Sample records for https

  1. A network monitor for HTTPS protocol based on proxy

    NASA Astrophysics Data System (ADS)

    Liu, Yangxin; Zhang, Lingcui; Zhou, Shuguang; Li, Fenghua

    2016-10-01

    With the explosive growth of harmful Internet information such as pornography, violence, and hate messages, network monitoring is essential. Traditional network monitors is based mainly on bypass monitoring. However, we can't filter network traffic using bypass monitoring. Meanwhile, only few studies focus on the network monitoring for HTTPS protocol. That is because HTTPS data is in the encrypted traffic, which makes it difficult to monitor. This paper proposes a network monitor for HTTPS protocol based on proxy. We adopt OpenSSL to establish TLS secure tunes between clients and servers. Epoll is used to handle a large number of concurrent client connections. We also adopt Knuth- Morris-Pratt string searching algorithm (or KMP algorithm) to speed up the search process. Besides, we modify request packets to reduce the risk of errors and modify response packets to improve security. Experiments show that our proxy can monitor the content of all tested HTTPS websites efficiently with little loss of network performance.

  2. Interns_In_Their_Natural_Habitat

    NASA Image and Video Library

    2017-08-10

    Discover internship opportunities at the NASA Johnson Space Center! This video shows some of the places interns work and some of the projects they contribute to. Interns work to make their mark and enjoy the entirety of the internship experience which includes touring laboratories and facilities, hearing lectures from astronauts and NASA’s leaders, participating in professional and social committees (like Video Committee) in spare time, and much more. Start your journey! For more on NASA internships: https://intern.nasa.gov/ https://nasajobs.nasa.gov/studentopps/default.htm For Johnson Space Center specific internships: https://pathways.jsc.nasa.gov/ https://www.nasa.gov/centers/johnson/education/interns/index.html --------------------------------- FOLLOW JOHNSON SPACE CENTER INTERNS! Facebook: @NASA.JSC.Students https://www.facebook.com/NASA.JSC.Students/ Instagram: @nasajscstudents https://www.instagram.com/nasajscstudents/ Twitter: @NASAJSCStudents https://twitter.com/nasajscstudents FOLLOW NASA INTERNS! Facebook: @NASAInterns https://www.facebook.com/NASAInterns/ Twitter: @NASAInterns https://twitter.com/nasainterns

  3. NASA Cribs: Human Exploration Research Analog

    NASA Image and Video Library

    2017-07-20

    Follow along as interns at NASA’s Johnson Space Center show you around the Human Exploration Research Analog (HERA), a mission simulation environment located onsite at the Johnson Space Center in Houston. HERA is a unique three-story habitat designed to serve as an analog for isolation, confinement, and remote conditions in exploration scenarios. This video gives a tour of where crew members live, work, sleep, and eat during the analog missions. Find out more about HERA mission activities: https://www.nasa.gov/analogs/hera Find out how to be a HERA crew member: https://www.nasa.gov/analogs/hera/want-to-participate For more on NASA internships: https://intern.nasa.gov/ For Johnson Space Center specific internships: https://pathways.jsc.nasa.gov/ https://www.nasa.gov/centers/johnson/education/interns/index.html HD download link: https://archive.org/details/jsc2017m000730_NASA-Cribs-Human-Exploration-Research-Analog --------------------------------- FOLLOW JOHNSON SPACE CENTER INTERNS! Facebook: @NASA.JSC.Students https://www.facebook.com/NASA.JSC.Students/ Instagram: @nasajscstudents https://www.instagram.com/nasajscstudents/ Twitter: @NASAJSCStudents https://twitter.com/nasajscstudents

  4. NOT Lost in Space

    NASA Image and Video Library

    2017-02-21

    How hard would it be to keep track of your stuff if it could literally float away—which does happen on the International Space Station. Well, the crews in space have help, in the form of the Stowage team at NASA’s Marshall Space Flight Center in Huntsville, Alabama. From tools to trash, learn how the team keeps track of everything the astronauts need as they conduct groundbreaking science research on orbit. For more on ISS science, visit us online: https://www.nasa.gov/mission_pages/station/research/index.html www.twitter.com/iss_research HD download link: https://archive.org/details/TheSpaceProgram _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/ YouTube: https://youtu.be/arEf05Yf5IY

  5. jsc2018m000189_ISS_As_Art-MP4

    NASA Image and Video Library

    2018-03-13

    International Space Station as Art------- The International Space Station has been humanity’s outpost in space for nearly two decades, hosting astronauts from around the globe working on groundbreaking science to push the boundaries in a variety of fields. NASA astronaut Randy Bresnik sought to capture the beauty of the immense spacecraft amidst the endless tangle of cables and hardware in this series of photos taken during his most recent stay onboard. Follow Randy Bresnik on social media at: https://twitter.com/astrokomrade https://www.instagram.com/astrokomrade _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  6. Top 16 Earth Images of 2016

    NASA Image and Video Library

    2017-02-12

    Astronauts on the International Space Station take pictures of Earth out their windows nearly every day; over a year that adds up to thousands of photos. The people at the Earth Science and Remote Sensing Unit at NASA’s Johnson Space Center in Houston pored through this year’s crop to pick their top 16 photos of Earth for 2016—enjoy! Download the images: https://www.flickr.com/photos/nasa2explore/albums/72157674260752223 HD download link: https://archive.org/details/TheSpaceProgram _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  7. Matching Organs

    MedlinePlus

    ... to enews Follow Facebook Twitter LinkedIn YouTube Instagram Google+ Contact 700 N. 4th Street Richmond, VA 23219 ( ... com/UnitedNetworkForOrganSharing https://twitter.com/unosnews https://plus.google.com/+UnosOrg https://www.linkedin.com/company/unos

  8. Organ Facts

    MedlinePlus

    ... to enews Follow Facebook Twitter LinkedIn YouTube Instagram Google+ Contact 700 N. 4th Street Richmond, VA 23219 ( ... com/UnitedNetworkForOrganSharing https://twitter.com/unosnews https://plus.google.com/+UnosOrg https://www.linkedin.com/company/unos

  9. Getting on the List

    MedlinePlus

    ... to enews Follow Facebook Twitter LinkedIn YouTube Instagram Google+ Contact 700 N. 4th Street Richmond, VA 23219 ( ... com/UnitedNetworkForOrganSharing https://twitter.com/unosnews https://plus.google.com/+UnosOrg https://www.linkedin.com/company/unos

  10. Types of Cancer Associated with Transplant Recipients

    MedlinePlus

    ... to enews Follow Facebook Twitter LinkedIn YouTube Instagram Google+ Contact 700 N. 4th Street Richmond, VA 23219 ( ... com/UnitedNetworkForOrganSharing https://twitter.com/unosnews https://plus.google.com/+UnosOrg https://www.linkedin.com/company/unos

  11. Organ Facts: Pancreas

    MedlinePlus

    ... to enews Follow Facebook Twitter LinkedIn YouTube Instagram Google+ Contact 700 N. 4th Street Richmond, VA 23219 ( ... com/UnitedNetworkForOrganSharing https://twitter.com/unosnews https://plus.google.com/+UnosOrg https://www.linkedin.com/company/unos

  12. Kidney Facts

    MedlinePlus

    ... to enews Follow Facebook Twitter LinkedIn YouTube Instagram Google+ Contact 700 N. 4th Street Richmond, VA 23219 ( ... com/UnitedNetworkForOrganSharing https://twitter.com/unosnews https://plus.google.com/+UnosOrg https://www.linkedin.com/company/unos

  13. Liver Facts

    MedlinePlus

    ... to enews Follow Facebook Twitter LinkedIn YouTube Instagram Google+ Contact 700 N. 4th Street Richmond, VA 23219 ( ... com/UnitedNetworkForOrganSharing https://twitter.com/unosnews https://plus.google.com/+UnosOrg https://www.linkedin.com/company/unos

  14. Diet and Exercise

    MedlinePlus

    ... to enews Follow Facebook Twitter LinkedIn YouTube Instagram Google+ Contact 700 N. 4th Street Richmond, VA 23219 ( ... com/UnitedNetworkForOrganSharing https://twitter.com/unosnews https://plus.google.com/+UnosOrg https://www.linkedin.com/company/unos

  15. Organ Transplantation: Frequently Asked Questions

    MedlinePlus

    ... to enews Follow Facebook Twitter LinkedIn YouTube Instagram Google+ Contact 700 N. 4th Street Richmond, VA 23219 ( ... com/UnitedNetworkForOrganSharing https://twitter.com/unosnews https://plus.google.com/+UnosOrg https://www.linkedin.com/company/unos

  16. A-Z Directory | The University of Virginia

    Science.gov Websites

    /cardiovascular-medicine/ Cardiovascular Nutrition (Diet and Cardiovascular Disease) http Medicine) https://med.virginia.edu/ Clinical Nutrition Services https://uvahealth.com/services/nutrition ... Nuclear Medicine, Division of https://med.virginia.edu/radiology/ Nutrition Services (Department of

  17. Jeff’s Earth - 4K

    NASA Image and Video Library

    2017-01-17

    The first time you see Planet Earth from space, it’s stunning; when you’ve spent 534 days in space—more than any other American—it still is! On his most recent trip the International Space Station NASA astronaut Jeff Williams brought an Ultra High Definition video camera that he pointed at the planet 250 miles below; here he shares some of those images, and talks about the beauty of the planet, the variety of things to see, and the value of sharing that perspective with everyone who can’t go to orbit in person. HD download link: https://archive.org/details/TheSpaceProgram UHD content download link: https://archive.org/details/NASA-Ultra-High-Definition _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/ YouTube: https://youtu.be/-nmNhKRzy4w

  18. EnviroAtlas - Metrics for Austin, TX

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas). The layers in this web service depict ecosystem services at the census block group level for the community of Austin, Texas. These layers illustrate the ecosystems and natural resources that are associated with clean air (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_CleanAir/MapServer); clean and plentiful water (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_CleanPlentifulWater/MapServer); natural hazard mitigation (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_NaturalHazardMitigation/MapServer); climate stabilization (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_ClimateStabilization/MapServer); food, fuel, and materials (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_FoodFuelMaterials/MapServer); recreation, culture, and aesthetics (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_RecreationCultureAesthetics/MapServer); and biodiversity conservation (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_BiodiversityConservation/MapServer), and factors that place stress on those resources. EnviroAtlas allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the conterminous United States as well as de

  19. SAGE-III Ready for Ozone Checkup

    NASA Image and Video Library

    2017-02-15

    A third-generation investigation into the state of the ozone layer of Earth’s atmosphere is scheduled for launch to the International Space Station on the SpaceX-10 cargo ship. Marilee Roell of NASA’s Langley Research Center explains how the third iteration of the Stratospheric Aerosol and Gas Experiment will measure ozone, aerosols and other components of the atmosphere for scientists who hope to see an improvement in the atmosphere’s ability to protect the planet—and everyone and everything on it—from harmful ultraviolet radiation. For more on ISS science, visit us online: https://www.nasa.gov/mission_pages/station/research/index.html www.twitter.com/iss_research HD download link: https://archive.org/details/TheSpaceProgram _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/ YouTube: https://youtu.be/HQdMZ5OAU3U

  20. Space to Ground: A Fleet of CUBESATS: 05/19/2017

    NASA Image and Video Library

    2017-05-18

    NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. Got a question or comment? Use #spacetoground to talk to us. ________________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  1. Space-to-Ground_171_170407

    NASA Image and Video Library

    2017-04-07

    NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. Got a question or comment? Use #spacetoground to talk to us. ________________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  2. Space to Ground: Who Doesn't Enjoy a Good View of Planet Earth?: 02/10/2017

    NASA Image and Video Library

    2017-02-10

    NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. Got a question or comment? Use #spacetoground to talk to us. ________________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  3. 76 FR 45577 - Clinical Investigator Training Course

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... course at the registration/ information Web site at https://www.trialstransformation.org/fda-clinical... be made at https://www.supportnlc.org/Room_Reservations.html or by calling 301-431-6400. FDA has... information, and a detailed description of the course can be found at https://www.trialstransformation.org/fda...

  4. Putting the Brakes on Muscle Breakdown

    NASA Image and Video Library

    2018-01-15

    Rodent Research-6 is a two-fold investigation aboard the International Space Station into the treatment of muscle loss in spaceflight, which may have implications for patients on Earth with muscle-wasting diseases. The experiment will study the effectiveness of a drug compound as well as the nano-channel drug delivery implant, a device implanted beneath the skin of the patient allowing for a constant, steady delivery of the drug. Rodent Research: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7423 HD Download: https://archive.org/details/jsc2018m000072_Putting_the_Brakes_on_Muscle_Breakdown_MXF _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  5. ISS As A National Lab

    NASA Image and Video Library

    2017-07-17

    In an effort to expand the research opportunities of this unparalleled platform, the International Space Station was designated as a U.S. National Laboratory in 2005 by Congress, enabling space research and development access to a broad range of commercial, academic, and government users. Now, this unique microgravity research platform is available to U.S. researchers from small companies, research institutions, Fortune 500 companies, government agencies, and others, all interested in leveraging microgravity to solve complex problems on Earth. Get more research news and updates on Twitter at: https://twitter.com/ISS_Research HD download link: https://archive.org/details/jsc2017m000681_ISS As A National Lab _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  6. Ecological landscape elements: long-term monitoring in Great Britain, the Countryside Survey 1978-2007 and beyond

    NASA Astrophysics Data System (ADS)

    Wood, Claire M.; Bunce, Robert G. H.; Norton, Lisa R.; Maskell, Lindsay C.; Smart, Simon M.; Scott, W. Andrew; Henrys, Peter A.; Howard, David C.; Wright, Simon M.; Brown, Michael J.; Scott, Rod J.; Stuart, Rick C.; Watkins, John W.

    2018-04-01

    The Countryside Survey (CS) of Great Britain (GB) provides a unique and statistically robust series of datasets, consisting of an extensive set of repeated ecological measurements at a national scale, covering a time span of 29 years. CS was first undertaken in 1978 to provide a baseline for ecological and land use change monitoring in the rural environment of GB, following a stratified random design, based on 1 km squares. Originally, eight random 1 km squares were drawn from each of 32 environmental classes, thus comprising 256 sample squares in the 1978 survey. The number of these sites increased to 382 in 1984, 506 in 1990, 569 in 1998 and 591 in 2007. Detailed information regarding vegetation types and land use was mapped in all five surveys, allowing reporting by defined standard habitat classifications. Additionally, point and linear landscape features (such as trees and hedgerows) are available from all surveys after 1978. From these stratified, randomly located sample squares, information can be converted into national estimates, with associated error terms. Other data, relating to soils, freshwater and vegetation, were also sampled on analogous dates. However, the present paper describes only the surveys of landscape features and habitats. The resulting datasets provide a unique, comprehensive, quantitative ecological coverage of extent and change in these features in GB. Basic results are presented and their implications discussed. However, much opportunity for further analyses remains. Data from each of the survey years are available via the following DOIs: Landscape area data 1978: https://doi.org/10.5285/86c017ba-dc62-46f0-ad13-c862bf31740e" target="_blank">https://doi.org/10.5285/86c017ba-dc62-46f0-ad13-c862bf31740e, 1984: https://doi.org/10.5285/b656bb43-448d-4b2c-aade-7993aa243ea3" target="_blank">https://doi.org/10.5285/b656bb43-448d-4b2c-aade-7993aa243ea3, 1990: https://doi.org/10.5285/94f664e5-10f2-4655-bfe6

  7. Characteristics of international websites with information on developmental disabilities.

    PubMed

    Reichow, Brian; Gelbar, Nicholas W; Mouradjian, Keri; Shefcyk, Allison; Smith, Isaac C

    2014-10-01

    The Internet often serves as a primary resource for individuals seeking health-related information, and a large and growing number of websites contain information related to developmental disabilities. This paper presents the results of an international evaluation of the characteristics and content of the top 10 ranked results (i.e., not including sponsored results - pay-per-click) returned when one of five terms related to developmental disabilities (i.e., ADHD, autism, down syndrome, learning disability, intellectual disability) was entered into one of six country specific Google online search engines (i.e., Australia (https://www.google.com.au), Canada (https://www.google.ca), Ireland (https://www.google.ie), New Zealand (https://www.google.co.nz), the United Kingdom (https://www.google.co.uk), and the United States (https://www.google.com)) on October 22, 2013. Collectively, we found that international consumers of websites related to developmental disabilities will encounter different websites with differing content and terminology, and should be critical consumers to ensure they locate the information they are seeking. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Highlights of Science Launching on SpaceX CRS-15

    NASA Image and Video Library

    2018-06-24

    A new batch of science is headed to the International Space Station aboard the SpaceX Dragon on the company’s 15th mission for commercial resupply services. Among the research being delivered is science that studies the use of artificial intelligence for crew support, plant water use all over the planet, gut health in space, more efficient drug development and the formation of inorganic structures without the influence of Earth’s gravity. The International Space Station is a convergence of science, technology and human innovation that demonstrates new technologies and enables research not possible on Earth. The space station has been occupied continuously since November 2000. In that time, more than 230 people and a variety of international and commercial spacecraft have visited the orbiting laboratory. The space station remains the springboard to NASA's next great leap in exploration, including future human missions to the Moon and eventually to Mars. Highlighted investigations shown: Mobile Companion/CIMON: https://go.nasa.gov/2JCgPRf ECOSTRESS: https://go.nasa.gov/2sT87DV Angiex Cancer Therapy: https://go.nasa.gov/2LA1Cgc Rodent Research-7: https://go.nasa.gov/2JlVQlC Chemical Gardens: https://go.nasa.gov/2JDCYie Follow updates on the science conducted aboard the space station on Twitter: https://twitter.com/iss_research For more information on how you can conduct your research in microgravity, visit https://go.nasa.gov/2q84LJj HD Download: https://archive.org/details/jsc2018m000428_Highlights_of_Science_Launching_on_SpaceX_CRS-15

  9. So You Want to Go To Mars? Episode 1

    NASA Image and Video Library

    2018-04-10

    So you want to go to Mars? The International Space Station (ISS) is helping us get there. This short 1.18 minute video highlights several ways the ISS is helping NASA extend human presence into deep space. Orion Spacecraft and SLS webpage https://www.nasa.gov/content/j2m-getting-to-mars-sls-and-orion International Space Station https://www.nasa.gov/mission_pages/station/main/index.html HD Download: https://archive.org/details/jsc2018m000132_SoYouWantToGoToMars_E1 Youtube: https://youtu.be/UCNNTwlu9kE

  10. 2017 Space Station Science in Pictures

    NASA Image and Video Library

    2018-01-02

    From molecular biology to fluid physics, life sciences and robotics, 2017 was a robust year for research aboard Earth’s only microgravity laboratory. The International Space Station hosts more than 300 experiments during a given Expedition, each working to further space exploration and/or benefit life back on Earth. Here’s a look back at just some of the science that happened on the orbiting laboratory. HD Download: https://archive.org/details/jsc2017m001167_2017_Space_Station_Science_in_Pictures _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  11. Packing for the Bottom of the World

    NASA Image and Video Library

    2017-02-12

    Long underwear is only a part of the story when it comes to what you take on a business trip to Antarctica. Planetary scientist Dave Mittlefehldt of the NASA Johnson Space Center’s Astromaterials Research and Exploration Science Division is on his fifth trip there to look for meteorites that can teach us about the formation of the solar system and the evolution of the moon and Mars. What personal items does he take along? Watch as “Duck” gets squared away with everything from sunscreen and sandals to glacier glasses, flannel shirts, and novels in Hebrew for his latest adventure. HD download link: https://archive.org/details/TheSpaceProgram _______________________________________ JOIN US ON THE JOURNEY TO MARS! Twitter: https://twitter.com/Astromaterials Facebook: https://www.facebook.com/NASAastromaterials/ Instagram: https://www.instagram.com/nasaastromaterials/ Website: https://ares.jsc.nasa.gov/

  12. Reply to Comment by W. R. Peltier, D. F. Argus, and R. Drummond on "An Assessment of the ICE6G_C (VM5a) Glacial Isostatic Adjustment Model"

    NASA Astrophysics Data System (ADS)

    Purcell, A.; Tregoning, P.; Dehecq, A.

    2018-02-01

    The empirical approximation of Purcell et al. (2011, https://doi.org/10.1029/2011GL048624) has been validated by Peltier et al. (2018, https://doi.org/10.1002/2016JB013844). In their Comment they introduced new results derived from the same ice/rheology models of ICE6G_C (VM5a) but using a different model for Antarctic bathymetry. This has greatly reduced the differences in predicted Antarctic uplift rates relative to those of Purcell et al. (2016, https://doi.org/10.1002/2015JB012742). In fact, with a ˜50% reduction in uplift rate in the Weddell Sea, the results of Peltier et al. (2018, https://doi.org/10.1002/2016JB013844) now agree more closely with the predictions of Purcell et al. (2016, https://doi.org/10.1002/2015JB012742) than with the original ICE6G_C values. Peltier et al. (2018, https://doi.org/10.1002/2016JB013844) state that the high power in their high-frequency spherical harmonic coefficients remains in their new calculations. They also claim that Purcell et al. (2016, https://doi.org/10.1002/2015JB012742) used an inaccurate loading history in deriving their velocity field. In fact, the ice load history was unchanged; to remove any ambiguity, the ice and water load histories used in the CALSEA calculations are provided in the supporting information.

  13. The EMBL-EBI bioinformatics web and programmatic tools framework.

    PubMed

    Li, Weizhong; Cowley, Andrew; Uludag, Mahmut; Gur, Tamer; McWilliam, Hamish; Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Lopez, Rodrigo

    2015-07-01

    Since 2009 the EMBL-EBI Job Dispatcher framework has provided free access to a range of mainstream sequence analysis applications. These include sequence similarity search services (https://www.ebi.ac.uk/Tools/sss/) such as BLAST, FASTA and PSI-Search, multiple sequence alignment tools (https://www.ebi.ac.uk/Tools/msa/) such as Clustal Omega, MAFFT and T-Coffee, and other sequence analysis tools (https://www.ebi.ac.uk/Tools/pfa/) such as InterProScan. Through these services users can search mainstream sequence databases such as ENA, UniProt and Ensembl Genomes, utilising a uniform web interface or systematically through Web Services interfaces (https://www.ebi.ac.uk/Tools/webservices/) using common programming languages, and obtain enriched results with novel visualisations. Integration with EBI Search (https://www.ebi.ac.uk/ebisearch/) and the dbfetch retrieval service (https://www.ebi.ac.uk/Tools/dbfetch/) further expands the usefulness of the framework. New tools and updates such as NCBI BLAST+, InterProScan 5 and PfamScan, new categories such as RNA analysis tools (https://www.ebi.ac.uk/Tools/rna/), new databases such as ENA non-coding, WormBase ParaSite, Pfam and Rfam, and new workflow methods, together with the retirement of depreciated services, ensure that the framework remains relevant to today's biological community. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Cardiac-Biology-In-Space

    NASA Image and Video Library

    2017-08-21

    Astronauts experience structural changes to their heart during long-duration spaceflight, but the biological basis of that is not clearly understood. Jonathon Baio, a doctoral student at Loma Linda University’s School of Medicine, details an investigation of cardiovascular stem cells that hopes to better understand their role in cardiac biology and tissue regeneration, which could advance ways to maintain cardiac health of astronauts during extended missions as well inform future treatments to reverse heart muscle loss upon return to Earth, and may help the medical community combat cardiovascular disease, one of the world’s leading causes of death. For more on space station science, please visit: Twitter: https://twitter.com/ISS_Research or @ISS_research Website: https://www.nasa.gov/mission_pages/station/research/index.html _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  15. Expedition 54's Christmas Memories

    NASA Image and Video Library

    2017-12-20

    Flight Engineers Joe Acaba and Mark Vande Hei have been in space for three months already but they’re both about to experience something for the first time: Christmas on the International Space Station. And although it’s likely to be one they remember, both men have fond memories of Christmases past. Watch as these NASA astronauts recall childhood gifts from Santa, holiday trips to the tropics, and other cherished memories. HD Download: https://archive.org/details/jsc2017m001060_Expedition_54s_Christmas_Memories _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  16. By the Numbers: Expedition 53

    NASA Image and Video Library

    2017-12-15

    If there’s one thing we at NASA love more than acronyms, it’s numbers—we count pretty much everything. Now that the International Space Station’s Expedition 53 has concluded, we gathered up a few of the pertinent numbers to put this mission in perspective. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  17. EnviroAtlas Tree Cover Configuration and Connectivity, Water Background Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The 1-meter resolution tree cover configuration and connectivity map categorizes tree cover into structural elements (e.g. core, edge, connector, etc.). Source imagery varies by community. For specific information about methods and accuracy of each community's tree cover configuration and connectivity classification, consult their individual metadata records: Austin, TX (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B29D2B039-905C-4825-B0B4-9315122D6A9F%7D); Cleveland, OH (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B03cd54e1-4328-402e-ba75-e198ea9fbdc7%7D); Des Moines, IA (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B350A83E6-10A2-4D5D-97E6-F7F368D268BB%7D); Durham, NC (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BC337BA5F-8275-4BA8-9647-F63C443F317D%7D); Fresno, CA (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B84B98749-9C1C-4679-AE24-9B9C0998EBA5%7D); Green Bay, WI (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B69E48A44-3D30-4E84-A764-38FBDCCAC3D0%7D); Memphis, TN (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BB7313ADA-04F7-4D80-ABBA-77E753AAD002%7D); Milwaukee, WI (https://edg.epa.gov/metadata/catalog/search/resource/details.page?u

  18. SpeedyTime_3_Treadmill_2

    NASA Image and Video Library

    2017-07-31

    When you live in a place where your heart doesn’t even have to work against the pull of gravity, you need help with exercise: the astronauts on the International Space Station have a suite of exercise equipment at their disposal, including a treadmill. In this “SpeedyTime” segment Expedition 52 flight engineer Jack Fischer runs through the workout they get on the Combined Operational Load Bearing External Resistance Treadmill (COLBERT) in the station’s Tranquility module. HD Link: https://archive.org/details/jsc2017m000676_SpeedyTime_3_Treadmill_2 _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  19. We Tell the Crew What To Do

    NASA Image and Video Library

    2017-03-07

    You probably don’t know what you’ll be doing six months from today, but there’s a group at NASA’s Marshall Space Flight Center in Huntsville, Alabama, that’s making just such a plan for scientific research on the International Space Station. Learn how these men and women map out science activity for the crew in space to support the cutting-edge research now underway that’s benefitting life on Earth. For more on ISS science, visit us online: https://www.nasa.gov/mission_pages/station/research/index.html www.twitter.com/iss_research _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  20. Advisory Committee on Immunization Practices Recommended Immunization Schedule for Children and Adolescents Aged 18 Years or Younger - United States, 2018.

    PubMed

    Robinson, Candice L; Romero, José R; Kempe, Allison; Pellegrini, Cynthia; Szilagyi, Peter

    2018-02-09

    In October 2017, the Advisory Committee on Immunization Practices (ACIP) approved the Recommended Immunization Schedule for Children and Adolescents Aged 18 Years or Younger - United States, 2018. The 2018 child and adolescent immunization schedule summarizes ACIP recommendations, including several changes from the 2017 immunization schedules, in three figures and footnotes to the figures. These documents can be found on the CDC immunization schedule website (https://www.cdc.gov/vaccines/schedules/index.html). These immunization schedules are approved by ACIP (https://www.cdc.gov/vaccines/acip/index.html), the American Academy of Pediatrics (https://www.aap.org), the American Academy of Family Physicians (https://www.aafp.org), and the American College of Obstetricians and Gynecologists (https://www.acog.org). Health care providers are advised to use the figures and the footnotes together. The full ACIP recommendations for each vaccine, including contraindications and precautions, can be found at https://www.cdc.gov/vaccines/hcp/acip-recs/index.html. Providers should be aware that changes in recommendations for specific vaccines can occur between annual updates to the childhood/adolescent immunization schedules. If errors or omissions are discovered within the child and adolescent schedule, CDC posts revised versions on the CDC immunization schedule website.

  1. Syphilis

    MedlinePlus

    ... cdc.gov/std/syphilis/ stdfact-msm-syphilis.htm Congenital Syphilis - Fact Sheet https://www.cdc.gov/std/syphilis/ stdfact-congenital-syphilis.htm STDs during Pregnancy - Fact Sheet https://www. ...

  2. Association of Regulatory Boards of Optometry

    MedlinePlus

    ... Fraud contact number) or https://www.chase.com/credit-cards/customer-service . In addition, individuals may also consider reviewing their current credit reports at https://www.annualcreditreport.com/index.action . ...

  3. 5 Things You Didn’t Know About Astronaut Drew Feustel

    NASA Image and Video Library

    2018-03-19

    NASA Astronaut Drew Feustel is all set to start his third flight into space, his second to the International Space Station and his first as a long-duration crew member. We already knew he’s from Michigan, has a doctorate in geological sciences, and has done six spacewalks—three on the Hubble Space Telescope—but did not know his secrets about his citizenship, his irrational fears, and his childhood dreams. Until now! HD Download: https://archive.org/details/jsc2018m000152_5_Things_You_Didnt_Know_About_Astronaut_Drew_Feustel Follow Drew's mission: Twitter: @astro_feustel Instagram: @astro_feustel _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  4. Astronaut Moments: Randy Bresnik

    NASA Image and Video Library

    2017-07-12

    Astronaut Moments with NASA astronaut Randy Bresnik. Bresnik and his crewmates, cosmonaut Sergey Ryazanskiy of the Russian space agency Roscosmos and Paolo Nespoli of ESA (European Space Agency), will launch on the Russian Soyuz MS-05 spacecraft at 11:41 a.m. on July 28. They are scheduled to return to Earth in December. The crew members will continue several hundred experiments in biology, biotechnology, physical science and Earth science currently underway and scheduled to take place aboard humanity's only permanently occupied orbiting lab. HD download link: https://archive.org/details/jsc2017m000414_Astronaut-Moments-Randy-Bresnik _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  5. Effect of Mars Atmospheric Loss on Snow Melt Potential in a 3.5 Gyr Mars Climate Evolution Model

    NASA Astrophysics Data System (ADS)

    Mansfield, Megan; Kite, Edwin S.; Mischna, Michael A.

    2018-04-01

    Post-Noachian Martian paleochannels indicate the existence of liquid water on the surface of Mars after about 3.5 Gya (Irwin et al., 2015, https://doi.org/10.1016/j.geomorph.2014.10.012; Palucis et al., 2016, https://doi.org/10.1002/2015JE004905). In order to explore the effects of variations in CO2 partial pressure and obliquity on the possibility of surface water, we created a zero-dimensional surface energy balance model. We combine this model with physically consistent orbital histories to track conditions over the last 3.5 Gyr of Martian history. We find that melting is allowed for atmospheric pressures corresponding to exponential loss rates of dP/dt∝t-3.73 or faster, but this rate is within 0.5σ of the rate calculated from initial measurements made by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, if we assume all the escaping oxygen measured by MAVEN comes from atmospheric CO2 (Lillis et al., 2017, https://doi.org/10.1002/2016JA023525; Tu et al., 2015, https://doi.org/10.1051/0004-6361/201526146). Melting at this loss rate matches selected key geologic constraints on the formation of Hesperian river networks, assuming optimal melt conditions during the warmest part of each Mars year (Irwin et al., 2015, https://doi.org/10.1016/j.geomorph.2014.10.012; Kite, Gao, et al., 2017, https://doi.org/10.1038/ngeo3033; Kite, Sneed et al., 2017, https://doi.org/10.1002/2017GL072660; Stopar et al., 2006, https://doi.org/10.1016/j.gca.2006.07.039). The atmospheric pressure has a larger effect on the surface energy than changes in Mars's mean obliquity. These results show that initial measurements of atmosphere loss by MAVEN are consistent with atmospheric loss being the dominant process that switched Mars from a melt-permitting to a melt-absent climate (Jakosky et al., 2017, https://doi.org/10.1126/science.aai7721), but non-CO2 warming will be required if <2 Gya paleochannels are confirmed or if most of the escaping oxygen measured by MAVEN comes from H2O.

  6. SpeedyTime-6_International_Space_Station_Tour

    NASA Image and Video Library

    2017-08-17

    More internal space than a six-bedroom house, on a vehicle that would cover a football field: how long to take the tour? In this week’s “SpeedyTime” feature, Expedition 52 flight engineer Jack Fischer flies us through his home in space, from bow to stern, in just 3:18—please prepare for take-off. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  7. Google Earth and Geo Applications: A Toolset for Viewing Earth's Geospatial Information

    NASA Astrophysics Data System (ADS)

    Tuxen-Bettman, K.

    2016-12-01

    Earth scientists measure and derive fundamental data that can be of broad general interest to the public and policy makers. Yet, one of the challenges that has always faced the Earth science community is how to present their data and findings in an easy-to-use and compelling manner. Google's Geo Tools offer an efficient and dynamic way for scientists, educators, journalists and others to both access data and view or tell stories in a dynamic three-dimensional geospatial context. Google Earth in particular provides a dense canvas of satellite imagery on which can be viewed rich vector and raster datasets using the medium of Keyhole Markup Language (KML). Through KML, Google Earth can combine the analytical capabilities of Earth Engine, collaborative mapping of My Maps, and storytelling of Tour Builder and more to make Google's Geo Applications a coherent suite of tools for exploring our planet.https://earth.google.com/https://earthengine.google.com/https://mymaps.google.com/https://tourbuilder.withgoogle.com/https://www.google.com/streetview/

  8. Colon Cleansing: Is It Helpful or Harmful?

    MedlinePlus

    ... https://naturalmedicines.therapeuticresearch.com. Accessed March 31, 2018. Detoxes and cleanses. National Center for Complementary and Integrative Health. https://nccih.nih.gov/health/detoxes-cleanses. Accessed March 29, 2018. Mishori R, et ...

  9. Transverse Myelitis Association

    MedlinePlus

    ... INSPIRATION What is Anti-Myelin Oligodendrocyte Glycoprotein (MOG)? https://myelitis.org/wp-content/uploads/2015/05/blog_research.jpg 999 1500 The TMA https://myelitis.org/wp-content/uploads/2015/06/TMA- ...

  10. Early or Premature Menopause

    MedlinePlus

    ... gov/widgets/fahc.html" width="243" height="179" title="Find a Health Center Widget" scrolling="no">https:// ... gov/widgets/fahc.html" width="243" height="179" title="Find a Health Center Widget" scrolling="no">https:// ...

  11. Erythrocyte Sedimentation Rate (ESR)

    MedlinePlus

    ... 3 screens]. Available from: https://labtestsonline.org/understanding/analytes/esr/tab/test/ Lab Tests Online [Internet]. Washington ... 2 screens]. Available from: https://labtestsonline.org/understanding/analytes/esr/tab/sample/ National Heart, Lung, and Blood ...

  12. 5 Things You Didn’t Know About Astronaut Ricky Arnold

    NASA Image and Video Library

    2018-03-20

    Nine years after his first trip to space, NASA’s Ricky Arnold is ready to begin his next adventure: a long-duration flight to the International Space Station. The former classroom teacher will be the point man for Year of Education on Station tasks during his mission, but his experience in schools around the world might match what he’ll gain while circling the world—check out 5 Things You Didn’t Know About Astronaut Ricky Arnold: Teacher Edition! HD Download link: https://archive.org/details/jsc2018m000151_5_Things_You_Didnt_Know_About_Astronaut_Ricky_Arnold _______________________________________ Follow Ricky's mission: Instagram: @astro_ricky Twitter: @astro_ricky FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  13. Eat Like an Astronaut

    NASA Image and Video Library

    2018-06-19

    Astronauts on the International Space Station get food that’s carefully chosen for its nutritional value and specially prepared and packaged to be easily accessible to them in a weightless world on orbit. Could the same food feed the needs of people stuck on planet Earth? We conducted an experiment to find out how well two regular people could get by eating only astronaut food for a full week—a week that included a holiday weekend feast, just to up the difficulty factor. Could they resist the lure of their favorite foods? Take a look at how they fared… HD Download: https://archive.org/details/jsc2018m000103_Eat_Like_an_Astronaut ___________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  14. Mental Health: Overcoming the Stigma of Mental Illness

    MedlinePlus

    ... difference. StigmaFree me. National Alliance on Mental Illness. https://www.nami.org/Get-Involved/Take-the-stigmafree- ... it a problem? National Alliance on Mental Illness. https://www.nami.org/stigmafree. Accessed April 25, 2017. ...

  15. Bacteria Culture Test: MedlinePlus Lab Test Information

    MedlinePlus

    ... Information → Bacteria Culture Test URL of this page: https://medlineplus.gov/labtests/bacteriaculturetest.html Bacteria Culture Test ... 2017 Mar 4]; [about 3 screens]. Available from: https://labtestsonline.org/understanding/analytes/sputum-culture/tab/test/ ...

  16. Bilirubin in Urine: MedlinePlus Lab Test Information

    MedlinePlus

    ... Information → Bilirubin in Urine URL of this page: https://medlineplus.gov/labtests/bilirubininurine.html Bilirubin in Urine ... 2017 Mar 23]; [about 3 screens]. Available from: https://www.liverfoundation.org/for-patients/about-the-liver/ ...

  17. Blood in Urine: MedlinePlus Lab Test Information

    MedlinePlus

    ... Information → Blood in Urine URL of this page: https://medlineplus.gov/labtests/bloodinurine.html Blood in Urine ... 2017 Mar 14]; [about 4 screens]: Available from: https://labtestsonline.org/understanding/analytes/urinalysis/tab/test Lab ...

  18. BUN (Blood Urea Nitrogen): MedlinePlus Lab Test Information

    MedlinePlus

    ... BUN (Blood Urea Nitrogen) URL of this page: https://medlineplus.gov/labtests/bunbloodureanitrogen.html BUN (Blood Urea ... Jan 30]; 4(2):223–33. Available from: https://www.ncbi.nlm.nih.gov/pubmed/3516645 Mayo ...

  19. Albumin Blood Test: MedlinePlus Lab Test Information

    MedlinePlus

    ... Information → Albumin Blood Test URL of this page: https://medlineplus.gov/labtests/albuminbloodtest.html Albumin Blood Test ... 2017 Apr 26]; [about 3 screens]. Available from: https://www.liverfoundation.org/for-patients/about-the-liver/ ...

  20. MedlinePlus Connect in Use

    MedlinePlus

    ... MedlinePlus Connect in Use URL of this page: https://medlineplus.gov/connect/users.html MedlinePlus Connect in ... will change.) Old URLs New URLs Web Application https://apps.nlm.nih.gov/medlineplus/services/mpconnect.cfm? ...

  1. Copyright Information

    MedlinePlus

    ... Here: Home → Copyright Information URL of this page: https://medlineplus.gov/copyright.html Copyright Information To use ... the Magazine and NIH MedlinePlus Salud The FAQs ( https://medlineplus.gov/faq/faq.html ) The same content ...

  2. Petechiae

    MedlinePlus

    ... diagnosis. In: Dermatology. 4th ed. Philadelphia, Pa.: Saunders Elsevier; 2018. https://www.clinicalkey.com. Accessed March 28, ... Illustrated Colour Text. 6th ed. Edinburgh, U.K.: Elsevier; 2017. https://www.clinicalkey.com. Accessed March 28, ...

  3. The Essential Canadarm2

    NASA Image and Video Library

    2017-10-04

    Tomorrow on the first spacewalk of Expedition 53, astronauts will install a new latching end effector on the International Space Station’s robotic arm, Canadarm2, to keep that invaluable piece of hardware ready to support the station’s continuing mission. Take a quick look back at the invaluable role played by the “big arm” in assembling the space station and keeping it flying. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  4. Spacewalking_in_Ultra_High_Definition

    NASA Image and Video Library

    2017-07-21

    Ever wonder what the spacewalker sees while you’re looking at him or her? Here’s your answer, courtesy of NASA astronaut Jack Fischer. This Ultra High Definition clip shows Fischer outside the International Space Station during a spacewalk on Expedition 51 in May 2017, and the view from a small camera attached to his spacesuit at the same time. Music by Joakim Karud. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  5. MedlinePlus Connect: Email List

    MedlinePlus

    ... MedlinePlus Connect → Email List URL of this page: https://medlineplus.gov/connect/emaillist.html MedlinePlus Connect: Email ... will change.) Old URLs New URLs Web Application https://apps.nlm.nih.gov/medlineplus/services/mpconnect.cfm? ...

  6. Aristolochic Acids

    MedlinePlus

    ... a full list, see the FDA website at https: / / go. usa. gov/ xN66S. Contact the manufacturer or ... I go for more information? National Toxicology Program https: / / ntp. niehs. nih. gov/ go/ roc The Report ...

  7. Prenatal Vitamins: OK for Women Who Aren't Pregnant?

    MedlinePlus

    ... fact sheet: Folate. Office of Dietary Supplements. https://ods.od.nih.gov/factsheets/Folate-HealthProfessional/. Accessed March 20, ... fact sheet: Iron. Office of Dietary Supplements. https://ods.od.nih.gov/factsheets/Iron-HealthProfessional/. Accessed March ...

  8. EnviroAtlas One Meter Resolution Urban Land Cover Data (2008-2012) Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas ). The EnviroAtlas One Meter-scale Urban Land Cover (MULC) Data were generated individually for each EnviroAtlas community. Source imagery varies by community. Land cover classes mapped also vary by community and include the following: water, impervious surfaces, soil and barren land, trees, shrub, grass and herbaceous, agriculture, orchards, woody wetlands, and emergent wetlands. Accuracy assessments were completed for each community's classification. For specific information about methods and accuracy of each community's land cover classification, consult their individual metadata records: Austin, TX (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B91A32A9D-96F5-4FA0-BC97-73BAD5D1F158%7D); Cleveland, OH (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B82ab1edf-8fc8-4667-9c52-5a5acffffa34%7D); Des Moines, IA (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BA4152198-978D-4C0B-959F-42EABA9C4E1B%7D); Durham, NC (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B2FF66877-A037-4693-9718-D1870AA3F084%7D); Fresno, CA (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B87041CF3-05BC-43C3-82DA-F066267C9871%7D); Green Bay, WI (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BD602E7C9-7F53-4C24

  9. Thirdhand Smoke: What Are the Dangers to Nonsmokers?

    MedlinePlus

    ... M.D. Samet JM, et al. Secondhand smoke exposure: Effects in children. https://www.uptodate.com/home. Accessed June 9, 2017. Samet JM, et al. Control of secondhand smoke exposure. https://www.uptodate.com/home. Accessed June 9, ...

  10. Advisory Committee on Immunization Practices Recommended Immunization Schedule for Adults Aged 19 Years or Older - United States, 2018.

    PubMed

    Kim, David K; Riley, Laura E; Hunter, Paul

    2018-02-09

    In October 2017, the Advisory Committee on Immunization Practices (ACIP) voted to approve the Recommended Immunization Schedule for Adults Aged 19 Years or Older, United States, 2018. The 2018 adult immunization schedule summarizes ACIP recommendations in two figures and a table of contraindications and precautions for vaccines recommended for adults, and is intended is to assist health care providers in implementing the current ACIP recommendations for vaccinating adults. The schedule can be found at https://www.cdc.gov/vaccines/schedules.* The full ACIP recommendations for each vaccine are available at https://www.cdc.gov/vaccines/hcp/acip-recs/index.html. The 2018 adult immunization schedule has also been approved by the American College of Physicians (https://www.acponline.org), the American Academy of Family Physicians (https://www.aafp.org), the American College of Obstetricians and Gynecologists (https://www.acog.org), and the American College of Nurse-Midwives (http://www.midwife.org). The ACIP-recommended use of each vaccine is developed after an in-depth review of vaccine-related data, including data on disease epidemiology, vaccine efficacy and effectiveness, vaccine safety, feasibility of program implementation, and economic aspects of immunization policy (1).

  11. ARISS Enables First Educational Contact in Venezuela

    NASA Image and Video Library

    2017-12-04

    Astronauts on the International Space Station use amateur radio to talk with students all over the world about life and work in space. In October, flight engineer Joe Acaba made an historic contact with the Maria Montessori Institute Educational Unit in San Cristobal, Venezuela: the first-ever educational ham radio contact in that country’s history, courtesy of the Amateur Radio on International Space Station program. Here’s a look at the excitement on the ground as more than a dozen elementary and middle school students got their chance to talk to a man in space. HD Download Link: https://archive.org/details/jsc2017m001093_ARISS_Enables_First_Contact_in_Venezuela For more on ARISS: http://www.ariss.org/ _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  12. Advisory Committee on Immunization Practices Recommended Immunization Schedule for Adults Aged 19 Years or Older - United States, 2017.

    PubMed

    Kim, David K; Riley, Laura E; Harriman, Kathleen H; Hunter, Paul; Bridges, Carolyn B

    2017-02-10

    In October 2016, the Advisory Committee on Immunization Practices (ACIP) voted to approve the Recommended Adult Immunization Schedule for Adults Aged 19 Years or Older-United States, 2017. The 2017 adult immunization schedule summarizes ACIP recommendations in two figures, footnotes for the figures, and a table of contraindications and precautions for vaccines recommended for adults. These documents are available at https://www.cdc.gov/vaccines/schedules. The full ACIP recommendations for each vaccine can be found at https://www.cdc.gov/vaccines/hcp/acip-recs/index.html. The 2017 adult immunization schedule was also reviewed and approved by the American College of Physicians (https://www.acponline.org), the American Academy of Family Physicians (https://www.aafp.org), the American College of Obstetricians and Gynecologists (http://www.acog.org), and the American College of Nurse-Midwives (http://www.midwife.org).

  13. EnviroAtlas - Austin, TX - Demographics by Block Group Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas). This EnviroAtlas dataset is a summary of key demographic groups for the EnviroAtlas community. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  14. EnviroAtlas National Layers Master Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). This web service includes layers depicting EnviroAtlas national metrics mapped at the 12-digit HUC within the conterminous United States. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  15. Sequencing the Unknown

    NASA Image and Video Library

    2017-12-19

    Being able to identify microbes in real time aboard the International Space Station, without having to send them back to Earth for identification first, would be revolutionary for the world of microbiology and space exploration, and the Genes in Space-3 team turned that possibility into a reality this year when it completed the first-ever sample-to-sequence process entirely aboard the space station. This advance could aid in the ability to diagnose and treat astronaut ailments in real time, as well as assisting in the identification of DNA-based life on other planets. It could also benefit other experiments aboard the orbiting laboratory. HD Download: https://archive.org/details/jsc2017m001160_Sequencing_the_Unknown _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  16. jsc2018m000321_Destination_Station-MP4

    NASA Image and Video Library

    2018-05-11

    Destination Station---- When you can’t come to the International Space Station, the essence of the space station can come to you! Beginning May 15, Destination Station arrives in Salt Lake City, UT to share the impacts of the station on our daily lives. Here’s a peek at some of the ways you can learn more about what the International Space Station is doing right now. ___________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  17. SpeedyTime-5_Water_In_Space

    NASA Image and Video Library

    2017-08-10

    The International Space Station is a one-of-a-kind spot for scientists who want to do experiments where there’s no gravity, to find out how other natural forces function without gravity’s influence. In this “SpeedyTime” segment, Expedition 52 flight engineer Jack Fischer uses a few simple tools to demonstrate what happens to water in space when there’s no pull of gravity. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  18. canvasDesigner: A versatile interactive high-resolution scientific multi-panel visualization toolkit.

    PubMed

    Zhang, Baohong; Zhao, Shanrong; Neuhaus, Isaac

    2018-05-03

    We present a bioinformatics and systems biology visualization toolkit harmonizing real time interactive exploring and analyzing of big data, full-fledged customizing of look-n-feel, and producing multi-panel publication-ready figures in PDF format simultaneously. Source code and detailed user guides are available at http://canvasxpress.org, https://baohongz.github.io/canvasDesigner, and https://baohongz.github.io/canvasDesigner/demo_video.html. isaac.neuhaus@bms.com, baohong.zhang@pfizer.com, shanrong.zhao@pfizer.com. Supplementary materials are available at https://goo.gl/1uQygs.

  19. 5 Things You Didn't Know About Astronaut Joe Acaba

    NASA Image and Video Library

    2017-09-25

    He’s been an astronaut since 2004 and launched last week with more than four months in space to his credit on two previous missions, so there’s not much more to know about Joe Acaba, right? Nope: the California native, former middle school math and science teacher and Peace Corps veteran has a few more tricks up his sleeve, and he shares five of them with you right here. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  20. SpeedyTime_7-Minus_Eighty_Degrees_Laboratory_Freezer_for_ ISS

    NASA Image and Video Library

    2017-08-23

    SpeedyTime 7 – Minus Eighty Degrees Laboratory Freezer for ISS Cutting-edge science is on the daily menu on board the International Space Station, but where do the astronauts store their lab results before they’re shipped back to Earth? In one of a dozen large freezers, of course: in this SpeedyTime segment, Expedition 52 flight engineer Jack Fischer shines a light on the MELFI, Minus Eighty Degrees Laboratory Freezer for ISS. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  1. BigNeuron dataset V.0.0

    DOE Data Explorer

    Ramanathan, Arvind

    2016-01-01

    The cleaned bench testing reconstructions for the gold166 datasets have been put online at github https://github.com/BigNeuron/Events-and-News/wiki/BigNeuron-Events-and-News https://github.com/BigNeuron/Data/releases/tag/gold166_bt_v1.0 The respective image datasets were released a while ago from other sites (major pointer is available at github as well https://github.com/BigNeuron/Data/releases/tag/Gold166_v1 but since the files were big, the actual downloading was distributed at 3 continents separately)

  2. SpeedyTime-4_Microgravity_Science_Glovebox

    NASA Image and Video Library

    2017-08-03

    Doing groundbreaking science can mean working with dangerous materials; how do the astronauts on the International Space Station protect themselves and their ship in those cases? They use the Microgravity Science Glovebox: in this “SpeedyTime” segment Expedition 52 flight engineer Peggy Whitson pulls a rack out of the wall of the Destiny Laboratory to show us how astronauts access a sealed environment for science and technology experiments that involve potentially hazardous materials. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  3. Widgets and Buttons

    MedlinePlus

    ... Home → Widgets and Buttons URL of this page: https://medlineplus.gov/widgets.html Widgets and Buttons To ... link the word MedlinePlus to the MedlinePlus homepage ( https://medlineplus.gov/ ). Search MedlinePlus : To put the MedlinePlus ...

  4. Gastric Bypass Surgery: Who Is It For?

    MedlinePlus

    ... you, talk with your doctor. Lim RB. Bariatric operations for management of obesity: Indications and preoperative preparation. https://www. ... https://www.niddk.nih.gov/health-information/weight-management/bariatric-surgery. Accessed July 12, 2017. Sogg S, et al. Recommendations ...

  5. FTP Services to be Discontinued at the ASDC

    Atmospheric Science Data Center

    2018-05-04

    ... it with other file transport mechanisms ( e.g., SFTP, https).  The timeframe for migrations varies per service.  In most cases, ... register for an Earthdata Login account are available at https://urs.earthdata.nasa.gov/users/new   ...

  6. FTP Services to be Discontinued at the ASDC

    Atmospheric Science Data Center

    2018-05-04

    ... it with other file transport mechanisms ( e.g., SFTP, https).  The timeframe for migrations varies per service.  In most cases, ... register for an Earthdata Login account are available at https://urs.earthdata.nasa.gov/users/new   Read more ...

  7. Cloud property datasets retrieved from AVHRR, MODIS, AATSR and MERIS in the framework of the Cloud_cci project

    NASA Astrophysics Data System (ADS)

    Stengel, Martin; Stapelberg, Stefan; Sus, Oliver; Schlundt, Cornelia; Poulsen, Caroline; Thomas, Gareth; Christensen, Matthew; Carbajal Henken, Cintia; Preusker, Rene; Fischer, Jürgen; Devasthale, Abhay; Willén, Ulrika; Karlsson, Karl-Göran; McGarragh, Gregory R.; Proud, Simon; Povey, Adam C.; Grainger, Roy G.; Fokke Meirink, Jan; Feofilov, Artem; Bennartz, Ralf; Bojanowski, Jedrzej S.; Hollmann, Rainer

    2017-11-01

    impact of temporal sampling and spatial resolution on cloud climatologies.

    For each dataset a digital object identifier has been issued:

    Cloud_cci AVHRR-AM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-AM/V002" target="_blank">https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-AM/V002

    Cloud_cci AVHRR-PM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V002" target="_blank">https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V002

    Cloud_cci MODIS-Terra: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Terra/V002" target="_blank">https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Terra/V002

    Cloud_cci MODIS-Aqua: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Aqua/V002" target="_blank">https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Aqua/V002

    Cloud_cci ATSR2-AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V002" target="_blank">https://doi.org/10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V002

    Cloud_cci MERIS+AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MERIS+AATSR/V002" target="_blank">https://doi.org/10.5676/DWD/ESA_Cloud_cci/MERIS+AATSR/V002

  8. Types of Cancer Associated with Transplant Recipients

    MedlinePlus

    ... work or school Physical changes Relationship changes Sexuality changes Managing comorbidities People to know FAQ Living donation What ... Organ Sharing , a non-profit 501(c)(3) organization | Guidestar | Sitemap | Legal ... https://plus.google.com/+UnosOrg https://www.linkedin.com/company/unos

  9. Intelligence Sharing in Counterproliferation

    DTIC Science & Technology

    2007-09-01

    Claims Alleged Mobile WMD Plants Solely for ‘ Agrochemicals ,” Spiegel Online, Hamburg, Germany. Translated by OpenSource.gov https...Knauer, Sebastian. "German Site Claims Alleged Mobile WMD Plants Solely for Agrochemicals ." Spiegel Online. https://www.opensource.gov (accessed June

  10. Military Space Mission Design and Analysis in a Multi-Body Environment: An Investigation of High-Altitude Orbits as Alternative Transfer Paths, Parking Orbits for Reconstitution, and Unconventional Mission Orbits

    DTIC Science & Technology

    2017-03-23

    Dynamical Astronomy , vol. 90, no. January 2004, pp. 165–178, 2004. [Online]. Available: https://www.researchgate.net/publication/ 225231299 On The...Celestial Mechanics and Dynamical Astronomy , vol. 32, no. 1, pp. 53–71, 1984. [Online]. Available: https://engineering.purdue.edu/people/kathleen.howell

  11. jsc2017m000677_SpeedyTime2–Advanced_ Resistive_Exercise_ Device

    NASA Image and Video Library

    2017-07-20

    SpeedyTime #2 – Advanced Resistive Exercise Device Astronauts on the International Space Station have to exercise for two hours every day, but they can show off the hardware in a lot less time than that. In this “SpeedyTime” segment Expedition 52 flight engineer Peggy Whitson gives us a rapid-fire display of exercises that can be done with just one piece of equipment, the Advanced Resistive Exercise Device in the Tranquility module. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  12. Astronaut Moments: Scott Tingle: Inspiration

    NASA Image and Video Library

    2017-12-14

    NASA Astronaut Scott Tingle shares his inspiration for his career as an astronaut. On Sunday, Dec. 17, 2017, Tingle will launch to the International Space Station aboard a Soyuz vehicle at 2:21 a.m. ET (1:21 p.m. Baikonur time) from the Baikonur Cosmodrome in Kazakhstan. This will be his first spaceflight. More on Tingle: https://www.nasa.gov/astronauts/biographies/scott-d-tingle More on the space station: www.nasa.gov/station Archive.org: https://archive.org/details/jsc2017m0009_ScottTingle_AstronautMoment_Inspriation_MXF Youtube: https://youtu.be/8xUOqk2f3vg

  13. How To Recycle Water in Space

    NASA Image and Video Library

    2017-06-13

    Nature has been recycling water on Earth for eons, and NASA is perfecting how to do it in space right now on the International Space Station. In constant operation for several years already, the Water Recovery System draws moisture from a number of sources to continuously provide astronauts with safe, clean drinking water. Follow the entire process in this video and learn how engineers are successfully turning yesterday’s coffee into tomorrow’s for these brave explorers! _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  14. Advisory Committee on Immunization Practices Recommended Immunization Schedule for Children and Adolescents Aged 18 Years or Younger - United States, 2017.

    PubMed

    Robinson, Candice L; Romero, José R; Kempe, Allison; Pellegrini, Cynthia

    2017-02-10

    In October 2016, the Advisory Committee on Immunization Practices (ACIP) approved the Recommended Immunization Schedule for Children and Adolescents Aged 18 Years or Younger-United States, 2017. The 2017 child and adolescent immunization schedule summarizes ACIP recommendations, including several changes from the 2016 immunization schedules, in three figures, and footnotes for the figures. These documents can be found on the CDC immunization schedule website (https://www.cdc.gov/vaccines/schedules/index.html). These immunization schedules are approved by ACIP (https://www.cdc.gov/vaccines/acip/index.html), the American Academy of Pediatrics (https://www.aap.org), the American Academy of Family Physicians (https://www.aafp.org), and the American College of Obstetricians and Gynecologists (http://www.acog.org). Health care providers are advised to use the figures and the combined footnotes together. The full ACIP recommendations for each vaccine, including contraindications and precautions, can be found at https://www.cdc.gov/vaccines/hcp/acip-recs/index.html. Providers should be aware that changes in recommendations for specific vaccines can occur between annual updates to the childhood/adolescent immunization schedules. If errors or omissions are discovered within the child and adolescent schedule, CDC posts revised versions on the CDC immunization schedule website.

  15. American Society of Nephrology

    MedlinePlus

    ... heart failure https://t.co/PkE9xXgnUF – @ASNKidney on Twitter #Amish mutation protects against #diabetes and may extend life | @NYTimes https://t.co/7wnc2AhBdO – @ASNKidney on Twitter .@US_FDA issues safety alert for #gout medication | @ ...

  16. The Arab Citizens of Israel: Motivations for Collective Action

    DTIC Science & Technology

    2008-03-01

    46 Jewish National Fund, “Tree Planting Center,” https://secure2.convio.net/jnf/site/ Ecommerce ?store_id=3181...2008]. ———, “Tree Planting Center,” available at https://secure2.convio.net/jnf/site/ Ecommerce ?store_id=3181&VIEW_HOMEPA GE=true

  17. The Command & Control of Aggregated Marine Expeditionary Units. Is Anyone Available Today?

    DTIC Science & Technology

    2013-04-11

    Operations. 24 April 2012. https://ehqmc.usmc.mil/org/ ppo /pl/pln. 2. Personal correspondence or phone interviews with each command listed...and Operations. 24 April 2012. https://ehqmc.usmc.mil/org/ ppo /pl/pln. Stover 53 Congressional Budget Office. A CBO Study: An Analysis of the

  18. Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5

    NASA Astrophysics Data System (ADS)

    Pendergrass, Angeline G.; Conley, Andrew; Vitt, Francis M.

    2018-02-01

    Radiative kernels at the top of the atmosphere are useful for decomposing changes in atmospheric radiative fluxes due to feedbacks from atmosphere and surface temperature, water vapor, and surface albedo. Here we describe and validate radiative kernels calculated with the large-ensemble version of CAM5, CESM1.1.2, at the top of the atmosphere and the surface. Estimates of the radiative forcing from greenhouse gases and aerosols in RCP8.5 in the CESM large-ensemble simulations are also diagnosed. As an application, feedbacks are calculated for the CESM large ensemble. The kernels are freely available at https://doi.org/10.5065/D6F47MT6" target="_blank">https://doi.org/10.5065/D6F47MT6, and accompanying software can be downloaded from https://github.com/apendergrass/cam5-kernels" target="_blank">https://github.com/apendergrass/cam5-kernels.

  19. Hydrography and biogeochemistry dedicated to the Mediterranean BGC-Argo network during a cruise with RV Tethys 2 in May 2015

    NASA Astrophysics Data System (ADS)

    Taillandier, Vincent; Wagener, Thibaut; D'Ortenzio, Fabrizio; Mayot, Nicolas; Legoff, Hervé; Ras, Joséphine; Coppola, Laurent; Pasqueron de Fommervault, Orens; Schmechtig, Catherine; Diamond, Emilie; Bittig, Henry; Lefevre, Dominique; Leymarie, Edouard; Poteau, Antoine; Prieur, Louis

    2018-03-01

    We report on data from an oceanographic cruise, covering western, central and eastern parts of the Mediterranean Sea, on the French research vessel Tethys 2 in May 2015. This cruise was fully dedicated to the maintenance and the metrological verification of a biogeochemical observing system based on a fleet of BGC-Argo floats. During the cruise, a comprehensive data set of parameters sensed by the autonomous network was collected. The measurements include ocean currents, seawater salinity and temperature, and concentrations of inorganic nutrients, dissolved oxygen and chlorophyll pigments. The analytical protocols and data processing methods are detailed, together with a first assessment of the calibration state for all the sensors deployed during the cruise. Data collected at stations are available at https://doi.org/10.17882/51678" target="_blank">https://doi.org/10.17882/51678 and data collected along the ship track are available at https://doi.org/10.17882/51691" target="_blank">https://doi.org/10.17882/51691.

  20. EnviroAtlas Estimated Percent Tree Cover Along Walkable Roads Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. For specific information about each community's Estimated Percent Tree Cover Along Walkable Roads layer, consult their individual metadata records: Austin, TX (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B4876FD99-C14A-464A-9E31-5CB5F2225687%7D); Cleveland, OH (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B28e3f937-6f22-45c5-98cf-1707b0fc92df%7D); Des Moines, IA (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B09FE7D60-B636-405C-BB07-68147DFE8CAF%7D); Durham, NC (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BF341A26B-4972-4C6B-B675-9B5E02F4F25F%7D); Fresno, CA (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BB71334B9-C53A-4674-A739-1031969E5163%7D); Green Bay, WI (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BB9AFEBED-9C29-4DB0-8B54-0CAF58BE5A2D%7D); Memphis, TN (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BBE552E7A-A789-4AA9-ADF9-234109C6517E%7D); Mi

  1. 48 CFR 52.211-2 - Availability of Specifications, Standards, and Data Item Descriptions Listed in the Acquisition...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ASSIST websites: (1) ASSIST (https://assist.dla.mil/online/start/; (2) Quick Search (http://quicksearch.dla.mil/; (3) ASSISTdocs.com (http://assistdocs.com). (b) Documents not available from ASSIST may be... Wizard (https://assist.dla.mil/wizard/index.cfm); (2) Phoning the DoDSSP Customer Service Desk (215) 697...

  2. 78 FR 55077 - Timonium Chrysler, Inc. d/b/a Don White's Timonium Chrysler Jeep Dodge; Analysis of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... comment at https://ftcpublic.commentworks.com/ftc/timoniumchryslerincconsent online or on paper, by.... Write ``Timonium Chrysler, File No. 132 3014'' on your comment and file your comment online at https... comment online or on paper. For the Commission to consider your comment, we must receive it on or before...

  3. Reply to Comment by Roques et al. on "Base Flow Recession from Unsaturated-Saturated Porous Media considering Lateral Unsaturated Discharge and Aquifer Compressibility"

    NASA Astrophysics Data System (ADS)

    Liang, Xiuyu; Zhan, Hongbin; Zhang, You-Kuan; Schilling, Keith

    2018-04-01

    Roques et al. (https://doi.org/10.1002/2017WR022085) claims that they have proposed an exponential time step (ETS) method to improve the computing method of Liang et al. (https://doi.org/10.1002/2017WR020938) which used a constant time step (CTS) method on the derivative for dQ/dt in field data, where Q is the base flow discharge and t is the time since the start of base flow recession. This reply emphasizes that the main objective of Liang et al. (https://doi.org/10.1002/2017WR020938) was to develop an analytical model to investigate the effects of the unsaturated flow on base flow recession, not on the data interpretation methods. The analytical model indicates that the base flow recession hydrograph behaves as dQ/dt ˜aQb with the exponent b close to 1 at late times, which is consistent with previous theoretical models. The model of Liang et al. (https://doi.org/10.1002/2017WR020938) was applied to field data where the derivative of dQ/dt was computed using the CTS method, a method that has been widely adopted in previous studies. The ETS method proposed by Roques et al. (https://doi.org/10.1016/j.advwatres.2017.07.013) appears to be a good alternative but its accuracy needs further validation. Using slopes to fit field data as proposed by Roques et al. (https://doi.org/10.1002/2017WR022085) appears to match data satisfactorily at early times whereas it performs less satisfactorily at late times and leads to the exponent b being obviously larger than 1.

  4. A 20-year record (1998-2017) of permafrost, active layer and meteorological conditions at a high Arctic permafrost research site (Bayelva, Spitsbergen)

    NASA Astrophysics Data System (ADS)

    Boike, Julia; Juszak, Inge; Lange, Stephan; Chadburn, Sarah; Burke, Eleanor; Overduin, Pier Paul; Roth, Kurt; Ippisch, Olaf; Bornemann, Niko; Stern, Lielle; Gouttevin, Isabelle; Hauber, Ernst; Westermann, Sebastian

    2018-03-01

    Most permafrost is located in the Arctic, where frozen organic carbon makes it an important component of the global climate system. Despite the fact that the Arctic climate changes more rapidly than the rest of the globe, observational data density in the region is low. Permafrost thaw and carbon release to the atmosphere are a positive feedback mechanism that can exacerbate global warming. This positive feedback functions via changing land-atmosphere energy and mass exchanges. There is thus a great need to understand links between the energy balance, which can vary rapidly over hourly to annual timescales, and permafrost, which changes slowly over long time periods. This understanding thus mandates long-term observational data sets. Such a data set is available from the Bayelva site at Ny-Ålesund, Svalbard, where meteorology, energy balance components and subsurface observations have been made for the last 20 years. Additional data include a high-resolution digital elevation model (DEM) that can be used together with the snow physical information for snowpack modeling and a panchromatic image. This paper presents the data set produced so far, explains instrumentation, calibration, processing and data quality control, as well as the sources for various resulting data sets. The resulting data set is unique in the Arctic and serves as a baseline for future studies. The mean permafrost temperature is -2.8 °C, with a zero-amplitude depth at 5.5 m (2009-2017). Since the data provide observations of temporally variable parameters that mitigate energy fluxes between permafrost and atmosphere, such as snow depth and soil moisture content, they are suitable for use in integrating, calibrating and testing permafrost as a component in earth system models.The presented data are available in the Supplement for this paper (time series) and through the PANGAEA and Zenodo data portals: time series (https://doi.org/10.1594/PANGAEA.880120" target="_blank">https

  5. 47 CFR 2.929 - Changes in name, address, ownership or control of grantee.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization Procedures... submitted to the Commission via the Internet at https://gullfoss2.fcc.gov/prod/oet/cf/eas/index.cfm within... manufacturing rights, notice must be given to the Commission via the Internet at https://gullfoss2.fcc.gov/prod...

  6. 47 CFR 2.929 - Changes in name, address, ownership or control of grantee.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization Procedures... submitted to the Commission via the Internet at https://gullfoss2.fcc.gov/prod/oet/cf/eas/index.cfm within... manufacturing rights, notice must be given to the Commission via the Internet at https://gullfoss2.fcc.gov/prod...

  7. 47 CFR 2.929 - Changes in name, address, ownership or control of grantee.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization Procedures... submitted to the Commission via the Internet at https://gullfoss2.fcc.gov/prod/oet/cf/eas/index.cfm within... manufacturing rights, notice must be given to the Commission via the Internet at https://gullfoss2.fcc.gov/prod...

  8. 47 CFR 2.929 - Changes in name, address, ownership or control of grantee.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization Procedures... submitted to the Commission via the Internet at https://gullfoss2.fcc.gov/prod/oet/cf/eas/index.cfm within... manufacturing rights, notice must be given to the Commission via the Internet at https://gullfoss2.fcc.gov/prod...

  9. 47 CFR 5.55 - Filing of applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the Office of Engineering and Technology Web site https://gullfoss2.fcc.gov/prod/oet/cf/els/index.cfm... Office of Engineering and Technology Web site https://gullfoss2.fcc.gov/prod/oet/cf/els/index.cfm... instead be submitted to the Commission's Office of Engineering and Technology, Washington, DC 20554...

  10. 47 CFR 5.55 - Filing of applications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the Office of Engineering and Technology Web site https://gullfoss2.fcc.gov/prod/oet/cf/els/index.cfm... Office of Engineering and Technology Web site https://gullfoss2.fcc.gov/prod/oet/cf/els/index.cfm... instead be submitted to the Commission's Office of Engineering and Technology, Washington, DC 20554...

  11. 47 CFR 5.55 - Filing of applications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the Office of Engineering and Technology Web site https://gullfoss2.fcc.gov/prod/oet/cf/els/index.cfm... Office of Engineering and Technology Web site https://gullfoss2.fcc.gov/prod/oet/cf/els/index.cfm... instead be submitted to the Commission's Office of Engineering and Technology, Washington, DC 20554...

  12. United States Navy DL Perspective

    DTIC Science & Technology

    2010-08-10

    United States Navy DL Perspective CAPT Hank Reeves Navy eLearning Project Director 10 August 2010 Report Documentation Page Form ApprovedOMB No...Marine Corps (USMC) Navy eLearning Ongoing Shared with USMC, Coast Guard 9 NeL Help Site https://ile-help.nko.navy.mil/ile/ https://s-ile

  13. To Arm or Not to Arm: The Case Against Arming Vietnam and the Philippines

    DTIC Science & Technology

    2015-04-13

    Freedom in the World 2014: The Democratic Leadership Gap,” https://freedomhouse. org/sites/default/files/FIW%202014%20Scores%20%20Countries%20and...CNAS_TailoredCoercion_report.pdf (accessed Sep 21, 2014). 49 Freedom House. “Freedom in the World 2014: The Democratic Leadership Gap.” https://freedomhouse.org

  14. 78 FR 30847 - White Pine-Nye Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... Advisory Committee will meet in Eureka, Nevada. The Committee is authorized under the Secure Rural Schools... the full agenda may be previewed at: https://fsplaces.fs.fed.us/fsfiles/unit/wo/secure_rural_schools... will be posted at https://fsplaces.fs.fed.us/fsfiles/unit/wo/secure_rural_schools.nsf , within 21 days...

  15. An Evaluation of Semiempirical Models for Partitioning Photosynthetically Active Radiation Into Diffuse and Direct Beam Components

    NASA Astrophysics Data System (ADS)

    Oliphant, Andrew J.; Stoy, Paul C.

    2018-03-01

    Photosynthesis is more efficient under diffuse than direct beam photosynthetically active radiation (PAR) per unit PAR, but diffuse PAR is infrequently measured at research sites. We examine four commonly used semiempirical models (Erbs et al., 1982, https://doi.org/10.1016/0038-092X(82)90302-4; Gu et al., 1999, https://doi.org/10.1029/1999JD901068; Roderick, 1999, https://doi.org/10.1016/S0168-1923(99)00028-3; Weiss & Norman, 1985, https://doi.org/10.1016/0168-1923(85)90020-6) that partition PAR into diffuse and direct beam components based on the negative relationship between atmospheric transparency and scattering of PAR. Radiation observations at 58 sites (140 site years) from the La Thuille FLUXNET data set were used for model validation and coefficient testing. All four models did a reasonable job of predicting the diffuse fraction of PAR (ϕ) at the 30 min timescale, with site median r2 values ranging between 0.85 and 0.87, model efficiency coefficients (MECs) between 0.62 and 0.69, and regression slopes within 10% of unity. Model residuals were not strongly correlated with astronomical or standard meteorological variables. We conclude that the Roderick (1999, https://doi.org/10.1016/S0168-1923(99)00028-3) and Gu et al. (1999, https://doi.org/10.1029/1999JD901068) models performed better overall than the two older models. Using the basic form of these models, the data set was used to find both individual site and universal model coefficients that optimized predictive accuracy. A new universal form of the model is presented in section 5 that increased site median MEC to 0.73. Site-specific model coefficients increased median MEC further to 0.78, indicating usefulness of local/regional training of coefficients to capture the local distributions of aerosols and cloud types.

  16. EnviroAtlas - Austin, TX - Demographics by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset is a summary of key demographic groups for the EnviroAtlas community. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  17. EnviroAtlas - NHDPlus V2 Hydrologic Unit Boundaries Web Service - Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas web service contains layers depicting hydrologic unit boundary layers and labels for the Subregion level (4-digit HUCs), Subbasin level (8-digit HUCs), and Subwatershed level (12-digit HUCs) for the conterminous United States. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  18. National Centers for Environmental Prediction

    Science.gov Websites

    Mailing Lists There are two listservs for the MTT group: announce and discuss To join the listservs go here: Announce - https://lstsrv.ncep.noaa.gov/mailman/listinfo/ncep.list.emc_porting-announce Discuss - https://lstsrv.ncep.noaa.gov/mailman/listinfo/ncep.list.emc_porting-discuss To email the lists: Announce

  19. Designing GeoGebra Applets to Maximize Student Engagement

    ERIC Educational Resources Information Center

    Paoletti, Teo; Monahan, Ceire; Vishnubhotla, Madhavi

    2017-01-01

    GeoGebra is a free tool that has the potential to change both how and what is taught in mathematics. GeoGebra allows teachers and students to explore various mathematical ideas either through the full applet (https://www.geogebra.org/graphing) or by sharing applets via GeoGebra's Materials site (https://www.geogebra. org/materials/). It has many…

  20. Management of Noncompressible Hemorrhage Using Vena Cava Ultrasound

    DTIC Science & Technology

    2016-10-01

    with this study, Dr. Doucet has produced “Protocol Video USA-IVC Study (Version 5)” that is posted on youtube : https://youtu.be/54-Z6fiJpPY This video... youtube : https://youtu.be/54-Z6fiJpPY This video contains study design, procedures, inclusion/exclusion criteria and a demonstration to train clinical

  1. Fractional quiver W-algebras

    NASA Astrophysics Data System (ADS)

    Kimura, Taro; Pestun, Vasily

    2018-04-01

    We introduce quiver gauge theory associated with the non-simply laced type fractional quiver and define fractional quiver W-algebras by using construction of Kimura and Pestun (Lett Math Phys, 2018. https://doi.org/10.1007/s11005-018-1072-1; Lett Math Phys, 2018. https://doi.org/10.1007/s11005-018-1073-0) with representation of fractional quivers.

  2. Alternative Fuels Data Center: Fleet Application for School Transportation

    Science.gov Websites

    /_kZz_IxCsQA Video thumbnail for Natural Gas School Buses Help Kansas City Save Money Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 https://www.youtube.com/embed/VYbBFQEKKCs Video thumbnail for , 2011 https://www.youtube.com/embed/ZJVXELFPywI Video thumbnail for Propane Buses Save Money for

  3. Saving The Savable: Using Bystanders To Increase Survival From Out Of Hospital Cardiac Arrest (Ohca) In New York City

    DTIC Science & Technology

    2016-03-01

    Howley, “What Is NFC, and Why Does it Matter for the iPhone 6?” Yahoo , September 3, 2014, https://www.yahoo.com/tech/what-is-nfc-and-why-does-it...www.wired.com/ 2006/06/crowds. Howley, Daniel. “What Is NFC, and Why Does it Matter for the iPhone 6?” Yahoo . September 3, 2014. https

  4. 5 Things You Didn't Know About Astronaut Scott Tingle

    NASA Image and Video Library

    2017-12-15

    The next crew to launch to the International Space Station includes one American astronaut making his first spaceflight: U.S. Navy Captain Scott Tingle, a Massachusetts native with a mechanical engineering education and a resume that includes deployments as an operational pilot plus the Navy Test Pilot School. Even though he’s been an astronaut for eight years, there are a few things we didn’t know about him—until now. Listen here for details on Tingle’s childhood in New England, including the motor vehicles he raced and the floors he swept to earn the money to pay for it. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  5. Space Debris Senso

    NASA Image and Video Library

    2017-12-11

    Orbital debris poses a risk to all spacecraft in Earth orbit, so the International Space Station is getting a new debris impact sensor to provide information on the micrometeoroid orbital debris environment in low Earth orbit. The Space Debris Sensor, launching on the next SpaceX Dragon cargo vehicle, will monitor impacts caused by small-scale orbital debris for a period of two to three years. That data will improve station safety by generating a more accurate estimate of the amount of small-scale debris that cannot be tracked from the ground and helping define better spacecraft shielding requirements. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  6. jsc2018m000130_Orion Crew Module for Ascent Abort-2 Arrives in Houston

    NASA Image and Video Library

    2018-03-08

    Ascent Abort-2 Module Arrives in Houston---------------------------------------------------------- NASA’s Johnson Space Center is the center of activity leading the design and build up for a critical safety test of America’s new exploration spacecraft. An Orion crew module was delivered to Houston last week for assembly and outfitting for the April 2019 Ascent Abort-2 test, to demonstrate the ability of the spacecraft’s Launch Abort System to pull the crew module to safety if an emergency ever arises during ascent to space. Doing this work at JSC is part of a lean approach to development, to minimize cost and schedule risks associated with the test. _______________________________________ FOLLOW ORION! Twitter: https://twitter.com/NASA_Orion/ Facebook: https://www.facebook.com/NASAOrion/ Instagram: https://www.instagram.com/explorenasa/

  7. NASA Expands BEAM’s Mission

    NASA Image and Video Library

    2017-12-05

    The mission of the Bigelow Expandable Activity Module (BEAM) on the International Space Station has been, well, expanded. After more than a year and a half on orbit providing performance data on expandable habitat technologies, NASA and Bigelow Aerospace have reached agreement to extend the life of the privately-owned module. For a minimum of three more years, BEAM will be a more operational element of the station used in crew activities and on board storage, allowing time to gather more data on the technology’s structural integrity, thermal stability, and resistance to space debris, radiation and microbial growth. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  8. The neXtProt peptide uniqueness checker: a tool for the proteomics community.

    PubMed

    Schaeffer, Mathieu; Gateau, Alain; Teixeira, Daniel; Michel, Pierre-André; Zahn-Zabal, Monique; Lane, Lydie

    2017-11-01

    The neXtProt peptide uniqueness checker allows scientists to define which peptides can be used to validate the existence of human proteins, i.e. map uniquely versus multiply to human protein sequences taking into account isobaric substitutions, alternative splicing and single amino acid variants. The pepx program is available at https://github.com/calipho-sib/pepx and can be launched from the command line or through a cgi web interface. Indexing requires a sequence file in FASTA format. The peptide uniqueness checker tool is freely available on the web at https://www.nextprot.org/tools/peptide-uniqueness-checker and from the neXtProt API at https://api.nextprot.org/. lydie.lane@sib.swiss. © The Author(s) 2017. Published by Oxford University Press.

  9. SimulaTE: simulating complex landscapes of transposable elements of populations.

    PubMed

    Kofler, Robert

    2018-04-15

    Estimating the abundance of transposable elements (TEs) in populations (or tissues) promises to answer many open research questions. However, progress is hampered by the lack of concordance between different approaches for TE identification and thus potentially unreliable results. To address this problem, we developed SimulaTE a tool that generates TE landscapes for populations using a newly developed domain specific language (DSL). The simple syntax of our DSL allows for easily building even complex TE landscapes that have, for example, nested, truncated and highly diverged TE insertions. Reads may be simulated for the populations using different sequencing technologies (PacBio, Illumina paired-ends) and strategies (sequencing individuals and pooled populations). The comparison between the expected (i.e. simulated) and the observed results will guide researchers in finding the most suitable approach for a particular research question. SimulaTE is implemented in Python and available at https://sourceforge.net/projects/simulates/. Manual https://sourceforge.net/p/simulates/wiki/Home/#manual; Test data and tutorials https://sourceforge.net/p/simulates/wiki/Home/#walkthrough; Validation https://sourceforge.net/p/simulates/wiki/Home/#validation. robert.kofler@vetmeduni.ac.at.

  10. EnviroAtlas - Austin, TX - Tree Cover Configuration and Connectivity, Water Background Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas). The EnviroAtlas Austin, TX tree cover configuration and connectivity map categorizes forest land cover into structural elements (e.g. core, edge, connector, etc.). In this community, Forest is defined as Trees & Forest (Trees & Forest - 40 = 1; All Else = 0). Water was considered background (value 129) during the analysis to create this dataset, however it has been converted into value 10 to distinguish it from land area background. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. Bayesian Atmospheric Radiative Transfer (BART) Code and Application to WASP-43b

    NASA Astrophysics Data System (ADS)

    Blecic, Jasmina; Harrington, Joseph; Cubillos, Patricio; Bowman, Oliver; Rojo, Patricio; Stemm, Madison; Lust, Nathaniel B.; Challener, Ryan; Foster, Austin James; Foster, Andrew S.; Blumenthal, Sarah D.; Bruce, Dylan

    2016-01-01

    We present a new open-source Bayesian radiative-transfer framework, Bayesian Atmospheric Radiative Transfer (BART, https://github.com/exosports/BART), and its application to WASP-43b. BART initializes a model for the atmospheric retrieval calculation, generates thousands of theoretical model spectra using parametrized pressure and temperature profiles and line-by-line radiative-transfer calculation, and employs a statistical package to compare the models with the observations. It consists of three self-sufficient modules available to the community under the reproducible-research license, the Thermochemical Equilibrium Abundances module (TEA, https://github.com/dzesmin/TEA, Blecic et al. 2015}, the radiative-transfer module (Transit, https://github.com/exosports/transit), and the Multi-core Markov-chain Monte Carlo statistical module (MCcubed, https://github.com/pcubillos/MCcubed, Cubillos et al. 2015). We applied BART on all available WASP-43b secondary eclipse data from the space- and ground-based observations constraining the temperature-pressure profile and molecular abundances of the dayside atmosphere of WASP-43b. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.

  12. Two months of disdrometer data in the Paris area

    NASA Astrophysics Data System (ADS)

    Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2018-05-01

    The Hydrology, Meteorology, and Complexity laboratory of École des Ponts ParisTech (hmco.enpc.fr) has made a data set of optical disdrometer measurements available that come from a campaign involving three collocated devices from two different manufacturers, relying on different underlying technologies (one Campbell Scientific PWS100 and two OTT Parsivel2 instruments). The campaign took place in January-February 2016 in the Paris area (France). Disdrometers provide access to information on the size and velocity of drops falling through the sampling area of the devices of roughly a few tens of cm2. It enables the drop size distribution to be estimated and rainfall microphysics, kinetic energy, or radar quantities, for example, to be studied further. Raw data, i.e. basically a matrix containing a number of drops according to classes of size and velocity, along with more aggregated ones, such as the rain rate or drop size distribution with filtering, are available. Link to the data set: https://zenodo.org/record/1240168" target="_blank">https://zenodo.org/record/1240168 (DOI: https://doi.org/10.5281/zenodo.1240168" target="_blank">https://doi.org/10.5281/zenodo.1240168).

  13. RETRACTED: Bimetallic magnetic nanoparticle as a new platform for fabrication of pyridoxine and pyridoxal-5'-phosphate imprinted polymer modified high throughput electrochemical sensor.

    PubMed

    Patra, Santanu; Roy, Ekta; Das, Ranajit; Karfa, Paramita; Kumar, Sunil; Madhuri, Rashmi; Sharma, Prashant K

    2015-11-15

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief following concerns raised by a reader. The article uses an electron micrograph identical to another publication. Fig. 2B is identical to Fig. 1C published in Biosensors and Bioelectronics Volume 78, 15 April 2016, Pages 454-463, https://doi.org/10.1016/j.bios.2015.11.092. In addition, the extraordinary similarities observed between the data presented in Fig. 1D and in Fig. 3C in ACS Biomater. Sci. Eng., 2017, 3 (9), pp 2120–2135, https://doi.org/10.1021/acsbiomaterials.7b00089, Fig. 4A in Colloids and Surfaces B: Biointerfaces, Volume 142, 1 June 2016, Pages 248–258 https://doi.org/10.1016/j.colsurfb.2016.02.053 and Fig. 4C in Biosensors and Bioelectronics, Volume 97, 15 November 2017, Pages 208–217, https://doi.org/10.1016/j.bios.2017.06.003 are highly unlikely. This problem with the data casts doubt on all the data, and accordingly also the conclusions based on that data, in this publication. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Extension modules for storage, visualization and querying of genomic, genetic and breeding data in Tripal databases

    PubMed Central

    Lee, Taein; Cheng, Chun-Huai; Ficklin, Stephen; Yu, Jing; Humann, Jodi; Main, Dorrie

    2017-01-01

    Abstract Tripal is an open-source database platform primarily used for development of genomic, genetic and breeding databases. We report here on the release of the Chado Loader, Chado Data Display and Chado Search modules to extend the functionality of the core Tripal modules. These new extension modules provide additional tools for (1) data loading, (2) customized visualization and (3) advanced search functions for supported data types such as organism, marker, QTL/Mendelian Trait Loci, germplasm, map, project, phenotype, genotype and their respective metadata. The Chado Loader module provides data collection templates in Excel with defined metadata and data loaders with front end forms. The Chado Data Display module contains tools to visualize each data type and the metadata which can be used as is or customized as desired. The Chado Search module provides search and download functionality for the supported data types. Also included are the tools to visualize map and species summary. The use of materialized views in the Chado Search module enables better performance as well as flexibility of data modeling in Chado, allowing existing Tripal databases with different metadata types to utilize the module. These Tripal Extension modules are implemented in the Genome Database for Rosaceae (rosaceae.org), CottonGen (cottongen.org), Citrus Genome Database (citrusgenomedb.org), Genome Database for Vaccinium (vaccinium.org) and the Cool Season Food Legume Database (coolseasonfoodlegume.org). Database URL: https://www.citrusgenomedb.org/, https://www.coolseasonfoodlegume.org/, https://www.cottongen.org/, https://www.rosaceae.org/, https://www.vaccinium.org/

  15. The Big Bang of tissue growth: Apical cell constriction turns into tissue expansion.

    PubMed

    Janody, Florence

    2018-03-05

    How tissue growth is regulated during development and cancer is a fundamental question in biology. In this issue, Tsoumpekos et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201705104) and Forest et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201705107) identify Big bang (Bbg) as an important growth regulator of the Drosophila melanogaster wing imaginal disc. © 2018 Janody.

  16. A New Approach to Site Demand-Based Level Inventory Optimization

    DTIC Science & Technology

    2016-06-01

    Command (2016) Navy supply chain management. Accessed April 17, 2016, https://www.navsup.navy.mil/navsup/capabilities/nscm Salmeron J, Craparo E (2016...Engineering 53: 122-142. Naval Supply Systems Command (2016a) Navy supply chain management. Accessed April 17, 2016, https://www.navsup.navy.mil...distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Naval Supply Systems Command (NAVSUP) supports Navy, Marine Corps

  17. Using PIDs to Support the Full Research Data Publishing Lifecycle

    NASA Astrophysics Data System (ADS)

    Waard, A. D.

    2016-12-01

    Persistent identifiers can help support scientific research, track scientific impact and let researchers achieve recognition for their work. We discuss a number of ways in which Elsevier utilizes PIDs to support the scholarly lifecycle: To improve the process of storing and sharing data, Mendeley Data (http://data.mendeley.com) makes use of persistent identifiers to support the dynamic nature of data and software, by tracking and recording the provenance and versioning of datasets. This system now allows the comparison of different versions of a dataset, to see precisely what was changed during a versioning update. To present research data in context for the reader, we include PIDs in research articles as hyperlinks: https://www.elsevier.com/books-and-journals/content-innovation/data-base-linking. In some cases, PIDs fetch data files from the repositories provide that allow the embedding of visualizations, e.g. with PANGAEA and PubChem: https://www.elsevier.com/books-and-journals/content-innovation/protein-viewer; https://www.elsevier.com/books-and-journals/content-innovation/pubchem. To normalize referenced data elements, the Resource Identification Initiative - which we developed together with members of the Force11 RRID group - introduces a unified standard for resource identifiers (RRIDs) that can easily be interpreted by both humans and text mining tools. https://www.force11.org/group/resource-identification-initiative/update-resource-identification-initiative, as can be seen in our Antibody Data app: https://www.elsevier.com/books-and-journals/content-innovation/antibody-data To enable better citation practices and support robust metrics system for sharing research data, we have helped develop, and are early adopters of the Force11 Data Citation Principles and Implementation groups (https://www.force11.org/group/dcip) Lastly, through our work with the Research Data Alliance Publishing Data Services group, we helped create a set of guidelines (http

  18. Reactome Pengine: A web-logic API to the homo sapiens reactome.

    PubMed

    Neaves, Samuel R; Tsoka, Sophia; Millard, Louise A C

    2018-03-30

    Existing ways of accessing data from the Reactome database are limited. Either a researcher is restricted to particular queries defined by a web application programming interface (API), or they have to download the whole database. Reactome Pengine is a web service providing a logic programming based API to the human reactome. This gives researchers greater flexibility in data access than existing APIs, as users can send their own small programs (alongside queries) to Reactome Pengine. The server and an example notebook can be found at https://apps.nms.kcl.ac.uk/reactome-pengine. Source code is available at https://github.com/samwalrus/reactome-pengine and a Docker image is available at https://hub.docker.com/r/samneaves/rp4/ . samuel.neaves@kcl.ac.uk. Supplementary data are available at Bioinformatics online.

  19. EnviroAtlas - Austin, TX - Atlas Area Boundary

    EPA Pesticide Factsheets

    This EnviroAtlas dataset shows the boundary of the Austin, TX Atlas Area. It represents the outside edge of all the block groups included in the EnviroAtlas Area.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  20. EnviroAtlas - Fresno, CA - Riparian Buffer Land Cover by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of different land cover types within 15- and 50-meters of hydrologically connected streams, rivers, and other water bodies within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  1. jsc2017m001162_AstroMoment_RickyArnold_MP4

    NASA Image and Video Library

    2018-03-21

    Astronaut Moments with NASA astronaut Ricky Arnold----------------------------------- Ricky Arnold was selected to be an astronaut 2004. Before his NASA career, he worked in the marine sciences and as a teacher in places like Morocco, Saudi Arabia, and Indonesia. He recalls watching the Challenger accident with Christa McAuliffe, NASA’s first “Teacher in Space”. During his mission to the International Space Station launching on March 21, 2018, Ricky will conduct some of the lost lessons that Christa had planned to film during her mission. Learn more: https://www.nasa.gov/feature/nasa-challenger-center-collaborate-to-perform-christa-mcauliffe-s-legacy-experiments https://www.nasa.gov/astronauts/biographies/richard-r-arnold https://www.nasa.gov/press-release/nasa-television-coverage-set-for-space-station-crew-launch-docking

  2. Defense AT and L. Volume 44, Number 3

    DTIC Science & Technology

    2015-06-01

    CommunityBrowser.aspx?id=527436 Product Support Key References https://acc.dau.mil/productsupport CLL 011 Performance-Based Life Cycle Product Support (PBL...http://icatalog.dau.mil/onlinecatalog/courses.aspx?crs_id=269 CLL 031 PBL Contracting Strategies http://icatalog.dau.mil/onlinecatalog/courses.aspx...CommunityBrowser.aspx?id=527436 Product Support Key References https://acc.dau.mil/productsupport CLL 011 Performance-Based Life Cycle Product Support (PBL) http

  3. Phylowood: interactive web-based animations of biogeographic and phylogeographic histories.

    PubMed

    Landis, Michael J; Bedford, Trevor

    2014-01-01

    Phylowood is a web service that uses JavaScript to generate in-browser animations of biogeographic and phylogeographic histories from annotated phylogenetic input. The animations are interactive, allowing the user to adjust spatial and temporal resolution, and highlight phylogenetic lineages of interest. All documentation and source code for Phylowood is freely available at https://github.com/mlandis/phylowood, and a live web application is available at https://mlandis.github.io/phylowood.

  4. To Arm or Not to Arm: The Case Against Arming Vietnam and the Philippines

    DTIC Science & Technology

    2015-04-13

    23 Bouchat, 103. 24 Freedom House, “Freedom in the World 2014: The Democratic Leadership Gap,” https://freedomhouse. org/sites/default...files/publications- pdf/CNAS_TailoredCoercion_report.pdf (accessed Sep 21, 2014). 49 Freedom House. “Freedom in the World 2014: The Democratic ... Leadership Gap.” https://freedomhouse.org/sites/default/files/FIW%202014%20Scores%20- %20Countries%20and%20Territories.pdf (accessed Nov 24, 2014

  5. Astronaut Moment: Scott Tingle: Guitarist

    NASA Image and Video Library

    2018-01-24

    Description: Before becoming an astronaut, Scott Tingle was in a rock band. He shares his story and how being in a band relates to his training as a NASA astronaut. Tingle is currently living and working aboard the International Space Station. More on Tingle: https://www.nasa.gov/astronauts/biographies/scott-d-tingle More on the space station: https://www.nasa.gov/mission_pages/station/main/index.html

  6. Officer Education: Preparing Leaders for the Air Force of 2035

    DTIC Science & Technology

    2009-02-15

    Environment (JOE) 2008: Challenges and Implications for the Future Joint Force”, https://us.jfcom.mil/sites/ J5 /j59/default.aspx., 23. 6 The world...capabilities might be utilized in their work Unrestricted Warfare. In this book, “ Hacking into websites, targeting financial institutions, terrorism...Forces Command. “Joint Operating Environment: Challenges and Implications for the Future Joint Force.” https://us.jfcom.mil/sites/ J5 /j59

  7. Dismantling the Afghan Opiate Economy: A Cultural and Historical Policy Assessment, with Policy Recommendations

    DTIC Science & Technology

    2005-09-01

    Service translation of “Tajikistani Drug Agency Chief Visits Afghanistan in Bid to Open Office,” Dushanbe Avesta , 18 May 2005. https://fbis.gov...accessed 25 May 2005). Original text in Russian; Dushanbe Avesta assessed to be indirectly funded by George Soros’ Open Society Institute, via the...2005,” Dushanbe Avesta , 24 May 2005. https://fbis.gov, (accessed 25 May 2005). 173 United States Agency for International Development, Weekly

  8. Retraction of articles by Dr M. Aramli.

    PubMed

    2018-06-01

    The below articles published online on Wiley Online Library (wileyonlinelibrary.com) have been retracted by agreement between the submitting author, Mohammad Sadegh Aramli, the Editor-in-Chief, Heriberto Rodriguez-Martinez, and Blackwell Verlag GmbH. After a thorough investigation, there is strong evidence to indicate that the peer review of these papers was compromised. The identities of the reviewers were unable to be verified, and it is believed that these papers were accepted based on recommendations from reviewers not suitably qualified. REFERENCES Aramli, M. (2014). ATP content, oxidative stress and motility of beluga (Huso huso) semen: Effect of short-term storage. Reproduction in Domestic Animals, 49, 636-640. https://doi.org/10.1111/rda.12339 Aramli, M., Nazari, R., & Gharibi, M. (2015), Effect of post-thaw storage time on motility and fertility of cryopreserved beluga sturgeon (Huso huso) sperm. Reproduction in Domestic Animals, 50, 349-352. https://doi.org/10.1111/rda.12484 Aramli, M., Golshahi, K., Nazari, R., Golpour, A., & Aramli, S. (2016). Influence of glutamine supplementation on motility and fertilization success of frozen-thawed persian sturgeon (Acipenser persicus) sperm. Reproduction in Domestic Animals, 51, 474-477. https://doi.org/10.1111/rda.12704 Aramli, M., Golshahi, K., Banan, A., & Sotoudeh, E. (2016). Reliable collection of Caspian brown trout (Salmo trutta caspius) sperm using a catheter. Reproduction in Domestic Animals, 51, 831-834. https://doi.org/10.1111/rda.12740 Aramli, M., Nazari, R., Aramli, S., & Nouri, H. (2017). Motility and oxidative-antioxidant capacity of Huso huso semen, stored at -80°C. Reproduction in Domestic Animals, 52, 170-173. https://doi.org/10.1111/rda.12814. © 2018 Blackwell Verlag GmbH.

  9. Rainfall simulation experiments in the southwestern USA using the Walnut Gulch Rainfall Simulator

    NASA Astrophysics Data System (ADS)

    Polyakov, Viktor; Stone, Jeffry; Holifield Collins, Chandra; Nearing, Mark A.; Paige, Ginger; Buono, Jared; Gomez-Pond, Rae-Landa

    2018-01-01

    This dataset contains hydrological, erosion, vegetation, ground cover, and other supplementary information from 272 rainfall simulation experiments conducted on 23 semiarid rangeland locations in Arizona and Nevada between 2002 and 2013. On 30 % of the plots, simulations were conducted up to five times during the decade of study. The rainfall was generated using the Walnut Gulch Rainfall Simulator on 2 m by 6 m plots. Simulation sites included brush and grassland areas with various degrees of disturbance by grazing, wildfire, or brush removal. This dataset advances our understanding of basic hydrological and biological processes that drive soil erosion on arid rangelands. It can be used to estimate runoff, infiltration, and erosion rates at a variety of ecological sites in the Southwestern USA. The inclusion of wildfire and brush treatment locations combined with long-term observations makes it important for studying vegetation recovery, ecological transitions, and the effect of management. It is also a valuable resource for erosion model parameterization and validation. The dataset is available from the National Agricultural Library at https://data.nal.usda.gov/search/type/dataset" target="_blank">https://data.nal.usda.gov/search/type/dataset (DOI: https://doi.org/10.15482/USDA.ADC/1358583" target="_blank">https://doi.org/10.15482/USDA.ADC/1358583).

  10. EnviroAtlas - Austin, TX - Block Groups

    EPA Pesticide Factsheets

    This EnviroAtlas dataset is the base layer for the Austin, TX EnviroAtlas area. The block groups are from the US Census Bureau and are included/excluded based on EnviroAtlas criteria described in the procedure log. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. Clarifying the Rules for Targeted Killing: An Analytical Framework for Policies Involving Long-Range Armed Drones

    DTIC Science & Technology

    2016-09-08

    the ability of the United States to influence how countries will use these systems ex post facto is always limited, as demonstrated by Saudi...Greg Miller, “CIA Didn’t Know Strike Would Hit al-Qaeda Leader,” Washington Post , June 17, 2015 (as of February 29, 2016: https...Targets Two Leaders of Somali Group Allied with al-Qaeda,” Washington Post , June 29, 2011 (as of February 29, 2016: https://www.washingtonpost.com

  12. JPL-20180410-GRACEFOf-0001-Facebook

    NASA Image and Video Library

    2018-04-10

    GRACE-Follow On (GRACE-FO) is a satellite mission scheduled for launch in May 2018. GRACE-FO will continue the work of the GRACE satellite mission tracking Earth's water movement around the globe. These discoveries provide a unique view of Earth's climate and have far-reaching benefits to society and the world's population. For more information about this mission, visit https://www.nasa.gov/missions/grace-fo and https://gracefo.jpl.nasa.gov/

  13. SpaceTime Environmental Image Information for Scene Understanding

    DTIC Science & Technology

    2016-04-01

    public Internet resources such as Google,65 MapQuest,66 Bing,67 and Yahoo Maps.68 Approved for public release; distribution unlimited. 9 Table 3...azimuth angle 3 Terrain and location: USACE AGC — Satellite/aerial imagery and terrain analysis 4 Terrain and location: Google, MapQuest, Bing, Yahoo ...Maps. [accessed 2015 Dec]. https://www.bing.com/maps/. 68. YAHOO ! Maps. [accessed 2015 Dec]. https://maps.yahoo.com/b/. 69. 557th Weather Wing. US

  14. Announcement: Guidance for U.S. Laboratory Testing for Zika Virus Infection: Implications for Health Care Providers.

    PubMed

    2016-11-25

    CDC has released updated guidance online for U.S. laboratory testing for Zika virus infection. The guidance is available at https://www.cdc.gov/zika/laboratories/lab-guidance.html. Frequently asked questions are addressed at https://www.cdc.gov/zika/laboratories/lab-guidance-faq.html. This guidance updates recommendations for testing of specimens by U.S. laboratories for possible Zika virus infection. Major updates to the guidance with clinical implications for health care providers include the following.

  15. jsc2017m001161_AstroMoment_Drew-Feustel_MP4

    NASA Image and Video Library

    2018-03-21

    Astronaut Moments with NASA astronaut Drew Feustel-------------------------------- Drew Feustel went from being an automobile mechanic to repairing the Hubble Space Telescope as a NASA astronaut. Now, he is preparing to launch to the International Space Station on March 21, 2018 to live and work aboard the orbiting laboratory for about six months. https://www.nasa.gov/astronauts/biographies/andrew-j-feustel https://www.nasa.gov/press-release/nasa-television-coverage-set-for-space-station-crew-launch-docking

  16. STEMonstration: Nutrition

    NASA Image and Video Library

    2018-05-07

    Watch NASA astronaut Scott Tingle demonstrate the importance of astronaut nutrition on the International Space Station! Do you have what it takes to stay healthy in space? Try developing your own astronaut menu by checking out https://www.nasa.gov/stemonstrations for a corresponding lesson plan and see more videos like these! For a high quality copy for download, visit: For a high quality copy for download, visit: https://archive.org/details/jsc2018m000319_STEMonstrations_Nutrition_MXF

  17. EnviroAtlas - Austin, TX - Riparian Buffer Land Cover by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of forested, vegetated, and impervious land within 15- and 50-meters of hydrologically connected streams, rivers, and other water bodies within the EnviroAtlas community area. Forest is defined as Trees & Forest. Vegetated cover is defined as Trees & Forest and Grass & Herbaceous. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  18. EnviroAtlas - Austin, TX - Park Access by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset shows the block group population that is within and beyond an easy walking distance (500m) of a park entrance. Park entrances were included in this analysis if they were within 5km of the EnviroAtlas community boundary. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  19. EnviroAtlas - Austin, TX - Impervious Proximity Gradient

    EPA Pesticide Factsheets

    In any given 1-square meter point in this EnviroAtlas dataset, the value shown gives the percentage of impervious surface within 1 square kilometer centered over the given point. Water is shown as '-99999' in this dataset to distinguish it from land areas with low impervious. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  20. Integration of bio- and geoscience data with the ODM2 standards and software ecosystem for the CZOData and BiG CZ Data projects

    NASA Astrophysics Data System (ADS)

    Aufdenkampe, A. K.; Mayorga, E.; Horsburgh, J. S.; Lehnert, K. A.; Zaslavsky, I.

    2015-12-01

    We have developed a family of solutions to the challenges of integrating diverse data from of biological and geological (BiG) disciplines for Critical Zone (CZ) science. These standards and software solutions have been developed around the new Observations Data Model version 2.0 (ODM2, http://ODM2.org), which was designed as a profile of the Open Geospatial Consortium's (OGC) Observations and Measurements (O&M) standard. The ODM2 standards and software ecosystem has at it's core an information model that balances specificity with flexibility to powerfully and equally serve the needs of multiple dataset types, from multivariate sensor-generated time series to geochemical measurements of specimen hierarchies to multi-dimensional spectral data to biodiversity observations. ODM2 has been adopted as the information model guiding the next generation of cyberinfrastructure development for the Interdisciplinary Earth Data Alliance (http://www.iedadata.org/) and the CUAHSI Water Data Center (https://www.cuahsi.org/wdc). Here we present several components of the ODM2 standards and software ecosystem that were developed specifically to help CZ scientists and their data managers to share and manage data through the national Critical Zone Observatory data integration project (CZOData, http://criticalzone.org/national/data/) and the bio integration with geo for critical zone science data project (BiG CZ Data, http://bigcz.org/). These include the ODM2 Controlled Vocabulary system (http://vocabulary.odm2.org), the YAML Observation Data Archive & exchange (YODA) File Format (https://github.com/ODM2/YODA-File) and the BiG CZ Toolbox, which will combine easy-to-install ODM2 databases (https://github.com/ODM2/ODM2) with a variety of graphical software packages for data management such as ODMTools (https://github.com/ODM2/ODMToolsPython) and the ODM2 Streaming Data Loader (https://github.com/ODM2/ODM2StreamingDataLoader).

  1. EnviroAtlas -Pittsburgh, PA- One Meter Resolution Urban Land Cover Data (2010) Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas).The EnviroAtlas Pittsburgh, PA land cover map was generated from United States Department of Agriculture (USDA) National Agricultural Imagery Program (NAIP) four band (red, green, blue, and near infrared) aerial photography at 1 m spatial resolution. Imagery was collected on multiple dates in June 2010. Five land cover classes were mapped: water, impervious surfaces, soil and barren land, trees and forest, and grass and herbaceous non-woody vegetation. An accuracy assessment of 500 completely random and 81 stratified random points yielded an overall accuracy of 86.57 percent. The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Pittsburgh, PA. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  2. Sustainable Materials Management (SMM) - Materials and Waste Management in the United States Key Facts and Figures

    EPA Pesticide Factsheets

    Each year EPA produces a report called Advancing Sustainable Materials Management: Facts and Figures. It includes information on municipal solid waste (MSW) generation, recycling, composting, combustion with energy recovery and landfilling. The 2014 report provides information on historical tipping fees for MSW, and information on the construction and demolition debris generation, which is outside of the scope of MSW. The Facts and Figures website includes recent reports (2012 to 2014 as well as historical information on materials in the U.S. Municipal Waste Stream, 1960 to 2014 (in tons). The reports for both current and historical waste prevention can be accessed at EPA's SMM website. The recent Annual Facts and Figures reports are accessible at the following link: https://www.epa.gov/smm/advancing-sustainable-materials-management-facts-and-figures-report. Historical data as well as studies and summary tables related to the Advancing Sustainable Materials Management Report are accessible here: https://www.epa.gov/smm/studies-summary-tables-and-data-related-advancing-sustainable-materials-management-report. An excel file containing the data from 1960 - 2014 is located here: https://edg.epa.gov/data/PUBLIC/OLEM/Materials_Municipal_Waste_Stream_1960_to_2014.xlsx. EPA also maintains a list of state and local waste characterization studies (reports are not available for all states). You can search for your state at https://www.epa.gov/smm/advancing-

  3. Reply to Comment by Nishimura Et Al.

    NASA Astrophysics Data System (ADS)

    Mozer, F. S.; Hull, A.; Lejosne, S.; Vasko, I. Y.

    2018-03-01

    Nishimura et al. (2010, https://doi.org/10.1126/science.1193186, 2011, https://doi.org/10.1029/2011JA016876, 2013, https://doi.org/10.1029/2012JA018242, and in their comment, hereafter called N18) have suggested that chorus waves interact with equatorial electrons to produce pulsating auroras. We agree that chorus can scatter electrons >10 keV, as do Time Domain Structures (TDSs). Lower-energy electrons occurring in pulsating auroras cannot be produced by chorus, but such electrons are scattered and accelerated by TDS. TDSs often occur with chorus and have power in their spectra at chorus frequencies. Thus, the absence of power at low frequencies is not evidence that TDSs are absent, as an example shows. Through examination of equatorial electric field waveforms and electron pitch angle distributions measured on the Time History of Events and Macroscale Interactions during Substorms satellites (in place of examining field and particle spectra, as done by Nishimura et al.), we show that chorus cannot produce the field-aligned electrons associated with pulsating auroras in the Nishimura et al. (2010, https://doi.org/10.1126/science.1193186) events, but TDSs can. Equatorial field-aligned electron distributions associated with pulsating auroras and created by TDS in the absence of chorus or any other wave at the equator are also shown.

  4. Global War on Terrorism: Analyzing the Strategic Threat

    DTIC Science & Technology

    2004-11-01

    lous Muslim country, the jihadists have developed an anti-Semitic streak. Abu Bakar Ba’asyir, a leading Indonesian jihadist, was arrested following...The Public Teachings of Abu Bakar Ba’asyir,” Ambon PosKo Zwolle, online ed., in English, 26 May 2003, URL: <https://datawarehouse10.dia.ic.gov/fcgi-bin...Teachings of Abu Bakar Ba’asyir.” Ambon PosKo Zwolle, on- line ed., in English, 26 May 2003. URL: <https://datawarehouse10.dia.ic.gov/fcgi- bin

  5. MetaPhinder-Identifying Bacteriophage Sequences in Metagenomic Data Sets.

    PubMed

    Jurtz, Vanessa Isabell; Villarroel, Julia; Lund, Ole; Voldby Larsen, Mette; Nielsen, Morten

    Bacteriophages are the most abundant biological entity on the planet, but at the same time do not account for much of the genetic material isolated from most environments due to their small genome sizes. They also show great genetic diversity and mosaic genomes making it challenging to analyze and understand them. Here we present MetaPhinder, a method to identify assembled genomic fragments (i.e.contigs) of phage origin in metagenomic data sets. The method is based on a comparison to a database of whole genome bacteriophage sequences, integrating hits to multiple genomes to accomodate for the mosaic genome structure of many bacteriophages. The method is demonstrated to out-perform both BLAST methods based on single hits and methods based on k-mer comparisons. MetaPhinder is available as a web service at the Center for Genomic Epidemiology https://cge.cbs.dtu.dk/services/MetaPhinder/, while the source code can be downloaded from https://bitbucket.org/genomicepidemiology/metaphinder or https://github.com/vanessajurtz/MetaPhinder.

  6. EnviroAtlas - Historic Places by 12-digit HUC for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset portrays the total number of historic places located within each 12-digit Hydrologic Unit (HUC). The historic places data were compiled from the National Park Service's National Register of Historic Places (NRHP), which provides official federal lists of districts, sites, buildings, structures and objects significant to American history, architecture, archeology, engineering, and culture. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  7. EnviroAtlas - 303(d) Impairments by 12-digit HUC for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset depicts the total length of stream or river flowlines that have impairments submitted to the EPA by states under section 303(d) of the Clean Water Act. It also contains the total lengths of streams, rivers, and canals, total waterbody area, and stream density (stream length per area) from the US Geological Survey's high-resolution National Hydrography Dataset (NHD).This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  8. EnviroAtlas - Memphis, TN - Tree Cover Configuration and Connectivity, Water Background

    EPA Pesticide Factsheets

    This EnviroAtlas dataset categorizes forest land cover into structural elements (e.g. core, edge, connector, etc.). Forest is defined as Trees & Forest and Woody Wetlands. Water was considered background (value 129) during the analysis to create this dataset, however it has been converted into value 10 to distinguish it from land area background. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  9. EnviroAtlas - Woodbine, IA - Ecosystem Services by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset presents environmental benefits of the urban forest in 1 block group in Woodbine, Iowa. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  10. EnviroAtlas - Fresno, CA - Ecosystem Services by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset presents environmental benefits of the urban forest in 405 block groups in Fresno, California. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. EnviroAtlas - Portland, ME - Ecosystem Services by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset presents environmental benefits of the urban forest in 146 block groups in Portland, Maine. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  12. EnviroAtlas - Memphis, TN - Ecosystem Services by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset presents environmental benefits of the urban forest in 703 block groups in Memphis, Tennessee. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  13. EnviroAtlas - New York, NY - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  14. EnviroAtlas - Paterson, NJ - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  15. EnviroAtlas - Fresno, CA - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  16. EnviroAtlas - Green Bay, WI - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  17. EnviroAtlas - Des Moines, IA - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  18. EnviroAtlas - Minneapolis/St. Paul, MN - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  19. EnviroAtlas - Woodbine, IA - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  20. EnviroAtlas - Phoenix, AZ - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  1. EnviroAtlas - Pittsburgh, PA - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  2. EnviroAtlas - New Bedford, MA - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  3. EnviroAtlas - Milwaukee, WI - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  4. Retracted: Addition of a single methyl group to a small molecule sodium channel inhibitor introduces a new mode of gating modulation, by L Wang, SG Zellmer, DM Printzenhoff and NA Castle. British Journal of Pharmacology, volume 172(20): 4905-4918, published in October 2015; DOI 10.1111/bph.13259.

    PubMed

    2018-07-01

    The above article, published by the British Journal of Pharmacology in October 2015 (https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.13259), has been retracted by agreement between the authors, the journal Editor in Chief and John Wiley & Sons Limited. The retraction has been agreed owing to the discovery of errors in the chemical structure of the synthetic compounds generated. The corrected structure is now available in the article PF-06526290 can both enhance and inhibit conduction through voltage gated sodium channels by L Wang, SG Zellmer, DM Printzenhoff and NA Castle, 2018, https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.14338. Reference Wang L, Zellmer SG, Printzenhoff DM, Castle NA (2015). Addition of a single methyl group to a small molecule sodium channel inhibitor introduces a new mode of gating modulation. Br J Pharmacol 172: 4905-4918. https://doi.org/10.1111/bph.13259. © 2018 The British Pharmacological Society.

  5. Kansas Water Science Center bookmark

    USGS Publications Warehouse

    ,

    2017-03-27

    The U.S. Geological Survey Kansas Water Science Center has collected and interpreted hydrologic information in Kansas since 1895. Data collected include streamflow and gage height, reservoir content, water quality and water quantity, suspended sediment, and groundwater levels. Interpretative hydrologic studies are completed on national, regional, statewide, and local levels and cooperatively funded through more than 40 partnerships with these agencies. The U.S. Geological Survey provides impartial scientific information to describe and understand the health of our ecosystems and environment; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. These collected data are in the National Water Information System https://waterdata.usgs.gov/ks/nwis/rt, and all results are documented in reports that also are online at https://ks.water.usgs.gov/. Follow the USGS Kansas Water Science Center on Twitter for the most recent updates and other information: https://twitter.com/USGS_KS.

  6. EnviroAtlas - Austin, TX - Proximity to Parks

    EPA Pesticide Factsheets

    This EnviroAtlas dataset shows the approximate walking distance from a park entrance at any given location within the EnviroAtlas community boundary. The zones are estimated in 1/4 km intervals up to 1km then in 1km intervals up to 5km. Park entrances were included in this analysis if they were within 5km of the community boundary. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  7. EnviroAtlas - Austin, TX - Estimated Percent Green Space Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates green space along walkable roads. Green space within 25 meters of the road centerline is included and the percentage is based on the total area between street intersections. Green space provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  8. EnviroAtlas - Austin, TX - Land Cover by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of each block group that is classified as impervious, forest, green space, and agriculture. Forest is defined as Trees & Forest. Green space is defined as Trees & Forest, Grass & Herbaceous, and Agriculture. This dataset also includes the area per capita for each block group for some land cover types. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  9. EnviroAtlas - Austin, TX - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  10. EnviroAtlas - Austin, TX - Green Space Proximity Gradient

    EPA Pesticide Factsheets

    In any given 1-square meter point in this EnviroAtlas dataset, the value shown gives the percentage of square meters of greenspace within 1/4 square kilometer centered over the given point. Green space is defined as Trees & Forest, Grass & Herbaceous, and Agriculture. Water is shown as -99999 in this dataset to distinguish it from land areas with very low green space. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. EnviroAtlas - Austin, TX - Greenspace Around Schools by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas data set shows the number of schools in each block group in the EnviroAtlas community boundary as well as the number of schools where less than 25% of the area within 100 meters of the school is classified as greenspace. Green space is defined as Trees & Forest, Grass & Herbaceous, and Agriculture. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  12. EnviroAtlas - Austin, TX - Tree Cover Configuration and Connectivity, Water Background

    EPA Pesticide Factsheets

    This EnviroAtlas dataset categorizes forest land cover into structural elements (e.g. core, edge, connector, etc.). In this community, Forest is defined as Trees & Forest (Trees & Forest - 40 = 1; All Else = 0). Water was considered background (value 129) during the analysis to create this dataset, however it has been converted into value 10 to distinguish it from land area background. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  13. EnviroAtlas - Austin, TX - Historic Places by Census Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset portrays the total number of historic places located within each Census Block Group (CBG). The historic places data were compiled from the National Register of Historic Places, which provides official federal lists of districts, sites, buildings, structures and objects significant to American history, architecture, archeology, engineering, and culture.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  14. Response to comment by Walker et al. on “From data to decisions: Processing information, biases, and beliefs for improved management of natural resources and environments”

    USGS Publications Warehouse

    Glynn, Pierre D.; Voinov, Alexey A.; Shapiro, Carl D.; White, Paul A.

    2018-01-01

    Our different kinds of minds and types of thinking affect the ways we decide, take action, and cooperate (or not). The comment by Walker et al. (2018, https://doi.org/10.1002/2017EF000750) illustrates several points made by Glynn et al. (2017, https://doi.org/10.1002/2016EF000487) and many other articles. Namely, biases and beliefs often drive scientific reasoning, and scientists, just like other humans, are intimately attached to their values and heuristics. Scientists, just like many other people, also tend to read and interpret text in ways that best match their individual perceptions of a problem or issue: in many cases paraphrasing and changing the meaning of what they read to better match their initial ideas. Walker et al. are doing interesting and important research on uncertainty. Nonetheless, they misinterpret the work, assumptions, and conclusions brought forth by Glynn et al. (2017, https://doi.org/10.1002/2016EF000487).

  15. EnviroAtlas - Austin, TX - Ecosystem Services by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset presents environmental benefits of the urban forest in 750 block groups in Austin, Texas. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  16. EnviroAtlas - Cleveland, OH - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  17. EnviroAtlas - Portland, ME - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  18. EnviroAtlas - Portland, OR - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  19. EnviroAtlas - Durham, NC - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  20. EnviroAtlas - Tampa, FL - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  1. EnviroAtlas - Memphis, TN - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  2. EnviroAtlas - New York, NY - Green Space Proximity Gradient

    EPA Pesticide Factsheets

    In any given 1-square meter point in this EnviroAtlas dataset, the value shown gives the percentage of square meters of greenspace within 1/4 square kilometer centered over the given point. In this community, green space is defined as Trees & Forest and Grass & Herbaceous. Water is shown as -99999 in this dataset to distinguish it from land areas with very low green space. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  3. EnviroAtlas - Des Moines, IA - Green Space Proximity Gradient

    EPA Pesticide Factsheets

    In any given 1-square meter point in this EnviroAtlas dataset, the value shown gives the percentage of square meters of greenspace within 1/4 square kilometer centered over the given point. Green space is defined as Trees & Forest, Grass & Herbaceous, and Agriculture. Water is shown as -99999 in this dataset to distinguish it from land areas with very low green space. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  4. EnviroAtlas - Durham, NC - Land Cover Summaries by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of each block group that is classified as impervious, forest, green space, wetland, and agriculture. Impervious is a combination of dark and light impervious. Green space is a combination of trees and forest and grass and herbaceous. This dataset also includes the area per capita for each block group for impervious, forest, and green space land cover. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  5. We Are the Explorers 2017

    NASA Image and Video Library

    2017-10-24

    Why do we explore? Simply put, it is part of who we are, and it is something we have done throughout our history. In NASA's new video, "We Are the Explorers," we take a look at that tradition of reaching for things just beyond our grasp and how it is helping us lay the foundation for our greatest journeys ahead. Archive.org address: https://archive.org/details/jsc2017m00975_WeAreTheExplorers_2017 Youtube: https://youtu.be/oTWnoSuocMo

  6. Mutation update of transcription factor genes FOXE3, HSF4, MAF, and PITX3 causing cataracts and other developmental ocular defects.

    PubMed

    Anand, Deepti; Agrawal, Smriti A; Slavotinek, Anne; Lachke, Salil A

    2018-04-01

    Mutations in the transcription factor genes FOXE3, HSF4, MAF, and PITX3 cause congenital lens defects including cataracts that may be accompanied by defects in other components of the eye or in nonocular tissues. We comprehensively describe here all the variants in FOXE3, HSF4, MAF, and PITX3 genes linked to human developmental defects. A total of 52 variants for FOXE3, 18 variants for HSF4, 20 variants for MAF, and 19 variants for PITX3 identified so far in isolated cases or within families are documented. This effort reveals FOXE3, HSF4, MAF, and PITX3 to have 33, 16, 18, and 7 unique causal mutations, respectively. Loss-of-function mutant animals for these genes have served to model the pathobiology of the associated human defects, and we discuss the currently known molecular function of these genes, particularly with emphasis on their role in ocular development. Finally, we make the detailed FOXE3, HSF4, MAF, and PITX3 variant information available in the Leiden Online Variation Database (LOVD) platform at https://www.LOVD.nl/FOXE3, https://www.LOVD.nl/HSF4, https://www.LOVD.nl/MAF, and https://www.LOVD.nl/PITX3. Thus, this article informs on key variants in transcription factor genes linked to cataract, aphakia, corneal opacity, glaucoma, microcornea, microphthalmia, anterior segment mesenchymal dysgenesis, and Ayme-Gripp syndrome, and facilitates their access through Web-based databases. © 2018 Wiley Periodicals, Inc.

  7. EnviroAtlas -Durham, NC- One Meter Resolution Urban Area Land Cover Map (2010) Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas ). The EnviroAtlas Durham, NC land cover map was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from July 2010 at 1 m spatial resolution. Five land cover classes were mapped: impervious surface, soil and barren, grass and herbaceous, trees and forest, and water. An accuracy assessment using a stratified random sampling of 500 samples yielded an overall accuracy of 83 percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Durham, and includes the cities of Durham, Chapel Hill, Carrboro and Hillsborough, NC. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  8. EnviroAtlas -- Austin, TX -- One Meter Resolution Urban Land Cover Data (2010) Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas ). The Austin, TX EnviroAtlas One Meter-scale Urban Land Cover (MULC) Data were generated from United States Department of Agriculture (USDA) National Agricultural Imagery Program (NAIP) four band (red, green, blue, and near infrared) aerial photography at 1 m spatial resolution from multiple dates in May, 2010. Six land cover classes were mapped: water, impervious surfaces, soil and barren land, trees, grass-herbaceous non-woody vegetation, and agriculture. An accuracy assessment of 600 completely random and 55 stratified random photo interpreted reference points yielded an overall User's fuzzy accuracy of 87 percent. The area mapped is the US Census Bureau's 2010 Urban Statistical Area for Austin, TX plus a 1 km buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas

  9. Coherent Seismic Arrivals in the P Wave Coda of the 2012 Mw 7.2 Sumatra Earthquake: Water Reverberations or an Early Aftershock?

    NASA Astrophysics Data System (ADS)

    Fan, Wenyuan; Shearer, Peter M.

    2018-04-01

    Teleseismic records of the 2012 Mw 7.2 Sumatra earthquake contain prominent phases in the P wave train, arriving about 50 to 100 s after the direct P arrival. Azimuthal variations in these arrivals, together with back-projection analysis, led Fan and Shearer (https://doi.org/10.1002/2016GL067785) to conclude that they originated from early aftershock(s), located ˜150 km northeast of the mainshock and landward of the trench. However, recently, Yue et al. (https://doi.org/10.1002/2017GL073254) argued that the anomalous arrivals are more likely water reverberations from the mainshock, based mostly on empirical Green's function analysis of a M6 earthquake near the mainshock and a water phase synthetic test. Here we present detailed back-projection and waveform analyses of three M6 earthquakes within 100 km of the Mw 7.2 earthquake, including the empirical Green's function event analyzed in Yue et al. (https://doi.org/10.1002/2017GL073254). In addition, we examine the waveforms of three M5.5 reverse-faulting earthquakes close to the inferred early aftershock location in Fan and Shearer (https://doi.org/10.1002/2016GL067785). These results suggest that the reverberatory character of the anomalous arrivals in the mainshock coda is consistent with water reverberations, but the origin of this energy is more likely an early aftershock rather than delayed and displaced water reverberations from the mainshock.

  10. EnviroAtlas -Milwaukee, WI- One Meter Resolution Urban Land Cover Data (2010) Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The EnviroAtlas Milwaukee, WI land cover data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2010 at 1 m spatial resolution. Nine land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, agriculture, and wetlands (woody and emergent). An accuracy assessment using a completely random sampling of 600 samples yielded an overall accuracy of 85.39% percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Milwaukee. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-

  11. EnviroAtlas -- Woodbine, IA -- One Meter Resolution Urban Land Cover Data (2011) Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The EnviroAtlas Woodbine, IA land cover (LC) data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2011 at 1 m spatial resolution. Six land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, and agriculture. An accuracy assessment using a completely random sampling of 600 samples yielded an overall accuracy of 87.03% percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Woodbine. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  12. EnviroAtlas -Portland, ME- One Meter Resolution Urban Land Cover (2010) Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The Portland, ME land cover map was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2010 at 1 m spatial resolution. Nine land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, agriculture, and wetlands (woody and emergent). An accuracy assessment using a stratified random sampling of 600 samples yielded an overall accuracy of 87.5 percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Portland.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  13. A Big Data Task Force Review of Advances in Data Access and Discovery Within the Science Disciplines of the NASA Science Mission Directorate (SMD)

    NASA Astrophysics Data System (ADS)

    Walker, R. J.; Beebe, R. F.

    2017-12-01

    One of the basic problems the NASA Science Mission Directorate (SMD) faces when dealing with preservation of scientific data is the variety of the data. This stems from the fact that NASA's involvement in the sciences spans a broad range of disciplines across the Science Mission Directorate: Astrophysics, Earth Sciences, Heliophysics and Planetary Science. As the ability of some missions to produce large data volumes has accelerated, the range of problems associated with providing adequate access to the data has demanded diverse approaches for data access. Although mission types, complexity and duration vary across the disciplines, the data can be characterized by four characteristics: velocity, veracity, volume, and variety. The rate of arrival of the data (velocity) must be addressed at the individual mission level, validation and documentation of the data (veracity), data volume and the wide variety of data products present huge challenges as the science disciplines strive to provide transparent access to their available data. Astrophysics, supports an integrated system of data archives based on frequencies covered (UV, visible, IR, etc.) or subject areas (extrasolar planets, extra galactic, etc.) and is accessed through the Astrophysics Data Center (https://science.nasa.gov/astrophysics/astrophysics-data-centers/). Earth Science supports the Earth Observing System (https://earthdata.nasa.gov/) that manages the earth science satellite data. The discipline supports 12 Distributed Active Archive Centers. Heliophysics provides the Space Physics Data Facility (https://spdf.gsfc.nasa.gov/) that supports the heliophysics community and Solar Data Analysis Center (https://umbra.nascom.nasa.gov/index.html) that allows access to the solar data. The Planetary Data System (https://pds.nasa.gov) is the main archive for planetary science data. It consists of science discipline nodes (Atmospheres, Geosciences, Cartography and Imaging Sciences, Planetary Plasma Interactions

  14. Long-term vegetation monitoring in Great Britain - the Countryside Survey 1978-2007 and beyond

    NASA Astrophysics Data System (ADS)

    Wood, Claire M.; Smart, Simon M.; Bunce, Robert G. H.; Norton, Lisa R.; Maskell, Lindsay C.; Howard, David C.; Scott, W. Andrew; Henrys, Peter A.

    2017-07-01

    precise locations of the plots are restricted, largely for reasons of landowner confidentiality, sample sites are intended to be representative of larger areas, and many potential opportunities for further analyses remain. Data from each of the survey years (1978, 1990, 1998, 2007) are available via the following DOIs: Countryside Survey 1978 vegetation plot data (https://doi.org/10.5285/67bbfabb-d981-4ced-b7e7-225205de9c96" target="_blank">https://doi.org/10.5285/67bbfabb-d981-4ced-b7e7-225205de9c96), Countryside Survey 1990 vegetation plot data (https://doi.org/10.5285/26e79792-5ffc-4116-9ac7-72193dd7f191" target="_blank">https://doi.org/10.5285/26e79792-5ffc-4116-9ac7-72193dd7f191), Countryside Survey 1998 vegetation plot data (https://doi.org/10.5285/07896bb2-7078-468c-b56d-fb8b41d47065" target="_blank">https://doi.org/10.5285/07896bb2-7078-468c-b56d-fb8b41d47065), Countryside Survey 2007 vegetation plot data (https://doi.org/10.5285/57f97915-8ff1-473b-8c77-2564cbd747bc" target="_blank">https://doi.org/10.5285/57f97915-8ff1-473b-8c77-2564cbd747bc).

  15. MetaPhinder—Identifying Bacteriophage Sequences in Metagenomic Data Sets

    PubMed Central

    Villarroel, Julia; Lund, Ole; Voldby Larsen, Mette; Nielsen, Morten

    2016-01-01

    Bacteriophages are the most abundant biological entity on the planet, but at the same time do not account for much of the genetic material isolated from most environments due to their small genome sizes. They also show great genetic diversity and mosaic genomes making it challenging to analyze and understand them. Here we present MetaPhinder, a method to identify assembled genomic fragments (i.e.contigs) of phage origin in metagenomic data sets. The method is based on a comparison to a database of whole genome bacteriophage sequences, integrating hits to multiple genomes to accomodate for the mosaic genome structure of many bacteriophages. The method is demonstrated to out-perform both BLAST methods based on single hits and methods based on k-mer comparisons. MetaPhinder is available as a web service at the Center for Genomic Epidemiology https://cge.cbs.dtu.dk/services/MetaPhinder/, while the source code can be downloaded from https://bitbucket.org/genomicepidemiology/metaphinder or https://github.com/vanessajurtz/MetaPhinder. PMID:27684958

  16. EnviroAtlas - Green Bay, WI - Near Road Tree Buffer

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest and Woody Wetlands. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  17. EnviroAtlas - Fresno, CA - Near Road Tree Buffer

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest and Orchards. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  18. EnviroAtlas - Memphis, TN - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  19. EnviroAtlas - Pittsburgh, PA - Near Road Tree Buffer

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  20. EnviroAtlas - Milwaukee, WI - Near Road Tree Buffer

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest and Woody Wetlands. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  1. EnviroAtlas - New Bedford, MA - Near Road Tree Buffer

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest and Woody Wetlands. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  2. EnviroAtlas - Portland, ME - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  3. EnviroAtlas - Cleveland, OH - Near Road Tree Buffer

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. In this community, forest is defined as Trees & Forest and Woody Wetlands. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  4. EnviroAtlas - New York, NY - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  5. EnviroAtlas - Green Bay, WI - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  6. EnviroAtlas - Pittsburgh, PA - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  7. EnviroAtlas - Tampa, FL - Near Road Tree Buffer

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest and Woody Wetlands. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  8. EnviroAtlas - Portland, OR - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  9. EnviroAtlas - Memphis, TN - Near Road Tree Buffer

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest and Woody Wetlands. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  10. EnviroAtlas - Paterson, NJ - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. EnviroAtlas - Cleveland, OH - Estimated Percent Green Space Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates green space along walkable roads. Green space within 25 meters of the road centerline is included and the percentage is based on the total area between street intersections. In this community, green space is defined as Trees & Forest, Grass & Herbaceous, Woody Wetlands, and Emergent Wetlands. In this metric, water is also included in green space. Green space provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  12. EnviroAtlas - Paterson, NJ - Near Road Tree Buffer

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  13. EnviroAtlas - Des Moines, IA - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  14. EnviroAtlas - Phoenix, AZ - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  15. EnviroAtlas - Cleveland, OH - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. In this community, tree cover is defined as Trees & Forest and Woody Wetlands. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  16. EnviroAtlas - Milwaukee, WI - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  17. EnviroAtlas - Portland, ME - Near Road Tree Buffer

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest and Woody Wetlands. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  18. EnviroAtlas - Durham, NC - Near Road Tree Buffer

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  19. EnviroAtlas - Tampa, FL - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  20. EnviroAtlas - Durham, NC - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  1. EnviroAtlas - New York, NY - Near Road Tree Buffer

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. In this community, forest is defined as Trees & Forest. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  2. EnviroAtlas - Fresno, CA - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  3. EnviroAtlas - Des Moines, IA - Near Road Tree Buffer

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  4. EnviroAtlas - New Bedford, MA - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  5. EnviroAtlas - Woodbine, IA - Near Road Tree Buffer

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  6. EnviroAtlas - Phoenix, AZ - Near Road Tree Buffer

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  7. EnviroAtlas - Woodbine, IA - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  8. EnviroAtlas - Pittsburgh, PA - Ecosystem Services by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset presents environmental benefits of the urban forest in 1,089 block groups in Pittsburgh, Pennsylvania. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  9. EnviroAtlas - Phoenix, AZ - Ecosystem Services by Block Group

    EPA Pesticide Factsheets

    This dataset presents environmental benefits of the urban forest in 2,434 block groups in Phoenix, Arizona. Carbon attributes, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. Temperature reduction values for Phoenix will be added when they become available. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  10. EnviroAtlas - New Bedford, MA - Ecosystem Services by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset presents environmental benefits of the urban forest in 128 block group in New Bedford, Massachusetts. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. EnviroAtlas - Tampa, FL - Ecosystem Services by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset presents environmental benefits of the urban forest in 1,833 block groups in Tampa Bay, Florida. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  12. EnviroAtlas - Minneapolis/St. Paul, MN - Ecosystem Services by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset presents environmental benefits of the urban forest in 1,772 block groups in Minneapolis/St. Paul, Minnesota. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  13. EnviroAtlas - Cleveland, OH - Ecosystem Services by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset presents environmental benefits of the urban forest in 1,442 block groups in Cleveland, Ohio. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  14. EnviroAtlas - Milwaukee, WI - Ecosystem Services by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset presents environmental benefits of the urban forest in 1,175 block groups in Milwaukee, Wisconsin. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  15. EnviroAtlas - Green Bay, WI - Ecosystem Services by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset presents environmental benefits of the urban forest in 155 block groups in Green Bay, Wisconsin. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  16. PMAnalyzer: a new web interface for bacterial growth curve analysis.

    PubMed

    Cuevas, Daniel A; Edwards, Robert A

    2017-06-15

    Bacterial growth curves are essential representations for characterizing bacteria metabolism within a variety of media compositions. Using high-throughput, spectrophotometers capable of processing tens of 96-well plates, quantitative phenotypic information can be easily integrated into the current data structures that describe a bacterial organism. The PMAnalyzer pipeline performs a growth curve analysis to parameterize the unique features occurring within microtiter wells containing specific growth media sources. We have expanded the pipeline capabilities and provide a user-friendly, online implementation of this automated pipeline. PMAnalyzer version 2.0 provides fast automatic growth curve parameter analysis, growth identification and high resolution figures of sample-replicate growth curves and several statistical analyses. PMAnalyzer v2.0 can be found at https://edwards.sdsu.edu/pmanalyzer/ . Source code for the pipeline can be found on GitHub at https://github.com/dacuevas/PMAnalyzer . Source code for the online implementation can be found on GitHub at https://github.com/dacuevas/PMAnalyzerWeb . dcuevas08@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  17. Donated chemical probes for open science.

    PubMed

    Müller, Susanne; Ackloo, Suzanne; Arrowsmith, Cheryl H; Bauser, Marcus; Baryza, Jeremy L; Blagg, Julian; Böttcher, Jark; Bountra, Chas; Brown, Peter J; Bunnage, Mark E; Carter, Adrian J; Damerell, David; Dötsch, Volker; Drewry, David H; Edwards, Aled M; Edwards, James; Elkins, Jon M; Fischer, Christian; Frye, Stephen V; Gollner, Andreas; Grimshaw, Charles E; IJzerman, Adriaan; Hanke, Thomas; Hartung, Ingo V; Hitchcock, Steve; Howe, Trevor; Hughes, Terry V; Laufer, Stefan; Li, Volkhart Mj; Liras, Spiros; Marsden, Brian D; Matsui, Hisanori; Mathias, John; O'Hagan, Ronan C; Owen, Dafydd R; Pande, Vineet; Rauh, Daniel; Rosenberg, Saul H; Roth, Bryan L; Schneider, Natalie S; Scholten, Cora; Singh Saikatendu, Kumar; Simeonov, Anton; Takizawa, Masayuki; Tse, Chris; Thompson, Paul R; Treiber, Daniel K; Viana, Amélia Yi; Wells, Carrow I; Willson, Timothy M; Zuercher, William J; Knapp, Stefan; Mueller-Fahrnow, Anke

    2018-04-20

    Potent, selective and broadly characterized small molecule modulators of protein function (chemical probes) are powerful research reagents. The pharmaceutical industry has generated many high-quality chemical probes and several of these have been made available to academia. However, probe-associated data and control compounds, such as inactive structurally related molecules and their associated data, are generally not accessible. The lack of data and guidance makes it difficult for researchers to decide which chemical tools to choose. Several pharmaceutical companies (AbbVie, Bayer, Boehringer Ingelheim, Janssen, MSD, Pfizer, and Takeda) have therefore entered into a pre-competitive collaboration to make available a large number of innovative high-quality probes, including all probe-associated data, control compounds and recommendations on use (https://openscienceprobes.sgc-frankfurt.de">https://openscienceprobes.sgc-frankfurt.dehttps://openscienceprobes.sgc-frankfurt.de/">/). Here we describe the chemical tools and target-related knowledge that have been made available, and encourage others to join the project. © 2018, Müller et al.

  18. EnviroAtlas - Tampa, FL - 51m Riparian Buffer Vegetated Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  19. EnviroAtlas - Austin, TX - 15m Riparian Buffer Vegetated Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  20. EnviroAtlas - Austin, TX - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  1. EnviroAtlas - Austin, TX - 15m Riparian Buffer Forest Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. Forest is defined as Trees & Forest. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  2. EnviroAtlas - Austin, TX - Near Road Tree Buffer

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  3. EnviroAtlas - Austin, TX - Residents with Minimal Potential Window Views of Trees by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset shows the total block group population and the percentage of the block group population that has little access to potential window views of trees at home. Having little potential access to window views of trees is defined as having no trees & forest land cover within 50 meters. The window views are considered potential because the procedure does not account for presence or directionality of windows in one's home. Forest is defined as Trees & Forest. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  4. A real-time all-atom structural search engine for proteins.

    PubMed

    Gonzalez, Gabriel; Hannigan, Brett; DeGrado, William F

    2014-07-01

    Protein designers use a wide variety of software tools for de novo design, yet their repertoire still lacks a fast and interactive all-atom search engine. To solve this, we have built the Suns program: a real-time, atomic search engine integrated into the PyMOL molecular visualization system. Users build atomic-level structural search queries within PyMOL and receive a stream of search results aligned to their query within a few seconds. This instant feedback cycle enables a new "designability"-inspired approach to protein design where the designer searches for and interactively incorporates native-like fragments from proven protein structures. We demonstrate the use of Suns to interactively build protein motifs, tertiary interactions, and to identify scaffolds compatible with hot-spot residues. The official web site and installer are located at http://www.degradolab.org/suns/ and the source code is hosted at https://github.com/godotgildor/Suns (PyMOL plugin, BSD license), https://github.com/Gabriel439/suns-cmd (command line client, BSD license), and https://github.com/Gabriel439/suns-search (search engine server, GPLv2 license).

  5. EnviroAtlas - Des Moines, IA - 51m Riparian Buffer Vegetated Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  6. EnviroAtlas - Austin, TX - 51m Riparian Buffer Vegetated Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  7. EnviroAtlas - Paterson, NJ - 51m Riparian Buffer Forest Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. EnviroAtlas defines tree buffer for this community as only trees and forest. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  8. EnviroAtlas - Cleveland, OH - 51m Riparian Buffer Forest Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest and Woody Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  9. EnviroAtlas - New York, NY - 51m Riparian Buffer Forest Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  10. EnviroAtlas - Austin, TX - 51m Riparian Buffer Forest Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. Forest is defined as Trees & Forest. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. EnviroAtlas - Memphis, TN - 51m Riparian Buffer Forest Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. Forest is defined as Trees & Forest and Woody Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  12. EnviroAtlas - Des Moines, IA - 51m Riparian Buffer Forest Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. Forest is defined as Trees & Forest. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  13. NucliTrack: an integrated nuclei tracking application.

    PubMed

    Cooper, Sam; Barr, Alexis R; Glen, Robert; Bakal, Chris

    2017-10-15

    Live imaging studies give unparalleled insight into dynamic single cell behaviours and fate decisions. However, the challenge of reliably tracking single cells over long periods of time limits both the throughput and ease with which such studies can be performed. Here, we present NucliTrack, a cross platform solution for automatically segmenting, tracking and extracting features from fluorescently labelled nuclei. NucliTrack performs similarly to other state-of-the-art cell tracking algorithms, but NucliTrack's interactive, graphical interface makes it significantly more user friendly. NucliTrack is available as a free, cross platform application and open source Python package. Installation details and documentation are at: http://nuclitrack.readthedocs.io/en/latest/ A video guide can be viewed online: https://www.youtube.com/watch?v=J6e0D9F-qSU Source code is available through Github: https://github.com/samocooper/nuclitrack. A Matlab toolbox is also available at: https://uk.mathworks.com/matlabcentral/fileexchange/61479-samocooper-nuclitrack-matlab. sam@socooper.com. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  14. EnviroAtlas - Woodbine, Iowa - 51m Riparian Buffer Forest Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  15. EnviroAtlas - Milwaukee, WI - 51m Riparian Buffer Forest Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  16. EnviroAtlas - Fresno, CA - 51m Riparian Buffer Vegetated Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  17. EnviroAtlas - Pittsburgh, PA - 51m Riparian Buffer Vegetated Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  18. EnviroAtlas - Tampa, FL - 51m Riparian Buffer Forest Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  19. EnviroAtlas - New Bedford, MA - 51m Riparian Buffer Vegetated Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  20. EnviroAtlas - Green Bay, WI - 51m Riparian Buffer Vegetated Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  1. EnviroAtlas - Durham, NC - 51m Riparian Buffer Forest Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  2. EnviroAtlas - Phoenix, AZ - 51m Riparian Buffer Forest Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  3. EnviroAtlas - Green Bay, WI - 51m Riparian Buffer Forest Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  4. EnviroAtlas - New Bedford, MA - 51m Riparian Buffer Forest Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  5. EnviroAtlas - Woodbine, IA - 51m Riparian Buffer Vegetated Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  6. EnviroAtlas - Fresno, CA - 51m Riparian Buffer Forest Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  7. EnviroAtlas - Phoenix, AZ - 51m Riparian Buffer Vegetated Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  8. EnviroAtlas - Portland, ME - 51m Riparian Buffer Vegetated Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  9. EnviroAtlas - Portland, Maine - 51m Riparian Buffer Forest Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  10. EnviroAtlas - Pittsburgh, PA - 51m Riparian Buffer Forest Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. EnviroAtlas - Durham, NC - 51m Riparian Buffer Vegetated Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  12. EnviroAtlas - Milwaukee, WI - 51m Riparian Buffer Vegetated Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  13. EnviroAtlas - Cleveland, OH - Green Space Proximity Gradient

    EPA Pesticide Factsheets

    In any given 1-square meter point in this EnviroAtlas dataset, the value shown gives the percentage of square meters of greenspace within 1/4 square kilometer centered over the given point. In this community, green space is defined as Trees & Forest, Grass & Herbaceous, Woody Wetlands, and Emergent Wetlands. Water is shown as -99999 in this dataset to distinguish it from land areas with very low green space. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  14. EnviroAtlas - Memphis, TN - Green Space Proximity Gradient

    EPA Pesticide Factsheets

    In any given 1-square meter point in this EnviroAtlas dataset, the value shown gives the percentage of square meters of greenspace within 1/4 square kilometer centered over the given point. Green space is defined as Trees & Forest, Grass & Herbaceous, Agriculture, Woody Wetlands, and Emergent Wetlands. Water is shown as -99999 in this dataset to distinguish it from land areas with very low green space. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  15. NucliTrack: an integrated nuclei tracking application

    PubMed Central

    Cooper, Sam; Barr, Alexis R.; Glen, Robert; Bakal, Chris

    2017-01-01

    Abstract Summary Live imaging studies give unparalleled insight into dynamic single cell behaviours and fate decisions. However, the challenge of reliably tracking single cells over long periods of time limits both the throughput and ease with which such studies can be performed. Here, we present NucliTrack, a cross platform solution for automatically segmenting, tracking and extracting features from fluorescently labelled nuclei. NucliTrack performs similarly to other state-of-the-art cell tracking algorithms, but NucliTrack’s interactive, graphical interface makes it significantly more user friendly. Availability and implementation NucliTrack is available as a free, cross platform application and open source Python package. Installation details and documentation are at: http://nuclitrack.readthedocs.io/en/latest/ A video guide can be viewed online: https://www.youtube.com/watch?v=J6e0D9F-qSU Source code is available through Github: https://github.com/samocooper/nuclitrack. A Matlab toolbox is also available at: https://uk.mathworks.com/matlabcentral/fileexchange/61479-samocooper-nuclitrack-matlab. Contact sam@socooper.com Supplementary information Supplementary data are available at Bioinformatics online. PMID:28637183

  16. EnviroAtlas - Tampa, FL - Land Cover by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of each block group that is classified as impervious, forest, green space, wetland, and agriculture. Impervious is a combination of dark and light impervious. Forest is a combination of trees and forest and woody wetlands. Green space is a combination of trees and forest, grass and herbaceous, agriculture, woody wetlands, and emergent wetlands. Wetlands includes both Woody and Emergent Wetlands.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  17. EnviroAtlas - Ecosystem Services Market-Based Programs Web Service, U.S., 2016, Forest Trends' Ecosystem Marketplace

    EPA Pesticide Factsheets

    This EnviroAtlas web service contains layers depicting market-based programs and projects addressing ecosystem services protection in the United States. Layers include data collected via surveys and desk research conducted by Forest Trends' Ecosystem Marketplace from 2008 to 2016 on biodiversity (i.e., imperiled species/habitats; wetlands and streams), carbon, and water markets and enabling conditions that facilitate, directly or indirectly, market-based approaches to protecting and investing in those ecosystem services. This dataset was produced by Forest Trends' Ecosystem Marketplace for EnviroAtlas in order to support public access to and use of information related to environmental markets. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  18. Reactome diagram viewer: data structures and strategies to boost performance.

    PubMed

    Fabregat, Antonio; Sidiropoulos, Konstantinos; Viteri, Guilherme; Marin-Garcia, Pablo; Ping, Peipei; Stein, Lincoln; D'Eustachio, Peter; Hermjakob, Henning

    2018-04-01

    Reactome is a free, open-source, open-data, curated and peer-reviewed knowledgebase of biomolecular pathways. For web-based pathway visualization, Reactome uses a custom pathway diagram viewer that has been evolved over the past years. Here, we present comprehensive enhancements in usability and performance based on extensive usability testing sessions and technology developments, aiming to optimize the viewer towards the needs of the community. The pathway diagram viewer version 3 achieves consistently better performance, loading and rendering of 97% of the diagrams in Reactome in less than 1 s. Combining the multi-layer html5 canvas strategy with a space partitioning data structure minimizes CPU workload, enabling the introduction of new features that further enhance user experience. Through the use of highly optimized data structures and algorithms, Reactome has boosted the performance and usability of the new pathway diagram viewer, providing a robust, scalable and easy-to-integrate solution to pathway visualization. As graph-based visualization of complex data is a frequent challenge in bioinformatics, many of the individual strategies presented here are applicable to a wide range of web-based bioinformatics resources. Reactome is available online at: https://reactome.org. The diagram viewer is part of the Reactome pathway browser (https://reactome.org/PathwayBrowser/) and also available as a stand-alone widget at: https://reactome.org/dev/diagram/. The source code is freely available at: https://github.com/reactome-pwp/diagram. fabregat@ebi.ac.uk or hhe@ebi.ac.uk. Supplementary data are available at Bioinformatics online.

  19. MSeqDR mvTool: A mitochondrial DNA Web and API resource for comprehensive variant annotation, universal nomenclature collation, and reference genome conversion.

    PubMed

    Shen, Lishuang; Attimonelli, Marcella; Bai, Renkui; Lott, Marie T; Wallace, Douglas C; Falk, Marni J; Gai, Xiaowu

    2018-06-01

    Accurate mitochondrial DNA (mtDNA) variant annotation is essential for the clinical diagnosis of diverse human diseases. Substantial challenges to this process include the inconsistency in mtDNA nomenclatures, the existence of multiple reference genomes, and a lack of reference population frequency data. Clinicians need a simple bioinformatics tool that is user-friendly, and bioinformaticians need a powerful informatics resource for programmatic usage. Here, we report the development and functionality of the MSeqDR mtDNA Variant Tool set (mvTool), a one-stop mtDNA variant annotation and analysis Web service. mvTool is built upon the MSeqDR infrastructure (https://mseqdr.org), with contributions of expert curated data from MITOMAP (https://www.mitomap.org) and HmtDB (https://www.hmtdb.uniba.it/hmdb). mvTool supports all mtDNA nomenclatures, converts variants to standard rCRS- and HGVS-based nomenclatures, and annotates novel mtDNA variants. Besides generic annotations from dbNSFP and Variant Effect Predictor (VEP), mvTool provides allele frequencies in more than 47,000 germline mitogenomes, and disease and pathogenicity classifications from MSeqDR, Mitomap, HmtDB and ClinVar (Landrum et al., 2013). mvTools also provides mtDNA somatic variants annotations. "mvTool API" is implemented for programmatic access using inputs in VCF, HGVS, or classical mtDNA variant nomenclatures. The results are reported as hyperlinked html tables, JSON, Excel, and VCF formats. MSeqDR mvTool is freely accessible at https://mseqdr.org/mvtool.php. © 2018 Wiley Periodicals, Inc.

  20. jsc20198m000058_One-World-Many-Views

    NASA Image and Video Library

    2018-02-01

    Taking a look at something from a different perspective can make all the difference—especially if your second angle is from 250 miles straight up! NASA astronaut Randy Bresnik took it to extremes during his mission to the International Space Station in 2017, shooting photographs of spots on Earth and matching them up with pictures he’d taken of the same locations when he’d visited them previously. Enjoy this sample of photo pairs, and check out the rest at #OneWorldManyViews Bresnik’s Facebook https://www.facebook.com/AstroKomrade/ Bresnik’s Twitter https://twitter.com/astrokomrade

  1. Publisher Correction: N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications.

    PubMed

    Wang, Yang; Li, Yue; Yue, Minghui; Wang, Jun; Kumar, Sandeep; Wechsler-Reya, Robert J; Zhang, Zhaolei; Ogawa, Yuya; Kellis, Manolis; Duester, Gregg; Zhao, Jing Crystal

    2018-06-07

    In the version of this article initially published online, there were errors in URLs for www.southernbiotech.com, appearing in Methods sections "m6A dot-blot" and "Western blot analysis." The first two URLs should be https://www.southernbiotech.com/?catno=4030-05&type=Polyclonal#&panel1-1 and the third should be https://www.southernbiotech.com/?catno=6170-05&type=Polyclonal. In addition, some Methods URLs for bioz.com, www.abcam.com and www.sysy.com were printed correctly but not properly linked. The errors have been corrected in the PDF and HTML versions of this article.

  2. Open-source web-enabled data management, analyses, and visualization of very large data in geosciences using Jupyter, Apache Spark, and community tools

    NASA Astrophysics Data System (ADS)

    Chaudhary, A.

    2017-12-01

    Current simulation models and sensors are producing high-resolution, high-velocity data in geosciences domain. Knowledge discovery from these complex and large size datasets require tools that are capable of handling very large data and providing interactive data analytics features to researchers. To this end, Kitware and its collaborators are producing open-source tools GeoNotebook, GeoJS, Gaia, and Minerva for geosciences that are using hardware accelerated graphics and advancements in parallel and distributed processing (Celery and Apache Spark) and can be loosely coupled to solve real-world use-cases. GeoNotebook (https://github.com/OpenGeoscience/geonotebook) is co-developed by Kitware and NASA-Ames and is an extension to the Jupyter Notebook. It provides interactive visualization and python-based analysis of geospatial data and depending the backend (KTile or GeoPySpark) can handle data sizes of Hundreds of Gigabytes to Terabytes. GeoNotebook uses GeoJS (https://github.com/OpenGeoscience/geojs) to render very large geospatial data on the map using WebGL and Canvas2D API. GeoJS is more than just a GIS library as users can create scientific plots such as vector and contour and can embed InfoVis plots using D3.js. GeoJS aims for high-performance visualization and interactive data exploration of scientific and geospatial location aware datasets and supports features such as Point, Line, Polygon, and advanced features such as Pixelmap, Contour, Heatmap, and Choropleth. Our another open-source tool Minerva ((https://github.com/kitware/minerva) is a geospatial application that is built on top of open-source web-based data management system Girder (https://github.com/girder/girder) which provides an ability to access data from HDFS or Amazon S3 buckets and provides capabilities to perform visualization and analyses on geosciences data in a web environment using GDAL and GeoPandas wrapped in a unified API provided by Gaia (https

  3. XGlycScan: An Open-source Software For N-linked Glycosite Assignment, Quantification and Quality Assessment of Data from Mass Spectrometry-based Glycoproteomic Analysis.

    PubMed

    Aiyetan, Paul; Zhang, Bai; Zhang, Zhen; Zhang, Hui

    2014-01-01

    Mass spectrometry based glycoproteomics has become a major means of identifying and characterizing previously N-linked glycan attached loci (glycosites). In the bottom-up approach, several factors which include but not limited to sample preparation, mass spectrometry analyses, and protein sequence database searches result in previously N-linked peptide spectrum matches (PSMs) of varying lengths. Given that multiple PSM scan map to a glycosite, we reason that identified PSMs are varying length peptide species of a unique set of glycosites. Because associated spectra of these PSMs are typically summed separately, true glycosite associated spectra counts are lost or complicated. Also, these varying length peptide species complicate protein inference as smaller sized peptide sequences are more likely to map to more proteins than larger sized peptides or actual glycosite sequences. Here, we present XGlycScan. XGlycScan maps varying length peptide species to glycosites to facilitate an accurate quantification of glycosite associated spectra counts. We observed that this reduced the variability in reported identifications of mass spectrometry technical replicates of our sample dataset. We also observed that mapping identified peptides to glycosites provided an assessment of search-engine identification. Inherently, XGlycScan reported glycosites reduce the complexity in protein inference. We implemented XGlycScan in the platform independent Java programing language and have made it available as open source. XGlycScan's source code is freely available at https://bitbucket.org/paiyetan/xglycscan/src and its compiled binaries and documentation can be freely downloaded at https://bitbucket.org/paiyetan/xglycscan/downloads. The graphical user interface version can also be found at https://bitbucket.org/paiyetan/xglycscangui/src and https://bitbucket.org/paiyetan/xglycscangui/downloads respectively.

  4. The CAMELS data set: catchment attributes and meteorology for large-sample studies

    NASA Astrophysics Data System (ADS)

    Addor, Nans; Newman, Andrew J.; Mizukami, Naoki; Clark, Martyn P.

    2017-10-01

    We present a new data set of attributes for 671 catchments in the contiguous United States (CONUS) minimally impacted by human activities. This complements the daily time series of meteorological forcing and streamflow provided by Newman et al. (2015b). To produce this extension, we synthesized diverse and complementary data sets to describe six main classes of attributes at the catchment scale: topography, climate, streamflow, land cover, soil, and geology. The spatial variations among basins over the CONUS are discussed and compared using a series of maps. The large number of catchments, combined with the diversity of the attributes we extracted, makes this new data set well suited for large-sample studies and comparative hydrology. In comparison to the similar Model Parameter Estimation Experiment (MOPEX) data set, this data set relies on more recent data, it covers a wider range of attributes, and its catchments are more evenly distributed across the CONUS. This study also involves assessments of the limitations of the source data sets used to compute catchment attributes, as well as detailed descriptions of how the attributes were computed. The hydrometeorological time series provided by Newman et al. (2015b, https://doi.org/10.5065/D6MW2F4D" target="_blank">https://doi.org/10.5065/D6MW2F4D) together with the catchment attributes introduced in this paper (https://doi.org/10.5065/D6G73C3Q" target="_blank">https://doi.org/10.5065/D6G73C3Q) constitute the freely available CAMELS data set, which stands for Catchment Attributes and MEteorology for Large-sample Studies.

  5. Construction of a surface air temperature series for Qingdao in China for the period 1899 to 2014

    NASA Astrophysics Data System (ADS)

    Li, Yan; Tinz, Birger; von Storch, Hans; Wang, Qingyuan; Zhou, Qingliang; Zhu, Yani

    2018-03-01

    We present a homogenized surface air temperature (SAT) time series at 2 m height for the city of Qingdao in China from 1899 to 2014. This series is derived from three data sources: newly digitized and homogenized observations of the German National Meteorological Service from 1899 to 1913, homogenized observation data of the China Meteorological Administration (CMA) from 1961 to 2014 and a gridded dataset of Willmott and Matsuura (2012) in Delaware to fill the gap from 1914 to 1960. Based on this new series, long-term trends are described. The SAT in Qingdao has a significant warming trend of 0.11 ± 0.03 °C decade-1 during 1899-2014. The coldest period occurred during 1909-1918 and the warmest period occurred during 1999-2008. For the seasonal mean SAT, the most significant warming can be found in spring, followed by winter. The homogenized time series of Qingdao is provided and archived by the Deutscher Wetterdienst (DWD) web page under overseas stations of the Deutsche Seewarte (http://www.dwd.de/EN/ourservices/overseas_stations/ueberseedoku/doi_qingdao.html) in ASCII format. Users can also freely obtain a short description of the data at https://doi.org/https://dx.doi.org/10.5676/DWD/Qing_v1" target="_blank">https://doi.org/https://dx.doi.org/10.5676/DWD/Qing_v1. And the data can be downloaded at http://dwd.de/EN/ourservices/overseas_stations/ueberseedoku/data_qingdao.txt.

  6. EnviroAtlas - Percent Stream Buffer Zone As Natural Land Cover for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset shows the percentage of land area within a 30 meter buffer zone along the National Hydrography Dataset (NHD) high resolution stream network, and along water bodies such as lakes and ponds that are connected via flow to the streams, that is classified as forest land cover, modified forest land cover, and natural land cover using the 2006 National Land Cover Dataset (NLCD) for each Watershed Boundary Dataset (WBD) 12-digit hydrological unit (HUC) in the conterminous United States. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  7. EnviroAtlas - Minneapolis/St. Paul, MN - Estimated Percent Tree Cover Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. In this community, tree cover is defined as Trees and Forest and Woody Wetlands. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  8. EnviroAtlas - Minneapolis/St. Paul, MN - Near Road Tree Buffer

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. In this community, forest is defined as Trees and Forest and Woody Wetlands. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  9. A Real-Time All-Atom Structural Search Engine for Proteins

    PubMed Central

    Gonzalez, Gabriel; Hannigan, Brett; DeGrado, William F.

    2014-01-01

    Protein designers use a wide variety of software tools for de novo design, yet their repertoire still lacks a fast and interactive all-atom search engine. To solve this, we have built the Suns program: a real-time, atomic search engine integrated into the PyMOL molecular visualization system. Users build atomic-level structural search queries within PyMOL and receive a stream of search results aligned to their query within a few seconds. This instant feedback cycle enables a new “designability”-inspired approach to protein design where the designer searches for and interactively incorporates native-like fragments from proven protein structures. We demonstrate the use of Suns to interactively build protein motifs, tertiary interactions, and to identify scaffolds compatible with hot-spot residues. The official web site and installer are located at http://www.degradolab.org/suns/ and the source code is hosted at https://github.com/godotgildor/Suns (PyMOL plugin, BSD license), https://github.com/Gabriel439/suns-cmd (command line client, BSD license), and https://github.com/Gabriel439/suns-search (search engine server, GPLv2 license). PMID:25079944

  10. ddPCRclust - An R package and Shiny app for automated analysis of multiplexed ddPCR data.

    PubMed

    Brink, Benedikt G; Meskas, Justin; Brinkman, Ryan R

    2018-03-09

    Droplet digital PCR (ddPCR) is an emerging technology for quantifying DNA. By partitioning the target DNA into ∼20000 droplets, each serving as its own PCR reaction compartment, a very high sensitivity of DNA quantification can be achieved. However, manual analysis of the data is time consuming and algorithms for automated analysis of non-orthogonal, multiplexed ddPCR data are unavailable, presenting a major bottleneck for the advancement of ddPCR transitioning from low-throughput to high- throughput. ddPCRclust is an R package for automated analysis of data from Bio-Rad's droplet digital PCR systems (QX100 and QX200). It can automatically analyse and visualise multiplexed ddPCR experiments with up to four targets per reaction. Results are on par with manual analysis, but only take minutes to compute instead of hours. The accompanying Shiny app ddPCRvis provides easy access to the functionalities of ddPCRclust through a web-browser based GUI. R package: https://github.com/bgbrink/ddPCRclust; Interface: https://github.com/bgbrink/ddPCRvis/; Web: https://bibiserv.cebitec.uni-bielefeld.de/ddPCRvis/. bbrink@cebitec.uni-bielefeld.de.

  11. Rcupcake: an R package for querying and analyzing biomedical data through the BD2K PIC-SURE RESTful API.

    PubMed

    Gutiérrez-Sacristán, Alba; Guedj, Romain; Korodi, Gabor; Stedman, Jason; Furlong, Laura I; Patel, Chirag J; Kohane, Isaac S; Avillach, Paul

    2018-04-15

    In the era of big data and precision medicine, the number of databases containing clinical, environmental, self-reported and biochemical variables is increasing exponentially. Enabling the experts to focus on their research questions rather than on computational data management, access and analysis is one of the most significant challenges nowadays. We present Rcupcake, an R package that contains a variety of functions for leveraging different databases through the BD2K PIC-SURE RESTful API and facilitating its query, analysis and interpretation. The package offers a variety of analysis and visualization tools, including the study of the phenotype co-occurrence and prevalence, according to multiple layers of data, such as phenome, exposome or genome. The package is implemented in R and is available under Mozilla v2 license from GitHub (https://github.com/hms-dbmi/Rcupcake). Two reproducible case studies are also available (https://github.com/hms-dbmi/Rcupcake-case-studies/blob/master/SSCcaseStudy_v01.ipynb, https://github.com/hms-dbmi/Rcupcake-case-studies/blob/master/NHANEScaseStudy_v01.ipynb). paul_avillach@hms.harvard.edu. Supplementary data are available at Bioinformatics online.

  12. EnviroAtlas - Austin, TX - Potential Window Views of Water by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the block group population and the percentage of the block group population that has potential views of water bodies. A potential view of water is defined as having a body of water that is greater than 300m2 within 50m of a residential location. The window views are considered potential because the procedure does not account for presence or directionality of windows in one's home. The residential locations are defined using the EnviroAtlas Dasymetric (2011/October 2015 version) map. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  13. EnviroAtlas - Austin, TX - BenMAP Results by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 750 block groups in Austin, Texas. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Travis and Williamson Counties, TX. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  14. EnviroAtlas - Average Annual Precipitation 1981-2010 by HUC12 for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset provides the average annual precipitation by 12-digit Hydrologic Unit (HUC). The values were estimated from maps produced by the PRISM Climate Group, Oregon State University. The original data was at the scale of 800 m grid cells representing average precipitation from 1981-2010 in mm. The data was converted to inches of precipitation and then zonal statistics were estimated for a final value of average annual precipitation for each 12 digit HUC. For more information about the original dataset please refer to the PRISM website at http://www.prism.oregonstate.edu/. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  15. EnviroAtlas - New York, NY - 51m Riparian Buffer Vegetated Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  16. EnviroAtlas - Minneapolis/St. Paul, MN - 51m Riparian Buffer Forest Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees and Forest and Woody Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  17. EnviroAtlas - Memphis, TN - 51m Riparian Buffer Vegetated Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest, Grass & Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  18. EnviroAtlas - Cleveland, OH - 51m Riparian Buffer Vegetated Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest, Grass & Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  19. EnviroAtlas - Big Game Hunting Recreation Demand by 12-Digit HUC in the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset includes the total number of recreational days per year demanded by people ages 18 and over for big game hunting by location in the contiguous United States. Big game includes deer, elk, bear, and wild turkey. These values are based on 2010 population distribution, 2011 U.S. Fish and Wildlife Service (FWS) Fish, Hunting, and Wildlife-Associated Recreation (FHWAR) survey data, and 2011 U.S. Department of Agriculture (USDA) Forest Service National Visitor Use Monitoring program data, and have been summarized by 12-digit hydrologic unit code (HUC). This dataset was produced by the US EPA to support research and online mapping activities related to the EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  20. EnviroAtlas - Paterson, NJ - 51m Riparian Buffer Vegetated Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. EnviroAtlas defines vegetated buffer for this community as trees and forest and grass and herbaceous. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  1. EnviroAtlas - Minneapolis/St. Paul, MN - 51m Riparian Buffer Vegetated Cover

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees and Forest, Grass and Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  2. EnviroAtlas - Percentage of Working Age Population Who Are Employed by Block Group for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset shows the employment rate, or the percent of the population aged 16-64 who have worked in the past 12 months. The employment rate is a measure of the percent of the working-age population who are employed. It is an indicator of the prevalence of unemployment, which is often used to assess labor market conditions by economists. It is a widely used metric to evaluate the sustainable development of communities (NRC, 2011, UNECE, 2009). This dataset is based on the American Community Survey 5-year data for 2008-2012. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  3. EnviroAtlas - Minneapolis/St. Paul, MN - Estimated Percent Green Space Along Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates green space along walkable roads. Green space within 25 meters of the road centerline is included and the percentage is based on the total area between street intersections. In this community, green space is defined as Trees and Forest, Grass and Herbaceous, Agriculture, Woody Wetlands, and Emergent Wetlands. In this metric, water is also included in green space. Green space provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  4. EnviroAtlas - Portland, ME - Land Cover by Block Group

    EPA Pesticide Factsheets

    This EnviroAtlas dataset describes the percentage of each block group that is classified as impervious, forest, green space, wetland, and agriculture. Impervious is a combination of dark and light impervious. Forest is combination of trees and forest and woody wetlands. Green space is a combination of trees and forest, grass and herbaceous, agriculture, woody wetlands, and emergent wetlands. Wetlands includes both Woody and Emergent Wetlands. This dataset also includes the area per capita for each block group for impervious, forest, and green space land cover. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  5. Executable research compendia in geoscience research infrastructures

    NASA Astrophysics Data System (ADS)

    Nüst, Daniel

    2017-04-01

    From generation through analysis and collaboration to communication, scientific research requires the right tools. Scientists create their own software using third party libraries and platforms. Cloud computing, Open Science, public data infrastructures, and Open Source enable scientists with unprecedented opportunites, nowadays often in a field "Computational X" (e.g. computational seismology) or X-informatics (e.g. geoinformatics) [0]. This increases complexity and generates more innovation, e.g. Environmental Research Infrastructures (environmental RIs [1]). Researchers in Computational X write their software relying on both source code (e.g. from https://github.com) and binary libraries (e.g. from package managers such as APT, https://wiki.debian.org/Apt, or CRAN, https://cran.r-project.org/). They download data from domain specific (cf. https://re3data.org) or generic (e.g. https://zenodo.org) data repositories, and deploy computations remotely (e.g. European Open Science Cloud). The results themselves are archived, given persistent identifiers, connected to other works (e.g. using https://orcid.org/), and listed in metadata catalogues. A single researcher, intentionally or not, interacts with all sub-systems of RIs: data acquisition, data access, data processing, data curation, and community support [3]. To preserve computational research [3] proposes the Executable Research Compendium (ERC), a container format closing the gap of dependency preservation by encapsulating the runtime environment. ERCs and RIs can be integrated for different uses: (i) Coherence: ERC services validate completeness, integrity and results (ii) Metadata: ERCs connect the different parts of a piece of research and faciliate discovery (iii) Exchange and Preservation: ERC as usable building blocks are the shared and archived entity (iv) Self-consistency: ERCs remove dependence on ephemeral sources (v) Execution: ERC services create and execute a packaged analysis but integrate with

  6. Calcium Supplements: Do They Interfere with Blood Pressure Drugs?

    MedlinePlus

    ... www.micromedexsolutions.com. Accessed July 8, 2015. Calcium. Natural Medicines. https://naturalmedicines.therapeuticresearch.com/databases/food,-herbs-supplements/professional.aspx?productid=781#adverseEvents. Accessed ...

  7. Interdisciplinary Astronomy Activities

    NASA Astrophysics Data System (ADS)

    Nerantzis, Nikolaos; Mitrouda, Aikaterini; Reizopoulou, Ioanna; Sidiropoulou, Eirini; Hatzidimitriou, Antonios

    2016-04-01

    On November 9th, 2015, three didactical hours were dedicated to Interdisciplinary Astronomy Activities (http://wp.me/p6Hte2-1I). Our students and their teachers formed three groups and in rotation, were engaged with the following activities: (a) viewing unique images of the Cosmos in the mobile planetarium STARLAB (http://www.planitario.gr/tholos-starlab-classic-standard.html), (b) watching the following videos: Journey to the end of the universe (https://youtu.be/Ufl_Nwbl8xs), Rosetta update (https://youtu.be/nQ9ivd7wv30), The Solar System (https://youtu.be/d66dsagrTa0), Ambition the film (https://youtu.be/H08tGjXNHO4) in the school's library. Students and teachers were informed about our solar system, the Rosetta mission, the universe, etc. and (c) tactile activities such as Meet our home and Meet our neighbors (http://astroedu.iau.org, http://nuclio.org/astroneighbours/resources) and the creation of planets' 3D models (Geology-Geography A' Class Student's book, pg.15). With the activities above we had the pleasure to join the Cosmic Light Edu Kit / International Year of Light 2015 program. After our Interdisciplinary Astronomy Activities, we did a "small" research: our students had to fill an evaluation about their educational gains and the results can be found here http://wp.me/p6Hte2-2q. Moreover, we discussed about Big Ideas of Science (http://wp.me/p3oRiZ-dm) and through the "big" impact of the Rosetta mission & the infinity of our universe, we print posters with relevant topics and place them to the classrooms. We thank Rosa Doran (Nuclio - President of the Executive Council) for her continuous assistance and support on innovative science teaching proposals. She is an inspiration.

  8. 78 FR 40522 - Agency Information Collection Activities: Renewal of Currently Approved Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... Reporting Data Dictionary (available electronically at https://www.federalreporting.gov/federalreporting... the Recipient Reporting Data Dictionary. Below are the basic reporting requirements to be reported on...

  9. UpSetR: an R package for the visualization of intersecting sets and their properties.

    PubMed

    Conway, Jake R; Lex, Alexander; Gehlenborg, Nils

    2017-09-15

    Venn and Euler diagrams are a popular yet inadequate solution for quantitative visualization of set intersections. A scalable alternative to Venn and Euler diagrams for visualizing intersecting sets and their properties is needed. We developed UpSetR, an open source R package that employs a scalable matrix-based visualization to show intersections of sets, their size, and other properties. UpSetR is available at https://github.com/hms-dbmi/UpSetR/ and released under the MIT License. A Shiny app is available at https://gehlenborglab.shinyapps.io/upsetr/ . nils@hms.harvard.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  10. Meteorological buoy measurements in the Iceland Sea, 2007-2009

    NASA Astrophysics Data System (ADS)

    Nína Petersen, Guðrún

    2017-10-01

    The Icelandic Meteorological Office (IMO) conducted meteorological buoy measurements in the central Iceland Sea in the time period 2007-2009, specifically in the northern Dreki area on the southern segment of the Jan Mayen Ridge. Due to difficulties in deployment and operations, in situ measurements in this region are sparse. Here the buoy, deployment and measurements are described with the aim of giving a future user of the data set information that is as comprehensive as possible. The data set has been quality-checked, suspect data removed and the data set made publicly available from PANGAEA Data Publisher (https://doi.org/10.1594/PANGAEA.876206" target="_blank">https://doi.org/10.1594/PANGAEA.876206).

  11. M2Lite: An Open-source, Light-weight, Pluggable and Fast Proteome Discoverer MSF to mzIdentML Tool.

    PubMed

    Aiyetan, Paul; Zhang, Bai; Chen, Lily; Zhang, Zhen; Zhang, Hui

    2014-04-28

    Proteome Discoverer is one of many tools used for protein database search and peptide to spectrum assignment in mass spectrometry-based proteomics. However, the inadequacy of conversion tools makes it challenging to compare and integrate its results to those of other analytical tools. Here we present M2Lite, an open-source, light-weight, easily pluggable and fast conversion tool. M2Lite converts proteome discoverer derived MSF files to the proteomics community defined standard - the mzIdentML file format. M2Lite's source code is available as open-source at https://bitbucket.org/paiyetan/m2lite/src and its compiled binaries and documentation can be freely downloaded at https://bitbucket.org/paiyetan/m2lite/downloads.

  12. UpSetR: an R package for the visualization of intersecting sets and their properties

    PubMed Central

    Conway, Jake R.; Lex, Alexander; Gehlenborg, Nils

    2017-01-01

    Abstract Motivation: Venn and Euler diagrams are a popular yet inadequate solution for quantitative visualization of set intersections. A scalable alternative to Venn and Euler diagrams for visualizing intersecting sets and their properties is needed. Results: We developed UpSetR, an open source R package that employs a scalable matrix-based visualization to show intersections of sets, their size, and other properties. Availability and implementation: UpSetR is available at https://github.com/hms-dbmi/UpSetR/ and released under the MIT License. A Shiny app is available at https://gehlenborglab.shinyapps.io/upsetr/. Contact: nils@hms.harvard.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28645171

  13. 78 FR 74162 - Draft Criminal Justice Offender Tracking System Standard and Companion Documents

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ... to the following Web site: https://www.justnet.org/standards/Offender_Tracking_Standards.html . DATES....org/standards/Offender_Tracking_Standards.html . Gregory K. Ridgeway, Acting Director, National...

  14. EnviroAtlas - Percentage of stream and water body shoreline lengths within 30 meters of >= 5% or >= 15% impervious cover by 12-Digit HUC for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset shows the percentages of stream and water body shoreline lengths within 30 meters of impervious cover by 12-digit Hydrologic Unit (HUC) subwatershed in the contiguous U.S. Impervious cover alters the hydrologic behavior of streams and water bodies, promoting increased storm water runoff and lower stream flow during periods in between rainfall events. Impervious cover also promotes increased pollutant loads in receiving waters and degraded streamside habitat. This dataset shows were impervious cover occurs close to streams and water bodies, where it is likely to have a greater adverse impact on receiving waters. This dataset was produced by the US EPA to support research and online mapping activities related to the EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  15. EnviroAtlas - Phoenix, AZ - Near Road Block Group Summary

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. Those populations are estimated here using dasymetric data calculated for the EnviroAtlas. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  16. EnviroAtlas - Pittsburgh, PA - Near Road Block Group Summary

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. Those populations are estimated here using dasymetric data calculated for the EnviroAtlas. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  17. PPDMs-a resource for mapping small molecule bioactivities from ChEMBL to Pfam-A protein domains.

    PubMed

    Kruger, Felix A; Gaulton, Anna; Nowotka, Michal; Overington, John P

    2015-03-01

    PPDMs is a resource that maps small molecule bioactivities to protein domains from the Pfam-A collection of protein families. Small molecule bioactivities mapped to protein domains add important precision to approaches that use protein sequence searches alignments to assist applications in computational drug discovery and systems and chemical biology. We have previously proposed a mapping heuristic for a subset of bioactivities stored in ChEMBL with the Pfam-A domain most likely to mediate small molecule binding. We have since refined this mapping using a manual procedure. Here, we present a resource that provides up-to-date mappings and the possibility to review assigned mappings as well as to participate in their assignment and curation. We also describe how mappings provided through the PPDMs resource are made accessible through the main schema of the ChEMBL database. The PPDMs resource and curation interface is available at https://www.ebi.ac.uk/chembl/research/ppdms/pfam_maps. The source-code for PPDMs is available under the Apache license at https://github.com/chembl/pfam_maps. Source code is available at https://github.com/chembl/pfam_map_loader to demonstrate the integration process with the main schema of ChEMBL. © The Author 2014. Published by Oxford University Press.

  18. EnviroAtlas - Industrial Water Demand by 12-Digit HUC for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset includes industrial water demand attributes which provide insight into the amount of water currently used for manufacturing and production of commodities in the contiguous United States. The values are based on 2005 water demand and Dun and Bradstreet's 2009/2010 source data, and have been summarized by watershed or 12-digit hydrologic unit code (HUC). For the purposes of this metric, industrial water use includes chemical, food, paper, wood, and metal production. The industrial water is for self-supplied only such as by private wells or reservoirs. Sources include either surface water or groundwater. This dataset was produced by the US EPA to support research and online mapping activities related to the EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  19. EnviroAtlas -Pittsburgh, PA- One Meter Resolution Urban Land Cover Data (2010)

    EPA Pesticide Factsheets

    The EnviroAtlas Pittsburgh, PA land cover map was generated from United States Department of Agriculture (USDA) National Agricultural Imagery Program (NAIP) four band (red, green, blue, and near infrared) aerial photography at 1 m spatial resolution. Imagery was collected on multiple dates in June 2010. Five land cover classes were mapped: water, impervious surfaces, soil and barren land, trees and forest, and grass and herbaceous non-woody vegetation. An accuracy assessment of 500 completely random and 81 stratified random points yielded an overall accuracy of 86.57 percent. The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Pittsburgh, PA. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  20. EnviroAtlas -Durham, NC- One Meter Resolution Urban Area Land Cover Map (2010)

    EPA Pesticide Factsheets

    The EnviroAtlas Durham, NC land cover map was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from July 2010 at 1 m spatial resolution. Five land cover classes were mapped: impervious surface, soil and barren, grass and herbaceous, trees and forest, and water. An accuracy assessment using a stratified random sampling of 500 samples yielded an overall accuracy of 83 percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Durham, and includes the cities of Durham, Chapel Hill, Carrboro and Hillsborough, NC. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  1. EnviroAtlas -Portland, ME- One Meter Resolution Urban Land Cover (2010)

    EPA Pesticide Factsheets

    The EnviroAtlas Portland, ME land cover map was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2010 at 1 m spatial resolution. Eight land cover classes were mapped: water, impervious surfaces, soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, agriculture, and wetlands (woody and emergent). An accuracy assessment using a stratified random sampling of 600 samples yielded an overall accuracy of 87.5 percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Portland. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  2. EnviroAtlas -- Austin, TX -- One Meter Resolution Urban Land Cover Data (2010)

    EPA Pesticide Factsheets

    The Austin, TX EnviroAtlas One Meter-scale Urban Land Cover (MULC) Data were generated from United States Department of Agriculture (USDA) National Agricultural Imagery Program (NAIP) four band (red, green, blue, and near infrared) aerial photography at 1 m spatial resolution from multiple dates in May, 2010. Six land cover classes were mapped: water, impervious surfaces, soil and barren land, trees, grass-herbaceous non-woody vegetation, and agriculture. An accuracy assessment of 600 completely random and 55 stratified random photo interpreted reference points yielded an overall User's fuzzy accuracy of 87 percent. The area mapped is the US Census Bureau's 2010 Urban Statistical Area for Austin, TX plus a 1 km buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  3. EnviroAtlas - Austin, TX - Near Road Block Group Summary

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health affects for those living in a location without a sufficient tree buffer. Those populations are estimated here using dasymetric data calculated for the EnviroAtlas. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  4. PLACNETw: a web-based tool for plasmid reconstruction from bacterial genomes.

    PubMed

    Vielva, Luis; de Toro, María; Lanza, Val F; de la Cruz, Fernando

    2017-12-01

    PLACNET is a graph-based tool for reconstruction of plasmids from next generation sequence pair-end datasets. PLACNET graphs contain two types of nodes (assembled contigs and reference genomes) and two types of edges (scaffold links and homology to references). Manual pruning of the graphs is a necessary requirement in PLACNET, but this is difficult for users without solid bioinformatic background. PLACNETw, a webtool based on PLACNET, provides an interactive graphic interface, automates BLAST searches, and extracts the relevant information for decision making. It allows a user with domain expertise to visualize the scaffold graphs and related information of contigs as well as reference sequences, so that the pruning operations can be done interactively from a personal computer without the need for additional tools. After successful pruning, each plasmid becomes a separate connected component subgraph. The resulting data are automatically downloaded by the user. PLACNETw is freely available at https://castillo.dicom.unican.es/upload/. delacruz@unican.es. A tutorial video and several solved examples are available at https://castillo.dicom.unican.es/placnetw_video/ and https://castillo.dicom.unican.es/examples/. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  5. EnviroAtlas - Woodbine, IA - Near Road Block Group Summary

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. Those populations are estimated here using dasymetric data calculated for the EnviroAtlas. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  6. EnviroAtlas - Paterson, NJ - Near Road Block Group Summary

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. Those populations are estimated here using dasymetric data calculated for the EnviroAtlas. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  7. EnviroAtlas - Milwaukee, WI - Near Road Block Group Summary

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest and Woody Wetlands. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. Those populations are estimated here using dasymetric data calculated for the EnviroAtlas. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  8. EnviroAtlas - Memphis, TN - Near Road Block Group Summary

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest and Woody Wetlands. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. Those populations are estimated here using dasymetric data calculated for the EnviroAtlas. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  9. EnviroAtlas - Fresno, CA - Near Road Block Group Summary

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest and Orchards. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. Those populations are estimated here using dasymetric data calculated for the EnviroAtlas. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  10. EnviroAtlas - Tampa, FL - Near Road Block Group Summary

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest and Woody Wetlands. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. Those populations are estimated here using dasymetric data calculated for the EnviroAtlas. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. EnviroAtlas - New Bedford, MA - Near Road Block Group Summary

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest and Woody Wetlands. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. Those populations are estimated here using dasymetric data calculated for the EnviroAtlas. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  12. EnviroAtlas - Minneapolis/St. Paul, MN - Near Road Block Group Summary

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. In this community, forest is defined as Trees and Forest and Woody Wetlands. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health affects for those living in a location without a sufficient tree buffer. Those populations are estimated here using dasymetric data calculated for the EnviroAtlas. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  13. EnviroAtlas - Green Bay, WI - Near Road Block Group Summary

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest and Woody Wetlands. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. Those populations are estimated here using dasymetric data calculated for the EnviroAtlas. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  14. EnviroAtlas - Cleveland, OH - Near Road Block Group Summary

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. In this community, forest is defined as Trees & Forest and Woody Wetlands. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health affects for those living in a location without a sufficient tree buffer. Those populations are estimated here using dasymetric data calculated for the EnviroAtlas. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  15. EnviroAtlas - Des Moines, IA - Near Road Block Group Summary

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. Those populations are estimated here using dasymetric data calculated for the EnviroAtlas. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  16. EnviroAtlas - Durham, NC - Near Road Block Group Summary

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. Those populations are estimated here using dasymetric data calculated for the EnviroAtlas. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  17. EnviroAtlas - New York, NY - Near Road Block Group Summary

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. In this community, forest is defined as Trees & Forest. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. Those populations are estimated here using dasymetric data calculated for the EnviroAtlas. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  18. EnviroAtlas - Portland, ME - Near Road Block Group Summary

    EPA Pesticide Factsheets

    This EnviroAtlas dataset addresses the tree buffer along heavily traveled roads. The roads are interstates, arterials, and collectors within the EnviroAtlas community boundary. Forest is defined as Trees & Forest and Woody Wetlands. Sufficient tree bufferage is defined as 25% coverage within the circular moving window with a radius of 14.5m at any given point along the roadway. There are potential negative health effects for those living in a location without a sufficient tree buffer. Those populations are estimated here using dasymetric data calculated for the EnviroAtlas. There are potential negative health effects for those living in a location without a sufficient tree buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  19. Comments on "Long-Term Variations of Exospheric Temperature Inferred From foF1 Observations: A Comparison to ISR Ti Trend Estimates" by Perrone and Mikhailov

    NASA Astrophysics Data System (ADS)

    Zhang, Shun-Rong; Holt, John M.; Erickson, Philip J.; Goncharenko, Larisa P.

    2018-05-01

    Perrone and Mikhailov (2017, https://doi.org/10.1002/2017JA024193) and Mikhailov et al. (2017, https://doi.org/10.1002/2017JA023909) have recently examined thermospheric and ionospheric long-term trends using a data set of four thermospheric parameters (Tex, [O], [N2], and [O2]) and solar EUV flux. These data were derived from one single ionospheric parameter, foF1, using a nonlinear fitting procedure involving a photochemical model for the F1 peak. The F1 peak is assumed at the transition height ht with the linear recombination for atomic oxygen ions being equal to the quadratic recombination for molecular ions. This procedure has a number of obvious problems that are not addressed or not sufficiently justified. The potentially large ambiguities and biases in derived parameters make them unsuitable for precise quantitative ionospheric and thermospheric long-term trend studies. Furthermore, we assert that Perrone and Mikhailov (2017, https://doi.org/10.1002/2017JA024193) conclusions regarding incoherent scatter radar (ISR) ion temperature analysis for long-term trend studies are incorrect and in particular are based on a misunderstanding of the nature of the incoherent scatter radar measurement process. Large ISR data sets remain a consistent and statistically robust method for determining long term secular plasma temperature trends.

  20. Update on the Worsening Particle Radiation Environment Observed by CRaTER and Implications for Future Human Deep-Space Exploration

    NASA Astrophysics Data System (ADS)

    Schwadron, N. A.; Rahmanifard, F.; Wilson, J.; Jordan, A. P.; Spence, H. E.; Joyce, C. J.; Blake, J. B.; Case, A. W.; de Wet, W.; Farrell, W. M.; Kasper, J. C.; Looper, M. D.; Lugaz, N.; Mays, L.; Mazur, J. E.; Niehof, J.; Petro, N.; Smith, C. W.; Townsend, L. W.; Winslow, R.; Zeitlin, C.

    2018-03-01

    Over the last decade, the solar wind has exhibited low densities and magnetic field strengths, representing anomalous states that have never been observed during the space age. As discussed by Schwadron, Blake, et al. (2014, https://doi.org/10.1002/2014SW001084), the cycle 23-24 solar activity led to the longest solar minimum in more than 80 years and continued into the "mini" solar maximum of cycle 24. During this weak activity, we observed galactic cosmic ray fluxes that exceeded theERobserved small solar energetic particle events. Here we provide an update to the Schwadron, Blake, et al. (2014, https://doi.org/10.1002/2014SW001084) observations from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter. The Schwadron, Blake, et al. (2014, https://doi.org/10.1002/2014SW001084) study examined the evolution of the interplanetary magnetic field and utilized a previously published study by Goelzer et al. (2013, https://doi.org/10.1002/2013JA019404) projecting out the interplanetary magnetic field strength based on the evolution of sunspots as a proxy for the rate that the Sun releases coronal mass ejections. This led to a projection of dose rates from galactic cosmic rays on the lunar surface, which suggested a ˜20% increase of dose rates from one solar minimum to the next and indicated that the radiation environment in space may be a worsening factor important for consideration in future planning of human space exploration. We compare the predictions of Schwadron, Blake, et al. (2014, https://doi.org/10.1002/2014SW001084) with the actual dose rates observed by CRaTER in the last 4 years. The observed dose rates exceed the predictions by ˜10%, showing that the radiation environment is worsening more rapidly than previously estimated. Much of this increase is attributable to relatively low-energy ions, which can be effectively shielded. Despite the continued paucity of solar activity, one of the hardest solar events in

  1. 76 FR 18193 - Renewal of Department of Defense Federal Advisory Committees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... Sciences. The Board shall provide advice and recommendations on academic and administrative matters... obtained from the GSA's FACA Database-- https://www.fido.gov/facadatabase/public.asp . The Designated...

  2. 48 CFR 252.204-7007 - Alternate A, Annual Representations and Certifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Online Representations and Certifications Application (ORCA) Web site at https://orca.bpn.gov/. After... months, are current, accurate, complete, and applicable to this solicitation (including the business size...

  3. Water

    MedlinePlus

    ... regarding government operating status and resumption of normal operations can be found at https://www.opm.gov/ . Section ... healthy at restaurants Special food issues Vegetarian eating Eating for strong ...

  4. Frostbite: First Aid

    MedlinePlus

    ... Disease Control and Prevention. https://www.cdc.gov/disasters/winter/staysafe/frostbite.html. Accessed ... Conditions and Terms Any use of this site constitutes your agreement to the Terms and Conditions ...

  5. 75 FR 5287 - Federal Advisory Committee; Western Hemisphere Institute for Security Cooperation Board of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... curriculum instructions, physical equipment, fiscal affairs, and academic methods of the [[Page 5288... Officer can be obtained from the GSA's FACA Database-- https://www.fido.gov/facadatabase/public.asp . The...

  6. 78 FR 11162 - Renewal of Department of Defense Federal Advisory Committees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... INFORMATION: The Board shall provide advice and recommendations on academic and administrative matters... can be obtained from the GSA's FACA Database-- https://www.fido.gov/facadatabase/public.asp . The DFO...

  7. 48 CFR 252.204-7007 - Alternate A, Annual Representations and Certifications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., Economic Price Adjustment-Wage Rates or Material Prices Controlled by a Foreign Government. Applies to... Certifications Application (ORCA) Web site at https://orca.bpn.gov/. After reviewing the ORCA database...

  8. 48 CFR 252.204-7007 - Alternate A, Annual Representations and Certifications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...—Representation. Applies to all solicitations with institutions of higher education. (iii) 252.216-7008, Economic... https://www.acquisition.gov/. After reviewing the ORCA database information, the offeror verifies by...

  9. Brain Tumors - Multiple Languages

    MedlinePlus

    ... FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Brain Tumors URL of this page: https://medlineplus.gov/ ...

  10. Brain Diseases - Multiple Languages

    MedlinePlus

    ... FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Brain Diseases URL of this page: https://medlineplus.gov/ ...

  11. University of California, Davis | Division of Cancer Prevention

    Cancer.gov

    Member Information Dr. Julie L. Sutcliffe Laboratory websiteshttps://bme.ucdavis.edu/sutcliffe/ http://www.ucdmc.ucdavis.edu/publish/providerbio/search/21751 https://bme.ucdavis.edu/people/departmental-faculty/julie-sutcliffe/ |

  12. Erratum: Correction to: Long- and Mid-Term Variations of the Soft X-ray Flare Character in Solar Cycles

    NASA Astrophysics Data System (ADS)

    Chertok, I. M.; Belov, A. V.

    2018-03-01

    Correction to: Solar Phys https://doi.org/10.1007/s11207-017-1169-1 We found an important error in the text of our article. On page 6, the second sentence of Section 3.2 "We studied the variations in soft X-ray flare characteristics in more detail by averaging them within the running windows of ± one Carrington rotation with a step of two rotations." should instead read "We studied the variations in soft X-ray flare characteristics in more detail by averaging them within the running windows of ± 2.5 Carrington rotations with a step of two rotations." We regret the inconvenience. The online version of the original article can be found at https://doi.org/10.1007/s11207-017-1169-1

  13. Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5

    DOE PAGES

    Pendergrass, Angeline G.; Conley, Andrew; Vitt, Francis M.

    2018-02-21

    Radiative kernels at the top of the atmosphere are useful for decomposing changes in atmospheric radiative fluxes due to feedbacks from atmosphere and surface temperature, water vapor, and surface albedo. Here we describe and validate radiative kernels calculated with the large-ensemble version of CAM5, CESM1.1.2, at the top of the atmosphere and the surface. Estimates of the radiative forcing from greenhouse gases and aerosols in RCP8.5 in the CESM large-ensemble simulations are also diagnosed. As an application, feedbacks are calculated for the CESM large ensemble. The kernels are freely available at https://doi.org/10.5065/D6F47MT6, and accompanying software can be downloaded from https://github.com/apendergrass/cam5-kernels.

  14. Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pendergrass, Angeline G.; Conley, Andrew; Vitt, Francis M.

    Radiative kernels at the top of the atmosphere are useful for decomposing changes in atmospheric radiative fluxes due to feedbacks from atmosphere and surface temperature, water vapor, and surface albedo. Here we describe and validate radiative kernels calculated with the large-ensemble version of CAM5, CESM1.1.2, at the top of the atmosphere and the surface. Estimates of the radiative forcing from greenhouse gases and aerosols in RCP8.5 in the CESM large-ensemble simulations are also diagnosed. As an application, feedbacks are calculated for the CESM large ensemble. The kernels are freely available at https://doi.org/10.5065/D6F47MT6, and accompanying software can be downloaded from https://github.com/apendergrass/cam5-kernels.

  15. Palliative Care Texts

    MedlinePlus

    ... page: https://medlineplus.gov/palliativecaretexts.html Palliative Care Texts To use the sharing features on this page, please enable JavaScript. Free text messages to support you and your family during ...

  16. Diverse Lithologies on a Crater Floor

    NASA Image and Video Library

    2018-04-16

    This image from NASA's Mars Reconnaissance Orbiter (MRO) shows bedrock units with diverse colors indicating different mineral concentrations. More information is available at https://photojournal.jpl.nasa.gov/catalog/PIA22434

  17. 48 CFR 3053.303 - Agency forms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... section illustrates agency-specified forms. To access these forms go to: http://www.dhs.gov (under “Business, Acquisition Information”) or https://dhsonline.dhs.gov/portal/jhtml/general/forms.jhtml. Form...

  18. Suicide - Multiple Languages

    MedlinePlus

    ... Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Suicide URL of this page: https://medlineplus.gov/languages/ ...

  19. Traumatic Brain Injury - Multiple Languages

    MedlinePlus

    ... FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Traumatic Brain Injury URL of this page: https://medlineplus.gov/ ...

  20. Frequent Bowel Movements

    MedlinePlus

    ... bowel disease (IBD). Centers for Disease Control and Prevention. https://www.cdc.gov/ibd/what-is-IBD.htm. Accessed Nov. 15, 2017. Hyperthyroidism (Overactive thyroid). National Institute of Diabetes and Digestive ...

  1. 48 CFR 26.205 - Disaster Response Registry.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....acquisition.gov to determine the availability of contractors for debris removal, distribution of supplies... retrieved using the CCR Search tool, which can be accessed via https://www.acquisition.gov. These vendors...

  2. 48 CFR 3053.303 - Agency forms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... section illustrates agency-specified forms. To access these forms go to: http://www.dhs.gov (under “Business, Acquisition Information”) or https://dhsonline.dhs.gov/portal/jhtml/general/forms.jhtml. Form...

  3. 48 CFR 3053.303 - Agency forms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... section illustrates agency-specified forms. To access these forms go to: http://www.dhs.gov (under “Business, Acquisition Information”) or https://dhsonline.dhs.gov/portal/jhtml/general/forms.jhtml. Form...

  4. 48 CFR 3053.303 - Agency forms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... section illustrates agency-specified forms. To access these forms go to: http://www.dhs.gov (under “Business, Acquisition Information”) or https://dhsonline.dhs.gov/portal/jhtml/general/forms.jhtml. Form...

  5. 48 CFR 3053.303 - Agency forms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... section illustrates agency-specified forms. To access these forms go to: http://www.dhs.gov (under “Business, Acquisition Information”) or https://dhsonline.dhs.gov/portal/jhtml/general/forms.jhtml. Form...

  6. Space-to-Ground: Successful Spacewalk: 02/23/2018

    NASA Image and Video Library

    2018-02-22

    NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. For more information about STEM on Station: https://www.nasa.gov/audience/foreducators/stem_on_station/

  7. Human Growth Hormone (HGH): Does It Slow Aging?

    MedlinePlus

    ... Pediatric. 7th ed. Philadelphia, Pa.; Saunders Elsevier; 2016. http://www.clinicalkey.com. Accessed Sept. 4, 2016. Anti-aging products. Federal Trade Commission. https://www.consumer.ftc.gov/articles/0118-anti-aging- ...

  8. Performance-Enhancing Drugs and Teen Athletes

    MedlinePlus

    ... search. Accessed March 3, 2018. Steroid precursors and adolescent health. The Hormone Foundation. https://www.hormone.org/diseases-and-conditions/children-and-teen-health/steroid-precursors. Accessed March 3, 2018. Anabolic steroids. ...

  9. 78 FR 76102 - Sunshine Act Meeting Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ... this meeting in person, unless the partial government shutdown persists, at the address listed above as... https://bbgboardmeetingdecember2013.eventbrite.com by 12:00 p.m. (EST) on December 17. For more...

  10. NHDS: The New Hampshire Dispersion Relation Solver

    NASA Astrophysics Data System (ADS)

    Verscharen, Daniel; Chandran, Benjamin D. G.

    2018-04-01

    NHDS is the New Hampshire Dispersion Relation Solver. This article describes the numerics of the solver and its capabilities. The code is available for download on https://github.com/danielver02/NHDS.

  11. 48 CFR 225.7402-4 - Law of war training.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... provided by the Defense Acquisition University at https://acc.dau.mil/CommunityBrowser.aspx?id=18014&lang... war training include the following: (i) Private security contractors. (ii) Security guards in or near...

  12. 48 CFR 225.7402-4 - Law of war training.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... provided by the Defense Acquisition University at https://acc.dau.mil/CommunityBrowser.aspx?id=18014&lang... war training include the following: (i) Private security contractors. (ii) Security guards in or near...

  13. 48 CFR 225.7402-4 - Law of war training.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... provided by the Defense Acquisition University at https://acc.dau.mil/CommunityBrowser.aspx?id=18014&lang... war training include the following: (i) Private security contractors. (ii) Security guards in or near...

  14. Low Vision Tips

    MedlinePlus

    ... this page: https://medlineplus.gov/lowvision.html MedlinePlus: Low Vision Tips We are sorry. MedlinePlus no longer maintains the For Low Vision Users page. You will still find health resources ...

  15. US EPA Office of Research and Development Community-Focused Exposure and Risk Screening Tool (C-FERST) Air web mapping service

    EPA Pesticide Factsheets

    This map service displays all air-related layers used in the USEPA Community/Tribal-Focused Exposure and Risk Screening Tool (C/T-FERST) mapping application (https://www.epa.gov/c-ferst). The following data sources (and layers) are contained in this service:USEPA's 2005 National-Scale Air Toxic Assessment (NATA) data. Data are shown at the census tract level (2000 census tract boundaries, US Census Bureau) for Cumulative Cancer and Non-Cancer risks (Neurological and Respiratory) from 139 air toxics. In addition, individual pollutant estimates of Ambient Concentration, Exposure Concentration, Cancer, and Non-Cancer risks (Neurological and Respiratory) are provided for: Acetaldehyde, Acrolein, Arsenic, Benzene, 1,3-Butadiene, Chromium, Diesel PM, Formaldehyde, Lead, Naphthalene, and Polycyclic Aromatic Hydrocarbon (PAH). The original Access tables were downloaded from USEPA's Office of Air and Radiation (OAR) https://www.epa.gov/national-air-toxics-assessment/2005-national-air-toxics-assessment. The data classification (defined interval) for this map service was developed for USEPA's Office of Research and Development's (ORD) Community-Focused Exposure and Risk Screening Tool (C-FERST) per guidance provided by OAR.The 2005 NATA provides information on 177 of the 187 Clean Air Act air toxics (https://www.epa.gov/sites/production/files/2015-10/documents/2005-nata-pollutants.pdf) plus diesel particulate matter (diesel PM was assessed for non-cancer only). For addit

  16. Retraction of articles by Dr M. Aramli.

    PubMed

    2018-06-01

    The below articles published online on Wiley Online Library (wileyonlinelibrary.com) have been retracted by agreement between the submitting author, Mohammad Sadegh Aramli (2015, 2015a, 2015b), the Editor-in-Chief, Michel Goldberg, and Blackwell Verlag GmbH. After a thorough investigation, there is strong evidence to indicate that the peer review of these papers was compromised. The identities of the reviewers were unable to be verified, and it is believed that these papers were accepted based on recommendations from reviewers not suitably qualified. REFERENCE Aramli, M. S. (2015). Study of enzyme activities and protein content of beluga (Huso huso) semen before and after cryopreservation. Journal of Animal Physiology and Animal Nutrition, 99, 13-16. https://doi.org/10.1111/jpn.12199 Aramli, M. S., Habibi, E., Aramli, S., & Nouri, H. A. (2015b). Determination of some blood and seminal plasma ions in the beluga, Huso huso (Linnaeus, 1758). Journal of Animal Physiology and Animal Nutrition, 99, 17-20. https://doi.org/10.1111/jpn.12225 Aramli, M. S., Kalbassi, M. R., & Gharibi, M. R. (2015a). Effects of multiple collections on spermatozoa quality of Persian sturgeon, Acipenser persicus: Motility, density and seminal plasma composition. Journal of Animal Physiology and Animal Nutrition, 99, 66-72. https://doi.org/10.1111/jpn.12212. © 2018 Blackwell Verlag GmbH.

  17. EnviroAtlas - Minimum Temperature 1950 - 2099 for the Conterminous United States

    EPA Pesticide Factsheets

    The EnviroAtlas Climate Scenarios were generated from NASA Earth Exchange (NEX) Downscaled Climate Projections (NEX-DCP30) ensemble averages (the average of over 30 available climate models) for each of the four representative concentration pathways (RCP) for the contiguous U.S. at 30 arc-second (approx. 800 m2) spatial resolution. NEX-DCP30 mean monthly minimum temperature for the 4 RCPs (2.6, 4.5, 6.0, 8.5) were organized by season (Winter, Spring, Summer, and Fall) and annually for the years 2006 00e2?? 2099. Additionally, mean monthly minimum temperature for the ensemble average of all historic runs is organized similarly for the years 1950 00e2?? 2005. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  18. EnviroAtlas - Precipitation 1950 - 2099 for the Conterminous United States

    EPA Pesticide Factsheets

    The EnviroAtlas Climate Scenarios were generated from NASA Earth Exchange (NEX) Downscaled Climate Projections (NEX-DCP30) ensemble averages (the average of over 30 available climate models) for each of the four representative concentration pathways (RCP) for the contiguous U.S. at 30 arc-second (approx. 800 m2) spatial resolution. NEX-DCP30 mean monthly precipitation rate for the 4 RCPs (2.6, 4.5, 6.0, 8.5) were organized by season (Winter, Spring, Summer, and Fall) and annually for the years 2006 00e2?? 2099. Additionally, mean monthly precipitation rate for the ensemble average of all historic runs is organized similarly for the years 1950 00e2?? 2005. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  19. EnviroAtlas - Maximum Temperature 1950 - 2099 for the Conterminous United States

    EPA Pesticide Factsheets

    The EnviroAtlas Climate Scenarios were generated from NASA Earth Exchange (NEX) Downscaled Climate Projections (NEX-DCP30) ensemble averages (the average of over 30 available climate models) for each of the four representative concentration pathways (RCP) for the contiguous U.S. at 30 arc-second (approx. 800 m2) spatial resolution. NEX-DCP30 mean monthly maximum temperature for the 4 RCPs (2.6, 4.5, 6.0, 8.5) were organized by season (Winter, Spring, Summer, and Fall) and annually for the years 2006 00e2?? 2099. Additionally, mean monthly maximum temperature for the ensemble average of all historic runs is organized similarly for the years 1950 00e2?? 2005. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  20. Jupyter Notebooks for Earth Sciences: An Interactive Training Platform for Seismology

    NASA Astrophysics Data System (ADS)

    Igel, H.; Chow, B.; Donner, S.; Krischer, L.; van Driel, M.; Tape, C.

    2017-12-01

    We have initiated a community platform (http://www.seismo-live.org) where Python-based Jupyter notebooks (https://jupyter.org) can be accessed and run without necessary downloads or local software installations. The increasingly popular Jupyter notebooks allow the combination of markup language, graphics, and equations with interactive, executable Python code examples. Jupyter notebooks are a powerful and easy-to-grasp tool for students to develop entire projects, scientists to collaborate and efficiently interchange evolving workflows, and trainers to develop efficient practical material. Utilizing the tmpnb project (https://github.com/jupyter/tmpnb), we link the power of Jupyter notebooks with an underlying server, such that notebooks can be run from anywhere, even on smart phones. We demonstrate the potential with notebooks for 1) learning the programming language Python, 2) basic signal processing, 3) an introduction to the ObsPy library (https://obspy.org) for seismology, 4) seismic noise analysis, 5) an entire suite of notebooks for computational seismology (the finite-difference method, pseudospectral methods, finite/spectral element methods, the finite-volume and the discontinuous Galerkin methods, Instaseis), 6) rotational seismology, 7) making results in papers fully reproducible, 8) a rate-and-state friction toolkit, 9) glacial seismology. The platform is run as a community project using Github. Submission of complementary Jupyter notebooks is encouraged. Extension in the near future include linear(-ized) and nonlinear inverse problems.

  1. The MAR databases: development and implementation of databases specific for marine metagenomics

    PubMed Central

    Klemetsen, Terje; Raknes, Inge A; Fu, Juan; Agafonov, Alexander; Balasundaram, Sudhagar V; Tartari, Giacomo; Robertsen, Espen

    2018-01-01

    Abstract We introduce the marine databases; MarRef, MarDB and MarCat (https://mmp.sfb.uit.no/databases/), which are publicly available resources that promote marine research and innovation. These data resources, which have been implemented in the Marine Metagenomics Portal (MMP) (https://mmp.sfb.uit.no/), are collections of richly annotated and manually curated contextual (metadata) and sequence databases representing three tiers of accuracy. While MarRef is a database for completely sequenced marine prokaryotic genomes, which represent a marine prokaryote reference genome database, MarDB includes all incomplete sequenced prokaryotic genomes regardless level of completeness. The last database, MarCat, represents a gene (protein) catalog of uncultivable (and cultivable) marine genes and proteins derived from marine metagenomics samples. The first versions of MarRef and MarDB contain 612 and 3726 records, respectively. Each record is built up of 106 metadata fields including attributes for sampling, sequencing, assembly and annotation in addition to the organism and taxonomic information. Currently, MarCat contains 1227 records with 55 metadata fields. Ontologies and controlled vocabularies are used in the contextual databases to enhance consistency. The user-friendly web interface lets the visitors browse, filter and search in the contextual databases and perform BLAST searches against the corresponding sequence databases. All contextual and sequence databases are freely accessible and downloadable from https://s1.sfb.uit.no/public/mar/. PMID:29106641

  2. EnviroAtlas - Phoenix, AZ - Domestic Water Demand per Day by U.S. Census Block Group

    EPA Pesticide Factsheets

    As included in this EnviroAtlas dataset, community level domestic water demand is calculated using locally available water use data per capita in gallons of water per day (GPD), distributed dasymetrically, and summarized by census block group. Domestic water use, as defined in this case, is intended to represent residential indoor and outdoor water use (e.g., cooking hygiene, landscaping, pools, etc.) for primary residences (i.e., excluding second homes and tourism rentals). For the purposes of this metric, these publicly-supplied estimates are also applied and considered representative of local self-supplied water use. Within the EnviroAtlas Phoenix boundary, there are 53 service providers with 2000-2009 water use estimates ranging from 108 to 366 GPD.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  3. EnviroAtlas - Agricultural Water Demand by 12-Digit HUC for the Conterminous United States

    EPA Pesticide Factsheets

    The national agricultural water demand metric provides insight into the amount of water currently used for agricultural irrigation in the contiguous United States. The values are based on 2005 irrigation water use; combined 2010 crop, 2006 land use, and 2001 remotely sensed irrigation location estimates; and have been summarized by watershed or 12-digit hydrologic unit code (HUC). Agricultural irrigation water use, as defined in this case, meets a variety of needs before, during, and after growing seasons (e.g., dust suppression, field preparation, chemical application, weed control, salt removal from root zones, frost protection, crop cooling, and harvesting). Estimates include self-supplied surface and groundwater, as well as supplies from irrigation-specific organizations (e.g., companies, districts, cooperatives, government). This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  4. EnviroAtlas - Domestic Water Demand by 12-Digit HUC for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset includes domestic water demand attributes which provide insight into the amount of water currently used for indoor and outdoor residential purposes in the contiguous United States. The values are based on 2010 water demand and 2010 population distribution, and have been summarized by subwatershed, or 12-digit hydrologic unit code (HUC12). For the purposes of this metric, domestic water use includes residential uses, such as for drinking, bathing, cleaning, landscaping, and pools. Depending on the location, domestic water can be self-supplied, such as by private wells, or publicly-supplied, such as by municipalities. Sources include surface water and groundwater. Estimates are for primary residences only (i.e., excluding second homes and tourism rentals). This dataset was produced by the US EPA to support research and online mapping activities related to the EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  5. EnviroAtlas - Reptile Biodiversity Ecosystem Services Metrics by 12-digit HUC for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset contains biodiversity metrics reflecting ecosystem services or other aspects of biodiversity for reptile species, based on the number of reptile species as measured by predicted habitat present within a pixel. These metrics were created from grouping national level single species habitat models created by the USGS Gap Analysis Program into smaller ecologically based, phylogeny based, or stakeholder suggested composites. The dataset includes reptile species richness metrics for all reptile species, lizards, snakes, turtles, poisonous reptiles, Natureserve-listed G1,G2, and G3 reptile species, and reptile species listed by IUCN (International Union for Conservation of Nature), PARC (Partners in Amphibian and Reptile Conservation) and SWPARC (Southwest Partners in Amphibian and Reptile Conservation). This dataset was produced by a joint effort of New Mexico State University, US EPA, and USGS to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa

  6. EnviroAtlas -Milwaukee, WI- One Meter Resolution Urban Land Cover Data (2010)

    EPA Pesticide Factsheets

    The EnviroAtlas Milwaukee, WI land cover data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2010 at 1 m spatial resolution. Nine land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, agriculture, and wetlands (woody and emergent). An accuracy assessment using a completely random sampling of 600 samples yielded an overall accuracy of 85.39% percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Milwaukee. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  7. EnviroAtlas -- Woodbine, IA -- One Meter Resolution Urban Land Cover Data (2011)

    EPA Pesticide Factsheets

    The EnviroAtlas Woodbine, IA land cover (LC) data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2011 at 1 m spatial resolution. Six land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, and agriculture. An accuracy assessment using a completely random sampling of 600 samples yielded an overall accuracy of 87.03% percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Woodbine. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  8. Aortic Calcification: An Early Sign of Heart Valve Problems?

    MedlinePlus

    ... et al. Natural history, epidemiology, and prognosis of aortic stenosis. https://www.uptodate.com/home. Accessed April 18, 2017. Zakkar M, et al. Aortic stenosis: Diagnosis and management. BMJ. 2016;355:1. Dweck ...

  9. Materials Data on Re2PbO8 (SG:157) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on Mg3Si2H4O9 (SG:157) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on TiNi (SG:157) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on Cs3As5O9 (SG:157) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on Li17(AgSn2)3 (SG:157) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on CdAu (SG:157) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-03-27

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on Mo3H24C8S13N2 (SG:157) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-02-11

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on SiCu2S3 (SG:157) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on Ba21Al40 (SG:157) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on Tl6S (SG:157) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-04-22

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on Mn13Si2SbO24 (SG:157) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-04-22

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on Na15S5Cl(O5F)4 (SG:157) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on K3Nb3(BO6)2 (SG:157) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on K3V5O14 (SG:157) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on Ag5(PbO3)2 (SG:157) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-04-23

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on Zr5Sb3 (SG:193) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on Zr5SiSb3 (SG:193) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on Rb4CdBr6 (SG:167) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on Zr5Sb4 (SG:193) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on KP(HO2)2 (SG:9) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on KP(HO2)2 (SG:122) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on KP(HO2)2 (SG:82) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on KP(HO2)2 (SG:14) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on KP(HO2)2 (SG:13) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on KP(OF)2 (SG:62) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on KP(HO)2 (SG:15) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on KP (SG:19) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on KP(HO2)2 (SG:2) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on KP(HO2)2 (SG:43) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on KP(HO2)2 (SG:19) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on NaSr7Cu8(SF)8 (SG:99) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on PdC (SG:216) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-09-21

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on PdC (SG:225) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-09-21

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on Y5(MoO6)2 (SG:12) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on Y5(FeTe)2 (SG:63) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on Y5(ReO6)2 (SG:12) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on Y5(Si7Os2)2 (SG:14) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2015-02-18

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on Y5(In2Pd)2 (SG:55) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-02-11

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on H2SO4 (SG:14) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on NaZn(HO)3 (SG:106) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on ThB6 (SG:221) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on Mg2PHO5 (SG:62) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on Mg2PHO5 (SG:157) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on Sb4Au(Xe2F11)2 (SG:2) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on Sb4PdC4(O2F11)2 (SG:14) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on CaP2Xe5F22 (SG:33) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on CdP2Xe5F22 (SG:33) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on W5(O2F11)2 (SG:2) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on BaSb2Xe5F22 (SG:69) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on Sb4OsC6(O3F11)2 (SG:14) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on K3Na4Si3BF22 (SG:44) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on HgSb4C2(OF11)2 (SG:14) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on Sb4IrC5ClO5F22 (SG:4) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on Sb3Au3F22 (SG:7) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-11

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on K8Ti5P2(O4F11)2 (SG:14) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-07-14

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on Sb4RuC6(O3F11)2 (SG:14) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on Te5(O2F11)2 (SG:88) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on FeSb4C6(O3F11)2 (SG:14) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on Sb4PtC4(O2F11)2 (SG:14) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on CeSb(SBr)2 (SG:14) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on Zn8Cu5 (SG:217) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on La5Si3 (SG:140) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on Ce2SbS5Br (SG:62) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on LaSb(SBr)2 (SG:14) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on Ce4Al23Ni6 (SG:12) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-07-26

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on Ce3Si2S8Br (SG:15) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on PuSe (SG:225) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on TiRe (SG:221) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-04-23

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on Ca(HoS2)2 (SG:122) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on Ca(SmS2)2 (SG:122) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on Ca(GeRh)2 (SG:139) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on Ca(GaS2)2 (SG:70) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on Ca(PrS2)2 (SG:122) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on Ca(BC)2 (SG:131) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on Ca(Cu2As)2 (SG:166) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on Ca(Ce2Se3)4 (SG:9) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on Ca (SG:139) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2015-01-27

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on Ca(GePd)2 (SG:139) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on Ca(NiGe)2 (SG:139) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on Ca(MnAl2)4 (SG:139) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on Ca(MnGe)2 (SG:139) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on Ca(AlZn)2 (SG:139) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on Ca(RhO2)2 (SG:62) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on Ca(AuF6)2 (SG:115) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on Ca(Ni2B)6 (SG:166) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on Ca(AlSe2)2 (SG:66) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on Ca(NO3)2 (SG:205) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on Ca(GdS2)2 (SG:122) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on Ca(BeN)2 (SG:140) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on Ca(Fe2O3)2 (SG:63) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on Ca(NiP)2 (SG:139) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on Ca(BeGe)2 (SG:129) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-04-23

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations