of keratinocyte's activity in the re-epithelialization process. Results indicated that AHL enhances the keratinocyte's ability to migrate in an in vitro scratch wound healing model probably due to the high Mmp13 gene expression analysis after AHL treatment that was revealed by real-time RT-PCR. Inhibition of activator protein 1 (AP-1) signaling pathway completely prevented the migration of keratinocytes, and also resulted in a diminished Mmp13 gene expression, suggesting that AP-1 might be essential in the AHL-induced migration. Taken together, these results imply that AHL is a promising candidate molecule to improve re-epithelialization through the induction of migration of keratinocytes. Further investigation is needed to clarify the mechanism of action and molecular pathway of AHL on the keratinocyte migration process.

  13. Identification of Pathways Critical to Quorum Sensing and Virulence Induction

    SciTech Connect

    Ognibene, Ted J.; Young, N.; Holtz-Morris, A.; Daley, P.

    2009-02-27

    Quorum sensing is a mode of intercellular communication between bacteria that allows them to collectively regulate behavior such as virulence, sporulation, motility and biofilm formation. It is mediated by bacterially synthesized, diffusible, signaling molecules (autoinducers) that increase in concentration as a bacterial population expands until a critical threshold concentration is reached. However, in most bacterial species that produce autoinducer molecules, the physiologic concentration of these molecules is unknown. Moreover, many bacterial species, including Y. pestis, produce an array of quorum sensing molecules and the physiologic concentration of each individual type of autoinducer molecule is not known. There is a need to accurately and precisely quantitate these molecules, as it may be that different types of autoinducer molecules have different effects on virulence in the bacterium. We focused our efforts on the construction of a platform to identify and quantitate autoinducer molecules using FTICR, 14C isotope labeling and accelerator mass spectrometry (AMS). Specifically, we focused on autoinducer-1 type molecules, acylhomoserine lactone (HSL), derived from S-adenosylmethionine (SAM).

  14. Quorum sensing in group A Streptococcus

    PubMed Central

    Jimenez, Juan Cristobal; Federle, Michael J.

    2014-01-01

    Quorum sensing (QS) is a widespread phenomenon in the microbial world that has important implications in the coordination of population-wide responses in several bacterial pathogens. In Group A Streptococcus (GAS), many questions surrounding QS systems remain to be solved pertaining to their function and their contribution to the GAS lifestyle in the host. The QS systems of GAS described to date can be categorized into four groups: regulator gene of glucosyltransferase (Rgg), Sil, lantibiotic systems, and LuxS/AI-2. The Rgg family of proteins, a conserved group of transcription factors that modify their activity in response to signaling peptides, has been shown to regulate genes involved in virulence, biofilm formation and competence. The sil locus, whose expression is regulated by the activity of signaling peptides and a putative two-component system (TCS), has been implicated on regulating genes involved with invasive disease in GAS isolates. Lantibiotic regulatory systems are involved in the production of bacteriocins and their autoregulation, and some of these genes have been shown to target both bacterial organisms as well as processes of survival inside the infected host. Finally AI-2 (dihydroxy pentanedione, DPD), synthesized by the LuxS enzyme in several bacteria including GAS, has been proposed to be a universal bacterial communication molecule. In this review we discuss the mechanisms of these four systems, the putative functions of their targets, and pose critical questions for future studies. PMID:25309879

  15. Quorum sensing in group A Streptococcus.

    PubMed

    Jimenez, Juan Cristobal; Federle, Michael J

    2014-01-01

    Quorum sensing (QS) is a widespread phenomenon in the microbial world that has important implications in the coordination of population-wide responses in several bacterial pathogens. In Group A Streptococcus (GAS), many questions surrounding QS systems remain to be solved pertaining to their function and their contribution to the GAS lifestyle in the host. The QS systems of GAS described to date can be categorized into four groups: regulator gene of glucosyltransferase (Rgg), Sil, lantibiotic systems, and LuxS/AI-2. The Rgg family of proteins, a conserved group of transcription factors that modify their activity in response to signaling peptides, has been shown to regulate genes involved in virulence, biofilm formation and competence. The sil locus, whose expression is regulated by the activity of signaling peptides and a putative two-component system (TCS), has been implicated on regulating genes involved with invasive disease in GAS isolates. Lantibiotic regulatory systems are involved in the production of bacteriocins and their autoregulation, and some of these genes have been shown to target both bacterial organisms as well as processes of survival inside the infected host. Finally AI-2 (dihydroxy pentanedione, DPD), synthesized by the LuxS enzyme in several bacteria including GAS, has been proposed to be a universal bacterial communication molecule. In this review we discuss the mechanisms of these four systems, the putative functions of their targets, and pose critical questions for future studies.

  16. Paraoxonase 2 modulates a proapoptotic function in LS174T cells in response to quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone.

    PubMed

    Tao, Shiyu; Luo, Yanwen; Bin He; Liu, Jie; Qian, Xi; Ni, Yingdong; Zhao, Ruqian

    2016-07-01

    A mucus layer coats the gastrointestinal tract and serves as the first line of intestinal defense against infection. N-acyl-homoserine lactone (AHL) quorum-sensing molecules produced by gram-negative bacteria in the gut can influence the homeostasis of intestinal epithelium. In this study, we investigated the effects of two representative long- and short-chain AHLs, N-3-(oxododecanoyl)-homoserine lactone (C12-HSL) and N-butyryl homoserine lactone (C4-HSL), on cell viability and mucus secretion in LS174T cells. C12-HSL but not C4-HSL significantly decreased cell viability by inducing mitochondrial dysfunction and activating cell apoptosis which led to a decrease in mucin expression. Pretreatment with lipid raft disruptor (Methyl-β-cyclodextrin, MβCD) and oxidative stress inhibitor (N-acetyl-L-cysteine, NAC) slightly rescued the viability of cells damaged by C12-HSL exposure, while the paraoxonase 2 (PON2) inhibitor (Triazolo[4,3-a]quinolone, TQ416) significantly affected recovering cells viability and mucin secretion. When LS174T cells were treated with C12-HSL and TQ416 simultaneously, TQ416 showed the maximal positive effect on cells viability. However, if cells were first treated with C12-HSL for 40 mins, and then TQ46 was added, the TQ416 had no effect on cell viability. These results suggest that the C12-HSL-acid process acts at an early step to activate apoptosis as part of C12-HSL's effect on intestinal mucus barrier function.

  17. Paraoxonase 2 Serves a Proapopotic Function in Mouse and Human Cells in Response to the Pseudomonas aeruginosa Quorum-sensing Molecule N-(3-Oxododecanoyl)-homoserine Lactone*

    PubMed Central

    Schwarzer, Christian; Fu, Zhu; Morita, Takeshi; Whitt, Aaron G.; Neely, Aaron M.; Li, Chi; Machen, Terry E.

    2015-01-01

    Pseudomonas aeruginosa use quorum-sensing molecules, including N-(3-oxododecanoyl)-homoserine lactone (C12), for intercellular communication. C12 activated apoptosis in mouse embryo fibroblasts (MEF) from both wild type (WT) and Bax/Bak double knock-out mice (WT MEF and DKO MEF that were responsive to C12, DKOR MEF): nuclei fragmented; mitochondrial membrane potential (Δψmito) depolarized; Ca2+ was released from the endoplasmic reticulum (ER), increasing cytosolic [Ca2+] (Cacyto); and caspase 3/7 was activated. DKOR MEF had been isolated from a nonclonal pool of DKO MEF that were non-responsive to C12 (DKONR MEF). RNAseq analysis, quantitative PCR, and Western blots showed that WT and DKOR MEF both expressed genes associated with cancer, including paraoxonase 2 (PON2), whereas DKONR MEF expressed little PON2. Adenovirus-mediated expression of human PON2 in DKONR MEF rendered them responsive to C12: Δψmito depolarized, Cacyto increased, and caspase 3/7 activated. Human embryonic kidney 293T (HEK293T) cells expressed low levels of endogenous PON2, and these cells were also less responsive to C12. Overexpression of PON2, but not PON2-H114Q (no lactonase activity) in HEK293T cells caused them to become sensitive to C12. Because [C12] may reach high levels in biofilms in lungs of cystic fibrosis (CF) patients, PON2 lactonase activity may control Δψmito, Ca2+ release from the ER, and apoptosis in CF airway epithelia. Coupled with previous data, these results also indicate that PON2 uses its lactonase activity to prevent Bax- and Bak-dependent apoptosis in response to common proapoptotic drugs like doxorubicin and staurosporine, but activates Bax- and Bak-independent apoptosis in response to C12. PMID:25627690

  18. Paraoxonase 2 modulates a proapoptotic function in LS174T cells in response to quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone

    PubMed Central

    Tao, Shiyu; Luo, Yanwen; Bin He; Liu, Jie; Qian, Xi; Ni, Yingdong; Zhao, Ruqian

    2016-01-01

    A mucus layer coats the gastrointestinal tract and serves as the first line of intestinal defense against infection. N-acyl-homoserine lactone (AHL) quorum-sensing molecules produced by gram-negative bacteria in the gut can influence the homeostasis of intestinal epithelium. In this study, we investigated the effects of two representative long- and short-chain AHLs, N-3-(oxododecanoyl)-homoserine lactone (C12-HSL) and N-butyryl homoserine lactone (C4-HSL), on cell viability and mucus secretion in LS174T cells. C12-HSL but not C4-HSL significantly decreased cell viability by inducing mitochondrial dysfunction and activating cell apoptosis which led to a decrease in mucin expression. Pretreatment with lipid raft disruptor (Methyl-β-cyclodextrin, MβCD) and oxidative stress inhibitor (N-acetyl-L-cysteine, NAC) slightly rescued the viability of cells damaged by C12-HSL exposure, while the paraoxonase 2 (PON2) inhibitor (Triazolo[4,3-a]quinolone, TQ416) significantly affected recovering cells viability and mucin secretion. When LS174T cells were treated with C12-HSL and TQ416 simultaneously, TQ416 showed the maximal positive effect on cells viability. However, if cells were first treated with C12-HSL for 40 mins, and then TQ46 was added, the TQ416 had no effect on cell viability. These results suggest that the C12-HSL-acid process acts at an early step to activate apoptosis as part of C12-HSL’s effect on intestinal mucus barrier function. PMID:27364593

  19. Stereochemical Insignificance Discovered in Acinetobacter baumannii Quorum Sensing

    PubMed Central

    Struss, Anjali Kumari; Watkins, Richard; Feske, Brent D.; Kaufmann, Gunnar F.; Janda, Kim D.

    2012-01-01

    Stereochemistry is a key aspect of molecular recognition for biological systems. As such, receptors and enzymes are often highly stereospecific, only recognizing one stereoisomer of a ligand. Recently, the quorum sensing signaling molecules used by the nosocomial opportunistic pathogen, Acinetobacter baumannii, were identified, and the primary signaling molecule isolated from this species was N-(3-hydroxydodecanoyl)-l-homoserine lactone. A plethora of bacterial species have been demonstrated to utilize 3-hydroxy-acylhomoserine lactone autoinducers, and in virtually all cases, the (R)-stereoisomer was identified as the natural ligand and exhibited greater autoinducer activity than the corresponding (S)-stereoisomer. Using chemical synthesis and biochemical assays, we have uncovered a case of stereochemical insignificance in A. baumannii and provide a unique example where stereochemistry appears nonessential for acylhomoserine lactone-mediated quorum sensing signaling. Based on previously reported phylogenetic studies, we suggest that A. baumannii has evolutionarily adopted this unique, yet promiscuous quorum sensing system to ensure its survival, particularly in the presence of other proteobacteria. PMID:22629354

  20. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae.

    PubMed

    Defoirdt, Tom; Sorgeloos, Patrick

    2012-12-01

    Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host-pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp.

  1. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae

    PubMed Central

    Defoirdt, Tom; Sorgeloos, Patrick

    2012-01-01

    Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host–pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp. PMID:22673627

  2. Quorum sensing inhibitors from Leucetta chagosensis Dendy, 1863.

    PubMed

    Mai, T; Tintillier, F; Lucasson, A; Moriou, C; Bonno, E; Petek, S; Magré, K; Al Mourabit, A; Saulnier, D; Debitus, C

    2015-10-01

    Sponges are a rich source for investigation of bioactive small molecules. They have been mostly investigated for the search of new pharmacological models or therapeutic agents for the treatment of human diseases. Micro-organisms can also represent a virulent pathogen for marine invertebrates such as sponges, which need to protect themselves against these microbes. Sponges' self defence mechanisms involving dialogue molecules thus represent a pertinent research track for potent anti-infective and anti-biofilm activities such as quorum sensing inhibitors (QSIs). The investigation of the QSI crude extract of Leucetta chagosensis Dendy, 1863 led to the isolation of three new alkaloids, isonaamine D, di-isonaamidine A and leucettamine D, along with the known isonaamine A and isonaamidine A. Isonaamidine A and isonaamine D were identified as inhibitors of the three quorum sensing pathways of Vibrio harveyi (CAI-1, AI-2 and harveyi auto inducer), but isonaamidine A displayed the strongest activity on AI-2 biosensor. Both compounds are new examples of natural QSIs of V. harveyi. These results outline the importance of these secondary metabolites for their producing organisms themselves in their natural environment, as well as the potential of the marine resource for aquaculture needs. A new type of quorum sensing inhibitors was isolated from the sponge Leucetta chagosensis. One of them inhibits strongly the AI-2 channel of Vibrio harveyi, a marine pathogen of special importance in aquaculture. The activity of five different related compounds, including three new natural products discovered there, was investigated leading to structure-activity relationships which are useful for the design of new quorum sensing inhibitors to control marine infectious pathogens. © 2015 The Society for Applied Microbiology.

  3. Quorum quenching is responsible for the underestimated quorum sensing effects in biological wastewater treatment reactors.

    PubMed

    Song, Xiang-Ning; Cheng, Yuan-Yuan; Li, Wen-Wei; Li, Bing-Bing; Sheng, Guo-Ping; Fang, Cai-Yun; Wang, Yun-Kun; Li, Xiao-Yan; Yu, Han-Qing

    2014-11-01

    Quorum sensing (QS) and quorum quenching (QQ) are two antagonistic processes coexisting in various bacterial communities in bioreactors, e.g., activated sludge for biological wastewater treatment. Although QS signal molecules are detected in activated sludge reactors and known to affect sludge properties and reactor performance, there has been no direct evidence to prove the endogenous existence of QQ effects in activated sludge. In this study, for the first time, acyl homoserine lactones-degrading enzymatic activity, a typical QQ effect, was discovered in activated sludge and found to considerably affect the QS detection results. The coexistence of QS and QQ bacteria in activated sludge was further confirmed by bacterial screening and denaturing gradient gel electrophoresis analysis. The method developed in this study could also be used to evaluate QQ activities in bioreactors, and a possible way is provided to tune bioreactor performance through balancing the QS and QQ processes.

  4. Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors.

    PubMed

    Yang, Liang; Rybtke, Morten Theil; Jakobsen, Tim Holm; Hentzer, Morten; Bjarnsholt, Thomas; Givskov, Michael; Tolker-Nielsen, Tim

    2009-06-01

    Attenuation of Pseudomonas aeruginosa virulence by the use of small-molecule quorum-sensing inhibitors (referred to as the antipathogenic drug principle) is likely to play a role in future treatment strategies for chronic infections. In this study, structure-based virtual screening was used in a search for putative quorum-sensing inhibitors from a database comprising approved drugs and natural compounds. The database was built from compounds which showed structural similarities to previously reported quorum-sensing inhibitors, the ligand of the P. aeruginosa quorum-sensing receptor LasR, and a quorum-sensing receptor agonist. Six top-ranking compounds, all recognized drugs, were identified and tested for quorum-sensing-inhibitory activity. Three compounds, salicylic acid, nifuroxazide, and chlorzoxazone, showed significant inhibition of quorum-sensing-regulated gene expression and related phenotypes in a dose-dependent manner. These results suggest that the identified compounds have the potential to be used as antipathogenic drugs. Furthermore, the results indicate that structure-based virtual screening is an efficient tool in the search for novel compounds to combat bacterial infections.

  5. The Role of the QseC Sensor Kinase in Salmonella enterica serovar Typhimurium Quorum Sensing and Swine Colonization

    USDA-ARS?s Scientific Manuscript database

    At least two quorum sensing molecules, autoinducer-3 (AI-3) and norepinephrine (NE), are present in the gastrointestinal tract and activate the E. coli QseBC quorum sensing system. AI-3 is produced by enteric bacteria, whereas NE is produced by the animal host, often during stress. Both 10% pre-co...

  6. CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae.

    PubMed

    Lenz, Derrick H; Miller, Melissa B; Zhu, Jun; Kulkarni, Rahul V; Bassler, Bonnie L

    2005-11-01

    Bacteria communicate using a process called quorum sensing which involves production, secretion and detection of signalling molecules called autoinducers. Quorum sensing allows populations of bacteria to simultaneously regulate gene expression in response to changes in cell density. The human pathogen, Vibrio cholerae, uses a quorum-sensing circuit composed of parallel systems that transduce information through four redundant regulatory small RNAs (sRNAs) called quorum regulatory RNAs (Qrr) to control the expression of numerous genes, most notably those required for virulence. We show that the VarS/VarA two-component sensory system comprises an additional regulatory input controlling quorum-sensing-dependent gene expression in V. cholerae. VarS/VarA controls transcription of three previously unidentified small regulatory RNAs (sRNAs) that are similar to the sRNAs CsrB and CsrC of Escherichia coli. The three V. cholerae sRNAs, which we name CsrB, CsrC and CsrD, act redundantly to control the activity of the global regulatory protein, CsrA. The VarS/VarA-CsrA/BCD system converges with the V. cholerae quorum-sensing systems to regulate the expression of the Qrr sRNAs, and thus, the entire quorum-sensing regulon.

  7. Dynorphin Activates Quorum Sensing Quinolone Signaling in Pseudomonas aeruginosa

    PubMed Central

    Zaborina, Olga; Lepine, Francois; Xiao, Gaoping; Valuckaite, Vesta; Chen, Yimei; Li, Terry; Ciancio, Mae; Zaborin, Alex; Petroff, Elaine; Turner, Jerrold R; Rahme, Laurence G; Chang, Eugene; Alverdy, John C

    2007-01-01

    There is now substantial evidence that compounds released during host stress directly activate the virulence of certain opportunistic pathogens. Here, we considered that endogenous opioids might function as such compounds, given that they are among the first signals to be released at multiple tissue sites during host stress. We tested the ability of various opioid compounds to enhance the virulence of Pseudomonas aeruginosa using pyocyanin production as a biological readout, and demonstrated enhanced virulence when P. aeruginosa was exposed to synthetic (U-50,488) and endogenous (dynorphin) κ-agonists. Using various mutants and reporter strains of P. aeruginosa, we identified involvement of key elements of the quorum sensing circuitry such as the global transcriptional regulator MvfR and the quorum sensing-related quinolone signaling molecules PQS, HHQ, and HQNO that respond to κ-opioids. The in vivo significance of κ-opioid signaling of P. aeruginosa was demonstrated in mice by showing that dynorphin is released from the intestinal mucosa following ischemia/reperfusion injury, activates quinolone signaling in P. aeruginosa, and enhances the virulence of P. aeruginosa against Lactobacillus spp. and Caenorhabditis elegans. Taken together, these data demonstrate that P. aeruginosa can intercept opioid compounds released during host stress and integrate them into core elements of quorum sensing circuitry leading to enhanced virulence. PMID:17367209

  8. Multiplicity of Quorum Quenching Enzymes: A Potential Mechanism to Limit Quorum Sensing Bacterial Population.

    PubMed

    Koul, Shikha; Kalia, Vipin Chandra

    2017-03-01

    Bacteria express certain of their characteristics especially, pathogenicity factors at high cell densities. The process is termed as quorum sensing (QS). QS operates via signal molecules such as acylhomoserine lactones (AHLs). Other bacteria inhibit QS through the inactivation of AHL signals by producing enzymes like AHL-lactonases and -acylases. Comparative genomic analysis has revealed the multiplicity of genes for AHL lactonases (up to 12 copies per genome) among Bacillus spp. and that of AHL-acylases (up to 5 copies per genome) among Pseudomonas spp. This genetic evolution can be envisaged to enable host to withstand the attacks from bacterial population, which regulates its functioning through QS.

  9. Interference with the germination and growth of Ulva zoospores by quorum-sensing molecules from Ulva-associated epiphytic bacteria.

    PubMed

    Twigg, Matthew S; Tait, Karen; Williams, Paul; Atkinson, Steve; Cámara, Miguel

    2014-02-01

    Ulva zoospores preferentially settle on N-acylhomoserine lactone (AHL) producing marine bacterial biofilms. To investigate whether AHL signal molecules also affect the success and rate of zoospore germination in addition to zoospore attraction, the epiphytic bacteria associated with mature Ulva linza were characterized and bacterial isolates representative of this community tested for the ability to produce AHLs. Two of these AHL-producing isolates, Sulfitobacter spp. 376 and Shewanella spp. 79, were transformed with plasmids expressing the Bacillus spp. AHL lactonase gene aiiA to generate AHL-deficient variants. The germination and growth of U. linza zoospores was studied in the presence of these AHL-deficient strains and their AHL-producing counterparts. This revealed that the AHLs produced by Sulfitobacter spp. and Shewanella spp. or the bacterial products they regulate have a negative impact on both zoospore germination and the early growth of the Ulva germling. Further experiments with Escherichia coli biofilms expressing recombinant AHL synthases and synthetic AHLs provide data to demonstrate that zoospores germinated and grown in the absence of AHLs were significantly longer than those germinated in the presence of AHLs. These results reveal an additional role for AHLs per se in the interactive relationships between marine bacteria and Ulva zoospores.

  10. Quorum Sensing: An Under-Explored Phenomenon in the Phylum Actinobacteria.

    PubMed

    Polkade, Ashish V; Mantri, Shailesh S; Patwekar, Umera J; Jangid, Kamlesh

    2016-01-01

    Quorum sensing is known to play a major role in the regulation of secondary metabolite production, especially, antibiotics, and morphogenesis in the phylum Actinobacteria. Although it is one of the largest bacterial phylum, only 25 of the 342 genera have been reported to use quorum sensing. Of these, only nine have accompanying experimental evidence; the rest are only known through bioinformatic analysis of gene/genome sequences. It is evident that this important communication mechanism is not extensively explored in Actinobacteria. In this review, we summarize the different quorum sensing systems while identifying the limitations of the existing screening strategies and addressing the improvements that have taken place in this field in recent years. The γ-butyrolactone system turned out to be almost exclusively limited to this phylum. In addition, methylenomycin furans, AI-2 and other putative AHL-like signaling molecules are also reported in Actinobacteria. The lack of existing screening systems in detecting minute quantities and of a wider range of signaling molecules was a major reason behind the limited information available on quorum sensing in this phylum. However, recent improvements in screening strategies hold a promising future and are likely to increase the discovery of new signaling molecules. Further, the quorum quenching ability in many Actinobacteria has a great potential in controlling the spread of plant and animal pathogens. A systematic and coordinated effort is required to screen and exploit the enormous potential that quorum sensing in the phylum Actinobacteria has to offer for human benefit.

  11. Quorum Sensing: An Under-Explored Phenomenon in the Phylum Actinobacteria

    PubMed Central

    Polkade, Ashish V.; Mantri, Shailesh S.; Patwekar, Umera J.; Jangid, Kamlesh

    2016-01-01

    Quorum sensing is known to play a major role in the regulation of secondary metabolite production, especially, antibiotics, and morphogenesis in the phylum Actinobacteria. Although it is one of the largest bacterial phylum, only 25 of the 342 genera have been reported to use quorum sensing. Of these, only nine have accompanying experimental evidence; the rest are only known through bioinformatic analysis of gene/genome sequences. It is evident that this important communication mechanism is not extensively explored in Actinobacteria. In this review, we summarize the different quorum sensing systems while identifying the limitations of the existing screening strategies and addressing the improvements that have taken place in this field in recent years. The γ-butyrolactone system turned out to be almost exclusively limited to this phylum. In addition, methylenomycin furans, AI-2 and other putative AHL-like signaling molecules are also reported in Actinobacteria. The lack of existing screening systems in detecting minute quantities and of a wider range of signaling molecules was a major reason behind the limited information available on quorum sensing in this phylum. However, recent improvements in screening strategies hold a promising future and are likely to increase the discovery of new signaling molecules. Further, the quorum quenching ability in many Actinobacteria has a great potential in controlling the spread of plant and animal pathogens. A systematic and coordinated effort is required to screen and exploit the enormous potential that quorum sensing in the phylum Actinobacteria has to offer for human benefit. PMID:26904007

  12. What’s in a name? The semantics of quorum sensing

    PubMed Central

    Platt, Thomas G.; Fuqua, Clay

    2010-01-01

    The expression of many bacterial phenotypes is regulated according to the concentration of chemical cues that they or other bacteria produce, a process often termed quorum sensing. Many aspects of the environment can affect cue concentration. Thus these molecules might be indirect proxies for any one or combination of environmental factors. Recent research suggests that the adaptive significance of quorum sensing varies depending on its evolutionary and ecological context. Consequently, some researchers have proposed new terms, each emphasizing different adaptive functions, for the quorum sensing process. However, these new terms generate potential for a semantic quagmire and perpetuate the questionable notion that we can identify a single, dominant environmental feature to which the microbes respond. In fact, the ecological context of quorum sensing regulation, like the process itself, is complex and impacted by multiple aspects of natural environments. PMID:20573513

  13. Complex quorum-sensing regulatory systems regulate bacterial growth and symbiotic nodulation in Mesorhizobium tianshanense.

    PubMed

    Cao, Huijuan; Yang, Menghua; Zheng, Huiming; Zhang, Jiang; Zhong, Zengtao; Zhu, Jun

    2009-03-01

    LuxR/LuxI-type quorum-sensing systems have been shown to be important for symbiotic interactions between a number of rhizobium species and host legumes. In this study, we found that different isolates of Mesorhizobium tianshanense, a moderately-growing Rhizobium that forms nodules on a number of types of licorice plants, produces several different N-acyl homoserine lactone-like molecules. In M. tianshanense CCBAU060A, we performed a genetic screen and identified a network of regulatory components including a set of LuxI/LuxR-family regulators as well as a MarR-family regulator that is required for quorum-sensing regulation. Furthermore, compared with the wild-type strains, quorum-sensing deficient mutants showed a reduced growth rate and were defective in nodule formation on their host plant Glycyrrhiza uralensis. These data suggest that different M. tianshanense strains may use diverse quorum-sensing systems to regulate symbiotic process.

  14. Flavonoids Suppress Pseudomonas aeruginosa Virulence through Allosteric Inhibition of Quorum-sensing Receptors.

    PubMed

    Paczkowski, Jon E; Mukherjee, Sampriti; McCready, Amelia R; Cong, Jian-Ping; Aquino, Christopher J; Kim, Hahn; Henke, Brad R; Smith, Chari D; Bassler, Bonnie L

    2017-03-10

    Quorum sensing is a process of cell-cell communication that bacteria use to regulate collective behaviors. Quorum sensing depends on the production, detection, and group-wide response to extracellular signal molecules called autoinducers. In many bacterial species, quorum sensing controls virulence factor production. Thus, disrupting quorum sensing is considered a promising strategy to combat bacterial pathogenicity. Several members of a family of naturally produced plant metabolites called flavonoids inhibit Pseudomonas aeruginosa biofilm formation by an unknown mechanism. Here, we explore this family of molecules further, and we demonstrate that flavonoids specifically inhibit quorum sensing via antagonism of the autoinducer-binding receptors, LasR and RhlR. Structure-activity relationship analyses demonstrate that the presence of two hydroxyl moieties in the flavone A-ring backbone are essential for potent inhibition of LasR/RhlR. Biochemical analyses reveal that the flavonoids function non-competitively to prevent LasR/RhlR DNA binding. Administration of the flavonoids to P. aeruginosa alters transcription of quorum sensing-controlled target promoters and suppresses virulence factor production, confirming their potential as anti-infectives that do not function by traditional bacteriocidal or bacteriostatic mechanisms.

  15. The RNPP family of quorum-sensing proteins in Gram-positive bacteria.

    PubMed

    Rocha-Estrada, Jorge; Aceves-Diez, Angel E; Guarneros, Gabriel; de la Torre, Mayra

    2010-07-01

    Quorum sensing is one of several mechanisms that bacterial cells use to interact with each other and coordinate certain physiological processes in response to cell density. This mechanism is mediated by extracellular signaling molecules; once a critical threshold concentration has been reached, a target sensor kinase or response regulator is activated (or repressed), facilitating the expression of quorum sensing-dependent genes. Gram-positive bacteria mostly use oligo-peptides as signaling molecules. These cells have a special kind of quorum-sensing systems in which the receptor protein interacts directly with its cognate signaling peptide. The receptors are either Rap phosphatases or transcriptional regulators and integrate the protein family RNPP, from Rap, Npr, PlcR, and PrgX. These quorum-sensing systems control several microbial processes, like sporulation, virulence, biofilm formation, conjugation, and production of extracellular enzymes. Insights of the mechanism of protein-signaling peptide binding as well as the molecular interaction among receptor protein, signaling peptide, and target DNA have changed some earlier perceptions. In spite of the increased knowledge and the potential biotechnological applications of these quorum-sensing systems, few examples on engineering for biotechnological applications have been published. Real applications will arise only when researchers working in applied microbiology and biotechnology are aware of the importance of quorum-sensing systems for health and bioprocess applications.

  16. [Quorum sensing involved in the regulation of secondary metabolism in streptomycetes--a review].

    PubMed

    Liu, Ming; Li, Aiying

    2011-05-01

    Quorum sensing as an extracellular signal transduction system is distributed widely among many bacteria to coordinate their behaviors or actions by mediating gene expression, and plays key roles in many physiological processes and pathogenicity. Quorum sensing was also observed among many streptomycetes, as an important regulatory mechanism of secondary metabolite biosynthesis and/or cell differentiation, and displayed certain diversity of the autoinducer structures and action mechanisms. The participation of A-factor-driven quorum sensing systems in the secondary metabolism has been extensively studied, and triggered the identification of a major signal class featured with gamma-butyrolactone core. Additionally, PI-factor, M-factor and certain small antibiotic molecules recently found in streptomycetes clearly could play important roles in the biosynthetic pathways of some antibiotics, and might represent extracellular autoinducer classes with novel structures. Meanwhile, some specific products of streptomycetes including cholesterol oxidase and glycerol have been identified to function as cell-signaling molecules which modulate the secondary metabolic activities in streptomycetes, probably by the mode of quorum sensing. Here, we reviewed research advances on quorum sensing systems involved in the accumulation of secondary metabolites in streptomycetes, mainly focusing on the clarification of their action modes and structural diversity of autoinducers. We also prospected the research trends in this field and application of autoinducers through quorum-sensing in metabolic engineering of natural products.

  17. Ambroxol interferes with Pseudomonas aeruginosa quorum sensing.

    PubMed

    Lu, Qi; Yu, Jialin; Yang, Xiqiang; Wang, Jiarong; Wang, Lijia; Lin, Yayin; Lin, Lihua

    2010-09-01

    The mucolytic agent ambroxol has been reported to interfere with the formation of Pseudomonas aeruginosa-derived biofilms in addition to reducing alginate production by undefined mechanisms. Since quorum sensing is a key regulator of virulence and biofilm formation, we examined the effects of ambroxol on P. aeruginosa PAO1 wild-type bacterial clearance rates, adhesion profiles and biofilm formation compared with the quorum sensing-deficient, double-mutant strains DeltalasR DeltarhlR and DeltalasI DeltarhlI. Data presented in this report demonstrated that ambroxol treatment reduced survival rates of the double-mutant strains compared with the wild-type strain in a dose-dependent manner even though the double-mutants had increased adhesion in the presence of ambroxol compared with the wild-type strain. The PAO1 wild-type strain produced a significantly thicker biofilm (21.64+/-0.57 microm) compared with the biofilms produced by the DeltalasR DeltarhlR (7.36+/-0.2 microm) and DeltalasI DeltarhlI (6.62+/-0.31 microm) isolates. Ambroxol treatment reduced biofilm thickness, increased areal porosity, and decreased the average diffusion distance and textual entropy of wild-type and double-mutant strains. However, compared with the double-mutant strains, the changes observed for the wild-type strain were more clearly defined. Finally, ambroxol exhibited significant antagonistic quorum-sensing properties, suggesting that it could be adapted for use clinically in the treatment of cystic fibrosis and to reduce biofilm formation and in the colonisation of indwelling devices. Copyright (c) 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  18. Metagenomic approaches to understanding phylogenetic diversity in quorum sensing.

    PubMed

    Kimura, Nobutada

    2014-04-01

    Quorum sensing, a form of cell-cell communication among bacteria, allows bacteria to synchronize their behaviors at the population level in order to control behaviors such as luminescence, biofilm formation, signal turnover, pigment production, antibiotics production, swarming, and virulence. A better understanding of quorum-sensing systems will provide us with greater insight into the complex interaction mechanisms used widely in the Bacteria and even the Archaea domain in the environment. Metagenomics, the use of culture-independent sequencing to study the genomic material of microorganisms, has the potential to provide direct information about the quorum-sensing systems in uncultured bacteria. This article provides an overview of the current knowledge of quorum sensing focused on phylogenetic diversity, and presents examples of studies that have used metagenomic techniques. Future technologies potentially related to quorum-sensing systems are also discussed.

  19. Bacterial quorum sensing and metabolic incentives to cooperate.

    PubMed

    Dandekar, Ajai A; Chugani, Sudha; Greenberg, E Peter

    2012-10-12

    The opportunistic pathogen Pseudomonas aeruginosa uses a cell-cell communication system termed "quorum sensing" to control production of public goods, extracellular products that can be used by any community member. Not all individuals respond to quorum-sensing signals and synthesize public goods. Such social cheaters enjoy the benefits of the products secreted by cooperators. There are some P. aeruginosa cellular enzymes controlled by quorum sensing, and we show that quorum sensing-controlled expression of such private goods can put a metabolic constraint on social cheating and prevent a tragedy of the commons. Metabolic constraint of social cheating provides an explanation for private-goods regulation by a cooperative system and has general implications for population biology, infection control, and stabilization of quorum-sensing circuits in synthetic biology.

  20. Metagenomic approaches to understanding phylogenetic diversity in quorum sensing

    PubMed Central

    Kimura, Nobutada

    2014-01-01

    Quorum sensing, a form of cell–cell communication among bacteria, allows bacteria to synchronize their behaviors at the population level in order to control behaviors such as luminescence, biofilm formation, signal turnover, pigment production, antibiotics production, swarming, and virulence. A better understanding of quorum-sensing systems will provide us with greater insight into the complex interaction mechanisms used widely in the Bacteria and even the Archaea domain in the environment. Metagenomics, the use of culture-independent sequencing to study the genomic material of microorganisms, has the potential to provide direct information about the quorum-sensing systems in uncultured bacteria. This article provides an overview of the current knowledge of quorum sensing focused on phylogenetic diversity, and presents examples of studies that have used metagenomic techniques. Future technologies potentially related to quorum-sensing systems are also discussed. PMID:24429899

  1. [Quorum sensing in bacteria and yeast].

    PubMed

    March Rosselló, Gabriel Alberto; Eiros Bouza, José María

    2013-10-19

    Bacterial sets are complex dynamic systems, which interact with each other and through the interaction, bacteria coexist, collaborate, compete and share information in a coordinated manner. A way of bacterial communication is quorum sensing. Through this mechanism the bacteria can recognize its concentration in a given environment and they can decide the time at which the expression of a particular set of genes should be started for developing a specific and simultaneous response. The result of these interconnections raises properties that cannot be explained from a single isolated bacterial cell.

  2. Effect of solid retention time on membrane fouling in membrane bioreactor: from the perspective of quorum sensing and quorum quenching.

    PubMed

    Yu, Huarong; Xu, Guoren; Qu, Fangshu; Li, Guibai; Liang, Heng

    2016-09-01

    Solid retention time (SRT) is one of the most important operational parameters in membrane bioreactor (MBR), which significantly influences membrane fouling. It is widely recognized that SRT mainly changes biomass characteristics, and then, influences membrane fouling. Effect of SRT on quorum sensing (QS) in MBR, which could also influence fouling by coordinating biofilm formation, has not been reported. In this study, fouling, QS, soluble microbial products (SMP), and extracellular polymer substances (EPS) in MBRs operated under SRTs of 4, 10, and 40 days were investigated. The results showed that as SRT increased, the abundance of quorum quenching (QQ) bacteria increased, the quorum signal degradation activity of activated sludge increased, the concentrations of signal molecules in MBR decreased, the excretion of SMP and EPS decreased, and thus membrane biofouling was alleviated. Therefore, besides altering the biomass physiochemical properties, SRT also changed the balance between QS and QQ in MBR, and in this way, influenced membrane biofouling.

  3. The impact of quorum sensing on the virulence of Aeromonas hydrophila and Aeromonas salmonicida towards burbot (Lota lota L.) larvae.

    PubMed

    Natrah, F M I; Alam, Md Iftakharul; Pawar, Sushant; Harzevili, A Shiri; Nevejan, Nancy; Boon, Nico; Sorgeloos, Patrick; Bossier, Peter; Defoirdt, Tom

    2012-09-14

    In this study, the link between quorum sensing in Aeromonas spp. and its virulence towards burbot (Lota lota) was investigated. High mortality occurred in burbot juveniles challenged with Aeromonas salmonicida HN-00, but not in juveniles challenged with Aeromonas hydrophila AH-1N. Meanwhile, both A. hydrophila AH-1N and A. salmonicida HN-00 were virulent towards larvae. The effect of quorum sensing on the virulence of A. hydrophila AH-1N towards burbot larvae was further investigated using quorum sensing mutants (N-(butyryl)-L-homoserine lactone production and receptor mutants). Challenge with these mutants resulted in higher survival of burbot larvae when compared to challenge with the wild type, and the addition of the signal molecule N-butyryl-L-homoserine lactone restored the virulence of the quorum sensing production mutant. Moreover, quorum sensing inhibitors protected the burbot larvae from both Aeromonas strains. Finally, the freshwater micro-algae Chlorella saccharophila and Chlamydomonas reinhardtii, which are able to interfere with quorum sensing, also protected burbot from the pathogens. However, QS interference was unlikely to be the only mechanism. This study revealed that the virulence of Aeromonas spp. towards burbot is regulated by quorum sensing and that quorum sensing inhibitors and micro-algae are promising biocontrol agents.

  4. Quorum sensing and policing of Pseudomonas aeruginosa social cheaters

    PubMed Central

    Wang, Meizhen; Schaefer, Amy L.; Dandekar, Ajai A.; Greenberg, E. Peter

    2015-01-01

    The bacterium Pseudomonas aeruginosa is an opportunistic human pathogen that uses a quorum sensing signal cascade to activate expression of dozens of genes when sufficient population densities have been reached. Quorum sensing controls production of several key virulence factors, including secreted proteases such as elastase. Cooperating groups of bacteria growing on protein are susceptible to social cheating by quorum-sensing defective mutants. A possible way to restrict cheater emergence is by policing where cooperators produce costly goods to sanction or punish cheats. The P. aeruginosa LasR-LasI quorum sensing system controls genes including those encoding proteases and also those encoding a second quorum-sensing system, the RhlR-RhlI system, which controls numerous genes including those for cyanide production. By using RhlR quorum sensing mutants and cyanide synthesis mutants, we show that cyanide production is costly and cyanide-producing cooperators use cyanide to punish LasR-null social cheaters. Cooperators are less susceptible to cyanide than are LasR mutants. These experiments demonstrate policing in P. aeruginosa, provide a mechanistic understanding of policing, and show policing involves the cascade organization of the two quorum sensing systems in this bacterium. PMID:25646454

  5. Quorum sensing and policing of Pseudomonas aeruginosa social cheaters.

    PubMed

    Wang, Meizhen; Schaefer, Amy L; Dandekar, Ajai A; Greenberg, E Peter

    2015-02-17

    The bacterium Pseudomonas aeruginosa is an opportunistic human pathogen that uses a quorum sensing signal cascade to activate expression of dozens of genes when sufficient population densities have been reached. Quorum sensing controls production of several key virulence factors, including secreted proteases such as elastase. Cooperating groups of bacteria growing on protein are susceptible to social cheating by quorum-sensing defective mutants. A possible way to restrict cheater emergence is by policing where cooperators produce costly goods to sanction or punish cheats. The P. aeruginosa LasR-LasI quorum sensing system controls genes including those encoding proteases and also those encoding a second quorum-sensing system, the RhlR-RhlI system, which controls numerous genes including those for cyanide production. By using RhlR quorum sensing mutants and cyanide synthesis mutants, we show that cyanide production is costly and cyanide-producing cooperators use cyanide to punish LasR-null social cheaters. Cooperators are less susceptible to cyanide than are LasR mutants. These experiments demonstrate policing in P. aeruginosa, provide a mechanistic understanding of policing, and show policing involves the cascade organization of the two quorum sensing systems in this bacterium.

  6. Bacterial quorum sensing: functional features and potential applications in biotechnology.

    PubMed

    Mangwani, Neelam; Dash, Hirak Ranjan; Chauhan, Ashvini; Das, Surajit

    2012-01-01

    Quorum sensing (QS) represents an exceptional pattern of cell-to-cell communication in bacteria using self-synthesized signalling molecules known as autoinducers. Various features regulated by QS in bacteria include virulence, biofilm formation, sporulation, genetic competence and bioluminescence, among others. Other than the diverse signalling properties of autoinducers, there are non-signalling properties also associated with these signalling molecules which make them potential antimicrobial agents and metal chelators. Additionally, QS signal antagonism has also been shown to be a promising alternative for blocking pathogenic diseases. Besides, QS has impressive design features useful in tissue engineering and biosensor technology. Although many aspects of QS are well understood, several other features remain largely unknown, especially in biotechnology applications. This review focuses on the functional features and potential applications of QS signalling molecules in biotechnology. Copyright © 2012 S. Karger AG, Basel.

  7. Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria.

    PubMed

    Winzer, K; Williams, P

    2001-05-01

    For many pathogens, the outcome of the interaction between host and bacterium is strongly affected by the bacterial population size. Coupling the production of virulence factors with cell population density ensures that the mammalian host lacks sufficient time to mount an effective defence against consolidated attack. Such a strategy depends on the ability of an individual bacterial cell to sense other members of the same species and in response, differentially express specific sets of genes. Such cell-cell communication is called "quorum sensing" and involves the direct or indirect activation of a response regulator by a small diffusible signal molecule. A number of chemically distinct quorum-sensing signal molecules have been described including the N-acyl-L-homoserine lactones (AHLs) in Gram-negative bacteria and post-translationally modified peptides in Gram-positive bacteria. For example, the human pathogens Pseudomonas aeruginosa and Staphylococcus aureus employ AHLs and peptides, respectively, to control the expression of multiple virulence genes in concert with cell population density. Apart from their role in signal transduction, certain quorum-sensing signal molecules, notably N-(3-oxododecanoyl)homoserine lactone, possess intrinsic pharmacological and immunomodulatory activities such that they may function as virulence determinants per se. While quorum-sensing signal molecules have been detected in tissues in experimental animal model and human infections, the mutation of genes involved in either quorum-sensing signal generation or signal transduction frequently results in the attenuation of virulence. Thus, interference with quorum sensing represents a promising strategy for the therapeutic or prophylactic control of infection.

  8. Quorum-Sensing Signal-Response Systems in Gram-Negative Bacteria

    PubMed Central

    Papenfort, Kai; Bassler, Bonnie

    2016-01-01

    Abstract / Preface Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal–response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host–microbial associations and antibacterial therapy. PMID:27510864

  9. Quorum-Sensing Kinetics in Saccharomyces cerevisiae: A Symphony of ARO Genes and Aromatic Alcohols.

    PubMed

    Avbelj, Martina; Zupan, Jure; Kranjc, Luka; Raspor, Peter

    2015-09-30

    The kinetics of quorum sensing in Saccharomyces cerevisiae were studied using a mini-fermentation platform. The quorum-sensing molecules were monitored using our previous HPLC approach that is here supported by quantitative real-time PCR analysis of the quorum-sensing genes. We thus initially confirm correlations between peak production rates of the monitored quorum-sensing molecules 2-phenylethanol, tryptophol, and tyrosol and peak expression of the genes responsible for their synthesis: ARO8, ARO9, and ARO10. This confirms the accuracy of our previously implemented kinetic model, thus favoring its use in further studies in this field. We also show that the quorum-sensing kinetics are precisely dependent on the population growth phase and that tyrosol production is also regulated by cell concentration, which has not been reported previously. Additionally, we show that during wine fermentation, ethanol stress reduces the production of 2-phenylethanol, tryptophol, and tyrosol, which opens new challenges in the control of wine fermentation.

  10. Quorum sensing: How bacteria can coordinate activity and synchronize their response to external signals?

    PubMed Central

    Li, Zhi; Nair, Satish K

    2012-01-01

    Quorum sensing is used by a large variety of bacteria to regulate gene expression in a cell-density-dependent manner. Bacteria can synchronize population behavior using small molecules called autoinducers that are produced by cognate synthases and recognized by specific receptors. Quorum sensing plays critical roles in regulating diverse cellular functions in bacteria, including bioluminescence, virulence gene expression, biofilm formation, and antibiotic resistance. The best-studied autoinducers are acyl homoserine lactone (AHL) molecules, which are the primary quorum sensing signals used by Gram-negative bacteria. In this review we focus on the AHL-dependent quorum sensing system and highlight recent progress on structural and mechanistic studies of AHL synthases and the corresponding receptors. Crystal structures of LuxI-type AHL synthases provide insights into acyl-substrate specificity, but the current knowledge is still greatly limited. Structural studies of AHL receptors have facilitated a more thorough understanding of signal perception and established the molecular framework for the development of quorum sensing inhibitors. PMID:22825856

  11. Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in Aeromonas hydrophila.

    PubMed

    Jahid, Iqbal Kabir; Lee, Na-Young; Kim, Anna; Ha, Sang-Do

    2013-02-01

    Aeromonas hydrophila recently has received increased attention because it is opportunistic and a primary human pathogen. A. hydrophila biofilm formation and its control are a major concern for food safety because biofilms are related to virulence. Therefore, we investigated biofilm formation, motility inhibition, quorum sensing, and exoprotease production of this opportunistic pathogen in response to various glucose concentrations from 0.05 to 2.5% (wt/vol). More than 0.05% glucose significantly impaired (P < 0.05) quorum sensing, biofilm formation, protease production, and swarming and swimming motility, whereas bacteria treated with 0.05% glucose had activity similar to that of the control (0% glucose). A stage shift biofilm assay revealed that the addition of glucose (2.5%) inhibited initial biofilm formation but not later stages. However, addition of quorum sensing molecules N-3-butanoyl-DL-homoserine lactone and N-3-hexanoyl homoserine lactone partially restored protease production, indicating that quorum sensing is controlled by glucose concentrations. Thus, glucose present in food or added as a preservative could regulate acyl-homoserine lactone quorum sensing molecules, which mediate biofilm formation and virulence in A. hydrophila.

  12. ["Quorum sensing" or social behavior of bacteria].

    PubMed

    Gintsburg, A L; Il'ina, T S; Romanova, Iu M

    2003-01-01

    The review deals with the data of literature on the role of the "quorum sensing" (QS) system ensuring the social behavior of bacteria in the regulation of virulence genes. The mechanisms of the action of these systems in Gram-negative and Gram-positive bacteria, as well as the influence of acyl-homoserine lactones, one of the components of the QS system, on the immune response of the infected host are discussed. In addition, in this review the data of literature on the existence of bacteria in the form of biofilms are presented. The methods of the identification of biofilms, the methods of their experimental preparation and the role of the QS system in the process of their formation are considered.

  13. Control of bacterial metabolism by quorum sensing.

    PubMed

    Goo, Eunhye; An, Jae Hyung; Kang, Yongsung; Hwang, Ingyu

    2015-09-01

    Bacterial quorum sensing (QS)-dependent gene expression is a dynamic response to cell density. Bacteria produce costly public goods for the benefit of the population as a whole. As an example, QS rewires cellular metabolism to produce oxalate (a public good) to enable survival during the stationary phase in Burkholderia glumae, Burkholderia thailandensis, and Burkholderia pseudomallei. Recent reports showed that QS serves as a metabolic brake to maintain homeostatic primary metabolism in B. glumae and readjusts the central metabolism of Pseudomonas aeruginosa. In this review, we emphasize the dynamics and complexity of the control of gene expression by QS and discuss the metabolic costs and possible metabolic options to sustain cooperativity. We then focus on how QS influences bacterial central metabolism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Quorum sensing in streptococcal biofilm formation.

    PubMed

    Suntharalingam, Prashanth; Cvitkovitch, Dennis G

    2005-01-01

    Bacteria in their natural ecosystems preferentially grow as polysaccharide-encased biofilms attached to surfaces. Although quorum-sensing (QS) systems directing the 'biofilm phenotype' have been extensively described in Gram-negative bacteria, there is little understanding of the importance of these systems in Gram-positive biofilm formation. Streptococci are a diverse group of Gram-positive bacteria that colonize epithelial, mucosal and tooth surfaces of humans. In several streptococci, competence-stimulating peptide (CSP)-mediated QS has been connected with competence development for genetic transformation. Recent work, especially with bacteria that inhabit the biofilm of dental plaque, has linked CSP stimuli to other cell-density adaptations, such as biofilm formation.

  15. Electronic Implementation of a Repressilator with Quorum Sensing Feedback

    PubMed Central

    Hellen, Edward H.; Dana, Syamal K.; Zhurov, Boris; Volkov, Evgeny

    2013-01-01

    We investigate the dynamics of a synthetic genetic repressilator with quorum sensing feedback. In a basic genetic ring oscillator network in which three genes inhibit each other in unidirectional manner, an additional quorum sensing feedback loop stimulates the activity of a chosen gene providing competition between inhibitory and stimulatory activities localized in that gene. Numerical simulations show several interesting dynamics, multi-stability of limit cycle with stable steady-state, multi-stability of different stable steady-states, limit cycle with period-doubling and reverse period-doubling, and infinite period bifurcation transitions for both increasing and decreasing strength of quorum sensing feedback. We design an electronic analog of the repressilator with quorum sensing feedback and reproduce, in experiment, the numerically predicted dynamical features of the system. Noise amplification near infinite period bifurcation is also observed. An important feature of the electronic design is the accessibility and control of the important system parameters. PMID:23658793

  16. Cooperation and conflict in quorum-sensing bacterial populations.

    PubMed

    Diggle, Stephen P; Griffin, Ashleigh S; Campbell, Genevieve S; West, Stuart A

    2007-11-15

    It has been suggested that bacterial cells communicate by releasing and sensing small diffusible signal molecules in a process commonly known as quorum sensing (QS). It is generally assumed that QS is used to coordinate cooperative behaviours at the population level. However, evolutionary theory predicts that individuals who communicate and cooperate can be exploited. Here we examine the social evolution of QS experimentally in the opportunistic pathogen Pseudomonas aeruginosa, and show that although QS can provide a benefit at the group level, exploitative individuals can avoid the cost of producing the QS signal or of performing the cooperative behaviour that is coordinated by QS, and can therefore spread. We also show that a solution to the problem of exploitation is kin selection, if interacting bacterial cells tend to be close relatives. These results show that the problem of exploitation, which has been the focus of considerable attention in animal communication, also arises in bacteria.

  17. Quorum sensing positively regulates flagellar motility in pathogenic Vibrio harveyi.

    PubMed

    Yang, Qian; Defoirdt, Tom

    2015-04-01

    Vibrios belonging to the Harveyi clade are among the major pathogens of aquatic organisms. Quorum sensing (QS) is essential for virulence of V. harveyi towards different hosts. However, most virulence factors reported to be controlled by QS to date are negatively regulated by QS, therefore suggesting that their impact on virulence is limited. In this study, we report that QS positively regulates flagellar motility. We found that autoinducer synthase mutants showed significantly lower swimming motility than the wild type, and the swimming motility could be restored by adding synthetic signal molecules. Further, motility of a luxO mutant with inactive QS (LuxO D47E) was significantly lower than that of the wild type and of a luxO mutant with constitutively maximal QS activity (LuxO D47A). Furthermore, we found that the expression of flagellar genes (both early, middle and late genes) was significantly lower in the luxO mutant with inactive QS when compared with wild type and the luxO mutant with maximal QS activity. Motility assays and gene expression also revealed the involvement of the quorum-sensing master regulator LuxR in the QS regulation of motility. Finally, the motility inhibitor phenamil significantly decreased the virulence of V. harveyi towards gnotobiotic brine shrimp larvae.

  18. Chemical methods to interrogate bacterial quorum sensing pathways

    PubMed Central

    Praneenararat, Thanit; Palmer, Andrew G.

    2012-01-01

    Bacteria frequently manifest distinct phenotypes as a function of cell density in a phenomenon known as quorum sensing (QS). This intercellular signalling process is mediated by “chemical languages comprised of low-molecular weight signals, known as” autoinducers, and their cognate receptor proteins. As many of the phenotypes regulated by QS can have a significant impact on the success of pathogenic or mutualistic prokaryotic–eukaryotic interactions, there is considerable interest in methods to probe and modulate QS pathways with temporal and spatial control. Such methods would be valuable for both basic research in bacterial ecology and in practical medicinal, agricultural, and industrial applications. Toward this goal, considerable recent research has been focused on the development of chemical approaches to study bacterial QS pathways. In this Perspective, we provide an overview of the use of chemical probes and techniques in QS research. Specifically, we focus on: (1) combinatorial approaches for the discovery of small molecule QS modulators, (2) affinity chromatography for the isolation of QS receptors, (3) reactive and fluorescent probes for QS receptors, (4) antibodies as quorum “quenchers,” (5) abiotic polymeric “sinks” and “pools” for QS signals, and (6) the electrochemical sensing of QS signals. The application of such chemical methods can offer unique advantages for both elucidating and manipulating QS pathways in culture and under native conditions. PMID:22948815

  19. Small Molecule Inhibitors of AI-2 Signaling in Bacteria: State-of-the-Art and Future Perspectives for Anti-Quorum Sensing Agents

    PubMed Central

    Guo, Min; Gamby, Sonja; Zheng, Yue; Sintim, Herman O.

    2013-01-01

    Bacteria respond to different small molecules that are produced by other neighboring bacteria. These molecules, called autoinducers, are classified as intraspecies (i.e., molecules produced and perceived by the same bacterial species) or interspecies (molecules that are produced and sensed between different bacterial species). AI-2 has been proposed as an interspecies autoinducer and has been shown to regulate different bacterial physiology as well as affect virulence factor production and biofilm formation in some bacteria, including bacteria of clinical relevance. Several groups have embarked on the development of small molecules that could be used to perturb AI-2 signaling in bacteria, with the ultimate goal that these molecules could be used to inhibit bacterial virulence and biofilm formation. Additionally, these molecules have the potential to be used in synthetic biology applications whereby these small molecules are used as inputs to switch on and off AI-2 receptors. In this review, we highlight the state-of-the-art in the development of small molecules that perturb AI-2 signaling in bacteria and offer our perspective on the future development and applications of these classes of molecules. PMID:23994835

  20. Whole-Genome Analysis of Quorum-Sensing Burkholderia sp. Strain A9

    PubMed Central

    Chen, Jian Woon; Tee, Kok Keng; Chang, Chien-Yi; Yin, Wai-Fong; Chan, Xin-Yue

    2015-01-01

    Burkholderia spp. rely on N-acyl homoserine lactone as quorum-sensing signal molecules which coordinate their phenotype at the population level. In this work, we present the whole genome of Burkholderia sp. strain A9, which enables the discovery of its N-acyl homoserine lactone synthase gene. PMID:25745000

  1. Facultative cheating supports the coexistence of diverse quorum-sensing alleles.

    PubMed

    Pollak, Shaul; Omer-Bendori, Shira; Even-Tov, Eran; Lipsman, Valeria; Bareia, Tasneem; Ben-Zion, Ishay; Eldar, Avigdor

    2016-02-23

    Bacterial quorum sensing enables bacteria to cooperate in a density-dependent manner via the group-wide secretion and detection of specific autoinducer molecules. Many bacterial species show high intraspecific diversity of autoinducer-receptor alleles, called pherotypes. The autoinducer produced by one pherotype activates its coencoded receptor, but not the receptor of another pherotype. It is unclear what selection forces drive the maintenance of pherotype diversity. Here, we use the ComQXPA system of Bacillus subtilis as a model system, to show that pherotype diversity can be maintained by facultative cheating--a minority pherotype exploits the majority, but resumes cooperation when its frequency increases. We find that the maintenance of multiple pherotypes by facultative cheating can persist under kin-selection conditions that select against "obligate cheaters" quorum-sensing response null mutants. Our results therefore support a role for facultative cheating and kin selection in the evolution of quorum-sensing diversity.

  2. Ultrasensitivity and noise amplification in a model of V. harveyi quorum sensing

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.

    2016-06-01

    We analyze ultrasensitivity in a model of Vibrio harveyi quorum sensing. We consider a feedforward model consisting of two biochemical networks per cell. The first represents the interchange of a signaling molecule (autoinducer) between the cell cytoplasm and an extracellular domain and the binding of intracellular autoinducer to cognate receptors. The unbound and bound receptors within each cell act as kinases and phosphotases, respectively, which then drive a second biochemical network consisting of a phosphorylation-dephosphorylation cycle. We ignore subsequent signaling pathways associated with gene regulation and the possible modification in the production rate of an autoinducer (positive feedback). We show how the resulting quorum sensing system exhibits ultrasensitivity with respect to changes in cell density. We also demonstrate how quorum sensing can protect against the noise amplification of fast environmental fluctuations in comparison to a single isolated cell.

  3. Facultative cheating supports the coexistence of diverse quorum-sensing alleles

    PubMed Central

    Pollak, Shaul; Omer-Bendori, Shira; Even-Tov, Eran; Lipsman, Valeria; Bareia, Tasneem; Ben-Zion, Ishay; Eldar, Avigdor

    2016-01-01

    Bacterial quorum sensing enables bacteria to cooperate in a density-dependent manner via the group-wide secretion and detection of specific autoinducer molecules. Many bacterial species show high intraspecific diversity of autoinducer–receptor alleles, called pherotypes. The autoinducer produced by one pherotype activates its coencoded receptor, but not the receptor of another pherotype. It is unclear what selection forces drive the maintenance of pherotype diversity. Here, we use the ComQXPA system of Bacillus subtilis as a model system, to show that pherotype diversity can be maintained by facultative cheating—a minority pherotype exploits the majority, but resumes cooperation when its frequency increases. We find that the maintenance of multiple pherotypes by facultative cheating can persist under kin-selection conditions that select against “obligate cheaters” quorum-sensing response null mutants. Our results therefore support a role for facultative cheating and kin selection in the evolution of quorum-sensing diversity. PMID:26787913

  4. The Effect of Magnetic Fields on the Quorum Sensing-Regulated Luminescence of Vibrio fischeri

    NASA Astrophysics Data System (ADS)

    Barron, Addie; Hagen, Steve; Son, Minjun

    2015-03-01

    Quorum sensing (QS) is a mechanism by which bacteria communicate through the secretion and detection of extracellular signaling molecules known as autoinducers. This research focuses on the quorum sensing regulated bioluminescence of Vibrio fischeri, a marine bacterium that lives in symbiosis with certain fish and squid species. Previous studies of V. harveyi, a close relative of V. fisheri, indicate that a strong magnetic field has a positive effect on V.harveyi bioluminescence. However the effect of magnetic fields on quorum sensing-regulated luminescence is in general poorly understood. We grew V. fischeri in solid and liquid growth media, subject to strong static magnetic fields, and imaged the bioluminescence over a period of forty-eight hours. Luminescence patterns were analyzed in both the spatial and time dimensions. We find no indication that a magnetic field influences Vibrio fischeri luminescence either positively or negatively. This research was funded by the Grant Number NSF DMR-1156737.

  5. Quorum sensing in metal tolerance of Acinetobacter junii BB1A is associated with biofilm production.

    PubMed

    Sarkar, Suchitra; Chakraborty, Ranadhir

    2008-05-01

    Acinetobacter junii strain BB1A, a novel metal-tolerant bacterium, produced biofilm in the presence of added ions such as Ni(2+), AsO(2)(-), Cd(2+) and Hg(2+) on surfaces such as glass and polystyrene. Generation of a metal-sensitive and adhesion-deficient mutant by transposition of Tn5-mob in the A. junii genome has putatively confirmed the association of metal tolerance with the production of biofilm. The requirement of a critical cell density for biofilm formation and presence of acyl-homoserine lactone-like autoinducer molecules in the cell-free supernatant indicated the phenomenon of quorum sensing. Addition of a natural quorum-sensing inhibitor (garlic extract) or synthetic quorum-sensing inhibitor (4-nitro-pyridine oxide) significantly inhibited cell growth and biofilm formation in the presence of metal/metalloid ions.

  6. Novel quorum-sensing peptides mediating interspecies bacterial cell death.

    PubMed

    Kumar, Sathish; Kolodkin-Gal, Ilana; Engelberg-Kulka, Hanna

    2013-06-04

    ABSTRACT Escherichia coli mazEF is a toxin-antitoxin stress-induced module mediating cell death. It requires the quorum-sensing signal (QS) "extracellular death factor" (EDF), the penta-peptide NNWNN (EcEDF), enhancing the endoribonucleolytic activity of E. coli toxin MazF. Here we discovered that E. coli mazEF-mediated cell death could be triggered by QS peptides from the supernatants (SN) of the Gram-positive bacterium Bacillus subtilis and the Gram-negative bacterium Pseudomonas aeruginosa. In the SN of B. subtilis, we found one EDF, the hexapeptide RGQQNE, called BsEDF. In the SN of P. aeruginosa, we found three EDFs: the nonapeptide INEQTVVTK, called PaEDF-1, and two hexadecapeptides, VEVSDDGSGGNTSLSQ, called PaEDF-2, and APKLSDGAAAGYVTKA, called PaEDF-3. When added to a diluted E. coli cultures, each of these peptides acted as an interspecies EDF that triggered mazEF-mediated death. Furthermore, though their sequences are very different, each of these EDFs amplified the endoribonucleolytic activity of E. coli MazF, probably by interacting with different sites on E. coli MazF. Finally, we suggest that EDFs may become the basis for a new class of antibiotics that trigger death from outside the bacterial cells. IMPORTANCE Bacteria communicate with one another via quorum-sensing signal (QS) molecules. QS provides a mechanism for bacteria to monitor each other's presence and to modulate gene expression in response to population density. Previously, we added E. coli EDF (EcEDF), the peptide NNWNN, to this list of QS molecules. Here we extended the group of QS peptides to several additional different peptides. The new EDFs are produced by two other bacteria, Bacillus subtilis and Pseudomonas aeruginosa. Thus, in this study we established a "new family of EDFs." This family provides the first example of quorum-sensing molecules participating in interspecies bacterial cell death. Furthermore, each of these peptides provides the basis of a new class of

  7. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator.

    PubMed

    Corral-Lugo, Andrés; Daddaoua, Abdelali; Ortega, Alvaro; Espinosa-Urgel, Manuel; Krell, Tino

    2016-01-05

    Quorum sensing is a bacterial communication mechanism that controls genes, enabling bacteria to live as communities, such as biofilms. Homoserine lactone (HSL) molecules function as quorum-sensing signals for Gram-negative bacteria. Plants also produce previously unidentified compounds that affect quorum sensing. We identified rosmarinic acid as a plant-derived compound that functioned as an HSL mimic. In vitro assays showed that rosmarinic acid bound to the quorum-sensing regulator RhlR of Pseudomonas aeruginosa PAO1 and competed with the bacterial ligand N-butanoyl-homoserine lactone (C4-HSL). Furthermore, rosmarinic acid stimulated a greater increase in RhlR-mediated transcription in vitro than that of C4-HSL. In P. aeruginosa, rosmarinic acid induced quorum sensing-dependent gene expression and increased biofilm formation and the production of the virulence factors pyocyanin and elastase. Because P. aeruginosa PAO1 infection induces rosmarinic acid secretion from plant roots, our results indicate that rosmarinic acid secretion is a plant defense mechanism to stimulate a premature quorum-sensing response. P. aeruginosa is a ubiquitous pathogen that infects plants and animals; therefore, identification of rosmarinic acid as an inducer of premature quorum-sensing responses may be useful in agriculture and inform human therapeutic strategies.

  8. Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules.

    PubMed Central

    Swift, S; Karlyshev, A V; Fish, L; Durant, E L; Winson, M K; Chhabra, S R; Williams, P; Macintyre, S; Stewart, G S

    1997-01-01

    Spent culture supernatants from both Aeromonas hydrophila and Aeromonas salmonicida activate a range of biosensors responsive to N-acylhomoserine lactones (AHLs). The genes for a quorum sensing signal generator and a response regulator were cloned from each Aeromonas species and termed ahyRI and asaRI, respectively. Protein sequence homology analysis places the gene products within the growing family of LuxRI homologs. ahyR and asaR are transcribed divergently from ahyI and asaI, respectively, and in both Aeromonas species, the genes downstream have been identified by DNA sequence and PCR analysis. Downstream of both ahyI and asaI is a gene with close homology to iciA, an inhibitor of chromosome replication in Escherichia coli, a finding which implies that in Aeromonas, cell division may be linked to quorum sensing. The major signal molecule synthesized via both AhyI and AsaI was purified from spent culture supernatants and identified as N-(butanoyl)-L-homoserine lactone (BHL) by thin-layer chromatography, high-pressure liquid chromatography analysis, and mass spectrometry. In addition, a second, minor AHL, N-hexanoyl-L-homoserine lactone, was identified. Transcriptional reporter studies with ahyI::luxCDABE fusions indicate that AhyR and BHL are both required for ahyI transcription. For A. salmonicida, although the addition of exogenous BHL gives only a small stimulation of the production of serine protease with comparison to the control culture, the incorporation of a longer-chain AHL, N-(3-oxodecanoyl)-L-homoserine lactone, reduced the final level (by approximately 50%) and delayed the appearance (from an A650 of 0.9 in the control to an A650 of 1.2 in the test) of protease in the culture supernatant. These data add A. hydrophila and A. salmonicida to the growing family of gram-negative bacteria now known to control gene expression through quorum sensing. PMID:9286976

  9. Ratio-dependent quantity discrimination in quorum sensing ants.

    PubMed

    Cronin, Adam L

    2014-11-01

    To optimise behaviour, organisms require information on the quantity of various components of their environment, and the ability of animals to discriminate quantity has been a subject of considerable recent interest. This body of research hints at generalised mechanisms of quantity discrimination in vertebrates, but data on invertebrates are still relatively scarce. In this study, I present data on the quantification abilities of an invertebrate in a novel context: quorum sensing. Quorum sensing generates a behavioural response in group-living animals once a threshold number of individuals, a 'quorum', is detected performing some key action. This process forms the basis for consensus decision-making in many species and allows group-living organisms to decide among mutually exclusive alternatives without compromising group integrity. To determine when a quorum is achieved, individuals must assess the number of group members performing the key action. Social insects employ quorum decisions to decide among potential nest sites when searching for a new home. In the Japanese ant, Myrmecina nipponica, quorum thresholds increase with colony size, providing an opportunity to assess the accuracy of quantity discrimination at different stimulus magnitudes. In this study, I demonstrate that the variation in individual quorum thresholds around the mean increases with increasing colony size. This indicates that the quantity discrimination ability of ants decreases with stimulus magnitude, and thus exhibits ratio dependence in the manner of Weber's Law. This may have implications for the accuracy of consensus decision-making and other collective actions in a range of group-living organisms.

  10. Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors.

    PubMed

    Lupp, Claudia; Ruby, Edward G

    2005-06-01

    Vibrio fischeri possesses two quorum-sensing systems, ain and lux, using acyl homoserine lactones as signaling molecules. We have demonstrated previously that the ain system activates luminescence gene expression at lower cell densities than those required for lux system activation and that both systems are essential for persistent colonization of the squid host, Euprymna scolopes. Here, we asked whether the relative contributions of the two systems are also important at different colonization stages. Inactivation of ain, but not lux, quorum-sensing genes delayed initiation of the symbiotic relationship. In addition, our data suggest that lux quorum sensing is not fully active in the early stages of colonization, implying that this system is not required until later in the symbiosis. The V. fischeri luxI mutant does not express detectable light levels in symbiosis yet initiates colonization as well as the wild type, suggesting that ain quorum sensing regulates colonization factors other than luminescence. We used a recently developed V. fischeri microarray to identify genes that are controlled by ain quorum sensing and could be responsible for the initiation defect. We found 30 differentially regulated genes, including the repression of a number of motility genes. Consistent with these data, ain quorum-sensing mutants displayed an altered motility behavior in vitro. Taken together, these data suggest that the sequential activation of these two quorum-sensing systems with increasing cell density allows the specific regulation of early colonization factors (e.g., motility) by ain quorum sensing, whereas late colonization factors (e.g., luminescence) are preferentially regulated by lux quorum sensing.

  11. A new class of bacterial quorum sensing antagonists: glycomonoterpenols synthesized using linalool and alpha terpineol.

    PubMed

    Mukherji, Ruchira; Prabhune, Asmita

    2015-06-01

    With increasing burden of antibiotic resistant microorganism search for newer drug targets and potent drug molecules is a never ending scenario. Quorum sensing (QS), the phenomenon of bacterial cross-talk, is one such target that has captured the attention of many and has been touted as the future of new age antimicrobials. Quorum sensing has the potential to regulate a plethora of bacterial virulence phenotypes and search of molecules with powerful quorum sensing inhibitory (QSI) capacity are underway. Monoterpene alcohols like linalool and alpha terpineol have been shown to possess antimicrobial and anti-biofilm activity. However in this article we attempt to bring forth a new class of compounds, glycomonoterpenols, derived from monoterpenoids alcohols. These glycomonoterpenols have been synthesized using Candida bombicola ATCC 22214 by feeding the cells with linalool and alpha terpineol respectively as substrates in 10% glucose, production medium. The advantage of these molecules over their parent compound is their additional surfactant like property, increased solubility and enhanced QSI potential. A variety of gram-negative bacteria capable of elaborating quorum sensing mediated phenotypes have been selected and both these glycoterpenoid derivatives have been shown to possess strong anti-QS activity.

  12. Quorum Sensing Activity of Hafnia alvei Isolated from Packed Food

    PubMed Central

    Tan, Jia-Yi; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Quorum sensing (QS) is a mechanism adopted by bacteria to regulate expression of genes according to population density. N-acylhomoserine lactones (AHLs) are a type of QS signalling molecules commonly found in Gram-negative bacteria which have been reported to play a role in microbial spoilage of foods and pathogenesis. In this study, we isolated an AHL-producing Hafnia alvei strain (FB1) from spherical fish pastes. Analysis via high resolution triple quadrupole liquid chromatography/mass spectrometry (LC/MS) on extracts from the spent supernatant of H. alvei FB1 revealed the existence of two short chain AHLs: N-(3-oxohexanoyl) homoserine lactone (3-oxo-C6-HSL) and N-(3-oxo- octanoyl) homoserine lactone (3-oxo-C8-HSL). To our knowledge, this is the first report of the production of AHLs, especially 3-oxo-C8-HSL, by H. alvei. PMID:24736131

  13. Infection control by antibody disruption of bacterial quorum sensing signaling.

    PubMed

    Park, Junguk; Jagasia, Reshma; Kaufmann, Gunnar F; Mathison, John C; Ruiz, Diana I; Moss, Jason A; Meijler, Michael M; Ulevitch, Richard J; Janda, Kim D

    2007-10-01

    Quorum sensing (QS) is the process through which bacteria communicate utilizing small diffusible molecules termed autoinducers. It has been demonstrated that QS controls a plethora of microbial processes including the expression of virulence factors. Here we report an immunopharmacotherapeutic approach for the attenuation of QS in the Gram-positive human pathogen Staphylococcus aureus. An anti-autoinducer monoclonal antibody, AP4-24H11, was elicited against a rationally designed hapten, and efficiently inhibited QS in vitro through the sequestration of the autoinducing peptide (AIP)-4 produced by S. aureus RN4850. Importantly, AP4-24H11 suppressed S. aureus pathogenicity in an abscess formation mouse model in vivo and provided complete protection against a lethal S. aureus challenge. These findings provide a strong foundation for further investigations of immunopharmacotherapy for the treatment of bacterial infections in which QS controls the expression of virulence factors.

  14. Studying bacterial quorum-sensing at the single cell level

    NASA Astrophysics Data System (ADS)

    Delfino Perez, Pablo; Pelakh, Leslie; Young, Jonathan; Johnson, Elaine; Hagen, Stephen

    2010-03-01

    Like many bacterial species, Vibrio fischeri can detect its own population density through a quorum sensing (QS) mechanism. The bacterium releases a signal molecule (AI, autoinducer), which accumulates at high population density and triggers a genetic switch. In V.fischeri this leads to bioluminescence. Little is known about how stochastic gene expression affects QS at the level of single cells. We are imaging the luminescence of individual V.fischeri cells in a flow chamber and directly measuring the intercell variability in AI activation of the QS circuit. Our single-cell luminescence experiments allow us to track cells over time and characterize variations in their response to AI levels. We find heterogeneous response to the external signal: at a given AI concentration some cells may be strongly luminescent while others are virtually dark. The analysis of noise in the individual cell response can eventually lead to a better understanding of how cells use QS to gather information about their environment.

  15. Role of quorum sensing in bacterial infections.

    PubMed

    Castillo-Juárez, Israel; Maeda, Toshinari; Mandujano-Tinoco, Edna Ayerim; Tomás, María; Pérez-Eretza, Berenice; García-Contreras, Silvia Julieta; Wood, Thomas K; García-Contreras, Rodolfo

    2015-07-16

    Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed.

  16. Role of quorum sensing in bacterial infections

    PubMed Central

    Castillo-Juárez, Israel; Maeda, Toshinari; Mandujano-Tinoco, Edna Ayerim; Tomás, María; Pérez-Eretza, Berenice; García-Contreras, Silvia Julieta; Wood, Thomas K; García-Contreras, Rodolfo

    2015-01-01

    Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed. PMID:26244150

  17. Cyclic Feedback Systems with Quorum Sensing Coupling.

    PubMed

    Gedeon, Tomas; Pernarowski, Mark; Wilander, Adam

    2016-06-01

    Synchronization and desynchronization is of great interest in the study of circadian rhythms, metabolic oscillations and time-dependent cell aggregate behaviors. Several recent studies examine synchronization and other dynamics in models of repressilators coupled by a quorum sensing mechanism that uses a diffusive signal. Their numerical simulations have shown the complexity of the collective behavior depends sensitively on which protein upregulates diffusive signal. In this paper, we rigorously prove that the collective dynamics indeed strongly depends on how the signaling network integrates into the repressilator network. In fact we prove a general result for a class of negative cyclic feedback systems with signaling of which the repressilator is but one example. We show that if the feedback along the signaling loop is also negative, the resulting negative feedback, negative signaling (Nf-Ns) system admits either unique stable equilibrium, or a stable oscillation. When a positive signaling feedback is included, the system is no longer (Nf-Ns) and numerically exhibits multistable dynamics (Ullner et al. in Phys Rev Lett 99:148103, 2007; Phys Rev E 78:031904, 2008). We demonstrate that this multistability emerges through saddle node bifurcations of a sole cubic curve-as in generic bistable models.

  18. Synthetic analogs of bacterial quorum sensors

    SciTech Connect

    Iyer, Rashi S.; Ganguly, Kumkum; Silks, Louis A.

    2013-01-08

    Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

  19. Synthetic analogs of bacterial quorum sensors

    SciTech Connect

    Iyer, Rashi; Ganguly, Kumkum; Silks, Louis A

    2011-12-06

    Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

  20. Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa.

    PubMed

    Gökalsın, Barış; Sesal, Nüzhet Cenk

    2016-09-01

    Cystic Fibrosis is a genetic disease and it affects the respiratory and digestive systems. Pseudomonas aeruginosa infections in Cystic Fibrosis are presented as the main cause for high mortality and morbidity rates. Pseudomonas aeruginosa populations can regulate their virulence gene expressions via the bacterial communication system: quorum sensing. Inhibition of quorum sensing by employing quorum sensing inhibitors can leave the bacteria vulnerable. Therefore, determining natural sources to obtain potential quorum sensing inhibitors is essential. Lichens have ethnobotanical value for their medicinal properties and it is possible that their secondary metabolites have quorum sensing inhibitor properties. This study aims to investigate an alternative treatment approach by utilizing lichen secondary metabolite evernic acid to reduce the expressions of Pseudomonas aeruginosa virulence factors by inhibiting quorum sensing. For this purpose, fluorescent monitor strains were utilized for quorum sensing inhibitor screens and quantitative reverse-transcriptase PCR analyses were conducted for comparison. Results indicate that evernic acid is capable of inhibiting Pseudomonas aeruginosa quorum sensing systems.

  1. Integrated analysis of bacterial quorum-sensing networks

    NASA Astrophysics Data System (ADS)

    Kulkarni, Rahul

    2005-11-01

    The regulation of gene expression is fundamental to most processes in cellular biology. At the transcriptional level, regulation occurs by the binding of specific proteins called transcription factors to DNA. Post-transcriptional regulation is often carried out by small RNAs which have become the focus of intense research activity recently. The talk will discuss the physics and biology of these two regulatory mechanisms by focusing on a specific biological system: quorum-sensing networks in bacteria. Quorum sensing is the process by which bacteria communicate to regulate gene expression in response to cell population density. Using an integrated approach which combines computational modeling, bioinformatics and experimental molecular biology, we are studying quorum-sensing pathways in bacteria. This approach led to the discovery of multiple regulatory small RNAs which are an integral part of the quorum-sensing pathway in Vibrio cholerae and Vibrio harveyi. Modeling of regulation of and by small RNAs in quorum sensing reveals the circuit characteristics controlling the transition from the low cell-density response to the high cell-density response.

  2. Quorum sensing in the squid-Vibrio symbiosis.

    PubMed

    Verma, Subhash C; Miyashiro, Tim

    2013-08-07

    Quorum sensing is an intercellular form of communication that bacteria use to coordinate group behaviors such as biofilm formation and the production of antibiotics and virulence factors. The term quorum sensing was originally coined to describe the mechanism underlying the onset of luminescence production in cultures of the marine bacterium Vibrio fischeri. Luminescence and, more generally, quorum sensing are important for V. fischeri to form a mutualistic symbiosis with the Hawaiian bobtail squid, Euprymna scolopes. The symbiosis is established when V. fischeri cells migrate via flagella-based motility from the surrounding seawater into a specialized structure injuvenile squid called the light organ. The cells grow to high cell densities within the light organ where the infection persists over the lifetime of the animal. A hallmark of a successful symbiosis is the luminescence produced by V. fischeri that camouflages the squid at night by eliminating its shadow within the water column. While the regulatory networks governing quorum sensing are critical for properly regulating V. fischeri luminescence within the squid light organ, they also regulate luminescence-independent processes during symbiosis. In this review, we discuss the quorum-sensing network of V. fischeri and highlight its impact at various stages during host colonization.

  3. The Fe(III) and Ga(III) coordination chemistry of 3-(1-hydroxymethylidene) and 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione: novel tetramic acid degradation products of homoserine lactone bacterial quorum sensing molecules.

    PubMed

    Romano, Ariel A; Hahn, Tobias; Davis, Nicole; Lowery, Colin A; Struss, Anjali K; Janda, Kim D; Böttger, Lars H; Matzanke, Berthold F; Carrano, Carl J

    2012-02-01

    Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C(12)-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication. Because these tetramic acids also appear to bind iron with appreciable affinity it was suggested that metal binding might contribute to their biological activity. Here, using a variety of spectroscopic tools, we describe the coordination chemistry of both the methylidene and decylidene tetramic acid derivatives with Fe(III) and Ga(III) and discuss the potential biological significance of such metal binding.

  4. The Fe(III) and Ga(III) coordination chemistry of 3-(1-hydroxymethylidene) and 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione: Novel tetramic acid degradation products of homoserine lactone bacterial quorum sensing molecules

    PubMed Central

    Romano, Ariel A.; Hahn, Tobias; Davis, Nicole; Lowery, Colin A.; Struss, Anjali K.; Janda, Kim D.; Böttger, Lars H.; Matzanke, Berthold F.; Carrano, Carl J.

    2011-01-01

    Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C12-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication. Because these tetramic acids also appear to bind iron with appreciable affinity it was suggested that metal binding might contribute to their biological activity. Here, using a variety of spectroscopic tools, we describe the coordination chemistry of both the methylidene and decylidene tetramic acid derivatives with Fe(III) and Ga(III) and discuss the potential biological significance of such metal binding. PMID:22178671

  5. Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance.

    PubMed

    Bhardwaj, Ashima K; Vinothkumar, Kittappa; Rajpara, Neha

    2013-04-01

    Quorum sensing (QS) is a bacterial communication process that depends on the bacterial population density. It involves small diffusible signaling molecules which activate the expression of myriad genes that control diverse array of functions like bioluminescence, virulence, biofilm formation, sporulation, to name a few. Since QS is responsible for virulence in the clinically relevant bacteria, inhibition of QS appears to be a promising strategy to control these pathogenic bacteria. With indiscriminate use of antibiotics, there has been an alarming increase in the number of antibiotic resistant pathogens. Antibiotics are no longer the magic bullets they were once thought to be and therefore there is a need for development of new antibiotics and/or other novel strategies to combat the infections caused by multidrug resistant organisms. Quorum sensing inhibition or quorum quenching has been pursued as one of such novel strategies. While antibiotics kill or slow down the growth of bacteria, quorum sensing inhibitors (QSIs) or quorum quenchers (QQs) attenuate bacterial virulence. A large body of work on QS has been carried out in deadly pathogens like Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio fischeri, V. harveyi, Escherichia coli and V. cholerae etc to unravel the mechanisms of QS as well as identify and study QSIs. This review describes various aspects of QS, QSI, different model systems to study these phenomena and recent patents on various QSIs. It suggests QSIs as attractive alternatives for controlling human, animal and plant pathogens and their utility in agriculture and other industries.

  6. A structural perspective on the mechanisms of quorum sensing activation in bacteria.

    PubMed

    Lixa, Carolina; Mujo, Amanda; Anobom, Cristiane D; Pinheiro, Anderson S

    2015-01-01

    Bacteria are able to synchronize the population behavior in order to regulate gene expression through a cell-to-cell communication mechanism called quorum sensing. This phenomenon involves the production, detection and the response to extracellular signaling molecules named autoinducers, which directly or indirectly regulate gene expression in a cell density-dependent manner. Quorum sensing may control a wide range of biological processes in bacteria, such as bioluminescence, virulence factor production, biofilm formation and antibiotic resistance. The autoinducers are recognized by specific receptors that can either be membrane-bound histidine kinase receptors, which work by activating cognate cytoplasmic response regulators, or cytoplasmic receptors acting as transcription factors. In this review, we focused on the cytosolic quorum sensing regulators whose three-dimensional structures helped elucidate their mechanisms of action. Structural studies of quorum sensing receptors may enable the rational design of inhibitor molecules. Ultimately, this approach may represent an effective alternative to treat infections where classical antimicrobial therapy fails to overcome the microorganism virulence.

  7. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation.

    PubMed

    O'Loughlin, Colleen T; Miller, Laura C; Siryaporn, Albert; Drescher, Knut; Semmelhack, Martin F; Bassler, Bonnie L

    2013-10-29

    Quorum sensing is a chemical communication process that bacteria use to regulate collective behaviors. Disabling quorum-sensing circuits with small molecules has been proposed as a potential strategy to prevent bacterial pathogenicity. The human pathogen Pseudomonas aeruginosa uses quorum sensing to control virulence and biofilm formation. Here, we analyze synthetic molecules for inhibition of the two P. aeruginosa quorum-sensing receptors, LasR and RhlR. Our most effective compound, meta-bromo-thiolactone (mBTL), inhibits both the production of the virulence factor pyocyanin and biofilm formation. mBTL also protects Caenorhabditis elegans and human lung epithelial cells from killing by P. aeruginosa. Both LasR and RhlR are partially inhibited by mBTL in vivo and in vitro; however, RhlR, not LasR, is the relevant in vivo target. More potent antagonists do not exhibit superior function in impeding virulence. Because LasR and RhlR reciprocally control crucial virulence factors, appropriately tuning rather than completely inhibiting their activities appears to hold the key to blocking pathogenesis in vivo.

  8. The Evolution of Quorum Sensing as a Mechanism to Infer Kinship.

    PubMed

    Schluter, Jonas; Schoech, Armin P; Foster, Kevin R; Mitri, Sara

    2016-04-01

    Bacteria regulate many phenotypes via quorum sensing systems. Quorum sensing is typically thought to evolve because the regulated cooperative phenotypes are only beneficial at certain cell densities. However, quorum sensing systems are also threatened by non-cooperative "cheaters" that may exploit quorum-sensing regulated cooperation, which begs the question of how quorum sensing systems are maintained in nature. Here we study the evolution of quorum sensing using an individual-based model that captures the natural ecology and population structuring of microbial communities. We first recapitulate the two existing observations on quorum sensing evolution: density-dependent benefits favor quorum sensing but competition and cheating will destabilize it. We then model quorum sensing in a dense community like a biofilm, which reveals a novel benefit to quorum sensing that is intrinsically evolutionarily stable. In these communities, competing microbial genotypes gradually segregate over time leading to positive correlation between density and genetic similarity between neighboring cells (relatedness). This enables quorum sensing to track genetic relatedness and ensures that costly cooperative traits are only activated once a cell is safely surrounded by clonemates. We hypothesize that under similar natural conditions, the benefits of quorum sensing will not result from an assessment of density but from the ability to infer kinship.

  9. The Evolution of Quorum Sensing as a Mechanism to Infer Kinship

    PubMed Central

    Schluter, Jonas; Schoech, Armin P.; Foster, Kevin R.; Mitri, Sara

    2016-01-01

    Bacteria regulate many phenotypes via quorum sensing systems. Quorum sensing is typically thought to evolve because the regulated cooperative phenotypes are only beneficial at certain cell densities. However, quorum sensing systems are also threatened by non-cooperative “cheaters” that may exploit quorum-sensing regulated cooperation, which begs the question of how quorum sensing systems are maintained in nature. Here we study the evolution of quorum sensing using an individual-based model that captures the natural ecology and population structuring of microbial communities. We first recapitulate the two existing observations on quorum sensing evolution: density-dependent benefits favor quorum sensing but competition and cheating will destabilize it. We then model quorum sensing in a dense community like a biofilm, which reveals a novel benefit to quorum sensing that is intrinsically evolutionarily stable. In these communities, competing microbial genotypes gradually segregate over time leading to positive correlation between density and genetic similarity between neighboring cells (relatedness). This enables quorum sensing to track genetic relatedness and ensures that costly cooperative traits are only activated once a cell is safely surrounded by clonemates. We hypothesize that under similar natural conditions, the benefits of quorum sensing will not result from an assessment of density but from the ability to infer kinship. PMID:27120081

  10. ANTI-QUORUM SENSING ACTIVITY OF SOME MEDICINAL PLANTS

    PubMed Central

    Al-Haidari, Rwaida A.; Shaaban, Mona I.; Ibrahim, Sabrin R.M.; Mohamed, Gamal A.

    2016-01-01

    Background: Quorum sensing is the key regulator of virulence factors of Pseudomonas aeruginosa such as biofilm formation, motility, productions of proteases, hemolysin, pyocyanin, and toxins. The aim of this study was to explore the effect of the extracts from some medicinal plants on quorum sensing and related virulence factors of P. aeruginosa. Material and Methods: Quorum sensing inhibitory (OSI) effect of the alcohol extracts of 20 medicinal plants was evaluated by Chromobacterium violaceum reporter using agar cup diffusion method. The efficient QSI extracts were tested for their activity against biofilm synthesis, motility, and synthesis of pyocyanin from P. aeruginosa PA14 Results: The extracts of Citrus sinensis, Laurus nobilis, Elettaria cardamomum, Allium cepa, and Coriandrum sativum exhibited potent quorum quenching effect. On the other hand, Psidium guajava and Mentha longifolia extracts showed lower QSI activity. These extracts exhibited significant elimination of pyocyanin formation and biofilm development of Pseudomonas aeruginosa PA14. In addition, they significantly inhibited twitching and swimming motilities of P. aeruginosa PA14. Conclusion: This study illustrated, for the first time, the importance of C. sinensis, L. nobilis, E. cardamomum, A. cepa, and C. sativum as quorum sensing inhibitors and virulence suppressors of P. aeruginosa. Thus, these plants could provide a natural source for the elimination of Pseudomonas pathogenesis. PMID:28487896

  11. ANTI-QUORUM SENSING ACTIVITY OF SOME MEDICINAL PLANTS.

    PubMed

    Al-Haidari, Rwaida A; Shaaban, Mona I; Ibrahim, Sabrin R M; Mohamed, Gamal A

    2016-01-01

    Quorum sensing is the key regulator of virulence factors of Pseudomonas aeruginosa such as biofilm formation, motility, productions of proteases, hemolysin, pyocyanin, and toxins. The aim of this study was to explore the effect of the extracts from some medicinal plants on quorum sensing and related virulence factors of P. aeruginosa. Quorum sensing inhibitory (OSI) effect of the alcohol extracts of 20 medicinal plants was evaluated by Chromobacterium violaceum reporter using agar cup diffusion method. The efficient QSI extracts were tested for their activity against biofilm synthesis, motility, and synthesis of pyocyanin from P. aeruginosa PA14. The extracts of Citrus sinensis, Laurus nobilis, Elettaria cardamomum, Allium cepa, and Coriandrum sativum exhibited potent quorum quenching effect. On the other hand, Psidium guajava and Mentha longifolia extracts showed lower QSI activity. These extracts exhibited significant elimination of pyocyanin formation and biofilm development of Pseudomonas aeruginosa PA14. In addition, they significantly inhibited twitching and swimming motilities of P. aeruginosa PA14. This study illustrated, for the first time, the importance of C. sinensis, L. nobilis, E. cardamomum, A. cepa, and C. sativum as quorum sensing inhibitors and virulence suppressors of P. aeruginosa. Thus, these plants could provide a natural source for the elimination of Pseudomonas pathogenesis.

  12. Simulation of the Dynamics of Bacterial Quorum Sensing.

    PubMed

    Psarras, Anastasios; Karafyllidis, Ioannis

    2015-01-13

    Quorum sensing (QS) is a signaling mechanism that pathogenic bacteria use to communicate and synchronize the production of exofactors to attack their hosts. Understanding and controlling QS is an important step towards a possible solution to the growing problem of antibiotic resistance. QS is a cooperative effort of a bacterial population in which some of the bacteria do not participate. This phenomenon is usually studied using game theory and the non-participating bacteria are modeled as cheaters that exploit the production of common goods (exofactors) by other bacteria. Here, we take a different approach to study the QS dynamics of a growing bacterial population. We model the bacterial population as a growing graph and use spectral graph theory to compute the evolution of its synchronizability. We also treat each bacterium as a source of signaling molecules and use the diffusion equation to compute the signaling molecule distribution. We formulate a cost function based on Lagrangian dynamics that combines the time-like synchronization with the space-like diffusion of signaling molecules. Our results show that the presence of non-participating bacteria improves the homogeneity of the signaling molecule distribution preventing thus an early onset of exofactor production and has a positive effect on the optimization of QS signaling and on attack synchronization.

  13. The Vibrio campbellii quorum sensing signals have a different impact on virulence of the bacterium towards different crustacean hosts.

    PubMed

    Pande, Gde Sasmita Julyantoro; Natrah, Fatin Mohd Ikhsan; Sorgeloos, Patrick; Bossier, Peter; Defoirdt, Tom

    2013-12-27

    Pathogenic bacteria communicate with small signal molecules in a process called quorum sensing, and they often use different signal molecules to regulate virulence gene expression. Vibrio campbellii, one of the major pathogens of aquatic organisms, regulates virulence gene expression by a three channel quorum sensing system. Here we show that although they use a common signal transduction cascade, the signal molecules have a different impact on the virulence of the bacterium towards different hosts, i.e. the brine shrimp Artemia franciscana and the commercially important giant freshwater prawn Macrobrachium rosenbergii. These results suggest that the use of multiple types of signal molecules to regulate virulence gene expression is one of the features that allow bacteria to infect different hosts. Our findings emphasize that it is highly important to study the efficacy of quorum sensing inhibitors as novel biocontrol agents under conditions that are as close as possible to the clinical situation.

  14. Quorum-quenching limits quorum-sensing exploitation by signal-negative invaders

    USDA-ARS?s Scientific Manuscript database

    Some bacteria produce and perceive quorum-sensing (QS) signals that coordinate several behaviors, including the physiologically costly processes of exoenzyme production and plasmid transfer. In the case of plasmid transfer, the emergence of QS signal-altered invaders and their policing are poorly do...

  15. Effect of Quorum Quenching Lactonase in Clinical Isolates of Pseudomonas aeruginosa and Comparison with Quorum Sensing Inhibitors.

    PubMed

    Guendouze, Assia; Plener, Laure; Bzdrenga, Janek; Jacquet, Pauline; Rémy, Benjamin; Elias, Mikael; Lavigne, Jean-Philippe; Daudé, David; Chabrière, Eric

    2017-01-01

    Pseudomonas aeruginosa is a Gram negative pathogenic bacterium involved in many human infections including otitis, keratitis, pneumonia, and diabetic foot ulcers. P. aeruginosa uses a communication system, referred to as quorum sensing (QS), to adopt a group behavior by synchronizing the expression of certain genes. Among the regulated traits, secretion of proteases or siderophores, motility and biofilm formation are mainly involved in the pathogenicity. Many efforts have been dedicated to the development of quorum sensing inhibitors (QSI) and quorum quenching (QQ) agents to disrupt QS. QQ enzymes have been particularly considered as they may act in a catalytic way without entering the cell. Here we focus on the lactonase SsoPox which was previously investigated for its ability to degrade the signaling molecules, acyl-homoserine lactones, in particular on the engineered variant SsoPox-W263I. We highlight the potential of SsoPox-W263I to inhibit the virulence of 51 clinical P. aeruginosa isolates from diabetic foot ulcers by decreasing the secretion of two virulence factors, proteases and pyocyanin, as well as biofilm formation. We further compared the effect of SsoPox-W263I to the comprehensively described QSI, 5-fluorouracil and C-30. We found the lactonase SsoPox-W263I to be significantly more effective than the tested QSI at their respective concentration optimum and to retain its activity after immobilization steps, paving the way for future therapeutic applications.

  16. Effect of Quorum Quenching Lactonase in Clinical Isolates of Pseudomonas aeruginosa and Comparison with Quorum Sensing Inhibitors

    PubMed Central

    Guendouze, Assia; Plener, Laure; Bzdrenga, Janek; Jacquet, Pauline; Rémy, Benjamin; Elias, Mikael; Lavigne, Jean-Philippe; Daudé, David; Chabrière, Eric

    2017-01-01

    Pseudomonas aeruginosa is a Gram negative pathogenic bacterium involved in many human infections including otitis, keratitis, pneumonia, and diabetic foot ulcers. P. aeruginosa uses a communication system, referred to as quorum sensing (QS), to adopt a group behavior by synchronizing the expression of certain genes. Among the regulated traits, secretion of proteases or siderophores, motility and biofilm formation are mainly involved in the pathogenicity. Many efforts have been dedicated to the development of quorum sensing inhibitors (QSI) and quorum quenching (QQ) agents to disrupt QS. QQ enzymes have been particularly considered as they may act in a catalytic way without entering the cell. Here we focus on the lactonase SsoPox which was previously investigated for its ability to degrade the signaling molecules, acyl-homoserine lactones, in particular on the engineered variant SsoPox-W263I. We highlight the potential of SsoPox-W263I to inhibit the virulence of 51 clinical P. aeruginosa isolates from diabetic foot ulcers by decreasing the secretion of two virulence factors, proteases and pyocyanin, as well as biofilm formation. We further compared the effect of SsoPox-W263I to the comprehensively described QSI, 5-fluorouracil and C-30. We found the lactonase SsoPox-W263I to be significantly more effective than the tested QSI at their respective concentration optimum and to retain its activity after immobilization steps, paving the way for future therapeutic applications. PMID:28261183

  17. The Evolution of Quorum Sensing in Bacterial Biofilms

    PubMed Central

    Levin, Simon A; Foster, Kevin R

    2008-01-01

    Bacteria have fascinating and diverse social lives. They display coordinated group behaviors regulated by quorum-sensing systems that detect the density of other bacteria around them. A key example of such group behavior is biofilm formation, in which communities of cells attach to a surface and envelope themselves in secreted polymers. Curiously, after reaching high cell density, some bacterial species activate polymer secretion, whereas others terminate polymer secretion. Here, we investigate this striking variation in the first evolutionary model of quorum sensing in biofilms. We use detailed individual-based simulations to investigate evolutionary competitions between strains that differ in their polymer production and quorum-sensing phenotypes. The benefit of activating polymer secretion at high cell density is relatively straightforward: secretion starts upon biofilm formation, allowing strains to push their lineages into nutrient-rich areas and suffocate neighboring cells. But why use quorum sensing to terminate polymer secretion at high cell density? We find that deactivating polymer production in biofilms can yield an advantage by redirecting resources into growth, but that this advantage occurs only in a limited time window. We predict, therefore, that down-regulation of polymer secretion at high cell density will evolve when it can coincide with dispersal events, but it will be disfavored in long-lived (chronic) biofilms with sustained competition among strains. Our model suggests that the observed variation in quorum-sensing behavior can be linked to the differing requirements of bacteria in chronic versus acute biofilm infections. This is well illustrated by the case of Vibrio cholerae, which competes within biofilms by polymer secretion, terminates polymer secretion at high cell density, and induces an acute disease course that ends with mass dispersal from the host. More generally, this work shows that the balance of competition within and among

  18. Biomimicry of quorum sensing using bacterial lifecycle model

    PubMed Central

    2013-01-01

    Background Recent microbiologic studies have shown that quorum sensing mechanisms, which serve as one of the fundamental requirements for bacterial survival, exist widely in bacterial intra- and inter-species cell-cell communication. Many simulation models, inspired by the social behavior of natural organisms, are presented to provide new approaches for solving realistic optimization problems. Most of these simulation models follow population-based modelling approaches, where all the individuals are updated according to the same rules. Therefore, it is difficult to maintain the diversity of the population. Results In this paper, we present a computational model termed LCM-QS, which simulates the bacterial quorum-sensing (QS) mechanism using an individual-based modelling approach under the framework of Agent-Environment-Rule (AER) scheme, i.e. bacterial lifecycle model (LCM). LCM-QS model can be classified into three main sub-models: chemotaxis with QS sub-model, reproduction and elimination sub-model and migration sub-model. The proposed model is used to not only imitate the bacterial evolution process at the single-cell level, but also concentrate on the study of bacterial macroscopic behaviour. Comparative experiments under four different scenarios have been conducted in an artificial 3-D environment with nutrients and noxious distribution. Detailed study on bacterial chemotatic processes with quorum sensing and without quorum sensing are compared. By using quorum sensing mechanisms, artificial bacteria working together can find the nutrient concentration (or global optimum) quickly in the artificial environment. Conclusions Biomimicry of quorum sensing mechanisms using the lifecycle model allows the artificial bacteria endowed with the communication abilities, which are essential to obtain more valuable information to guide their search cooperatively towards the preferred nutrient concentrations. It can also provide an inspiration for designing new swarm

  19. Biomimicry of quorum sensing using bacterial lifecycle model.

    PubMed

    Niu, Ben; Wang, Hong; Duan, Qiqi; Li, Li

    2013-01-01

    Recent microbiologic studies have shown that quorum sensing mechanisms, which serve as one of the fundamental requirements for bacterial survival, exist widely in bacterial intra- and inter-species cell-cell communication. Many simulation models, inspired by the social behavior of natural organisms, are presented to provide new approaches for solving realistic optimization problems. Most of these simulation models follow population-based modelling approaches, where all the individuals are updated according to the same rules. Therefore, it is difficult to maintain the diversity of the population. In this paper, we present a computational model termed LCM-QS, which simulates the bacterial quorum-sensing (QS) mechanism using an individual-based modelling approach under the framework of Agent-Environment-Rule (AER) scheme, i.e. bacterial lifecycle model (LCM). LCM-QS model can be classified into three main sub-models: chemotaxis with QS sub-model, reproduction and elimination sub-model and migration sub-model. The proposed model is used to not only imitate the bacterial evolution process at the single-cell level, but also concentrate on the study of bacterial macroscopic behaviour. Comparative experiments under four different scenarios have been conducted in an artificial 3-D environment with nutrients and noxious distribution. Detailed study on bacterial chemotatic processes with quorum sensing and without quorum sensing are compared. By using quorum sensing mechanisms, artificial bacteria working together can find the nutrient concentration (or global optimum) quickly in the artificial environment. Biomimicry of quorum sensing mechanisms using the lifecycle model allows the artificial bacteria endowed with the communication abilities, which are essential to obtain more valuable information to guide their search cooperatively towards the preferred nutrient concentrations. It can also provide an inspiration for designing new swarm intelligence optimization algorithms

  20. The evolution of quorum sensing in bacterial biofilms.

    PubMed

    Nadell, Carey D; Xavier, Joao B; Levin, Simon A; Foster, Kevin R

    2008-01-01

    Bacteria have fascinating and diverse social lives. They display coordinated group behaviors regulated by quorum-sensing systems that detect the density of other bacteria around them. A key example of such group behavior is biofilm formation, in which communities of cells attach to a surface and envelope themselves in secreted polymers. Curiously, after reaching high cell density, some bacterial species activate polymer secretion, whereas others terminate polymer secretion. Here, we investigate this striking variation in the first evolutionary model of quorum sensing in biofilms. We use detailed individual-based simulations to investigate evolutionary competitions between strains that differ in their polymer production and quorum-sensing phenotypes. The benefit of activating polymer secretion at high cell density is relatively straightforward: secretion starts upon biofilm formation, allowing strains to push their lineages into nutrient-rich areas and suffocate neighboring cells. But why use quorum sensing to terminate polymer secretion at high cell density? We find that deactivating polymer production in biofilms can yield an advantage by redirecting resources into growth, but that this advantage occurs only in a limited time window. We predict, therefore, that down-regulation of polymer secretion at high cell density will evolve when it can coincide with dispersal events, but it will be disfavored in long-lived (chronic) biofilms with sustained competition among strains. Our model suggests that the observed variation in quorum-sensing behavior can be linked to the differing requirements of bacteria in chronic versus acute biofilm infections. This is well illustrated by the case of Vibrio cholerae, which competes within biofilms by polymer secretion, terminates polymer secretion at high cell density, and induces an acute disease course that ends with mass dispersal from the host. More generally, this work shows that the balance of competition within and among

  1. Links between Anr and Quorum Sensing in Pseudomonas aeruginosa Biofilms.

    PubMed

    Hammond, John H; Dolben, Emily F; Smith, T Jarrod; Bhuju, Sabin; Hogan, Deborah A

    2015-09-01

    In Pseudomonas aeruginosa, the transcription factor Anr controls the cellular response to low oxygen or anoxia. Anr activity is high in oxygen-limited environments, including biofilms and populations associated with chronic infections, and Anr is necessary for persistence in a model of pulmonary infection. In this study, we characterized the Anr regulon in biofilm-grown cells at 1% oxygen in the laboratory strain PAO1 and in a quorum sensing (QS)-deficient clinical isolate, J215. As expected, transcripts related to denitrification, arginine fermentation, high-affinity cytochrome oxidases, and CupA fimbriae were lower in the Δanr derivatives. In addition, we observed that transcripts associated with quorum sensing regulation, iron acquisition and storage, type VI secretion, and the catabolism of aromatic compounds were also differentially expressed in the Δanr strains. Prior reports have shown that quorum sensing-defective mutants have higher levels of denitrification, and we found that multiple Anr-regulated processes, including denitrification, were strongly inversely proportional to quorum sensing in both transcriptional and protein-based assays. We also found that in LasR-defective strains but not their LasR-intact counterparts, Anr regulated the production of the 4-hydroxy-2-alkylquinolines, which play roles in quorum sensing and interspecies interactions. These data show that Anr was required for the expression of important metabolic pathways in low-oxygen biofilms, and they reveal an expanded and compensatory role for Anr in the regulation of virulence-related genes in quorum sensing mutants, such as those commonly isolated from infections. Pseudomonas aeruginosa causes acute ocular, soft tissue, and pulmonary infections, as well as chronic infections in the airways of cystic fibrosis patients. P. aeruginosa uses quorum sensing (QS) to regulate virulence, but mutations in the gene encoding the master regulator of QS, lasR, are frequently observed in

  2. Societal Interactions in Ovarian Cancer Metastases: A Quorum Sensing Hypothesis

    DTIC Science & Technology

    2007-11-01

    activity by p53-independent induction of p21WAF1/CIP1. Cancer Res 2005;65:3364–73. 36. Lee B, Kim CH, Moon SK. Honokiol causes the p21WAF1-mediated G...AD_________________ Award Number: W81XWH-06-1-0041 TITLE: Societal Interactions in Ovarian Cancer Metastases: A Quorum Sensing...in Ovarian Cancer Metastases: A Quorum Sensing Hypothesis 5b. GRANT NUMBER W81XWH-06-1-0041 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Carrie

  3. Lack of AHL-based quorum sensing in Pseudomonas fluorescens isolated from milk.

    PubMed

    Martins, Maurilio L; Pinto, Uelinton M; Riedel, Kathrin; Vanetti, Maria C D; Mantovani, Hilário C; de Araújo, Elza F

    2014-01-01

    Numerous bacteria coordinate gene expression in response to small signalling molecules in many cases known as acylhomoserine lactones (AHLs), which accumulate as a function of cell density in a process known as quorum sensing. This work aimed to determine if phenotypes that are important to define microbial activity in foods such as biofilm formation, swarming motility and proteolytic activity of two Pseudomonas fluorescens strains, isolated from refrigerated raw milk, are influenced by AHL molecules. The tested P. fluorescens strains did not produce AHL molecules in none of the evaluated media. We found that biofilm formation was dependent on the culture media, but it was not influenced by AHLs. Our results indicate that biofilm formation, swarming motility and proteolytic activity of the tested P. fluorescens strains are not regulated by acyl-homoserine lactones. It is likely that AHL-dependent quorum sensing system is absent from these strains.

  4. Mechanisms of quorum sensing and strategies for quorum sensing disruption in aquaculture pathogens.

    PubMed

    Zhao, J; Chen, M; Quan, C S; Fan, S D

    2015-09-01

    In many countries, infectious diseases are a considerable threat to aquaculture. The pathogenicity of micro-organisms that infect aquaculture systems is closely related to the release of virulence factors and the formation of biofilms, both of which are regulated by quorum sensing (QS). Thus, QS disruption is a potential strategy for preventing disease in aquaculture systems. QS inhibitors (QSIs) not only inhibit the expression of virulence-associated genes but also attenuate the virulence of aquaculture pathogens. In this review, we discuss QS systems in important aquaculture pathogens and focus on the relationship between QS mechanisms and bacterial virulence in aquaculture. We further elucidate QS disruption strategies for targeting aquaculture pathogens. Four main types of QSIs that target aquaculture pathogens are discussed based on their mechanisms of action. © 2014 John Wiley & Sons Ltd.

  5. Going beyond the Control of Quorum-Sensing to Combat Biofilm Infections

    PubMed Central

    Abraham, Wolf-Rainer

    2016-01-01

    Most bacteria attach to surfaces where they form a biofilm, cells embedded in a complex matrix of polymers. Cells in biofilms are much better protected against noxious agents than free-living cells. As a consequence it is very difficult to control pathogens with antibiotics in biofilm infections and novel targets are urgently needed. One approach aims at the communication between cells to form and to maintain a biofilm, a process called quorum-sensing. Water soluble small-sized molecules mediate this process and a number of antagonists of these compounds have been found. In this review natural compounds and synthetic drugs which do not interfere with the classical quorum-sensing compounds are discussed. For some of these compounds the targets are still not known, but others interfere with the formation of exopolysaccharides, virulence factors, or cell wall synthesis or they start an internal program of biofilm dispersal. Some of their targets are more conserved among pathogens than the receptors for quorum sensing autoinducers mediating quorum-sensing, enabling a broader application of the drug. The broad spectrum of mechanisms, the diversity of bioactive compounds, their activity against several targets, and the conservation of some targets among bacterial pathogens are promising aspects for several clinical applications of this type of biofilm-controlling compound in the future. PMID:27025518

  6. Going beyond the Control of Quorum-Sensing to Combat Biofilm Infections.

    PubMed

    Abraham, Wolf-Rainer

    2016-01-09

    Most bacteria attach to surfaces where they form a biofilm, cells embedded in a complex matrix of polymers. Cells in biofilms are much better protected against noxious agents than free-living cells. As a consequence it is very difficult to control pathogens with antibiotics in biofilm infections and novel targets are urgently needed. One approach aims at the communication between cells to form and to maintain a biofilm, a process called quorum-sensing. Water soluble small-sized molecules mediate this process and a number of antagonists of these compounds have been found. In this review natural compounds and synthetic drugs which do not interfere with the classical quorum-sensing compounds are discussed. For some of these compounds the targets are still not known, but others interfere with the formation of exopolysaccharides, virulence factors, or cell wall synthesis or they start an internal program of biofilm dispersal. Some of their targets are more conserved among pathogens than the receptors for quorum sensing autoinducers mediating quorum-sensing, enabling a broader application of the drug. The broad spectrum of mechanisms, the diversity of bioactive compounds, their activity against several targets, and the conservation of some targets among bacterial pathogens are promising aspects for several clinical applications of this type of biofilm-controlling compound in the future.

  7. Resilience of bacterial quorum sensing against fluid flow

    NASA Astrophysics Data System (ADS)

    Emge, Philippe; Moeller, Jens; Jang, Hongchul; Rusconi, Roberto; Yawata, Yutaka; Stocker, Roman; Vogel, Viola

    2016-09-01

    Quorum sensing (QS) is a population-density dependent chemical process that enables bacteria to communicate based on the production, secretion and sensing of small inducer molecules. While recombinant constructs have been widely used to decipher the molecular details of QS, how those findings translate to natural QS systems has remained an open question. Here, we compare the activation of natural and synthetic Pseudomonas aeruginosa LasI/R QS systems in bacteria exposed to quiescent conditions and controlled flows. Quantification of QS-dependent GFP expression in suspended cultures and in surface-attached microcolonies revealed that QS onset in both systems was similar under quiescent conditions but markedly differed under flow. Moderate flow (Pe > 25) was sufficient to suppress LasI/R QS recombinantly expressed in Escherichia coli, whereas only high flow (Pe > 102) suppressed QS in wild-type P. aeruginosa. We suggest that this difference stems from the differential production of extracellular matrix and that the matrix confers resilience against moderate flow to QS in wild-type organisms. These results suggest that the expression of a biofilm matrix extends the environmental conditions under which QS-based cell-cell communication is effective and that findings from synthetic QS circuits cannot be directly translated to natural systems.

  8. Cooperation, Quorum Sensing, and Evolution of Virulence in Staphylococcus aureus

    PubMed Central

    Pollitt, Eric J. G.; West, Stuart A.; Crusz, Shanika A.; Burton-Chellew, Maxwell N.

    2014-01-01

    The virulence and fitness in vivo of the major human pathogen Staphylococcus aureus are associated with a cell-to-cell signaling mechanism known as quorum sensing (QS). QS coordinates the production of virulence factors via the production and sensing of autoinducing peptide (AIP) signal molecules by the agr locus. Here we show, in a wax moth larva virulence model, that (i) QS in S. aureus is a cooperative social trait that provides a benefit to the local population of cells, (ii) agr mutants, which do not produce or respond to QS signal, are able to exploit the benefits provided by the QS of others (“cheat”), allowing them to increase in frequency when in mixed populations with cooperators, (iii) these social interactions between cells determine virulence, with the host mortality rate being negatively correlated to the percentage of agr mutants (“cheats”) in a population, and (iv) a higher within-host relatedness (lower strain diversity) selects for QS and hence higher virulence. Our results provide an explanation for why agr mutants show reduced virulence in animal models but can be isolated from infections of humans. More generally, by providing the first evidence that QS is a cooperative social behavior in a Gram-positive bacterium, our results suggest convergent, and potentially widespread, evolution for signaling to coordinate cooperation in bacteria. PMID:24343650

  9. A crucial role for spatial distribution in bacterial quorum sensing

    PubMed Central

    Gao, Meng; Zheng, Huizhen; Ren, Ying; Lou, Ruyun; Wu, Fan; Yu, Weiting; Liu, Xiudong; Ma, Xiaojun

    2016-01-01

    Quorum sensing (QS) is a process that enables bacteria to communicate using secreted signaling molecules, and then makes a population of bacteria to regulate gene expression collectively and control behavior on a community-wide scale. Theoretical studies of efficiency sensing have suggested that both mass-transfer performance in the local environment and the spatial distribution of cells are key factors affecting QS. Here, an experimental model based on hydrogel microcapsules with a three-dimensional structure was established to investigate the influence of the spatial distribution of cells on bacterial QS. Vibrio harveyi cells formed different spatial distributions in the microcapsules, i.e., they formed cell aggregates with different structures and sizes. The cell aggregates displayed stronger QS than did unaggregated cells even when equal numbers of cells were present. Large aggregates (LA) of cells, with a size of approximately 25 μm, restricted many more autoinducers (AIs) than did small aggregates (SA), with a size of approximately 10 μm, thus demonstrating that aggregate size significantly affects QS. These findings provide a powerful demonstration of the fact that the spatial distribution of cells plays a crucial role in bacterial QS. PMID:27698391

  10. Mathematical Modelling of Bacterial Quorum Sensing: A Review.

    PubMed

    Pérez-Velázquez, Judith; Gölgeli, Meltem; García-Contreras, Rodolfo

    2016-08-01

    Bacterial quorum sensing (QS) refers to the process of cell-to-cell bacterial communication enabled through the production and sensing of the local concentration of small molecules called autoinducers to regulate the production of gene products (e.g. enzymes or virulence factors). Through autoinducers, bacteria interact with individuals of the same species, other bacterial species, and with their host. Among QS-regulated processes mediated through autoinducers are aggregation, biofilm formation, bioluminescence, and sporulation. Autoinducers are therefore "master" regulators of bacterial lifestyles. For over 10 years, mathematical modelling of QS has sought, in parallel to experimental discoveries, to elucidate the mechanisms regulating this process. In this review, we present the progress in mathematical modelling of QS, highlighting the various theoretical approaches that have been used and discussing some of the insights that have emerged. Modelling of QS has benefited almost from the onset of the involvement of experimentalists, with many of the papers which we review, published in non-mathematical journals. This review therefore attempts to give a broad overview of the topic to the mathematical biology community, as well as the current modelling efforts and future challenges.

  11. Sodium ascorbate as a quorum sensing inhibitor of Pseudomonas aeruginosa.

    PubMed

    El-Mowafy, S A; Shaaban, M I; Abd El Galil, K H

    2014-11-01

    Quorum sensing circuits regulate virulence factors in Pseudomonas aeruginosa and coordinate bacterial pathogenicity. We are interested in exploring available medications for their antiquorum sensing activity. First, we determined the MIC of ascorbate against Ps. aeruginosa strain PAO1, and all further experiments used concentrations below the MIC so that results could not be caused by reduced viability. Tests of subinhibitory concentrations of sodium ascorbate on cell signals were performed using a reporter strain assay. Sub-MICs of sodium ascorbate resulted in significant reduction of the signalling molecules C4-HSL and 3-oxo-C12-HSL (P < 0·01). The influence of sub-MIC of sodium ascorbate on virulence factors was also determined and ascorbate treatment led to significant depression of elastase, protease and haemolysin activities. In addition, inhibition of pyocyanin production, attenuation of biofilm formation and alteration of Pseudomonas motility was observed. Analysis by RT-PCR tested the effect of ascorbate on the expression of QS regulatory genes. Expression of QS regulatory genes, lasI, lasR, rhlI, rhlR, pqsR and pqsA, was repressed compared to untreated Ps. aeruginosa PAO1, confirming that ascorbate QS inhibition works on gene expression at the molecular level. Sodium ascorbate, even at low concentrations, inhibited QS and related virulence factors of Ps. aeruginosa PAO1. This study demonstrated that sodium ascorbate could function as signal modulator and virulence inhibitor in Ps. aeruginosa. © 2014 The Society for Applied Microbiology.

  12. Cooperation, quorum sensing, and evolution of virulence in Staphylococcus aureus.

    PubMed

    Pollitt, Eric J G; West, Stuart A; Crusz, Shanika A; Burton-Chellew, Maxwell N; Diggle, Stephen P

    2014-03-01

    The virulence and fitness in vivo of the major human pathogen Staphylococcus aureus are associated with a cell-to-cell signaling mechanism known as quorum sensing (QS). QS coordinates the production of virulence factors via the production and sensing of autoinducing peptide (AIP) signal molecules by the agr locus. Here we show, in a wax moth larva virulence model, that (i) QS in S. aureus is a cooperative social trait that provides a benefit to the local population of cells, (ii) agr mutants, which do not produce or respond to QS signal, are able to exploit the benefits provided by the QS of others ("cheat"), allowing them to increase in frequency when in mixed populations with cooperators, (iii) these social interactions between cells determine virulence, with the host mortality rate being negatively correlated to the percentage of agr mutants ("cheats") in a population, and (iv) a higher within-host relatedness (lower strain diversity) selects for QS and hence higher virulence. Our results provide an explanation for why agr mutants show reduced virulence in animal models but can be isolated from infections of humans. More generally, by providing the first evidence that QS is a cooperative social behavior in a Gram-positive bacterium, our results suggest convergent, and potentially widespread, evolution for signaling to coordinate cooperation in bacteria.

  13. Resilience of bacterial quorum sensing against fluid flow

    PubMed Central

    Emge, Philippe; Moeller, Jens; Jang, Hongchul; Rusconi, Roberto; Yawata, Yutaka; Stocker, Roman; Vogel, Viola

    2016-01-01

    Quorum sensing (QS) is a population-density dependent chemical process that enables bacteria to communicate based on the production, secretion and sensing of small inducer molecules. While recombinant constructs have been widely used to decipher the molecular details of QS, how those findings translate to natural QS systems has remained an open question. Here, we compare the activation of natural and synthetic Pseudomonas aeruginosa LasI/R QS systems in bacteria exposed to quiescent conditions and controlled flows. Quantification of QS-dependent GFP expression in suspended cultures and in surface-attached microcolonies revealed that QS onset in both systems was similar under quiescent conditions but markedly differed under flow. Moderate flow (Pe > 25) was sufficient to suppress LasI/R QS recombinantly expressed in Escherichia coli, whereas only high flow (Pe > 102) suppressed QS in wild-type P. aeruginosa. We suggest that this difference stems from the differential production of extracellular matrix and that the matrix confers resilience against moderate flow to QS in wild-type organisms. These results suggest that the expression of a biofilm matrix extends the environmental conditions under which QS-based cell-cell communication is effective and that findings from synthetic QS circuits cannot be directly translated to natural systems. PMID:27650454

  14. Identification of quorum sensing-controlled genes in Burkholderia ambifaria.

    PubMed

    Chapalain, Annelise; Vial, Ludovic; Laprade, Natacha; Dekimpe, Valérie; Perreault, Jonathan; Déziel, Eric

    2013-04-01

    The Burkholderia cepacia complex (Bcc) comprises strains with a virulence potential toward immunocompromised patients as well as plant growth-promoting rhizobacteria (PGPR). Owing to the link between quorum sensing (QS) and virulence, most studies among Bcc species have been directed toward QS of pathogenic bacteria. We have investigated the QS of B. ambifaria, a PGPR only infrequently recovered from patients. The cepI gene, responsible for the synthesis of the main signaling molecule N-octanoylhomoserine lactone (C8 -HSL), was inactivated. Phenotypes of the B. ambifaria cepI mutant we observed, such as increased production of siderophores and decreased proteolytic and antifungal activities, are in agreement with those of other Bcc cepI mutants. The cepI mutant was then used as background strain for a whole-genome transposon-insertion mutagenesis strategy, allowing the identification of 20 QS-controlled genes, corresponding to 17 loci. The main functions identified are linked to antifungal and antimicrobial properties, as we have identified QS-controlled genes implicated in the production of pyrrolnitrin, burkholdines (occidiofungin-like molecules), and enacyloxins. This study provides insights in the QS-regulated functions of a PGPR, which could lead to beneficial potential biotechnological applications. © 2013 The Authors. Published by Blackwell Publishing Ltd.

  15. Identification of quorum sensing-controlled genes in Burkholderia ambifaria

    PubMed Central

    Chapalain, Annelise; Vial, Ludovic; Laprade, Natacha; Dekimpe, Valérie; Perreault, Jonathan; Déziel, Eric

    2013-01-01

    The Burkholderia cepacia complex (Bcc) comprises strains with a virulence potential toward immunocompromised patients as well as plant growth–promoting rhizobacteria (PGPR). Owing to the link between quorum sensing (QS) and virulence, most studies among Bcc species have been directed toward QS of pathogenic bacteria. We have investigated the QS of B. ambifaria, a PGPR only infrequently recovered from patients. The cepI gene, responsible for the synthesis of the main signaling molecule N-octanoylhomoserine lactone (C8-HSL), was inactivated. Phenotypes of the B. ambifaria cepI mutant we observed, such as increased production of siderophores and decreased proteolytic and antifungal activities, are in agreement with those of other Bcc cepI mutants. The cepI mutant was then used as background strain for a whole-genome transposon-insertion mutagenesis strategy, allowing the identification of 20 QS-controlled genes, corresponding to 17 loci. The main functions identified are linked to antifungal and antimicrobial properties, as we have identified QS-controlled genes implicated in the production of pyrrolnitrin, burkholdines (occidiofungin-like molecules), and enacyloxins. This study provides insights in the QS-regulated functions of a PGPR, which could lead to beneficial potential biotechnological applications. PMID:23382083

  16. The art of antibacterial warfare: Deception through interference with quorum sensing-mediated communication.

    PubMed

    Rampioni, Giordano; Leoni, Livia; Williams, Paul

    2014-08-01

    Almost a century on from the discovery of penicillin, the war against bacterial infection still rages compounded by the emergence of strains resistant to virtually every clinically approved antibiotic and the dearth of new antibacterial agents entering the clinic. Consequently there is renewed interest in drugs which attenuate virulence rather than bacterial growth. Since the metaphors of warfare are often used to describe the battle between pathogen and host, we will describe in such a context, the molecular communication (quorum sensing) mechanisms used by bacteria to co-ordinate virulence at the population level. Recent progress in exploiting this information through the design of anti-virulence deception strategies that disrupt quorum sensing through signal molecule inactivation, inhibition of signal molecule biosynthesis or the blockade of signal transduction and their advantages and disadvantages are considered. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Regulatory effects of macrolides on bacterial virulence: potential role as quorum-sensing inhibitors.

    PubMed

    Tateda, Kazuhiro; Standiford, Theodore J; Pechere, Jean Claude; Yamaguchi, Keizo

    2004-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen, and this organism is a major cause of pulmonary damage and mortality in patients with cystic fibrosis (CF), diffuse panbronchiolitis (DPB) and other forms of bronchiectasis. A break-through in the treatment of DPB and associated chronic P. aeruginosa pulmonary infection was realized when a patient with DPB improved dramatically after treatment with erythromycin for years. Now, long-term macrolide therapy has become a first line of treatment in DPB patients, and the immunomodulatory properties have now been extended to other clinical settings, including CF. An important factor in the pathogenesis of chronic P. aeruginosa infection is a bacterial cell-to-cell signaling mechanism, referred to as "quorum sensing", which enables bacteria to coordinately turn on and off specific virulence genes through the production of autoinducer molecules. Interference or blocking of quorum-sensing systems has been considered an attractive therapeutic strategy. Clinical and basic science data suggests the potential of macrolides as relevant inhibitors of the Pseudomonas quorum-sensing system. In fact, certain macrolides strongly suppressed quorum-sensing associated genes and autoinducer production, in addition to inhibition of a variety of virulence factors. In this review, clinical efficacy of macrolides on DPB and CF patients will be briefly summarized. Additionally, the mechanisms of action of macrolides will be discussed from the standpoint of sub-MIC macrolide effects on P. aeruginosa, particularly the ability of this antibiotic to suppress quorum-sensing systems, which may be crucial in the pathogenesis of chronic P. aeruginosa infection.

  18. Effects of natural and chemically synthesized furanones on quorum sensing in Chromobacterium violaceum

    PubMed Central

    Martinelli, Daniel; Grossmann, Gilles; Séquin, Urs; Brandl, Helmut; Bachofen, Reinhard

    2004-01-01

    Background Cell to cell signaling systems in Gram-negative bacteria rely on small diffusible molecules such as the N-acylhomoserine lactones (AHL). These compounds are involved in the production of antibiotics, exoenzymes, virulence factors and biofilm formation. They belong to the class of furanone derivatives which are frequently found in nature as pheromones, flavor compounds or secondary metabolites. To obtain more information on the relation between molecular structure and quorum sensing, we tested a variety of natural and chemically synthesized furanones for their ability to interfere with the quorum sensing mechanism using a quantitative bioassay with Chromobacterium violaceum CV026 for antagonistic and agonistic action. We were looking at the following questions: 1. Do these compounds affect growth? 2) Do these compounds activate the quorum sensing system of C. violaceum CV026? 3) Do these compounds inhibit violacein formation induced by the addition of the natural inducer N-hexanoylhomoserine lactone (HHL)? 4) Do these compounds enhance violacein formation in presence of HHL? Results The naturally produced N-acylhomoserine lactones showed a strong non-linear concentration dependent influence on violacein production in C. violaceum with a maximum at 3.7*10-8 M with HHL. Apart from the N-acylhomoserine lactones only one furanone (emoxyfurane) was found to simulate N-acylhomoserine lactone activity and induce violacein formation. The most effective substances acting negatively both on growth and quorum sensing were analogs and intermediates in synthesis of the butenolides from Streptomyces antibioticus. Conclusion As the regulation of many bacterial processes is governed by quorum sensing systems, the finding of natural and synthetic furanones acting as agonists or antagonists suggests an interesting tool to control and handle detrimental AHL induced effects. Some effects are due to general toxicity; others are explained by a competitive interaction for Lux

  19. Quorum Sensing Inhibiting Activity of Streptomyces coelicoflavus Isolated from Soil

    PubMed Central

    Hassan, Ramadan; Shaaban, Mona I.; Abdel Bar, Fatma M.; El-Mahdy, Areej M.; Shokralla, Shadi

    2016-01-01

    Quorum sensing (QS) systems communicate bacterial population and stimulate microbial pathogenesis through signaling molecules. Inhibition of QS signals potentially suppresses microbial infections. Antimicrobial properties of Streptomyces have been extensively studied, however, less is known about quorum sensing inhibitory (QSI) activities of Streptomyces. This study explored the QSI potential of Streptomyces isolated from soil. Sixty-five bacterial isolates were purified from soil samples with morphological characteristics of Streptomyces. The three isolates: S6, S12, and S17, exhibited QSI effect by screening with the reporter, Chromobacterium violaceum. Isolate S17 was identified as Streptomyces coelicoflavus by sequencing of the hypervariable regions (V1–V6) of 16S rRNA and was assigned gene bank number KJ855087. The QSI effect of the cell-free supernatant of isolate S17 was not abolished by proteinase K indicating the non-enzymatic activity of QSI components of S17. Three major compounds were isolated and identified, using spectroscopic techniques (1D, 2D NMR, and Mass spectrometry), as behenic acid (docosanoic acid), borrelidin, and 1H-pyrrole-2-carboxylic acid. 1H-pyrrole-2-carboxylic acid inhibited QS and related virulence factors of Pseudomonas aeruginosa PAO1 including; elastase, protease, and pyocyanin without affecting Pseudomonas viability. At the molecular level, 1H-pyrrole-2-carboxylic acid suppressed the expression of QS genes (lasI, lasR, lasA, lasB, rhlI, rhlR, pqsA, and pqsR). Moreover, QSI activity of S17 was assessed under different growth conditions and ISP2 medium supplemented with glucose 0.4% w/v and adjusted at pH 7, showed the highest QSI action. In conclusion, 1H-pyrrole-2-carboxylic acid, one of the major metabolites of Streptomyces isolate S17, inhibited QS and virulence determinants of P. aeruginosa PAO1. The findings of the study open the scope to exploit the in vivo efficacy of this active molecule as anti-pathogenic and anti

  20. Ligand-Induced Asymmetry in Histidine Sensor Kinase Complex Regulates Quorum Sensing

    SciTech Connect

    Neiditch,M.; Federle, M.; Pompeani, A.; Kelly, R.; Swem, D.; Jeffrey, P.; Bassler, B.; Hughson, F.

    2006-01-01

    Bacteria sense their environment using receptors of the histidine sensor kinase family, but how kinase activity is regulated by ligand binding is not well understood. Autoinducer-2 (AI-2), a secreted signaling molecule originally identified in studies of the marine bacterium Vibrio harveyi, regulates quorum-sensing responses and allows communication between different bacterial species. AI-2 signal transduction in V. harveyi requires the integral membrane receptor LuxPQ, comprised of periplasmic binding protein (LuxP) and histidine sensor kinase (LuxQ) subunits. Combined X-ray crystallographic and functional studies show that AI-2 binding causes a major conformational change within LuxP, which in turn stabilizes a quaternary arrangement in which two LuxPQ monomers are asymmetrically associated. We propose that formation of this asymmetric quaternary structure is responsible for repressing the kinase activity of both LuxQ subunits and triggering the transition of V. harveyi into quorum-sensing mode.

  1. An age-dependent model to analyse the evolutionary stability of bacterial quorum sensing.

    PubMed

    Mund, A; Kuttler, C; Pérez-Velázquez, J; Hense, B A

    2016-09-21

    Bacterial communication is enabled through the collective release and sensing of signalling molecules in a process called quorum sensing. Cooperative processes can easily be destabilized by the appearance of cheaters, who contribute little or nothing at all to the production of common goods. This especially applies for planktonic cultures. In this study, we analyse the dynamics of bacterial quorum sensing and its evolutionary stability under two levels of cooperation, namely signal and enzyme production. The model accounts for mutation rates and switches between planktonic and biofilm state of growth. We present a mathematical approach to model these dynamics using age-dependent colony models. We explore the conditions under which cooperation is stable and find that spatial structuring can lead to long-term scenarios such as coexistence or bistability, depending on the non-linear combination of different parameters like death rates and production costs.

  2. The role of quorum sensing in Escherichia coli (ETEC) virulence factors.

    PubMed

    Sturbelle, Régis Tuchtenhagen; de Avila, Luciana Farias da Costa; Roos, Talita Bandeira; Borchardt, Jéssica Lopes; da Conceição, Rita de Cássia dos Santos; Dellagostin, Odir Antonio; Leite, Fábio Pereira Leivas

    2015-11-18

    Quorum sensing (QS) is a signaling system among bacteria mediated by auto-inducer substances (AI). Whenever the concentration of these molecules reaches a threshold corresponding to a high cell density or quorum, the whole population starts a coordinated expression of specific genes. Studies have shown that epinephrine is also responsible for activating specific bacterial genes. This work aimed to investigate the role of conditioned medium (containing AI), epinephrine and their association on growth, motility, F4 fimbriae and heat-labile toxin (LT) expression on enterotoxigenic Escherichia coli (ETEC, E68). A significant increase in motility, F4 and LT expression, was observed in the ETEC culture supplemented with conditioned medium and epinephrine. These findings suggest that ETEC uses some components of conditioned medium (e.g., AI molecules), host molecules (epinephrine), and their association to modulate the expression of important virulence genes.

  3. Transcriptome analysis of acyl-homoserine lactone-based quorum sensing regulation in Yersinia pestis [corrected].

    PubMed

    LaRock, Christopher N; Yu, Jing; Horswill, Alexander R; Parsek, Matthew R; Minion, F Chris

    2013-01-01

    The etiologic agent of bubonic plague, Yersinia pestis, senses self-produced, secreted chemical signals in a process named quorum sensing. Though the closely related enteric pathogen Y. pseudotuberculosis uses quorum sensing system to regulate motility, the role of quorum sensing in Y. pestis has been unclear. In this study we performed transcriptional profiling experiments to identify Y. pestis quorum sensing regulated functions. Our analysis revealed that acyl-homoserine lactone-based quorum sensing controls the expression of several metabolic functions. Maltose fermentation and the glyoxylate bypass are induced by acyl-homoserine lactone signaling. This effect was observed at 30°C, indicating a potential role for quorum sensing regulation of metabolism at temperatures below the normal mammalian temperature. It is proposed that utilization of alternative carbon sources may enhance growth and/or survival during prolonged periods in natural habitats with limited nutrient sources, contributing to maintenance of plague in nature.

  4. Quorum sensing and the cell-cell communication dependent regulation of gene expression in pathogenic and non-pathogenic bacteria.

    PubMed

    Hardman, A M; Stewart, G S; Williams, P

    1998-11-01

    Although it has been clear for some time that individual bacterial cells employ intra-cellular signalling systems to sense, integrate and process information from their surroundings, their widespread capacity to perceive information from other bacterial cells is only just beginning to be recognised. Recent work has established that diverse bacteria exploit a cell-cell communication device to regulate the transcription of multiple target genes. This communication device termed 'quorum sensing', depends on the production of one or more diffusible signal molecules termed 'autoinducers' or 'pheromones' which enable a bacterium to monitor its own cell population density. Quorum sensing is thus an example of multicellular behaviour in prokaryotes and regulates diverse physiological processes including bioluminescence, swarming, antibiotic biosynthesis, plasmid conjugal transfer and the production of virulence determinants in animal, fish and plant pathogens. In Gram-negative bacteria, the best understood family of signal molecules are the N-acylhomoserine lactones (AHLs) which vary predominantly in the presence or absence of an acyl chain C3 substituent (oxo- or hydroxy-) and length of the N-acyl side chain. However not all quorum sensing signal molecules are AHLs; in Gram-positive bacteria, they are often post-translationally modified peptides. Irrespective of the chemical 'language' employed, interference with either the synthesis or transmission of a quorum sensing signal molecule in pathogenic bacteria offers an exciting new strategy for controlling infection.

  5. Quorum sensing in water and wastewater treatment biofilms.

    PubMed

    Feng, Lin; Wu, Zhuoying; Yu, Xin

    2013-04-01

    Fixed film processes and activated sludge processes are two main families of wastewater treatment systems which all refer to the heterogeneous microbial communities. Meanwhile, biofilms in drinking water distribution systems (DWDS) and biofouling in membrane systems are significant problems in the water and wastewater treatment which reduce the microbial quality of drinking water and limit the development of membrane system respectively. Since biofilms and quorum sensing (QS) as two microbial social behaviors have been inextricably linked, a number of studies have focused on the role of QS signaling and QS inhibition in the processes of water and wastewater treatment, which will help us engineer these biological treatment processes successfully and develop promising approaches for control of microbial adhesion, colonization and biofilm formation. This review gives a summary of recent known QS mechanisms and their role in biofilm formation for different species. Particular attentions are dedicated to the signaling molecules involved in some microbial granulation processes and the potential applications by some of their natural and synthetic analogues in the treatment of membrane biofouling.

  6. The fitness burden imposed by synthesising quorum sensing signals

    PubMed Central

    Ruparell, A.; Dubern, J. F.; Ortori, C. A.; Harrison, F.; Halliday, N. M.; Emtage, A.; Ashawesh, M. M.; Laughton, C. A.; Diggle, S. P.; Williams, P.; Barrett, D. A.; Hardie, K. R.

    2016-01-01

    It is now well established that bacterial populations utilize cell-to-cell signaling (quorum-sensing, QS) to control the production of public goods and other co-operative behaviours. Evolutionary theory predicts that both the cost of signal production and the response to signals should incur fitness costs for producing cells. Although costs imposed by the downstream consequences of QS have been shown, the cost of QS signal molecule (QSSM) production and its impact on fitness has not been examined. We measured the fitness cost to cells of synthesising QSSMs by quantifying metabolite levels in the presence of QSSM synthases. We found that: (i) bacteria making certain QSSMs have a growth defect that exerts an evolutionary cost, (ii) production of QSSMs negatively correlates with intracellular concentrations of QSSM precursors, (iii) the production of heterologous QSSMs negatively impacts the production of a native QSSM that shares common substrates, and (iv) supplementation with exogenously added metabolites partially rescued growth defects imposed by QSSM synthesis. These data identify the sources of the fitness costs incurred by QSSM producer cells, and indicate that there may be metabolic trade-offs associated with QS signaling that could exert selection on how signaling evolves. PMID:27616328

  7. Substituted Lactam and Cyclic Azahemiacetals Modulate Pseudomonas aeruginosa Quorum Sensing

    PubMed Central

    Malladi, Venkata L. A.; Sobczak, Adam J.; Maricic, Natalie; Murugapiran, Senthil Kumar; Schneper, Lisa; Makemson, John; Mathee, Kalai; Wnuk, Stanislaw F.

    2011-01-01

    Quorum sensing (QS) is a population-dependent signaling process bacteria use to control multiple processes including virulence that is critical for establishing infection. The most common QS signaling molecule used by Gram-negative bacteria are acylhomoserine lactones. The development of non-native acylhomoserine lactone (AHL) ligands has emerged as a promising new strategy to inhibit QS in Gram-negative bacteria. In this work, we have synthesized a set of optically pure γ-lactams and their reduced cyclic azahemiacetal analogues, bearing the additional alkylthiomethyl substituent, and evaluated their effect on the AHL-dependent Pseudomonas aeruginosa las and rhl QS pathways. The concentration of these ligands and the simple structural modification such as the length of the alkylthio substituent has notable effect on activity. The γ-lactam derivatives with nonylthio or dodecylthio chains acted as inhibitors of las signaling with moderate potency. The cyclic azahemiacetal with shorter propylthio or hexylthio substituent was found to strongly inhibit both las and rhl signaling at higher concentrations while the propylthio analogue strongly stimulated the las QS system at lower concentrations. PMID:21855349

  8. Synthesis of antimicrobial glucosamides as bacterial quorum sensing mechanism inhibitors.

    PubMed

    Biswas, Nripendra N; Yu, Tsz Tin; Kimyon, Önder; Nizalapur, Shashidhar; Gardner, Christopher R; Manefield, Mike; Griffith, Renate; Black, David StC; Kumar, Naresh

    2017-02-01

    Bacteria communicate with one another and regulate their pathogenicity through a phenomenon known as quorum sensing (QS). When the bacterial colony reaches a threshold density, the QS system induces the production of virulence factors and the formation of biofilms, a powerful defence system against the host's immune responses. The glucosamine monomer has been shown to disrupt the bacterial QS system by inhibiting autoinducer (AI) signalling molecules such as the acyl-homoserine lactones (AHLs). In this study, the synthesis of acetoxy-glucosamides 8, hydroxy-glucosamides 9 and 3-oxo-glucosamides 12 was performed via the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC·HCl) and N,N'-dicyclohexylcarbodiimide (DCC) coupling methods. All of the synthesized compounds were tested against two bacterial strains, P. aeruginosa MH602 (LasI/R-type QS) and E. coli MT102 (LuxI/R-type QS), for QS inhibitory activity. The most active compound 9b showed 79.1% QS inhibition against P. aeruginosa MH602 and 98.4% against E. coli MT102, while compound 12b showed 64.5% inhibition against P. aeruginosa MH602 and 88.1% against E. coli MT102 strain at 2mM concentration. The ability of the compounds to inhibit the production of the virulence factor pyocyanin and biofilm formation in the P. aeruginosa (PA14) strain was also examined. Finally, computational docking studies were performed with the LasR receptor protein.

  9. Quorum sensing and social networking in the microbial world

    PubMed Central

    Atkinson, Steve; Williams, Paul

    2009-01-01

    For many years, bacterial cells were considered primarily as selfish individuals, but, in recent years, it has become evident that, far from operating in isolation, they coordinate collective behaviour in response to environmental challenges using sophisticated intercellular communication networks. Cell-to-cell communication between bacteria is mediated by small diffusible signal molecules that trigger changes in gene expression in response to fluctuations in population density. This process, generally referred to as quorum sensing (QS), controls diverse phenotypes in numerous Gram-positive and Gram-negative bacteria. Recent advances have revealed that bacteria are not limited to communication within their own species but are capable of ‘listening in’ and ‘broadcasting to’ unrelated species to intercept messages and coerce cohabitants into behavioural modifications, either for the good of the population or for the benefit of one species over another. It is also evident that QS is not limited to the bacterial kingdom. The study of two-way intercellular signalling networks between bacteria and both uni- and multicellular eukaryotes as well as between eukaryotes is just beginning to unveil a rich diversity of communication pathways. PMID:19674996

  10. Quorum sensing inhibitors as anti-biofilm agents.

    PubMed

    Brackman, Gilles; Coenye, Tom

    2015-01-01

    Biofilms are microbial sessile communities characterized by cells that are attached to a substratum or interface or to each other, are embedded in a self-produced matrix of extracellular polymeric substances and exhibit an altered phenotype compared to planktonic cells. Biofilms are estimated to be associated with 80% of microbial infections and it is currently common knowledge that growth of micro-organisms in biofilms can enhance their resistance to antimicrobial agents. As a consequence antimicrobial therapy often fails to eradicate biofilms from the site of infection. For this reason, innovative anti-biofilm agents with novel targets and modes of action are needed. One alternative approach is targeting the bacterial communication system (quorum sensing, QS). QS is a process by which bacteria produce and detect signal molecules and thereby coordinate their behavior in a cell-density dependent manner. Three main QS systems can be distinguished: the acylhomoserine lactone (AHL) QS system in Gram-negative bacteria, the autoinducing peptide (AIP) QS system in Gram-positive bacteria and the autoinducer-2 (AI-2) QS system in both Gram-negative and -positive bacteria. Although much remains to be learned about the involvement of QS in biofilm formation, maintenance, and dispersal, QS inhibitors (QSI) have been proposed as promising antibiofilm agents. In this article we will give an overview of QS inhibitors which have been shown to play a role in biofilm formation and/or maturation.

  11. Quorum sensing and social networking in the microbial world.

    PubMed

    Atkinson, Steve; Williams, Paul

    2009-11-06

    For many years, bacterial cells were considered primarily as selfish individuals, but, in recent years, it has become evident that, far from operating in isolation, they coordinate collective behaviour in response to environmental challenges using sophisticated intercellular communication networks. Cell-to-cell communication between bacteria is mediated by small diffusible signal molecules that trigger changes in gene expression in response to fluctuations in population density. This process, generally referred to as quorum sensing (QS), controls diverse phenotypes in numerous Gram-positive and Gram-negative bacteria. Recent advances have revealed that bacteria are not limited to communication within their own species but are capable of 'listening in' and 'broadcasting to' unrelated species to intercept messages and coerce cohabitants into behavioural modifications, either for the good of the population or for the benefit of one species over another. It is also evident that QS is not limited to the bacterial kingdom. The study of two-way intercellular signalling networks between bacteria and both uni- and multicellular eukaryotes as well as between eukaryotes is just beginning to unveil a rich diversity of communication pathways.

  12. Quorum Sensing Desynchronization Leads to Bimodality and Patterned Behaviors

    PubMed Central

    Quan, David N.; Tsao, Chen-Yu; Wu, Hsuan-Chen; Bentley, William E.

    2016-01-01

    Quorum Sensing (QS) drives coordinated phenotypic outcomes among bacterial populations. Its role in mediating infectious disease has led to the elucidation of numerous autoinducers and their corresponding QS signaling pathways. Among them, the Lsr (LuxS-regulated) QS system is conserved in scores of bacteria, and its signal molecule, autoinducer-2 (AI-2), is synthesized as a product of 1-carbon metabolism. Lsr signal transduction processes, therefore, may help organize population scale activities in numerous bacterial consortia. Conceptions of how Lsr QS organizes population scale behaviors remain limited, however. Using mathematical simulations, we examined how desynchronized Lsr QS activation, arising from cell-to-cell population heterogeneity, could lead to bimodal Lsr signaling and fractional activation. This has been previously observed experimentally. Governing these processes are an asynchronous AI-2 uptake, where positive intracellular feedback in Lsr expression is combined with negative feedback between cells. The resulting activation patterns differ from that of the more widely studied LuxIR system, the topology of which consists of only positive feedback. To elucidate differences, both QS systems were simulated in 2D, where cell populations grow and signal each other via traditional growth and diffusion equations. Our results demonstrate that the LuxIR QS system produces an ‘outward wave’ of autoinduction, and the Lsr QS system yields dispersed autoinduction from spatially-localized secretion and uptake profiles. In both cases, our simulations mirror previously demonstrated experimental results. As a whole, these models inform QS observations and synthetic biology designs. PMID:27071007

  13. Local and Global Consequences of Flow on Bacterial Quorum Sensing

    PubMed Central

    Kim, Minyoung Kevin; Ingremeau, Francois; Zhao, Aishan; Bassler, Bonnie L.; Stone, Howard A.

    2016-01-01

    Bacteria use a chemical communication process called quorum sensing (QS) to control collective behaviours, such as pathogenesis and biofilm formation1,2. QS relies on the production, release, and group-wide detection of signal molecules called autoinducers. To date, studies of bacterial pathogenesis in well-mixed cultures have revealed virulence factors and the regulatory circuits controlling them, including the overarching role of QS3. Although flow is ubiquitous to nearly all living systems4, much less explored is how QS influences pathogenic traits in scenarios that mimic host environments, for example, under fluid flow and in complex geometries. Previous studies have showed that sufficiently strong flow represses QS5–7. Nonetheless, it is not known how QS functions under constant or intermittent flow, how it varies within biofilms or as a function of position along a confined flow, or how surface topography (grooves, crevices, pores) influence QS-mediated communication. We explore these questions using two common pathogens Staphylococcus aureus and Vibrio cholerae. We identify conditions where flow represses QS and other conditions where QS is activated despite flow, including characterizing geometric and topographic features that influence the QS response. Our studies highlight that, under flow, genetically identical cells do not exhibit phenotypic uniformity with respect to QS in space and time, leading to complex patterns of pathogenesis and colonization. Understanding the ramifications of spatially and temporally non-uniform QS responses in realistic environments will be crucial for successful deployment of synthetic pro- and anti-QS strategies. PMID:27571752

  14. Strain-dependent diversity in the Pseudomonas aeruginosa quorum-sensing regulon.

    PubMed

    Chugani, Sudha; Kim, Byoung Sik; Phattarasukol, Somsak; Brittnacher, Mitchell J; Choi, Sang Ho; Harwood, Caroline S; Greenberg, E Peter

    2012-10-09

    Quorum sensing allows bacteria to sense and respond to changes in population density. Acyl-homoserine lactones serve as quorum-sensing signals for many Proteobacteria, and acyl-homoserine lactone signaling is known to control cooperative activities. Quorum-controlled activities vary from one species to another. Quorum-sensing controls a constellation of genes in the opportunistic pathogen Pseudomonas aeruginosa, which thrives in a number of habitats ranging from soil and water to animal hosts. We hypothesized that there would be significant variation in quorum-sensing regulons among strains of P. aeruginosa isolated from different habitats and that differences in the quorum-sensing regulons might reveal insights about the ecology of P. aeruginosa. As a test of our hypothesis we used RNA-seq to identify quorum-controlled genes in seven P. aeruginosa isolates of diverse origins. Although our approach certainly overlooks some quorum-sensing-regulated genes we found a shared set of genes, i.e., a core quorum-controlled gene set, and we identified distinct, strain-variable sets of quorum-controlled genes, i.e., accessory genes. Some quorum-controlled genes in some strains were not present in the genomes of other strains. We detected a correlation between traits encoded by some genes in the strain-variable subsets of the quorum regulons and the ecology of the isolates. These findings indicate a role for quorum sensing in extension of the range of habitats in which a species can thrive. This study also provides a framework for understanding the molecular mechanisms by which quorum-sensing systems operate, the evolutionary pressures by which they are maintained, and their importance in disparate ecological contexts.

  15. Global analysis of the Burkholderia thailandensis quorum sensing-controlled regulon.

    PubMed

    Majerczyk, Charlotte; Brittnacher, Mitchell; Jacobs, Michael; Armour, Christopher D; Radey, Mathew; Schneider, Emily; Phattarasokul, Somsak; Bunt, Richard; Greenberg, E Peter

    2014-04-01

    Burkholderia thailandensis contains three acyl-homoserine lactone quorum sensing circuits and has two additional LuxR homologs. To identify B. thailandensis quorum sensing-controlled genes, we carried out transcriptome sequencing (RNA-seq) analyses of quorum sensing mutants and their parent. The analyses were grounded in the fact that we identified genes coding for factors shown previously to be regulated by quorum sensing among a larger set of quorum-controlled genes. We also found that genes coding for contact-dependent inhibition were induced by quorum sensing and confirmed that specific quorum sensing mutants had a contact-dependent inhibition defect. Additional quorum-controlled genes included those for the production of numerous secondary metabolites, an uncharacterized exopolysaccharide, and a predicted chitin-binding protein. This study provides insights into the roles of the three quorum sensing circuits in the saprophytic lifestyle of B. thailandensis, and it provides a foundation on which to build an understanding of the roles of quorum sensing in the biology of B. thailandensis and the closely related pathogenic Burkholderia pseudomallei and Burkholderia mallei.

  16. Global Analysis of the Burkholderia thailandensis Quorum Sensing-Controlled Regulon

    PubMed Central

    Majerczyk, Charlotte; Brittnacher, Mitchell; Jacobs, Michael; Armour, Christopher D.; Radey, Mathew; Schneider, Emily; Phattarasokul, Somsak; Bunt, Richard

    2014-01-01

    Burkholderia thailandensis contains three acyl-homoserine lactone quorum sensing circuits and has two additional LuxR homologs. To identify B. thailandensis quorum sensing-controlled genes, we carried out transcriptome sequencing (RNA-seq) analyses of quorum sensing mutants and their parent. The analyses were grounded in the fact that we identified genes coding for factors shown previously to be regulated by quorum sensing among a larger set of quorum-controlled genes. We also found that genes coding for contact-dependent inhibition were induced by quorum sensing and confirmed that specific quorum sensing mutants had a contact-dependent inhibition defect. Additional quorum-controlled genes included those for the production of numerous secondary metabolites, an uncharacterized exopolysaccharide, and a predicted chitin-binding protein. This study provides insights into the roles of the three quorum sensing circuits in the saprophytic lifestyle of B. thailandensis, and it provides a foundation on which to build an understanding of the roles of quorum sensing in the biology of B. thailandensis and the closely related pathogenic Burkholderia pseudomallei and Burkholderia mallei. PMID:24464461

  17. Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants.

    PubMed

    Ansaldi, Mireille; Marolt, Darja; Stebe, Tina; Mandic-Mulec, Ines; Dubnau, David

    2002-06-01

    Natural genetic competence in Bacillus subtilis is controlled by quorum-sensing (QS). The ComP- ComA two-component system detects the signalling molecule ComX, and this signal is transduced by a conserved phosphotransfer mechanism. ComX is synthesized as an inactive precursor and is then cleaved and modified by ComQ before export to the extracellular environment. The comQXP' loci of a set of natural Bacillus isolates have been sequenced and shown to possess a striking polymorphism that determines specific patterns of both activation and inhibition of the quorum-sensing response. We have developed a simple purification method for the modified peptide signalling pheromones allowing the characterization of four distinct ComX molecules representing different pherotypes. Genetic and biochemical evidence demonstrate that all the ComX variants are isoprenylated by the post-translational modification of a conserved tryptophan residue and that the modifications on the ComX peptide backbones vary in mass among the various pherotypes. These results give new insights into peptidemediated quorum-sensing signalling in Gram-positive bacteria and emphasize the role of isoprenylation in bacterial signal transduction.

  18. Inhibiting N-acyl-homoserine lactone synthesis and quenching Pseudomonas quinolone quorum sensing to attenuate virulence

    PubMed Central

    Chan, Kok-Gan; Liu, Yi-Chia; Chang, Chien-Yi

    2015-01-01

    Bacteria sense their own population size, tune the expression of responding genes, and behave accordingly to environmental stimuli by secreting signaling molecules. This phenomenon is termed as quorum sensing (QS). By exogenously manipulating the signal transduction bacterial population behaviors could be controlled, which may be done through quorum quenching (QQ). QS related regulatory networks have been proven their involvement in regulating many virulence determinants in pathogenic bacteria in the course of infections. Interfering with QS signaling system could be a novel strategy against bacterial infections and therefore requires more understanding of their fundamental mechanisms. Here we review the development of studies specifically on the inhibition of production of N-acyl-homoserine lactone (AHL), a common proteobacterial QS signal. The opportunistic pathogen, Pseudomonas aeruginosa, equips the alkylquinolone (AQ)-mediated QS which also plays crucial roles in its pathogenicity. The studies in QQ targeting on AQ are also discussed. PMID:26539190

  19. Repellent and Anti-quorum Sensing Activity of Six Aromatic Plants Occurring in Colombia.

    PubMed

    Cervantes-Ceballos, Leonor; Caballero-Gallardo, Karina; Olivero-Verbel, Jesus

    2015-10-01

    Essential oils (EOs) are widely used as biopesticides and to control bacterial infections. This study describes the ability of six EOs isolated from plants cultivated in Colombia to perform as repellents against Ulomoides dermestoides and as quorum sensing (QS) inhibitors. EOs from Aloysia triphylla, Cymbopogon nardus, Lippia origanoides, Hyptis suaveolens, Swinglea glutinosa and Eucalyptus globulus were repellents classified as Class IV, IV, IV, III, II, and II, respectively, whereas the commercial repellent IR3535 only reached Class II after 2 h exposure. All EOs presented small, but significant inhibitory properties against the QS system in Escherichia coli (pJBA132) at 25 μg/mL after 4 h exposure. These data suggest evaluated EOs from Colombia are sustainable, promising new sources of natural repellents and could be important as anti-quorum sensing molecules.

  20. Reducing Virulence and Biofilm of Pseudomonas aeruginosa by Potential Quorum Sensing Inhibitor Carotenoid: Zeaxanthin.

    PubMed

    Gökalsın, Barış; Aksoydan, Busecan; Erman, Burak; Sesal, Nüzhet Cenk

    2017-03-02

    Pseudomonas aeruginosa can regulate its virulence gene expressions by using a signal system called quorum sensing. It is known that inhibition of quorum sensing can block biofilm formation and leave the bacteria defenseless. Therefore, it is necessary to determine natural sources to obtain potential quorum sensing inhibitors. This study aims to investigate an alternative treatment approach by utilizing the carotenoid zeaxanthin to reduce the expressions of P. aeruginosa virulence factors through quorum sensing inhibition. The inhibition potential of zeaxanthin was determined by in silico screening from a library of 638 lichen metabolites. Fluorescent monitor strains were utilized for quorum sensing inhibitor screens, and quantitative reverse-transcriptase PCR assay was performed for evaluating gene expression. Results indicate that zeaxanthin is a better inhibitor than the lichen secondary metabolite evernic acid, which was previously shown to be capable of inhibiting P. aeruginosa quorum sensing systems.

  1. Simultaneous quantitative profiling of N-acyl-L-homoserine lactone and 2-alkyl-4(1H)-quinolone families of quorum-sensing signaling molecules using LC-MS/MS.

    PubMed

    Ortori, Catharine A; Dubern, Jean-Frédéric; Chhabra, Siri Ram; Cámara, Miguel; Hardie, Kim; Williams, Paul; Barrett, David A

    2011-01-01

    An LC-MS/MS method, using positive mode electrospray ionization, for the simultaneous, quantitative and targeted profiling of the N-acyl-L-homoserine lactone (AHL) and 2-alkyl 4-(1H)-quinolone (AQ) families of bacterial quorum-sensing signaling molecules (QSSMs) is presented. This LC-MS/MS technique was applied to determine the relative molar ratios of AHLs and AQs produced by Pseudomonas aeruginosa and the consequences of mutating individual or multiple QSSM synthase genes (lasI, rhlI, pqsA) on AHL and AQ profiles and concentrations. The AHL profile of P. aeruginosa was dominated by N-butanoyl-L-homoserine lactone (C4-HSL) with lesser concentrations of N-hexanoyl-L-homoserine lactone (C6-HSL) and 3-oxo-substituted longer chain AHLs including N-(3-oxodecanoyl)-L-homoserine lactone (3-oxo-C10-HSL) and N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL). The AQ profile of P. aeruginosa comprised the C7 and C9 long alkyl chain AQs including 2-heptyl-4-hydroxyquinoline (HHQ), 2-nonyl-4-hydroxyquinoline, the "pseudomonas quinolone signal" (2-heptyl-3-hydroxy-4-quinolone) and the N-oxides, 2-heptyl-4-hydroxyquinoline N-oxide and 2-nonyl-4-hydroxyquinoline N-oxide. Application of the method showed significant effects of growth medium type on the ratio and the nature of the QSSMs synthesized and the dramatic effect of single, double and triple mutations in the P. aeruginosa QS synthase genes. The LC-MS/MS methodology is applicable in organisms where either or both AHL and AQ QSSMs are produced and can provide comprehensive profiles and concentrations from a single sample.

  2. RpoN Regulates Virulence Factors of Pseudomonas aeruginosa via Modulating the PqsR Quorum Sensing Regulator.

    PubMed

    Cai, Zhao; Liu, Yang; Chen, Yicai; Yam, Joey Kuok Hoong; Chew, Su Chuen; Chua, Song Lin; Wang, Ke; Givskov, Michael; Yang, Liang

    2015-11-30

    The alternative sigma factor RpoN regulates many cell functions, such as motility, quorum sensing, and virulence in the opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa). P. aeruginosa often evolves rpoN-negative variants during the chronic infection in cystic fibrosis patients. It is unclear how RpoN interacts with other regulatory mechanisms to control virulence of P. aeruginosa. In this study, we show that RpoN modulates the function of PqsR, a quorum sensing receptor regulating production of virulence factors including the phenazine pyocyanin. The ∆rpoN mutant is able to synthesize 4-quinolone signal molecule HHQ but unable to activate PqsR and Pseudomonas quinolone signal (pqs) quorum sensing. The ∆rpoN mutant produces minimal level of pyocyanin and is unable to produce the anti-staphylococcal agents. Providing pqsR in trans in the ∆rpoN mutant restores its pqs quorum sensing and virulence factor production to the wild-type level. Our study provides evidence that RpoN has a regulatory effect on P. aeruginosa virulence through modulating the function of the PqsR quorum sensing regulator.

  3. RpoN Regulates Virulence Factors of Pseudomonas aeruginosa via Modulating the PqsR Quorum Sensing Regulator

    PubMed Central

    Cai, Zhao; Liu, Yang; Chen, Yicai; Yam, Joey Kuok Hoong; Chew, Su Chuen; Chua, Song Lin; Wang, Ke; Givskov, Michael; Yang, Liang

    2015-01-01

    The alternative sigma factor RpoN regulates many cell functions, such as motility, quorum sensing, and virulence in the opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa). P. aeruginosa often evolves rpoN-negative variants during the chronic infection in cystic fibrosis patients. It is unclear how RpoN interacts with other regulatory mechanisms to control virulence of P. aeruginosa. In this study, we show that RpoN modulates the function of PqsR, a quorum sensing receptor regulating production of virulence factors including the phenazine pyocyanin. The ∆rpoN mutant is able to synthesize 4-quinolone signal molecule HHQ but unable to activate PqsR and Pseudomonas quinolone signal (pqs) quorum sensing. The ∆rpoN mutant produces minimal level of pyocyanin and is unable to produce the anti-staphylococcal agents. Providing pqsR in trans in the ∆rpoN mutant restores its pqs quorum sensing and virulence factor production to the wild-type level. Our study provides evidence that RpoN has a regulatory effect on P. aeruginosa virulence through modulating the function of the PqsR quorum sensing regulator. PMID:26633362

  4. Sociomicrobiology: the connections between quorum sensing and biofilms.

    PubMed

    Parsek, Matthew R; Greenberg, E P

    2005-01-01

    In the past decade, significant debate has surrounded the relative contributions of genetic determinants versus environmental conditions to certain types of human behavior. While this debate goes on, it is with a certain degree of irony that microbiologists studying aspects of bacterial community behavior face the same questions. Information regarding two social phenomena exhibited by bacteria, quorum sensing and biofilm development, is reviewed here. These two topics have been inextricably linked, possibly because biofilms and quorum sensing represent two areas in which microbiologists focus on social aspects of bacteria. We will examine what is known about this linkage and discuss areas that might be developed. In addition, we believe that these two aspects of bacterial behavior represent a small part of the social repertoire of bacteria. Bacteria exhibit many social activities and they represent a model for dissecting social behavior at the genetic level. Therefore, we introduce the term 'sociomicrobiology'.

  5. Truncated Autoinducing Peptides as Antagonists of Staphylococcus lugdunensis Quorum Sensing.

    PubMed

    Gordon, Christopher P; Olson, Shondra D; Lister, Jessica L; Kavanaugh, Jeffrey S; Horswill, Alexander R

    2016-10-13

    Competitive quorum sensing (QS) antagonism offers a novel strategy for attenuating current multidrug resistant staphylococcal infections. To this end, a series of 10 truncated analogues based on the parent autoinducing peptides (AIPs) of Staphylococcus lugdunensis (groups I and II) and Staphylococcus epidermidis (groups I-III) were sequentially assessed against a newly developed Staphylococcus lugdunensis group I QS reporter strain. The truncated analogues based upon Staphylococcus lugdunensis AIP-1 (1) and AIP-2 (2) displayed respective IC50 values of 0.2 ± 0.01 μM and 0.3 ± 0.01 μM, while the truncated analogue of the Staphylococcus epidermidis AIP-1 (3) elicited an IC50 value of 2.7 ± 0.1 μM. These findings demonstrate the potential of cognate and "crosstalk" competitive quorum sensing inhibition using truncated AIPs as a means of attenuating staphylococcal infections in species beyond Staphylococcus aureus.

  6. Quorum Sensing Inhibitory Activity of Giganteone A from Myristica cinnamomea King against Escherichia coli Biosensors.

    PubMed

    Sivasothy, Yasodha; Krishnan, Thiba; Chan, Kok-Gan; Abdul Wahab, Siti Mariam; Othman, Muhamad Aqmal; Litaudon, Marc; Awang, Khalijah

    2016-03-21

    Malabaricones A-C (1-3) and giganteone A (4) were isolated from the bark of Myristica cinnamomea King. Their structures were elucidated and characterized by means of NMR and MS spectral analyses. These isolates were evaluated for their anti-quorum sensing activity using quorum sensing biosensors, namely Escherichia coli [pSB401] and Escherichia coli [pSB1075], whereby the potential of giganteone A (4) as a suitable anti-quorum sensing agent was demonstrated.

  7. Simple models for quorum sensing: Nonlinear dynamical analysis

    NASA Astrophysics Data System (ADS)

    Chiang, Wei-Yin; Li, Yue-Xian; Lai, Pik-Yin

    2011-10-01

    Quorum sensing refers to the change in the cooperative behavior of a collection of elements in response to the change in their population size or density. This behavior can be observed in chemical and biological systems. These elements or cells are coupled via chemicals in the surrounding environment. Here we focus on the change of dynamical behavior, in particular from quiescent to oscillatory, as the cell population changes. For instance, the silent behavior of the elements can become oscillatory as the system concentration or population increases. In this work, two simple models are constructed that can produce the essential representative properties in quorum sensing. The first is an excitable or oscillatory phase model, which is probably the simplest model one can construct to describe quorum sensing. Using the mean-field approximation, the parameter regime for quorum sensing behavior can be identified, and analytical results for the detailed dynamical properties, including the phase diagrams, are obtained and verified numerically. The second model consists of FitzHugh-Nagumo elements coupled to the signaling chemicals in the environment. Nonlinear dynamical analysis of this mean-field model exhibits rich dynamical behaviors, such as infinite period bifurcation, supercritical Hopf, fold bifurcation, and subcritical Hopf bifurcations as the population parameter changes for different coupling strengths. Analytical result is obtained for the Hopf bifurcation phase boundary. Furthermore, two elements coupled via the environment and their synchronization behavior for these two models are also investigated. For both models, it is found that the onset of oscillations is accompanied by the synchronized dynamics of the two elements. Possible applications and extension of these models are also discussed.

  8. Quorum Sensing and Synchronization in Populations of Coupled Chemical Oscillators

    NASA Astrophysics Data System (ADS)

    Taylor, Annette F.; Tinsley, Mark R.; Showalter, Kenneth

    2013-12-01

    Experiments and simulations of populations of coupled chemical oscillators, consisting of catalytic particles suspended in solution, provide insights into density-dependent dynamics displayed by many cellular organisms. Gradual synchronization transitions, the "switching on" of activity above a threshold number of oscillators (quorum sensing) and the formation of synchronized groups (clusters) of oscillators have been characterized. Collective behavior is driven by the response of the oscillators to chemicals emitted into the surrounding solution.

  9. Synthetic polymers for simultaneous bacterial sequestration and quorum sense interference.

    PubMed

    Xue, Xuan; Pasparakis, George; Halliday, Nigel; Winzer, Klaus; Howdle, Steven M; Cramphorn, Christopher J; Cameron, Neil R; Gardner, Paul M; Davis, Benjamin G; Fernández-Trillo, Francisco; Alexander, Cameron

    2011-10-10

    Double agents: dual-action polymers are able to sequester rapidly the marine organism Vibrio harveyi from suspension, while at the same time quenching bacterial quorum sense (QS) signals. The potency of the polymers is assessed by cell aggregation experiments and competitive binding assays against a QS signal precursor, and their effect on bacterial behavior is shown by means of bioluminescence. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Investigating the effect of antibiotics on quorum sensing with whole-cell biosensing systems.

    PubMed

    Struss, Anjali K; Pasini, Patrizia; Flomenhoft, Deborah; Shashidhar, Harohalli; Daunert, Sylvia

    2012-04-01

    Quorum sensing (QS) allows bacteria to communicate with one another by means of QS signaling molecules and control certain behaviors in a group-based manner, including pathogenicity and biofilm formation. Bacterial gut microflora may play a role in inflammatory bowel disease pathogenesis, and antibiotics are one of the available therapeutic options for Crohn's disease. In the present study, we employed genetically engineered bioluminescent bacterial whole-cell sensing systems as a tool to evaluate the ability of antibiotics commonly employed in the treatment of chronic inflammatory conditions to interfere with QS. We investigated the effect of ciprofloxacin, metronidazole, and tinidazole on quorum sensing. Several concentrations of individual antibiotics were allowed to interact with two different types of bacterial sensing cells, in both the presence and absence of a fixed concentration of N-acylhomoserine lactone (AHL) QS molecules. The antibiotic effect was then determined by monitoring the biosensor's bioluminescence response. Ciprofloxacin, metronidazole, and tinidazole exhibited a dose-dependent augmentation in the response of both bacterial sensing systems, thus showing an AHL-like effect. Additionally, such an augmentation was observed, in both the presence and absence of AHL. The data obtained indicate that ciprofloxacin, metronidazole, and tinidazole may interfere with bacterial communication systems. The results suggest that these antibiotics, at the concentrations tested, may themselves act as bacterial signaling molecules. The beneficial effect of these antibiotics in the treatment of intestinal inflammation may be due, at least in part, to their effect on QS-related bacterial behavior in the gut.

  11. Bacterial quorum sensing and interference by naturally occurring biomimics.

    PubMed

    McDougald, Diane; Rice, Scott A; Kjelleberg, Staffan

    2007-01-01

    Bacteria are able to coordinate gene expression as a community through the secretion and detection of signalling molecules so that the members of the community can simultaneously express specific behaviours. This mechanism of regulation of behaviour appears to be a key trait for adaptation to specific environments and has been shown to regulate a variety of important phenotypes, from virulence factor production to biofilm formation to symbiosis related behaviours such as bioluminescence. The ability to communicate and communally regulate gene expression is hypothesised to have evolved as a way for organisms to delay expression of phenotypes until numerical supremacy is reached. For example, in the case of infection, if an invading microorganism were to express virulence factors too early, the host may be able to mount a successful defence and repel the invaders. There is growing evidence that bacterial quorum sensing (QS) systems are involved in cross-kingdom signalling with eukaryotic organisms and that eukaryotes are capable of actively responding to bacteria in their environment by detecting and acting upon the presence of these signalling molecules. Likewise, eukaryotes produce compounds that can interfere with QS systems in bacteria by acting as agonists or antagonists. An exciting new field of study, biomimetics, takes inspiration from nature's models and attempts to design solutions to human problems, and biomimics of QS systems may be one such solution. This article presents the acylated homoserine lactone and autoinducer 2 QS systems in bacteria, the means of intercepting or interfering with bacterial QS systems evolved by eukaryotes, and the rational design of synthetic antagonists.

  12. Colostrum Hexasaccharide, a Novel Staphylococcus aureus Quorum-Sensing Inhibitor

    PubMed Central

    Srivastava, A.; Deepak, D.; Singh, B. R.

    2015-01-01

    The discovery of quorum-sensing (QS) systems regulating antibiotic resistance and virulence factors (VFs) has afforded a novel opportunity to prevent bacterial pathogenicity. Dietary molecules have been demonstrated to attenuate QS circuits of bacteria. But, to our knowledge, no study exploring the potential of colostrum hexasaccharide (CHS) in regulating QS systems has been published. In this study, we analyzed CHS for inhibiting QS signaling in Staphylococcus aureus. We isolated and characterized CHS from mare colostrum by high-performance thin-layer chromatography (HPTLC), reverse-phase high-performance liquid chromatography evaporative light-scattering detection (RP-HPLC-ELSD), 1H and 13C nuclear magnetic resonance (NMR), and electrospray ionization mass spectrometry (ESI-MS). Antibiofilm activity of CHS against S. aureus and its possible interference with bacterial QS systems were determined. The inhibition and eradication potentials of the biofilms were studied by microscopic analyses and quantified by 96-well-microtiter-plate assays. Also, the ability of CHS to interfere in bacterial QS by degrading acyl-homoserine lactones (AHLs), one of the most studied signal molecules for Gram-negative bacteria, was evaluated. The results revealed that CHS exhibited promising inhibitory activities against QS-regulated secretion of VFs, including spreading ability, hemolysis, protease, and lipase activities, when applied at a rate of 5 mg/ml. The results of biofilm experiments indicated that CHS is a strong inhibitor of biofilm formation and also has the ability to eradicate it. The potential of CHS to interfere with bacterial QS systems was also examined by degradation of AHLs. Furthermore, it was documented that CHS decreased antibiotic resistance in S. aureus. The results thus give a lead that mare colostrum can be a promising source for isolating a next-generation antibacterial. PMID:25645850

  13. Specific quorum sensing-disrupting activity (A QSI) of thiophenones and their therapeutic potential.

    PubMed

    Yang, Qian; Scheie, Anne Aamdal; Benneche, Tore; Defoirdt, Tom

    2015-12-09

    Disease caused by antibiotic resistant pathogens is becoming a serious problem, both in human and veterinary medicine. The inhibition of quorum sensing, bacterial cell-to-cell communication, is a promising alternative strategy to control disease. In this study, we determined the quorum sensing-disrupting activity of 20 thiophenones towards the quorum sensing model bacterium V. harveyi. In order to exclude false positives, we propose a new parameter (AQSI) to describe specific quorum sensing activity. AQSI is defined as the ratio between inhibition of quorum sensing-regulated activity in a reporter strain and inhibition of the same activity when it is independent of quorum sensing. Calculation of AQSI allowed to exclude five false positives, whereas the six most active thiophenones (TF203, TF307, TF319, TF339, TF342 and TF403) inhibited quorum sensing at 0.25 μM, with AQSI higher than 10. Further, we determined the protective effect and toxicity of the thiophenones in a highly controlled gnotobiotic model system with brine shrimp larvae. There was a strong positive correlation between the specific quorum sensing-disrupting activity of the thiophenones and the protection of brine shrimp larvae against pathogenic V. harveyi. Four of the most active quorum sensing-disrupting thiophenones (TF 203, TF319, TF339 and TF342) were considered to be promising since they have a therapeutic potential of at least 10.

  14. Fusaric acid and analogues as Gram-negative bacterial quorum sensing inhibitors.

    PubMed

    Tung, Truong Thanh; Jakobsen, Tim Holm; Dao, Trong Tuan; Fuglsang, Anja Thoe; Givskov, Michael; Christensen, Søren Brøgger; Nielsen, John

    2017-01-27

    Taking advantage of microwave-assisted synthesis, efficient and expedite procedures for preparation of a library of fusaric acid and 39 analogues are reported. The fusaric acid analogues were tested in cell-based screening assays for inhibition of the las and rhl quorum sensing system in Pseudomonas aeruginosa and the lux quorum sensing system in Vibrio fischeri. Eight of the 40 compounds in the library including fusaric acid inhibited lux quorum sensing and one compound inhibited activity of the las quorum sensing system. To our delight, none of the compounds showed growth inhibitory effects in the tested concentration ranges.

  15. Specific quorum sensing-disrupting activity (AQSI) of thiophenones and their therapeutic potential

    PubMed Central

    Yang, Qian; Aamdal Scheie, Anne; Benneche, Tore; Defoirdt, Tom

    2015-01-01

    Disease caused by antibiotic resistant pathogens is becoming a serious problem, both in human and veterinary medicine. The inhibition of quorum sensing, bacterial cell-to-cell communication, is a promising alternative strategy to control disease. In this study, we determined the quorum sensing-disrupting activity of 20 thiophenones towards the quorum sensing model bacterium V. harveyi. In order to exclude false positives, we propose a new parameter (AQSI) to describe specific quorum sensing activity. AQSI is defined as the ratio between inhibition of quorum sensing-regulated activity in a reporter strain and inhibition of the same activity when it is independent of quorum sensing. Calculation of AQSI allowed to exclude five false positives, whereas the six most active thiophenones (TF203, TF307, TF319, TF339, TF342 and TF403) inhibited quorum sensing at 0.25 μM, with AQSI higher than 10. Further, we determined the protective effect and toxicity of the thiophenones in a highly controlled gnotobiotic model system with brine shrimp larvae. There was a strong positive correlation between the specific quorum sensing-disrupting activity of the thiophenones and the protection of brine shrimp larvae against pathogenic V. harveyi. Four of the most active quorum sensing-disrupting thiophenones (TF 203, TF319, TF339 and TF342) were considered to be promising since they have a therapeutic potential of at least 10. PMID:26647822

  16. Pseudomonas aeruginosa quorum sensing modulates immune responses: An updated review article.

    PubMed

    Kariminik, Ashraf; Baseri-Salehi, Majid; Kheirkhah, Babak

    2017-07-08

    Pseudomonas aeruginosa is an opportunistic bacterium which induces some complications in immunocompromised patients. Pseudomonas aeruginosa is a quorum-sensing using bacterium which regulates its genes expression. The bacterium uses two famous pathways for quorum sensing entitled LasI/LasR and RhlI/RhlR systems. It has been documented that the bacteria which use quorum sensing are able to overcome immune responses. This review article aims to present recent information regarding the effects of Pseudomonas aeruginosa quorum sensing systems on the host immune responses. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  17. Does a quorum sensing mechanism direct the behavior of immune cells?

    PubMed

    Perié, Leïla; Aru, Juhan; Kourilsky, Philippe; Slotine, Jean-Jacques

    2013-01-01

    Quorum sensing is a decision-making process used by decentralized groups such as colonies of bacteria to trigger a coordinated behavior. The existence of decentralized coordinated behavior has also been suggested in the immune system. In this paper, we explore the possibility for quorum sensing mechanisms in the immune response. Cytokines are good candidates as inducer of quorum sensing effects on migration, proliferation and differentiation of immune cells. The existence of a quorum sensing mechanism should be explored experimentally. It may provide new perspectives into immune responses and could lead to new therapeutic strategies. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  18. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR.

    PubMed

    Diggle, Stephen P; Winzer, Klaus; Chhabra, Siri Ram; Worrall, Kathryn E; Cámara, Miguel; Williams, Paul

    2003-10-01

    In Pseudomonas aeruginosa, diverse exoproduct virulence determinants are regulated via N-acylhomoserine lactone-dependent quorum sensing. Here we show that 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) is also an integral component of the quorum sensing circuitry and is required for the production of rhl-dependent exoproducts at the onset of stationary phase. Analysis of spent P. aeruginosa culture supernatants revealed that PQS is produced at the end of exponential phase in the parent strain and in the late stationary phase of a lasR mutant. Mutants defective in both PQS production (pqsR-) and response (pqsE-) produced substantially reduced levels of exoproducts but retained wild-type N-butanoyl homoserine lactone (C4-HSL) levels. In the wild type, provision of exogenous PQS at the time of inoculation significantly increased PA-IL lectin, pyocyanin and elastase production during early stationary phase and promoted biofilm formation. Exogenous PQS but not PQS derivatives lacking the 3-hydroxy group overcame the cell density but not growth phase-dependent production of exoproducts. PQS also overcame the transcriptional and post-transcriptional repression of lecA (which codes for the PA-IL lectin) mediated via the negative regulators MvaT and RsmA respectively. Increased expression of lecA in the presence of exogenous PQS can be explained partially by increases in RhlR, RpoS and C4-HSL levels. A refined model for quorum sensing in P. aeruginosa is presented.

  19. Collective Behavior of Quorum-Sensing Run-and-Tumble Particles under Confinement

    NASA Astrophysics Data System (ADS)

    Rein, Markus; Heinß, Nike; Schmid, Friederike; Speck, Thomas

    2016-02-01

    We study a generic model for quorum-sensing bacteria in circular confinement. Every bacterium produces signaling molecules, the local concentration of which triggers a response when a certain threshold is reached. If this response lowers the motility, then an aggregation of bacteria occurs which differs fundamentally from standard motility-induced phase separation due to the long-ranged nature of the concentration of signal molecules. We analyze this phenomenon analytically and by numerical simulations employing two different protocols leading to stationary cluster and ring morphologies, respectively.

  20. Quorumpeps database: chemical space, microbial origin and functionality of quorum sensing peptides

    PubMed Central

    Wynendaele, Evelien; Bronselaer, Antoon; Nielandt, Joachim; D’Hondt, Matthias; Stalmans, Sofie; Bracke, Nathalie; Verbeke, Frederick; Van De Wiele, Christophe; De Tré, Guy; De Spiegeleer, Bart

    2013-01-01

    Quorum-sensing (QS) peptides are biologically attractive molecules, with a wide diversity of structures and prone to modifications altering or presenting new functionalities. Therefore, the Quorumpeps database (http://quorumpeps.ugent.be) is developed to give a structured overview of the QS oligopeptides, describing their microbial origin (species), functionality (method, result and receptor), peptide links and chemical characteristics (3D-structure-derived physicochemical properties). The chemical diversity observed within this group of QS signalling molecules can be used to develop new synthetic bio-active compounds. PMID:23180797

  1. Quorumpeps database: chemical space, microbial origin and functionality of quorum sensing peptides.

    PubMed

    Wynendaele, Evelien; Bronselaer, Antoon; Nielandt, Joachim; D'Hondt, Matthias; Stalmans, Sofie; Bracke, Nathalie; Verbeke, Frederick; Van De Wiele, Christophe; De Tré, Guy; De Spiegeleer, Bart

    2013-01-01

    Quorum-sensing (QS) peptides are biologically attractive molecules, with a wide diversity of structures and prone to modifications altering or presenting new functionalities. Therefore, the Quorumpeps database (http://quorumpeps.ugent.be) is developed to give a structured overview of the QS oligopeptides, describing their microbial origin (species), functionality (method, result and receptor), peptide links and chemical characteristics (3D-structure-derived physicochemical properties). The chemical diversity observed within this group of QS signalling molecules can be used to develop new synthetic bio-active compounds.

  2. Streptomyces-derived quorum-sensing systems engineered for adjustable transgene expression in mammalian cells and mice

    PubMed Central

    Weber, Wilfried; Schoenmakers, Ronald; Spielmann, Manuela; El-Baba, Marie Daoud; Folcher, Marc; Keller, Bettina; Weber, Cornelia C.; Link, Nils; van de Wetering, Petra; Heinzen, Christoph; Jolivet, Benoît; Séquin, Urs; Aubel, Dominique; Thompson, Charles J.; Fussenegger, Martin

    2003-01-01

    Prokaryotic transcriptional regulatory elements have been adopted for controlled expression of cloned genes in mammalian cells and animals, the cornerstone for gene-function correlations, drug discovery, biopharmaceutical manufacturing as well as advanced gene therapy and tissue engineering. Many prokaryotes have evolved specific molecular communication systems known as quorum-sensing to coordinate population-wide responses to physiological and/or physicochemical signals. A generic bacterial quorum-sensing system is based on a diffusible signal molecule that prevents binding of a repressor to corresponding operator sites thus resulting in derepression of a target regulon. In Streptomyces, a family of butyrolactones and their corresponding receptor proteins, serve as quorum-sensing systems that control morphological development and antibiotic biosynthesis. Fusion of the Streptomyces coelicolor quorum-sensing receptor (ScbR) to a eukaryotic transactivation domain (VP16) created a mammalian transactivator (SCA) which binds and adjusts transcription from chimeric promoters containing an SCA-specific operator module (PSPA). Expression of erythropoietin or the human secreted alkaline phosphatase (SEAP) by this quorum-sensor-regulated gene expression system (QuoRex) could be fine-tuned by non-toxic butyrolactones in a variety of mammalian cells including human primary and mouse embryonic stem cells. Following intraperitoneal implantation of microencapsulated Chinese hamster ovary cells transgenic for QuoRex-controlled SEAP expression into mice, the serum levels of this model glycoprotein could be adjusted to desired concentrations using different butyrolactone dosing regimes. PMID:12853648

  3. Bacterial quorum sensing: a new target for anti-infective immunotherapy.

    PubMed

    Kaufmann, Gunnar F; Park, Junguk; Janda, Kim D

    2008-06-01

    Cell-to-cell communication via exchange of small molecules, 'autoinducers', is a widespread phenomenon among Gram-negative and -positive bacteria. This intercellular signaling that synchronizes population-wide gene expression in a cell-density-dependent manner is termed 'quorum sensing' (QS). The discovery that Gram-negative bacteria employ non-peptide structures, N-acyl homoserine lactones, to globally regulate production of secondary metabolites and proteins, initiated a new area of research. Subsequently, other quorum-sensing systems and small signaling molecules were identified. With the emergence of antibiotic-resistant bacteria, most prominently methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa, new approaches for combating infections are needed. Inhibition of QS results in attenuation of virulence rather than direct killing of microbes. We highlight current trends in preventing bacterial infections using quorum-quenching strategies. We mainly focus on P. aeruginosa and S. aureus and their QS systems as targets for intervention. New research strongly suggests that QS systems represent attractive targets for discovery of novel anti-infective agents, including immunotherapeutic strategies.

  4. Bioactive proteins from Solanaceae as quorum sensing inhibitors against virulence in Pseudomonas aeruginosa.

    PubMed

    Singh, Gurpreet; Tamboli, Ekant; Acharya, Aurovind; Kumarasamy, Chellan; Mala, Kanchana; Raman, Pachaiappan

    2015-06-01

    Cell-to-cell communication or quorum sensing (QS) is a generic event in bacteria that is used to coordinate gene expression among local populations. The phenomenon of QS depends on the fact that presence of sufficient bacteria ascertains a threshold level of autoinducer concentration that allows bacteria to sense a critical cell mass and to activate or repress target genes. Thus, QS has been an attractive target for the development of anti-infective strategies that are not based on the use of antibiotics. Several anti-QS approaches have been demonstrated including natural products from plant-based secondary metabolites. However, the role of plant bioactive proteins as an anti-QS peptide is yet to be deciphered. Against a backdrop of ever-increasing antibiotic resistant pathogens, there is a strong need for development of alternative therapeutic strategies. Thus, our hypothesis is that bioactive proteins from the plant family Solanaceae are quorum quenching molecules that can be exploited to develop a therapeutic strategy against virulence. We presume that bioactive proteins will inactivate or inhibit or degrade QS signals from bacteria to prevent cell-to-cell communication and thus inhibit development of virulence in Pseudomonas aeruginosa. Further, the use of proteins as quorum quenchers will delay the bacteria to develop resistance against these quenching molecules.

  5. Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes.

    PubMed

    Hartmann, Anton; Schikora, Adam

    2012-06-01

    Many environmental and interactive important traits of bacteria, such as antibiotic, siderophore or exoenzyme (like cellulose, pectinase) production, virulence factors of pathogens, as well as symbiotic interactions, are regulated in a population density-dependent manner by using small signaling molecules. This phenomenon, called quorum sensing (QS), is widespread among bacteria. Many different bacterial species are communicating or "speaking" through diffusible small molecules. The production often is sophisticatedly regulated via an autoinducing mechanism. A good example is the production of N-acyl homoserine lactones (AHL), which occur in many variations of molecular structure in a wide variety of Gram-negative bacteria. In Gram-positive bacteria, other compounds, such as peptides, regulate cellular activity and behavior by sensing the cell density. The degradation of the signaling molecule--called quorum quenching--is probably another important integral part in the complex quorum sensing circuit. Most interestingly, bacterial quorum sensing molecules also are recognized by eukaryotes that are colonized by QS-active bacteria. In this case, the cross-kingdom interaction can lead to specific adjustment and physiological adaptations in the colonized eukaryote. The responses are manifold, such as modifications of the defense system, modulation of the immune response, or changes in the hormonal status and growth responses. Thus, the interaction with the quorum sensing signaling molecules of bacteria can profoundly change the physiology of higher organisms too. Higher organisms are obligatorily associated with microbial communities, and these truly multi-organismic consortia, which are also called holobionts, can actually be steered via multiple interlinked signaling substances that originate not only from the host but also from the associated bacteria.

  6. From deep-sea volcanoes to human pathogens: a conserved quorum-sensing signal in Epsilonproteobacteria

    PubMed Central

    Pérez-Rodríguez, Ileana; Bolognini, Marie; Ricci, Jessica; Bini, Elisabetta; Vetriani, Costantino

    2015-01-01

    Chemosynthetic Epsilonproteobacteria from deep-sea hydrothermal vents colonize substrates exposed to steep thermal and redox gradients. In many bacteria, substrate attachment, biofilm formation, expression of virulence genes and host colonization are partly controlled via a cell density-dependent mechanism involving signal molecules, known as quorum sensing. Within the Epsilonproteobacteria, quorum sensing has been investigated only in human pathogens that use the luxS/autoinducer-2 (AI-2) mechanism to control the expression of some of these functions. In this study we showed that luxS is conserved in Epsilonproteobacteria and that pathogenic and mesophilic members of this class inherited this gene from a thermophilic ancestor. Furthermore, we provide evidence that the luxS gene is expressed—and a quorum-sensing signal is produced—during growth of Sulfurovum lithotrophicum and Caminibacter mediatlanticus, two Epsilonproteobacteria from deep-sea hydrothermal vents. Finally, we detected luxS transcripts in Epsilonproteobacteria-dominated biofilm communities collected from deep-sea hydrothermal vents. Taken together, our findings indicate that the epsiloproteobacterial lineage of the LuxS enzyme originated in high-temperature geothermal environments and that, in vent Epsilonproteobacteria, luxS expression is linked to the production of AI-2 signals, which are likely produced in situ at deep-sea vents. We conclude that the luxS gene is part of the ancestral epsilonproteobacterial genome and represents an evolutionary link that connects thermophiles to human pathogens. PMID:25397946

  7. Quorum Sensing Activity of Aeromonas Caviae Strain YL12, A Bacterium Isolated from Compost

    PubMed Central

    Lim, Yan-Lue; Ee, Robson; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Quorum sensing is a well-studied cell-to-cell communication method that involves a cell-density dependent regulation of genes expression mediated by signalling molecules. In this study, a bacterium isolated from a plant material compost pile was found to possess quorum sensing activity based on bioassay screening. Isolate YL12 was identified using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and molecular typing using rpoD gene which identified the isolate as Aeromonas caviae. High resolution tandem mass spectrometry was subsequently employed to identify the N-acyl homoserine lactone profile of Aeromonas caviae YL12 and confirmed that this isolate produced two short chain N-acyl homoserine lactones, namely C4-HSL and C6, and the production was observed to be cell density-dependent. Using the thin layer chromatography (TLC) bioassay, both AHLs were found to activate C. violaceum CV026, whereas only C6-HSL was revealed to induce bioluminescence expression of E. coli [pSB401]. The data presented in this study will be the leading steps in understanding the role of quorum sensing in Aeromonas caviae strain YL12. PMID:24759107

  8. Three Parallel Quorum-Sensing Systems Regulate Gene Expression in Vibrio harveyi†

    PubMed Central

    Henke, Jennifer M.; Bassler, Bonnie L.

    2004-01-01

    In a process called quorum sensing, bacteria communicate using extracellular signal molecules termed autoinducers. Two parallel quorum-sensing systems have been identified in the marine bacterium Vibrio harveyi. System 1 consists of the LuxM-dependent autoinducer HAI-1 and the HAI-1 sensor, LuxN. System 2 consists of the LuxS-dependent autoinducer AI-2 and the AI-2 detector, LuxPQ. The related bacterium, Vibrio cholerae, a human pathogen, possesses System 2 (LuxS, AI-2, and LuxPQ) but does not have obvious homologues of V. harveyi System 1. Rather, System 1 of V. cholerae is made up of the CqsA-dependent autoinducer CAI-1 and a sensor called CqsS. Using a V. cholerae CAI-1 reporter strain we show that many other marine bacteria, including V. harveyi, produce CAI-1 activity. Genetic analysis of V. harveyi reveals cqsA and cqsS, and phenotypic analysis of V. harveyi cqsA and cqsS mutants shows that these functions comprise a third V. harveyi quorum-sensing system that acts in parallel to Systems 1 and 2. Together these communication systems act as a three-way coincidence detector in the regulation of a variety of genes, including those responsible for bioluminescence, type III secretion, and metalloprotease production. PMID:15466044

  9. From deep-sea volcanoes to human pathogens: a conserved quorum-sensing signal in Epsilonproteobacteria.

    PubMed

    Pérez-Rodríguez, Ileana; Bolognini, Marie; Ricci, Jessica; Bini, Elisabetta; Vetriani, Costantino

    2015-05-01

    Chemosynthetic Epsilonproteobacteria from deep-sea hydrothermal vents colonize substrates exposed to steep thermal and redox gradients. In many bacteria, substrate attachment, biofilm formation, expression of virulence genes and host colonization are partly controlled via a cell density-dependent mechanism involving signal molecules, known as quorum sensing. Within the Epsilonproteobacteria, quorum sensing has been investigated only in human pathogens that use the luxS/autoinducer-2 (AI-2) mechanism to control the expression of some of these functions. In this study we showed that luxS is conserved in Epsilonproteobacteria and that pathogenic and mesophilic members of this class inherited this gene from a thermophilic ancestor. Furthermore, we provide evidence that the luxS gene is expressed--and a quorum-sensing signal is produced--during growth of Sulfurovum lithotrophicum and Caminibacter mediatlanticus, two Epsilonproteobacteria from deep-sea hydrothermal vents. Finally, we detected luxS transcripts in Epsilonproteobacteria-dominated biofilm communities collected from deep-sea hydrothermal vents. Taken together, our findings indicate that the epsiloproteobacterial lineage of the LuxS enzyme originated in high-temperature geothermal environments and that, in vent Epsilonproteobacteria, luxS expression is linked to the production of AI-2 signals, which are likely produced in situ at deep-sea vents. We conclude that the luxS gene is part of the ancestral epsilonproteobacterial genome and represents an evolutionary link that connects thermophiles to human pathogens.

  10. Quorum sensing via static coupling demonstrated by Chua's circuits

    NASA Astrophysics Data System (ADS)

    Singh, Harpartap; Parmananda, P.

    2013-10-01

    Dynamical quorum sensing, the population based phenomenon, is believed to occur when the elements of a system interact via dynamic coupling. In the present work, we demonstrate an alternate scenario, involving static coupling, that could also lead to quorum sensing behavior. These static and dynamic coupling terms have already been employed by Konishi [Int. J. Bifurcation Chaos Appl. Sci. Eng.IJBEE40218-127410.1142/S0218127407018750 17, 2781 (2007)]. In our context, the coupling is defined as static or dynamic, on the basis of the relative time scales at which the surrounding dynamics and the elements' dynamics evolve. According to this, if the variation in the surrounding dynamics happens on a much larger (fast) time scale than that at which the elements' dynamics are varying (such as seconds and μs), then the coupling is considered to be static, otherwise it is considered to be dynamic. A series of experiments have been performed starting from a system of three Chua's circuits to a system of 20 Chua's circuits to study two types of quorum transitions: the emergence and the extinction of global oscillations (period-1). The numerics involving up to 100 Chua's circuits validate the experimental observations.

  11. Quorum sensing via static coupling demonstrated by Chua's circuits.

    PubMed

    Singh, Harpartap; Parmananda, P

    2013-10-01

    Dynamical quorum sensing, the population based phenomenon, is believed to occur when the elements of a system interact via dynamic coupling. In the present work, we demonstrate an alternate scenario, involving static coupling, that could also lead to quorum sensing behavior. These static and dynamic coupling terms have already been employed by Konishi [Int. J. Bifurcation Chaos Appl. Sci. Eng. 17, 2781 (2007)]. In our context, the coupling is defined as static or dynamic, on the basis of the relative time scales at which the surrounding dynamics and the elements' dynamics evolve. According to this, if the variation in the surrounding dynamics happens on a much larger (fast) time scale than that at which the elements' dynamics are varying (such as seconds and μs), then the coupling is considered to be static, otherwise it is considered to be dynamic. A series of experiments have been performed starting from a system of three Chua's circuits to a system of 20 Chua's circuits to study two types of quorum transitions: the emergence and the extinction of global oscillations (period-1). The numerics involving up to 100 Chua's circuits validate the experimental observations.

  12. Interaction of Pseudostellaria heterophylla with Quorum Sensing and Quorum Quenching Bacteria Mediated by Root Exudates in a Consecutive Monoculture System.

    PubMed

    Zhang, Liaoyuan; Guo, Zewang; Gao, Huifang; Peng, Xiaoqian; Li, Yongyu; Sun, Shujing; Lee, Jung-Kul; Lin, Wenxiong

    2016-12-28

    Many plant-pathogenic bacteria are dependent on quorum sensing (QS) to evoke disease. In this study, the population of QS and quorum quenching (QQ) bacteria was analyzed in a consecutive monoculture system of Pseudostellaria heterophylla. The isolated QS strains were identified as Serratia marcescens with SwrIR-type QS system and exhibited a significant increase over the years of monoculture. Only one QQ strain was isolated from newly planted soil sample and was identified as Bacillus thuringiensis, which secreted lactonase to degrade QS signal molecules. Inoculation of S. marcescens to P. heterophylla root could rapidly cause wilt disease, which was alleviated by B. thuringiensis. Furthermore, the expression of lactonase encoded by the aiiA gene in S. marcescens resulted in reduction of its pathogenicity, implying that the toxic effect of S. marcescens on the seedlings was QS-regulated. Meanwhile, excess lactonase in S. marcescens led to reduction in antibacterial substances, exoenzymes, and swarming motility, which might contribute to pathogensis on the seedlings. Root exudates and root tuber extracts of P. heterophylla significantly promoted the growth of S. marcescens, whereas a slight increase of B. thuringiensis was observed in both samples. These results demonstrated that QS-regulated behaviors in S. marcescens mediated by root exudates played an important role in replanting diseases of P. heterophylla.

  13. Quorum sensing network in clinical strains of A. baumannii: AidA is a new quorum quenching enzyme

    PubMed Central

    López, María; Mayer, Celia; Fernández-García, Laura; Blasco, Lucía; Muras, Andrea; Ruiz, Federico Martín; Bou, German; Otero, Ana

    2017-01-01

    Acinetobacter baumannii is an important pathogen that causes nosocomial infections generally associated with high mortality and morbidity in Intensive Care Units (ICUs). Currently, little is known about the Quorum Sensing (QS)/Quorum Quenching (QQ) systems of this pathogen. We analyzed these mechanisms in seven clinical isolates of A. baumannii. Microarray analysis of one of these clinical isolates, Ab1 (A. baumannii ST-2_clon_2010), previously cultured in the presence of 3-oxo-C12-HSL (a QS signalling molecule) revealed a putative QQ enzyme (α/ß hydrolase gene, AidA). This QQ enzyme was present in all non-motile clinical isolates (67% of which were isolated from the respiratory tract) cultured in nutrient depleted LB medium. Interestingly, this gene was not located in the genome of the only motile clinical strain growing in this medium (A. baumannii strain Ab421_GEIH-2010 [Ab7], isolated from a blood sample). The AidA protein expressed in E. coli showed QQ activity. Finally, we observed downregulation of the AidA protein (QQ system attenuation) in the presence of H2O2 (ROS stress). In conclusion, most of the A. baumannii clinical strains were not surface motile (84%) and were of respiratory origin (67%). Only the pilT gene was involved in surface motility and related to the QS system. Finally, a new QQ enzyme (α/ß hydrolase gene, AidA protein) was detected in these strains. PMID:28328989

  14. A cell-based model for quorum sensing in heterogeneous bacterial colonies.

    PubMed

    Melke, Pontus; Sahlin, Patrik; Levchenko, Andre; Jönsson, Henrik

    2010-06-17

    Although bacteria are unicellular organisms, they have the ability to act in concert by synthesizing and detecting small diffusing autoinducer molecules. The phenomenon, known as quorum sensing, has mainly been proposed to serve as a means for cell-density measurement. Here, we use a cell-based model of growing bacterial microcolonies to investigate a quorum-sensing mechanism at a single cell level. We show that the model indeed predicts a density-dependent behavior, highly dependent on local cell-clustering and the geometry of the space where the colony is evolving. We analyze the molecular network with two positive feedback loops to find the multistability regions and show how the quorum-sensing mechanism depends on different model parameters. Specifically, we show that the switching capability of the network leads to more constraints on parameters in a natural environment where the bacteria themselves produce autoinducer than compared to situations where autoinducer is introduced externally. The cell-based model also allows us to investigate mixed populations, where non-producing cheater cells are shown to have a fitness advantage, but still cannot completely outcompete producer cells. Simulations, therefore, are able to predict the relative fitness of cheater cells from experiments and can also display and account for the paradoxical phenomenon seen in experiments; even though the cheater cells have a fitness advantage in each of the investigated groups, the overall effect is an increase in the fraction of producer cells. The cell-based type of model presented here together with high-resolution experiments will play an integral role in a more explicit and precise comparison of models and experiments, addressing quorum sensing at a cellular resolution.

  15. Quorum Sensing in the Context of Food Microbiology

    PubMed Central

    Skandamis, Panagiotis N.

    2012-01-01

    Food spoilage may be defined as a process that renders a product undesirable or unacceptable for consumption and is the outcome of the biochemical activity of a microbial community that eventually dominates according to the prevailing ecological determinants. Although limited information are reported, this activity has been attributed to quorum sensing (QS). Consequently, the potential role of cell-to-cell communication in food spoilage and food safety should be more extensively elucidated. Such information would be helpful in designing approaches for manipulating these communication systems, thereby reducing or preventing, for instance, spoilage reactions or even controlling the expression of virulence factors. Due to the many reports in the literature on the fundamental features of QS, e.g., chemistry and definitions of QS compounds, in this minireview, we only allude to the types and chemistry of QS signaling molecules per se and to the (bioassay-based) methods of their detection and quantification, avoiding extensive documentation. Conversely, we attempt to provide insights into (i) the role of QS in food spoilage, (ii) the factors that may quench the activity of QS in foods and review the potential QS inhibitors that might “mislead” the bacterial coordination of spoilage activities and thus may be used as biopreservatives, and (iii) the future experimental approaches that need to be undertaken in order to explore the “gray” or “black” areas of QS, increase our understanding of how QS affects microbial behavior in foods, and assist in finding answers as to how we can exploit QS for the benefit of food preservation and food safety. PMID:22706047

  16. Quorum sensing in the context of food microbiology.

    PubMed

    Skandamis, Panagiotis N; Nychas, George-John E

    2012-08-01

    Food spoilage may be defined as a process that renders a product undesirable or unacceptable for consumption and is the outcome of the biochemical activity of a microbial community that eventually dominates according to the prevailing ecological determinants. Although limited information are reported, this activity has been attributed to quorum sensing (QS). Consequently, the potential role of cell-to-cell communication in food spoilage and food safety should be more extensively elucidated. Such information would be helpful in designing approaches for manipulating these communication systems, thereby reducing or preventing, for instance, spoilage reactions or even controlling the expression of virulence factors. Due to the many reports in the literature on the fundamental features of QS, e.g., chemistry and definitions of QS compounds, in this minireview, we only allude to the types and chemistry of QS signaling molecules per se and to the (bioassay-based) methods of their detection and quantification, avoiding extensive documentation. Conversely, we attempt to provide insights into (i) the role of QS in food spoilage, (ii) the factors that may quench the activity of QS in foods and review the potential QS inhibitors that might "mislead" the bacterial coordination of spoilage activities and thus may be used as biopreservatives, and (iii) the future experimental approaches that need to be undertaken in order to explore the "gray" or "black" areas of QS, increase our understanding of how QS affects microbial behavior in foods, and assist in finding answers as to how we can exploit QS for the benefit of food preservation and food safety.

  17. Dynamical quorum-sensing in oscillators coupled through an external medium

    NASA Astrophysics Data System (ADS)

    Schwab, David J.; Baetica, Ania; Mehta, Pankaj

    2012-11-01

    Many biological and physical systems exhibit population-density-dependent transitions to synchronized oscillations in a process often termed “dynamical quorum sensing”. Synchronization frequently arises through chemical communication via signaling molecules distributed through an external medium. We study a simple theoretical model for dynamical quorum sensing: a heterogenous population of limit-cycle oscillators diffusively coupled through a common medium. We show that this model exhibits a rich phase diagram with four qualitatively distinct physical mechanisms that can lead to a loss of coherent population-level oscillations, including a novel mechanism arising from effective time-delays introduced by the external medium. We derive a single pair of analytic equations that allow us to calculate phase boundaries as a function of population density and show that the model reproduces many of the qualitative features of recent experiments on Belousov-Zhabotinsky catalytic particles as well as synthetically engineered bacteria.

  18. Molecular Signature of Pseudomonas aeruginosa with Simultaneous Nanomolar Detection of Quorum Sensing Signaling Molecules at a Boron-Doped Diamond Electrode

    NASA Astrophysics Data System (ADS)

    Buzid, Alyah; Shang, Fengjun; Reen, F. Jerry; Muimhneacháin, Eoin Ó.; Clarke, Sarah L.; Zhou, Lin; Luong, John H. T.; O’Gara, Fergal; McGlacken, Gerard P.; Glennon, Jeremy D.

    2016-07-01

    Electroanalysis was performed using a boron-doped diamond (BDD) electrode for the simultaneous detection of 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and pyocyanin (PYO). PQS and its precursor HHQ are two important signal molecules produced by Pseudomonas aeruginosa, while PYO is a redox active toxin involved in virulence and pathogenesis. This Gram-negative and opportunistic human pathogen is associated with a hospital-acquired infection particularly in patients with compromised immunity and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. Early detection is crucial in the clinical management of this pathogen, with established infections entering a biofilm lifestyle that is refractory to conventional antibiotic therapies. Herein, a detection procedure was optimized and proven for the simultaneous detection of PYO, HHQ and PQS in standard mixtures, biological samples, and P. aeruginosa spiked CF sputum samples with remarkable sensitivity, down to nanomolar levels. Differential pulse voltammetry (DPV) scans were also applicable for monitoring the production of PYO, HHQ and PQS in P. aeruginosa PA14 over 8 h of cultivation. The simultaneous detection of these three compounds represents a molecular signature specific to this pathogen.

  19. Molecular Signature of Pseudomonas aeruginosa with Simultaneous Nanomolar Detection of Quorum Sensing Signaling Molecules at a Boron-Doped Diamond Electrode

    PubMed Central

    Buzid, Alyah; Shang, Fengjun; Reen, F. Jerry; Muimhneacháin, Eoin Ó; Clarke, Sarah L.; Zhou, Lin; Luong, John H. T.; O’Gara, Fergal; McGlacken, Gerard P.; Glennon, Jeremy D.

    2016-01-01

    Electroanalysis was performed using a boron-doped diamond (BDD) electrode for the simultaneous detection of 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and pyocyanin (PYO). PQS and its precursor HHQ are two important signal molecules produced by Pseudomonas aeruginosa, while PYO is a redox active toxin involved in virulence and pathogenesis. This Gram-negative and opportunistic human pathogen is associated with a hospital-acquired infection particularly in patients with compromised immunity and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. Early detection is crucial in the clinical management of this pathogen, with established infections entering a biofilm lifestyle that is refractory to conventional antibiotic therapies. Herein, a detection procedure was optimized and proven for the simultaneous detection of PYO, HHQ and PQS in standard mixtures, biological samples, and P. aeruginosa spiked CF sputum samples with remarkable sensitivity, down to nanomolar levels. Differential pulse voltammetry (DPV) scans were also applicable for monitoring the production of PYO, HHQ and PQS in P. aeruginosa PA14 over 8 h of cultivation. The simultaneous detection of these three compounds represents a molecular signature specific to this pathogen. PMID:27427496

  20. Molecular Signature of Pseudomonas aeruginosa with Simultaneous Nanomolar Detection of Quorum Sensing Signaling Molecules at a Boron-Doped Diamond Electrode.

    PubMed

    Buzid, Alyah; Shang, Fengjun; Reen, F Jerry; Muimhneacháin, Eoin Ó; Clarke, Sarah L; Zhou, Lin; Luong, John H T; O'Gara, Fergal; McGlacken, Gerard P; Glennon, Jeremy D

    2016-07-18

    Electroanalysis was performed using a boron-doped diamond (BDD) electrode for the simultaneous detection of 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and pyocyanin (PYO). PQS and its precursor HHQ are two important signal molecules produced by Pseudomonas aeruginosa, while PYO is a redox active toxin involved in virulence and pathogenesis. This Gram-negative and opportunistic human pathogen is associated with a hospital-acquired infection particularly in patients with compromised immunity and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. Early detection is crucial in the clinical management of this pathogen, with established infections entering a biofilm lifestyle that is refractory to conventional antibiotic therapies. Herein, a detection procedure was optimized and proven for the simultaneous detection of PYO, HHQ and PQS in standard mixtures, biological samples, and P. aeruginosa spiked CF sputum samples with remarkable sensitivity, down to nanomolar levels. Differential pulse voltammetry (DPV) scans were also applicable for monitoring the production of PYO, HHQ and PQS in P. aeruginosa PA14 over 8 h of cultivation. The simultaneous detection of these three compounds represents a molecular signature specific to this pathogen.

  1. Novel Paraoxonase 2-Dependent Mechanism Mediating the Biological Effects of the Pseudomonas aeruginosa Quorum-Sensing Molecule N-(3-Oxo-Dodecanoyl)-l-Homoserine Lactone

    PubMed Central

    Horke, Sven; Xiao, Junhui; Schütz, Eva-Maria; Kramer, Gerald L.; Wilgenbus, Petra; Witte, Ines; Selbach, Moritz

    2015-01-01

    Pseudomonas aeruginosa produces N-(3-oxo-dodecanoyl)-l-homoserine lactone (3OC12), a crucial signaling molecule that elicits diverse biological responses in host cells thought to subvert immune defenses. The mechanism mediating many of these responses remains unknown. The intracellular lactonase paraoxonase 2 (PON2) hydrolyzes and inactivates 3OC12 and is therefore considered a component of host cells that attenuates 3OC12-mediated responses. Here, we demonstrate in cell lines and in primary human bronchial epithelial cells that 3OC12 is rapidly hydrolyzed intracellularly by PON2 to 3OC12 acid, which becomes trapped and accumulates within the cells. Subcellularly, 3OC12 acid accumulated within the mitochondria, a compartment where PON2 is localized. Treatment with 3OC12 caused a rapid PON2-dependent cytosolic and mitochondrial pH decrease, calcium release, and phosphorylation of stress signaling kinases. The results indicate a novel, PON2-dependent intracellular acidification mechanism by which 3OC12 can mediate its biological effects. Thus, PON2 is a central regulator of host cell responses to 3OC12, acting to decrease the availability of 3OC12 for receptor-mediated effects and acting to promote effects, such as calcium release and stress signaling, via intracellular acidification. PMID:26056385

  2. Chlamydomonas reinhardtii Secretes Compounds That Mimic Bacterial Signals and Interfere with Quorum Sensing Regulation in Bacteria1

    PubMed Central

    Teplitski, Max; Chen, Hancai; Rajamani, Sathish; Gao, Mengsheng; Merighi, Massimo; Sayre, Richard T.; Robinson, Jayne B.; Rolfe, Barry G.; Bauer, Wolfgang D.

    2004-01-01

    The unicellular soil-freshwater alga Chlamydomonas reinhardtii was found to secrete substances that mimic the activity of the N-acyl-l-homoserine lactone (AHL) signal molecules used by many bacteria for quorum sensing regulation of gene expression. More than a dozen chemically separable but unidentified substances capable of specifically stimulating the LasR or CepR but not the LuxR, AhyR, or CviR AHL bacterial quorum sensing reporter strains were detected in ethyl acetate extracts of C. reinhardtii culture filtrates. Colonies of C. reinhardtii and Chlorella spp. stimulated quorum sensing-dependent luminescence in Vibrio harveyi, indicating that these algae may produce compounds that affect the AI-2 furanosyl borate diester-mediated quorum sensing system of Vibrio spp. Treatment of the soil bacterium Sinorhizobium meliloti with a partially purified LasR mimic from C. reinhardtii affected the accumulation of 16 of the 25 proteins that were altered in response to the bacterium's own AHL signals, providing evidence that the algal mimic affected quorum sensing-regulated functions in this wild-type bacterium. Peptide mass fingerprinting identified 32 proteins affected by the bacterium's AHLs or the purified algal mimic, including GroEL chaperonins, the nitrogen regulatory protein PII, and a GTP-binding protein. The algal mimic was able to cancel the stimulatory effects of bacterial AHLs on the accumulation of seven of these proteins, providing evidence that the secretion of AHL mimics by the alga could be effective in disruption of quorum sensing in naturally encountered bacteria. PMID:14671013

  3. Can the natural diversity of quorum-sensing advance synthetic biology?

    PubMed

    Davis, René Michele; Muller, Ryan Yue; Haynes, Karmella Ann

    2015-01-01

    Quorum-sensing networks enable bacteria to sense and respond to chemical signals produced by neighboring bacteria. They are widespread: over 100 morphologically and genetically distinct species of eubacteria are known to use quorum sensing to control gene expression. This diversity suggests the potential to use natural protein variants to engineer parallel, input-specific, cell-cell communication pathways. However, only three distinct signaling pathways, Lux, Las, and Rhl, have been adapted for and broadly used in engineered systems. The paucity of unique quorum-sensing systems and their propensity for crosstalk limits the usefulness of our current quorum-sensing toolkit. This review discusses the need for more signaling pathways, roadblocks to using multiple pathways in parallel, and strategies for expanding the quorum-sensing toolbox for synthetic biology.

  4. Can the Natural Diversity of Quorum-Sensing Advance Synthetic Biology?

    PubMed Central

    Davis, René Michele; Muller, Ryan Yue; Haynes, Karmella Ann

    2015-01-01

    Quorum-sensing networks enable bacteria to sense and respond to chemical signals produced by neighboring bacteria. They are widespread: over 100 morphologically and genetically distinct species of eubacteria are known to use quorum sensing to control gene expression. This diversity suggests the potential to use natural protein variants to engineer parallel, input-specific, cell–cell communication pathways. However, only three distinct signaling pathways, Lux, Las, and Rhl, have been adapted for and broadly used in engineered systems. The paucity of unique quorum-sensing systems and their propensity for crosstalk limits the usefulness of our current quorum-sensing toolkit. This review discusses the need for more signaling pathways, roadblocks to using multiple pathways in parallel, and strategies for expanding the quorum-sensing toolbox for synthetic biology. PMID:25806368

  5. Quorum quenching enzymes.

    PubMed

    Fetzner, Susanne

    2015-05-10

    Bacteria use cell-to-cell communication systems based on chemical signal molecules to coordinate their behavior within the population. These quorum sensing systems are potential targets for antivirulence therapies, because many bacterial pathogens control the expression of virulence factors via quorum sensing networks. Since biofilm maturation is also usually influenced by quorum sensing, quenching these systems may contribute to combat biofouling. One possibility to interfere with quorum sensing is signal inactivation by enzymatic degradation or modification. Such quorum quenching enzymes are wide-spread in the bacterial world and have also been found in eukaryotes. Lactonases and acylases that hydrolyze N-acyl homoserine lactone (AHL) signaling molecules have been investigated most intensively, however, different oxidoreductases active toward AHLs or 2-alkyl-4(1H)-quinolone signals as well as other signal-converting enzymes have been described. Several approaches have been assessed which aim at alleviating virulence, or biofilm formation, by reducing the signal concentration in the bacterial environment. These involve the application or stimulation of signal-degrading bacteria as biocontrol agents in the protection of crop plants against soft-rot disease, the use of signal-degrading bacteria as probiotics in aquaculture, and the immobilization or entrapment of quorum quenching enzymes or bacteria to control biofouling in membrane bioreactors. While most approaches to use quorum quenching as antivirulence strategy are still in the research phase, the growing number of organisms and enzymes known to interfere with quorum sensing opens up new perspectives for the development of innovative antibacterial strategies.

  6. A mathematical model of quorum sensing regulated EPS production in biofilm communities

    PubMed Central

    2011-01-01

    Background Biofilms are microbial communities encased in a layer of extracellular polymeric substances (EPS). The EPS matrix provides several functional purposes for the biofilm, such as protecting bacteria from environmental stresses, and providing mechanical stability. Quorum sensing is a cell-cell communication mechanism used by several bacterial taxa to coordinate gene expression and behaviour in groups, based on population densities. Model We mathematically model quorum sensing and EPS production in a growing biofilm under various environmental conditions, to study how a developing biofilm impacts quorum sensing, and conversely, how a biofilm is affected by quorum sensing-regulated EPS production. We investigate circumstances when using quorum-sensing regulated EPS production is a beneficial strategy for biofilm cells. Results We find that biofilms that use quorum sensing to induce increased EPS production do not obtain the high cell populations of low-EPS producers, but can rapidly increase their volume to parallel high-EPS producers. Quorum sensing-induced EPS production allows a biofilm to switch behaviours, from a colonization mode (with an optimized growth rate), to a protection mode. Conclusions A biofilm will benefit from using quorum sensing-induced EPS production if bacteria cells have the objective of acquiring a thick, protective layer of EPS, or if they wish to clog their environment with biomass as a means of securing nutrient supply and outcompeting other colonies in the channel, of their own or a different species. PMID:21477365

  7. Signal Integration in Quorum Sensing Enables Cross-Species Induction of Virulence in Pectobacterium wasabiae.

    PubMed

    Valente, Rita S; Nadal-Jimenez, Pol; Carvalho, André F P; Vieira, Filipe J D; Xavier, Karina B

    2017-05-23

    Bacterial communities can sense their neighbors, regulating group behaviors in response to cell density and environmental changes. The diversity of signaling networks in a single species has been postulated to allow custom responses to different stimuli; however, little is known about how multiple signals are integrated and the implications of this integration in different ecological contexts. In the plant pathogen Pectobacterium wasabiae (formerly Erwinia carotovora), two signaling networks-the N-acyl homoserine lactone (AHL) quorum-sensing system and the Gac/Rsm signal transduction pathway-control the expression of secreted plant cell wall-degrading enzymes, its major virulence determinants. We show that the AHL system controls the Gac/Rsm system by affecting the expression of the regulatory RNA RsmB. This regulation is mediated by ExpR2, the quorum-sensing receptor that responds to the P. wasabiae cognate AHL but also to AHLs produced by other bacterial species. As a consequence, this level of regulation allows P. wasabiae to bypass the Gac-dependent regulation of RsmB in the presence of exogenous AHLs or AHL-producing bacteria. We provide in vivo evidence that this pivotal role of RsmB in signal transduction is important for the ability of P. wasabiae to induce virulence in response to other AHL-producing bacteria in multispecies plant lesions. Our results suggest that the signaling architecture in P. wasabiae was coopted to prime the bacteria to eavesdrop on other bacteria and quickly join the efforts of other species, which are already exploiting host resources.IMPORTANCE Quorum-sensing mechanisms enable bacteria to communicate through small signal molecules and coordinate group behaviors. Often, bacteria have various quorum-sensing receptors and integrate information with other signal transduction pathways, presumably allowing them to respond to different ecological contexts. The plant pathogen Pectobacterium wasabiae has two N-acyl homoserine lactone

  8. Ecological feedback in quorum-sensing microbial populations can induce heterogeneous production of autoinducers

    PubMed Central

    Bauer, Matthias; Knebel, Johannes; Lechner, Matthias; Pickl, Peter; Frey, Erwin

    2017-01-01

    Autoinducers are small signaling molecules that mediate intercellular communication in microbial populations and trigger coordinated gene expression via ‘quorum sensing’. Elucidating the mechanisms that control autoinducer production is, thus, pertinent to understanding collective microbial behavior, such as virulence and bioluminescence. Recent experiments have shown a heterogeneous promoter activity of autoinducer synthase genes, suggesting that some of the isogenic cells in a population might produce autoinducers, whereas others might not. However, the mechanism underlying this phenotypic heterogeneity in quorum-sensing microbial populations has remained elusive. In our theoretical model, cells synthesize and secrete autoinducers into the environment, up-regulate their production in this self-shaped environment, and non-producers replicate faster than producers. We show that the coupling between ecological and population dynamics through quorum sensing can induce phenotypic heterogeneity in microbial populations, suggesting an alternative mechanism to stochastic gene expression in bistable gene regulatory circuits. DOI: http://dx.doi.org/10.7554/eLife.25773.001 PMID:28741470

  9. Natural Guided Genome Engineering Reveals Transcriptional Regulators Controlling Quorum-Sensing Signal Degradation

    PubMed Central

    Mothe, Nicolas; Velours, Christophe; Legrand, Pierre; Moréra, Solange; Faure, Denis

    2015-01-01

    Quorum-quenching (QQ) are natural or engineered processes disrupting the quorum-sensing (QS) signalling which controls virulence and persistence (e.g. biofilm) in numerous bacteria. QQ involves different enzymes including lactonases, amidases, oxidases and reductases which degrade the QS molecules such as N-acylhomoserine lactones (NAHL). Rhodococcus erythropolis known to efficiently degrade NAHL is proposed as a biocontrol agent and a reservoir of QQ-enzymes for biotechnology. In R. erythropolis, regulation of QQ-enzymes remains unclear. In this work, we performed genome engineering on R. erythropolis, which is recalcitrant to reverse genetics, in order to investigate regulation of QQ-enzymes at a molecular and structural level with the aim to improve the QQ activity. Deep-sequencing of the R. erythropolis enhanced variants allowed identification of a punctual mutation in a key-transcriptional factor QsdR (Quorum sensing degradation Regulation) which regulates the sole QQ-lactonase QsdA identified so far. Using biophysical and structural studies on QsdR, we demonstrate that QQ activity can be improved by modifying the regulation of QQ-enzymes degrading QS signal. This modification requiring the change of only one amino-acid in a transcriptional factor leads to an enhanced R. erythropolis in which the QS-signal degradation pathway is strongly activated. PMID:26554837

  10. Heterogeneous Response to a Quorum-Sensing Signal in the Luminescence of Individual Vibrio fischeri

    PubMed Central

    Pérez, Pablo Delfino; Hagen, Stephen J.

    2010-01-01

    The marine bacterium Vibrio fischeri regulates its bioluminescence through a quorum sensing mechanism: the bacterium releases diffusible small molecules (autoinducers) that accumulate in the environment as the population density increases. This accumulation of autoinducer (AI) eventually activates transcriptional regulators for bioluminescence as well as host colonization behaviors. Although V.fischeri quorum sensing has been extensively characterized in bulk populations, far less is known about how it performs at the level of the individual cell, where biochemical noise is likely to limit the precision of luminescence regulation. We have measured the time-dependence and AI-dependence of light production by individual V.fischeri cells that are immobilized in a perfusion chamber and supplied with a defined concentration of exogenous AI. We use low-light level microscopy to record and quantify the photon emission from the cells over periods of several hours as they respond to the introduction of AI. We observe an extremely heterogeneous response to the AI signal. Individual cells differ widely in the onset time for their luminescence and in their resulting brightness, even in the presence of high AI concentrations that saturate the light output from a bulk population. The observed heterogeneity shows that although a given concentration of quorum signal may determine the average light output from a population of cells, it provides far weaker control over the luminescence output of each individual cell. PMID:21103327

  11. Natural Guided Genome Engineering Reveals Transcriptional Regulators Controlling Quorum-Sensing Signal Degradation.

    PubMed

    El Sahili, Abbas; Kwasiborski, Anthony; Mothe, Nicolas; Velours, Christophe; Legrand, Pierre; Moréra, Solange; Faure, Denis

    2015-01-01

    Quorum-quenching (QQ) are natural or engineered processes disrupting the quorum-sensing (QS) signalling which controls virulence and persistence (e.g. biofilm) in numerous bacteria. QQ involves different enzymes including lactonases, amidases, oxidases and reductases which degrade the QS molecules such as N-acylhomoserine lactones (NAHL). Rhodococcus erythropolis known to efficiently degrade NAHL is proposed as a biocontrol agent and a reservoir of QQ-enzymes for biotechnology. In R. erythropolis, regulation of QQ-enzymes remains unclear. In this work, we performed genome engineering on R. erythropolis, which is recalcitrant to reverse genetics, in order to investigate regulation of QQ-enzymes at a molecular and structural level with the aim to improve the QQ activity. Deep-sequencing of the R. erythropolis enhanced variants allowed identification of a punctual mutation in a key-transcriptional factor QsdR (Quorum sensing degradation Regulation) which regulates the sole QQ-lactonase QsdA identified so far. Using biophysical and structural studies on QsdR, we demonstrate that QQ activity can be improved by modifying the regulation of QQ-enzymes degrading QS signal. This modification requiring the change of only one amino-acid in a transcriptional factor leads to an enhanced R. erythropolis in which the QS-signal degradation pathway is strongly activated.

  12. Quorum sensing activity in Ophiostoma ulmi: effects of fusel oils and branched chain amino acids on yeast-mycelial dimorphism.

    PubMed

    Berrocal, A; Navarrete, J; Oviedo, C; Nickerson, K W

    2012-07-01

      For Ophiostoma (Ceratocystis) ulmi, the ability to undergo morphological change is a crucial factor for its virulence. To gain an understanding of quorum-sensing activity in O. ulmi as it relates to yeast-mycelium dimorphism control, this study examines the effects of branched-chain amino acids as well as their fusel alcohols and fusel acids as quorum sensing molecules.   In a defined medium containing glucose, proline and salts, O. ulmi grew as yeasts when the culture was inoculated with a high density of spores (2 × 10(7)  CFU ml(-1) ) and as mycelia when inoculated with a low spore density (4 × 10(5)  CFU ml(-1) ). The cultures displaying yeast morphology secreted a quorum-sensing factor that shifted the morphology from mycelia to yeast. This quorum-sensing molecule was lipophilic and extractable by organic solvents from the spent medium. Using GC/MS analysis, it was determined that the major compound in the extract was 2-methyl-1-butanol. A similar effect was observed when the branched-chain amino acids (fusel alcohol precursors) were used as the nitrogen source. E, E-farnesol had no effect on the morphology of O. ulmi.   Addition of the branched-chain amino acids or one of the compounds detected in the spent medium, 2-methyl-1-butanol or 4-hydroxyphenylacetic acid, or methylvaleric acid, decreased germ tube formation by more than 50%, thus demonstrating a quorum sensing molecule behaviour in O. ulmi cultures.   This study presents advances in the investigation of dimorphism in O. ulmi, complementing the existing scientific basis, for studying, understanding and controlling this phenomenon. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  13. Subtilosin Prevents Biofilm Formation by Inhibiting Bacterial Quorum Sensing.

    PubMed

    Algburi, Ammar; Zehm, Saskia; Netrebov, Victoria; Bren, Anzhelica B; Chistyakov, Vladimir; Chikindas, Michael L

    2017-03-01

    Subtilosin, the cyclic lantibiotic protein produced by Bacillus subtilis KATMIRA1933, targets the surface receptor and electrostatically binds to the bacterial cell membrane. In this study, subtilosin was purified using ammonium sulfate ((NH4)2SO4) precipitation and purified via column chromatography. Subtilosin's antibacterial minimum and sub-minimum inhibitory concentrations (MIC and sub-MIC) and anti-biofilm activity (biofilm prevention) were established. Subtilosin was evaluated as a quorum sensing (QS) inhibitor in Gram-positive bacteria using Fe(III) reduction assay. In Gram-negative bacteria, subtilosin was evaluated as a QS inhibitor utilizing Chromobacterium voilaceum as a microbial reporter. The results showed that Gardnerella vaginalis was more sensitive to subtilosin with MIC of 6.25 μg/mL when compared to Listeria monocytogenes (125 μg/mL). The lowest concentration of subtilosin, at which more than 90% of G. vaginalis biofilm was inhibited without effecting the growth of planktonic cells, was 0.78 μg/mL. About 80% of L. monocytogenes and more than 60% of Escherichia coli biofilm was inhibited when 15.1 μg/mL of subtilosin was applied. Subtilosin with 7.8-125 μg/mL showed a significant reduction in violacein production without any inhibitory effect on the growth of C. violaceum. Subtilosin at 3 and 4 μg/mL reduced the level of Autoinducer-2 (AI-2) production in G. vaginalis. However, subtilosin did not influence AI-2 production by L. monocytogenes at sub-MICs of 0.95-15.1 μg/mL. To our knowledge, this is the first report exploring the relationship between biofilm prevention and quorum sensing inhibition in G. vaginalis using subtilosin as a quorum sensing inhibitor.

  14. Quorum-sensing control of antibiotic synthesis in Burkholderia thailandensis.

    PubMed

    Duerkop, Breck A; Varga, John; Chandler, Josephine R; Peterson, Snow Brook; Herman, Jake P; Churchill, Mair E A; Parsek, Matthew R; Nierman, William C; Greenberg, E Peter

    2009-06-01

    The genome of Burkholderia thailandensis codes for several LuxR-LuxI quorum-sensing systems. We used B. thailandensis quorum-sensing deletion mutants and recombinant Escherichia coli to determine the nature of the signals produced by one of the systems, BtaR2-BtaI2, and to show that this system controls genes required for the synthesis of an antibiotic. BtaI2 is an acyl-homoserine lactone (acyl-HSL) synthase that produces two hydroxylated acyl-HSLs, N-3-hydroxy-decanoyl-HSL (3OHC(10)-HSL) and N-3-hydroxy-octanoyl-HSL (3OHC(8)-HSL). The btaI2 gene is positively regulated by BtaR2 in response to either 3OHC(10)-HSL or 3OHC(8)-HSL. The btaR2-btaI2 genes are located within clusters of genes with annotations that suggest they are involved in the synthesis of polyketide or peptide antibiotics. Stationary-phase cultures of wild-type B. thailandensis, but not a btaR2 mutant or a strain deficient in acyl-HSL synthesis, produced an antibiotic effective against gram-positive bacteria. Two of the putative antibiotic synthesis gene clusters require BtaR2 and either 3OHC(10)-HSL or 3OHC(8)-HSL for activation. This represents another example where antibiotic synthesis is controlled by quorum sensing, and it has implications for the evolutionary divergence of B. thailandensis and its close relatives Burkholderia pseudomallei and Burkholderia mallei.

  15. Bacterial Quorum Sensing: Its Role in Virulence and Possibilities for Its Control

    PubMed Central

    Rutherford, Steven T.; Bassler, Bonnie L.

    2012-01-01

    Quorum sensing is a process of cell–cell communication that allows bacteria to share information about cell density and adjust gene expression accordingly. This process enables bacteria to express energetically expensive processes as a collective only when the impact of those processes on the environment or on a host will be maximized. Among the many traits controlled by quorum sensing is the expression of virulence factors by pathogenic bacteria. Here we review the quorum-sensing circuits of Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, and Vibrio cholerae. We outline these canonical quorum-sensing mechanisms and how each uniquely controls virulence factor production. Additionally, we examine recent efforts to inhibit quorum sensing in these pathogens with the goal of designing novel antimicrobial therapeutics. PMID:23125205

  16. Airway Epithelial Cell Integrity Protects from Cytotoxicity of Pseudomonas aeruginosa Quorum-Sensing Signals.

    PubMed

    Losa, Davide; Köhler, Thilo; Bacchetta, Marc; Saab, Joanna Bou; Frieden, Maud; van Delden, Christian; Chanson, Marc

    2015-08-01

    Cell-to-cell communication via gap junctions regulates airway epithelial cell homeostasis and maintains the epithelium host defense. Quorum-sensing molecules produced by Pseudomonas aeruginosa coordinate the expression of virulence factors by this respiratory pathogen. These bacterial signals may also incidentally modulate mammalian airway epithelial cell responses to the pathogen, a process called interkingdom signaling. We investigated the interactions between the P. aeruginosa N-3-oxo-dodecanoyl-L-homoserine lactone (C12) quorum-sensing molecule and human airway epithelial cell gap junctional intercellular communication (GJIC). C12 degradation and its effects on cells were monitored in various airway epithelial cell models grown under nonpolarized and polarized conditions. Its concentration was further monitored in daily tracheal aspirates of colonized intubated patients. C12 rapidly altered epithelial integrity and decreased GJIC in nonpolarized airway epithelial cells, whereas other quorum-sensing molecules had no effect. The effects of C12 were dependent on [Ca(2+)]i and could be prevented by inhibitors of Src tyrosine family and Rho-associated protein kinases. In contrast, polarized airway cells grown on Transwell filters were protected from C12 except when undergoing repair after wounding. In vivo during colonization of intubated patients, C12 did not accumulate, but it paralleled bacterial densities. In vitro C12 degradation, a reaction catalyzed by intracellular paraoxonase 2 (PON2), was impaired in nonpolarized cells, whereas PON2 expression was increased during epithelial polarization. The cytotoxicity of C12 on nonpolarized epithelial cells, combined with its impaired degradation allowing its accumulation, provides an additional pathogenic mechanism for P. aeruginosa infections.

  17. [Involvement of quorum-sensing in biosynthesis of polyhydroxyalkanoates in Pseudomonas aeruginosa].

    PubMed

    Xu, Cao; Li, Man; Huang, Yuanyuan; Zhang, Zhe; Bian, Zirui; Song, Shuishan

    2011-06-01

    Quorum-sensing (QS) is a regulatory mechanism with which bacteria regulate the gene expression according to their population density. Pseudomonas aeruginosa regulates the expression of multiple genes via a hierarchical quorum-sensing cascade through LasR and RhlR and their cognate signal molecules N-(3-oxododecanoyl)-L-homoserine lactone (30-C12-HSL) and N-(butanoyl)-L-homoserine lactone (C4-HSL). It aims to explore the regulation of QS on biosynthesis of polyhydroxyalkanoates (PHA) in P. aeruginosa. Wild-type P. aeruginosa PA01 and its QS mutants were used to investigate the effects of quorum-sensing on biosynthesis of PHA by GC and real-time PCR at physiological and molecular level. After treated with QS signal molecule synthesis inhibitor azithromycin, the accumulation of PHA significantly decreased in P. aeruginosa PA01 and its QS mutant strains. The content of PHA in C4-HSL synthase gene rhlI mutant strain PA0210 had no significant difference compared with that of the wild type. However, the PHA contents were significantly affected in 30C12-HSL synthase gene lasl mutant strain PA055, 30C12-HSL transcriptional regulator gene lasR mutant strain PA056 and lasI/lasR double mutant strain PA057. PHA synthase gene phaC1 expression exhibited a significant reduction in lasI mutant and lasR mutant strains. 30C12-HSL signal molecules complementary experiment shows that the expression of phaC1 can be recovered to the level of the wild type, but the synthesis of PHA is only partially restored in lasI mutant strain. The results implicates that lasI/lasR system might be involved in the regulation of intracellular PHA biosynthesis in P. aeruginosa PA01.

  18. Analysis of a bacteria-immunity model with delay quorum sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Zhonghua; Peng, Jigen; Zhang, Juan

    2008-04-01

    A bacteria-immunity model with bacterial quorum sensing is formulated, which describes the competition between bacteria and immune cells. A distributed delay is introduced to characterize the time in which bacteria receive signal molecules and then combat with immune cells. In this paper, we focus on a subsystem of the bacteria-immunity model, analyze the stability of the equilibrium points, discuss the existence and stability of periodic solutions bifurcated from the positive equilibrium point, and finally investigate the stability of the nonhyperbolic equilibrium point by the center manifold theorem.

  19. Conservation of genes and processes controlled by the quorum response in bacteria: characterization of genes controlled by the quorum-sensing transcription factor ComA in Bacillus subtilis.

    PubMed

    Comella, Natalia; Grossman, Alan D

    2005-08-01

    Quorum or diffusion responses in bacteria are mediated by secreted signalling molecules that accumulate extracellularly as cultures grow to high density. The regulatory response to these signalling molecules can result in dramatic changes in gene expression. In Bacillus subtilis, a quorum response is mediated by a secreted 10-amino-acid modified peptide (ComX pheromone) that activates a receptor histidine kinase (ComP) that activates a response regulator transcription factor (ComA). We have used DNA microarrays to identify genes controlled by the ComX-ComP-ComA quorum-sensing pathway. We found that ComX, ComP and ComA affect the same set of genes, indicating that the kinase ComP is the only receptor for the signalling molecule ComX, and that ComA is the only transcription factor activated directly by ComP, under the conditions tested. Expression of over 20 genes appears to be controlled directly by this signalling pathway, and expression of over 150 additional genes, including those involved in competence development, appears to be controlled indirectly. The genes affected appear to have three general functions: (i) to co-ordinate physiological changes involved in developmental pathways, (ii) to produce extracellular products under conditions in which high concentrations of product are needed to be effective and (iii) to enhance survival, growth and colonization under conditions of crowding or limited diffusion. Many of the genes and processes controlled by the quorum response in B. subtilis are also regulated by quorum sensing in Gram-positive and Gram-negative bacteria. The quorum-sensing signalling molecules and regulatory proteins are quite different between Gram-positives and Gram-negatives and the convergent physiological regulation of similar genes and processes indicate the important and conserved nature of the quorum response.

  20. Identification of Five Structurally Unrelated Quorum-Sensing Inhibitors of Pseudomonas aeruginosa from a Natural-Derivative Database

    PubMed Central

    Tan, Sean Yang-Yi; Chua, Song-Lin; Chen, Yicai; Rice, Scott A.; Kjelleberg, Staffan; Nielsen, Thomas E.; Givskov, Michael

    2013-01-01

    Bacteria communicate by means of small signal molecules in a process termed quorum sensing (QS). QS enables bacteria to organize their activities at the population level, including the coordinated secretion of virulence factors. Certain small-molecule compounds, known as quorum-sensing inhibitors (QSIs), have been shown to effectively block QS and subsequently attenuate the virulence of Pseudomonas aeruginosa, as well as increasing its susceptibility to both antibiotics and the immune system. In this study, a structure-based virtual screening (SB-VS) approach was used for the discovery of novel QSI candidates. Three-dimensional structures of 3,040 natural compounds and their derivatives were obtained, after which molecular docking was performed using the QS receptor LasR as a target. Based on docking scores and molecular masses, 22 compounds were purchased to determine their efficacies as quorum-sensing inhibitors. Using a live reporter assay for quorum sensing, 5 compounds were found to be able to inhibit QS-regulated gene expression in P. aeruginosa in a dose-dependent manner. The most promising compound, G1, was evaluated by isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis, and it was found to significantly affect the abundance of 46 proteins (19 were upregulated; 27 were downregulated) in P. aeruginosa PAO1. It specifically reduced the expression of several quorum-sensing-regulated virulence factors, such as protease IV, chitinase, and pyoverdine synthetases. G1 was also able to reduce extracellular DNA release and inhibited the secretion of the virulence factor, elastase, whose expression is regulated by LasR. These results demonstrate the utility of SB-VS for the discovery of target-specific QSIs. PMID:24002091

  1. Identification of five structurally unrelated quorum-sensing inhibitors of Pseudomonas aeruginosa from a natural-derivative database.

    PubMed

    Tan, Sean Yang-Yi; Chua, Song-Lin; Chen, Yicai; Rice, Scott A; Kjelleberg, Staffan; Nielsen, Thomas E; Yang, Liang; Givskov, Michael

    2013-11-01

    Bacteria communicate by means of small signal molecules in a process termed quorum sensing (QS). QS enables bacteria to organize their activities at the population level, including the coordinated secretion of virulence factors. Certain small-molecule compounds, known as quorum-sensing inhibitors (QSIs), have been shown to effectively block QS and subsequently attenuate the virulence of Pseudomonas aeruginosa, as well as increasing its susceptibility to both antibiotics and the immune system. In this study, a structure-based virtual screening (SB-VS) approach was used for the discovery of novel QSI candidates. Three-dimensional structures of 3,040 natural compounds and their derivatives were obtained, after which molecular docking was performed using the QS receptor LasR as a target. Based on docking scores and molecular masses, 22 compounds were purchased to determine their efficacies as quorum-sensing inhibitors. Using a live reporter assay for quorum sensing, 5 compounds were found to be able to inhibit QS-regulated gene expression in P. aeruginosa in a dose-dependent manner. The most promising compound, G1, was evaluated by isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis, and it was found to significantly affect the abundance of 46 proteins (19 were upregulated; 27 were downregulated) in P. aeruginosa PAO1. It specifically reduced the expression of several quorum-sensing-regulated virulence factors, such as protease IV, chitinase, and pyoverdine synthetases. G1 was also able to reduce extracellular DNA release and inhibited the secretion of the virulence factor, elastase, whose expression is regulated by LasR. These results demonstrate the utility of SB-VS for the discovery of target-specific QSIs.

  2. Metabolomics analysis of fungal biofilm development and of arachidonic acid-based quorum sensing mechanism.

    PubMed

    Ząbek, Adam; Junka, Adam; Szymczyk, Patrycja; Wojtowicz, Wojciech; Klimek-Ochab, Magdalena; Młynarz, Piotr

    2017-04-03

    The infections caused by filamentous fungi are becoming worldwide problem of healthcare systems due to increasing drug-resistance of this microorganism and increasing number of immunocompromised nosocomial patients. These infections are related with Aspergillus ability to form sessile communities referred to as the biofilms. The small compounds known as quorum sensing (QS) molecules allow this microorganism to coordinate all processes taking place during biofilm formation and maturation. In the study presented, the HRMAS (1) H NMR metabolomic approach was applied to define composition of extra and intracellular metabolites produced by biofilmic and planktonic (aka free-swimming) cultures of this microorganism and to evaluate impact of quorum sensing molecule, arachidonic acid (AA) on biofilm formation. The Scanning Electron Microscopy was used to confirm Aspergillus ability to form biofilm in vitro, while multivariate and univariate data analysis was applied to analyze data obtained. The Aspergillus strain was able to form strong biofilm structures in vitro. The statistical analysis revealed significant changes of metabolite production depending on Aspergillus culture type (biofilm vs. plankton), time and presence of QS molecules. The data obtained, if developed, might be used in future NMR diagnostics as markers of Aspergillus biofilm-related infections and lead to shorten time between pathogen identification and introduction of treatment.

  3. Evidence for quorum sensing and differential metabolite production by a marine bacterium in response to DMSP

    PubMed Central

    Johnson, Winifred M; Kido Soule, Melissa C; Kujawinski, Elizabeth B

    2016-01-01

    Microbes, the foundation of the marine foodweb, do not function in isolation, but rather rely on molecular level interactions among species to thrive. Although certain types of interactions between autotrophic and heterotrophic microorganisms have been well documented, the role of specific organic molecules in regulating inter-species relationships and supporting growth are only beginning to be understood. Here, we examine one such interaction by characterizing the metabolic response of a heterotrophic marine bacterium, Ruegeria pomeroyi DSS-3, to growth on dimethylsulfoniopropionate (DMSP), an abundant organosulfur metabolite produced by phytoplankton. When cultivated on DMSP, R. pomeroyi synthesized a quorum-sensing molecule, N-(3-oxotetradecanoyl)-l-homoserine lactone, at significantly higher levels than during growth on propionate. Concomitant with the production of a quorum-sensing molecule, we observed differential production of intra- and extracellular metabolites including glutamine, vitamin B2 and biosynthetic intermediates of cyclic amino acids. Our metabolomics data indicate that R. pomeroyi changes regulation of its biochemical pathways in a manner that is adaptive for a cooperative lifestyle in the presence of DMSP, in anticipation of phytoplankton-derived nutrients and higher microbial density. This behavior is likely to occur on sinking marine particles, indicating that this response may impact the fate of organic matter. PMID:26882264

  4. The effect of burdock leaf fraction on adhesion, biofilm formation, quorum sensing and virulence factors of Pseudomonas aeruginosa.

    PubMed

    Lou, Z; Wang, H; Tang, Y; Chen, X

    2017-03-01

    This study aimed to evaluate the effect of a fraction of burdock (Arctium lappa L.) leaf on the initial adhesion, biofilm formation, quorum sensing and virulence factors of Pseudomonas aeruginosa. Antibiofilm activity of the burdock leaf fraction was studied by the method of crystal violet staining. When the concentration of the burdock leaf fraction was 2·0 mg ml(-1) , the inhibition rates on biofilm formation of P. aeruginosa were 100%. The burdock leaf fraction was found to inhibit the formation of biofilm by reducing bacterial surface hydrophobicity, decreasing bacterial aggregation ability and inhibiting swarming motility. Interestingly, the burdock leaf fraction inhibited the secretion of quorum-sensing (QS) signalling molecule 3-oxo-C12-HSL and interfered quorum sensing. Moreover, the QS-regulated pyocyanin and elastase were also inhibited. Chemical composition analysis by UPLC-MS showed 11 active compounds in the burdock leaf fraction. The burdock leaf fraction significantly inhibited the formation of biofilm and quorum sensing, as well as significantly decreased the content of virulence factors. This study introduces a natural and effective bacterial biofilm inhibitor, which could also significantly decrease the content of virulence factors and the drug resistance of P. aeruginosa. © 2016 The Society for Applied Microbiology.

  5. DNA Microarray-Based Identification of Genes Controlled by Autoinducer 2-Stimulated Quorum Sensing in Escherichia coli

    PubMed Central

    DeLisa, Matthew P.; Wu, Chi-Fang; Wang, Liang; Valdes, James J.; Bentley, William E.

    2001-01-01

    Bacterial cell-to-cell communication facilitates coordinated expression of specific genes in a growth rate-II and cell density-dependent manner, a process known as quorum sensing. While the discovery of a diffusible Escherichia coli signaling pheromone, termed autoinducer 2 (AI-2), has been made along with several quorum sensing genes, the overall number and coordination of genes controlled by quorum sensing through the AI-2 signal has not been studied systematically. We investigated global changes in mRNA abundance elicited by the AI-2 signaling molecule through the use of a luxS mutant that was unable to synthesize AI-2. Remarkably, 242 genes, comprising ca. 5.6% of the E. coli genome, exhibited significant transcriptional changes (either induction or repression) in response to a 300-fold AI-2 signaling differential, with many of the identified genes displaying high induction levels (more than fivefold). Significant induction of ygeV, a putative ς54-dependent transcriptional activator, and yhbH, a ς54 modulating protein, suggests ς54 may be involved in E. coli quorum sensing. PMID:11514505

  6. Transition state analogs of 5'-methylthioadenosine nucleosidase disrupt quorum sensing.

    SciTech Connect

    Gutierrez, J.; Crowder, T; Rinaldo-Matthis, A; Ho, M; Almo, S; Schramm, V

    2009-01-01

    5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is a bacterial enzyme involved in S-adenosylmethionine-related quorum sensing pathways that induce bacterial pathogenesis factors. Transition state analogs MT-DADMe-Immucillin-A, EtT-DADMe-Immucillin-A and BuT-DADMe-Immucillin-A are slow-onset, tight-binding inhibitors of Vibrio cholerae MTAN (VcMTAN), with equilibrium dissociation constants of 73, 70 and 208 pM, respectively. Structural analysis of VcMTAN with BuT-DADMe-Immucillin-A revealed interactions contributing to the high affinity. We found that in V. cholerae cells, these compounds are potent MTAN inhibitors with IC50 values of 27, 31 and 6 nM for MT-, EtT- and BuT-DADMe-Immucillin-A, respectively; the compounds disrupt autoinducer production in a dose-dependent manner without affecting growth. MT- and BuT-DADMe-Immucillin-A also inhibited autoinducer-2 production in enterohemorrhagic Escherichia coli O157:H7 with IC{sub 50} values of 600 and 125 nM, respectively. BuT-DADMe-Immucillin-A inhibition of autoinducer-2 production in both strains persisted for several generations and caused reduction in biofilm formation. These results support MTAN's role in quorum sensing and its potential as a target for bacterial anti-infective drug design.

  7. [Screening and identification of marine fungi against bacterial quorum sensing].

    PubMed

    Yin, Shouliang; Chang, Yajing; Deng, Suping; Wang, Qingchi; Yu, Wengong; Gong, Qianhong

    2011-09-01

    The discovery of quorum sensing (QS) system and its critical role in bacterial virulence have revealed a new way to attack pathogenic bacterium. The pathogenecity of QS deletion mutants decreases significantly. Targeting bacterial QS system is a promising therapeutic approach to control infections and anti-microbial resistance. To obtain natural QS inhibitors from marine organisms, marine fungi (69 strains) were isolated from marine mollusca, and their extracts were screened using improved QSIS2 (Quorum Sensing Inhibitor Selector 2) assay and Chromobacterium violaceum CV026. To improve the efficiency of QSIS2 screening, 2,3,5-triphenyltetrazolium chloride (TTC) staining method was used. Extract from strain QY013 was found to have QS inhibitory activity. Further experiment indicated that pyocyanin in Pseudomonas aeruginosa PAOI and violacein in C. violaceum CV026 were reduced by QY013 extract, without affecting bacterial growth. Morphological and 18S rDNA sequence analysis revealed that strain QY013 was most closely related to Penicillium species. The above results suggest that active constituents from QY013 may be used as novel antimicrobial agents against bacterial infection.

  8. Bacterial quorum sensing and metabolic slowing in a cooperative population

    PubMed Central

    An, Jae Hyung; Goo, Eunhye; Kim, Hongsup; Seo, Young-Su; Hwang, Ingyu

    2014-01-01

    Acyl-homoserine lactone (AHL)-mediated quorum sensing (QS) controls the production of numerous intra- and extracellular products across many species of Proteobacteria. Although these cooperative activities are often costly at an individual level, they provide significant benefits to the group. Other potential roles for QS include the restriction of nutrient acquisition and maintenance of metabolic homeostasis of individual cells in a crowded but cooperative population. Under crowded conditions, QS may function to modulate and coordinate nutrient utilization and the homeostatic primary metabolism of individual cells. Here, we show that QS down-regulates glucose uptake, substrate level and oxidative phosphorylation, and de novo nucleotide biosynthesis via the activity of the QS-dependent transcriptional regulator QsmR (quorum sensing master regulator R) in the rice pathogen Burkholderia glumae. Systematic analysis of glucose uptake and core primary metabolite levels showed that QS deficiency perturbed nutrient acquisition, and energy and nucleotide metabolism, of individuals within the group. The QS mutants grew more rapidly than the wild type at the early exponential stage and outcompeted wild-type cells in coculture. Metabolic slowing of individuals in a QS-dependent manner indicates that QS acts as a metabolic brake on individuals when cells begin to mass, implying a mechanism by which AHL-mediated QS might have evolved to ensure homeostasis of the primary metabolism of individuals under crowded conditions. PMID:25267613

  9. Bacterial quorum sensing and metabolic slowing in a cooperative population.

    PubMed

    An, Jae Hyung; Goo, Eunhye; Kim, Hongsup; Seo, Young-Su; Hwang, Ingyu

    2014-10-14

    Acyl-homoserine lactone (AHL)-mediated quorum sensing (QS) controls the production of numerous intra- and extracellular products across many species of Proteobacteria. Although these cooperative activities are often costly at an individual level, they provide significant benefits to the group. Other potential roles for QS include the restriction of nutrient acquisition and maintenance of metabolic homeostasis of individual cells in a crowded but cooperative population. Under crowded conditions, QS may function to modulate and coordinate nutrient utilization and the homeostatic primary metabolism of individual cells. Here, we show that QS down-regulates glucose uptake, substrate level and oxidative phosphorylation, and de novo nucleotide biosynthesis via the activity of the QS-dependent transcriptional regulator QsmR (quorum sensing master regulator R) in the rice pathogen Burkholderia glumae. Systematic analysis of glucose uptake and core primary metabolite levels showed that QS deficiency perturbed nutrient acquisition, and energy and nucleotide metabolism, of individuals within the group. The QS mutants grew more rapidly than the wild type at the early exponential stage and outcompeted wild-type cells in coculture. Metabolic slowing of individuals in a QS-dependent manner indicates that QS acts as a metabolic brake on individuals when cells begin to mass, implying a mechanism by which AHL-mediated QS might have evolved to ensure homeostasis of the primary metabolism of individuals under crowded conditions.

  10. Towards implementation of Quorum Sensing Autoinducers as Biomarkers for Infectious Disease States

    PubMed Central

    Struss, Anjali K.; Nunes, Ashlee; Waalen, Jill; Lowery, Colin A.; Pullanikat, Prasanna; Denery, Judith R.; Conrad, Douglas J.; Kaufmann, Gunnar F.; Janda, Kim D.

    2013-01-01

    The opportunistic bacterial pathogen Pseudomonas aeruginosa causes chronic lung infections in cystic fibrosis (CF) patients. Importantly, virulence factor expression and biofilm formation in P. aeruginosa is coordinated by quorum sensing (QS) and one of the key QS signaling molecules is 3-oxo-C12-HSL. Remarkably, a tetramic acid, (C12-TA), with antibacterial properties is formed spontaneously from 3-oxo-C12-HSL under physiological conditions. Seeking to better understand this relationship we sought to investigate if 3-oxo-C12-HSL and C12-TA may be contributing factors to the overall pathogenicity of P. aeruginosa in CF individuals and their detection and quantitation in sputum samples might be used as an indicator to assess disease states and monitor therapy success in CF patients. To this end, 3-oxo-C12-HSL and C12-TA concentrations were initially analyzed in P. aeruginosa flow cell biofilms using liquid chromatography coupled with mass spectrometry (LC-MS). A liquid chromatography tandem mass spectrometry (LC-MS-MS)-based method was then developed and validated for their detection and quantification in sputa of CF patients. We highlight that this is the first report to show the presence of both the quorum sensing molecule (3-oxo-C12-HSL) and its rearranged product (C12-TA) in human clinical samples such as sputum. A total of 47 sputum samples from 20 CF and 2 non-CF individuals were analyzed: 3-oxo-C12-HSL was detected and quantified in 45 samples with concentrations ranging from 20 nM to >1000 nM; C12-TA was found in 14 samples (13 – 900 nM). Based on our findings, quorum sensing autoinducers merit further investigation as biomarkers for infectious disease states. PMID:23391272

  11. Non-native acylated homoserine lactones reveal that LuxIR quorum sensing promotes symbiont stability.

    PubMed

    Studer, Sarah V; Schwartzman, Julia A; Ho, Jessica S; Geske, Grant D; Blackwell, Helen E; Ruby, Edward G

    2014-08-01

    Quorum sensing, a group behaviour coordinated by a diffusible pheromone signal and a cognate receptor, is typical of bacteria that form symbioses with plants and animals. LuxIR-type N-acyl L-homoserine (AHL) quorum sensing is common in Gram-negative Proteobacteria, and many members of this group have additional quorum-sensing networks. The bioluminescent symbiont Vibrio fischeri encodes two AHL signal synthases: AinS and LuxI. AinS-dependent quorum sensing converges with LuxI-dependent quorum sensing at the LuxR regulatory element. Both AinS- and LuxI-mediated signalling are required for efficient and persistent colonization of the squid host, Euprymna scolopes. The basis of the mutualism is symbiont bioluminescence, which is regulated by both LuxI- and AinS-dependent quorum sensing, and is essential for maintaining a colonization of the host. Here, we used chemical and genetic approaches to probe the dynamics of LuxI- and AinS-mediated regulation of bioluminescence during symbiosis. We demonstrate that both native AHLs and non-native AHL analogues can be used to non-invasively and specifically modulate induction of symbiotic bioluminescence via LuxI-dependent quorum sensing. Our data suggest that the first day of colonization, during which symbiont bioluminescence is induced by LuxIR, is a critical period that determines the stability of the V. fischeri population once symbiosis is established.

  12. A Quorum Sensing-Disrupting Brominated Thiophenone with a Promising Therapeutic Potential to Treat Luminescent Vibriosis

    PubMed Central

    Defoirdt, Tom; Benneche, Tore; Brackman, Gilles; Coenye, Tom; Sorgeloos, Patrick; Scheie, Anne Aamdal

    2012-01-01

    Vibrio harveyi is amongst the most important bacterial pathogens in aquaculture. Novel methods to control this pathogen are needed since many strains have acquired resistance to antibiotics. We previously showed that quorum sensing-disrupting furanones are able to protect brine shrimp larvae against vibriosis. However, a major problem of these compounds is that they are toxic toward higher organisms and therefore, they are not safe to be used in aquaculture. The synthesis of brominated thiophenones, sulphur analogues of the quorum sensing-disrupting furanones, has recently been reported. In the present study, we report that these compounds block quorum sensing in V. harveyi at concentrations in the low micromolar range. Bioluminescence experiments with V. harveyi quorum sensing mutants and a fluorescence anisotropy assay indicated that the compounds disrupt quorum sensing in this bacterium by decreasing the ability of the quorum sensing master regulator LuxR to bind to its target promoter DNA. In vivo challenge tests with gnotobiotic brine shrimp larvae showed that thiophenone compound TF310, (Z)-4-((5-(bromomethylene)-2-oxo-2,5-dihydrothiophen-3-yl)methoxy)-4-oxobutanoic acid, completely protected the larvae from V. harveyi BB120 when dosed to the culture water at 2.5 µM or more, whereas severe toxicity was only observed at 250 µM. This makes TF310 showing the highest therapeutic index of all quorum sensing-disrupting compounds tested thus far in our brine shrimp model system. PMID:22848604

  13. A quorum sensing-disrupting brominated thiophenone with a promising therapeutic potential to treat luminescent vibriosis.

    PubMed

    Defoirdt, Tom; Benneche, Tore; Brackman, Gilles; Coenye, Tom; Sorgeloos, Patrick; Scheie, Anne Aamdal

    2012-01-01

    Vibrio harveyi is amongst the most important bacterial pathogens in aquaculture. Novel methods to control this pathogen are needed since many strains have acquired resistance to antibiotics. We previously showed that quorum sensing-disrupting furanones are able to protect brine shrimp larvae against vibriosis. However, a major problem of these compounds is that they are toxic toward higher organisms and therefore, they are not safe to be used in aquaculture. The synthesis of brominated thiophenones, sulphur analogues of the quorum sensing-disrupting furanones, has recently been reported. In the present study, we report that these compounds block quorum sensing in V. harveyi at concentrations in the low micromolar range. Bioluminescence experiments with V. harveyi quorum sensing mutants and a fluorescence anisotropy assay indicated that the compounds disrupt quorum sensing in this bacterium by decreasing the ability of the quorum sensing master regulator LuxR to bind to its target promoter DNA. In vivo challenge tests with gnotobiotic brine shrimp larvae showed that thiophenone compound TF310, (Z)-4-((5-(bromomethylene)-2-oxo-2,5-dihydrothiophen-3-yl)methoxy)-4-oxobutanoic acid, completely protected the larvae from V. harveyi BB120 when dosed to the culture water at 2.5 µM or more, whereas severe toxicity was only observed at 250 µM. This makes TF310 showing the highest therapeutic index of all quorum sensing-disrupting compounds tested thus far in our brine shrimp model system.

  14. Contribution of quorum-sensing systems to virulence of Pseudomonas aeruginosa in an experimental pyelonephritis model.

    PubMed

    Mittal, Rahul; Sharma, Saroj; Chhibber, Sanjay; Harjai, Kusum

    2006-08-01

    Pseudomonas aeruginosa has been reported to monitor its cell density as well as expression of virulence determinants by quorum-sensing signal mechanisms operative through autoinducers. In the present investigation, we studied the contribution of quorum-sensing signals during the course of P. aeruginosa-induced pyelonephritis in mice. The standard parent strain of P. aeruginosa (PAO1), possessing functional las and rhl quorum-sensing systems and its isogenic mutant strains, PAO-JP1 (single mutant), harboring a mutated lasI gene and PAO-JP3 (double mutant), harboring mutated lasI and rhlR genes were employed. One uroisolate of P. aeruginosa belonging to serotype O8 and deficient in production of quorum-sensing signals was also used. The parent strain of P. aeruginosa was significantly more virulent compared to its isogenic mutant strains and quorum-sensing negative clinical strain, as assessed by neutrophil influx, malondialdehyde production, renal bacterial load and pathology induced in experimental animals. Quorum-sensing systems play an important role in the pathogenicity of P. aeruginosa in pyelonephritis. Both the las and rhl quorum-sensing systems are important for the virulence of P. aeruginosa in the development of pyelonephritis.

  15. Quorum sensing signalling and biofilm formation of brewery-derived bacteria, and inhibition of signalling by natural compounds.

    PubMed

    Priha, O; Virkajärvi, V; Juvonen, R; Puupponen-Pimiä, R; Nohynek, L; Alakurtti, S; Pirttimaa, M; Storgårds, E

    2014-11-01

    Bacteria use quorum sensing signalling in various functions, e.g. while forming biofilms, and inhibition of this signalling could be one way to control biofilm formation. The aim of this study was to evaluate the production of signalling molecules and its correlation with the biofilm formation capability of bacteria isolated from brewery filling process. A further aim was to study berry extracts and wood-derived terpenes for their possible quorum sensing inhibitory effects. Out of the twenty bacteria studied, five produced short-chain and five long-chain AHL (acyl homoserine lactone) signalling molecules when tested with the Chromobacterium violaceum CV026 reporter bacterium. Production of AI-2 (autoinducer-2) signalling molecules was detected from nine strains with the Vibrio harveyi BB170 bioassay. Over half of the strains produced biofilm in the microtitre plate assay, but the production of AHL and AI-2 signalling molecules and biofilm formation capability did not directly correlate with each other. Out of the 13 berry extracts and wood-derived terpenes screened, four compounds decreased AHL signalling without effect on growth. These were betulin, raspberry extract and two cloudberry extracts. The effect of these compounds on biofilm formation of the selected six bacterial strains varied. The phenolic extract of freeze-dried cloudberry fruit caused a statistically significant reduction of biofilm formation of Obesumbacterium proteus strain. Further experiments should aim at identifying the active compounds and revealing whether quorum sensing inhibition causes structural changes in the biofilms formed.

  16. Cyclodepsipeptides produced by actinomycetes inhibit cyclic-peptide-mediated quorum sensing in Gram-positive bacteria.

    PubMed

    Desouky, Said E; Shojima, Akane; Singh, Ravindra Pal; Matsufuji, Takahisa; Igarashi, Yasuhiro; Suzuki, Takashi; Yamagaki, Tohru; Okubo, Ken-Ichi; Ohtani, Kaori; Sonomoto, Kenji; Nakayama, Jiro

    2015-07-01

    Cyclic peptides are commonly used as quorum-sensing autoinducers in Gram-positive Firmicutes bacteria. Well-studied examples of such molecules are thiolactone and lactone, used to regulate the expression of a series of virulence genes in the agr system of Staphylococcus aureus and the fsr system of Enterococcus faecalis, respectively. Three cyclodepsipeptides WS9326A, WS9326B and cochinmicin II/III were identified as a result of screening actinomycetes culture extracts for activity against the agr/fsr system. These molecules are already known as receptor antagonists, the first two for tachykinin and the last one for endothelin. WS9326A also inhibited the transcription of pfoA regulated by the VirSR two-component system in Clostridium perfringens. Receptor-binding assays using a fluorescence-labeled autoinducer (FITC-GBAP) showed that WS9326A and WS9326B act as receptor antagonists in this system. In addition, an ex vivo assay showed that WS9326B substantially attenuated the toxicity of S. aureus for human corneal epithelial cells. These results suggest that these three natural cyclodepsipeptides have therapeutic potential for targeting the cyclic peptide-mediated quorum sensing of Gram-positive pathogens. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Can resistance against quorum-sensing interference be selected?

    PubMed

    García-Contreras, Rodolfo; Maeda, Toshinari; Wood, Thomas K

    2016-01-01

    Quorum-sensing (QS) interference is a novel therapy to fight bacterial infections that, unlike conventional antibiotic treatments, is focused on reducing the damage caused by pathogens (virulence) rather than focused on inhibiting their growth. Given this ideal, it was predicted that this approach will be impervious to or at least much less prone to resistance in bacterial populations. However, recently, resistance mechanisms against well-characterized quorum quenchers (QQs) have been found in the laboratory as well as in clinical strains, demonstrating that the rise of resistance against these kinds of compounds is possible. Nevertheless, it has been argued that even if resistance mechanisms against QS interference exist, this fact does not guarantee that resistance will spread. In the present work, we discuss recent insights derived from the latest experiments to address this question. In addition, we explain how environmental conditions like the stress produced by the host immune system may influence the selection of resistance and eventually lead to the selection of QS interference-resistant bacteria in a clinical setting.

  18. Exposure to Static Magnetic Field Stimulates Quorum Sensing Circuit in Luminescent Vibrio Strains of the Harveyi Clade

    PubMed Central

    Talà, Adelfia; Delle Side, Domenico; Buccolieri, Giovanni; Tredici, Salvatore Maurizio; Velardi, Luciano; Paladini, Fabio; De Stefano, Mario; Nassisi, Vincenzo; Alifano, Pietro

    2014-01-01

    In this study, the evidence of electron-dense magnetic inclusions with polyhedral shape in the cytoplasm of Harveyi clade Vibrio strain PS1, a bioluminescent bacterium living in symbiosis with marine organisms, led us to investigate the behavior of this bacterium under exposure to static magnetic fields ranging between 20 and 2000 Gauss. When compared to sham-exposed, the light emission of magnetic field-exposed bacteria growing on solid medium at 18°C ±0.1°C was increased up to two-fold as a function of dose and growth phase. Stimulation of bioluminescence by magnetic field was more pronounced during the post-exponential growth and stationary phase, and was lost when bacteria were grown in the presence of the iron chelator deferoxamine, which caused disassembly of the magnetic inclusions suggesting their involvement in magnetic response. As in luminescent Vibrio spp. bioluminescence is regulated by quorum sensing, possible effects of magnetic field exposure on quorum sensing were investigated. Measurement of mRNA levels by reverse transcriptase real time-PCR demonstrated that luxR regulatory gene and luxCDABE operon coding for luciferase and fatty acid reductase complex were significantly up-regulated in magnetic field-exposed bacteria. In contrast, genes coding for a type III secretion system, whose expression was negatively affected by LuxR, were down-regulated. Up-regulation of luxR paralleled with down-regulation of small RNAs that mediate destabilization of luxR mRNA in quorum sensing signaling pathways. The results of experiments with the well-studied Vibrio campbellii strain BB120 (originally classified as Vibrio harveyi) and derivative mutants unable to synthesize autoinducers suggest that the effects of magnetic fields on quorum sensing may be mediated by AI-2, the interspecies quorum sensing signal molecule. PMID:24960170

  19. Deinococcus radiodurans can interfere with quorum sensing by producing an AHL-acylase and an AHL-lactonase.

    PubMed

    Koch, Gudrun; Nadal-Jimenez, Pol; Cool, Robbert H; Quax, Wim J

    2014-07-01

    Bacterial communication via the secretion of small diffusible compounds allows microorganisms to regulate gene expression in a coordinated manner. As many virulence traits are regulated in this fashion, disruption of chemical communication has been proposed as novel antimicrobial therapy. Quorum-quenching enzymes have been a promising discovery in this field as they interfere with the communication of Gram-negative bacteria. AHL-lactonases and AHL-acylases have been described in a variety of bacterial strains; however, usually only one of these two groups of enzymes has been described in a single species. We report here the presence of a member of each group of enzymes in the extremophile bacterium Deinococcus radiodurans. Co-occurrence of both enzymes in a single species increases the chance of inactivating foreign AHL signals under different conditions. We demonstrate that both enzymes are able to degrade the quorum-sensing molecules of various pathogens subsequently affecting virulence gene expression. These studies add the quorum-quenching enzymes of D. radiodurans to the list of potent quorum-quenchers and highlight the idea that quorum quenching could have evolved in some bacteria as a strategy to gain a competitive advantage by altering gene expression in other species.

  20. Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia.

    PubMed

    Ahlgren, Nathan A; Harwood, Caroline S; Schaefer, Amy L; Giraud, Eric; Greenberg, E Peter

    2011-04-26

    Many Proteobacteria possess LuxI-LuxR-type quorum-sensing systems that produce and detect fatty acyl-homoserine lactone (HSL) signals. The photoheterotroph Rhodopseudomonas palustris is unusual in that it produces and detects an aryl-HSL, p-coumaroyl-HSL, and signal production requires an exogenous source of p-coumarate. A photosynthetic stem-nodulating member of the genus Bradyrhizobium produces a small molecule signal that elicits an R. palustris quorum-sensing response. Here, we show that this signal is cinnamoyl-HSL and that cinnamoyl-HSL is produced by the LuxI homolog BraI and detected by BraR. Cinnamoyl-HSL reaches concentrations on the order of 50 nM in cultures of stem-nodulating bradyrhizobia grown in the presence or absence of cinnamate. Acyl-HSLs often reach concentrations of 0.1-30 μM in bacterial cultures, and generally, LuxR-type receptors respond to signals in a concentration range from 5 to a few hundred nanomolar. Our stem-nodulating Bradyrhizobium strain responds to picomolar concentrations of cinnamoyl-HSL and thus, produces cinnamoyl-HSL in excess of the levels required for a signal response without an exogenous source of cinnamate. The ability of Bradyrhizobium to produce and respond to cinnamoyl-HSL shows that aryl-HSL production is not unique to R. palustris, that the aromatic acid substrate for aryl-HSL synthesis does not have to be supplied exogenously, and that some acyl-HSL quorum-sensing systems may function at very low signal production and response levels.

  1. Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia

    PubMed Central

    Ahlgren, Nathan A.; Harwood, Caroline S.; Schaefer, Amy L.; Giraud, Eric; Greenberg, E. Peter

    2011-01-01

    Many Proteobacteria possess LuxI-LuxR–type quorum-sensing systems that produce and detect fatty acyl-homoserine lactone (HSL) signals. The photoheterotroph Rhodopseudomonas palustris is unusual in that it produces and detects an aryl-HSL, p-coumaroyl-HSL, and signal production requires an exogenous source of p-coumarate. A photosynthetic stem-nodulating member of the genus Bradyrhizobium produces a small molecule signal that elicits an R. palustris quorum-sensing response. Here, we show that this signal is cinnamoyl-HSL and that cinnamoyl-HSL is produced by the LuxI homolog BraI and detected by BraR. Cinnamoyl-HSL reaches concentrations on the order of 50 nM in cultures of stem-nodulating bradyrhizobia grown in the presence or absence of cinnamate. Acyl-HSLs often reach concentrations of 0.1–30 μM in bacterial cultures, and generally, LuxR-type receptors respond to signals in a concentration range from 5 to a few hundred nanomolar. Our stem-nodulating Bradyrhizobium strain responds to picomolar concentrations of cinnamoyl-HSL and thus, produces cinnamoyl-HSL in excess of the levels required for a signal response without an exogenous source of cinnamate. The ability of Bradyrhizobium to produce and respond to cinnamoyl-HSL shows that aryl-HSL production is not unique to R. palustris, that the aromatic acid substrate for aryl-HSL synthesis does not have to be supplied exogenously, and that some acyl-HSL quorum-sensing systems may function at very low signal production and response levels. PMID:21471459

  2. Identification of Quorum-Sensing Inhibitors Disrupting Signaling between Rgg and Short Hydrophobic Peptides in Streptococci

    PubMed Central

    Aggarwal, Chaitanya; Jimenez, Juan Cristobal; Lee, Hyun; Chlipala, George E.; Ratia, Kiira

    2015-01-01

    ABSTRACT Bacteria coordinate a variety of social behaviors, important for both environmental and pathogenic bacteria, through a process of intercellular chemical signaling known as quorum sensing (QS). As microbial resistance to antibiotics grows more common, a critical need has emerged to develop novel anti-infective therapies, such as an ability to attenuate bacterial pathogens by means of QS interference. Rgg quorum-sensing pathways, widespread in the phylum Firmicutes, employ cytoplasmic pheromone receptors (Rgg transcription factors) that directly bind and elicit gene expression responses to imported peptide signals. In the human-restricted pathogen Streptococcus pyogenes, the Rgg2/Rgg3 regulatory circuit controls biofilm development in response to the short hydrophobic peptides SHP2 and SHP3. Using Rgg-SHP as a model receptor-ligand target, we sought to identify chemical compounds that could specifically inhibit Rgg quorum-sensing circuits. Individual compounds from a diverse library of known drugs and drug-like molecules were screened for their ability to disrupt complexes of Rgg and FITC (fluorescein isothiocyanate)-conjugated SHP using a fluorescence polarization (FP) assay. The best hits were found to bind Rgg3 in vitro with submicromolar affinities, to specifically abolish transcription of Rgg2/3-controlled genes, and to prevent biofilm development in S. pyogenes without affecting bacterial growth. Furthermore, the top hit, cyclosporine A, as well as its nonimmunosuppressive analog, valspodar, inhibited Rgg-SHP pathways in multiple species of Streptococcus. The Rgg-FITC-peptide-based screen provides a platform to identify inhibitors specific for each Rgg type. Discovery of Rgg inhibitors constitutes a step toward the goal of manipulating bacterial behavior for purposes of improving health. PMID:25968646

  3. Toward development of an autonomous network of bacteria-based delivery systems (BacteriaBots): spatiotemporally high-throughput characterization of bacterial quorum-sensing response.

    PubMed

    Sahari, Ali; Traore, Mahama A; Stevens, Ann M; Scharf, Birgit E; Behkam, Bahareh

    2014-12-02

    Characterization of bacterial innate and engineered cooperative behavior, regulated through chemical signaling in a process known as quorum sensing, is critical to development of a myriad of bacteria-enabled systems including biohybrid drug delivery systems and biohybrid mobile sensor networks. Here, we demonstrate, for the first time, that microfluidic diffusive mixers can be used for spatiotemporally high-throughput characterization of bacterial quorum-sensing response. Using this batch characterization method, the quorum-sensing response in Escherichia coli MG1655, transformed with a truncated lux operon from Vibrio fischeri, in the presence of 1-100 nM exogenous acyl-homoserine lactone molecules has been quantified. This method provides a rapid and facile tool for high-throughput characterization of the quorum-sensing response of genetically modified bacteria in the presence of a wide concentration range of signaling molecules with a precision of ±0.5 nM. Furthermore, the quorum-sensing response of BacteriaBots has been characterized to determine if the results obtained from a large bacterial population can serve as a robust predictive tool for the small bacterial population attached to each BacteriaBot.

  4. Novel Reporter for Identification of Interference with Acyl Homoserine Lactone and Autoinducer-2 Quorum Sensing

    PubMed Central

    Weiland-Bräuer, Nancy; Pinnow, Nicole

    2014-01-01

    Two reporter strains were established to identify novel biomolecules interfering with bacterial communication (quorum sensing [QS]). The basic design of these Escherichia coli-based systems comprises a gene encoding a lethal protein fused to promoters induced in the presence of QS signal molecules. Consequently, these E. coli strains are unable to grow in the presence of the respective QS signal molecules unless a nontoxic QS-interfering compound is present. The first reporter strain designed to detect autoinducer-2 (AI-2)-interfering activities (AI2-QQ.1) contained the E. coli ccdB lethal gene under the control of the E. coli lsrA promoter. The second reporter strain (AI1-QQ.1) contained the Vibrio fischeri luxI promoter fused to the ccdB gene to detect interference with acyl-homoserine lactones. Bacteria isolated from the surfaces of several marine eukarya were screened for quorum-quenching (QQ) activities using the established reporter systems AI1-QQ.1 and AI2-QQ.1. Out of 34 isolates, two interfered with acylated homoserine lactone (AHL) signaling, five interfered with AI-2 QS signaling, and 10 were demonstrated to interfere with both signal molecules. Open reading frames (ORFs) conferring QQ activity were identified for three selected isolates (Photobacterium sp., Pseudoalteromonas sp., and Vibrio parahaemolyticus). Evaluation of the respective heterologously expressed and purified QQ proteins confirmed their ability to interfere with the AHL and AI-2 signaling processes. PMID:25527543

  5. Quorum-quenching limits quorum-sensing exploitation by signal-negative invaders

    PubMed Central

    Tannières, Mélanie; Lang, Julien; Barnier, Claudie; Shykoff, Jacqui A.; Faure, Denis

    2017-01-01

    Some bacteria produce and perceive quorum-sensing (QS) signals that coordinate several behaviours, including the costly processes that are exoenzyme production and plasmid transfer. In the case of plasmid transfer, the emergence of QS signal-altered invaders and their policing are poorly documented. In Agrobacterium tumefaciens, the virulence Ti-plasmid encodes both synthesis and sensing of QS-signals, which promote its transfer from a donor to a recipient cell. Here, we reported that QS-altered A. tumefaciens mutants arose during experimental evolution. All showed improved growth compared to their ancestor. Genome sequencing revealed that, though some had lost the Ti-plasmid, most were defective for QS-signal synthesis and Ti-plasmid conjugation (traR mutations) and one exhibited a QS-signal exploitation behaviour, using signal produced by other cells to enhance its own Ti-plasmid transfer. We explored mechanisms that can limit this QS-hijacking. We showed that the A. tumefaciens capacity to inactivate QS-signals by expressing QS-degrading enzyme could attenuate dissemination of the QS signal-negative Ti-plasmids. This work shows that enzymatic QS-disruption whether encoded by the QS-producing Ti-plasmid itself, by a companion plasmid in the same donor cells, or by one in the recipient cells, in all cases can serve as a mechanism for controlling QS exploitation by QS signal-negative mutants. PMID:28054641

  6. Quorum-quenching limits quorum-sensing exploitation by signal-negative invaders

    NASA Astrophysics Data System (ADS)

    Tannières, Mélanie; Lang, Julien; Barnier, Claudie; Shykoff, Jacqui A.; Faure, Denis

    2017-01-01

    Some bacteria produce and perceive quorum-sensing (QS) signals that coordinate several behaviours, including the costly processes that are exoenzyme production and plasmid transfer. In the case of plasmid transfer, the emergence of QS signal-altered invaders and their policing are poorly documented. In Agrobacterium tumefaciens, the virulence Ti-plasmid encodes both synthesis and sensing of QS-signals, which promote its transfer from a donor to a recipient cell. Here, we reported that QS-altered A. tumefaciens mutants arose during experimental evolution. All showed improved growth compared to their ancestor. Genome sequencing revealed that, though some had lost the Ti-plasmid, most were defective for QS-signal synthesis and Ti-plasmid conjugation (traR mutations) and one exhibited a QS-signal exploitation behaviour, using signal produced by other cells to enhance its own Ti-plasmid transfer. We explored mechanisms that can limit this QS-hijacking. We showed that the A. tumefaciens capacity to inactivate QS-signals by expressing QS-degrading enzyme could attenuate dissemination of the QS signal-negative Ti-plasmids. This work shows that enzymatic QS-disruption whether encoded by the QS-producing Ti-plasmid itself, by a companion plasmid in the same donor cells, or by one in the recipient cells, in all cases can serve as a mechanism for controlling QS exploitation by QS signal-negative mutants.

  7. Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing

    PubMed Central

    Garcia-Ojalvo, Jordi; Elowitz, Michael B.; Strogatz, Steven H.

    2004-01-01

    Diverse biochemical rhythms are generated by thousands of cellular oscillators that somehow manage to operate synchronously. In fields ranging from circadian biology to endocrinology, it remains an exciting challenge to understand how collective rhythms emerge in multicellular structures. Using mathematical and computational modeling, we study the effect of coupling through intercell signaling in a population of Escherichia coli cells expressing a synthetic biological clock. Our results predict that a diverse and noisy community of such genetic oscillators interacting through a quorum-sensing mechanism should self-synchronize in a robust way, leading to a substantially improved global rhythmicity in the system. As such, the particular system of coupled genetic oscillators considered here might be a good candidate to provide the first quantitative example of a synchronization transition in a population of biological oscillators. PMID:15256602

  8. Quorum Sensing Inhibitors for Staphylococcus aureus from Italian Medicinal Plants

    PubMed Central

    Quave, Cassandra L.; Plano, Lisa R.W.; Bennett, Bradley C.

    2010-01-01

    Morbidity and mortality estimates due to methicillin-resistant Staphylococcus aureus (MRSA) infections continue to rise. Therapeutic options are limited by antibiotic resistance. Anti-pathogenic compounds, which inhibit quorum sensing (QS) pathways, may be a useful alternative to antibiotics. Staphylococcal QS is encoded by the agr locus and is responsible for the production of δ-hemolysin. Quantification of δ-hemolysin found in culture supernatants permits the analysis of agr activity at the translational, rather than transcriptional, level. We employed RP-HPLC techniques to investigate the anti-QS activity of 168 extracts from 104 Italian plants through quantification of δ-hemolysin. Extracts from three medicinal plants (Ballota nigra, Castanea sativa, and Sambucus ebulus) exhibited a dose-dependent response in the production of δ-hemolysin, indicating strong anti-QS activity in a pathogenic MRSA isolate. PMID:20645243

  9. Acyl-homoserine lactone quorum sensing: from evolution to application.

    PubMed

    Schuster, Martin; Sexton, D Joseph; Diggle, Stephen P; Greenberg, E Peter

    2013-01-01

    Quorum sensing (QS) is a widespread process in bacteria that employs autoinducing chemical signals to coordinate diverse, often cooperative activities such as bioluminescence, biofilm formation, and exoenzyme secretion. Signaling via acyl-homoserine lactones is the paradigm for QS in Proteobacteria and is particularly well understood in the opportunistic pathogen Pseudomonas aeruginosa. Despite thirty years of mechanistic research, empirical studies have only recently addressed the benefits of QS and provided support for the traditional assumptions regarding its social nature and its role in optimizing cell-density-dependent group behaviors. QS-controlled public-goods production has served to investigate principles that explain the evolution and stability of cooperation, including kin selection, pleiotropic constraints, and metabolic prudence. With respect to medical application, appreciating social dynamics is pertinent to understanding the efficacy of QS-inhibiting drugs and the evolution of resistance. Future work will provide additional insight into the foundational assumptions of QS and relate laboratory discoveries to natural ecosystems.

  10. Acyl-Homoserine Lactone Quorum Sensing in the Roseobacter Clade

    PubMed Central

    Zan, Jindong; Liu, Yue; Fuqua, Clay; Hill, Russell T.

    2014-01-01

    Members of the Roseobacter clade are ecologically important and numerically abundant in coastal environments and can associate with marine invertebrates and nutrient-rich marine snow or organic particles, on which quorum sensing (QS) may play an important role. In this review, we summarize current research progress on roseobacterial acyl-homoserine lactone-based QS, particularly focusing on three relatively well-studied representatives, Phaeobacter inhibens DSM17395, the marine sponge symbiont Ruegeria sp. KLH11 and the dinoflagellate symbiont Dinoroseobacter shibae. Bioinformatic survey of luxI homologues revealed that over 80% of available roseobacterial genomes encode at least one luxI homologue, reflecting the significance of QS controlled regulatory pathways in adapting to the relevant marine environments. We also discuss several areas that warrant further investigation, including studies on the ecological role of these diverse QS pathways in natural environments. PMID:24402124

  11. Quorum-sensing regulation in staphylococci—an overview

    PubMed Central

    Le, Katherine Y.; Otto, Michael

    2015-01-01

    Staphylococci are frequent human commensals and some species can cause disease. Staphylococcus aureus in particular is a dangerous human pathogen. In staphylococci, the ability to sense the bacterial cell density, or quorum, and to respond with genetic adaptations is due to one main system, which is called accessory gene regulator (Agr). The extracellular signal of Agr is a post-translationally modified peptide containing a thiolactone structure. Under conditions of high cell density, Agr is responsible for the increased expression of many toxins and degradative exoenzymes, and decreased expression of several colonization factors. This regulation is important for the timing of virulence factor expression during infection and the development of acute disease, while low activity of Agr is associated with chronic staphylococcal infections, such as those involving biofilm formation. Accordingly, drugs inhibiting Agr are being evaluated for their capacity to control acute forms of S. aureus infection. PMID:26579084

  12. Structural basis for bacterial quorum sensing-mediated oxalogenesis.

    PubMed

    Oh, Juntaek; Goo, Eunhye; Hwang, Ingyu; Rhee, Sangkee

    2014-04-18

    The Burkholderia species utilize acetyl-CoA and oxaloacetate, substrates for citrate synthase in the TCA cycle, to produce oxalic acid in response to bacterial cell to cell communication, called quorum sensing. Quorum sensing-mediated oxalogenesis via a sequential reaction by ObcA and ObcB counteracts the population-collapsing alkaline pH of the stationary growth phase. Thus, the oxalic acid produced plays an essential role as an excreted public good for survival of the group. Here, we report structural and functional analyses of ObcA, revealing mechanistic features distinct from those of citrate synthase. ObcA exhibits a unique fold, in which a (β/α)8-barrel fold is located in the C-domain with the N-domain inserted into a loop following α1 in the barrel fold. Structural analyses of the complexes with oxaloacetate and with a bisubstrate adduct indicate that each of the oxaloacetate and acetyl-CoA substrates is bound to an independent site near the metal coordination shell in the barrel fold. In catalysis, oxaloacetate serves as a nucleophile by forming an enolate intermediate mediated by Tyr(322) as a general base, which then attacks the thioester carbonyl carbon of acetyl-CoA to yield a tetrahedral adduct between the two substrates. Therefore, ObcA catalyzes its reaction by combining the enolase and acetyltransferase superfamilies, but the presence of the metal coordination shell and the absence of general acid(s) produces an unusual tetrahedral CoA adduct as a stable product. These results provide the structural basis for understanding the first step in oxalogenesis and constitute an example of the functional diversity of an enzyme for survival and adaptation in the environment.

  13. How Quorum Sensing Connects Sporulation to Necrotrophism in Bacillus thuringiensis

    PubMed Central

    Poncet, Sandrine; Lazar, Noureddine; Li de la Sierra-Gallay, Inès; Gohar, Michel; Lereclus, Didier; Nessler, Sylvie

    2016-01-01

    Bacteria use quorum sensing to coordinate adaptation properties, cell fate or commitment to sporulation. The infectious cycle of Bacillus thuringiensis in the insect host is a powerful model to investigate the role of quorum sensing in natural conditions. It is tuned by communication systems regulators belonging to the RNPP family and directly regulated by re-internalized signaling peptides. One such RNPP regulator, NprR, acts in the presence of its cognate signaling peptide NprX as a transcription factor, regulating a set of genes involved in the survival of these bacteria in the insect cadaver. Here, we demonstrate that, in the absence of NprX and independently of its transcriptional activator function, NprR negatively controls sporulation. NprR inhibits expression of Spo0A-regulated genes by preventing the KinA-dependent phosphorylation of the phosphotransferase Spo0F, thus delaying initiation of the sporulation process. This NprR function displays striking similarities with the Rap proteins, which also belong to the RNPP family, but are devoid of DNA-binding domain and indirectly control gene expression via protein-protein interactions in Bacilli. Conservation of the Rap residues directly interacting with Spo0F further suggests a common inhibition of the sporulation phosphorelay. The crystal structure of apo NprR confirms that NprR displays a highly flexible Rap-like structure. We propose a molecular regulatory mechanism in which key residues of the bifunctional regulator NprR are directly and alternatively involved in its two functions. NprX binding switches NprR from a dimeric inhibitor of sporulation to a tetrameric transcriptional activator involved in the necrotrophic lifestyle of B. thuringiensis. NprR thus tightly coordinates sporulation and necrotrophism, ensuring survival and dissemination of the bacteria during host infection. PMID:27483473

  14. BACTERIAL ATTRACTION AND QUORUM SENSING INHIBITION IN CAENORHABDITIS ELEGANS EXUDATES

    PubMed Central

    KAPLAN, FATMA; BADRI, DAYAKAR V.; ZACHARIAH, CHERIAN; AJREDINI, RAMADAN; SANDOVAL, FRANCISCO J; ROJE, SANJA; LEVINE, LANFANG H.; ZHANG, FENGLI; ROBINETTE, STEVEN L.; ALBORN, HANS T.; ZHAO, WEI; STADLER, MICHAEL; NIMALENDRAN, RATHIKA; DOSSEY, AARON T.; BRÜSCHWEILER, RAFAEL; VIVANCO, JORGE M.; EDISON, ARTHUR S.

    2014-01-01

    Caenorhabditis elegans, a bacterivorous nematode, lives in complex rotting fruit, soil, and compost environments, and chemical interactions are required for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied model organisms in biology, relatively little is known about the signals that C. elegans uses to chemically interact with its environment or as defense. C. elegans exudates were analyzed using several analytical methods and found to contain 36 common metabolites including organic acids, amino acids and sugars, all in relatively high abundance. Furthermore, the concentrations of amino acids in the exudates were dependent on developmental stage. The C. elegans exudates were tested for bacterial chemotaxis using Pseudomonas putida (KT2440), a plant growth promoting rhizobacterium, Pseudomonas aeruginosa (PAO1), a soil bacterium pathogenic to C. elegans, and E. coli (OP50), a non-motile bacterium tested as a control. The C. elegans exudates attracted the two Psuedomonas species, but had no detectable antibacterial activity against P. aeruginosa. To our surprise, the exudates of young adult and adult life stages of C. elegans exudates inhibited quorum sensing in the reporter system based on the LuxR bacterial quorum sensing (QS) system, which regulates bacterial virulence and other factors in Vibrio fischeri. We were able to fractionate the QS inhibition and bacterial chemotaxis activities, demonstrating that these activities are chemically distinct. Our results demonstrate that C. elegans can attract its bacterial food and has the potential of partially regulating the virulence of bacterial pathogens by inhibiting specific QS systems. PMID:19649780

  15. Quorum Sensing in a Methane-Oxidizing Bacterium.

    PubMed

    Puri, Aaron W; Schaefer, Amy L; Fu, Yanfen; Beck, David A C; Greenberg, E Peter; Lidstrom, Mary E

    2017-03-01

    Aerobic methanotrophic bacteria use methane as their sole source of carbon and energy and serve as a major sink for the potent greenhouse gas methane in freshwater ecosystems. Dissecting the molecular details of how these organisms interact in the environment may increase our understanding of how they perform this important ecological role. Many bacterial species use quorum sensing (QS) systems to regulate gene expression in a cell density-dependent manner. We have identified a QS system in the genome of Methylobacter tundripaludum, a dominant methane oxidizer in methane enrichments of sediment from Lake Washington (Seattle, WA). We determined that M. tundripaludum produces primarily N-3-hydroxydecanoyl-l-homoserine lactone (3-OH-C10-HSL) and that its production is governed by a positive feedback loop. We then further characterized this system by determining which genes are regulated by QS in this methane oxidizer using transcriptome sequencing (RNA-seq) and discovered that this system regulates the expression of a putative nonribosomal peptide synthetase biosynthetic gene cluster. Finally, we detected an extracellular factor that is produced by M. tundripaludum in a QS-dependent manner. These results identify and characterize a mode of cellular communication in an aerobic methane-oxidizing bacterium.IMPORTANCE Aerobic methanotrophs are critical for sequestering carbon from the potent greenhouse gas methane in the environment, yet the mechanistic details of chemical interactions in methane-oxidizing bacterial communities are not well understood. Understanding these interactions is important in order to maintain, and potentially optimize, the functional potential of the bacteria that perform this vital ecosystem function. In this work, we identify a quorum sensing system in the aerobic methanotroph Methylobacter tundripaludum and use both chemical and genetic methods to characterize this system at the molecular level. Copyright © 2017 American Society for

  16. Bacterial attraction and quorum sensing inhibition in Caenorhabditis elegans exudates.

    PubMed

    Kaplan, Fatma; Badri, Dayakar V; Zachariah, Cherian; Ajredini, Ramadan; Sandoval, Francisco J; Roje, Sanja; Levine, Lanfang H; Zhang, Fengli; Robinette, Steven L; Alborn, Hans T; Zhao, Wei; Stadler, Michael; Nimalendran, Rathika; Dossey, Aaron T; Brüschweiler, Rafael; Vivanco, Jorge M; Edison, Arthur S

    2009-08-01

    Caenorhabditis elegans, a bacterivorous nematode, lives in complex rotting fruit, soil, and compost environments, and chemical interactions are required for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied model organisms in biology, relatively little is known about the signals that C. elegans uses to interact chemically with its environment or as defense. C. elegans exudates were analyzed by using several analytical methods and found to contain 36 common metabolites that include organic acids, amino acids, and sugars, all in relatively high abundance. Furthermore, the concentrations of amino acids in the exudates were dependent on developmental stage. The C. elegans exudates were tested for bacterial chemotaxis using Pseudomonas putida (KT2440), a plant growth promoting rhizobacterium, Pseudomonas aeruginosa (PAO1), a soil bacterium pathogenic to C. elegans, and Escherichia coli (OP50), a non-motile bacterium tested as a control. The C. elegans exudates attracted the two Pseudomonas species, but had no detectable antibacterial activity against P. aeruginosa. To our surprise, the exudates of young adult and adult life stages of C. elegans exudates inhibited quorum sensing in the reporter system based on the LuxR bacterial quorum sensing (QS) system, which regulates bacterial virulence and other factors in Vibrio fischeri. We were able to fractionate the QS inhibition and bacterial chemotaxis activities, thus demonstrating that these activities are chemically distinct. Our results demonstrate that C. elegans can attract its bacterial food and has the potential of partially regulating the virulence of bacterial pathogens by inhibiting specific QS systems.

  17. How Quorum Sensing Connects Sporulation to Necrotrophism in Bacillus thuringiensis.

    PubMed

    Perchat, Stéphane; Talagas, Antoine; Poncet, Sandrine; Lazar, Noureddine; Li de la Sierra-Gallay, Inès; Gohar, Michel; Lereclus, Didier; Nessler, Sylvie

    2016-08-01

    Bacteria use quorum sensing to coordinate adaptation properties, cell fate or commitment to sporulation. The infectious cycle of Bacillus thuringiensis in the insect host is a powerful model to investigate the role of quorum sensing in natural conditions. It is tuned by communication systems regulators belonging to the RNPP family and directly regulated by re-internalized signaling peptides. One such RNPP regulator, NprR, acts in the presence of its cognate signaling peptide NprX as a transcription factor, regulating a set of genes involved in the survival of these bacteria in the insect cadaver. Here, we demonstrate that, in the absence of NprX and independently of its transcriptional activator function, NprR negatively controls sporulation. NprR inhibits expression of Spo0A-regulated genes by preventing the KinA-dependent phosphorylation of the phosphotransferase Spo0F, thus delaying initiation of the sporulation process. This NprR function displays striking similarities with the Rap proteins, which also belong to the RNPP family, but are devoid of DNA-binding domain and indirectly control gene expression via protein-protein interactions in Bacilli. Conservation of the Rap residues directly interacting with Spo0F further suggests a common inhibition of the sporulation phosphorelay. The crystal structure of apo NprR confirms that NprR displays a highly flexible Rap-like structure. We propose a molecular regulatory mechanism in which key residues of the bifunctional regulator NprR are directly and alternatively involved in its two functions. NprX binding switches NprR from a dimeric inhibitor of sporulation to a tetrameric transcriptional activator involved in the necrotrophic lifestyle of B. thuringiensis. NprR thus tightly coordinates sporulation and necrotrophism, ensuring survival and dissemination of the bacteria during host infection.

  18. Regulation of Yersina pestis Virulence by AI-2 Mediated Quorum Sensing

    SciTech Connect

    Segelke, B; Hok, S; Lao, V; Corzett, M; Garcia, E

    2010-03-29

    The proposed research was motivated by an interest in understanding Y. pestis virulence mechanisms and bacteria cell-cell communication. It is expected that a greater understanding of virulence mechanisms will ultimately lead to biothreat countermeasures and novel therapeutics. Y. pestis is the etiological agent of plague, the most devastating disease in human history. Y. pestis infection has a high mortality rate and a short incubation before mortality. There is no widely available and effective vaccine for Y. pestis and multi-drug resistant strains are emerging. Y. pestis is a recognized biothreat agent based on the wide distribution of the bacteria in research laboratories around the world and on the knowledge that methods exist to produce and aerosolize large amounts of bacteria. We hypothesized that cell-cell communication via signaling molecules, or quorum sensing, by Y. pestis is important for the regulation of virulence factor gene expression during host invasion, though a causative link had never been established. Quorum sensing is a mode of intercellular communication which enables orchestration of gene expression for many bacteria as a function of population density and available evidence suggests there may be a link between quorum sensing and regulation of Y. pesits virulence. Several pathogenic bacteria have been shown to regulate expression of virulence factor genes, including genes encoding type III secretion, via quorum sensing. The Y. pestis genome encodes several cell-cell signaling pathways and the interaction of at least three of these are thought to be involved in one or more modes of host invasion. Furthermore, Y. pestis gene expression array studies carried out at LLNL have established a correlation between expression of known virulence factors and genes involved in processing of the AI-2 quorum sensing signal. This was a basic research project that was intended to provide new insights into bacterial intercellular communication and how it is

  19. Modulating Vibrio cholerae quorum-sensing-controlled communication using autoinducer-loaded nanoparticles.

    PubMed

    Lu, Hoang D; Spiegel, Alina C; Hurley, Amanda; Perez, Lark J; Maisel, Katharina; Ensign, Laura M; Hanes, Justin; Bassler, Bonnie L; Semmelhack, Martin F; Prud'homme, Robert K

    2015-04-08

    The rise of bacterial antibiotic resistance has created a demand for alternatives to traditional antibiotics. Attractive possibilities include pro- and anti-quorum sensing therapies that function by modulating bacterial chemical communication circuits. We report the use of Flash NanoPrecipitation to deliver the Vibrio cholerae quorum-sensing signal CAI-1 ((S)-3-hydroxytridecan-4-one) in a water dispersible form as nanoparticles. The particles activate V. cholerae quorum-sensing responses 5 orders of magnitude higher than does the identically administered free CAI-1 and are diffusive across in vivo delivery barriers such as intestinal mucus. This work highlights the promise of combining quorum-sensing strategies with drug delivery approaches for the development of next-generation medicines.

  20. Bacteria clustering by polymers induces the expression of quorum-sensing-controlled phenotypes

    NASA Astrophysics Data System (ADS)

    Lui, Leong T.; Xue, Xuan; Sui, Cheng; Brown, Alan; Pritchard, David I.; Halliday, Nigel; Winzer, Klaus; Howdle, Steven M.; Fernandez-Trillo, Francisco; Krasnogor, Natalio; Alexander, Cameron

    2013-12-01

    Bacteria deploy a range of chemistries to regulate their behaviour and respond to their environment. Quorum sensing is one method by which bacteria use chemical reactions to modulate pre-infection behaviour such as surface attachment. Polymers that can interfere with bacterial adhesion or the chemical reactions used for quorum sensing are therefore a potential means to control bacterial population responses. Here, we report how polymeric ‘bacteria sequestrants’, designed to bind to bacteria through electrostatic interactions and therefore inhibit bacterial adhesion to surfaces, induce the expression of quorum-sensing-controlled phenotypes as a consequence of cell clustering. A combination of polymer and analytical chemistry, biological assays and computational modelling has been used to characterize the feedback between bacteria clustering and quorum sensing signalling. We have also derived design principles and chemical strategies for controlling bacterial behaviour at the population level.

  1. Bacteria clustering by polymers induces the expression of quorum-sensing-controlled phenotypes.

    PubMed

    Lui, Leong T; Xue, Xuan; Sui, Cheng; Brown, Alan; Pritchard, David I; Halliday, Nigel; Winzer, Klaus; Howdle, Steven M; Fernandez-Trillo, Francisco; Krasnogor, Natalio; Alexander, Cameron

    2013-12-01

    Bacteria deploy a range of chemistries to regulate their behaviour and respond to their environment. Quorum sensing is one method by which bacteria use chemical reactions to modulate pre-infection behaviour such as surface attachment. Polymers that can interfere with bacterial adhesion or the chemical reactions used for quorum sensing are therefore a potential means to control bacterial population responses. Here, we report how polymeric 'bacteria sequestrants', designed to bind to bacteria through electrostatic interactions and therefore inhibit bacterial adhesion to surfaces, induce the expression of quorum-sensing-controlled phenotypes as a consequence of cell clustering. A combination of polymer and analytical chemistry, biological assays and computational modelling has been used to characterize the feedback between bacteria clustering and quorum sensing signalling. We have also derived design principles and chemical strategies for controlling bacterial behaviour at the population level.

  2. Quorum Sensing Gene Regulation by LuxR/HapR Master Regulators in Vibrios.

    PubMed

    Ball, Alyssa S; Chaparian, Ryan R; van Kessel, Julia C

    2017-10-01

    The coordination of group behaviors in bacteria is accomplished via the cell-cell signaling process called quorum sensing. Vibrios have historically been models for studying bacterial communication due to the diverse and remarkable behaviors controlled by quorum sensing in these bacteria, including bioluminescence, type III and type VI secretion, biofilm formation, and motility. Here, we discuss the Vibrio LuxR/HapR family of proteins, the master global transcription factors that direct downstream gene expression in response to changes in cell density. These proteins are structurally similar to TetR transcription factors but exhibit distinct biochemical and genetic features from TetR that determine their regulatory influence on the quorum sensing gene network. We review here the gene groups regulated by LuxR/HapR and quorum sensing and explore the targets that are common and unique among Vibrio species. Copyright © 2017 American Society for Microbiology.

  3. Bacteria clustering by polymers induces the expression of quorum sense controlled phenotypes

    PubMed Central

    Lui, Leong T.; Xue, Xuan; Sui, Cheng; Brown, Alan; Pritchard, David I.; Halliday, Nigel; Winzer, Klaus; Howdle, Steven M.; Fernandez-Trillo, Francisco; Krasnogor, Natalio; Alexander, Cameron

    2014-01-01

    Bacteria deploy a range of chemistries to regulate their behaviour and respond to their environment. Quorum sensing is one mean by which bacteria use chemical reactions to modulate pre-infection behaviour such as surface attachment. Polymers that can interfere with bacterial adhesion or the chemical reactions used for quorum sensing are thus a potential means to control bacterial population responses. Here we report how polymeric “bacteria sequestrants”, designed to bind to bacteria through electrostatic interactions and thus inhibit bacterial adhesion to surfaces, induce the expression of quorum sensing controlled phenotypes as a consequence of cell clustering. A combination of polymer and analytical chemistry, biological assays and computational modelling has been used to characterise the feedback between bacteria clustering and quorum sensing signaling. We have also derived design principles and chemical strategies for controlling bacterial behaviour at the population level. PMID:24256871

  4. Influence of the hydrodynamic environment on quorum sensing in Pseudomonas aeruginosa biofilms.

    PubMed

    Kirisits, Mary Jo; Margolis, Jeffrey J; Purevdorj-Gage, Boloroo L; Vaughan, Benjamin; Chopp, David L; Stoodley, Paul; Parsek, Matthew R

    2007-11-01

    We provide experimental and modeling evidence that the hydrodynamic environment can impact quorum sensing (QS) in a Pseudomonas aeruginosa biofilm. The amount of biofilm biomass required for full QS induction of the population increased as the flow rate increased.

  5. Antimicrobial and antibiofilm activity of quorum sensing peptides and Peptide analogues against oral biofilm bacteria.

    PubMed

    LoVetri, Karen; Madhyastha, Srinivasa

    2010-01-01

    Widespread antibiotic resistance is a major incentive for the investigation of novel ways to treat or prevent infections. Much effort has been put into the discovery of peptides in nature accompanied by manipulation of natural peptides to improve activity and decrease toxicity. The ever increasing knowledge about bacteria and the discovery of quorum sensing have presented itself as another mechanism to disrupt the infection process. We have shown that the natural quorum sensing (QS) peptide, competence-stimulating peptide (CSP), used by the caries causing bacteria Streptococcus mutans when used in higher than normally present concentrations can actually contribute to cell death in S. mutans. Using an analogue of this quorum sensing peptide (KBI-3221), we have shown it to be beneficial at decreasing biofilm of various Streptococcus species. This chapter looks at a number of assay methods to test the inhibitory effects of quorum sensing peptides and their analogues on the growth and biofilm formation of oral bacteria.

  6. Exploiting Quorum Sensing Inhibition for the Control of Pseudomonas Aeruginosa and Acinetobacter Baumannii Biofilms.

    PubMed

    Castillo-Juarez, Israel; López-Jácome, Luis Esaú; Soberón-Chávez, Gloria; Tomás, María; Lee, Jintae; Castañeda-Tamez, Paulina; Hernández-Bárragan, Iván Ángelo; Cruz-Muñiz, Martha Yumiko; Maeda, Toshinari; Wood, Thomas K; García-Contreras, Rodolfo

    2017-01-05

    Pseudomonas aeruginosa and Acinetobacter baumannii are two of the main bacteria responsible for nosocomial infections; both organisms are resistant to several classes of antibiotics making their infections very difficult to treat. Moreover, they possess a remarkable ability to form biofilms, which further enhances their antimicrobial resistance. Both organisms coordinate their formation of biofilms and their expression of virulence factors through quorum sensing, a system that regulates gene expression at high cell densities and that plays a key role in the establishment of bacterial infections. Hence, interfering with these quorum-sensing systems has been proposed as an alternative to traditional antibiotics for the eradication of bacterial infections. In this review, we describe the quorum sensing systems of both organisms, the way they coordinate the formation of biofilms, the recent advances in biofilm disruption by quorum sensing interference, and the advantages and limitations of the implementation of these novel therapeutic options in the clinic.

  7. Modulating Vibrio cholerae Quorum-Sensing-Controlled Communication Using Autoinducer-Loaded Nanoparticles

    PubMed Central

    Lu, Hoang D.; Spiegel, Alina C.; Hurley, Amanda; Perez, Lark J.; Maisel, Katharina; Ensign, Laura M.; Hanes, Justin; Bassler, Bonnie L.; Semmelhack, Martin F.; Prud’homme, Robert K.

    2015-01-01

    The rise of bacterial antibiotic resistance has created a demand for alternatives to traditional antibiotics. Attractive possibilities include pro- and anti-quorum sensing therapies that function by modulating bacterial chemical communication circuits. We report the use of Flash NanoPrecipitation to deliver the Vibrio cholerae quorum-sensing signal CAI-1 ((S)-3-hydroxytridecan-4-one) in a water dispersible form as nanoparticles. The particles activate V. cholerae quorum-sensing responses five orders of magnitude higher than does the identically administered free CAI-1, and are diffusive across in vivo delivery barriers such as intestinal mucus. This work highlights the promise of combining quorum-sensing strategies with drug delivery approaches for the development of next-generation medicines. PMID:25651002

  8. The Apparent Quorum-Sensing Inhibitory Activity of Pyrogallol Is a Side Effect of Peroxide Production

    PubMed Central

    Pande, Gde Sasmita Julyantoro; Baruah, Kartik; Bossier, Peter

    2013-01-01

    There currently is more and more interest in the use of natural products, such as tea polyphenols, as therapeutic agents. The polyphenol compound pyrogallol has been reported before to inhibit quorum-sensing-regulated bioluminescence in Vibrio harveyi. Here, we report that the addition of 10 mg · liter−1 pyrogallol protects both brine shrimp (Artemia franciscana) and giant river prawn (Macrobrachium rosenbergii) larvae from pathogenic Vibrio harveyi, whereas the compound showed relatively low toxicity (therapeutic index of 10). We further demonstrate that the apparent quorum-sensing-disrupting activity is a side effect of the peroxide-producing activity of this compound rather than true quorum-sensing inhibition. Our results emphasize that verification of minor toxic effects by using sensitive methods and the use of appropriate controls are essential when characterizing compounds as being able to disrupt quorum sensing. PMID:23545532

  9. Quorum sensing inhibition in Pseudomonas aeruginosa biofilms: new insights through network mining.

    PubMed

    Pérez-Pérez, Martín; Jorge, Paula; Pérez Rodríguez, Gael; Pereira, Maria Olívia; Lourenço, Anália

    2017-02-01

    Quorum sensing plays a pivotal role in Pseudomonas aeruginosa's virulence. This paper reviews experimental results on antimicrobial strategies based on quorum sensing inhibition and discusses current targets in the regulatory network that determines P. aeruginosa biofilm formation and virulence. A bioinformatics framework combining literature mining with information from biomedical ontologies and curated databases was used to create a knowledge network of potential anti-quorum sensing agents for P. aeruginosa. A total of 110 scientific articles, corresponding to 1,004 annotations, were so far included in the network and are analysed in this work. Information on the most studied agents, QS targets and methods is detailed. This knowledge network offers a unique view of existing strategies for quorum sensing inhibition and their main regulatory targets and may be used to readily access otherwise scattered information and to help generate new testable hypotheses. This knowledge network is publicly available at http://pcquorum.org/ .

  10. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries

    NASA Astrophysics Data System (ADS)

    Marenda, Mattia; Zanardo, Marina; Trovato, Antonio; Seno, Flavio; Squartini, Andrea

    2016-12-01

    Bacterial communities undergo collective behavioural switches upon producing and sensing diffusible signal molecules; a mechanism referred to as Quorum Sensing (QS). Exemplarily, biofilm organic matrices are built concertedly by bacteria in several environments. QS scope in bacterial ecology has been debated for over 20 years. Different perspectives counterpose the role of density reporter for populations to that of local environment diffusivity probe for individual cells. Here we devise a model system where tubes of different heights contain matrix-embedded producers and sensors. These tubes allow non-limiting signal diffusion from one open end, thereby showing that population spatial extension away from an open boundary can be a main critical factor in QS. Experimental data, successfully recapitulated by a comprehensive mathematical model, demonstrate how tube height can overtake the role of producer density in triggering sensor activation. The biotic degradation of the signal is found to play a major role and to be species-specific and entirely feedback-independent.

  11. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries.

    PubMed

    Marenda, Mattia; Zanardo, Marina; Trovato, Antonio; Seno, Flavio; Squartini, Andrea

    2016-12-14

    Bacterial communities undergo collective behavioural switches upon producing and sensing diffusible signal molecules; a mechanism referred to as Quorum Sensing (QS). Exemplarily, biofilm organic matrices are built concertedly by bacteria in several environments. QS scope in bacterial ecology has been debated for over 20 years. Different perspectives counterpose the role of density reporter for populations to that of local environment diffusivity probe for individual cells. Here we devise a model system where tubes of different heights contain matrix-embedded producers and sensors. These tubes allow non-limiting signal diffusion from one open end, thereby showing that population spatial extension away from an open boundary can be a main critical factor in QS. Experimental data, successfully recapitulated by a comprehensive mathematical model, demonstrate how tube height can overtake the role of producer density in triggering sensor activation. The biotic degradation of the signal is found to play a major role and to be species-specific and entirely feedback-independent.

  12. Flavones as Quorum Sensing Inhibitors Identified by a Newly Optimized Screening Platform Using Chromobacterium violaceum as Reporter Bacteria.

    PubMed

    Skogman, Malena E; Kanerva, Sonja; Manner, Suvi; Vuorela, Pia M; Fallarero, Adyary

    2016-09-10

    Quorum sensing (QS) is the process by which bacteria produce and detect signal molecules to coordinate their collective behavior. This intercellular communication is a relevant target for anti-biofilm therapies. Here we have optimized a screening-applicable assay to search for new quorum sensing inhibitors from natural compound libraries. In this system, QS is correlated with the production of violacein, which is directly controlled by the LuxI/LuxR system in Chromobacterium violaceum ATCC 31532. The parallel use of C. violaceum Tn5-mutant CV026, which depends on auto-inducer addition, allows simultaneous discrimination of compounds that act as quenchers of the AHL signal (quorum quenchers). The incorporation of a redox stain into the platform allowed further distinction between QS inhibitors, quorum quenchers and antibacterial compounds. A pilot screening was performed with 465 natural and synthetic flavonoids. All the most active compounds were flavones and they displayed potencies (IC50) in the range of 3.69 to 23.35 μM. These leads were particularly promising as they inhibited the transition from microcolonies into mature biofilms from Escherichia coli and Pseudomonas aeruginosa strains. This approach can be very effective in identifying new antimicrobials posing lesser risks of resistance.

  13. Serotonin Activates Bacterial Quorum Sensing and Enhances the Virulence of Pseudomonas aeruginosa in the Host.

    PubMed

    Knecht, Leslie D; O'Connor, Gregory; Mittal, Rahul; Liu, Xue Z; Daftarian, Pirouz; Deo, Sapna K; Daunert, Sylvia

    2016-07-01

    Bacteria in humans play an important role in health and disease. Considerable emphasis has been placed in understanding the role of bacteria in host-microbiome interkingdom communication. Here we show that serotonin, responsible for mood in the brain and motility in the gut, can also act as a bacterial signaling molecule for pathogenic bacteria. Specifically, we found that serotonin acts as an interkingdom signaling molecule via quorum sensing and that it stimulates the production of bacterial virulence factors and increases biofilm formation in vitro and in vivo in a novel mouse infection model. This discovery points out at roles of serotonin both in bacteria and humans, and at phenotypic implications not only manifested in mood behavior but also in infection processes in the host. Thus, regulating serotonin concentrations in the gut may provide with paradigm shifting therapeutic approaches. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Inhaled Lactonase Reduces Pseudomonas aeruginosa Quorum Sensing and Mortality in Rat Pneumonia

    PubMed Central

    Lafleur, John; Lepidi, Hubert; Papazian, Laurent; Rolain, Jean-Marc; Raoult, Didier; Elias, Mikael; Silby, Mark W.; Bzdrenga, Janek; Bregeon, Fabienne; Chabriere, Eric

    2014-01-01

    Rationale The effectiveness of antibiotic molecules in treating Pseudomonas aeruginosa pneumonia is reduced as a result of the dissemination of bacterial resistance. The existence of bacterial communication systems, such as quorum sensing, has provided new opportunities of treatment. Lactonases efficiently quench acyl-homoserine lactone-based bacterial quorum sensing, implicating these enzymes as potential new anti-Pseudomonas drugs that might be evaluated in pneumonia. Objectives The aim of the present study was to evaluate the ability of a lactonase called SsoPox-I to reduce the mortality of a rat P. aeruginosa pneumonia. Methods To assess SsoPox-I-mediated quorum quenching, we first measured the activity of the virulence gene lasB, the synthesis of pyocianin, the proteolytic activity of a bacterial suspension and the formation of biofilm of a PAO1 strain grown in the presence of lactonase. In an acute lethal model of P. aeruginosa pneumonia in rats, we evaluated the effects of an early or deferred intra-tracheal treatment with SsoPox-I on the mortality, lung bacterial count and lung damage. Measurements and Primary Results SsoPox-I decreased PAO1 lasB virulence gene activity, pyocianin synthesis, proteolytic activity and biofilm formation. The early use of SsoPox-I reduced the mortality of rats with acute pneumonia from 75% to 20%. Histological lung damage was significantly reduced but the lung bacterial count was not modified by the treatment. A delayed treatment was associated with a non-significant reduction of mortality. Conclusion These results demonstrate the protective effects of lactonase SsoPox-I in P. aeruginosa pneumonia and open the way for a future therapeutic use. PMID:25350373

  15. Towards Predictive Modeling of Information Processing in Microbial Ecosystems With Quorum-Sensing Interactions

    NASA Astrophysics Data System (ADS)

    Yusufaly, Tahir; Boedicker, James

    Bacteria communicate using external chemical signals in a process known as quorum sensing. However, the efficiency of this communication is reduced by both limitations on the rate of diffusion over long distances and potential interference from neighboring strains. Therefore, having a framework to quantitatively predict how spatial structure and biodiversity shape information processing in bacterial colonies is important, both for understanding the evolutionary dynamics of natural microbial ecosystems, and for the rational design of synthetic ecosystems with desired computational properties. As a first step towards these goals, we implement a reaction-diffusion model to study the dynamics of a LuxI/LuxR quorum sensing circuit in a growing bacterial population. The spatiotemporal concentration profile of acyl-homoserine lactone (AHL) signaling molecules is analyzed, and used to define a measure of physical and functional signaling network connectivity. From this, we systematically investigate how different initial distributions of bacterial populations influence the subsequent efficiency of collective long-range signal propagation in the population. We compare our results with known experimental data, and discuss limitations and extensions to our modeling framework.-/abstract-

  16. A Quorum-Sensing Factor in Vegetative Dictyostelium Discoideum Cells Revealed by Quantitative Migration Analysis

    PubMed Central

    Golé, Laurent; Rivière, Charlotte; Hayakawa, Yoshinori; Rieu, Jean-Paul

    2011-01-01

    Background Many cells communicate through the production of diffusible signaling molecules that accumulate and once a critical concentration has been reached, can activate or repress a number of target genes in a process termed quorum sensing (QS). In the social amoeba Dictyostelium discoideum, QS plays an important role during development. However little is known about its effect on cell migration especially in the growth phase. Methods and Findings To investigate the role of cell density on cell migration in the growth phase, we use multisite timelapse microscopy and automated cell tracking. This analysis reveals a high heterogeneity within a given cell population, and the necessity to use large data sets to draw reliable conclusions on cell motion. In average, motion is persistent for short periods of time (), but normal diffusive behavior is recovered over longer time periods. The persistence times are positively correlated with the migrated distances. Interestingly, the migrated distance decreases as well with cell density. The adaptation of cell migration to cell density highlights the role of a secreted quorum sensing factor (QSF) on cell migration. Using a simple model describing the balance between the rate of QSF generation and the rate of QSF dilution, we were able to gather all experimental results into a single master curve, showing a sharp cell transition between high and low motile behaviors with increasing QSF. Conclusion This study unambiguously demonstrates the central role played by QSF on amoeboid motion in the growth phase. PMID:22073217

  17. Composition, anti-quorum sensing and antimicrobial activity of essential oils from Lippia alba

    PubMed Central

    Olivero-Verbel, Jesus; Barreto-Maya, Ana; Bertel-Sevilla, Angela; Stashenko, Elena E.

    2014-01-01

    Many Gram-negative pathogens have the ability to produce N-acylhomoserine lactones (AHLs) as signal molecules for quorum sensing (QS). This cell-cell communication system allows them to coordinate gene expression and regulate virulence. Strategies to inhibit QS are promising for the control of infectious diseases or antibiotic resistant bacterial pathogens. The aim of the present study was to evaluate the anti-quorum sensing (anti-QS) and antibacterial potential of five essential oils isolated from Lippia alba on the Tn-5 mutant of Chromobacterium violaceum CV026, and on the growth of the gram-positive bacteria S. aureus ATCC 25923. The anti-QS activity was detected through the inhibition of the QS-controlled violacein pigment production by the sensor bacteria. Results showed that two essential oils from L. alba, one containing the greatest geranial:neral and the other the highest limonene:carvone concentrations, were the most effective QS inhibitors. Both oils also had small effects on cell growth. Moreover, the geranial/neral chemotype oil also produced the maximum zone of growth inhibition against S. aureus ATCC 25923. These data suggest essential oils from L. alba have promising properties as QS modulators, and present antibacterial activity on S. aureus. PMID:25477905

  18. Quorum sensing activity of Serratia fonticola strain RB-25 isolated from an ex-landfill site.

    PubMed

    Ee, Robson; Lim, Yan-Lue; Tee, Kok-Keng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-03-12

    Quorum sensing is a unique bacterial communication system which permits bacteria to synchronize their behaviour in accordance with the population density. The operation of this communication network involves the use of diffusible autoinducer molecules, termed N-acylhomoserine lactones (AHLs). Serratia spp. are well known for their use of quorum sensing to regulate the expression of various genes. In this study, we aimed to characterized the AHL production of a bacterium designated as strain RB-25 isolated from a former domestic waste landfill site. It was identified as Serratia fonticola using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis and this was confirmed by 16S ribosomal DNA sequencing. High resolution triple quadrupole liquid chromatography-mass spectrometry analysis of S. fonticola strain RB-25 spent culture supernatant indicated the existence of three AHLs namely: N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL) and N-(3-oxohexanoyl) homoserine-lactone (3-oxo-C6 HSL). This is the first report of the production of these AHLs in S. fonticola.

  19. Functional marine metagenomic screening for anti-quorum sensing and anti-biofilm activity.

    PubMed

    Yaniv, Karin; Golberg, Karina; Kramarsky-Winter, Esti; Marks, Robert; Pushkarev, Alina; Béjà, Oded; Kushmaro, Ariel

    2017-01-01

    Quorum sensing (QS), a cell-to-cell communication process, entails the production of signaling molecules that enable synchronized gene expression in microbial communities to regulate myriad microbial functions, including biofilm formation. QS disruption may constitute an innovative approach to the design of novel antifouling and anti-biofilm agents. To identify novel quorum sensing inhibitors (QSI), 2,500 environmental bacterial artificial chromosomes (BAC) from uncultured marine planktonic bacteria were screened for QSI activity using soft agar overlaid with wild type Chromobacterium violaceum as an indicator. Of the BAC library clones, 7% showed high QSI activity (>40%) against the indicator bacterium, suggesting that QSI is common in the marine environment. The most active compound, eluted from BAC clone 14-A5, disrupted QS signaling pathways and reduced biofilm formation in both Pseudomonas aeruginosa and Acinetobacter baumannii. The mass spectra of the active BAC clone (14-A5) that had been visualized by thin layer chromatography was dominated by a m/z peak of 362.1.

  20. Mini Review of Phytochemicals and Plant Taxa with Activity as Microbial Biofilm and Quorum Sensing Inhibitors.

    PubMed

    Ta, Chieu Anh Kim; Arnason, John Thor

    2015-12-26

    Microbial biofilms readily form on many surfaces in nature including plant surfaces. In order to coordinate the formation of these biofilms, microorganisms use a cell-to-cell communication system called quorum sensing (QS). As formation of biofilms on vascular plants may not be advantageous to the hosts, plants have developed inhibitors to interfere with these processes. In this mini review, research papers published on plant-derived molecules that have microbial biofilm or quorum sensing inhibition are reviewed with the objectives of determining the biosynthetic classes of active compounds, their biological activity in assays, and their families of occurrence and range. The main findings are the identification of plant phenolics, including benzoates, phenyl propanoids, stilbenes, flavonoids, gallotannins, proanthocyanidins and coumarins as important inhibitors with both activities. Some terpenes including monoterpenes, sesquiterpenes, diterpenes and triterpenes also have anti-QS and anti-biofilm activities. Relatively few alkaloids were reported. Quinones and organosulfur compounds, especially from garlic, were also active. A common feature is the polar nature of these compounds. Phytochemicals with these activities are widespread in Angiosperms in temperate and tropical regions, but gymnosperms, bryophytes and pteridophytes were not represented.

  1. Study of Signal Detection, Integration, and Propagation in Quorum Sensing at the Single Cell Level

    NASA Astrophysics Data System (ADS)

    Long, Tao; Bassler, Bonnie; Wingreen, Ned

    2007-03-01

    Bacteria respond to their environment and to each other and accordingly adjust their gene-expression levels. Accurate signal detection, appropriate signal integration, and faithful signal propagation are essential for a cell to make correct adjustments in response to various extracellular cues. To better understand this information processing by living cells, we studied a model system -- the quorum-sensing circuit in Vibrio harveyi. Quorum sensing is a process in which bacteria communicate with each other by diffusible chemical molecules, termed ``autoinducers'', to commit to coordinated developmental decisions. Three types of autoinducers are detected coincidently by three parallel receptors. The signals are then integrated into the same signaling pathway and propagated by phosphorylation or dephosphorylation of the pathway components. To quantitatively measure the intracellular response, we applied a fluorescent protein reporter, whose production is regulated by a phosphorylated protein in the pathway. By single-cell microscopy, we can explore features of this information-processing circuit such as coincidence detection, signal integration, noise reduction or filtering, and especially the fidelity in signal processing achieved in the presence of inevitable fluctuations.

  2. Composition, anti-quorum sensing and antimicrobial activity of essential oils from Lippia alba.

    PubMed

    Olivero-Verbel, Jesus; Barreto-Maya, Ana; Bertel-Sevilla, Angela; Stashenko, Elena E

    2014-01-01

    Many Gram-negative pathogens have the ability to produce N-acylhomoserine lactones (AHLs) as signal molecules for quorum sensing (QS). This cell-cell communication system allows them to coordinate gene expression and regulate virulence. Strategies to inhibit QS are promising for the control of infectious diseases or antibiotic resistant bacterial pathogens. The aim of the present study was to evaluate the anti-quorum sensing (anti-QS) and antibacterial potential of five essential oils isolated from Lippia alba on the Tn-5 mutant of Chromobacterium violaceum CV026, and on the growth of the gram-positive bacteria S. aureus ATCC 25923. The anti-QS activity was detected through the inhibition of the QS-controlled violacein pigment production by the sensor bacteria. Results showed that two essential oils from L. alba, one containing the greatest geranial:neral and the other the highest limonene:carvone concentrations, were the most effective QS inhibitors. Both oils also had small effects on cell growth. Moreover, the geranial/neral chemotype oil also produced the maximum zone of growth inhibition against S. aureus ATCC 25923. These data suggest essential oils from L. alba have promising properties as QS modulators, and present antibacterial activity on S. aureus.

  3. Diversity and quorum-sensing signal production of Proteobacteria associated with marine sponges.

    PubMed

    Mohamed, Naglaa M; Cicirelli, Elisha M; Kan, Jinjun; Chen, Feng; Fuqua, Clay; Hill, Russell T

    2008-01-01

    Marine sponges are hosts to diverse and dense bacterial communities and thus provide a potential environment for quorum sensing. Quorum sensing, a key factor in cell-cell communication and bacterial colonization of higher animals, might be involved in the symbiotic interactions between bacteria and their sponge hosts. Given that marine Proteobacteria are known to produce N-acyl homoserine lactone (AHL) signal molecules, we tested the production of AHLs by Alpha- and Gammaproteobacteria isolated from marine sponges Mycale laxissima and Ircinia strobilina and the surrounding water column. We used three different AHL biodetection systems in diffusion assays: Chromobacterium violaceum, Agrobacterium tumefaciens and Sinorhizobium meliloti with optimal sensitivity to short-chain (C4-C6), moderate-chain (C8-C12) and long-chain (>or= C14) AHLs respectively. Thirteen of 23 isolates from M. laxissima and five of 25 isolates from I. strobilina were found to produce AHLs. Signals were detected from two of eight proteobacterial strains from the water column. Thin-layer chromatographic assays based on the A. tumefaciens reporter system were utilized to determine the AHL profiles of the positive isolates. The types and amounts of AHLs synthesized varied considerably among the strains. Small ribosomal rRNA gene sequencing revealed that the AHL-producing alphaproteobacterial isolates were mainly from the Silicibacter-Ruegeria subgroup of the Roseobacter clade. Two-dimensional gel electrophoresis (2DGE)-based proteomic analyses were congruent with phylogenetic relationships but provided higher resolution to differentiate these closely related AHL-producing strains.

  4. Plant-derived natural products as sources of anti-quorum sensing compounds.

    PubMed

    Koh, Chong-Lek; Sam, Choon-Kook; Yin, Wai-Fong; Tan, Li Ying; Krishnan, Thiba; Chong, Yee Meng; Chan, Kok-Gan

    2013-05-13

    Quorum sensing is a system of stimuli and responses in relation to bacterial cell population density that regulates gene expression, including virulence determinants. Consequently, quorum sensing has been an attractive target for the development of novel anti-infective measures that do not rely on the use of antibiotics. Anti-quorum sensing has been a promising strategy to combat bacterial infections as it is unlikely to develop multidrug resistant pathogens since it does not impose any selection pressure. A number of anti-quorum sensing approaches have been documented and plant-based natural products have been extensively studied in this context. Plant matter is one of the major sources of chemicals in use today in various industries, ranging from the pharmaceutical, cosmetic, and food biotechnology to the textile industries. Just like animals and humans, plants are constantly exposed to bacterial infections, it is therefore logical to expect that plants have developed sophisticated of chemical mechanisms to combat pathogens. In this review, we have surveyed the various types of plant-based natural products that exhibit anti-quorum sensing properties and their anti-quorum sensing mechanisms.

  5. Plant-Derived Natural Products as Sources of Anti-Quorum Sensing Compounds

    PubMed Central

    Koh, Chong-Lek; Sam, Choon-Kook; Yin, Wai-Fong; Tan, Li Ying; Krishnan, Thiba; Chong, Yee Meng; Chan, Kok-Gan

    2013-01-01

    Quorum sensing is a system of stimuli and responses in relation to bacterial cell population density that regulates gene expression, including virulence determinants. Consequently, quorum sensing has been an attractive target for the development of novel anti-infective measures that do not rely on the use of antibiotics. Anti-quorum sensing has been a promising strategy to combat bacterial infections as it is unlikely to develop multidrug resistant pathogens since it does not impose any selection pressure. A number of anti-quorum sensing approaches have been documented and plant-based natural products have been extensively studied in this context. Plant matter is one of the major sources of chemicals in use today in various industries, ranging from the pharmaceutical, cosmetic, and food biotechnology to the textile industries. Just like animals and humans, plants are constantly exposed to bacterial infections, it is therefore logical to expect that plants have developed sophisticated of chemical mechanisms to combat pathogens. In this review, we have surveyed the various types of plant-based natural products that exhibit anti-quorum sensing properties and their anti-quorum sensing mechanisms. PMID:23669710

  6. Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS).

    PubMed

    McGrath, Stephen; Wade, Dana S; Pesci, Everett C

    2004-01-15

    The opportunistic human pathogen Pseudomonas aeruginosa regulates the production of numerous virulence factors via the action of two separate but coordinated quorum sensing systems, las and rhl. These systems control the transcription of genes in response to population density through the intercellular signals N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C(12)-HSL) and N-(butanoyl)-L-homoserine lactone (C(4)-HSL). A third P. aeruginosa signal, 2-heptyl-3-hydroxy-4-quinolone [Pseudomonas quinolone signal (PQS)], also plays a significant role in the transcription of multiple P. aeruginosa virulence genes. PQS is intertwined in the P. aeruginosa quorum sensing hierarchy with its production and bioactivity requiring the las and rhl quorum sensing systems, respectively. This report presents a preliminary transcriptional analysis of pqsA, the first gene of the recently discovered PQS biosynthetic gene cluster. We show that pqsA transcription required pqsR, a transcriptional activator protein encoded within the PQS biosynthetic gene cluster. It was also found that the transcription of pqsA and subsequent production of PQS was induced by the las quorum sensing system and repressed by the rhl quorum sensing system. In addition, PQS production was dependent on the ratio of 3-oxo-C(12)-HSL to C(4)-HSL, suggesting a regulatory balance between quorum sensing systems. These data are an important early step toward understanding the regulation of PQS synthesis and the role of PQS in P. aeruginosa intercellular signaling.

  7. SepM, a Streptococcal Protease Involved in Quorum Sensing, Displays Strict Substrate Specificity

    PubMed Central

    Biswas, Saswati; Cao, Luyang; Kim, Albert

    2015-01-01

    ABSTRACT Streptococcus mutans, a causative agent of dental caries, relies on multiple quorum-sensing (QS) pathways that coordinate the expression of factors needed for colonization in the oral cavity. S. mutans uses small peptides as QS signaling molecules that typically are secreted into the outside milieu. Competence-stimulating peptide (CSP) is one such QS signaling molecule that functions through the ComDE two-component signal transduction pathway. CSP is secreted through NlmTE, a dedicated ABC transporter that cleaves off the N-terminal leader peptide to generate a mature peptide that is 21 residues long (CSP-21). We recently identified a surface-localized protease, SepM, which further cleaves the CSP-21 peptide at the C-terminal end and removes the last 3 residues to generate CSP-18. CSP-18 is the active QS molecule that interacts with the ComD sensor kinase to activate the QS pathway. In this study, we show that SepM specifically cleaves CSP-21 between the Ala18 and Leu19 residues. We also show that SepM recognizes only Ala at position 18 and Leu at position 19, although some CSP-18 variants with a substitution at position 18 can function equally as well as the QS peptide. Furthermore, we demonstrate that SepM homologs from other streptococci are capable of processing CSP-21 to generate functional CSP-18. IMPORTANCE SepM is a membrane-associated streptococcal protease that processes competence-stimulating peptide (CSP) to generate an active quorum-sensing molecule in S. mutans. SepM belongs to the S16 family of serine proteases, and in this study, we found that SepM behaves as an endopeptidase. SepM displays strict substrate specificity and cleaves the peptide bond between the Ala and Leu residues. This is the first report of an endopeptidase that specifically cleaves these two residues. PMID:26553848

  8. SepM, a Streptococcal Protease Involved in Quorum Sensing, Displays Strict Substrate Specificity.

    PubMed

    Biswas, Saswati; Cao, Luyang; Kim, Albert; Biswas, Indranil

    2015-11-09

    Streptococcus mutans, a causative agent of dental caries, relies on multiple quorum-sensing (QS) pathways that coordinate the expression of factors needed for colonization in the oral cavity. S. mutans uses small peptides as QS signaling molecules that typically are secreted into the outside milieu. Competence-stimulating peptide (CSP) is one such QS signaling molecule that functions through the ComDE two-component signal transduction pathway. CSP is secreted through NlmTE, a dedicated ABC transporter that cleaves off the N-terminal leader peptide to generate a mature peptide that is 21 residues long (CSP-21). We recently identified a surface-localized protease, SepM, which further cleaves the CSP-21 peptide at the C-terminal end and removes the last 3 residues to generate CSP-18. CSP-18 is the active QS molecule that interacts with the ComD sensor kinase to activate the QS pathway. In this study, we show that SepM specifically cleaves CSP-21 between the Ala18 and Leu19 residues. We also show that SepM recognizes only Ala at position 18 and Leu at position 19, although some CSP-18 variants with a substitution at position 18 can function equally as well as the QS peptide. Furthermore, we demonstrate that SepM homologs from other streptococci are capable of processing CSP-21 to generate functional CSP-18. SepM is a membrane-associated streptococcal protease that processes competence-stimulating peptide (CSP) to generate an active quorum-sensing molecule in S. mutans. SepM belongs to the S16 family of serine proteases, and in this study, we found that SepM behaves as an endopeptidase. SepM displays strict substrate specificity and cleaves the peptide bond between the Ala and Leu residues. This is the first report of an endopeptidase that specifically cleaves these two residues. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Gluconacetobacter diazotrophicus PAL5 possesses an active quorum sensing regulatory system.

    PubMed

    Bertini, Elisa V; Nieto Peñalver, Carlos G; Leguina, Ana C; Irazusta, Verónica P; de Figueroa, Lucía I C

    2014-09-01

    The endophytic bacterium Gluconacetobacter diazotrophicus colonizes a broad range of host plants. Its plant growth-promoting capability is related to the capacity to perform biological nitrogen fixation, the biosynthesis of siderophores, antimicrobial substances and the solubilization of mineral nutrients. Colonization of and survival in these endophytic niche requires a complex regulatory network. Among these, quorum sensing systems (QS) are signaling mechanisms involved in the control of several genes related to microbial interactions, host colonization and stress survival. G. diazotrophicus PAL5 possesses a QS composed of a luxR and a luxI homolog, and produces eight molecules from the AHL family as QS signals. In this report data are provided showing that glucose concentration modifies the relative levels of these signal molecules. The activity of G. diazotrophicus PAL5 QS is also altered in presence of other carbon sources and under saline stress conditions. Inactivation of the QS system of G. diazotrophicus PAL5 by means of a quorum quenching strategy allowed the identification of extracellular and intracellular proteins under the control of this regulatory mechanism.

  10. Bacillus sp. QSI-1 Modulate Quorum Sensing Signals Reduce Aeromonas hydrophila Level and Alter Gut Microbial Community Structure in Fish.

    PubMed

    Zhou, Shuxin; Zhang, An; Yin, Hongping; Chu, Weihua

    2016-01-01

    Quorum sensing (QS) is a cell density dependent process that enables bacteria to communicate with each other based on the production, secretion and sensing of the auto-inducer molecules and then subsequently regulate virulence associated gene expression. Interrupting quorum sensing may represent a novel alternative approach to combat bacterial pathogen. Several bacteria can produce quorum quenching (QQ) enzymes. However, the role of QQ bacteria in shaping the microbiota and the level of N-acyl-homoserine lactones (AHLs, a prevalent type of QS molecules) producing bacteria remains largely unknown. The objective of this study was to examine the presence of AHLs in the fish intestine and investigate the modulation of gut microbiota and its effect on Aeromonas hydrophila level by a QQ enzyme producing probiotic Bacillus sp. QSI-1. AHLs were found in fish gut content and were confirmed in Aeromonas species using Chromobacterium violaceum CV026 and Agrobacterium tumefaciens AT 136 (pZLR4) as reporter strains. We demonstrated that the composition of fish gut microbiota was affected by quenching bacteria QSI-1, and the percentage of A. hydrophila was decreased significantly. Taken together, these results provide valuable insights into QQ enzyme producing probiotics can modulate the microbiota structure and decrease the percentage of AHL-producing pathogenic bacteria in the gut. These data strongly suggest that QQ probiotics may serve as non-antibiotic feed additive in aquaculture to control bacterial diseases.

  11. Bacillus sp. QSI-1 Modulate Quorum Sensing Signals Reduce Aeromonas hydrophila Level and Alter Gut Microbial Community Structure in Fish

    PubMed Central

    Zhou, Shuxin; Zhang, An; Yin, Hongping; Chu, Weihua

    2016-01-01

    Quorum sensing (QS) is a cell density dependent process that enables bacteria to communicate with each other based on the production, secretion and sensing of the auto-inducer molecules and then subsequently regulate virulence associated gene expression. Interrupting quorum sensing may represent a novel alternative approach to combat bacterial pathogen. Several bacteria can produce quorum quenching (QQ) enzymes. However, the role of QQ bacteria in shaping the microbiota and the level of N-acyl-homoserine lactones (AHLs, a prevalent type of QS molecules) producing bacteria remains largely unknown. The objective of this study was to examine the presence of AHLs in the fish intestine and investigate the modulation of gut microbiota and its effect on Aeromonas hydrophila level by a QQ enzyme producing probiotic Bacillus sp. QSI-1. AHLs were found in fish gut content and were confirmed in Aeromonas species using Chromobacterium violaceum CV026 and Agrobacterium tumefaciens AT 136 (pZLR4) as reporter strains. We demonstrated that the composition of fish gut microbiota was affected by quenching bacteria QSI-1, and the percentage of A. hydrophila was decreased significantly. Taken together, these results provide valuable insights into QQ enzyme producing probiotics can modulate the microbiota structure and decrease the percentage of AHL-producing pathogenic bacteria in the gut. These data strongly suggest that QQ probiotics may serve as non-antibiotic feed additive in aquaculture to control bacterial diseases. PMID:28018866

  12. A Method for Structure–Activity Analysis of Quorum-Sensing Signaling Peptides from Naturally Transformable Streptococci

    PubMed Central

    2009-01-01

    Many species of streptococci secrete and use a competence-stimulating peptide (CSP) to initiate quorum sensing for induction of genetic competence, bacteriocin production, and other activities. These signaling molecules are small, unmodified peptides that induce powerful strain-specific activity at nano-molar concentrations. This feature has provided an excellent opportunity to explore their structure–function relationships. However, CSP variants have also been identified in many species, and each specifically activates its cognate receptor. How such minor changes dramatically affect the specificity of these peptides remains unclear. Structure–activity analysis of these peptides may provide clues for understanding the specificity of signaling peptide–receptor interactions. Here, we use the Streptococcus mutans CSP as an example to describe methods of analyzing its structure–activity relationship. The methods described here may provide a platform for studying quorum-sensing signaling peptides of other naturally transformable streptococci. PMID:19517207

  13. Quorum Quenching Revisited—From Signal Decays to Signalling Confusion

    PubMed Central

    Hong, Kar-Wai; Koh, Chong-Lek; Sam, Choon-Kook; Yin, Wai-Fong; Chan, Kok-Gan

    2012-01-01

    In a polymicrobial community, while some bacteria are communicating with neighboring cells (quorum sensing), others are interrupting the communication (quorum quenching), thus creating a constant arms race between intercellular communication. In the past decade, numerous quorum quenching enzymes have been found and initially thought to inactivate the signalling molecules. Though this is widely accepted, the actual roles of these quorum quenching enzymes are now being uncovered. Recent evidence extends the role of quorum quenching to detoxification or metabolism of signalling molecules as food and energy source; this includes “signalling confusion”, a term coined in this paper to refer to the phenomenon of non-destructive modification of signalling molecules. While quorum quenching has been explored as a novel anti-infective therapy targeting, quorum sensing evidence begins to show the development of resistance against quorum quenching. PMID:22666051

  14. Establishing a quantitative definition of quorum sensing provides insight into the information content of the autoinducer signals in Vibrio harveyi and Escherichia coli.

    PubMed

    Gooding, Jessica R; May, Amanda L; Hilliard, Kathryn R; Campagna, Shawn R

    2010-07-13

    Extracellular autoinducer concentrations in cultures of Vibrio harveyi and Escherichia coli were monitored by liquid chromatography-tandem mass spectrometry to test whether a quantitative definition of quorum sensing could help decipher the information content of these signals. Although V. harveyi was able to keep the autoinducer-2 to cell number ratio constant, the ratio of signal to cell number for V. harveyi autoinducer-1 and E. coli autoinducer-2 varied as the cultures grew. These data indicate that V. harveyi uses autoinducer-2 for quorum sensing, while the other molecules may be used to transmit different information or are influenced by metabolic noise.

  15. Quorum Sensing in Vibrio fischeri Cell Density-Dependent Activation of Symbiosis-Related Genes in a Marine Bacterium

    DTIC Science & Technology

    2007-11-02

    Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE August 3, 1998 4. TITLE AND SUBTITLE Quorum Sensing in Vibrio fischeri Cell...of the proposed research is to fully elucidate the mechanism of quorum sensing and response in bacteria by continuing investigations of the most well...Regulation/Marine bacteria/Symbiosis Genes/ Transcriptional activation/ Quorum Sensing 17. SECURITY CLASSIFICATION OF REPORT u NSN 7540-01-280

  16. Maniwamycins: new quorum-sensing inhibitors against Chromobacterium violaceum CV026 were isolated from Streptomyces sp. TOHO-M025.

    PubMed

    Fukumoto, Atsushi; Murakami, Chikana; Anzai, Yojiro; Kato, Fumio

    2016-05-01

    Quorum sensing is an important microbial signaling system that controls the expression of many virulence genes. Maniwamycins C-F, new compounds and quorum-sensing inhibitors, were isolated from the culture broth of Streptomyces sp. TOHO-M025 using a silica gel column and preparative HPLC. The structures of maniwamycins were elucidated by spectroscopic analyses, including NMR. The compounds each have an azoxy moiety. All maniwamycins inhibited violacein synthesis, which is controlled by quorum sensing, in Chromobacterium violaceum CV026.

  17. Positive Autoregulation of an Acyl-Homoserine Lactone Quorum-Sensing Circuit Synchronizes the Population Response.

    PubMed

    Scholz, Rebecca L; Greenberg, E Peter

    2017-07-25

    Many proteobacteria utilize acyl-homoserine lactone quorum-sensing signals. At low population densities, cells produce a basal level of signal, and when sufficient signal has accumulated in the surrounding environment, it binds to its receptor, and quorum-sensing-dependent genes can be activated. A common characteristic of acyl-homoserine lactone quorum sensing is that signal production is positively autoregulated. We have examined the role of positive signal autoregulation in Pseudomonas aeruginosa We compared population responses and individual cell responses in populations of wild-type P. aeruginosa to responses in a strain with the signal synthase gene controlled by an arabinose-inducible promoter so that signal was produced at a constant rate per cell regardless of cell population density. At a population level, responses of the wild type and the engineered strain were indistinguishable, but the responses of individual cells in a population of the wild type showed greater synchrony than the responses of the engineered strain. Although sufficient signal is required to activate expression of quorum-sensing-regulated genes, it is not sufficient for activation of certain genes, the late genes, and their expression is delayed until other conditions are met. We found that late gene responses were reduced in the engineered strain. We conclude that positive signal autoregulation is not a required element in acyl-homoserine lactone quorum sensing, but it functions to enhance synchrony of the responses of individuals in a population. Synchrony might be advantageous in some situations, whereas a less coordinated quorum-sensing response might allow bet hedging and be advantageous in other situations.IMPORTANCE There are many quorum-sensing systems that involve a transcriptional activator, which responds to an acyl-homoserine lactone signal. In all of the examples studied, the gene coding for signal production is positively autoregulated by the signal, and it has even

  18. Recent Advances in Ligand and Structure Based Screening of Potent Quorum Sensing Inhibitors Against Antibiotic Resistance Induced Bacterial Virulence.

    PubMed

    Nandi, Sisir

    2016-01-01

    Antibiotic resistance is a growing threat in the treatment of bacterial diseases. Bacterial invasion and its virulence can cause damage to the host cells via quorum sensing mechanism which is responsible for the intercellular communication among bacteria that regulates expression of many genes. Quorum sensing (QS) differentially expresses specific sets of genes which may produce resistance. Researchers have been devoted to develop more potent compounds against bacterial resistant quorum sensing inhibitors. A number of anti-quorum sensing approaches have been documented to screen potent inhibitors against quorum sensing induced bacterial virulence. Experimental screening of a large chemical compound library against a quorum sensing biological target is an established technology for lead identification but it is expensive, laborious and time consuming. Therefore, computer-aided high throughput ligand and structure based virtual screening are most effective pharmacoinformatic tools prior to experiment in this context. Ligand based screening includes quantitative structure-activity relationship (QSAR) and pharmacophore generation whereas techniques of structure based virtual screening include molecular docking. The study in this direction can increase the findings of hit rates and decrease cost of drug design and development by producing potent natural as well as synthetic anti-quorum sensing compounds. Most recent patent coverage on ligand and structure based design of novel bioactive quorum sensing inhibitors has been presented here. The paper has also critically reviewed the screening and design of potent quorum sensing inhibitor leads that would help in patenting novel leads active against bacterial virulence and minimizing antibiotic resistance among bacterial pathogens.

  19. Quorum Sensing Influences Burkholderia thailandensis Biofilm Development and Matrix Production.

    PubMed

    Tseng, Boo Shan; Majerczyk, Charlotte D; Passos da Silva, Daniel; Chandler, Josephine R; Greenberg, E Peter; Parsek, Matthew R

    2016-10-01

    Members of the genus Burkholderia are known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterized Burkholderia thailandensis biofilm development under flow conditions and sought to determine whether QS contributes to this process. B. thailandensis biofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by "dome" structures filled with biofilm matrix material. We showed that this process was dependent on QS. B. thailandensis has three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the three B. thailandensis QS systems, we show that QS-1 is required for proper biofilm development, since a btaR1 mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. The btaR1 mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions. The saprophyte Burkholderia thailandensis is a close relative of the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms, B. thailandensis is an ideal model organism for

  20. Attenuation of quorum sensing-mediated virulence of Acinetobacter baumannii by Glycyrrhiza glabra flavonoids.

    PubMed

    Bhargava, Nidhi; Singh, Sukhvinder P; Sharma, Anupam; Sharma, Prince; Capalash, Neena

    2015-01-01

    To develop an alternative quorum quenching therapy against multidrug-resistant Acinetobacter baumannii. Activity-guided partially purified fraction (F1) from Glycyrrhiza glabra significantly (p < 0.05) reduced quorum sensing regulated virulence factors of A. baumannii viz. motility, biofilm formation and production of antioxidant enzymes. Mechanistically, F1 downregulated the expression of autoinducer synthase gene, abaI, and consequently reduced (92%) the production of 3-OH-C12-HSL as determined by ESI-MS. Q-TOF and Q-TRAP analyses suggested the presence of flavonoids viz. licoricone, glycyrin and glyzarin as the active ingredients. This is the first report on quorum quenching activity of G. glabra linked to its flavonoids that downregulated the expression of abaI and attenuated quorum sensing regulated virulence of A. baumannii.

  1. Dioxygenase-mediated quenching of quinolone-dependent quorum sensing in Pseudomonas aeruginosa.

    PubMed

    Pustelny, Christian; Albers, Alexander; Büldt-Karentzopoulos, Klaudia; Parschat, Katja; Chhabra, Siri Ram; Cámara, Miguel; Williams, Paul; Fetzner, Susanne

    2009-12-24

    2-Heptyl-3-hydroxy-4(1H)-quinolone (PQS) is a quorum-sensing signal molecule used by Pseudomonas aeruginosa. The structural similarity between 3-hydroxy-2-methyl-4(1H)-quinolone, the natural substrate for the 2,4-dioxygenase, Hod, and PQS prompted us to investigate whether Hod quenched PQS signaling. Hod is capable of catalyzing the conversion of PQS to N-octanoylanthranilic acid and carbon monoxide. In P. aeruginosa PAO1 cultures, exogenously supplied Hod protein reduced expression of the PQS biosynthetic gene pqsA, expression of the PQS-regulated virulence determinants lectin A, pyocyanin, and rhamnolipids, and virulence in planta. However, the proteolytic cleavage of Hod by extracellular proteases, competitive inhibition by the PQS precursor 2-heptyl-4(1H)-quinolone, and PQS binding to rhamnolipids reduced the efficiency of Hod as a quorum-quenching agent. Nevertheless, these data indicate that enzyme-mediated PQS inactivation has potential as an antivirulence strategy against P. aeruginosa.

  2. Quorum sensing triggers the stochastic escape of individual cells from Pseudomonas putida biofilms.

    PubMed

    Cárcamo-Oyarce, Gerardo; Lumjiaktase, Putthapoom; Kümmerli, Rolf; Eberl, Leo

    2015-01-16

    The term 'quorum sensing' (QS) is generally used to describe the phenomenon that bacteria release and perceive signal molecules to coordinate cooperative behaviour in response to their population size. QS-based communication has therefore been considered a social trait. Here we show that QS signals (N-acyl-homoserine lactones, AHLs) are stochastically produced in young biofilms of Pseudomonas putida and act mainly as self-regulatory signals rather than inducing neighbouring cells. We demonstrate that QS induces the expression of putisolvin biosurfactants that are not public goods, thereby triggering asocial motility of induced cells out of microcolonies. Phenotypic heterogeneity is most prominent in the early stages of biofilm development, whereas at later stages behaviour patterns across cells become more synchronized. Our findings broaden our perspective on QS by showing that AHLs can control the expression of asocial (self-directed) traits, and that heterogeneity in QS can serve as a mechanism to drive phenotypic heterogeneity in self-directed behaviour.

  3. Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species.

    PubMed

    Dubern, Jean-Frédéric; Diggle, Stephen P

    2008-09-01

    Pseudomonas aeruginosa produces the cell-to-cell signal molecule 2-heptyl-3-hydroxy-4-quinolone (The Pseudomonas quinolone signal; PQS), which is integrated within a complicated quorum sensing signaling system. PQS belongs to the family of 2-alkyl-4-quinolones (AQs), which have been previously described for their antimicrobial activities. PQS is synthesized via the pqsABCDE operon which is responsible for generating multiple AQs including 2-heptyl-4-quinolone (HHQ), the immediate PQS precursor. In addition, PQS signaling plays an important role in P. aeruginosa pathogenesis because it regulates the production of diverse virulence factors including elastase, pyocyanin and LecA lectin in addition to affecting biofilm formation. Here, we summarize the most recent findings on the biosynthesis and regulation of PQS and other AQs including the discovery of AQs in other bacterial species.

  4. 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition

    PubMed Central

    Kim, Han-Shin; Lee, Sang-Hoon; Byun, Youngjoo; Park, Hee-Deung

    2015-01-01

    Pseudomonas aeruginosa is a well-known pathogenic bacterium that forms biofilms and produces virulence factors via quorum sensing (QS). Interfering with normal QS interactions between signal molecules and their cognate receptors is a developing strategy for attenuating its virulence. Here we tested the hypothesis that 6-gingerol, a pungent oil of fresh ginger, reduces biofilm formation and virulence by antagonistically binding to P. aeruginosa QS receptors. In silico studies demonstrated molecular binding occurs between 6-gingerol and the QS receptor LasR through hydrogen bonding and hydrophobic interactions. Experimentally 6-gingerol reduced biofilm formation, several virulence factors (e.g., exoprotease, rhamnolipid, and pyocyanin), and mice mortality. Further transcriptome analyses demonstrated that 6-gingerol successfully repressed QS-induced genes, specifically those related to the production of virulence factors. These results strongly support our hypothesis and offer insight into the molecular mechanism that caused QS gene repression. PMID:25728862

  5. The DSF Family of Quorum Sensing Signals: Diversity, Biosynthesis, and Turnover.

    PubMed

    Zhou, Lian; Zhang, Lian-Hui; Cámara, Miguel; He, Ya-Wen

    2017-04-01

    The diffusible signaling factor (DSF)-based quorum sensing (QS) system has emerged as a widely conserved cell-cell communication mechanism in Gram-negative bacteria. Typically, signals from the DSF family are cis-2-unsaturated fatty acids which regulate diverse biological functions. Recently, substantial progress has been made on the characterization of new members of this family of signals. There have also been new developments in the understanding of the biosynthesis of these molecules where dual enzymatic activities of the DSF synthase and the use of various substrates have been described. The recent discovery of a naturally occurring DSF turnover mechanism and its regulation provides a new dimension in our understanding of how DSF-dependent microorganisms modulate virulence gene expression in response to changes in the surrounding environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Surface polysaccharides and quorum sensing are involved in the attachment and survival of Xanthomonas albilineans on sugarcane leaves.

    PubMed

    Mensi, Imene; Daugrois, Jean-Heinrich; Pieretti, Isabelle; Gargani, Daniel; Fleites, Laura A; Noell, Julie; Bonnot, Francois; Gabriel, Dean W; Rott, Philippe

    2016-02-01

    Xanthomonas albilineans, the causal agent of sugarcane leaf scald, is a bacterial plant pathogen that is mainly spread by infected cuttings and contaminated harvesting tools. However, some strains of this pathogen are known to be spread by aerial means and are able to colonize the phyllosphere of sugarcane before entering the host plant and causing disease. The objective of this study was to identify the molecular factors involved in the survival or growth of X. albilineans on sugarcane leaves. We developed a bioassay to test for the attachment of X. albilineans on sugarcane leaves using tissue-cultured plantlets grown in vitro. Six mutants of strain XaFL07-1 affected in surface polysaccharide production completely lost their capacity to survive on the sugarcane leaf surface. These mutants produced more biofilm in vitro and accumulated more cellular poly-β-hydroxybutyrate than the wild-type strain. A mutant affected in the production of small molecules (including potential biosurfactants) synthesized by non-ribosomal peptide synthetases (NRPSs) attached to the sugarcane leaves as well as the wild-type strain. Surprisingly, the attachment of bacteria on sugarcane leaves varied among mutants of the rpf gene cluster involved in bacterial quorum sensing. Therefore, quorum sensing may affect polysaccharide production, or both polysaccharides and quorum sensing may be involved in the survival or growth of X. albilineans on sugarcane leaves.

  7. Deciphering the role of coumarin as a novel quorum sensing inhibitor suppressing virulence phenotypes in bacterial pathogens.

    PubMed

    Gutiérrez-Barranquero, José A; Reen, F Jerry; McCarthy, Ronan R; O'Gara, Fergal

    2015-04-01

    The rapid unchecked rise in antibiotic resistance over the last few decades has led to an increased focus on the need for alternative therapeutic strategies for the treatment and clinical management of microbial infections. In particular, small molecules that can suppress microbial virulence systems independent of any impact on growth are receiving increased attention. Quorum sensing (QS) is a cell-to-cell signalling communication system that controls the virulence behaviour of a broad spectrum of bacterial pathogens. QS systems have been proposed as an effective target, particularly as they control biofilm formation in pathogens, a key driver of antibiotic ineffectiveness. In this study, we identified coumarin, a natural plant phenolic compound, as a novel QS inhibitor, with potent anti-virulence activity in a broad spectrum of pathogens. Using a range of biosensor systems, coumarin was active against short, medium and long chain N-acyl-homoserine lactones, independent of any effect on growth. To determine if this suppression was linked to anti-virulence activity, key virulence systems were studied in the nosocomial pathogen Pseudomonas aeruginosa. Consistent with suppression of QS, coumarin inhibited biofilm, the production of phenazines and swarming motility in this organism potentially linked to reduced expression of the rhlI and pqsA quorum sensing genes. Furthermore, coumarin significantly inhibited biofilm formation and protease activity in other bacterial pathogens and inhibited bioluminescence in Aliivibrio fischeri. In light of these findings, coumarin would appear to have potential as a novel quorum sensing inhibitor with a broad spectrum of action.

  8. Suppression of Pseudomonas aeruginosa quorum-sensing systems by macrolides: a promising strategy or an oriental mystery?

    PubMed

    Tateda, Kazuhiro; Ishii, Yoshikazu; Kimura, Soichiro; Horikawa, Manabu; Miyairi, Shinichi; Yamaguchi, Keizo

    2007-12-01

    A breakthrough in antibiotic chemotherapy for patients with chronic Pseudomonas aeruginosa pulmonary infections was brought about by findings in a patient with diffuse panbronchiolitis (DPB), who had been treated with erythromycin over a period of years. Recent clinical trials have demonstrated that long-term macrolide therapy can be used not only for DPB patients but also for those with other chronic infections, including patients with cystic fibrosis (CF). The pathogenesis of chronic P. aeruginosa infection is considered to arise from a bacterial cell-to-cell signaling mechanism, named "quorum-sensing", which enables the bacteria to coordinately turn on and off their virulence genes through the production of autoinducer molecules. Accumulating evidence from clinical and basic science fields suggests the potential of macrolides as Pseudomonas quorum-sensing inhibitors. In this review, we briefly summarize the data on the clinical efficacy of macrolides in DPB and CF patients. Then we discuss the mechanisms of action of macrolides from the viewpoint of sub-minimum inhibitory concentration (sub-MIC) macrolide effects on P. aeruginosa, particularly the potential activity of this antibiotic to suppress the bacterial quorum-sensing system.

  9. Bench-to-bedside review: Quorum sensing and the role of cell-to-cell communication during invasive bacterial infection

    PubMed Central

    Asad, Shadaba; Opal, Steven M

    2008-01-01

    Bacteria communicate extensively with each other and employ a communal approach to facilitate survival in hostile environments. A hierarchy of cell-to-cell signaling pathways regulates bacterial growth, metabolism, biofilm formation, virulence expression, and a myriad of other essential functions in bacterial populations. The notion that bacteria can signal each other and coordinate their assault patterns against susceptible hosts is now well established. These signaling networks represent a previously unrecognized survival strategy by which bacterial pathogens evade antimicrobial defenses and overwhelm the host. These quorum sensing communication signals can transgress species barriers and even kingdom barriers. Quorum sensing molecules can regulate human transcriptional programs to the advantage of the pathogen. Human stress hormones and cytokines can be detected by bacterial quorum sensing systems. By this mechanism, the pathogen can detect the physiologically stressed host, providing an opportunity to invade when the patient is most vulnerable. These rather sophisticated, microbial communication systems may prove to be a liability to pathogens as they make convenient targets for therapeutic intervention in our continuing struggle to control microbial pathogens. PMID:19040778

  10. Disruption of a Quorum Sensing mechanism triggers tumorigenesis: a simple discrete model corroborated by experiments in mammary cancer stem cells.

    PubMed

    Agur, Zvia; Kogan, Yuri; Levi, Liora; Harrison, Hannah; Lamb, Rebecca; Kirnasovsky, Oleg U; Clarke, Robert B

    2010-04-20

    The balance between self-renewal and differentiation of stem cells is expected to be tightly controlled in order to maintain tissue homeostasis throughout life, also in the face of environmental hazards. Theory, predicting that homeostasis is maintained by a negative feedback on stem cell proliferation, implies a Quorum Sensing mechanism in higher vertebrates. Application of this theory to a cellular automata model of stem cell development in disrupted environments shows a sharply dichotomous growth dynamics: maturation within 50-400 cell cycles, or immortalization. This dichotomy is mainly driven by intercellular communication, low intensity of which causes perpetual proliferation. Another driving force is the cells' kinetic parameters. Reduced tissue life span of differentiated cells results in uncontrolled proliferation. Model's analysis, showing that under the Quorum Sensing control, stem cell fraction within a steady state population is fixed, is corroborated by experiments in breast carcinoma cells. Experimental results show that the plating densities of CD44+ cells and of CD44+/24lo/ESA+ cells do not affect stem cell fraction near confluence. This study suggests that stem cell immortalization may be triggered by reduced intercellular communication, rather than exclusively result from somatic evolution, and implies that stem cell proliferation can be attenuated by signal manipulation, or enhanced by cytotoxics targeted to differentiated cells. In vivo verification and identification of the Quorum Sensing mediating molecules will pave the way to a higher level control of stem cell proliferation in cancer and in tissue engineering.

  11. Modeling of Cell-to-Cell Communication Processes with Petri Nets Using the Example of Quorum Sensing.

    PubMed

    Janowski, Sebastian; Kormeier, Benjamin; Töpel, Thoralf; Hippe, Klaus; Hofestädt, Ralf; Willassen, Nils; Friesen, Rafael; Rubert, Sebastian; Borck, Daniela; Haugen, Peik; Chen, Ming

    2011-01-01

    The understanding of the molecular mechanism of cell-to-cell communication is fundamental for system biology. Up to now, the main objectives of bioinformatics have been reconstruction, modeling and analysis of metabolic, regulatory and signaling processes, based on data generated from high-throughput technologies. Cell-to-cell communication or quorum sensing (QS), the use of small molecule signals to coordinate complex patterns of behavior in bacteria, has been the focus of many reports over the past decade. Based on the quorum sensing process of the organism Aliivibrio salmonicida, we aim at developing a functional Petri net, which will allow modeling and simulating cell-to-cell communication processes. Using a new editor-controlled information system called VANESA (http://vanesa.sf.net), we present how to combine different fields of studies such as life-science, database consulting, modeling, visualization and simulation for a semi-automatic reconstruction of the complex signaling quorum sensing network. We show how cell-to-cell communication processes and information-flow within a cell and across cell colonies can be modeled using VANESA and how those models can be simulated with Petri net network structures in a sophisticated way.

  12. Modeling of cell-to-cell communication processes with Petri nets using the example of quorum sensing.

    PubMed

    Janowski, Sebastian; Kormeier, Benjamin; Töpel, Thoralf; Hippe, Klaus; Hofestädt, Ralf; Willassen, Nils; Friesen, Rafael; Rubert, Sebastian; Borck, Daniela; Haugen, Peik; Chen, Ming

    2010-01-01

    The understanding of the molecular mechanism of cell-to-cell communication is fundamental for system biology. Up to now, the main objectives of bioinformatics have been reconstruction, modeling and analysis of metabolic, regulatory and signaling processes, based on data generated from high-throughput technologies. Cell-to-cell communication or quorum sensing (QS), the use of small molecule signals to coordinate complex patterns of behavior in bacteria, has been the focus of many reports over the past decade. Based on the quorum sensing process of the organism Aliivibrio salmonicida, we aim at developing a functional Petri net, which will allow modeling and simulating cell-to-cell communication processes. Using a new editor-controlled information system called VANESA (http://vanesa.sf.net), we present how to combine different fields of studies such as life-science, database consulting, modeling, visualization and simulation for a semi-automatic reconstruction of the complex signaling quorum sensing network. We show how cell-to-cell communication processes and information-flow within a cell and across cell colonies can be modeled using VANESA and how those models can be simulated with Petri net network structures in a sophisticated way.

  13. Effects of Antibiotics on Quorum Sensing in Pseudomonas aeruginosa▿

    PubMed Central

    Skindersoe, Mette E.; Alhede, Morten; Phipps, Richard; Yang, Liang; Jensen, Peter O.; Rasmussen, Thomas B.; Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Høiby, Niels; Givskov, Michael

    2008-01-01

    During infection, Pseudomonas aeruginosa employs bacterial communication (quorum sensing [QS]) to coordinate the expression of tissue-damaging factors. QS-controlled gene expression plays a pivotal role in the virulence of P. aeruginosa, and QS-deficient mutants cause less severe infections in animal infection models. Treatment of cystic fibrosis (CF) patients chronically infected with P. aeruginosa with the macrolide antibiotic azithromycin (AZM) has been demonstrated to improve the clinical outcome. Several studies indicate that AZM may accomplish its beneficial action in CF patients by impeding QS, thereby reducing the pathogenicity of P. aeruginosa. This led us to investigate whether QS inhibition is a common feature of antibiotics. We present the results of a screening of 12 antibiotics for their QS-inhibitory activities using a previously described QS inhibitor selector 1 strain. Three of the antibiotics tested, AZM, ceftazidime (CFT), and ciprofloxacin (CPR), were very active in the assay and were further examined for their effects on QS-regulated virulence factor production in P. aeruginosa. The effects of the three antibiotics administered at subinhibitory concentrations were investigated by use of DNA microarrays. Consistent results from the virulence factor assays, reverse transcription-PCR, and the DNA microarrays support the finding that AZM, CFT, and CPR decrease the expression of a range of QS-regulated virulence factors. The data suggest that the underlying mechanism may be mediated by changes in membrane permeability, thereby influencing the flux of N-3-oxo-dodecanoyl-l-homoserine lactone. PMID:18644954

  14. Quorum-sensing and cheating in bacterial biofilms

    PubMed Central

    Popat, Roman; Crusz, Shanika A.; Messina, Marco; Williams, Paul; West, Stuart A.; Diggle, Stephen P.

    2012-01-01

    The idea from human societies that self-interest can lead to a breakdown of cooperation at the group level is sometimes termed the public goods dilemma. We tested this idea in the opportunistic bacterial pathogen, Pseudomonas aeruginosa, by examining the influence of putative cheats that do not cooperate via cell-to-cell signalling (quorum-sensing, QS). We found that: (i) QS cheating occurs in biofilm populations owing to exploitation of QS-regulated public goods; (ii) the thickness and density of biofilms was reduced by the presence of non-cooperative cheats; (iii) population growth was reduced by the presence of cheats, and this reduction was greater in biofilms than in planktonic populations; (iv) the susceptibility of biofilms to antibiotics was increased by the presence of cheats; and (v) coercing cooperator cells to increase their level of cooperation decreases the extent to which the presence of cheats reduces population productivity. Our results provide clear support that conflict over public goods reduces population fitness in bacterial biofilms, and that this effect is greater than in planktonic populations. Finally, we discuss the clinical implications that arise from altering the susceptibility to antibiotics. PMID:23034707

  15. Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing.

    PubMed

    Niu, C; Afre, S; Gilbert, E S

    2006-11-01

    To investigate the effect of cinnamaldehyde (CA) on transcription from selected quorum sensing (QS) promoters. The action of CA on QS was assayed using three E. coli green fluorescent protein (GFP) based bioreporters (two inducible and the other constitutive) and two Vibrio harveyi bioluminescent reporter strains. LuxR-mediated transcription from the P(luxI) promoter, which is induced by 3-oxo-C6-homoserine lactone (HSL), was reduced by 70 per cent following exposure to 200 micromol l(-1) CA (26 ppm). The bioluminescence of Vibrio harveyi BB886, which is mediated by 3-hydroxy-C4-HSL, was reduced by 55 per cent after exposure to 60 micromol l(-1) CA (8 ppm), and 100 micromol l(-1) CA (13 ppm) inhibited the bioluminescence of the autoinducer-2 (AI-2) responsive reporter strain V. harveyi BB170 by nearly 60 per cent. CA did not inhibit the growth of the bioreporter strains at these concentrations. CA had a minimal effect on LasR promoter activity, induced by 3-oxo-C12-HSL. Low concentrations of CA were effective at inhibiting two types of acyl homoserine lactone mediated QS, and also autoinducer-2 mediated QS. Because CA is widely used in the food and flavour industries, its potential to affect bacterial QS regulated processes should be recognized.

  16. RNAseq-based Transcriptome Analysis of Burkholderia glumae Quorum Sensing

    PubMed Central

    Kim, Sunyoung; Park, Jungwook; Kim, Ji Hyeon; Lee, Jongyun; Bang, Bongjun; Hwang, Ingyu; Seo, Young-Su

    2013-01-01

    Burkholderia glumae causes rice grain rot and sheath rot by producing toxoflavin, the expression of which is regulated by quorum sensing (QS). The QS systems of B. glumae rely on N-octanoyl homoserine lactone, synthesized by TofI and its cognate receptor TofR, to activate the genes for toxoflavin biosynthesis and an IclR-type transcriptional regulator gene, qsmR. To understand genome-wide transcriptional profiling of QS signaling, we employed RNAseq of the wild-type B. glumae BGR1 with QS-defective mutant, BGS2 (BGR1 tofI::Ω) and QS-dependent transcriptional regulator mutant, BGS9 (BGR1 qsmR::Ω). A comparison of gene expression profiling among the wild-type BGR1 and the two mutants before and after QS onset as well as gene ontology (GO) enrichment analysis from differential expressed genes (DEGs) revealed that genes involved in motility were highly enriched in TofI-dependent DEGs, whereas genes for transport and DNA polymerase were highly enriched in QsmR-dependent DEGs. Further, a combination of pathways with these DEGs and phenotype analysis of mutants pointed to a couple of metabolic processes, which are dependent on QS in B. glumae, that were directly or indirectly related with bacterial motility. The consistency of observed bacterial phenotypes with GOs or metabolic pathways in QS-regulated genes implied that integration RNAseq with GO enrichment or pathways would be useful to study bacterial physiology and phenotypes. PMID:25288952

  17. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil

    SciTech Connect

    DeAngelis, K.M.; Lindow, S.E.; Firestone, M.K.

    2008-10-01

    Plant photosynthate fuels carbon-limited microbial growth and activity, resulting in increased rhizosphere nitrogen (N)-mineralization. Most soil organic N is macromolecular (chitin, protein, nucleotides); enzymatic depolymerization i