Science.gov

Sample records for r-134a refrigerant cooling

  1. Two-Phase Cooling Method Using R134a Refrigerant to Cool Power Electronic Devices

    SciTech Connect

    Lowe, Kirk T; Tolbert, Leon M; Ayers, Curtis William; Ozpineci, Burak; Campbell, Jeremy B

    2007-01-01

    This paper presents a two-phase cooling method using R134a refrigerant to dissipate the heat energy (loss) generated by power electronics (PE) such as those associated with rectifiers, converters, and inverters for a specific application in hybrid-electric vehicles (HEVs). The cooling method involves submerging PE devices in an R134a bath, which limits the junction temperature of PE devices while conserving weight and volume of the heat sink without sacrificing equipment reliability. First, experimental tests that included an extended soak for more than 300 days were performed on a submerged IGBT and gate-controller card to study dielectric characteristics, deterioration effects, and heat flux capability of R134a. Results from these tests illustrate that R134a has high dielectric characteristics, no deterioration on electrical components, and a heat flux of 114 W/cm 2 for the experimental configuration. Second, experimental tests that included simultaneous operation with a mock automotive air-conditioner (A/C) system were performed on the same IGBT and gate controller card. Data extrapolation from these tests determined that a typical automotive A/C system has more than sufficient cooling capacity to cool a typical 30 kW traction inverter. Last, a discussion and simulation of active cooling of the IGBT junction layer with R134a refrigerant is given. This technique will drastically increase the forward current ratings and reliability of the PE device

  2. Floating Refrigerant Loop Based on R-134a Refrigerant Cooling of High-Heat Flux Electronics

    SciTech Connect

    Lowe, K.T.

    2005-10-07

    The Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) have been developing technologies to address the thermal issues associated with hybrid vehicles. Removal of the heat generated from electrical losses in traction motors and their associated power electronics is essential for the reliable operation of motors and power electronics. As part of a larger thermal control project, which includes shrinking inverter size and direct cooling of electronics, ORNL has developed U.S. Patent No. 6,772,603 B2, ''Methods and Apparatus for Thermal Management of Vehicle Systems and Components'' [1], and patent pending, ''Floating Loop System for Cooling Integrated Motors and Inverters Using Hot Liquid Refrigerant'' [2]. The floating-loop system provides a large coefficient of performance (COP) for hybrid-drive component cooling. This loop (based on R-134a) is integrated with a vehicle's existing air-conditioning (AC) condenser, which dissipates waste heat to the ambient air. Because the temperature requirements for cooling of power electronics and electric machines are not as low as that required for passenger compartment air, this adjoining loop can operate on the high-pressure side of the existing AC system. This arrangement also allows the floating loop to run without the need for the compressor and only needs a small pump to move the liquid refrigerant. For the design to be viable, the loop must not adversely affect the existing system. The loop should also provide a high COP, a flat-temperature profile, and low-pressure drop. To date, the floating-loop test prototype has successfully removed 2 kW of heat load in a 9 kW automobile passenger AC system with and without the automotive AC system running. The COP for the tested floating-loop system ranges from 40-45, as compared to a typical AC system COP of about 2-4. The estimated required waste-heat load for future hybrid applications is 5.5 kW and the existing system could be

  3. Heat transfer of liquid refrigerant R-134a cooled in small circular tubes

    SciTech Connect

    Yang, C.Y.; Chung, W.H.; Hsu, S.M.

    1999-07-01

    Owing to the micro-fabrication technology development of integrated circuits, smaller tubes can be made and used for increasing the compactness of heat exchangers. However, the traditional heat transfer correlations are derived from tubes diameter much larger than those used in micro-channels. They have not been verified to work well for predicting the heat transfer coefficient inside small hydraulic diameter tubes. Several researches dealing with the single-phase heat transfer inside small tubes have been published in the past few years. Most of their test results show that the friction factors are in relatively good agreement with the Moody chart. However, the existing literatures show a considerable disagreement as to the effect of small channel size on heat transfer coefficients. This manuscript provides an experimental study of heat transfer for liquid refrigerant R-134a cooled in three small circular tubes with diameters 0.8, 1.1 and 1.4 mm. Data are presented at temperature 50 C and Reynolds number from 3,000 to 20,000. The experimental results show that the tested data are approximately 18% higher than those predicted by Petukhov equation. If the authors replace the friction factor terms in the Petukhov equation by the measured values, the predicted heat transfer coefficients agree well with the experimental values for those three tubes.

  4. Flow Regime Identification of Horizontal Two Phase Refrigerant R-134a Flow Using Neural Networks (Postprint)

    DTIC Science & Technology

    2013-11-01

    Figure 1. The apparatus for the current work consists of two separate loops , 1) R-134a test loop and 2) Water Cooling loop . A pumped refrigeration loop ...measurements are taken between an L/D of 280 and 300 to ensure that the two phase flow is fully developed. Testing was performed with refrigerant...analysis demonstrates the liquid vapor distributions for each flow regime as seen in Figure 3. Each test point described in this paper is accompanied

  5. Performance characteristics of low global warming potential R134a alternative refrigerants in ejector-expansion refrigeration system

    NASA Astrophysics Data System (ADS)

    Mishra, Shubham; Sarkar, Jahar

    2016-12-01

    Performance assessment of ejector-expansion vapor compression refrigeration system with eco-friendly R134a alternative refrigerants (R152a, R1234yf, R600a, R600, R290, R161, R32, and propylene) is presented for air-conditioning application. Ejector has been modeled by considering experimental data based correlations of component efficiencies to take care of all irreversibilities. Ejector area ratio has been optimized based on maximum coefficient of performance (COP) for typical air-conditioner operating temperatures. Selected refrigerants have been compared based on area ratio, pressure lift ratio, entrainment ratio, COP, COP improvement and volumetric cooling capacity. Effects of normal boiling point and critical point on the performances have been studied as well. Using ejector as an expansion device, maximum improvement in COP is noted in R1234yf (10.1%), which reduces the COP deviation with R134a (4.5% less in basic cycle and 2.5% less in ejector cycle). Hence, R1234yf seems to be best alternative for ejector expansion system due to its mild flammability and comparable volumetric capacity and cooling COP. refrigerant R161 is superior to R134a in terms of both COP and volumetric cooling capacity, although may be restricted for low capacity application due to its flammability.

  6. Study on the Materials for Compressor and Reliability of Refrigeration Circuit in Refrigerator with R134a Refrigerant

    NASA Astrophysics Data System (ADS)

    Komatsubara, Takeo; Sunaga, Takasi; Takahasi, Yasuki

    R134a was selected as the alternative refrigerant for R12 because of the similar thermodynamic properties with R12. But refrigeration oil for R12 couldn't be used for R134a because of the immiscibility with R134a. To solve this problem we researched miscible oil with R134a and selected polyol ester oil (POE) as refrigeration oil. But we found sludge deposition into capillary tube after life test of refrigerator with POE and detected metal soap, decomposed oil and alkaline ions by analysis of sludge. This results was proof of phenomena like oil degradation, precipitation of process materials and wear of compressor. Therefore we improved stability and lubricity of POE, reevaluated process materials and contaminations in refrigerating circuit. In this paper we discuss newly developed these technologies and evaluation results of it by life test of refrigerator.

  7. Performance comparison of a refrigerator system using R134a and hydrocarbon refrigerant (HCR134a) with different expansion devices

    NASA Astrophysics Data System (ADS)

    Aziz, A.; Izzudin; Mainil, A. K.

    2017-09-01

    The objective of this study is to compare the performance of refrigerator system using working fluid between R134a refrigerant and HCR134a as hydrocarbon refrigerant for substitution of R134a. The use of capillary tube (CT) 1.5 m with HCR134a showed that slightly better COP than among the others, due to the lower pressure of condenser, conversely thermostatic expansion valve (TEV) showed that better COP than among the others with R134a. COP of CT 1.25 m and CT 1.5 m using HCR134a increase about 42.89% and 18.09% compared to R134a, where the electric current of refrigerator system decrease about 11.63% and 10.98%. However, the COP of HCR134a with CT 2.7 m and TEV were obtained lower than R134a about 16.2% and 17.06% and the use of electric current is higher than R134a about 12.98% and 16.5%. The use of HCR134a provides a higher refrigeration effect than R134a about 66.71%-88.27% for various types of expansion devices. The results confirmed that HCR134a could be an alternative refrigerant for replacement of R134a refrigerant.

  8. Pilot retrofit test of refrigerant R-134a for GDSCC

    NASA Technical Reports Server (NTRS)

    Albus, J.; Brown, B.; Dungao, M.; Spencer, G.

    1994-01-01

    NASA has issued an interim policy requiring all of its Centers to eliminate consumption (purchase) of stratospheric ozone-depleting substances, including chlorofluorocarbons (CFC's), by 1995. Also, plans must be outlined for the eventual phase out of their usage. The greatest source of CFC consumption and usage at the Goldstone Deep Space Communications Complex is refrigerant R-12, which is used in many of the facility's air-conditioning systems. A pilot retrofit test shows that retrofitting R-12 air-conditioning systems with hydrofluorocarbon R-13a would be a workable means to comply with the R-12 portion of NASA's policy. Results indicate acceptable cost levels and nearly equivalent system performance.

  9. An analysis of the performance of an ejector refrigeration cycle working with R134a

    NASA Astrophysics Data System (ADS)

    Memet, F.; Preda, A.

    2015-11-01

    In the context of recent developments in the field of energy, the aspect related to energy consumption is of great importance for specialists. Many industries rely on refrigeration technologies, a great challenge being expressed by attempts in energy savings in this sector. In this respect, efforts oriented towards efficient industrial refrigeration systems have revealed the necessity of a proper design. The most commonly used method of cooling is based on vapor compression cycles. Compared to vapor compression refrigeration systems, an ejector refrigeration system shows an inferior performance, indicated by the Coefficient of Performance of the cycle, but it is more attractive from energy saving point of view. In this respect, the present study deals with a theoretically analysis of an Ejector Refrigeration System, started with the presentation of the typical ejector design. It is stated that ejector refrigeration is a thermally driven system which requires low grade thermal energy for its working. After a short description of the analyzed system, are given equations for thermal loads and Coefficient of Performance calculation, on First Law basis. The working fluid considered in this research is Freon R134a. The developed study is focused on the effect of generating temperature variation on the Coefficient of Performance (COP) and on the work input to the pump when the cooling effect, the condensation temperature, the evaporation temperature and the reference state temperature are kept constant. Are obtained results in the following conditions: the condensation temperature is tc = 33°C, the evaporation temperature is te = 3°C, the reference state temperature is to = 23°C. The generating temperature varies in the range 82 ÷ 92°C and the cooling effect is 1 kW. Also, are known the isentropic efficiencies of the ejector, which are 0.90, and the isentropic efficiency of the pump, which is 0.75. Calculation will reveal that the Coefficient of Performance is

  10. Performance and energy saving analysis of a refrigerator using hydrocarbon mixture (HC-R134a) as working fluid

    NASA Astrophysics Data System (ADS)

    Mohtar, M. N.; Nasution, H.; Aziz, A. A.

    2015-12-01

    The use of hydrocarbon mixture as a working fluid in a refrigerator system is rarely explored. Almost all domestic refrigerators use hydroflourocarbon R134a (HFC-R134a) as refrigerants. In this study, hydrocarbon gas (HC-R134a) is used as the alternative refrigerant to replace HFC-R134a. It has a composition of R290 (56%), R600a (54.39%) and additive (0.1%wt) blended for the trials. The experiments were conducted with 105 g and 52.5 g refrigerant mass charge, subjected to internal heat load of 0, 1, 2, 3 and 4 kg respectively. The study investigates the coefficient of performance of the refrigerator (COPR) and energy consumption. The results show that the use of HC-R134a as the replaceable refrigerant can save energy ranging from 2.04% to 7.09%, as compared to the conventional HFC-R134a refrigerant. Naturally, the COPR improvement and temperature distribution using HC-R134a are much better than HFC-R134a

  11. Numerical study and validation on a two-phase ejector flow using R134a refrigerant

    NASA Astrophysics Data System (ADS)

    Baek, Sunghoon; Song, Simon

    2016-11-01

    An ejector is a pumping device that uses a low pressure jet flow to entrain a low-momentum secondary flow, and the two flows are mixed and pressurized in a mixing tube and a diffuser. When the ejector replaces an expansion valve in a standard refrigeration cycle, a compression work can be saved by the pumping effect and the efficiency of the cycle is known to be improved. However, the details of flow characteristics in the ejector are still unknown due to difficulties in experiments and complex flow phenomena. We numerically studied a supersonic ejector flow of R134a refrigerant, and validated the results against experimental data. As a results, we found that combinations of mixture, realizable k-epsilon, evaporation-condensation models, and energy equation are suitable to predict the ejector performance in a design point of view. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MSIP) (No. 2016R1A2B3009541).

  12. A Study of the Heat Transfer Coefficient of a Mini Channel Evaporator with R-134a as Refrigerant

    NASA Astrophysics Data System (ADS)

    Dollera, E. B.; Villanueva, E. P.

    2015-09-01

    The present study is to evaluate the heat transfer coefficient of the minichannel copper blocks used as evaporator with R-134a as the refrigerant. Experiments were conducted using three evaporator specimens of different channel hydraulic diameters (1.0mm, 2.0mm, 3.0mm). The total length for each channel is 640 mm. The dimension of each is 100mm.x50mm.x20mm. and the outside surfaces were machined to have fins. They were connected to a standard vapour compression refrigeration system. During each run of the experiment, the copper block evaporator was placed inside a small wind tunnel where controlled flow of air from a forced draft fan was introduced for the cooling process. The experimental set-up used data acquisition software and computer-aided simulation software was used to simulate the pressure drop and temperature profiles of the evaporator during the experimental run. The results were then compared with the Shah correlation. The Shah correlation over predicted and under predicted the values as compared with the experimental results for all of the three diameters and high variation for Dh=1.0mm. This indicates that the Shah correlation at small diameters is not the appropriate equation for predicting the heat transfer coefficient. The trend of the heat transfer coefficient is increasing as the size of the diameter increases.

  13. Experimental Performance of R-1234yf and R-1234ze as Drop-in Replacements for R-134a in Domestic Refrigerators

    SciTech Connect

    Karber, Kyle M; Abdelaziz, Omar; Vineyard, Edward Allan

    2012-01-01

    Concerns about anthropogenic climate change have generated an interest in low global warming potential (GWP) refrigerants and have spawned policies and regulations that encourage the transition to low GWP refrigerants. Recent research has largely focused on hydrofluoroolefins (HFOs), including R-1234yf (GWP = 4) as a replacement for R-134a (GWP = 1430) in automotive air-conditioning applications. While R-1234yf and R-1234ze (GWP = 6) have been investigated theoretically as a replacements for R-134a in domestic refrigeration, there is a lack of experimental evidence. This paper gives experimental performance data for R-1234yf and R-1234ze as drop-in replacements for R134a in two household refrigerators one baseline and one advanced technology. An experiment was conducted to evaluate and compare the performance of R-134a to R-1234yf and R-1234ze, using AHAM standard HRF-1 to evaluate energy consumption. These refrigerants were tested as drop-in replacements, with no performance enhancing modifications to the refrigerators. In Refrigerator 1 and 2, R-1234yf had 2.7% and 1.3% higher energy consumption than R-134a, respectively. This indicates that R-1234yf is a suitable drop-in replacement for R-134a in domestic refrigeration applications. In Refrigerator 1 and 2, R-1234ze had 16% and 5.4% lower energy consumption than R-134a, respectively. In order to replace R-134a with R-1234ze in domestic refrigerators the lower capacity would need to be addressed, thus R-1234ze might not be suitable for drop-in replacement.

  14. Effects of oil on boiling of replacement refrigerants flowing normal to a tube bundle -- Part 2: R-134a

    SciTech Connect

    Tatara, R.A.; Payvar, P.

    2000-07-01

    Local, experimental heat transfer coefficients have been obtained for boiling refrigerant flowing up and across a tube bundle segment representing a full flooded evaporator tube bundle. R-134a data with a structured enhanced boiling tube are available. This tube has reentrant cavities designed for higher saturation pressure of refrigerants. The refrigerant enters at 15% vapor quality and exits at nearly 100% vapor in order to simulate an actual evaporator bundle. Both heat flux, 2,607 to 10,427 Btu/h{center_dot}f{sup 2} (8,224 to 32,893 W/m{sup 2}), and oil content, 0--12% (by weight), are varied; the mass flux is not an independent variable but determined by the heat flux. Local tube and bulk fluid temperatures are measured directly, by thermocouples, to calculate the refrigerant-side heat transfer coefficients. The bundle segment saturation temperature setpoint (taken at the top of the tube bundle) is 40 F (4.4 C).

  15. Modified Peng-Robinson Equation of State for Pure and Mixture Refrigerants with R-32,R-125 and R-134a

    NASA Astrophysics Data System (ADS)

    Ll, Jin; Sato, Haruki; Watanabe, Koichi

    On the basis of critically-evaluated thermodynamic property data among those recently published, a new Peng-Robinson equation of state for the HFC refrigerants,R-32,R-125 and R-134a,has be end eveloped so as to represent the VLE properties in the vapor-liquid coexisting phase at temperatures 223K-323K. In accord with a challenge to correlate the binary and/or ternary interatction parameters as functions of temperature, we have also applied the present modified Peng-Robinson equation of state to the promising alternative HFC refrigerant mixtures, i.e., R-32/125,R-32/134a and R-32/125/134a systems. The developed equation of state improves significantly its effectiveness for practical engineering property calculations at refrigerantion and air-conditioning industries in comparison with conventional Peng-Robinson equation.

  16. Comparative study of cryogen spray cooling with R-134a and R-404a: implications for laser treatment of dark human skin.

    PubMed

    Dai, Tianhong; Yaseen, Mohammad A; Diagaradjane, Parmeswaran; Chang, David W; Anvari, Bahman

    2006-01-01

    Cutaneous laser treatment in dark skin patients is challenging due to significant light absorption by the melanin at the basal layer of epidermis, which can result in irreversible nonspecific thermal injury to the epidermis. Cryogen spray cooling (CSC) with R-134a (boiling point approximately -26.2 degrees C at 1 atm), which is currently used during cutaneous laser treatment, has shown poor efficacy in protecting dark human skin. We investigated the potential of CSC with R-404a (boiling point approximately -46.5 degrees C at 1 atm), which has a lower boiling point than R-134a, for improved therapeutic outcome in dark human skin at three levels: in vitro (epoxy resin skin phantom), ex vivo (normal dark human skin sample), and in vivo (skin of the rabbit external ear). The skin phantom was used to acquire the surface and internal temperature profiles in response to CSC with R-134a or R-404a at various spurt durations, based upon which CSC-induced heat removal from the skin phantom was estimated using an algorithm that solved a one-dimensional inverse heat conduction problem. CSC with R-404a increased the temperature reductions within the phantom and subsequently the amount of heat removal from the phantom in comparison to that with R-134a. Normal ex vivo Fitzpatrick types V-VI human skin samples were used to investigate the thermal response of dark human skin epidermis to CSC (R-134a or R-404a) at various spurt durations in conjunction with 595-nm pulsed dye laser irradiation at various radiant exposures. Cryogen R-404a increased the threshold radiant exposures for irreversible thermal injury to the epidermis in dark pigmentation skin. No obvious CSC-induced morphological changes to human skin was observed when sprayed with R404-a spurts using durations up to 300 ms. In vivo rabbit ear vasculature was used as a model of cutaneous anomalies to assess the influences of CSC (with R-134a or R-404a) on the photothermolysis of dermal blood vessels. CSC (R-134a or R-404a

  17. Two-phase frictional pressure drop of R-134a and R-410A refrigerant-oil mixtures in straight tubes and U-type wavy tubes

    SciTech Connect

    Chen, Ing Youn; Wu, Yu-Shi; Chang, Yu-Juei; Wang, Chi-Chuan

    2007-02-15

    This study presents single-phase and two-phase pressure drop data for R-134a/oil mixture flowing in a wavy tube with inner diameter of D=5.07mm and curvature ratio 2R/D=5.18 and R-410A/oil mixture flowing in a wavy tube of D=3.25mm and 2R/D=3.91. Both mixtures have oil concentration C=0%, 1%, 3% and 5% for the tests. The ratio of frictional factor between U-bend in wavy tube and straight tube (f{sub C}/f{sub S}) is about 3.5 for Re<2500 and is approximate 2.5 for Re=3500-25,000 for oil and liquid R-134a mixture flowing in the 5.07mm diameter wavy tube. The influence of oil concentration on single-phase friction factor is negligible, provided that the properties are based on the mixture of lubricant and refrigerant. The ratio between two-phase pressure gradients of U-bend and straight tube is about 2.5-3.5. This ratio is increased with oil concentration and vapor quality. The influence of oil is augmented at a higher mass flux for liquid spreading around the periphery at an annular flow pattern. Moreover, the influence of lubricant becomes more evident of a U-bend configuration. This is associated the induced swirled flow motion and an early change of flow pattern from stratified to annular flow pattern. The frictional two-phase multiplier for straight tube can be fairly correlated by using the Chisholm correlation for the data having Martinelli parameter X between 0.05 and 1.0. Fridel correlation also shows a good agreement with a mean deviation of 17.6% to all the straight tube data. For the two-phase pressure drop in U-bend, the revised Geary correlation agrees very well with the R-134a and R-410A oil-refrigerant data with a mean deviation of 16.4%. (author)

  18. Refrigerant directly cooled capacitors

    DOEpatents

    Hsu, John S.; Seiber, Larry E.; Marlino, Laura D.; Ayers, Curtis W.

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  19. An experimental study on sub-cooled flow boiling CHF of R134a at low pressure condition with atmospheric pressure (AP) plasma assisted surface modification

    SciTech Connect

    Kim, Seung Jun; Zou, Ling; Jones, Barclay G.

    2015-02-01

    In this study, sub-cooled flow boiling critical heat flux tests at low pressure were conducted in a rectangular flow channel with one uniformly heated surface, using simulant fluid R-134a as coolant. The experiments were conducted under the following conditions: (1) inlet pressure (P) of 400-800 kPa, (2) mass flux (G) of 124-248 kg/m2s, (3) inlet sub-cooling enthalpy (ΔHi) of 12~ 26 kJ/kg. Parametric trends of macroscopic system parameters (G, P, Hi) were examined by changing inlet conditions. Those trends were found to be generally consistent with previous understandings of CHF behavior at low pressure condition (i.e. reduced pressure less than 0.2). A fluid-to-fluid scaling model was utilized to convert the test data obtained with the simulant fluid (R-134a) into the prototypical fluid (water). The comparison between the converted CHF of equivalent water and CHF look-up table with same operation conditions were conducted, which showed good agreement. Furthermore, the effect of surface wettability on CHF was also investigated by applying atmospheric pressure plasma (AP-Plasma) treatment to modify the surface characteristic. With AP-Plasma treatment, the change of microscopic surface characteristic was measured in terms of static contact angle. The static contact angle was reduced from 80° on original non-treated surface to 15° on treated surface. An enhancement of 18% on CHF values under flow boiling conditions were observed on AP-Plasma treated surfaces compared to those on non-treated heating surfaces.

  20. Experimental performance of ozone-safe alternative refrigerants: Experimental performance comparisons of R32, R125, R143a, R218, R134a, R152a, R134, R124, R142b, RC318 and R143 in a refrigeration circuit

    SciTech Connect

    Sand, J.R.; Vineyard, E.A. ); Nowak, R.J. )

    1990-01-01

    Several compounds proposed as near term or longer range substitutes for the regulated chlorofluorocarbon (CFC) refrigerants were tested in a breadboard vapor-compression circuit, and their performance was evaluated relative to more commonly used refrigerants. The limited physical property information available in the literature for these alternative compounds was used to fit an equation of state so coefficients of performance (COPs) and capacities calculated from refrigerant property subroutines could be compared to those obtained experimentally. Comparisons of measured and modeled performance are given for 11 alternatives and for R22, R12, and R114. Estimates of compressor efficiency with each refrigerant are provided. Several of the alternatives exhibited better performance than the more widely used refrigerants at some or all of the conditions tested. Ozone-safe, alternative refrigerants that performed better than CFC counterparts at selected conditions are R152a, R143a, R134a, R134, and R142b. 9 refs., 1 fig., 8 tabs.

  1. Condensation heat transfer characteristics of R-22, R-134a and R-410A in small diameter tubes

    NASA Astrophysics Data System (ADS)

    Son, Chang-Hyo; Lee, Ho-Saeng

    2009-07-01

    The condensation heat transfer of pure refrigerants, R-22, R-134a and a binary refrigerant R-410A flowing in small diameter tubes was investigated experimentally. The condenser is a countflow heat exchanger which refrigerant flows in the inner tube and cooling water flows in the annulus. The heat exchanger is smooth, horizontal copper tube of 1.77, 3.36 and 5.35 mm inner diameter, respectively. The length of heat exchanger is 1220, 2660 and 3620 mm, respectively. The experiments were conducted at mass flux of 200-400 kg/m2 s and saturation temperature of 40°C. The main results were summarized as follows: in case of single-phase flow, the single-phase Nusselt Number measured by experimental data was higher than that calculated by Gnielinski and Wu and Little correlation. The new single-phase correlation based on the experimental data was proposed in this study. In case of two-phase flow, the condensation heat transfer coefficient of R-410A for three tubes was slightly higher than that of R-22 and R-134a at the given mass flux. The condensation heat transfer coefficient of R-22 showed almost a similar value to that of R-134a. The condensation heat transfer coefficient for R-22, R-134a and R-410A increased with increasing mass flux and decreasing tube diameter. Most of the existing correlations which were proposed in the large diameter tube failed to predict condensation heat transfer. Therefore, the new condensation heat transfer correlation based on the experimental data was proposed in the present study.

  2. Oil cooled, hermetic refrigerant compressor

    DOEpatents

    English, William A.; Young, Robert R.

    1985-01-01

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

  3. Oil cooled, hermetic refrigerant compressor

    DOEpatents

    English, W.A.; Young, R.R.

    1985-05-14

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

  4. TEST REPORT #33: Compressor Calorimeter Test of R-410A Alternative: R-32/R-134a Mixture Using a Scroll Compressor

    SciTech Connect

    Shrestha, Som; Sharma, Vishaldeep; Abdelaziz, Omar

    2014-02-18

    This report investigates the tested performance of lower - GWP candidate refrigerant, 94.07 wt% R - 32 + 5.93 wt % R - 134 a mixture (hereafter referred to as R - 32/134a), as an alternative to baseline refrigerant R - 410 A using a 36,000 Btu/hr compressor calorimeter located at the Heat Exchanger Advanced Testing Facility at Oak Ridge National Laboratory . These tests were conducted during May and August 2013. R - 410A is a near - azeotropic blend of R - 32 and R - 125 with 0.5/0.5 mass fraction and has a GWP 100 of 2100. R - 32 and R - 134a are pure refrigerants and have GWP 100 of 716 and 1370 1, respectively. Based on the GWP 100 values of pure refrigerants and their mass fraction in the blend, GWP 100 of R - 32/134a, which is under development by National Refrigerant, is 755. This report compares various performance parameters, such as cooling capacity, compressor power, refrigerant mass flow rate, EER, isentropic efficiency and discharge temperature of the alternative refrigerant to that of R - 410 A.

  5. Magnetic refrigeration for maser amplifier cooling

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1982-01-01

    The development of a multifrequency upconverter-maser system for the DSN has created the need to develop a closed-cycle refrigerator (CCR) capable of providing more than 3 watts of refrigeration capability at 4.5 K. In addition, operating concerns such as the high cost of electrical power consumption and the loss of maser operation due to CCR failures require that improvements be made to increase the efficiency and reliability of the CCR. One refrigeration method considered is the replacement of the Joule-Thomson expansion circuit with a magnetic refrigeration. Magnetic refrigerators can provide potentially reliable and highly efficient refrigeration at a variety of temperature ranges and cooling power. The concept of magnetic refrigeration is summarized and a literature review of existing magnetic refrigerator designs which have been built and tested and that may also be considered as possibilities as a 4 K to 15 K magnetic refrigeration stage for the DSN closed-cycle refrigerator is provided.

  6. Magnetic refrigeration for maser amplifier cooling

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1982-01-01

    The development of a multifrequency upconverter-maser system for the DSN has created the need to develop a closed-cycle refrigerator (CCR) capable of providing more than 3 watts of refrigeration capability at 4.5 K. In addition, operating concerns such as the high cost of electrical power consumption and the loss of maser operation due to CCR failures require that improvements be made to increase the efficiency and reliability of the CCR. One refrigeration method considered is the replacement of the Joule-Thomson expansion circuit with a magnetic refrigeration. Magnetic refrigerators can provide potentially reliable and highly efficient refrigeration at a variety of temperature ranges and cooling power. The concept of magnetic refrigeration is summarized and a literature review of existing magnetic refrigerator designs which have been built and tested and that may also be considered as possibilities as a 4 K to 15 K magnetic refrigeration stage for the DSN closed-cycle refrigerator is provided.

  7. Elastic Metal Alloy Refrigerants: Thermoelastic Cooling

    SciTech Connect

    2010-10-01

    BEETIT Project: UMD is developing an energy-efficient cooling system that eliminates the need for synthetic refrigerants that harm the environment. More than 90% of the cooling and refrigeration systems in the U.S. today use vapor compression systems which rely on liquid to vapor phase transformation of synthetic refrigerants to absorb or release heat. Thermoelastic cooling systems, however, use a solid-state material—an elastic shape memory metal alloy—as a refrigerant and a solid to solid phase transformation to absorb or release heat. UMD is developing and testing shape memory alloys and a cooling device that alternately absorbs or creates heat in much the same way as a vapor compression system, but with significantly less energy and a smaller operational footprint.

  8. Compressor Calorimeter Test of R-404A Alternatives ARM-31a, D2Y-65, L-40, and R32 + R-134a Mixture using a Scroll Compressor

    SciTech Connect

    Shrestha, Som S; Sharma, Vishaldeep; Abdelaziz, Omar

    2013-08-01

    As a contribution to the AHRI Low-GWP Alternative Refrigerants Evaluation Program (AREP), this study compares the performance of four lower-GWP alternative refrigerants, ARM-31a, D2Y-65, L-40, and R-32 + R-134a mixture, to that of refrigerant R-404A (baseline) in a scroll compressor designed for medium temperature refrigeration applications. These comparisons were carried out via compressor calorimeter tests performed on a compressor designed for refrigerant R-404A and having a nominal rated capacity of 23,500 Btu/hr. Tests were conducted over a suction dew point temperature range of -10 F to 35 F in 5 F increments and a discharge dew point temperature range of 70 F to 140 F in 10 F increments. All the tests were performed with 20 F superheat, 40 F superheat, and 65 F suction temperature. A liquid subcooling level of 10 F to 15 F was maintained for all the test conditions. However, the cooling capacities reported in this study are normalized for 0 F subcooling. The tests showed that the compressor energy efficiency ratio (EER) and cooling capacity with all four alternative refrigerants tested are higher at higher saturation suction and saturation discharge temperature and lower at lower saturation suction and saturation discharge temperature, compared to that of R-404A. Discharge temperatures of all the alternative refrigerants were higher than that of R-404A at all test conditions.

  9. Computing Isentropic Flow Properties of Air/R-134a Mixtures

    NASA Technical Reports Server (NTRS)

    Kvaternik, Ray

    2006-01-01

    MACHRK is a computer program that calculates isentropic flow properties of mixtures of air and refrigerant R-134a (tetrafluoroethane), which are used in transonic aerodynamic testing in a wind tunnel at Langley Research Center. Given the total temperature, total pressure, static pressure, and mole fraction of R-134a in a mixture, MACHRK calculates the Mach number and the following associated flow properties: dynamic pressure, velocity, density, static temperature, speed of sound, viscosity, ratio of specific heats, Reynolds number, and Prandtl number. Real-gas effects are taken into account by treating the gases comprising the mixture as both thermally and calorically imperfect. The Redlich-Kwong equation of state for mixtures and the constant-pressure ideal heat-capacity equation for the mixture are used in combination with the departure- function approach of thermodynamics to obtain the equations for computing the flow properties. In addition to the aforementioned calculations for air/R-134a mixtures, a research version of MACHRK can perform the corresponding calculations for mixtures of air and R-12 (dichlorodifluoromethane) and for air/SF6 mixtures. [R-12 was replaced by R-134a because of environmental concerns. SF6 has been considered for use in increasing the Reynolds-number range.

  10. Potential Refrigerants for Power Electronics Cooling

    SciTech Connect

    Starke, M.R.

    2005-10-24

    In the past, automotive refrigerants have conventionally been used solely for the purpose of air conditioning. However, with the development of hybrid-electric vehicles and the incorporation of power electronics (PEs) into the automobile, automotive refrigerants are taking on a new role. Unfortunately, PEs have lifetimes and functionalities that are highly dependent on temperature and as a result thermal control plays an important role in the performance of PEs. Typically, PEs are placed in the engine compartment where the internal combustion engine (ICE) already produces substantial heat. Along with the ICE heat, the additional thermal energy produced by PEs themselves forces designers to use different cooling methods to prevent overheating. Generally, heat sinks and separate cooling loops are used to maintain the temperature. Disturbingly, the thermal control system can consume one third of the total volume and may weigh more than the PEs [1]. Hence, other avenues have been sought to cool PEs, including submerging PEs in automobile refrigerants to take advantage of two-phase cooling. The objective of this report is to explore the different automotive refrigerants presently available that could be used for PE cooling. Evaluation of the refrigerants will be done by comparing environmental effects and some thermo-physical properties important to two-phase cooling, specifically measuring the dielectric strengths of potential candidates. Results of this report will be used to assess the different candidates with good potential for future use in PE cooling.

  11. Experimental analysis of a window air conditioner with a R-22 and R32/R125/R134a mixture

    SciTech Connect

    Mei, V.C.; Chen, F.C.; Chen, D.T.; HuangFu, E.P.

    1995-07-01

    Much experimental and theoretical analysis of potential R-22 replacements has been accomplished. However, published information about the experimental analysis of any off-the-shelf air conditioner with a potential R-22 replacement at realistic, operating conditions is still rare. This type of work could be useful because it provides baseline data for comparing the performance of R-22 and its potential replacement at drop-in conditions. In this study, an off-the-shelf window air conditioner was tested at Air Conditioning and Refrigeration Institute (ARI)-rated indoor conditions and at different ambient temperatures, including the ARI-rated outdoor condition, with R-22 and with its potential replacement, a ternary mixture of R-32(30%)/R-125(10%)/R-134a(60%) (the ternary mixture). A test rig was built that provided for baseline operation and for the option of operating the system with a flooded evaporator by means of liquid over-feeding (LOF). The test results indicated the cooling capacity of the ternary mixture was 7.7% less than that of R-22 at 95{degrees}F ambient for baseline operation. The cooling capacity for both refrigerants improved when a flooded evaporator, or LOF, was used. For LOF operation, the cooling capacity of the ternary mixture was only 1.1% less than that of R-22. The ternary mixture had slightly higher compressor discharge pressure, a lower compressor discharge temperature, slightly lower compressor power consumption, and a higher compressor high/low pressure ratio.

  12. Compatibility of manufacturing process fluids with R-134a and polyolester lubricant. Final report

    SciTech Connect

    Cavestri, R.C.; Schooley, D.L.

    1996-07-01

    This report includes a broad list of processing fluids that are known to be used to manufacture air conditioning and refrigeration products. Sixty-four process fluids from this list were selected for compatibility studies with R-134a and ICI EMKARATE RL32H (32 ISO) polyolester lubricant. Solutions or suspensions of the process fluid residues in polyolester lubricant were heated for 14 days at 175{degrees}C (347{degrees}F) in evacuated sealed glass tubes containing only valve steel coupons. Miscibility tests were performed at 90 wt.% R-134a, 10 wt.% polyolester lubricant with process fluid residue contaminate and were scanned in 10{degrees}C (18{degrees}F) increments over a temperature range of ambient to -40{degrees}C (-40{degrees}F). Any sign of turbidity, haze formation or oil separation was considered the immiscibility point.

  13. Characterization of R-134a superheated droplet detector for neutron detection.

    PubMed

    Mondal, Prasanna Kumar; Sarkar, Rupa; Chatterjee, Barun Kumar

    2014-08-01

    R-134a (C2H2F4) is a low cost, easily available and chlorine free refrigerant, which in its superheated state can be used as an efficient neutron detector. Due to its high solubility in water the R-134a based superheated droplet detectors (SDD) are usually very unstable unless the detector is fabricated using a suitable additive, which stabilizes the detector. The SDD is known to have superheated droplets distributed in a short-lived and in a relatively long-lived metastable states. We have studied the detector response to neutrons using a (241)AmBe neutron source and obtained the temperature variation of the nucleation parameters and the interstate kinetics of these droplets using a two-state model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Cooling performance and evaluation of automotive refrigeration system for a passenger car

    NASA Astrophysics Data System (ADS)

    Prajitno, Deendarlianto, Majid, Akmal Irfan; Mardani, Mahardeka Dhias; Wicaksono, Wendi; Kamal, Samsul; Purwanto, Teguh Pudji; Fauzun

    2016-06-01

    A new design of automotive refrigeration system for a passenger car was proposed. To ensure less energy consumption and optimal thermal comfort, the performance of the system were evaluated. This current research was aimed to evaluate the refrigeration characteristics of the system for several types of cooling load. In this present study, a four-passenger wagon car with 1500 cc gasoline engine that equipped by a belt driven compressor (BDC) was used as the tested vehicle. To represent the tropical condition, a set of lamps and wind sources are installed around the vehicle. The blower capacity inside a car is varied from 0.015 m/s to 0.027 m/s and the compressor speed is varied at variable 820, 1400, and 2100 rpm at a set temperature of 22°C. A set of thermocouples that combined by data logger were used to measure the temperature distribution. The system uses R-134a as the refrigerant. In order to determine the cooling capacity of the vehicle, two conditions were presented: without passengers and full load conditions. As the results, cooling capacity from any possible heating sources and transient characteristics of temperature in both systems for the cabin, engine, compressor, and condenser are presented in this work. As the load increases, the outlet temperature of evaporator also increases due to the increase of condensed air. This phenomenon also causes the increase of compressor work and compression ratio which associated to the addition of specific volume in compressor inlet.

  15. Entanglement enhances cooling in microscopic quantum refrigerators.

    PubMed

    Brunner, Nicolas; Huber, Marcus; Linden, Noah; Popescu, Sandu; Silva, Ralph; Skrzypczyk, Paul

    2014-03-01

    Small self-contained quantum thermal machines function without external source of work or control but using only incoherent interactions with thermal baths. Here we investigate the role of entanglement in a small self-contained quantum refrigerator. We first show that entanglement is detrimental as far as efficiency is concerned-fridges operating at efficiencies close to the Carnot limit do not feature any entanglement. Moving away from the Carnot regime, we show that entanglement can enhance cooling and energy transport. Hence, a truly quantum refrigerator can outperform a classical one. Furthermore, the amount of entanglement alone quantifies the enhancement in cooling.

  16. Feasibility of cool storage systems in refrigeration

    NASA Astrophysics Data System (ADS)

    Elmahgary, Yehia; Kekkonen, Veikko; Laitinen, Ari; Pihala, Hannu

    1989-05-01

    In the present report, the economic viability and technical feasibility of selected cool storage systems are considered. Cool storage has clear potential for several applications: in connection with air-conditioning systems, domestic refrigerating and freezing systems; commercially e.g., in the dairy and vegetable industries; and in deep freezing, as in the meat industry. Air-conditioning has limited significance in Finland. For this reason it was not investigated in this study. In domestic refrigeration and freezing two systems were investigated; a controlled cooling/heating system and a simple built-in system in individual refrigerators and freezers. The central cooling/heating system in houses was found to be economically unattractive. It also has several technical drawbacks. The simple built-in system appeared to be promising. The amount of savings is rationally a function of the difference between day and night tariffs and the costs of installing an automatic switch and storage media. In the vegetable and dairy industries cool storage also has considerable potential. Several systems were investigated in this respect and compared to the conventional system. The cool storage system using Cristopia balls, one of the most common commercial systems available in Europe, was not economical at a tariff difference of 10 p/k Wh or more. Cool storage for freezing in meat plants was also investigated.

  17. Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant

    DOEpatents

    Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

    2006-02-07

    A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

  18. Performance tests of R-22 and R-32/R-125/R-134a mixture for baseline air conditioning and liquid over-feeding operations

    SciTech Connect

    Mei, V.C.; Chen, F.C.; Chen, D.T.; HuangFu, E.P.

    1995-12-31

    Much experimental and theoretical analysis of potential R-22 replacements has been accomplished. However, published information regarding the experimental analysis of any off-the-shelf air conditioners with a potential R-22 replacement at realistic operating conditions is still rare. This type of work could be useful because it would provide baseline data for comparing the performance of R-22 and its potential replacement at drop-in conditions. In this study, an off-the-shelf window air conditioners was tested at Air Conditioning and Refrigeration Institute (ARI)-rated indoor conditions and at different ambient temperatures, include the ARI-rated outdoor condition, with R-22 and with its potential replacement, a ternary mixture of R-32(30%)/R-125(10%)/R-134a(60%) (the ternary mixture). A test rig was built that provided for baseline operation and for the option of operating the system with a flooded evaporator by means of liquid overfeeding (LOF). The test results indicated that the cooling capacity of the ternary mixture was 7.7% less than that of R-22 at 95 F ambient for baseline operation. The cooling capacity for both refrigerants improved when a flooded evaporator, or LOF, was used. For LOF operation, the cooling capacity of the ternary mixture was only 1.1% less than that of R-22. The ternary mixture had slightly higher compressor discharge pressure, a lower compressor discharge temperature, slightly lower compressor power consumption, and a higher compressor high/low pressure ratio.

  19. Augmentation of heat transfer by twisted tape inserts during condensation of R-134a inside a horizontal tube

    NASA Astrophysics Data System (ADS)

    Akhavan-Behabadi, M. A.; Kumar, Ravi; Rajabi-Najar, A.

    2008-04-01

    An experimental investigation has been carried out to find the heat transfer coefficient during condensation of R-134a vapor inside a horizontal tube. Experiments were conducted for the condensation of R-134a inside a plain tube and tubes with different twisted tape inserts. Twisted tapes with different twisted ratios of 6, 9, 12 and 15 were inserted in the refrigerant side, one by one, in the full length of test-condenser. For each inserted tube and the plain tube, test runs were carried out for the mass velocities of 92, 110, 128 and 147 kg/s-m2. An empirical correlation has also been developed to predict the enhanced heat transfer coefficient.

  20. Keeping Cool With Solar-Powered Refrigeration

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the midst of developing battery-free, solar-powered refrigeration and air conditioning systems for habitats in space, David Bergeron, the team leader for NASA's Advanced Refrigerator Technology Team at Johnson Space Center, acknowledged the need for a comparable solar refrigerator that could operate in conjunction with the simple lighting systems already in place on Earth. Bergeron, a 20-year veteran in the aerospace industry, founded the company Solus Refrigeration, Inc., in 1999 to take the patented advanced refrigeration technology he co-developed with his teammate, Johnson engineer Michael Ewert, to commercial markets. Now known as SunDanzer Refrigeration, Inc., Bergeron's company is producing battery-free, photovoltaic (PV) refrigeration systems under license to NASA, and selling them globally.

  1. Advanced Refrigerant-Based Cooling Technologies for Information and Communication Infrastructure (ARCTIC)

    SciTech Connect

    Salamon, Todd

    2012-12-13

    of a 100 kW prototype data center installation of the refrigerant-based modular cooling technology were dramatic in terms of energy efficiency and the ability to cool high-heat-density equipment. The prototype data center installation consisted of 10 racks each loaded with 10 kW of high-heat-density IT equipment with the racks arranged in a standard hot-aisle/cold-aisle configuration with standard cabinet spacing. A typical chilled-water CRAC unit would require approximately 16 kW to cool such a heat load. In contrast, the refrigerant-based modular cooling technology required only 2.3 kW of power for the refrigerant pump and shelf-level fans, a reduction of 85 percent. Differences in hot-aisle and cold-aisle temperature were also substantially reduced, mitigating many issues that arise in purely air-based cooling systems, such as mixing of hot and cold air streams, or from placing high-heat-density equipment in close proximity. The technology is also such that it is able to retro-fit live equipment without service interruption, which is particularly important to the large installed ICT customer base, thereby providing a means of mitigating reliability and performance concerns during the installation, training and validation phases of product integration. Moreover, the refrigerant used in our approach, R134a, is a widely-used, non-toxic dielectric liquid which, unlike water, is non-conducting and non-corrosive and will not damage electronics in the case of a leak a triple-play win over alternative water-based liquid coolant technologies. Finally, through use of a pumped refrigerant, pressures are modest (~60 psi), and toxic lubricants and oils are not required, in contrast to compressorized refrigerant systems another environmental win. Project Activities - The ARCTIC project goal was to further develop and dramatically accelerate the commercialization of this game-changing, refrigerant-based, liquid-cooling technology and achieve a revolutionary increase in energy

  2. 4. INTERIOR VIEW OF CLUB HOUSE REFRIGERATION UNIT, SHOWING COOLING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INTERIOR VIEW OF CLUB HOUSE REFRIGERATION UNIT, SHOWING COOLING COILS AND CORK-LINED ROOM. CAMERA IS BETWEEN SEVEN AND EIGHT FEET ABOVE FLOOR LEVEL, FACING SOUTHEAST. - Swan Falls Village, Clubhouse 011, Snake River, Kuna, Ada County, ID

  3. Experimental analysis of R134a flow boiling inside a 5 PPI copper foam

    NASA Astrophysics Data System (ADS)

    Diani, A.; Mancin, S.; Rossetto, L.

    2014-04-01

    Heat dissipation is one of the most important issues for the reliability of electronic equipment. Boiling can be a very efficient heat transfer mechanism when used to face with the electronic technology needs of efficient and compact heat sinks. Recently, cellular structured materials both stochastic and periodic, particularly open cell metal foams, have been proposed as possible enhanced surfaces to lower the junction temperatures at high heat fluxes. Up today, most of the research on metal foams only regards single phase flow, whereas the two phase flow is still almost unexplored. This paper presents an experimental study on the heat transfer of R134a during flow boiling inside a 5 PPI (Pores Per linear Inch) copper foam, which is 5 mm high, 10 mm wide and 200 mm long, and it is brazed on a 10 mm thick copper plate. The experimental measurements were carried out by imposing three different heat fluxes (50, 75, and 100 kW m-2) and by varying the refrigerant mass velocity between 50 and 200 kg m-2 s-1 and the vapour quality from 0.2 to 0.90, at constant saturation temperature (30°C). The effects of the refrigerant mass flow rate, heat flux and vapour quality on the heat transfer coefficient, dry out phenomenon, and pressure drop are studied.

  4. Design of high efficiency mixed refrigerant Joule-Thomson refrigerator for cooling HTS cable

    NASA Astrophysics Data System (ADS)

    Lee, Jisung; Hwang, Gyuwan; Jeong, Sangkwon; Park, Byung Jun; Han, Young Hee

    2011-07-01

    The substitution of high temperature superconducting (HTS) cables for existing subterranean electric transmission lines is arising as a solution to continuously increasing electricity demand in urban areas. A cryogenic refrigeration system having the characteristics of high reliability, high efficiency, large cooling capacity, and low capital cost is essential to enable such a substitution. These requirements can be satisfied with a mixed refrigerant Joule-Thomson (MR JT) refrigerator. Unfortunately, usual MR JT refrigerators exhibit good performance at refrigeration temperatures above 80 K. A precooled neon-nitrogen MR JT refrigerator is proposed in this paper that can cool HTS cables at 70 K. The coefficient of performance (COP) of the proposed MR JT refrigerator is predicted to be 0.058 at 70 K (19.2% for exergy efficiency) with the optimized design variables. The COP can be improved further to 0.064 by enhancing the efficiency of the precooling cycle. The maximum achievable COP demonstrates the feasibility of MR JT refrigerator for cooling HTS cable.

  5. Improved Regenerative Sorbent-Compressor Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1992-01-01

    Conceptual regenerative sorbent-compressor refrigerator attains regeneration efficiency and, therefore, overall power efficiency and performance greater than conventional refrigerators. Includes two fluid loops. In one, CH2FCF3 (R134a) ciculates by physical adsorption and desorption in four activated-charcoal sorption compressors. In other, liquid or gas coolant circulated by pump. Wave of regenerative heating and cooling propagates cyclically like peristatic wave among sorption compressors and associated heat exchangers. Powered by electricity, oil, gas, solar heat, or waste heat. Used as air conditioners, refrigerators, and heat pumps in industrial, home, and automotive applications.

  6. Condensation heat transfer and pressure drop of R-134a saturated vapour inside a brazed compact plate fin heat exchanger with serrated fin

    NASA Astrophysics Data System (ADS)

    Ramana Murthy, K. V.; Ranganayakulu, C.; Ashok Babu, T. P.

    2017-01-01

    This paper presents the experimental heat transfer coefficient and pressure drop measured during R-134a saturated vapour condensation inside a small brazed compact plate fin heat exchanger with serrated fin surface. The effects of saturation temperature (pressure), refrigerant mass flux, refrigerant heat flux, effect of fin surface characteristics and fluid properties are investigated. The average condensation heat transfer coefficients and frictional pressure drops were determined experimentally for refrigerant R-134a at five different saturated temperatures (34, 38, 40, 42 and 44 °C). A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 22 kg/m2s. In the forced convection condensation region, the heat transfer coefficients show a three times increase and 1.5 times increase in frictional pressure drop for a doubling of the refrigerant mass flux. The heat transfer coefficients show weak sensitivity to saturation temperature (Pressure) and great sensitivity to refrigerant mass flux and fluid properties. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow. Correlations are provided for the measured heat transfer coefficients and frictional pressure drops.

  7. Flow boiling heat transfer and pressure drop analysis of R134a in a brazed heat exchanger with offset strip fins

    NASA Astrophysics Data System (ADS)

    Amaranatha Raju, M.; Ashok Babu, T. P.; Ranganayakulu, C.

    2017-10-01

    The saturated flow boiling heat transfer and friction analysis of R 134a were experimentally analyzed in a brazed plate fin heat exchanger with offset strip fins. Experiments were performed at mass flux range of 50-82 kg/m2 s, heat flux range of 14-22 kW/m2 and quality of 0.32-0.75. The test section consists of three fins, one refrigerant side fin in which the boiling heat transfer was estimated and two water side fins. These three fins are stacked, held together and vacuum brazed to form a plate fin heat exchanger. The refrigerant R134a flowing in middle of the test section was heated using hot water from upper and bottom sides of the test section. The temperature and mass flow rates of water circuit is controlled to get the outlet conditions of refrigerant R134a. Two-phase flow boiling heat transfer and frictional coefficient was estimated based on experimental data for offset strip fin geometry and presented in this paper. The effects of mass flux, heat flux and vapour quality on heat transfer coefficient and pressure drop were investigated. Two-phase local boiling heat transfer coefficient is correlated in terms of Reynolds number factor F, and Martinelli parameter X. Pressure drop is correlated in terms of two-phase frictional multiplier ϕ f , and Martinelli parameter X.

  8. Optimal design of gas adsorption refrigerators for cryogenic cooling

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1983-01-01

    The design of gas adsorption refrigerators used for cryogenic cooling in the temperature range of 4K to 120K was examined. The functional relationships among the power requirement for the refrigerator, the system mass, the cycle time and the operating conditions were derived. It was found that the precool temperature, the temperature dependent heat capacities and thermal conductivities, and pressure and temperature variations in the compressors have important impacts on the cooling performance. Optimal designs based on a minimum power criterion were performed for four different gas adsorption refrigerators and a multistage system. It is concluded that the estimates of the power required and the system mass are within manageable limits in various spacecraft environments.

  9. Cool sound: the future of refrigeration? Thermodynamic and heat transfer issues in thermoacoustic refrigeration

    NASA Astrophysics Data System (ADS)

    Herman, C.; Travnicek, Z.

    2006-04-01

    During the past two decades the thermoacoustic refrigeration and prime mover cycles gained importance in a variety of refrigeration applications. Acoustic work, sound, can be used to generate temperature differences that allow the transport of heat from a low temperature reservoir to an ambient at higher temperature, thus forming a thermoacoustic refrigeration system. The thermoacoustic energy pumping cycle can also be reversed: temperature difference imposed along the stack plates can lead to sound generation. In this situation the thermoacoustic system operates as a prime mover. Sound generated by means of this thermoacoustic energy conversion process can be utilized to drive different types of refrigeration devices that require oscillatory flow for their operation, such as thermoacoustic refrigerators, pulse tubes and Stirling engines. In order for a thermoacoustic refrigeration or prime mover system as well as a thermoacoustic prime mover driving a non-thermoacoustic refrigeration system to be competitive on the current market, it has to be optimized in order to improve its overall performance. Optimization can involve improving the performance of the entire system as well as its components. The paper addresses some of the thermodynamic and heat transfer issues relevant in improving the performance of the thermoacoustic system, such as optimization for maximum COP, maximum cooling load and the role of the heat exchangers. Results obtained using the two optimization criteria are contrasted in the paper to illustrate the complexity of the optimization process.

  10. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    SciTech Connect

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.

  11. Alternative refrigerant performance: Field test of a nonchlorofluorocarbon chiller at Fort Leonard Wood, MO. Final report

    SciTech Connect

    Sohn, C.W.; Tomlinson, J.J.; Herring, N.C.; Boughton, B.E.

    1995-01-01

    Production of chlorofluorocarbon (CFC) refrigerants will stop permanently by the end of 1995, and air-conditioning and refrigeration (AC/R) systems will have to use alternatives to CFC. The U.S. Army`s AC/R systems have a total cooling capacity of more than 1 million tons; approximately 55 percent of these systems use CFC-based refrigerants. Chillers currently using CFC refrigerants must be replaced or converted to operate with non-CFC refrigerants. The U.S. Army Construction Engineering Research Laboratories (USACERL) and the U.S. Army Center for Public Works (USACPW) are doing research to find an efficient, alternative refrigerant for Army installations. The current project monitored the performance of a non-CFC (R-134a) centrifugal chiller at Fort Leonard Wood (FLW), MO. Performance of this chiller under field conditions was compared with the manufacturer`s published ratings. Operational characteristics of the R-134a chiller were obtained by measuring electrical energy consumption, cooling delivered to the chiller cooling loop, and heat rejected by the condenser. Results indicated an average performance of approximately 0.68 kilowatts per ton (kW/ton) for the study period. The manufacturer`s design projection was 0.73 kW/ton. The performance evaluation of the R-134a system shows that it is an efficient addition to the FLW facility.

  12. Effects of oil on boiling R-123 and R-134a flowing normal to an integral-finned tube bundle

    SciTech Connect

    Tatara, R.A.; Payvar, P.

    1999-07-01

    Local, experimental heat transfer coefficients have been measured for boiling refrigerant flowing up and across a tube bundle segment representing a full flooded evaporator tube bundle. R-123 and R-134a data with 26 fins per inch (1,024 fins per meter) tubes have been obtained. The refrigerant enters at 15% vapor quality and exits at nearly 100% vapor in order to simulate an actual flooded evaporator bundle. The nominal area heat flux was varied from 2,607 to 10,427 Btu/h{center{underscore}dot}ft{sup 2} (8,224 to 32,893 W/m{sup 2}) as the tube bundle oil content ranged from 0 to 15% (by weight) for each refrigerant/tube combination. The performance of R-22 without oil has also been determined. Local tube and bulk fluid temperatures were measured directly by thermocouples to calculate the refrigerant-side heat transfer coefficients. The bundle segment saturation temperature set point (taken at the top of the tube bundle) is 40 F (4.4 C).

  13. Floating loop method for cooling integrated motors and inverters using hot liquid refrigerant

    DOEpatents

    Hsu, John S.; Ayers, Curtis W.; Coomer, Chester; Marlino, Laura D.

    2007-03-20

    A method for cooling vehicle components using the vehicle air conditioning system comprising the steps of: tapping the hot liquid refrigerant of said air conditioning system, flooding a heat exchanger in the vehicle component with said hot liquid refrigerant, evaporating said hot liquid refrigerant into hot vapor refrigerant using the heat from said vehicle component, and returning said hot vapor refrigerant to the hot vapor refrigerant line in said vehicle air conditioning system.

  14. Computer model for air-cooled refrigerant condensers with specified refrigerant circuiting

    SciTech Connect

    Ellison, R.D.; Creswick, F.A.; Fischer, S.K.; Jackson, W.L.

    1981-01-01

    A computer model for an air-cooled refrigerant condensor is presented; the model is intended for use in detailed design analyses or in simulation of the performance of existing heat exchangers that have complex refrigerant circuiting or unusual air-side geometries. The model relies on a tube-by-tube computational approach calculating the thermal and fluid-flow performance of each tube in the heat exchanger individually, using local temperatures and heat transfer coefficients. The refrigerant circuiting must be specified; the joining or branching of parallel circuits is accommodated using appropriate mixing expressions. Air-side heat exchange correlations may be specified so that various surface geometries can be investigated. Results of the analyses of two condensers are compared to experiment.

  15. R1234yf vs. R134a Flow Boiling Heat Transfer Inside a 3.4 mm ID Microfin Tube

    NASA Astrophysics Data System (ADS)

    Diani, A.; Mancin, S.; Rossetto, L.

    2014-11-01

    The refrigerant charge minimization as well as the use of eco-friendly fluids can be considered two of the most important targets for these applications to cope with the new environmental challenges. This paper compares the R1234yf and R134a flow boiling heat transfer and pressure drop measurements inside a small microfin tube with internal diameter at the fin tip of 3.4 mm. This study is carried out in an experimental facility built at the Dipartimento di Ingegneria Industriale of the University of Padova especially designed to study both single and two phase heat transfer processes. The microfin tube is brazed inside a copper plate and electrically heated from the bottom. Several T -type thermocouples are inserted in the wall to measure the temperature distribution during the phase change process. In particular, the experimental measurements were carried out at constant saturation temperature of 30 °C, by varying the refrigerant mass velocity between 190 kg m-2 s-1 and 940 kg m-2 s-1, the vapour quality from 0.2 to 0.99, at different imposed heat fluxes. The two refrigerants are compared considering the values of the two-phase heat transfer coefficient and pressure drop.

  16. Combined refrigeration system with a liquid pre-cooling heat exchanger

    DOEpatents

    Gaul, Christopher J.

    2003-07-01

    A compressor-pump unit for use in a vapor-compression refrigeration system is provided. The compressor-pump unit comprises a driving device including a rotatable shaft. A compressor is coupled with a first portion of the shaft for compressing gaseous refrigerant within the vapor-compression refrigeration system. A liquid pump is coupled with a second portion of the shaft for receiving liquid refrigerant having a first pressure and for discharging the received liquid refrigerant at a second pressure with the second pressure being higher than the first pressure by a predetermined amount such that the discharged liquid refrigerant is subcooled. A pre-cooling circuit is connected to the liquid pump with the pre-cooling circuit being exposed to the gaseous refrigerant whereby the gaseous refrigerant absorbs heat from the liquid refrigerant, prior to the liquid refrigerant entering the liquid pump.

  17. Laser (cooling) refrigeration in erbium based solid state materials

    NASA Astrophysics Data System (ADS)

    Lynch, Jonathan W.

    The objective of this study was to investigate the potential of erbium based solid state materials for laser refrigeration in bulk material. A great deal of work in the field has been focused on the use of ytterbium based ZBLAN glass. Some experiments have also reported cooling in thulium based solid state materials but with considerably less success. We proposed that erbium had many attractive features compared to ytterbium and therefore should be tried for cooling. The low lying energy level structure of erbium provides energy levels that could bring obtainable temperatures two orders of magnitude lower. Erbium transitions of interest for cooling fall in the near IR region (0.87 microns and 1.5 microns). Lasers for one of these transitions, in the 1.5 micron region, are well developed for communication and are in the eye-safe and water and atmosphere transparent region. Theoretical calculations are also presented so as to identify energy levels of the eleven 4f electrons in Er3+ in Cs2NaYCl 6:Er3+ and the transitions between them. The strengths of the optical transitions between them have been calculated. Knowledge of such energy levels and the strength of the laser induced transitions between them is crucial for understanding the refrigeration mechanisms and different energy transfer pathways following the laser irradiation. The crystal host for erbium was a hexa-chloro-elpasolite crystal, Cs 2NaYCl6:Er3+ with an 80% (stoichiometric) concentration of erbium. The best cooling results were obtained using the 0.87 micron transition. We have demonstrated bulk cooling in this crystal with a temperature difference of ~6.2 K below the surrounding temperature. The temperatures of the crystal and its immediate surrounding environment were measured using differential thermometry. Refrigeration experiments using the 1.5 micron transition were performed and the results are presented. The demonstrated temperature difference was orders of magnitude smaller. Only a temperature

  18. Gifford-McMahon/Joule-Thomson Refrigerator Cools to 2.5 K

    NASA Technical Reports Server (NTRS)

    Britcliffe, Michael; Fernandez, Jose; Hanson, Theodore

    2005-01-01

    A compact refrigerator designed specifically for cooling a microwave maser low-noise amplifier is capable of removing heat at a continuous rate of 180 mW at a temperature of 2.5 K. This refrigerator is a combination of (1) a commercial Gifford-McMahon (GM) refrigerator nominally rated for cooling to 4 K and (2) a Joule-Thomson (J-T) circuit. The GM refrigerator pre-cools the J-T circuit, which provides the final stage of cooling. The refrigerator is compact and capable of operating in any orientation. Moreover, in comparison with a typical refrigerator heretofore used to cool a maser to 4.5 K, this refrigerator is simpler and can be built at less than half the cost.

  19. Computer Programs for Calculating the Isentropic Flow Properties for Mixtures of R-134a and Air

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    2000-01-01

    Three computer programs for calculating the isentropic flow properties of R-134a/air mixtures which were developed in support of the heavy gas conversion of the Langley Transonic Dynamics Tunnel (TDT) from dichlorodifluoromethane (R-12) to 1,1,1,2 tetrafluoroethane (R-134a) are described. The first program calculates the Mach number and the corresponding flow properties when the total temperature, total pressure, static pressure, and mole fraction of R-134a in the mixture are given. The second program calculates tables of isentropic flow properties for a specified set of free-stream Mach numbers given the total pressure, total temperature, and mole fraction of R-134a. Real-gas effects are accounted for in these programs by treating the gases comprising the mixture as both thermally and calorically imperfect. The third program is a specialized version of the first program in which the gases are thermally perfect. It was written to provide a simpler computational alternative to the first program in those cases where real-gas effects are not important. The theory and computational procedures underlying the programs are summarized, the equations used to compute the flow quantities of interest are given, and sample calculated results that encompass the operating conditions of the TDT are shown.

  20. Annular flow of R-134a through a high aspect ratio duct: Local void fraction, droplet velocity and droplet size measurements

    SciTech Connect

    Trabold, T.A.; Kumar, R.; Vassallo, P.F.

    1998-11-01

    Local measurements were made in annular flow of R-134a through a vertical duct. Using a gamma densitometer, hot-film anemometer and laser Doppler velocimeter, profiles of void fraction, liquid droplet frequency and droplet velocity were acquired across the narrow test section dimension. Based upon these results, data for liquid droplet size were obtained and compared to previous experimental results from the literature. These data are useful for developing an improved understanding of practical two-phase refrigerant flows, and for assessment of advanced two-fluid computer codes.

  1. Sorption-cooled continuous miniature dilution refrigeration for astrophysical applications

    NASA Astrophysics Data System (ADS)

    May, Andrew J.; Calisse, Paolo G.; Coppi, Gabriele; Haynes, Vic; Martinis, Lorenzo; McCulloch, Mark A.; Melhuish, Simon J.; Piccirillo, Lucio

    2016-07-01

    A progress report is provided on the development of a tiltable continuous miniature dilution refrigerator and associated 3He/4He sorption coolers. These systems are currently being developed to provide sub-Kelvin cooling of the bolometer arrays for several ground- and balloon-based experiments which aim to measure the polarization of the Cosmic Microwave Background (QUBIC, LSPE and POLARBEAR-2). The novel tiltable miniaturised system benefits from a lack of external circulation pumps and a mechanically simple design. The condenser of the twin-pumped recirculating diluter is cooled continuously by two 3He/4He sorption coolers. The sorption pumps are operated by convective heat switches. The dilution unit features a thermally separated mixing chamber, still and step heat exchangers. The designs and analyses of both the sorption coolers and the diluter are reported; both systems have been manufactured and are presently under test.

  2. A closed cycle cascade Joule Thomson refrigerator for cooling Josephson junction magnetometers

    NASA Technical Reports Server (NTRS)

    Tward, E.; Sarwinski, R.

    1985-01-01

    A closed cycle cascade Joule Thomson refrigerator designed to cool Josephson Junction magnetometers to liquid helium temperature is being developed. The refrigerator incorporates 4 stages of cooling using the working fluids CF4 and He. The high pressure gases are provided by a small compressor designed for this purpose. The upper stages have been operated and performance will be described.

  3. The 1- to 4-K refrigeration techniques for cooling masers on a beam waveguide antenna

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1986-01-01

    The status of technology is reported for various 1- to 4-K commercially available refrigeration systems capable of producing 1.5-K refrigeration to cool masers and superconducting cavity oscillators on the proposed beam waveguide antenna. The design requirements for the refrigeration system and the cryostat are presented. A continuously operating evaporation refrigerator that uses capillary tubing to provide a continuous, self-regulating flow of helium at approximately 1.5 K has been selected as the first refrigerator design for the beam waveguide antenna.

  4. Effects of EHD on heat transfer enhancement and pressure drop during two-phase condensation of pure R-134a at high mass flux in a horizontal micro-fin tube

    SciTech Connect

    Laohalertdecha, Suriyan; Wongwises, Somchai

    2006-07-15

    Effects of electrohydrodynamic (EHD) on the two-phase heat transfer enhancement and pressure drop of pure R-134a condensing inside a horizontal micro-fin tube are experimentally investigated. The test section is a 2.5m long counter flow tube-in-tube heat exchanger with refrigerant flowing in the inner tube and cooling water flowing in the annulus. The inner tube is made from micro-fin horizontal copper tubing of 9.52mm outer diameter. The electrode is made from cylindrical stainless steel of 1.47mm diameter. Positive high voltage is supplied to the electrode wire, with the micro-fin tube grounded. In the presence of the electrode, a maximum heat transfer enhancement of 1.15 is obtained at a heat flux of 10kW/m{sup 2}, mass flux of 200kg/m{sup 2}s and saturation temperature of 40{sup o}C, while the application of an EHD voltage of 2.5kV only slightly increases the pressure drop. New correlations of the experimental data based on the data gathered during this work for predicting the condensation heat transfer coefficients are proposed for practical application. (author)

  5. Viscosity of R134a, R32, and R125 at saturation

    SciTech Connect

    Oliveira, C.M.B.P. |; Wakeham, W.A.

    1999-03-01

    This paper reports the results of the measurement of the viscosity of R134a close to the saturation time in the vapor phase. The new measurements were carried out in a vibrating-wire viscometer specially constructed for the purpose, and the results have an accuracy of {+-}2%. In addition, the opportunity is taken to present a reevaluation of earlier measurements along the saturation line of the viscosity of R32 and R125. Improved equations of state for these fluids are now available and can be employed to generate improved values for the viscosity.

  6. Performance evaluation of two azeotropic refrigerant mixtures of HFC-134a with R-290 (propane) and R-600a (isobutane)

    SciTech Connect

    Kim, M.S.; Mulroy, W.J.; Didion, D.A. . Building and Fire Research Lab.)

    1994-06-01

    The reduction in chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) production and the scheduled phase-out of these ozone-depleting refrigerants require the development and determination of environmentally safe refrigerants for use in heat pumps, water chillers, air conditioners, and refrigerators. This paper presents a performance evaluation of a generic heat pump with two azeotropic refrigerant mixtures of HFC-134a (1,1,1,2-tetrachloroethane) with R-290 (propane) and R-600a (isobutane); R-290/134a (45/55 by mass percentage) and R-134a/600a (80/20 by mass percentage). The performance characteristics of the azeotropes were compared with pure CFC-12, HFC-134a, HCFC-22, and R-290 at the high temperature cooling and heating conditions including those using liquid-line/suction-line heat exchange. The coefficient of performance of R-290/134a is lower than that of HCFC-22 and R-290, and R-134a/600a shows higher coefficient of performance than CFC-12 and HFC-134a. The capacity for R-290/134a is higher than that for HCFC-22 and R-290, and R-134a/600a exhibits higher system capacity than CFC-12 and HFC-134a. Experimental results show that the discharge temperatures of the studied azeotropic mixtures are lower than those of the pure refrigerants, CFC-12 and HCFC-22.

  7. Optimization analysis of the motor cooling method in semi-closed single screw refrigeration compressor

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.; Shen, Y. F.; Wang, Z. B.; Wang, J.

    2017-08-01

    Semi-closed single screw refrigeration compressors (SSRC) are widely used in refrigeration and air conditioning systems owing to the advantages of simple structure, balanced forces on the rotor, high volumetric efficiency and so on. In semi-closed SSRCs, motor is often cooled by suction gas or injected refrigerant liquid. Motor cooling method will changes the suction gas temperature, this to a certain extent, is an important factor influencing the thermal dynamic performance of a compressor. Thus the effects of motor cooling method on the performance of the compressor must be studied. In this paper mathematical models of motor cooling process by using these two methods were established. Influences of motor cooling parameters such as suction gas temperature, suction gas quantity, temperature of the injected refrigerant liquid and quantity of the injected refrigerant liquid on the thermal dynamic performance of the compressor were analyzed. The performances of the compressor using these two kinds of motor cooling methods were compared. The motor cooling capacity of the injected refrigerant liquid is proved to be better than the suction gas. All analysis results obtained can be useful for optimum design of the motor cooling process to improve the efficiency and the energy efficiency of the compressor.

  8. Sub-cooled liquid nitrogen cryogenic system with neon turbo-refrigerator for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Hirai, H.; Nara, N.; Ozaki, S.; Hirokawa, M.; Eguchi, T.; Hayashi, H.; Iwakuma, M.; Shiohara, Y.

    2014-01-01

    We developed a prototype sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The system consists of a neon turbo-Brayton refrigerator with a LN sub-cooler and LN circulation pump unit. The neon refrigerator has more than 2 kW cooling power at 65 K. The LN sub-cooler is a plate-fin type heat exchanger and is installed in a refrigerator cold box. In order to carry out the system performance tests, a dummy cryostat having an electric heater was set instead of a HTS power equipment. Sub-cooled LN is delivered into the sub-cooler by the LN circulation pump and cooled within it. After the sub-cooler, sub-cooled LN goes out from the cold box to the dummy cryostat, and comes back to the pump unit. The system can control an outlet sub-cooled LN temperature by adjusting refrigerator cooling power. The refrigerator cooling power is automatically controlled by the turbo-compressor rotational speed. In the performance tests, we increased an electric heater power from 200 W to 1300 W abruptly. We confirmed the temperature fluctuation was about ±1 K. We show the cryogenic system details and performance test results in this paper.

  9. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    DOE PAGES

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.; ...

    2016-09-09

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 Kelvin. However, usage of the gas has been increasingly difficult because of the current world-wide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas.more » This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1$-$xScxCo2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. Lastly, this study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration.« less

  10. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling.

    PubMed

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S; Bud'ko, Sergey L; Canfield, Paul C; Gegenwart, Philipp

    2016-09-01

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with (3)He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require (3)He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1-x Sc x Co2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration.

  11. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    PubMed Central

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.; Bud’ko, Sergey L.; Canfield, Paul C.; Gegenwart, Philipp

    2016-01-01

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1−xScxCo2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration. PMID:27626073

  12. Evaluation of a Two-stage Mixed Refrigerant Cascade for HTS Cooling Below 60 K

    NASA Astrophysics Data System (ADS)

    Kochenburger, Thomas M.; Grohmann, Steffen; Oellrich, Lothar R.

    A mixed refrigerant cascade presents a potential solution for cooling of high-temperature superconductors between 55 K and 70 K. The envisioned process consists of a pre-cooling and a low-temperature stage, where pre-cooling to 120 K is achieved by a conventional mixed refrigerant cycle. The low-temperature stage operates with a mixture of neon, nitrogen and oxygen at high pressure. Process simulation predicts an overall efficiency of about 8% of Carnot at 55 K. Simulation results for the pre-cooling stage were validated by experiments with an existing test stand.

  13. GreenChill Store Certification Protocol for Sub-Cooling Contained on Racks Separate from Refrigeration Equipment

    EPA Pesticide Factsheets

    Document describes the protocol used to determine the total load and refrigerant charge of stores that have placed all sub-cooling on a rack separate from all other commercial refrigeration equipment.

  14. IMPACTS OF REFRIGERANTLINE LENGTH ON SYSTEM EFFICIENCY IN RESIDENTIAL HEATING AND COOLING SYSTEMS USING REFRIGERANT DISTRIBUTION.

    SciTech Connect

    ANDREWS, J.W.

    2001-04-01

    The effects on system efficiency of excess refrigerant line length are calculated for an idealized residential heating and cooling system. By excess line length is meant refrigerant tubing in excess of the 25 R provided for in standard equipment efficiency test methods. The purpose of the calculation is to provide input for a proposed method for evaluating refrigerant distribution system efficiency. A refrigerant distribution system uses refrigerant (instead of ducts or pipes) to carry heat and/or cooling effect from the equipment to the spaces in the building in which it is used. Such systems would include so-called mini-splits as well as more conventional split systems that for one reason or another have the indoor and outdoor coils separated by more than 25 ft. This report performs first-order calculations of the effects on system efficiency, in both the heating and cooling modes, of pressure drops within the refrigerant lines and of heat transfer between the refrigerant lines and the space surrounding them.

  15. Heat and mass transfer characteristics of absorption of R134a into DMAC in a horizontal tube absorber

    NASA Astrophysics Data System (ADS)

    Harikrishnan, L.; Maiya, M. P.; Tiwari, S.; Wohlfeil, A.; Ziegler, F.

    2009-10-01

    In this paper the heat and mass transfer characteristics of a horizontal tube absorber for the mixture R134a/DMAC in terms of experimentally gained heat and mass transfer coefficients are presented. The heat transfer coefficient is mainly dependent on the solution’s mass flow rate. The mass transfer coefficient is strongly related to the subcooling of the solution. The data are compared to experimental absorption characteristics of water into aqueous lithium bromide in an absorption chiller. The mass transfer coefficients are of similar size whereas the heat transfer coefficients are about one order of magnitude smaller for R134a-DMAC.

  16. Tetrafluoroethane (R134a) hydrate formation within variable volume reactor accompanied by evaporation and condensation

    NASA Astrophysics Data System (ADS)

    Jeong, K.; Choo, Y. S.; Hong, H. J.; Yoon, Y. S.; Song, M. H.

    2015-03-01

    Vast size hydrate formation reactors with fast conversion rate are required for the economic implementation of seawater desalination utilizing gas hydrate technology. The commercial target production rate is order of thousand tons of potable water per day per train. Various heat and mass transfer enhancement schemes including agitation, spraying, and bubbling have been examined to maximize the production capacities in scaled up design of hydrate formation reactors. The present experimental study focused on acquiring basic knowledge needed to design variable volume reactors to produce tetrafluoroethane hydrate slurry. Test vessel was composed of main cavity with fixed volume of 140 ml and auxiliary cavity with variable volume of 0 ˜ 64 ml. Temperatures at multiple locations within vessel and pressure were monitored while visual access was made through front window. Alternating evaporation and condensation induced by cyclic volume change provided agitation due to density differences among water and vapor, liquid and hydrate R134a as well as extended interface area, which improved hydrate formation kinetics coupled with latent heat release and absorption. Influences of coolant temperature, piston stroke/speed, and volume change period on hydrate formation kinetics were investigated. Suggestions of reactor design improvement for future experimental study are also made.

  17. Tetrafluoroethane (R134a) hydrate formation within variable volume reactor accompanied by evaporation and condensation.

    PubMed

    Jeong, K; Choo, Y S; Hong, H J; Yoon, Y S; Song, M H

    2015-03-01

    Vast size hydrate formation reactors with fast conversion rate are required for the economic implementation of seawater desalination utilizing gas hydrate technology. The commercial target production rate is order of thousand tons of potable water per day per train. Various heat and mass transfer enhancement schemes including agitation, spraying, and bubbling have been examined to maximize the production capacities in scaled up design of hydrate formation reactors. The present experimental study focused on acquiring basic knowledge needed to design variable volume reactors to produce tetrafluoroethane hydrate slurry. Test vessel was composed of main cavity with fixed volume of 140 ml and auxiliary cavity with variable volume of 0 ∼ 64 ml. Temperatures at multiple locations within vessel and pressure were monitored while visual access was made through front window. Alternating evaporation and condensation induced by cyclic volume change provided agitation due to density differences among water and vapor, liquid and hydrate R134a as well as extended interface area, which improved hydrate formation kinetics coupled with latent heat release and absorption. Influences of coolant temperature, piston stroke/speed, and volume change period on hydrate formation kinetics were investigated. Suggestions of reactor design improvement for future experimental study are also made.

  18. Heating surface material’s effect on subcooled flow boiling heat transfer of R134a

    SciTech Connect

    Ling Zou; Barclay G. Jones

    2012-11-01

    In this study, subcooled flow boiling of R134a on copper (Cu) and stainless steel (SS) heating surfaces was experimentally investigated from both macroscopic and microscopic points of view. By utilizing a high-speed digital camera, bubble growth rate, bubble departure size, and nucleation site density, were able to be observed and analyzed from the microscopic point of view. Macroscopic characteristics of the subcooled flow boiling, such as heat transfer coefficient, were able to be measured as well. Experimental results showed that there are no obvious difference between the copper and the stainless surface with respect to bubble dynamics, such as contact angle, growth rate and departure size. On the contrary, the results clearly showed a trend that the copper surface had a better performance than the stainless steel surface in terms of heat transfer coefficient. It was also observed that wall heat fluxes on both surfaces were found highly correlated with nucleation site density, as bubble hydrodynamics are similar on these two surfaces. The difference between these two surfaces was concluded as results of different surface thermal conductivities.

  19. Tetrafluoroethane (R134a) hydrate formation within variable volume reactor accompanied by evaporation and condensation

    SciTech Connect

    Jeong, K.; Choo, Y. S.; Hong, H. J.; Yoon, Y. S.; Song, M. H.

    2015-03-15

    Vast size hydrate formation reactors with fast conversion rate are required for the economic implementation of seawater desalination utilizing gas hydrate technology. The commercial target production rate is order of thousand tons of potable water per day per train. Various heat and mass transfer enhancement schemes including agitation, spraying, and bubbling have been examined to maximize the production capacities in scaled up design of hydrate formation reactors. The present experimental study focused on acquiring basic knowledge needed to design variable volume reactors to produce tetrafluoroethane hydrate slurry. Test vessel was composed of main cavity with fixed volume of 140 ml and auxiliary cavity with variable volume of 0 ∼ 64 ml. Temperatures at multiple locations within vessel and pressure were monitored while visual access was made through front window. Alternating evaporation and condensation induced by cyclic volume change provided agitation due to density differences among water and vapor, liquid and hydrate R134a as well as extended interface area, which improved hydrate formation kinetics coupled with latent heat release and absorption. Influences of coolant temperature, piston stroke/speed, and volume change period on hydrate formation kinetics were investigated. Suggestions of reactor design improvement for future experimental study are also made.

  20. Continuous Magnetic Refrigerators for Cooling in the 0.05 to 10 K Range

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; DiPirro, Michael; Canavan, Edgar; Tuttle, James; Panek, John; Jackson, Michael; King, Todd; Numazawa, Takenori; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    Low temperature refrigeration is an increasingly vital technology for NASA's Space Science program since most detectors being developed for x-ray, IR and sub-millimeter missions must be cooled to below 100 mK in order to meet the requirements for energy and spatial resolution. For space applications, magnetic refrigeration has an inherent advantage over alternative techniques because it does not depend on gravity. Adiabatic demagnetization refrigerators, or ADRs, are relatively simple, solid state devices. The basic elements are a magnetocaloric refrigerant (usually an encapsulated paramagnetic salt) located in the bore of a superconducting magnet, and a heat switch linking the salt to a heat sink. The alignment of magnetic spins with the magnetic field causes the refrigerant to warm as the magnetic field increases and cool as the field decreases. Thus the simple process of magnetizing the refrigerant to high field with the heat switch closed, then demagnetizing it with the heat switch open allows one to obtain temperatures well below 100 mK using a heat sink as warm as 4.2 K. The refrigerant can maintain a low temperature for a length of time depending on the applied and parasitic heat loads, its mass, and the initial magnetic field strength. Typically ADRs are designed for 12-24 hours of hold time, after which they must be warmed up and recycled.

  1. Continuous Magnetic Refrigerators for Cooling in the 0.05 to 10 K Range

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; DiPirro, Michael; Canavan, Edgar; Tuttle, James; Panek, John; Jackson, Michael; King, Todd; Numazawa, Takenori; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    Low temperature refrigeration is an increasingly vital technology for NASA's Space Science program since most detectors being developed for x-ray, IR and sub-millimeter missions must be cooled to below 100 mK in order to meet the requirements for energy and spatial resolution. For space applications, magnetic refrigeration has an inherent advantage over alternative techniques because it does not depend on gravity. Adiabatic demagnetization refrigerators, or ADRs, are relatively simple, solid state devices. The basic elements are a magnetocaloric refrigerant (usually an encapsulated paramagnetic salt) located in the bore of a superconducting magnet, and a heat switch linking the salt to a heat sink. The alignment of magnetic spins with the magnetic field causes the refrigerant to warm as the magnetic field increases and cool as the field decreases. Thus the simple process of magnetizing the refrigerant to high field with the heat switch closed, then demagnetizing it with the heat switch open allows one to obtain temperatures well below 100 mK using a heat sink as warm as 4.2 K. The refrigerant can maintain a low temperature for a length of time depending on the applied and parasitic heat loads, its mass, and the initial magnetic field strength. Typically ADRs are designed for 12-24 hours of hold time, after which they must be warmed up and recycled.

  2. Revisiting the research of floating condensation pressure for combined cooling circuits of refrigerating condensers

    NASA Astrophysics Data System (ADS)

    Fot, A. N.; Maksimenko, V. A.

    2017-08-01

    The application of refrigeration condensers combined cooling circuit for reducing fresh water consumption is validated. The insufficiency of existing method of air and water cooling condensers combined circuits calculation is revealed. These circuits result in different values of the recommended condensation temperature (pressure) which does not correspond to a condenser combined cooling operation mode. The condensing temperatures ranges recommended by the known engineering calculation procedures; nature of their mutual change; and the small area having the common solution are graphically shown. The analysis of the known condensing temperature dependences for condensers is carried out and the influence quantities row is defined. The numerical technique of condensation temperature (pressure) determination considering the characteristics and operation modes within a year of evaporator, compressor throttling devices, compressor, condensers, and pipelines is offered. Numerical technique dependences for determination of floating condensation pressure within a year are given. In the given case, the refrigerator economic operation costs will be minimum during the year of refrigerator exploitation.

  3. Study of mixed refrigerant undergoing pulsating flow in micro coolers with pre-cooling

    NASA Astrophysics Data System (ADS)

    Lewis, Ryan; Wang, Yunda; Schneider, Hayley; Lee, Y. C.; Radebaugh, Ray

    2013-10-01

    Micro cryogenic coolers can provide low temperatures with a smaller volumetric footprint and smaller power draw than their conventional-scale counterparts. However, they can exhibit lower-than-desired cooling power. We measure the specific cooling power of a refrigerant expanding from a high pressure of 0.6 MPa to a low pressure of 0.1 MPa, while undergoing pulsating flow in a micro cryogenic cooler with pre-cooling. We further observe that the pulses in the flow-rate occur due to a volume of liquid forming in the high-pressure coupling mini-channel. The composition of the flowing refrigerant is analyzed with gas chromatography and thermal conductivity detection (GC/TCD), showing that there is no overall composition change in the refrigerant after it enters the pre-cooling lines. A model of the cooling power under such a pulsating flow regime is developed with good agreement to measured values. An improved refrigerant mixture is designed with this model, and subsequently tested, showing increased specific cooling power.

  4. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    SciTech Connect

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.; Bud'ko, Sergey L.; Canfield, Paul C.; Gegenwart, Philipp

    2016-09-09

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 Kelvin. However, usage of the gas has been increasingly difficult because of the current world-wide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1$-$xScxCo2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. Lastly, this study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration.

  5. Simulation of chip-size electrocaloric refrigerator with high cooling-power density

    NASA Astrophysics Data System (ADS)

    Gu, Haiming; Craven, Brent; Qian, Xiaoshi; Li, Xinyu; Cheng, Ailan; Zhang, Q. M.

    2013-03-01

    The large electrocaloric effect that found in ferroelectric polymers creates unique opportunity for developing high performance chip scale solid state refrigerator. This letter presents a finite volume simulation study and shows that by employing solid state regenerators and the micro-heat pumping mechanism used in the thermoacoustic cooling, a compact Electrocaloric Oscillatory Refrigeration (ECOR) device can be realized. The simulation results demonstrate that a 1 cm-long ECOR device can provide 9 W/cm3 volumetric cooling power density at 20 K temperature span. By tuning the device parameters in the model, the ECOR can reach more than 50% of the Carnot efficiency.

  6. Cooling of superconducting devices by liquid storage and refrigeration unit

    DOEpatents

    Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene

    2013-08-20

    A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.

  7. Enhancing the performance of the domestic refrigerator with hot gas injection to suction line

    NASA Astrophysics Data System (ADS)

    Berman, E. T.; Hasan, S.; Mutaufiq

    2016-04-01

    The purpose of this study was to determine the increase in performance of a domestic refrigerator that uses hot gas injection (IHG) to the suction line. The experiment was conducted by flowing refrigerant from the discharge line to the suction line. To get performance data, measurements performed on the liquid brine as cooling load with various temperatures (range from 3°C to - 3°C). The working fluid is used as a cooling medium is R-134a. The experimental results showed that the injection of hot gas to the suction line generates an increase in the coefficient of performance systems (COPs) of 7% and is able to lower the discharge temperature, causing the compressor to work lighter/easier, saving electric power needed by the refrigerator.

  8. Performance investigation of a waste heat driven pressurized adsorption refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Habib, K.

    2015-12-01

    This article presents performance investigation of a waste heat driven two bed pressurised adsorption refrigeration system. In this study, highly porous activated carbon (AC) of type Maxsorb III has been selected as adsorbent while n-butane, R-134a, R410a, R507a and carbon dioxide (CO2) are chosen as refrigerants. All the five refrigerants work at above atmospheric pressure. Among the five pairs studied, the best pairs will be identified which will be used to provide sufficient cooling capacity for a driving heat source temperature above 60°C. Results indicate that for a driving source temperature above 60°C, AC-R410a pair provides highest cooling capacity while AC-CO2 pairs works better when the heat source temperature falls below 60°C.

  9. A robust platform cooled by superconducting electronic refrigerators

    SciTech Connect

    Nguyen, H. Q.; Meschke, M.; Pekola, J. P.

    2015-01-05

    A biased tunnel junction between a superconductor and a normal metal can cool the latter electrode. Based on a recently developed cooler with high power and superior performance, we have integrated it with a dielectric silicon nitride membrane, and cooled phonons from 305 mK down to 200 mK. Without perforation and covered under a thin alumina layer, the membrane is rigorously transformed into a cooling platform that is robust and versatile for multiple practical purposes. We discussed our results and possibilities to further improve the device.

  10. Vapor-liquid equilibria for an R134a/lubricant mixture: Measurements and equation-of-state modeling

    SciTech Connect

    Huber, M.L.; Holcomb, C.D.; Outcalt, S.L.; Elliott, J.R.

    2000-07-01

    The authors measured bubble point pressures and coexisting liquid densities for two mixtures of R-134a and a polyolester (POE) lubricant. The mass fraction of the lubricant was approximately 9% and 12%, and the temperature ranged from 280 K to 355 K. The authors used the Elliott, Suresh, and Donohue (ESD) equation of state to model the bubble point pressure data. The bubble point pressures were represented with an average absolute deviation of 2.5%. A binary interaction parameter reduced the deviation to 1.4%. The authors also applied the ESD model to other R-134a/POE lubricant data in the literature. As the concentration of the lubricant increased, the performance of the model deteriorated markedly. However, the use of a single binary interaction parameter reduced the deviations significantly.

  11. Studies on refrigerator sensors and cooling section interface

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yoshirou

    1993-03-01

    The results of a patents examination are outlined including the following items: (1) examination methods and their results concerning the cooling type photoelectric conversion devices; (2) the infrared ray receiver with cooler radiation detector; (3) cryogenic container; (4) the expansion cylinder device; (5) the vibration isolation device for cooling a focal plane; and (6) an infrared detector. The results of users' opinion survey for JEM (Japanese Experiment Module) utilization are summarized as follows: (1) the development of cryogenic (4 K) coolers are strongly desired; (2) pointing device is indispensable for observation system users; (3) vibration condition requirements range from ten micrometer to less than 1 micrometer; (4) miniaturization is strongly desired; and (5) cooler interface is not the image of direct cooling of the sensor but overall cooling of the system. This presentation is represented by viewgraphs only.

  12. Optimal Cooling Load and COP Relationship of a Four-Heat-Reservoir Endoreversible Absorption Refrigeration Cycle

    NASA Astrophysics Data System (ADS)

    Chen, Lingen; Zheng, Tong; Sun, Fengrui; Wu, Chih

    2004-06-01

    On the basis of a four-heat-reservoir endoreversible absorption refrigeration cycle model, another linear heat transfer law [i.e., the heat-flux] is adopted, the fundamental optimal relation between the coefficient of performance (COP) and the cooling load, as well as the maximum cooling load and the corresponding COP of the cycle coupled to constant-temperature heat reservoirs are derived by using finite-time thermodynamics or thermodynamic optimization. The optimal distribution of the heat-transfer surface areas is also obtained. Moreover, the effects of the cycle parameters on the COP and the cooling load of the cycle are studied by detailed numerical examples. The results obtained herein are of importance to the optimal design and performance improvement of an absorption refrigeration cycle.

  13. Small quantum absorption refrigerator in the transient regime: Time scales, enhanced cooling, and entanglement.

    PubMed

    Brask, Jonatan Bohr; Brunner, Nicolas

    2015-12-01

    A small quantum absorption refrigerator, consisting of three qubits, is discussed in the transient regime. We discuss time scales for coherent dynamics, damping, and approach to the steady state, and we study cooling and entanglement. We observe that cooling can be enhanced in the transient regime, in the sense that lower temperatures can be achieved compared to the steady-state regime. This is a consequence of coherent dynamics but can occur even when this dynamics is strongly damped by the dissipative thermal environment, and we note that precise control over couplings or timing is not needed to achieve enhanced cooling. We also show that the amount of entanglement present in the refrigerator can be much larger in the transient regime compared to the steady state. These results are of relevance to future implementations of quantum thermal machines.

  14. Study of a Vuilleumier cycle cryogenic refrigerator for detector cooling on the limb scanning infrared radiometer

    NASA Technical Reports Server (NTRS)

    Russo, S. C.

    1976-01-01

    A program to detect and monitor the presence of trace constituents in the earth's atmosphere by using the Limb Scanning Infrared Radiometer (LSIR) is reported. The LSIR, which makes radiometric measurements of the earth's limb radiance profile from a space platform, contains a detector assembly that must be cooled to a temperature of 65 + or - 2 K. The feasibility of cooling the NASA-type detector package with Vuilleumier (VM) cryogenic refrigerator was investigated to develop a preliminary conceptual design of a VM refrigerator that is compatible with a flight-type LSIR instrument. The scope of the LSIR program consists of analytical and design work to establish the size, weight, power consumption, interface requirements, and other important characteristics of a cryogenic cooler that would meet the requirements of the LSIR. The cryogenic cooling requirements under the conditions that NASA specified were defined. Following this, a parametric performance analysis was performed to define the interrelationships between refrigeration characteristics and mission requirements. This effort led to the selection of an optimum refrigerator design for the LSIR mission.

  15. High sensitivity spectroscopic and thermal characterization of cooling efficiency for optical refrigeration materials

    NASA Astrophysics Data System (ADS)

    Melgaard, Seth D.; Seletskiy, Denis V.; Di Lieto, Alberto; Tonelli, Mauro; Sheik-Bahae, Mansoor

    2012-03-01

    Since recent demonstration of cryogenic optical refrigeration, a need for reliable characterization tools of cooling performance of different materials is in high demand. We present our experimental apparatus that allows for temperature and wavelength dependent characterization of the materials' cooling efficiency and is based on highly sensitive spectral differencing technique or two-band differential spectral metrology (2B-DSM). First characterization of a 5% w.t. ytterbium-doped YLF crystal showed quantitative agreement with the current laser cooling model, as well as measured a minimum achievable temperature (MAT) at 110 K. Other materials and ion concentrations are also investigated and reported here.

  16. Optical refrigeration breaks the Peltier barrier: cooling Yb:YLF to 155K

    NASA Astrophysics Data System (ADS)

    Seletskiy, Denis V.; Melgaard, Seth D.; Sheik-Bahae, Mansoor; Bigotta, Stefano; DiLieto, Alberto; Tonelli, Mauro; Epstein, Richard I.

    2010-02-01

    We demonstrate first cryogenic operation in a Ytterbium doped YLF crystal by means of an optical refrigeration. We have achieved cooling to 155 Kelvin absolute temperature with heat lift of 90 mW, exceeding performance of multi-stack thermo-electric coolers. This progress was possible by pumping the system near the Stark-manifold resonance of highly pure Yb:YLF crystal and careful thermal management in the cooling experiment. Detailed spectroscopic analysis demonstrated that cooling to 110 Kelvin is currently possible if pumped exactly on that resonance.

  17. Impact of operating conditions on cooling capacity for sorption systems using water as refrigerant

    NASA Astrophysics Data System (ADS)

    Tremeac, Brice; Giraud, Florine; Vallon, Pierrick

    2017-02-01

    The implementation of compact heat exchanger in sorption systems is a key factor to allow the development of these systems. The aim of this paper is to develop a statistical model with a design of experiment (DOE) methodology and use dimensionless number to evaluate and understand the influence of the height of refrigerant liquid and secondary fluid inlet temperature on cooling capacity of a compact pate-type evaporator for sorption systems working near vacuum pressure. For this purpose, an experimental campaign was conducted on a small adsorption test bench using 13X/water as working couple. Cooling capacities from 640 to 2000 W were measured. The DOE is a Doelhert type with two parameters: the inlet secondary fluid temperature (from 10 to 21 °C) and the filing level of refrigerant in the evaporator (from 6 to 24 cm). Thanks to the exploitation of the mathematical model obtained, optimal points under different constraints were found. A maximum cooling capacity of 2021 +/-75 W in the entire experimental field was predicted for a secondary fluid inlet temperature of 25°C and a height of liquid level of 19.2 cm. Bond number and modified Jacob number per the ratio Psat/Ptriple were analyzed. The dimensionless numbers are correlated to the cooling capacity as a first step for designing compact plate-type evaporator for adsorption systems using water as refrigerant.

  18. Enhanced naphthenic refrigeration oils for household refrigerator systems

    SciTech Connect

    Reyes-Gavilan, J.L.; Flak, G.T.; Tritcak, T.R.; Barbour, C.B.

    1997-12-31

    Due to industry concerns about the successful employment of hydrofluorocarbon-immiscible hydrocarbon oils in refrigeration systems, enhanced naphthenic refrigeration oils have been developed. These products have been designed to be more dispersible with hydrofluorocarbon (HFC) refrigerants, such as R-134a, in order to facilitate lubricant return to the compressor and to ensure proper energy efficiency of the system. Bench tests and system performance evaluations indicate the feasibility of these oils for use in household refrigeration applications. Results of these evaluations are compared with those obtained with polyol esters and typical naphthenic mineral oils employed in chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigeration applications.

  19. The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications

    SciTech Connect

    Brown, Daryl R.; Dirks, James A.; Fernandez, Nicholas; Stout, Tyson E.

    2010-03-31

    Five alternatives to vapor compression technology were qualitatively evaluated to determine their prospects for being better than vapor compression for space cooling and food refrigeration applications. The results of the assessment are summarized in the report. Overall, thermoacoustic and magnetic technologies were judged to have the best prospects for competing with vapor compression technology, with thermotunneling, thermoelectric, and thermionic technologies trailing behind in that order.

  20. The influence analysis of cooling medium and condensation node construction for refrigeration units specifications for the oil and gas offshore supply bases

    NASA Astrophysics Data System (ADS)

    Yusha, V. L.; Raikovski, N. A.; Fot, A. N.

    2017-08-01

    Due to constant toughening of requirements to technical and economic indicators of transport refrigeration units, the condensers cooling method influence of the refrigerating machines on their characteristics is considered. Refrigeration units of marine vessels are operated in a wide temperature range of the cooling air and water. To assess the degree and scope of a water and air cooling in this temperature range, as well as the use of natural circulation schemes of refrigeration units, numerical analysis was carried out by known methods of calculation. The results of the calculation determined the most appropriate application spheres of one or the other refrigeration unit scheme, and also the need for additional research in the condensation node combined cooling sphere was identified, because such a scheme is able to combine the water cooling, air cooling and refrigeration unit cycle with natural refrigerant circulation advantages.

  1. A closed-cycle refrigerator for cooling maser amplifiers below 4 Kelvin

    NASA Technical Reports Server (NTRS)

    Britcliffe, M.

    1989-01-01

    A helium refrigerator utilizing the Gifford-McMahon/Joule-Thomson (GM/JT) cycle was designed and tested to demonstrate the feasibility of using small closed-cycle refrigerators as an alternative to batch-filled cryostats for operating temperatures below 4 K. The systems could be used to cool low-noise microwave maser amplifiers located in large parabolic antennas. These antennas tilt vertically, making conventional liquid-filled dewars difficult to use. The system could also be used for a non-tilting beam waveguide antenna to reduce the helium consumption of a liquid helium cryostat. The prototype system is adjustable to provide 700 mW of cooling at 2.5 K to 3 W at 4.3 K. Performance of the unit is not significantly affected by physical orientation. The volume occupied by the refrigerator is less than 0.1 cu m. Two JT expansion stages are used to maximize cooling capacity per unit mass flow. The heat exchangers were designed to produce minimum pressure drop in the return gas stream. Pressure drop for the entire JT return circuit is less than 5 kpa at a mass flow of 0.06 g/sec when operating at 2.5 K.

  2. An investigation of a model of the flow pattern transition mechanism in relation to the identification of annular flow of R134a in a vertical tube using various void fraction models and flow regime maps

    SciTech Connect

    Dalkilic, A.S.; Wongwises, S.

    2010-09-15

    In the present study, new experimental data are presented for literature on the prediction of film thickness and identification of flow regime during the co-current downward condensation in a vertical smooth copper tube having an inner diameter of 8.1 mm and a length of 500 mm. R134a and water are used as working fluids in the tube side and annular side of a double tube heat exchanger, respectively. Condensation experiments are done at mass fluxes of 300 and 515 kg m{sup -2} s{sup -1}. The condensing temperatures are between 40 and 50 C; heat fluxes are between 12.65 and 66.61 kW m{sup -2}. The average experimental heat transfer coefficient of the refrigerant HFC-134a is calculated by applying an energy balance based on the energy transferred from the test section. A mathematical model by Barnea et al. based on the momentum balance of liquid and vapor phases is used to determine the condensation film thickness of R134a. The comparative film thickness values are determined indirectly using relevant measured data together with various void fraction models and correlations reported in the open literature. The effects of heat flux, mass flux, and condensation temperature on the film thickness and condensation heat transfer coefficient are also discussed for the laminar and turbulent flow conditions. There is a good agreement between the film thickness results obtained from the theoretical model and those obtained from six of 35 void fraction models in the high mass flux region of R134a. In spite of their different valid conditions, six well-known flow regime maps from the literature are found to be predictive for the annular flow conditions in the test tube in spite of their different operating conditions. (author)

  3. The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications

    SciTech Connect

    Brown, Daryl R.; Stout, Tyson E.; Dirks, James A.; Fernandez, Nicholas

    2012-12-01

    This article identifies and describes five alternative cooling technologies (magnetic, thermionic, thermoacoustic, thermoelectric, and thermotunnel) and qualitatively assesses the prospects of each technology relative to vapor compression for space cooling and food refrigeration applications. Assessment of the alternatives was based on the theoretical maximum % of Carnot efficiency, the current state of development, the best % of Carnot efficiency currently achieved, developmental barriers, and the extent of development activity. The prospect for each alternative was assigned an overall qualitative rating based on the subjective, composite view of the five characteristics.

  4. Fundamental limits for cooling of linear quantum refrigerators

    NASA Astrophysics Data System (ADS)

    Freitas, Nahuel; Paz, Juan Pablo

    2017-01-01

    We study the asymptotic dynamics of arbitrary linear quantum open systems that are periodically driven while coupled with generic bosonic reservoirs. We obtain exact results for the heat flowing from each reservoir, and these results are valid beyond the weak-coupling or Markovian approximations. We prove the validity of the dynamical third law of thermodynamics (Nernst unattainability principle), showing that the ultimate limit for cooling is imposed by a fundamental heating mechanism that dominates at low temperatures, namely the nonresonant creation of excitation pairs in the reservoirs induced by the driving field. This quantum effect, which is missed in the weak-coupling approximation, restores the unattainability principle, the validity of which was recently challenged.

  5. Fundamental limits for cooling of linear quantum refrigerators.

    PubMed

    Freitas, Nahuel; Paz, Juan Pablo

    2017-01-01

    We study the asymptotic dynamics of arbitrary linear quantum open systems that are periodically driven while coupled with generic bosonic reservoirs. We obtain exact results for the heat flowing from each reservoir, and these results are valid beyond the weak-coupling or Markovian approximations. We prove the validity of the dynamical third law of thermodynamics (Nernst unattainability principle), showing that the ultimate limit for cooling is imposed by a fundamental heating mechanism that dominates at low temperatures, namely the nonresonant creation of excitation pairs in the reservoirs induced by the driving field. This quantum effect, which is missed in the weak-coupling approximation, restores the unattainability principle, the validity of which was recently challenged.

  6. R&D on The Cooling Systems Using Natural Refrigerants

    NASA Astrophysics Data System (ADS)

    Yanagi, Hideharu

    The use of waste heat of low temperatures is an important problem from the environmental considerations. Notice that adsorption cycles have a distinct advantage over other systems of their ability to produce cooling by using low waste heat as 60 to 80°C and also being absolutely benign for the environment. However the present available adsorption chillers are still heavier and larger in size. Hence their compactness and cost reduction as well as higher efficiency are urgent tasks for wider use. This review discusses recent development on adsorption heat pumps as well as forthcoming applications. The sources are mainly papers and discussions at the IEA Annex 24 Workshop in Turin, Italy (1999), FOA6 (Fundamental of Adsorption) Conference in Presquile de Giens, France (1998) and ISHPC (International Sorption Heat Pump Conference) in Munich, Germany (1999).

  7. Experimental Study of an Aerospace Low Temperature Refrigerator Cooled by a Pulse-tube Cryocooler

    NASA Astrophysics Data System (ADS)

    Wen, Jiajia; Wu, Yinong; Zhang, Ankuo; Yang, Baoyu; Zhang, Hua; Chen, Xi; Chen, Haitao

    Asingle-stage coaxial pulse tube cryocooler (PTC) has been designed, manufactured and tested at ShanghaiInstitute of Technical Physics (SITP), Chinese Academy of Sciences (CAS) for cooling an aerospace low temperature refrigerator (LTR), whose volume is 20 liters. The LTR system and the PTC system are introduced. Lots of simulations are carried out by CAD/FLUENT for verifying the LTR structure rationality and predicting the inside walls temperature uniformity. Some performance experiments of the LTR have been carried out and analyzedafter coupling with the PTC. The experimental results show that the PTC is capable of cooling the LTR to about average -100oC, so the PTC has a great potential for cooling aerospace LTRs. Some cooling curves are presented and discussed in detail for a thorough understanding of the LTR system.

  8. A 1.8K refrigeration cryostat with 100 hours continuous cooling

    NASA Astrophysics Data System (ADS)

    Xu, Dong; Li, Jian; Huang, Rongjin; Li, Laifeng

    2017-02-01

    A refrigeration cryostat has been developed to produce continuous cooling to a sample below 1.8 K over 100 hours by using a cryocooler. A two-stage 4K G-M cryocooler is used to liquefy helium gas from evacuated vapor and cylinder helium bottle which can be replaced during the cooling process. The liquid helium transfer into superfluid helium in a Joule-Thomson valve in connection with a 1000 m3/h pumping unit. The pressure of evacuated helium vapor is controlled by air bag and valves. A copper decompression chamber, which is designed as a cooling station to control the superfluid helium, is used to cool the sample attached on it uniformly. The sample connects to the copper chamber in cryostat with screw thread. The cryostat can reach the temperature of 1.7 K without load and the continuous working time is more than 100 hours.

  9. Estudio del proceso de ebullicion en el interior de un tubo multipuerto extruido en aluminio con mini-canales de geometria triangular usando R32 y R134a como fluidos de trabajo

    NASA Astrophysics Data System (ADS)

    Ramirez Rivera, Francisco Alberto

    The use of multiport mini-channel tubes in compact exchangers has increased in the last few years. They contributing to improve thermal efficient, compactness, energy conservation and required lower refrigerants charge by which reduction of greenhouse gases emission. Those mentioned advantages are very important aspects with regard to modern refrigeration systems design. For that reason, several experimental investigation have been carried out in order to characterize the flow boiling heat transfer process and frictional pressure drop in tubes with parallel channels. Since, the ability to estimate pressure drop and heat transfer coefficient for specific conditions is a fundamental issue to optimise the design of compact heat exchanger. In this study, the characteristics of two- phase flow pressure drop and convective boiling heat transfer have been investigated experimentally inside multiport mini-channel aluminium tube with triangular geometry, hydraulic diameter 0.715 mm and heating length of 1205 mm using R32 and R134a as working fluids. A wide experimental campaign has been carried out to complete an array of measurement under different conditions for both refrigerants studied. The experimental conditions examined included: mass velocity 275-1230 kgm -2s-1, heat flux 0.75-9.30 kWm-2, saturation temperature, 5°C, 7.5°C, 12.5°C, vapour quality 0.012-0.51. The database presented consists of 312 averages values, 223 averages values were recorded for R134a and 89 for R32. The flow boiling averages values were calculated selecting a sample of 40 readings (steps 20s) in stable conditions for all measured variables at each mass velocity tested.

  10. Commissioning report of the MuCool 5 Tesla solenoid coupled with helium refrigerator

    SciTech Connect

    Geynisman, Michael; /Fermilab

    2010-05-01

    MuCool 5T solenoid was successfully cooled down and operated coupled with MTA 'Brown' refrigerator. The system performed as designed with substantial performance margin. All process alarms and interlocks, as well as ODH and fire alarms, were active and performed as designed. The cooldown of the refrigerator started from warm conditions and took 44 hours to accumulate liquid helium level and solenoid temperature below 5K. Average liquid nitrogen consumption for the refrigerator precool and solenoid shield was measured as 20 gal/hr (including boil-off). Helium losses were small (below 30 scfh). The system was stable and with sufficient margin of performance and ran stably without wet expansion engine. Quench response demonstrated proper operation of the relieving devices and pointed to necessity of improving tightness of the relieving manifolds. Boil-off test demonstrated average heat load of 3 Watts for the unpowered solenoid. The solenoid can stay up to 48 hours cold and minimally filled if the nitrogen shield is maintained. A list of improvements includes commencing into operations the second helium compressor and completion of improvements and tune-ups for system efficiency.

  11. A Unique Approach to Power Electronics and Motor Cooling in a Hybrid Electric Vehicle Environment

    SciTech Connect

    Ayers, Curtis William; Hsu, John S; Lowe, Kirk T; Conklin, Jim

    2007-01-01

    An innovative system for cooling the power electronics of hybrid electric vehicles is presented. This system uses a typical automotive refrigerant R-134a (1,1,1,2 tetrafluoroethane) as the cooling fluid in a system that can be used as either part of the existing vehicle passenger air conditioning system or separately and independently of the existing air conditioner. Because of the design characteristics, the cooling coefficient of performance is on the order of 40. Because liquid refrigerant is used to cool the electronics directly, high heat fluxes can result while maintaining an electronics junction temperature at an acceptable value. In addition, an inverter housing that occupies only half the volume of a conventional inverter has been designed to take advantage of this cooling system. Planned improvements should result in further volume reductions while maintaining a high power level.

  12. High-Performance, Low Environmental Impact Refrigerants

    NASA Technical Reports Server (NTRS)

    McCullough, E. T.; Dhooge, P. M.; Glass, S. M.; Nimitz, J. S.

    2001-01-01

    Refrigerants used in process and facilities systems in the US include R-12, R-22, R-123, R-134a, R-404A, R-410A, R-500, and R-502. All but R-134a, R-404A, and R-410A contain ozone-depleting substances that will be phased out under the Montreal Protocol. Some of the substitutes do not perform as well as the refrigerants they are replacing, require new equipment, and have relatively high global warming potentials (GWPs). New refrigerants are needed that addresses environmental, safety, and performance issues simultaneously. In efforts sponsored by Ikon Corporation, NASA Kennedy Space Center (KSC), and the US Environmental Protection Agency (EPA), ETEC has developed and tested a new class of refrigerants, the Ikon (registered) refrigerants, based on iodofluorocarbons (IFCs). These refrigerants are nonflammable, have essentially zero ozone-depletion potential (ODP), low GWP, high performance (energy efficiency and capacity), and can be dropped into much existing equipment.

  13. Experimental Investigation of COP Using Hydro Carbon Refrigerant in a Domestic Refrigerator

    NASA Astrophysics Data System (ADS)

    Peyyala, Anusha; Sudheer, N. V. V. S., Dr

    2017-08-01

    Under the Montreal protocol 1987 researchers worked on the possibility of alternative refrigerants like Hydroflourocarbon’s [HFC’s] and Hydrocarbon’s[HC’s] to replace refrigerants Chloroflourocarbon’s [CFC’s] and Hydrochlorofluorocarbons [HCFC’s] in air-conditioning and cooling systems that are destroying the ozone layer. On October 15, 2016 one hundred and ninety plus countries including India came to an agreement called Kigali Amendment to phase out potent green house gases by 2045 there by preventing 0.5 C rise in global temperature by 2050. Under this agreement India agreed to a timeline to reduce the use of HFC’s by 85% of their baseline by 2045. HFC’s are a family of greenhouse gases that are largely used in refrigerators and air conditioners which have reduced the Ozone Depleting Potential [ODP] but increased the Global Warming Potential [GWP]. Refrigeration and its applications are important in almost all branches of industry, so engineers have to become aware of its principles, uses and limitations. Since the decade there are major changes in the choice of refrigerants due to environmental factors. This issue is on-going and new developments should be developed to decrease the environmental problems. So the aim of this paper is to present the experimental analysis of Coefficient of performance [COP] values using R134a [HFC] & R600a [HC] as Refrigerants in Domestic refrigerator using conventional and nonconventional energy sources. Based on the results, usage of R600a in domestic refrigerators will reduce the ODP and also GWP problems which fulfills the nominal requirements of human beings without any effects.

  14. Nearly Azeotropic Mixtures To Replace Refrigerant 12

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1992-01-01

    Number of nearly azeotropic fluid mixtures have saturation pressures similar to Refrigerant 12 while being about 2 percent as damaging to ozone layer. Five mixtures of R134a, R152a, R124, and R142b have low boiling-point spreads, low toxicity, and low ozone-damaging capability, are nonflammable, and more compatible with conventional oils than R134a. Pressure of combinations nearly equal to R12, and mixtures may be good "drop-in substitutes". Overall composition not altered by leakage. Usable in commercial, automotive, and household refrigerators and air conditioners.

  15. Condensation of R-134a vapor over single horizontal circular integral-fin tubes with trapezoidal fins

    SciTech Connect

    Kumar, R.; Varma, H.K.; Mohanty, B.; Agrawal, K.N.

    2000-04-01

    An experimental investigation has been carried out for the condensation of R-134a vapor on four single horizontal circular integral-fin tubes (CIFTs) made of copper. The fins are of trapezoidal shape and the fin density of these tubes has been varied systematically from 934 fpm to 1,875 fpm. All the experimental data have been acquired at the saturation temperature of 312.4 {+-} 0.5 K. The CIFT with 1,560 fpm fin density has been found to be the best-performing tube, as it has provided an enhancement factor (EF) of the order of 5.6. The experimental results are in the best agreement with Honda and Nozu model. This model has predicted 80% of the experimental results in a range of 0--30%.

  16. Kinetic electrocaloric effect and giant net cooling of lead-free ferroelectric refrigerants

    SciTech Connect

    Bai Yang; Zheng Guangping; Shi Sanqiang

    2010-11-15

    The electrocaloric effect of BaTiO{sub 3} multilayer thick film structure was investigated by direct measurement using differential scanning calorimeter. The samples show a giant electrocaloric effect of 0.89 J/g under E=176 kV/cm, which also depends on the varying rate of applied field, following a general power-law relation. Based on the large net-cooling (0.37 J/g) resulting from the difference in the varying rates of rising and falling fields, the kinetic electrocaloric effect provides a solution for the design of refrigeration cycle in ferroelectric microrefrigerator.

  17. A Robust Cooling Platform for NIS Junction Refrigeration and sub-Kelvin Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Wilson, B.; Atlas, M.; Lowell, P.; Moyerman, S.; Stebor, N.; Ullom, J.; Keating, B.

    2014-08-01

    Recent advances in Normal metal-insulator-superconductor (NIS) tunnel junctions (Clark et al. Appl Phys Lett 86: 173508, 2005, Appl Phys Lett 84: 4, 2004) have proven these devices to be a viable technology for sub-Kelvin refrigeration. NIS junction coolers, coupled to a separate cold stage, provide a flexible platform for cooling a wide range of user-supplied payloads. Recently, a stage was cooled from 290 to 256 mK (Lowell et al. Appl Phys Lett 102: 082601 2013), but further mechanical and electrical improvements are necessary for the stage to reach its full potential. We have designed and built a new Kevlar suspended cooling platform for NIS junction refrigeration that is both lightweight and well thermally isolated; the calculated parasitic loading is pW from 300 to 100 mK. The platform is structurally rigid with a measured deflection of 25 m under a 2.5 kg load and has an integrated mechanical heat switch driven by a superconducting stepper motor with thermal conductivity G W/K at 300 mK. An integrated radiation shield limits thermal loading and a modular platform accommodates enough junctions to provide nanowatts of continuous cooling power. The compact stage size of 7.6 cm 8.6 cm 4.8 cm and overall radiation shield size of 8.9 cm 10.0 cm 7.0 cm along with minimal electrical power requirements allow easy integration into a range of cryostats. We present the design, construction, and performance of this cooling platform as well as projections for coupling to arrays of NIS junctions and other future applications.

  18. Continuous Magnetic Refrigerators for Cooling in the 0.05 to 10 K Range: Progress and Future Development

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; DiPirro, Michael; Canavan, Edgar; Tuttle, James; King, Todd; Numazawa, Takenori

    2003-01-01

    Low temperature refrigeration is an increasingly vital technology for NASA s Space Science program since most detectors being developed for x-ray, IR and sub-millimeter missions must be cooled to below 100 mK in order to meet the requirements for energy and spatial resolution. For space applications, magnetic refrigeration has an inherent advantage over alternative techniques because it does not depend on gravity. Adiabatic demagnetization refrigerators, or ADRs, are relatively simple, solid state devices. The basic elements are a magnetocaloric refrigerant (usually an encapsulated paramagnetic salt) located in the bore of a superconducting magne$, and a heat switch linking the salt to a heat sink. The alignment of magnetic spins with the magnetic field causes the refrigerant to warm as the magnetic field increases and cool as the field decreases. Thus the simple process of magnetizing the refrigerant to high field with the heat switch closed, then demagnetizing it with the heat switch open allows one to obtain temperatures well below 100 mK using a heat sink as warm as 4.2 K. The refrigerant can maintain a low temperature for a length of time depending on the applied and parasitic heat loads, its mass, and the initial magnetic field strength. Typically ADRs are designed for 12-24 hours of hold time, after which they must be warmed up and recycled. The drawback to single-shot ADRs is that the cooling power per unit mass is relatively low. Refrigerants that are suitable for low temperature operation necessarily have low magnetic ion density, and therefore low entropy density. Since ADRs store entropy, systems with even modest cooling powers (a few microwatts) at temperatures below 100 mK tend to be massive, averaging 10-15 kg.

  19. Continuous Magnetic Refrigerators for Cooling in the 0.05 to 10 K Range: Progress and Future Development

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; DiPirro, Michael; Canavan, Edgar; Tuttle, James; King, Todd; Numazawa, Takenori

    2003-01-01

    Low temperature refrigeration is an increasingly vital technology for NASA s Space Science program since most detectors being developed for x-ray, IR and sub-millimeter missions must be cooled to below 100 mK in order to meet the requirements for energy and spatial resolution. For space applications, magnetic refrigeration has an inherent advantage over alternative techniques because it does not depend on gravity. Adiabatic demagnetization refrigerators, or ADRs, are relatively simple, solid state devices. The basic elements are a magnetocaloric refrigerant (usually an encapsulated paramagnetic salt) located in the bore of a superconducting magne$, and a heat switch linking the salt to a heat sink. The alignment of magnetic spins with the magnetic field causes the refrigerant to warm as the magnetic field increases and cool as the field decreases. Thus the simple process of magnetizing the refrigerant to high field with the heat switch closed, then demagnetizing it with the heat switch open allows one to obtain temperatures well below 100 mK using a heat sink as warm as 4.2 K. The refrigerant can maintain a low temperature for a length of time depending on the applied and parasitic heat loads, its mass, and the initial magnetic field strength. Typically ADRs are designed for 12-24 hours of hold time, after which they must be warmed up and recycled. The drawback to single-shot ADRs is that the cooling power per unit mass is relatively low. Refrigerants that are suitable for low temperature operation necessarily have low magnetic ion density, and therefore low entropy density. Since ADRs store entropy, systems with even modest cooling powers (a few microwatts) at temperatures below 100 mK tend to be massive, averaging 10-15 kg.

  20. A Superfluid Pulse Tube Refrigerator Without Moving Parts for Sub-Kelvin Cooling

    NASA Technical Reports Server (NTRS)

    Miller, Franklin K.

    2012-01-01

    A report describes a pulse tube refrigerator that uses a mixture of He-3 and superfluid He-4 to cool to temperatures below 300 mK, while rejecting heat at temperatures up to 1.7 K. The refrigerator is driven by a novel thermodynamically reversible pump that is capable of pumping the He-3 He-4 mixture without the need for moving parts. The refrigerator consists of a reversible thermal magnetic pump module, two warm heat exchangers, a recuperative heat exchanger, two cold heat exchangers, two pulse tubes, and an orifice. It is two superfluid pulse tubes that run 180 out of phase. All components of this machine except the reversible thermal pump have been demonstrated at least as proof-of-concept physical models in previous superfluid Stirling cycle machines. The pump consists of two canisters packed with pieces of gadolinium gallium garnet (GGG). The canisters are connected by a superleak (a porous piece of VYCOR glass). A superconducting magnetic coil surrounds each of the canisters.

  1. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1992-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on R-32, R-123, R-124, R- 125, R-134a, R-141b, R142b, R-143a, R-152a, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses polyalkylene glycol (PAG), ester, and other lubricants. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits.

  2. The development of high cooling power and low ultimate temperature superfluid Stirling refrigerators

    NASA Astrophysics Data System (ADS)

    Patel, Ashok B.

    The superfluid Stirling refrigerator (SSR) is a recuperative Stirling cycle refrigerator which provides cooling to below 2 K by using a liquid 3He-4He mixture as the working fluid. In 1990, Kotsubo and Swift demonstrated the first SSR, and by 1995, Brisson and Swift had developed an experimental prototype capable of reaching a low temperature of 296 mK. The goal of this thesis was to improve these capabilities by developing a better understanding of the SSR and building SSR's with higher cooling powers and lower ultimate temperatures. This thesis contains four main parts. In the first part, a numerical analysis demonstrates that the optimal design and ultimate performance of a recuperative Stirling refrigerator is fundamentally different from that of a standard regenerative Stirling refrigerator due to a mass flow imbalance within the recuperator. The analysis also shows that high efficiency recuperators remain a key to SSR performance. Due to a quantum effect called Kapitza resistance, the only realistic and economical method of creating higher efficiency recuperators for use with an SSR is to construct the heat exchangers from very thin (12 μm - 25 μm thick) plastic films. The second part of this thesis involves the design and construction of these recuperators. This research resulted in Kapton heat exchangers which are leaktight to superfluid helium and capable of surviving repeated thermal cycling. In the third part of this thesis, two different single stage SSR's are operated to test whether the plastic recuperators would actually improve SSR performance. Operating from a high temperature of 1.0 K and with 1.5% and 3.0% 3He-4He mixtures, these SSR's achieved a low temperature of 291 mK and delivered net cooling powers of 3705 μW at 750 mK, 977 μW at 500 mK, and 409 μW at 400 mK. Finally, this thesis describes the operation of three versions of a two stage SSR. Unfortunately, due to experimental difficulties, the merits of a two stage SSR were not

  3. Investigation of waste heat recovery of binary geothermal plants using single component refrigerants

    NASA Astrophysics Data System (ADS)

    Unverdi, M.

    2017-08-01

    In this study, the availability of waste heat in a power generating capacity of 47.4 MW in Germencik Geothermal Power Plant has been investigated via binary geothermal power plant. Refrigerant fluids of 7 different single components such as R-134a, R-152a, R-227ea, R-236fa, R-600, R-143m and R-161 have been selected. The binary cycle has been modeled using the waste heat equaling to mass flow rate of 100 kg/s geothermal fluid. While the inlet temperature of the geothermal fluid into the counter flow heat exchanger has been accepted as 110°C, the outlet temperature has been accepted as 70°C. The inlet conditions have been determined for the refrigerants to be used in the binary cycle. Finally, the mass flow rate of refrigerant fluid and of cooling water and pump power consumption and power generated in the turbine have been calculated for each inlet condition of the refrigerant. Additionally, in the binary cycle, energy and exergy efficiencies have been calculated for 7 refrigerants in the availability of waste heat. In the binary geothermal cycle, it has been found out that the highest exergy destruction for all refrigerants occurs in the heat exchanger. And the highest and lowest first and second law efficiencies has been obtained for R-600 and R-161 refrigerants, respectively.

  4. [Vaccine Refrigerator and Vaccine Management in General Practices: A Representative, Web-Based Survey among General Practitioners (Keep Cool I)].

    PubMed

    Thielmann, A; Sikora, M; Schnell, U; Gesenhues, S; Weltermann, B

    2015-07-09

    Aim: The purpose of this study was to analyse vaccine refrigerator and vaccine management in primary care and to identify physician- and practice-related influencing factors. Background: Adequate cooling of vaccines in a temperature range of 2-8°C is essential to assure vaccine effectiveness. Studies from various countries have demonstrated cooling chain problems. We surveyed general practitioners about the quality of their vaccine refrigerator and vaccine management and aimed at identifying physician- and practice-related influencing factors. Methods: A cross-sectional, web-based questionnaire survey was performed among 3 physician populations in primary care: a 10% random sample of general practitioners (n=954), all teaching physicians of the Universities Duisburg-Essen (n=221) and Halle-Wittenberg (n=92). Surveyed were items on the following 6 aspects: (1) responsibilities within practice teams, (2) vaccine ordering and storing, (3) criteria for the vaccine pre-selection, (4) stocking system inside the refrigerator, (5) wrapping, and use of stocking boxes, (6) refrigerator and temperature control. The quality indicator "comprehensive refrigerator management" was defined to include 4 aspects: (1) separate refrigerator, (2) written temperature documentation (temperature-logbook), (3) regular storage control (wrapping, temperature and expiration date), and (4) storage in original wrappings. Results: A total of 278 physicians participated in the survey (22%). Of these, 80% had a separate refrigerator, 52% reported written temperature documentation, 93% documented regular storage control addressing vaccine wrappings, temperature and expiration dates, and 95% reported vaccine storage in original card box wrappings. A "comprehensive refrigerator management" was realised by 42% of the practices. This indicator was reached more frequently by practices with 3 or more physicians (p=0.01) and those with an additional qualification in travel medicine (p=0.036). Conclusion

  5. Refrigerator

    SciTech Connect

    Burke, E.J.

    1987-02-24

    A refrigerator is described comprising: (a) a housing having a vent compartment and an insulated box having a cooler compartment and a freezer compartment; (b) a thermoelectric heat pump means mounted in the housing, the heat pump means including a finned heat sink of high temperature coefficient material mounted in the vent compartment. A hot plate is attached to the heat sink. A thermopile has a hot side connected to the hot plate and a cold side, a block of high temperature coefficient material is connected to the cold side. An L-shaped bracket of high temperature coefficient material having a vertical portion attached to the block and a horizontal portion extends into the freezer compartment. A freezer compartment of high temperature coefficient material has a bottom attached to the L-shaped horizontal portion. The bottom portion has walls forming an ice cube tray receiving recess whereby the continuous structure of high temperature coefficient material exists between the thermopile and ice cube tray receiving recess to produce a sub freezing temperature in the recess; and (c) an ice cube tray having a shape corresponding to that of the ice cube tray receiving recess whereby five sides of the ice cube tray are in freezing engagement with the bottom recess forming walls for freezing ice cubes.

  6. Refrigerator-freezer energy testing with alternative refrigerants

    SciTech Connect

    Vineyard, E.A.; Sand, J.R.; Miller, W.A.

    1989-01-01

    As a result of the Montreal Protocol that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must be resolved. Among these are energy impacts, system compatibility, cost, and availability. In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers. The results are presented for an 18 cubic foot (0.51 cubic meter), top-mount refrigerator-freezer with a static condenser using the following refrigerants: R12, R500, R12/Dimethyl-ether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12 /DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants indicating a higher capacity. While the R134a and R22/R142b results were less promising refrigeration system, such as a different capillary tube or compressor, may improve their performance. 12 refs., 2 figs., 3 tabs.

  7. Refrigerator-freezer energy testing with alternative refrigerants

    NASA Astrophysics Data System (ADS)

    Vineyard, E. A.; Sand, J. R.; Miller, W. A.

    1989-07-01

    As a result of the Montreal Protocol that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must be resolved. Among these are energy impacts, system compatibility, cost, and availability. In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers. The results are presented for an 18 cubic foot (0.51 cubic meter), top-mount refrigerator-freezer with a static condenser using the following refrigerants: R12, R500, R12/Dimethyl-ether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12 /DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants indicating a higher capacity. While the R134a and R22/R142b results were less promising, changes to the refrigeration system, such as a different capillary tube or compressor, may improve performance.

  8. The Cost of Helium Refrigerators and Coolers for SuperconductingDevices as a Function of Cooling at 4 K

    SciTech Connect

    Green, Michael A.

    2007-08-27

    This paper is an update of papers written in 1991 and in1997 by Rod Byrns and this author concerning estimating the cost ofrefrigeration for superconducting magnets and cavities. The actual costsof helium refrigerators and coolers (escalated to 2007 dollars) areplotted and compared to a correlation function. A correlation functionbetween cost and refrigeration at 4.5 K is given. The capital cost oflarger refrigerators (greater than 10 W at 4.5 K) is plotted as afunction of 4.5-K cooling. The cost of small coolers is plotted as afunction of refrigeration available at 4.2 K. A correlation function forestimating efficiency (percent of Carnot) of both types of refrigeratorsis also given.

  9. A numerical study of condensation heat transfer for R-134a in annular flow regime inside horizontal tube

    NASA Astrophysics Data System (ADS)

    Ariwibowo, Teguh Hady; Solihah, Fifi Hesty; Harjanto, Bambang

    2017-01-01

    Condensation in a horizontal tube is a phenomenon that occurs in steam power plants, and oil processing. There is some flow regime in the condensation, i.e. annular, bubble, wavy, stratified, and intermittent. Annular flow regime is a regime that happens by 60-70% of the length of a heat exchanger [2]. One important component of the condensation is a heat transfer coefficient. However, the calculation of condensation heat transfer coefficient is a complex thing. This study uses R-134a at saturated temperature 40°C. Computational Fluid Dynamics (CFD) is performed by approaching the pseudo two-phase flow. This is intended to obtain the liquid films thickness, eddy viscosity, and shear stress distribution by using the Von Karman universal velocity profiles in liquid films. The results of this study showed that the increase in mass flux and vapor fraction can increase two-phase heat transfer coefficient and two-phase pressure drop. However, the increased vapor fraction followed by a decrease of condensate dimensionless thickness

  10. The effect of heating direction on flow boiling heat transfer of R134a in micro-channels

    NASA Astrophysics Data System (ADS)

    Xu, Mingchen; Jia, Li; Dang, Chao; Peng, Qi

    2017-04-01

    This paper presents effects of heating directions on heat transfer performance of R134a flow boiling in micro- channel heat sink. The heat sink has 30 parallel rectangular channels with cross-sectional dimensions of 500μm width 500μm depth and 30mm length. The experimental operation condition ranges of the heat flux and the mass flux were 13.48 to 82.25 W/cm2 and 373.3 to 1244.4 kg/m2s respectively. The vapor quality ranged from 0.07 to 0.93. The heat transfer coefficients of top heating and bottom heating both were up to 25 kW/m2 K. Two dominate transfer mechanisms of nucleate boiling and convection boiling were observed according to boiling curves. The experimental results indicated that the heat transfer coefficient of bottom heating was 13.9% higher than top heating in low heat flux, while in high heat flux, the heat transfer coefficient of bottom heating was 9.9%.higher than the top heating, because bubbles were harder to divorce the heating wall. And a modified correlation was provided to predict heat transfer of top heating.

  11. Effects of egg yolk and cooling rate on the survival of refrigerated red deer (Cervus elaphus hispanicus) epididymal spermatozoa.

    PubMed

    Fernández-Santos, M R; Esteso, M C; Soler, A J; Montoro, V; Garde, J J

    2006-04-01

    Egg yolk is a common component to sperm refrigeration for most of the deer species, the role of which is to protect sperm membranes against cold shock. In addition, there have been many studies of conservation of ejaculated semen from stags, but few have been reported for epididymal spermatozoa. This work was designed to investigate the combined effects of cooling rates (slow: 0.23 degrees C/min vs rapid: 4.2 degrees C/min) from room temperature to 5 degrees C, and egg-yolk concentration (0, 5 or 20%) in the extender on the survival of Iberian red deer epididymal spermatozoa refrigerated at 5 degrees C. Heterospermic sperm samples were diluted to a final sperm concentration approximately 400x10(6) sperm/ml with a Tris-citrate-fructose (TCF)-egg-yolk diluent. Sperm quality was in vitro judged by microscopic assessments of individual sperm motility [sperm motility index (SMI)], and of plasma membrane (hypo-osmotic swelling test) and acrosome (NAR) integrities. Our results first showed that the presence of egg yolk in the extender significantly improves (p=0.01) the viability and sperm motility after sperm dilution. In addition, acrosome and plasma membrane integrities post-refrigeration did not differ significantly between cooling procedures; however, the SMI differed significantly between cooling procedures (slow: 46.6% vs rapid: 50.0%; p=0.01). Our results also showed that sperm quality was significantly (p<0.01) affected by the combined effects of egg-yolk concentration and cooling procedure, being rapid cooling with 20% of egg yolk the most suitable combination for epididymal sperm refrigeration. In conclusion, egg-yolk improved red deer epididymal spermatozoa characteristics after dilution. Rapid cooling protocol using TCF with 20% egg-yolk significantly improved sperm motility of red deer epididymal spermatozoa after cooling.

  12. Membrane-Based Absorption Refrigeration Systems: Nanoengineered Membrane-Based Absorption Cooling for Buildings Using Unconcentrated Solar & Waste Heat

    SciTech Connect

    2010-09-01

    BEETIT Project: UFL is improving a refrigeration system that uses low quality heat to provide the energy needed to drive cooling. This system, known as absorption refrigeration system (ARS), typically consists of large coils that transfer heat. Unfortunately, these large heat exchanger coils are responsible for bulkiness and high cost of ARS. UFL is using new materials as well as system design innovations to develop nanoengineered membranes to allow for enhanced heat exchange that reduces bulkiness. UFL’s design allows for compact, cheaper and more reliable use of ARS that use solar or waste heat.

  13. Design and performance prediction of solar adsorption cooling for mobile vaccine refrigerator

    NASA Astrophysics Data System (ADS)

    Djubaedah, Euis; Taufan, Andi; Ratnasari, Nadhira; Fahrizal, Adjie; Hamidi, Qayyum; Nasruddin

    2017-03-01

    Adsorption cooling is a process that uses a drop-in pressure caused by the adsorption of adsorbate by adsorbent. Adsorption process creates a pressure drop which can bring down the temperature to the intended condition. This approach can be used in vaccine transportation as the vaccines need to be stored at low temperatures (2°C to 8°C for preserving vaccines). The pressure decrease can be obtained by adsorption water in zeolites and can also produce the temperature drop in the main chamber. The adsorption process of water will decrease until reaching saturation condition. Heat is needed to keep the system continuous as it starts a desorption process. From the simulation using MATLAB, it is found that the mobile vaccine refrigerator can reach the temperature of 2°C in 180 seconds with the amount of cooling power generated is up to 1530 W. The insulation can hold the allowable temperature range inside the vaccine cabin for 15.6795 hours.

  14. In situ refractometry for concentration measurements in refrigeration systems

    SciTech Connect

    Newell, T.A.

    1997-12-31

    An in situ refractometer was developed that is capable of measuring both the concentrations of oil in refrigerants, and the concentrations of aqueous coolant brines. A description of the technique, and example data are presented for R-134a/PAG oil, aqueous ethylene glycol, and aqueous propylene glycol solutions. The R-134a/PAG oil sensor data show a measurement sensitivity of less than 0.1% oil in the refrigerant, although error between data sets shows an uncertainty of approximately {+-}0.8%. Ethylene glycol and propylene glycol data show high signal level variations due to the large variation of the index of refraction between water and the glycols.

  15. Design of oil-free simple turbo type 65 K/6 KW helium and neon mixture gas refrigerator for high temperature superconducting power cable cooling

    NASA Astrophysics Data System (ADS)

    Saji, N.; Asakura, H.; Yoshinaga, S.; Ishizawa, T.; Miyake, A.; Obata, M.; Nagaya, S.

    2002-05-01

    For the requirement of HTS facility cooling, we propose oil-free simple turbo-type refrigerator. The working gas is a helium and neon mixture. Two single-stage turbo compressors and two expansion turbines are applied to the cycle. The rotor consists of the compressor impeller, turbine impeller and driving motor, and is supported by foil type gas bearing. The refrigerator requires two rotating machines with excellent reliability and compactness, and the motor power required is 72.5 kW for a refrigeration load of 6 kW. For the cooling of power cable, sub-cooled pressurized liquid nitrogen and a circulation pump must be provided. If the estimated distance between inter-cooling stations is quite long, for example 5 km, plural refrigerators may be set up on one cooling station.

  16. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1992-11-09

    The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R- 717 (ammonia), ethers, and others as well as azeotropic and zeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents on compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. A computerized version is available that includes retrieval software.

  17. Evaporation heat transfer and friction characteristics of R-134a flowing downward in a vertical corrugated tube

    SciTech Connect

    Aroonrat, Kanit; Wongwises, Somchai

    2011-01-15

    Differently from most previous studies, the heat transfer and friction characteristics of the pure refrigerant HFC-134a during evaporation inside a vertical corrugated tube are experimentally investigated. The double tube test sections are 0.5 m long with refrigerant flowing in the inner tube and heating water flowing in the annulus. The inner tubes are one smooth tube and two corrugated tubes, which are constructed from smooth copper tube of 8.7 mm inner diameter. The test runs are performed at evaporating temperatures of 10, 15, and 20 C, heat fluxes of 20, 25, and 30 kW/m{sup 2}, and mass fluxes of 200, 300, and 400 kg/m{sup 2} s. The quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The pressure drop across the test section is measured directly by a differential pressure transducer. The effects of heat flux, mass flux, and evaporation temperature on the heat transfer coefficient and two-phase friction factor are also discussed. It is found that the percentage increases of the heat transfer coefficient and the two-phase friction factor of the corrugated tubes compared with those of the smooth tube are approximately 0-10% and 70-140%, respectively. (author)

  18. The LSST Camera 500 watt -130 degC Mixed Refrigerant Cooling System

    SciTech Connect

    Bowden, Gordon B.; Langton, Brian J.; Little, William A.; Powers, Jacob R; Schindler, Rafe H.; Spektor, Sam; /MMR-Technologies, Mountain View, CA

    2014-05-28

    The LSST Camera has a higher cryogenic heat load than previous CCD telescope cameras due to its large size (634 mm diameter focal plane, 3.2 Giga pixels) and its close coupled front-end electronics operating at low temperature inside the cryostat. Various refrigeration technologies are considered for this telescope/camera environment. MMR-Technology’s Mixed Refrigerant technology was chosen. A collaboration with that company was started in 2009. The system, based on a cluster of Joule-Thomson refrigerators running a special blend of mixed refrigerants is described. Both the advantages and problems of applying this technology to telescope camera refrigeration are discussed. Test results from a prototype refrigerator running in a realistic telescope configuration are reported. Current and future stages of the development program are described. (auth)

  19. Electrocaloric refrigeration: an innovative, emerging, eco-friendly refrigeration technique

    NASA Astrophysics Data System (ADS)

    Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C.

    2017-01-01

    Nowadays, the refrigeration is responsible of about 15% of the overall energy consumption all over the world. Actually most of the refrigerant fluids working in vapor compression plants (VCPs) are environmentally harmful, since they presents high GWP (Global Warming Potential), which leads to a substantial warming of both earth surface and atmosphere. Electrocaloric refrigeration (ER) is an innovative, emerging refrigeration technique based on solid state refrigerant that shows a great potential. It fits in the context of environment-friendly refrigeration systems, whom are spreading increasingly to replace VCPs. ER is founded on electrocaloric effect that is a physical phenomenon found in materials with dielectric properties, electrocaloric materials. The thermodynamical cycle that best is addressed to the electrocaloric refrigeration is Active Electrocaloric Regeneration cycle (AER) that consists of two adiabatic and two isofield stages. The core of an electrocaloric refrigerator is the regenerator whom operates both as refrigerant and regenerator in an AER cycle. In this paper, we compare the energetic performance of a commercial R134a refrigeration plant to that of an electrocaloric refrigerator working with an AER cycle. The comparison is performed in term of TEWI index (Total Equivalent Warming Impact) that includes both direct and indirect contributions to global warming.

  20. Performance prediction of refrigerant-DMF solutions in a single-stage solar-powered absorption refrigeration system at low generating temperatures

    SciTech Connect

    He, L.J.; Tang, L.M.; Chen, G.M.

    2009-11-15

    A theoretical analysis of the coefficient of performance was undertaken to examine the efficiency characteristics of R22 + DMF, R134a + DMF, R32 + DMF as working fluids, respectively, for a single-stage and intermittent absorption refrigerator which allows the use of heat pipe evacuated tubular collectors. The modeling and simulation of the performance considers both solar collector system and the absorption cooling system. The typical meteorological year file containing the weather parameters for Hangzhou is used to simulate the system. The results show that the system is in phase with the weather. In order to increase the reliability of the system, a hot water storage tank is essential. The optimum ratio of storage tank per solar collector area for Hangzhou's climate for a 1.0 kW system is 0.035-0.043L. Considering the relative low pressure and the high coefficient of performance, R134a + DMF mixture presents interesting properties for its application in solar absorption cycles at moderate condensing and absorbing temperatures when the evaporating temperatures in the range from 278 K to 288 K which are highly useful for food preservation and for air-conditioning in rural areas. (author)

  1. Improving the energy efficiency of refrigeration plants by decreasing the temperature difference in air-cooled condensers

    NASA Astrophysics Data System (ADS)

    Shishov, V. V.; Talyzin, M. S.

    2015-09-01

    The electric energy consumption efficiency is estimated in comparing the real refrigeration machine cycle with the theoretical inverse Carnot cycle. The potential for saving electricity in using aircooled condensers with different values of temperature difference is shown. A procedure for calculating a refrigerating system with the evaporation temperature equal to -10°C, which corresponds at this temperature level to the thermal load of a standard supermarket, is described. The calculation was carried out taking into account the annual profile of temperatures in the indicated locality and based on the possibility of adjusting the condenser capacity for maintaining constant condensation temperature. The payback period in case of using condensers with different values of temperature difference is calculated; for example, in using condensers with a temperature difference of less than 15 K, the payback period will be less than one year. Decreasing the temperature difference results, on one hand, in a larger annual consumption of electric energy by the condenser fans, and on the other hand, it results in a lower condensation pressure, which leads to a smaller annual consumption of energy by the compressor unit. As a result, the total amount of energy consumed by the refrigeration system decreases so that despite a higher cost of condensers designed to operate at lower values of temperature difference, it becomes possible to achieve the above-mentioned payback period. Additionally, the payback period in case of using an air-cooled microchannel aluminum condenser was calculated: in case of using such a condenser with a temperature difference of 8 K instead of the condenser with the temperature difference equal to 15 K, the payback period will be less than half a year. Recommendations for designing new refrigeration systems equipped with air-cooled condensers are given.

  2. Refrigerator-freezer energy testing with alternative refrigerants

    SciTech Connect

    Sand, J.R. ); Vineyard, E.A.; Sand, J.R.

    1989-01-01

    As a result of the Montreal Protocol (UNEP 1987) that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must resolved. Among these are energy impacts, system compatibility, cost, and availability, In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers (AHAM 1985). The results are presented for an 18 ft{sup 3} (0.51 m{sup 3}), top mount refrigerators-freezer with a static condenser using the following refrigerants: R 12, R500, R12/dimethylether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12/DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants, indicating a higher capacity. While the R134a and R22/R142b results were less promising (6.8% and 8.5% higher energy consumption, respectively), changes to the refrigeration system, such as a different capillary tube or compressor, may improve their performance. It is noted that the test results are only an initial step in determining a replacement for R12.

  3. Evaluation of performance and composition shift of zeotropic mixtures in a Lorenz-Meutzner refrigerator/freezer

    SciTech Connect

    Baskin, E.; Smith, N.D.; Delafield, F.R.; Tufts, M.W.

    1999-07-01

    Results from previous testing of this refrigerator/freezer using a 750 Btu/h compressor and several zeotropic mixtures revealed a performance enhancement up to 16% above that of hydrofluorocarbon R-134a. In the study presented in this paper, the Lorenz-Meutzner (LM) refrigerator/freezer equipped with a 1060 Btu/h compressor, two evaporators, and two intercoolers was experimentally tested in an environmental chamber according to the Association of Home Appliance Manufacturers/Department of Energy (AHAM/DOE) testing standards using several hydrofluoropropane-based zeotropic mixtures. The results are compared to baseline testing with R-134a and results obtained using the 750 Btu/h compressor. Hydrofluorocarbons R-245ca/R-152a performed comparably to R-134a. R-245ca/hydrocarbon R-270 (cyclopropane C{sub 3}H{sub 6}) outperformed all zeotropic mixtures and R-134a by at least 12.2 {+-} 0.7%. All refrigerants performed better using the larger compressor due to its inherently better efficiency. Refrigerant samples taken during refrigerator/freezer operation revealed substantial composition shifts (e.g., a 30% running composition shift of R-134a in the R-245ca/R-134a mixture). Sand et al. (1993) obtained an approximately 20% energy reduction using steady-state on-cycle energy consumption results; a comparison was made between chlorofluorocarbon R-12 and a hydrofluorocarbon R-32/hydrochlorofluorocarbon R-124 mixture. Lorenz and Meutzner (1975), originators of the Lorenz-Meutzner refrigerator/freezer design, state that the following parameters influence the optimum performance of the design: (1) heat exchanger size, (2) capillary tube length, (3) refrigerant charge, and (4) compressor size. This work investigates three of these parameters--capillary tube length, compressor size, and refrigerant charge.

  4. A comparison of the heat transfer and pressure drop performance of R-134a-lubricant mixtures in different diameter smooth tubes and micro-fin tubes

    SciTech Connect

    Eckels, S.J.; Doerr, T.M.; Pate, M.B.

    1998-10-01

    The average heat transfer coefficients and pressure drops during evaporation and condensation are reported for mixtures of R-134a and an ester lubricant in tubes of 12.7 mm (1/2 in.) outer diameter. The objective of this paper is to evaluate the performance of the R-134a-lubricant mixtures in these tubes and determine the performance benefits of the micro-fin tube. The performance benefits of the tubes with 12.7 mm (1/2 in.) outer diameter are compared to those of smaller tubes with 9.52 mm (3/8 in.) outer diameter. The lubricant used was a 169 SUS penta erythritol ester mixed-acid lubricant. The lubricant concentration was varied from 0--5.1% in the mixture. The average heat transfer coefficients in the 12.7 mm (1/2 in.) micro-fin tube were 50--150% higher than those for the 12.7 mm (1/2 in.) smooth tube, while pressure drops in the micro-fin tube were 5% to 50% higher than in the smooth tube. The addition of lubricant degraded the average heat transfer coefficients in all cases except during evaporation at low lubricant concentrations. Pressure drops were always increased with the addition of lubricant. The experimental results also indicate that tube diameter has some effect on the performance benefits of the micro-fin tube over that of the smooth tube.

  5. Refrigeration for Cryogenic Sensors

    SciTech Connect

    Gasser, M.G.

    1983-12-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  6. Refrigeration for Cryogenic Sensors

    NASA Technical Reports Server (NTRS)

    Gasser, M. G. (Editor)

    1983-01-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests; split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  7. Magnetic refrigeration: an eco-friendly technology for the refrigeration at room temperature

    NASA Astrophysics Data System (ADS)

    Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C.

    2015-11-01

    Magnetic refrigeration is an emerging, environment-friendly technology based on a magnetic solid that acts as a refrigerant by magneto-caloric effect (MCE). In the case of ferromagnetic materials MCE is a warming as the magnetic moments of the atom are aligned by the application of a magnetic field, and the corresponding cooling upon removal of the magnetic field. There are two types of magnetic phase changes that may occur at the Curie point: first order magnetic transition (FOMT) and second order magnetic transition (SOMT). The reference cycle for magnetic refrigeration is AMR (Active Magnetic Regenerative cycle) where the magnetic material matrix works both as a refrigerating medium and as a heat regenerating medium, while the fluid flowing in the porous matrix works as a heat transfer medium. Regeneration can be accomplished by blowing a heat transfer fluid in a reciprocating fashion through the regenerator made of magnetocaloric material that is alternately magnetized and demagnetized. In this paper, attention is directed towards the near room-temperature range. We compare the energetic performance of a commercial R134a refrigeration plant to that of a magnetic refrigerator working with an AMR cycle. Attention is devoted to the evaluation of the environmental impact in terms of a greenhouse effect. The comparison is performed in term of TEWI index (Total Equivalent Warming Impact) that takes into account both direct and indirect contributions to global warming. In this paper the AMR cycle works with different magnetic refrigerants: pure gadolinium, second order phase magnetic transition (Pr0.45Sr0.35MnO3) and first order phase magnetic transition alloys (Gd5Si2Ge2, LaFe11.384Mn0.356Si1.26H1.52, LaFe1105Co0.94Si110 and MnFeP0.45As0.55). The comparison, carried out by means of a mathematical model, clearly shows that GdSi2Ge2 and LaFe11.384Mn0.356Si1.26H1.52 has a TEWI index always lower than that of a vapor compression plant. Furthermore, the TEWI of the AMR

  8. Superfluid stirling refrigerator: A new method for cooling below 1 Kelvin

    SciTech Connect

    Kotsubo, V.; Swift, G.W.

    1990-01-01

    We have invented and built a new type of cryocooler, which we call the superfluid Stirling refrigerator (SSR). The first prototype reached 0.6 K from a starting temperature of 1.2 K. The working fluid of the SSR is the {sup 3}He solute in a superfluid {sup 3}He--{sup 4}He solution. At low temperatures, the superfluid {sup 4}He is in its quantum ground state, and therefore is thermodynamically inert, while the {sup 3}He solute has the thermodynamic properties of a dense ideal gas. Thus, in principle, any refrigeration cycle that can use an ideal gas can also use the {sup 3}He solute as working fluid. In our SSR prototype, bellows-sealed superleak pistons driven by a room-temperature camshaft work on the {sup 3}He solute. Ultimately, we anticipate elimination of moving parts by analogy with pulse-tube refrigeration. 15 refs., 6 figs.

  9. Superfluid Stirling refrigerator: A new method for cooling below 1 Kelvin

    NASA Astrophysics Data System (ADS)

    Kotsubo, V.; Swift, G. W.

    We have invented and built a new type of cryocooler, which we call the superfluid Stirling refrigerator (SSR). The first prototype reached 0.6 K from a starting temperature of 1.2 K. The working fluid of the SSR is the (sup 3)He solute in a superfluid He(3) - He(4) solution. At low temperatures, the superfluid He(4) is in its quantum ground state, and therefore is thermodynamically inert, while the He(3) solute has the thermodynamic properties of a dense ideal gas. Thus, in principle, any refrigeration cycle that can use an ideal gas can also use the He(3) solute as working fluid. In our SSR prototype, bellows-sealed superleak pistons driven by a room-temperature camshaft work on the He(3) solute. Ultimately, we anticipate elimination of moving parts by analogy with pulse-tube refrigeration.

  10. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    SciTech Connect

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

    1980-03-01

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

  11. ARTI Refrigerant Database

    SciTech Connect

    Cain, J.M.

    1993-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents to accelerate availability of the information and will be completed or replaced in future updates.

  12. ARTI Refrigerant Database

    SciTech Connect

    Cain, J.M. , Great Falls, VA )

    1993-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents to accelerate availability of the information and will be completed or replaced in future updates.

  13. Refrigerator Based on Chemisorption

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1987-01-01

    Reversible chemical reaction generates pressurized oxygen for cooling. Concept for cryogenic refrigerator based on chemical absorption of oxygen by praseodymium/cerium oxide (PCO) compound. Refrigerator produces cryogenic liquid for cooling infrared sensors. Also used for liquefying air and separating oxygen from nitrogen in air. In chemisorption refrigerator, PCO alternately absorbs and desorbs oxygen depending on whether cooled or heated. One pair of compressors accepts oxygen while others releases it. Compressed oxygen liquefied when precooked and expanded.

  14. Temperature Profiles in a Micro Processor Cooled by Direct Refrigerant Evaporation

    NASA Astrophysics Data System (ADS)

    Lipnicki, Zygmimt; Lechów, Haima; Pantoł, Kataizyna

    2016-09-01

    Ail analytical solution to the equation for cooling of a unit, in the interior of which heat is generated, is presented. For that reason, a simplified non-stationary model for determination of the temperature distribution within the unit, temperature of the contact between unit and a liquid layer, and the evaporating layer thickness in the function of time, is elaborated. A theoretical analysis of the external cooling of the unit, by considering the phenomenon of the liquid evaporation with the use of the Fourier and Poisson's equations, is given. Both, stationary- and non-stationary description of the cooling are shown. The obtained results of simulation seems to be useful in designing the similar cooling systems. A calculation mode for a cooling systems equipped with the compressor heat pump, as an effective cooling method, is also performed.

  15. Supercooling Refrigerator

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A Goddard/Philips research project resulted in a refrigeration system which works without seals, lubricants or bearings. The system, originally developed to cool satellite-based scientific instruments, has an extensive range of potential spinoffs. It is called the Stirling Cycle Cryogenic Cooler and eliminates friction by using electronically controlled linear magnetic bearings. Mechanical failure, contamination are eliminated.

  16. The Effects of Swirl Flow on CHF by Various Spacer Grids in 2*2 Rod Bundle with R-134a

    SciTech Connect

    Byung Soo Shin; Soon Heung Chang

    2004-07-01

    Experimental works have shown that the effect of swirl flow on CHF by various spacer grid in the 2*2 rod bundle with R-134a. Test spacer grids have mixing vanes for generating swirl flow. The geometries of test section are as follows; rod diameter is 9.5 mm, rod pitch is 12.85 mm. For test spacer grid, two different types are used changing the angle of mixing vanes. In CHF test, experimental conditions are as follows; mass flux is from 1000 to 1800 kg/m{sup 2}s, inlet subcooling from 40.21 kJ/kg to 129.5 kJ/kg, and inlet pressure is from 15 bar to 25 bar. The locations of spacer grid are 200 mm upstream from the end of heating rod. Pressure drop was also measured in single phase experiment. Consequently, the magnitude of swirl flow is related to CHF. Namely, as swirl flow is stronger, the CHF enhance more. The type and angle of mixing vane are effective to swirl flow. And, because swirl flow decays along the flow stream, CHF enhancement decreases along the flow direction. Therefore, in nuclear fuel development, it is important to consider flow structure in a subchannel because CHF enhancement is up to 21% according to circumstances. (authors)

  17. A progress report on using bolometers cooled by adiabatic demagnetization refrigeration

    NASA Technical Reports Server (NTRS)

    Lesyna, L.; Roellig, T.; Savage, M.; Werner, Michael W.

    1989-01-01

    For sensitive detection of astronomical continuum radiation in the 200 micron to 3 mm wavelength range, bolometers are presently the detectors of choice. In order to approach the limits imposed by photon noise in a cryogenically cooled telescope in space, bolometers must be operated at temperatures near 0.1 K. Researchers report progress in building and using bolometers that operate at these temperatures. The most sensitive bolometer had an estimated noise equivalent power (NEP) of 7 x 10(exp 017) W Hz(exp -1/2). Researchers also briefly discuss the durability of paramagnetic salts used to cool the bolometers.

  18. Status Of Sorption Cryogenic Refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1988-01-01

    Report reviews sorption refrigeration. Developed for cooling infrared detectors, cryogenic research, and other advanced applications, sorption refrigerators have few moving parts, little vibration, and lifetimes of 10 years or more. Describes types of sorption stages, multistage and hybrid refrigeration systems, power requirements, cooling capacities, and advantages and disadvantages of various stages and systems.

  19. Experimental performance of ozone-safe alternative refrigerants

    SciTech Connect

    Sand, J.R.; Vineyard, E.A. ); Nowak, R.J. )

    1990-01-01

    Several compounds proposed as near-term or longer range substitutes for the regulated chlorofluorocarbon (CFC) refrigerants were tested in a breadboard vapor-compression circuit, and their performance was evaluated relative to more commonly used refrigerants. The limited physical property information available in the literature for these alternative compounds was used to fit an equation of state so coefficients of performance (COP) and capacities calculated from refrigerant property subroutines could be compared to those obtained experimentally. Comparisons of measured and modeled performance are given for 11 alternatives and for R22, R12, ad R11 Estimates of compressor efficiency with each refrigerant are provided. Several of the alternatives exhibited better performance than the more widely used refrigerants at some or all of the conditions tested. Ozone-safe, alternative refrigerants that performed better than CFC counterparts-at selected conditions are R152a, R143a, R134a, and R142b.

  20. The Use of Water Vapor as a Refrigerant: Impact of Cycle Modifications on Commercial Viability

    SciTech Connect

    Brandon F. Lachner, Jr.; Gregory F. Nellis; Douglas T. Reindl

    2004-08-30

    This project investigated the economic viability of using water as the refrigerant in a 1000-ton chiller application. The most attractive water cycle configuration was found to be a flash-intercooled, two-stage cycle using centrifugal compressors and direct contact heat exchangers. Component level models were developed that could be used to predict the size and performance of the compressors and heat exchangers in this cycle as well as in a baseline, R-134a refrigeration cycle consistent with chillers in use today. A survey of several chiller manufacturers provided information that was used to validate and refine these component models. The component models were integrated into cycle models that were subsequently used to investigate the life-cycle costs of both an R-134a and water refrigeration cycle. It was found that the first cost associated with the water as a refrigerant cycle greatly exceeded the savings in operating costs associated with its somewhat higher COP. Therefore, the water refrigeration cycle is not an economically attractive option to today's R-134a refrigeration system. There are a number of other issues, most notably the requirements associated with purging non-condensable gases that accumulate in a direct contact heat exchanger, which will further reduce the economic viability of the water cycle.

  1. Measured effects of retrofits -- a refrigerant oil additive and a condenser spray device -- on the cooling performance of a heat pump

    SciTech Connect

    Levins, W.P.; Sand, J.R.; Baxter, V.D.; Linkous, R.L.

    1996-05-01

    A 15-year old, 3-ton single package air-to-air heat pump was tested in laboratory environmental chambers simulating indoor and outdoor conditions. After documenting initial performance, the unit was retrofitted with a prototype condenser water-spray device and retested. Results at standard ARI cooling rating conditions (95 F outdoor dry bulb and 80/67 F indoor dry bulb/wet bulb temperatures) showed the capacity increased by about 7%, and the electric power demand dropped by about 8%, resulting in a steady-state EER increase of 17%. Suction and discharge pressures were reduced by 7 and 37 psi, respectively. A refrigerant oil additive formulated to enhance refrigerant-side heat transfer was added at a dose of one ounce per ton of rated capacity, and the unit was tested for several days at the same 95 F outdoor conditions and showed essentially no increase in capacity, and a slight 3% increase in steady-state EER. Adding more additive lowered the EER slightly. Suction and discharge pressures were essentially unchanged. The short-term testing showed that the condenser-spray device was effective in increasing the cooling capacity and lowering the electrical demand on an old and relatively inefficient heat pump, but the refrigerant additive had little effect on the cooling performance of the unit. Sprayer issues to be resolved include the effect of a sprayer on a new, high-efficiency air conditioner/heat pump, reliable long-term operation, and economics.

  2. Miscibility of lubricants with refrigerants

    SciTech Connect

    Pate, M.B.; Zoz, S.C.; Berkenbosch, L.J.

    1992-07-01

    Miscibility data is being obtained for a variety of non-CFC refrigerants and their potential lubricants. Ten different refrigerants and seven different lubricants are being investigated. Experiments are being performed in two phases: Phase I focuses on performing screening tests and Phase II consists of developing miscibility plots. The miscibility tests are being performed in a test facility consisting of a series of miniature test cells submerged in a constant temperature bath. The bath temperature can be precisely controlled over a temperature range of -50{degrees}C to 100{degrees}C. The test cells are constructed to allow for complete visibility of lubricant-refrigerant mixtures under all test conditions. Early in this reporting period, new procedures for charging the lubricant and refrigerant into the cells for testing were adopted. All of the refrigerants and all but one of the lubricants have been received from the manufacturers. Data obtained to date includes that for R-134a, R142b, R-32, R-134, R-125, and R-143a with four lubricants, namely, two esters and two polypropylene glycols.

  3. Thermoacoustic refrigeration

    SciTech Connect

    Garrett, S.L.; Hofler, T.J. )

    1992-12-01

    Shortly after their introduction, chlorofluorocarbons (CFCs) used as working fluids in a vapor compression (Rankine) refrigeration cycle became dominant in almost all small and medium-scale food refrigerator/freezer and building/residential air-conditioning applications. That situation is about to change dramatically and, at this moment, unpredictably. Two recent events are responsible for the new era in refrigeration that will dawn before the beginning of the 21st Century. The most significant of these is the international ban on the production of CFCs which were found to be destroying the Earth's protective ozone layer. The second event was the discovery of high temperature superconductors and the development of high speed and high density electronic circuits that require active cooling. It is the purpose of this article to introduce an entirely new approach to refrigeration that was first discovered in the early 1980s. This new approach-thermoacoustic refrigeration-uses high intensity sound waves to pump heat, with inert gases as the working fluid.

  4. Performance of HCFC22 alternative refrigerants

    SciTech Connect

    Jung, D.; Kim, C.B.; Song, Y.J.; Park, B.J.

    1999-07-01

    In this study, 14 refrigerant mixtures composed of R32, R125, R134a, R152a, R290(Propane) and R1270(Propylene) were tested in a breadboard heat pump in an attempt to replace R22 used in residential air-conditioners. The test heat pump was of 1 ton capacity with water as the secondary heat transfer fluids. All tests were conducted under ARI test A condition. Test results how that ternary mixtures composed of R32, R125, and R134a have 4 {approximately} 5% higher coefficient of performance(COP) and capacity than R22. Hence they seem to be promising alternatives for R22. On the other hand, ternary mixtures containing R125, R134a, and R152a have lower COPs and capacities than R22. R290/R134 azeotrope also shows 3--4% increases in COP and capacity. The compressor discharge and dome temperatures of all the mixtures tested are lower than those of R22 by 15.9--34.7 C and 5.5--14.3 C respectively, indicating that these mixtures would offer better system reliability and longer life time than R22. Finally, the test results with a suction line heat exchanger (SLHX) indicated that SLHX must be used with special care in air-conditioners since its effect is fluid dependent.

  5. Using natural refrigerants (hydrocarbons) in air conditioning systems

    SciTech Connect

    Mathur, G.D.

    1998-07-01

    Refrigerant 134a has emerged as the new refrigerant for the automotive and commercial A/C industry that has a zero ozone depleting potential (ODP) value. However, R-134a's greenhouse warming potential (GWP) is relatively high among the newly developed hydroflourocarbons (HFCs) which seems to be an obstacle for the furtherance of the use of R-134a, especially in European countries. Hence, many countries are looking for other refrigerants that do not contribute to global warming. There are many refrigerants that are currently available naturally. Examples of the so called natural refrigerants are: ammonia, carbon dioxide, hydrocarbons, water, helium, air, etc. Hydrocarbons are receiving attention these days as their thermodynamic and thermophysical properties are similar to that of R-12 and R-134a. Hydrocarbons are highly flammable that have zero ODP and negligible GWP. In Europe, some countries have started using hydrocarbons for refrigerators, freezers, automobiles, and for commercial applications like supermarkets. Currently, limited information is available in the open literature on the performance and design of the air conditioning and refrigeration systems using the hydrocarbons. Most of the work reported in the literature on the hydrocarbon refrigerants has been conducted by the researchers in Europe and Australia. In the United States, due to the product liability, the manufacturers have not been receptive to the idea of using hydrocarbons as the refrigerants. In this paper, the author has simulated the thermodynamic performance of a typical air conditioning system using hydrocarbons. The performance of the air conditioning system has been simulated by using Propane (R-290) and Isobutane (R-600a) as the working fluids. REFPROP computer program developed by NIST has been used to determine the thermodynamic properties for R-290 and R-600a. The author has also presented the single phase (liquid and vapor), pool boiling, two-phase, dry- out region, and

  6. Semiconductor-based optical refrigerator

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Sheik-Bahae, Mansoor

    2002-01-01

    Optical refrigerators using semiconductor material as a cooling medium, with layers of material in close proximity to the cooling medium that carries away heat from the cooling material and preventing radiation trapping. In addition to the use of semiconducting material, the invention can be used with ytterbium-doped glass optical refrigerators.

  7. Fluorescent refrigeration

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Buchwald, Melvin I.; Gosnell, Timothy R.

    1995-01-01

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement.

  8. Computational Evaluation of Mixtures of Hydrofluorocarbons and Deep Eutectic Solvents for Absorption Refrigeration Systems.

    PubMed

    Abedin, Rubaiyet; Heidarian, Sharareh; Flake, John C; Hung, Francisco R

    2017-08-24

    We used computational tools to evaluate three working fluid mixtures for single-effect absorption refrigeration systems, where the generator (desorber) is powered by waste or solar heat. The mixtures studied here resulted from combining a widely used hydrofluorocarbon (HFC) refrigerant, R134a, with three common deep eutectic solvents (DESs) formed by mixing choline chloride (hydrogen bond acceptor, HBA) with urea, glycerol, or ethylene glycol as the hydrogen bond donor (HBD) species. The COSMOtherm/TmoleX software package was used in combination with refrigerant data from NIST/REFPROP, to perform a thermodynamic evaluation of absorption refrigeration cycles using the proposed working fluid mixtures. Afterward, classical MD simulations of the three mixtures were performed to gain insight on these systems at the molecular level. Larger cycle efficiencies are obtained when R134a is combined with choline chloride and ethylene glycol, followed by the system where glycerol is the HBD, and finally that where the HBD is urea. MD simulations indicate that the local density profiles of all species exhibit very sharp variations in systems containing glycerol or urea; furthermore, the Henry's law constants of R134a in these two systems are larger than those observed for the HFC in choline chloride and ethylene glycol, indicating that R134a is more soluble in the latter DES. Interaction energies indicate that the R134a-R134a interactions are weaker in the system where ethylene glycol is the HBD, as compared to in the other DES. Radial distribution functions confirm that in all systems, the DES species do not form strong directional interactions (e.g., hydrogen bonds) with the R134a molecules. Relatively strong interactions are observed between the Cl anions and the hydrogen atoms in R134a; however, the atom-atom interactions between R134a and the cation and HBD species are weaker and do not play a significant role in the solvation of the refrigerant. In all systems, R134a has

  9. Experimental study on heat transfer performance of pulsating heat pipe with refrigerants

    NASA Astrophysics Data System (ADS)

    Wang, Xingyu; Jia, Li

    2016-10-01

    The effects of different refrigerants on heat transfer performance of pulsating heat pipe (PHP) are investigated experimentally. The working temperature of pulsating heat pipe is kept in the range of 20°C-50°C. The startup time of the pulsating heat pipe with refrigerants can be shorter than 4 min, when heating power is in the range of 10W?100W. The startup time decreases with heating power. Thermal resistances of PHP with filling ratio 20.55% were obviously larger than those with other filling ratios. Thermal resistance of the PHP with R134a is much smaller than that with R404A and R600a. It indicates that the heat transfer ability of R134a is better. In addition, a correlation to predict thermal resistance of PHP with refrigerants was suggested.

  10. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    DOE PAGES

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Amongmore » all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.« less

  11. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    SciTech Connect

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Among all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.

  12. Support of NASA ADR/ Cross-Enterprise NRA Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling from 10K to 50mK, Development of a Heat Switch

    NASA Technical Reports Server (NTRS)

    Richards, Paul L.

    2005-01-01

    Mechanical heat switches are used in conjunction with sorption refrigerators, adiabatic demagnetization refrigerators and for other cryogenic tasks including the pre-cooling cryogenic systems. They use a mechanical actuator which closes Au plated Cu jaws on an Au plated Cu bar. The thermal conductance in the closed position is essentially independent of the area of the jaws and proportional to the force applied. It varies linearly with T. It is approximately 10mW/K for 200 N at 1.5K. In some applications, the heat switch can be driven from outside the cryostat by a rotating rod and a screw. Such heat switches are available commercially from several sources. In other applications, including systems for space, it is desirable to drive the switch using a cold linear motor, or solenoid. Superconducting windings are used at temperatures s 4.2K to minimize power dissipation, but are not appropriate for pre-cooling a system at higher temperatures. This project was intended to improve the design of solenoid activated mechanical heat switches and to provide such switches as required to support the development of Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling from 10 K to 50 mK at GSFC. By the time funding began in 5/1/01, the immediate need for mechanical heat switches at GSFC had subsided but, at the same time, the opportunity had arisen to improve the design of mechanical heat switching by incorporating a "latching solenoid". In this device, the solenoid current is required only for changing the state of the switch and not during the whole time that the switch is closed.

  13. A Dynamic Model of a Vapor Compression Refrigeration Cycle using Zeotropic Refrigerant Mixtures

    NASA Astrophysics Data System (ADS)

    Unezaki, Fumitake; Matsuoka, Fumio

    In order to prove the effectiveness of the developed model, reported in the first report, about dynamics of a vapor compression refrigeration cycle with zeotropic refrigerant mixtures, simulation results are compared with the experimental results obtained for R-407C (R-32/R-125/R-134a=23/25/52wt%).The simulation results are consistent well with the experimental results. As a result of the numerical analysis of dynamic characteristics of composition changing, the variation of compositions in the refrigeration cycle is caused by the variation of the existing compositions of accumulator. The time constant of the composition is approximately equal to the time constant of the pressure and the mass distribution.

  14. A CFD study of Screw Compressor Motor Cooling Analysis

    NASA Astrophysics Data System (ADS)

    Branch, S.

    2017-08-01

    Screw compressors use electric motors to drive the male screw rotor. They are cooled by the suction refrigerant vapor that flows around the motor. The thermal conditions of the motor can dramatically influence the performance and reliability of the compressor. The more optimized this flow path is, the better the motor performance. For that reason it is important to understand the flow characteristics around the motor and the motor temperatures. Computational fluid dynamics (CFD) can be used to provide a detailed analysis of the refrigerant’s flow behavior and motor temperatures to identify the undesirable hot spots in the motor. CFD analysis can be used further to optimize the flow path and determine the reduction of hot spots and cooling effect. This study compares the CFD solutions of a motor cooling model to a motor installed with thermocouples measured in the lab. The compressor considered for this study is an R134a screw compressor. The CFD simulation of the motor consists of a detailed breakdown of the stator and rotor components. Orthotropic thermal conductivity material properties are used to represent the simplified motor geometry. In addition, the analysis includes the motor casings of the compressor to draw heat away from the motor by conduction. The study will look at different operating conditions and motor speeds. Finally, the CFD study will investigate the predicted motor temperature change by varying the vapor mass flow rates and motor speed. Recommendations for CFD modeling of such intricate heat transfer phenomenon have thus been proposed.

  15. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  16. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  17. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  18. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  19. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  20. Fluorescent refrigeration

    DOEpatents

    Epstein, R.I.; Edwards, B.C.; Buchwald, M.I.; Gosnell, T.R.

    1995-09-05

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement. 6 figs.

  1. Quantum-circuit refrigerator

    NASA Astrophysics Data System (ADS)

    Tan, Kuan Yen; Partanen, Matti; Lake, Russell E.; Govenius, Joonas; Masuda, Shumpei; Möttönen, Mikko

    2017-05-01

    Quantum technology promises revolutionizing applications in information processing, communications, sensing and modelling. However, efficient on-demand cooling of the functional quantum degrees of freedom remains challenging in many solid-state implementations, such as superconducting circuits. Here we demonstrate direct cooling of a superconducting resonator mode using voltage-controllable electron tunnelling in a nanoscale refrigerator. This result is revealed by a decreased electron temperature at a resonator-coupled probe resistor, even for an elevated electron temperature at the refrigerator. Our conclusions are verified by control experiments and by a good quantitative agreement between theory and experimental observations at various operation voltages and bath temperatures. In the future, we aim to remove spurious dissipation introduced by our refrigerator and to decrease the operational temperature. Such an ideal quantum-circuit refrigerator has potential applications in the initialization of quantum electric devices. In the superconducting quantum computer, for example, fast and accurate reset of the quantum memory is needed.

  2. Development of cooling system for 66/6.9kV-20MVA REBCO superconducting transformers with Ne turbo-Brayton refrigerator and subcooled liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Iwakuma, M.; Adachi, K.; Yun, K.; Yoshida, K.; Sato, S.; Suzuki, Y.; Umeno, T.; Konno, M.; Hayashi, H.; Eguchi, T.; Izumi, T.; Shiohara, Y.

    2015-12-01

    We developed a turbo-Brayton refrigerator with Ne gas as a working fluid for a 3 ϕ- 66/6.9kV-2MVA superconducting transformer with coated conductors which was bath-cooled with subcooled LN2. The two-stage compressor and expansion turbine had non-contact magnetic bearings for a long maintenance interval. In the future, we intend to directly install a heat exchanger into the Glass-Fiber-Reinforced-Plastics cryostat of a transformer and make a heat exchange between the working fluid gas and subcooled LN2. In this paper we investigate the behaviour of subcooled LN2 in a test cryostat, in which heater coils were arranged side by side with a flat plate finned-tube heat exchanger. Here a He turbo-Brayton refrigerator was used as a substitute for a Ne turbo-Brayton one. The pressure at the surface of LN2 in the cryostat was one atmosphere. Just under the LN2 surface, a stationary layer of LN2 was created over the depth of 20 cm and temperature dropped from 77 K to 65 K with depth while, in the lower level than that, a natural convection flow of LN2 was formed and temperature was almost uniform over 1 m depth. The boundary plane between the stationary layer and the natural convection region was visible.

  3. Use of hypometabolic TRIS extenders and high cooling rate refrigeration for cryopreservation of stallion sperm: presence and sensitivity of 5' AMP-activated protein kinase (AMPK).

    PubMed

    Córdova, Alex; Strobel, Pablo; Vallejo, Andrés; Valenzuela, Pamela; Ulloa, Omar; Burgos, Rafael A; Menarim, Bruno; Rodríguez-Gil, Joan Enric; Ratto, Marcelo; Ramírez-Reveco, Alfredo

    2014-12-01

    This study evaluated the effect of the use of hypometabolic TRIS extenders in the presence or the absence of AMPK activators as well as the utilization of high cooling rates in the refrigeration step on the freezability of stallion sperm. Twelve ejaculates were cryopreserved using Botucrio® as a control extender and a basic TRIS extender (HM-0) separately supplemented with 10 mM metformin, 2mM 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), 2 mM Adenosine monophosphate (AMP), 40 μM compound C AMPK inhibitor or 2 mM AMP+40 μM compound C. Our results showed that the utilization of a hypometabolic TRIS extender supplemented or not with AMP or metformin significantly improves stallion sperm freezability when compared with a commercial extender. Additionally, high cooling rates do not affect stallion sperm quality after cooling and post-thawing. Finally, stallion spermatozoa present several putative AMPK sperm isoforms that do not seem to respond to classical activators, but do respond to the Compound C inhibitor.

  4. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  5. Evaluation of Variable Refrigerant Flow Systems Performance on Oak Ridge National Laboratory s Flexible Research Platform: Part 1 Cooling Season Analysis

    SciTech Connect

    Im, Piljae; Malhotra, Mini; Munk, Jeffrey D.

    2016-08-01

    This report provides second-year cooling season test results for the multi-year project titled “Evaluation of Variable Refrigeration Flow (VRF) System on Oak Ridge National Laboratory (ORNL)’s Flexible Research Platform (FRP).” The purpose of the second-year project was to (1) evaluate the full- and partload performance of VRF systems compared with an existing baseline heating, ventilation, and airconditioning (HVAC) system, which is a conventional rooftop unit (RTU) variable-air-volume (VAV) system with electric resistance heating and (2) use hourly building energy simulation to evaluate the energy savings potential of using VRF systems in major US cities. The second-year project performance period was from July 2015 through June 2016.

  6. R290 (propane) and R600a (isobutane) as natural refrigerants for residential heat pump water heaters

    DOE PAGES

    Nawaz, Kashif; Shen, Bo; Elatar, Ahmed; ...

    2017-08-20

    Growing awareness of the potential environmental impacts of various refrigerants has led to the phasedown of hydrofluorocarbon (HFC) refrigerants and to initiatives replacing HFCs with hydrocarbons or other environmentally friendlier fluids. This study evaluated the performance of R290 (propane) and R600a (isobutane) as substitutes for R134a (a HFC) for heat pump water heating (HPWH). A component-based model (calibrated against the experimental data) was used to predict the performance of the HPWH system. Key performance parameters such as unified energy factor, first hour rating, condenser discharge temperature, thermal stratification in the water tank, and total refrigerant charge were investigated. Analysis resultsmore » suggest that both alternative refrigerants could provide comparable system performance to that of the baseline system containing R134a, with one caveat. As a drop-in alternative, R290 was found to be a better substitute for R134a, whereas R600a is expected to provide similar performance if the compressor size is increased to provide similar heating capacity. In conclusion, significant reductions in system charge and lower condenser discharge temperatures were identified as additional benefits.« less

  7. The APL satellite refrigerator program

    NASA Astrophysics Data System (ADS)

    Leffel, C. S., Jr.; Vonbriesen, R.

    1981-07-01

    Four satellite refrigerators were built and installed on a satellite to cool gamma ray spectrometers. The p-78-1 satellite, launched on February 24, 1979, was the first satellite to carry gamma ray detectors that were cooled by mechanical refrigerators. Still operating successfully after over 18 months in orbit, this is the first satellite experiment of any kind on which mechanical refrigerators have been operated for longer than a few weeks. This report describes the selection and specifications of the refrigerators as determined by APL and Lockheed, the design and construction of the refrigerators by Philips Laboratories, the design and construction of the motor drive and instrumentation electronics by APL, the APL qualification and acceptance test programs, and the APL laboratory life test program. The orbital performance of the refrigerators is discussed.

  8. Composition changes in refrigerant blends for automotive air conditioning

    SciTech Connect

    Jetter, J.J.; Delafield, F.R.; Ng, A.S.; Ratanaphruks, K.; Tufts, M.W.

    1999-07-01

    Three refrigerant blends used to replace the chlorofluorocarbon R-12 in automotive air conditioners were evaluated for composition changes due to typical servicing and leakage. When recommended service procedures were followed, changes in blend compositions were relatively small. Small changes in blend compositions caused no significant changes in refrigeration capacities. However, when recommended procedures were not followed, changes in compositions were relatively large. The amount of change in composition and the resulting effect on performance varied among the three refrigerant blends that were tested. Of the three blends, a quaternary blend containing hydrochlorofluorocarbon R-22 had the greatest changes in composition, while a binary blend containing hydrofluorocarbon R-134a had the smallest changes in composition.

  9. Neon helium mixtures as a refrigerant for the FCC beam screen cooling: comparison of cycle design options

    NASA Astrophysics Data System (ADS)

    Kloeppel, S.; Quack, H.; Haberstroh, C.; Holdener, F.

    2015-12-01

    In the course of the studies for the next generation particle accelerators, in this case the Future Circular Collider for hadron-hadron interaction (FCC-hh), different aspects are being investigated. One of these is the heat load on the beam screen, which results mainly from the synchrotron radiation. In case of the FCC-hh, a heat load of 6 MW is expected. The heat has to be absorbed at 40 to 60 K due to vacuum restrictions. In this range, refrigeration is possible with both helium and neon. Our investigations are focused on a mixed refrigerant of these two components, which combines the advantages of both. Especially promising is the possible substitution of the oil flooded screw compressors by more efficient turbo compressors. This paper investigates different flow schemes and mixture compositions with respect to complexity and efficiency. Furthermore, thermodynamic aspects, e.g. whether to use cold or warm secondary cycle compressors are discussed. Additionally, parameters of the main compressor are established.

  10. Downhole pulse tube refrigerators

    SciTech Connect

    Swift, G.; Gardner, D.

    1997-12-01

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

  11. Refrigeration for photomultipliers.

    PubMed

    Broadfoot, A L

    1966-08-01

    A closed-cycle mechanical refrigeration system has been adapted to cool photomultipliers automatically. Temperature is adjustable between +50 degrees and -55 degrees C and is stable to within +/-0.30 degrees C. An important feature of the design is the flexible connection to the cold box which allows extensive freedom of motion; this freedom is particularly important in astronomy where the cold box is mounted on the end of a telescope. Liquid Freon refrigerants have been used to cool photomultipliers for rocket flights. A brief description of two methods is given.

  12. Stirling Refrigerator

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    A Stirling cooler (refrigerator) was proposed in 1862 and the first Stirling cooler was put on market in 1955. Since then, many Stirling coolers have been developed and marketed as cryocoolers. Recently, Stirling cycle machines for heating and cooling at near-ambient temperatures between 173 and 400K, are recognized as promising candidates for alternative system which are more compatible with people and the Earth. The ideal cycles of Stirling cycle machine offer the highest thermal efficiencies and the working fluids do not cause serious environmental problems of ozone depletion and global warming. In this review, the basic thermodynamics of Stirling cycle are briefly described to quantify the attractive cycle performance. The fundamentals to realize actual Stirling coolers and heat pumps are introduced in detail. The current status of the Stirling cycle machine technologies is reviewed. Some machines have almost achieved the target performance. Also, duplex-Stirling-cycle and Vuilleumier-cycle machines and their performance are introduced.

  13. Evaporative heat transfer and enhancement performance of serpentine tubes with strip-type inserts using refrigerant-134a

    SciTech Connect

    Hsieh, S.S.; Jang, K.J.; Huang, M.T.

    1999-08-01

    Recent technological implications have given rise to increased interest in enhancement of the in-tube evaporation used in many air conditioning and refrigeration systems. Although many past studies have examined in-tube evaporative heat transfer enhancement and the associated pressure drop with internally finned tubes, in-tube evaporations with strip-type inserts, using R-134a as a refrigerant, have not been conducted. In addition, the fundamental phenomenon of nucleate boiling from a heated wall subject to a strip-type insert is as yet not well understood, especially for the flow in serpentine tubes. In this study, flow boiling tests were conducted in serpentine coil with inserts. To accomplish these tasks, experiments were performed in a seven-pass serpentine test tube with longitudinal strip and cross-strip types inserts, 10.6-mm inside diameter with R-134a as the boiling fluid immersed in a hot water bath.

  14. Alternative refrigerants and refrigeration cycles for domestic refrigerators

    SciTech Connect

    Sand, J.R.; Rice, C.L.; Vineyard, E.A.

    1992-12-01

    This project initially focused on using nonazeotropic refrigerant mixtures (NARMs) in a two-evaporator refrigerator-freezer design using two stages of liquid refrigerant subcooling. This concept was proposed and tested in 1975. The work suggested that the concept was 20% more efficient than the conventional one-evaporator refrigerator-freezer (RF) design. After considerable planning and system modeling based on using a NARM in a Lorenz-Meutzner (L-M) RF, the program scope was broadened to include investigation of a ``dual-loop`` concept where energy savings result from exploiting the less stringent operating conditions needed to satisfy cooling, of the fresh food section. A steady-state computer model (CYCLE-Z) capable of simulating conventional, dual loop, and L-M refrigeration cycles was developed. This model was used to rank the performance of 20 ozone-safe NARMs in the L-M refrigeration cycle while key system parameters were systematically varied. The results indicated that the steady-state efficiency of the L-M design was up to 25% greater than that of a conventional cycle. This model was also used to calculate the performance of other pure refrigerants relative to that of dichlorodifluoromethane, R-12, in conventional and dual-loop RF designs. Projected efficiency gains for these cycles were more modest, ranging from 0 to 10%. Individual compressor calorimeter tests of nine combinations of evaporator and condenser temperatures usually used to map RF compressor performance were carried out with R-12 and two candidate L-M NARMs in several compressors. Several models of a commercially produced two-evaporator RF were obtained as test units. Two dual-loop RF designs were built and tested as part of this project.

  15. Alternative refrigerants and refrigeration cycles for domestic refrigerators

    NASA Astrophysics Data System (ADS)

    Sand, J. R.; Rice, C. L.; Vineyard, E. A.

    1992-12-01

    This project initially focused on using nonazeotropic refrigerant mixtures (NARM's) in a two-evaporator refrigerator-freezer design using two stages of liquid refrigerant subcooling. This concept was proposed and tested in 1975. The work suggested that the concept was 20% more efficient than the conventional one-evaporator refrigerator-freezer (RF) design. After considerable planning and system modeling based on using a NARM in a Lorenz-Meutzner (L-M) RF, the program scope was broadened to include investigation of a 'dual-loop' concept where energy savings result from exploiting the less stringent operating conditions needed to satisfy cooling of the fresh food section. A steady-state computer model (CYCLE-Z) capable of simulating conventional, dual loop, and L-M refrigeration cycles was developed. This model was used to rank the performance of 20 ozone-safe NARM's in the L-M refrigeration cycle while key system parameters were systematically varied. The results indicated that the steady-state efficiency of the L-M design was up to 25% greater than that of a conventional cycle. This model was also used to calculate the performance of other pure refrigerants relative to that of dichlorodifluoromethane, R-12, in conventional and dual-loop RF designs. Projected efficiency gains for these cycles were more modest, ranging from 0 to 10%. Individual compressor calorimeter tests of nine combinations of evaporator and condenser temperatures usually used to map RF compressor performance were carried out with R-12 and two candidate L-M NARM's in several compressors. Several models of a commercially produced two-evaporator RF were obtained as test units. Two dual-loop RF designs were built and tested as part of this project.

  16. Ideal orifice pulse tube refrigerator performance

    NASA Technical Reports Server (NTRS)

    Kittel, P.

    1992-01-01

    The recent development of orifice pulse tube refrigerators has raised questions as to what limits their ultimate performance. Using an analogy to the Stirling cycle refrigerator, the efficiency (cooling power per unit input power) of an ideal orifice pulse tube refrigerator is shown to be T1/T0, the ratio of the cold temperature to the hot temperature.

  17. Energy Efficiency and Environmental Impact Analyses of Supermarket Refrigeration Systems

    SciTech Connect

    Fricke, Brian A; Bansal, Pradeep; Zha, Shitong

    2013-01-01

    This paper presents energy and life cycle climate performance (LCCP) analyses of a variety of supermarket refrigeration systems to identify designs that exhibit low environmental impact and high energy efficiency. EnergyPlus was used to model refrigeration systems in a variety of climate zones across the United States. The refrigeration systems that were modeled include the traditional multiplex DX system, cascade systems with secondary loops and the transcritical CO2 system. Furthermore, a variety of refrigerants were investigated, including R-32, R-134a, R-404A, R-1234yf, R-717, and R-744. LCCP analysis was used to determine the direct and indirect carbon dioxide emissions resulting from the operation of the various refrigeration systems over their lifetimes. Our analysis revealed that high-efficiency supermarket refrigeration systems may result in up to 44% less energy consumption and 78% reduced carbon dioxide emissions compared to the baseline multiplex DX system. This is an encouraging result for legislators, policy makers and supermarket owners to select low emission, high-efficiency commercial refrigeration system designs for future retrofit and new projects.

  18. Pulse Tube Refrigerator

    NASA Astrophysics Data System (ADS)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  19. Liquid to Semisolid Rheological Transition of Normal and High-Oleic Peanut Oils Upon Cooling to Refrigeration Temperatures

    USDA-ARS?s Scientific Manuscript database

    Rheological transitions of peanut oils cooled from 20 to 3ºC at 0.5ºC/min were monitored via small strain oscillatory measurements at 0.1 Hz and 1 Pa. Oils were from 9 different cultivars of peanut, and 3 oils were classified as high-oleic (approximately 80% oleic acid). High-oleic oils maintained...

  20. Experimental analysis of refrigerants flow boiling inside small sized microfin tubes

    NASA Astrophysics Data System (ADS)

    Diani, Andrea; Rossetto, Luisa

    2017-07-01

    The refrigerant charge reduction is one of the most challenging issues that the scientific community has to cope to reduce the anthropic global warming. Recently, mini microfin tubes have been matter of research, since they can reach better thermal performance in small domains, leading to a further refrigerant charge reduction. This paper presents experimental results about R134a flow boiling inside a microfin tube having an internal diameter at the fin tip of 2.4 mm. The mass flux was varied between 375 and 940 kg m-2 s-1, heat flux from 10 to 50 kW m-2, vapor quality from 0.10 to 0.99. The saturation temperature at the inlet of the test section was kept constant and equal to 30 °C. R134a thermal and fluid dynamic performances are presented and compared against those obtained with R1234ze(E) and R1234yf and against values obtained during R134a flow boiling inside a 3.4 mm ID microfin tube.

  1. Refrigeration system having dual suction port compressor

    DOEpatents

    Wu, Guolian

    2016-01-05

    A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portion of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.

  2. NICE3: Industrial Refrigeration System

    SciTech Connect

    Simon, P.

    1999-09-29

    Energy Concepts has developed an absorption-augmented system as a cost-effective means of achieving more cooling capacity with a substantial reduction in energy consumption and greenhouse gas emissions for industrial refrigeration. It cuts fuel consumption by 30% by combining an internal combustion engine with a mechanical compression refrigeration system and an absorption refrigeration system. The absorption system is powered by engine waste heat. Conventional industrial refrigeration uses mechanical vapor compression, powered by electric motors, which results in higher energy costs. By the year 2010, the new system could cut fuel consumption by 19 trillion Btu and greenhouse emissions by more than 1 million tons per year.

  3. Adsorption Refrigeration System

    SciTech Connect

    Wang, Kai; Vineyard, Edward Allan

    2011-01-01

    Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacks of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.

  4. Reciprocating Magnetic Refrigerator

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1985-01-01

    Unit cools to 4 K by adiabatic demagnetization. Two porous matrices of paramagnetic material gadolinium/gallium/garnet held in long piston called displacer, machined out of Micarta (phenol formaldehyde polymer). Holes in side of displacer allow heat-exchange fluid to flow to and through matrices within. Piston seals on displacer prevent substantial mixing of fluid in two loops. Magnetic refrigerator provides continuous rather than "one-shot" cooling.

  5. Reciprocating Magnetic Refrigerator

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1985-01-01

    Unit cools to 4 K by adiabatic demagnetization. Two porous matrices of paramagnetic material gadolinium/gallium/garnet held in long piston called displacer, machined out of Micarta (phenol formaldehyde polymer). Holes in side of displacer allow heat-exchange fluid to flow to and through matrices within. Piston seals on displacer prevent substantial mixing of fluid in two loops. Magnetic refrigerator provides continuous rather than "one-shot" cooling.

  6. Halocarbon refrigerant detection methods. Final report

    SciTech Connect

    Tapscott, R.E.; Sohn, C.W.

    1996-01-01

    The Montreal Protocol and the U.S. Clean Air Act limit the production of ozone-depleting substances, including many refrigerants. Three options for cost-effectively phasing out these refrigerants from Army installations are: (1) refrigerant containment, (2) retrofit conversion to accommodate alternative refrigerant, and (3) replacement with cooling systems using alternative refrigerant. This report contributes to the first option by identifying and assessing methods to detect chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants that leak from air-conditioning and refrigeration systems. As background, the report describes the relevant sections of the Montreal Protocol and the Clean Air Act, and gives an overview of refrigerants. This is followed by a description of the technologies used in refrigerant leak detection, and a survey of detector types available and their price ranges. Appendixes provide an extensive list of detector products and their specifications, plus manufacturer addresses and phone numbers.

  7. 46 CFR 151.40-11 - Refrigeration systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...

  8. 46 CFR 151.40-11 - Refrigeration systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...

  9. 46 CFR 151.40-11 - Refrigeration systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...

  10. Thermal design and verification of an instrument cooling system for infrared detectors utilizing the Oxford Stirling cycle refrigerator

    NASA Technical Reports Server (NTRS)

    Werrett, Stephen; Seivold, Alfred L.

    1990-01-01

    A detailed nodal computer model was developed to thermally represent the hardware, and sensitivity studies were performed to evaluate design parameters and orbital environmental effects of an instrument cooling system for IR detectors. Thermal-vacuum testing showed excellent performance of the system and a correspondence with math model predictions to within 3 K. Results show cold stage temperature sensitivity to cold patch backload, outer stage external surface emittance degradation, and cold stage emittance degradation, respectively. The increase in backload on the cold patch over the mission lifetime is anticipated to be less than 3.0 watts, which translates to less than a 3-degree increase in detector temperatures.

  11. Toxicity Data to Determine Refrigerant Concentration Limits

    SciTech Connect

    Calm, James M.

    2000-09-30

    This report reviews toxicity data, identifies sources for them, and presents resulting exposure limits for refrigerants for consideration by qualified parties in developing safety guides, standards, codes, and regulations. It outlines a method to calculate an acute toxicity exposure limit (ATEL) and from it a recommended refrigerant concentration limit (RCL) for emergency exposures. The report focuses on acute toxicity with particular attention to lethality, cardiac sensitization, anesthetic and central nervous system effects, and other escape-impairing effects. It addresses R-11, R-12, R-22, R-23, R-113, R-114, R-116, R-123, R-124, R-125, R-134, R-134a, R-E134, R-141b, R-142b, R-143a, R-152a, R-218, R-227ea, R-236fa, R-245ca, R-245fa, R-290, R-500, R-502, R-600a, R-717, and R-744. It summarizes additional data for R-14, R-115, R-170 (ethane), R-C318, R-600 (n-butane), and R-1270 (propylene) to enable calculation of limits for blends incorporating them. The report summarizes the data a nd related safety information, including classifications and flammability data. It also presents a series of tables with proposed ATEL and RCL concentrations-in dimensionless form and the latter also in both metric (SI) and inch-pound (IP) units of measure-for both the cited refrigerants and 66 zerotropic and azeotropic blends. They include common refrigerants, such as R-404A, R-407C, R-410A, and R-507A, as well as others in commercial or developmental status. Appendices provide profiles for the cited single-compound refrigerants and for R-500 and R-502 as well as narrative toxicity summaries for common refrigerants. The report includes an extensive set of references.

  12. Cascade Joule-Thomson refrigerators

    NASA Technical Reports Server (NTRS)

    Tward, E.; Steyert, W. A.

    1983-01-01

    The design criteria for cascade Joule-Thomson refrigerators for cooling in the temperature range from 300 K to 4.2 K were studied. The systems considered use three or four refrigeration stages with various working gases to achieve the low temperatures. Each stage results in cooling to a progressively lower temperature and provides cooling at intermediate temperatures to remove the substantial amount of parasitic heat load encountered in a typical dewar. With careful dewar design considerable cooling can be achieved with moderate gas flows. For many applications, e.g., in the cooling of sensitive sensors, the fact that the refrigerator contains no moving parts and may be remotely located from the gas source is of considerable advantage. A small compressor suitable for providing the gas flows required was constructed.

  13. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2016-07-05

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.

  14. Cryogenic refrigeration apparatus

    DOEpatents

    Crunkleton, James A.

    1992-01-01

    A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling.

  15. Cryogenic refrigeration apparatus

    DOEpatents

    Crunkleton, J.A.

    1992-03-31

    A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling. 6 figs.

  16. Cryogenic Optical Refrigeration

    DTIC Science & Technology

    2012-03-22

    Applications of Laser Cooling of Solids, 1st ed. (Wiley-VCH, 2009). 12. M. Sheik- Bahae and R. I . Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699...2007). Advances in Optics and Photonics 4, 78–107 (2012) doi:10.1364/AOP.4.000078 99 13. M. Sheik- Bahae and R. I . Epstein, “Laser cooling of solids...Sheik- Bahae and R. I . Epstein, “Can laser light cool semiconductors,” Phys. Rev. Lett. 92(24), 247403 (2004). 18. P. Asbeck, “Self-absorption effects

  17. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  18. Thermoacoustic refrigeration

    NASA Technical Reports Server (NTRS)

    Garrett, Steven L.; Hofler, Thomas J.

    1991-01-01

    A new refrigerator which uses resonant high amplitude sound in inert gases to pump heat is described and demonstrated. The phasing of the thermoacoustic cycle is provided by thermal conduction. This 'natural' phasing allows the entire refrigerator to operate with only one moving part (the loudspeaker diaphragm). The thermoacoustic refrigerator has no sliding seals, requires no lubrication, uses only low-tolerance machine parts, and contains no expensive components. Because the compressor moving mass is typically small and the oscillation frequency is high, the small amount of vibration is very easily isolated. This low vibration and lack of sliding seals makes thermoacoustic refrigeration an excellent candidate for food refrigeration and commercial/residential air conditioning applications. The design, fabrication, and performance of the first practical, autonomous thermoacoustic refrigerator, which will be flown on the Space Shuttle (STS-42), are described, and designs for terrestrial applications are presented.

  19. Thermoelectric refrigerator having improved temperature stabilization means

    DOEpatents

    Falco, Charles M.

    1982-01-01

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

  20. Malone refrigeration

    NASA Astrophysics Data System (ADS)

    Swift, G. W.

    Malone refrigeration is the use of a liquid near its critical point, without evaporation, as the working fluid in a refrigeration cycle such as the Stirling cycle. We discuss relevant properties of appropriate liquids, and we describe two Malone refrigerators. The first, which was completed several years ago, established the basic principles of use for liquids in such cycles. The second, now under construction, is a linear, free-piston machine.

  1. Malone refrigeration

    SciTech Connect

    Swift, G W

    1992-01-01

    Malone refrigeration is the use of a liquid near its critical point, without evaporation, as working fluid in a refrigeration cycle such as the Stirling cycle. We discuss relevant properties of appropriate liquids, and describe two Malone refrigerators. The first completed several years ago, established the basic principles of use of liquids in such cycles. The second, now under construction, is a linear, free-piston machine.

  2. Barocaloric effect and the pressure induced solid state refrigerator

    NASA Astrophysics Data System (ADS)

    de Oliveira, N. A.

    2011-03-01

    The current refrigerators are based on the heating and cooling of fluids under external pressure variation. The great inconvenience of this refrigeration technology is the damage caused to the environment by the refrigerant fluids. In this paper, we discuss the magnetic barocaloric effect, i.e., the heating or cooling of magnetic materials under pressure variation and its application in the construction of refrigerators using solid magnetic compounds as refrigerant materials and pressure as the external agent. The discussion presented in this paper points out that such a pressure induced solid state refrigerator can be very interesting because it is not harmful to the environment and can exhibit a good performance.

  3. Fast, Low-Duty-Cycle Sorption Refrigerators

    NASA Technical Reports Server (NTRS)

    Johnson, AL; Jones, Jack A.

    1994-01-01

    Metal hydride/hydrogen-sorption refrigerators developed to provide rapid, intermittent cooling at temperatures between 30 and 10 K. In original application, refrigerators cool infrared detectors aboard spacecraft, exhausting heat to outer space via radiators at 250 K. Modified to cool scientific instrumentation on Earth with some loss of efficiency. Require no power during quick cooldown and low heating power during relatively long recharge periods.

  4. On the Influence of Heating Surface Structure on Bubble Detachment in Sub-Cooled Nucleate Boiling Flows

    SciTech Connect

    Wen Wu; Peipei Chen; Jones, Barclay G.; Newell, Ty A.

    2006-07-01

    This research examines the influence of heating surface structure on bubble detachment, which includes bubble departure and bubble lift-off, under sub-cooled nucleate boiling condition, in order to obtain better understanding to the bubble dynamics on horizontal flat heat exchangers. Refrigerant R-134a is chosen as a simulant fluid due to its merits of having smaller surface tension, reduced latent heat, and lower boiling temperature than water. Experiments were run with varying experimental parameters e.g. pressure, inlet sub-cooled level, and flow rate, etc. High speed digital images at frame rates up to 4000 frames/s were obtained, showing characteristics of bubble movement. Bubble radius and center coordinates were calculated via Canny's algorithm for edge detection and Fitzgibbon's algorithm for ellipse fitting. Results were compared against the model proposed by Klausner et al. for prediction of bubble detachment sizes. Good overall agreement was shown, with several minor modifications and suggestions made to the assumptions of the model. (authors)

  5. Multistation refrigeration system

    NASA Technical Reports Server (NTRS)

    Wiebe, E. R. (Inventor)

    1978-01-01

    A closed cycle refrigeration (CCR) system is disclosed for providing cooling at different parts of a maser. The CCR includes a first station for cooling the maser's parts, except the amplifier portion, to 4.5 K. The CCR further includes means with a 3.0 K station for cooling the maser's amplifier to 3.0 K and, thereby, increases the maser's gain and/or bandwith by a significant factor. The means which provide the 3.0 K cooling include a pressure regulator, heat exchangers, an expansion valve, and a vacuum pump, which coact to cause helium, provided from a compressor, to liquefy and thereafter expand so as to vaporize. The heat of vaporization for the helium is provided by the maser amplifier, which is thereby cooled to 3.0 K.

  6. Short-Cycle Adsorption Refrigerator

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1988-01-01

    Modular adsorption/Joule-Thomson-effect refrigerator offers fast regeneration; adsorption/desorption cycle time expected to be 1 minute. Pressurized hydrogen generated by bank of compressor modules during heating phase passes through system of check valves and expands in Joule-Thomson junction as it enters refrigeration chamber. Hydrogen absorbs heat from load before it is sucked out by another bank of compressor modules in cooling phase.

  7. Oxygen chemisorption cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  8. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  9. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  10. Optimum operating regimes of common paramagnetic refrigerants

    NASA Astrophysics Data System (ADS)

    Wikus, Patrick; Burghart, Gerhard; Figueroa-Feliciano, Enectalí

    2011-09-01

    Adiabatic Demagnetization Refrigerators (ADRs) are commonly used in cryogenic laboratories to achieve subkelvin temperatures. ADRs are also the technology of choice for several space borne instruments which make use of cryogenic microcalorimeters or bolometers [1-4]. For these applications, refrigerants with high ratios of cooling capacity to volume, or cooling capacity to mass are usually required. In this manuscript, two charts for the simple selection of the most suitable of several common refrigerants (CAA, CMN, CPA, DGG, FAA, GGG, GLF and MAS) are presented. These graphs are valid for single stage cycles. The selection of the refrigerants is uniquely dependent on the starting conditions of the refrigeration cycle (temperature and magnetic field density) and the desired final temperature. Only thermodynamic properties of the refrigerants have been taken into account, and other important factors such as availability and manufacturability have not been considered.

  11. Magnetic refrigeration for low-temperature applications

    NASA Astrophysics Data System (ADS)

    Barclay, J. A.

    1985-05-01

    The application of refrigeration at low temperatures ranging from production of liquid helium for medical imaging systems to cooling of infrared sensors on surveillance satellites is discussed. Cooling below about 15 K with regenerative refrigerators is difficult because of the decreasing thermal mass of the regenerator compared to that of the working material. In order to overcome this difficulty with helium gas as the working material, a heat exchanger plus a Joule-Thomson or other exponder is used. Regenerative magnetic refrigerators with magnetic solids as the working material have the same regenerator problem as gas refrigerators. This problem provides motivation for the development of nonregenerative magnetic refrigerators that span approximately 1 K to approximately 0 K. Particular emphasis is placed on high reliability and high efficiency. Calculations indicate considerable promise in this area. The principles, the potential, the problems, and the progress towards development of successful 4 to 20 K magnetic refrigerators are discussed.

  12. Magnetic refrigeration for low-temperature applications

    NASA Technical Reports Server (NTRS)

    Barclay, J. A.

    1985-01-01

    The application of refrigeration at low temperatures ranging from production of liquid helium for medical imaging systems to cooling of infrared sensors on surveillance satellites is discussed. Cooling below about 15 K with regenerative refrigerators is difficult because of the decreasing thermal mass of the regenerator compared to that of the working material. In order to overcome this difficulty with helium gas as the working material, a heat exchanger plus a Joule-Thomson or other exponder is used. Regenerative magnetic refrigerators with magnetic solids as the working material have the same regenerator problem as gas refrigerators. This problem provides motivation for the development of nonregenerative magnetic refrigerators that span approximately 1 K to approximately 0 K. Particular emphasis is placed on high reliability and high efficiency. Calculations indicate considerable promise in this area. The principles, the potential, the problems, and the progress towards development of successful 4 to 20 K magnetic refrigerators are discussed.

  13. Sorption cryogenic refrigeration - Status and future

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1988-01-01

    The operation principles of sorption cryogenic refrigeration are discussed. Sorption refrigerators have virtually no wear-related moving parts, have negligible vibration, and offer extremely long life (at least ten years), making it possible to obtain efficient, long life and low vibration cooling to as low as 7 K for cryogenic sensors. The physisorption and chemisorption systems recommended for various cooling ranges down to 7 K are described in detail. For long-life cooling at 4-5 K temperatures, a hybrid chemisorption-mechanical refrigeration system is recommended.

  14. Measurement and prediction of two-phase flow patterns for new refrigerants inside horizontal tubes

    SciTech Connect

    Kattan, N.; Favrat, D.; Thome, J.R.

    1995-12-31

    Two-phase flow pattern data were obtained with 12-mm-bore sight glasses for five refrigerants: R-123, R-134a, R-502, R-402A, and R-404A. The existing flow pattern maps of Taitel and Dukler (1976) and Hashizume (1983) poorly represented the data, while, with the exception of mist flows, the VDI map identified the flow patterns successfully. Methods used in horizontal flow boiling correlations to determine the threshold between all wet wall and partially wet wall flows were shown to be unreliable.

  15. Prediction of Heat Transfer Characteristics of Binary Refrigerant Mixtures in a Falling Film Type Plate-fin Evaporator

    NASA Astrophysics Data System (ADS)

    Yara, Tomoyasu; Koyama, Shigeru

    This paper deals with the characteristics of heat transfer and pressure drop of R 22, R 134a pure refrigerant and R 134a/R123 refrigerant mixtures in a falling film type plate-fin evaporator. The refrigerants have been tested in the ranges of heat flux from 3 to 20 kW/m2 and mass velocity from 50 to 100 kg/m2s. It is clarified that heat transfer characteristics of evaporation in the present experimental range are not affected by shear stress. Taking the fin efficiency into consideration, a correlation equation of heat transfer coefficient is proposed. The characteristic of pressure drop is also proposed by modifying friction factor of Soliman's equation. Furthermore, a prediction model for evaporation of mixtures in a plate fin heat exchanger is developed based on the assumption that the phase equilibrium in a cross-section of the refrigerant path is established. The prediction results are in good agreement with the experimental data.

  16. Elastohydrodynamic Lubrication with Polyolester Lubricants and HFC Refrigerants, Final Report, Volume 2

    SciTech Connect

    Gunsel, Selda; Pozebanchuk, Michael

    1999-04-01

    naphthenic mineral oils (NMO), four polyolesters (POE), and two polyvinyl ether (PVE) fluids. These fluids represented viscosity grades of ISO 32 and ISO 68 and are shown in a table. Refrigerants studied included R-22, R-134a, and R-410A. Film thickness measurements were conducted at 23 C, 45 C, and 65 C with refrigerant concentrations ranging from zero to 60% by weight.

  17. High temperature superconducting magnetic refrigeration

    NASA Astrophysics Data System (ADS)

    Blumenfeld, P. E.; Prenger, F. C.; Sternberg, A.; Zimm, C.

    2002-05-01

    A near-room temperature active magnetic regenerative refrigerator (AMRR) was designed and built using a high-temperature superconducting (HTS) magnet in a charge-discharge cycle and a gadolinium-packed regenerative bed as the magnetocaloric component. Current to the HTS magnet was ramped periodically from zero to 100 amperes, which generated a ramp in field strength from zero to 1.7 tesla. Water was moved periodically through the bed and through hot and cold heat exchangers to accomplish a continuous refrigeration cycle. Cycle periods as short as 30 seconds were realized. Refrigerator performance was measured in terms of cooling capacity as a function of temperature span and in terms of efficiency expressed as a percentage of maximum obtainable (Carnot) efficiency. A three-watt cooling capacity was measured over a temperature span of 15 degrees C between hot and cold end temperatures of 25 degrees C and 10 degrees C. This experiment is directed to two possible applications for magnetic refrigeration: a no-moving part cryogenic refrigerator for space applications, and a compact permanent magnet refrigerator for commercial and consumer applications.

  18. Thermodynamic study of air-cycle and mercury-vapor-cycle systems for refrigerating cooling air for turbines or other components

    NASA Technical Reports Server (NTRS)

    Nachtigall, Alfred J; Freche, John C; Esgar, Jack B

    1956-01-01

    An analysis of air refrigeration systems indicated that air cycles are generally less satisfactory than simple heat exchangers unless high component efficiencies and high values of heat-exchanger effectiveness can be obtained. A system employing a mercury-vapor cycle appears to be feasible for refrigerating air that must enter the system at temperature levels of approximately 1500 degrees R, and this cycle is more efficient than the air cycle. Weight of the systems was not considered. The analysis of the systems is presented in a generalized dimensionless form.

  19. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect

    Zaltash, Abdolreza; Petrov, Andrei Y; Linkous, Randall Lee; Vineyard, Edward Allan

    2007-01-01

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient

  20. Refrigeration generation using expander-generator units

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.

    2016-05-01

    The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.

  1. Control system for thermoelectric refrigerator

    NASA Technical Reports Server (NTRS)

    Nelson, John L. (Inventor); Criscuolo, Lance (Inventor); Gilley, Michael D. (Inventor); Park, Brian V. (Inventor)

    1996-01-01

    Apparatus including a power supply (202) and control system is provided for maintaining the temperature within an enclosed structure (40) using thermoelectric devices (92). The apparatus may be particularly beneficial for use with a refrigerator (20) having superinsulation materials (46) and phase change materials (112) which cooperate with the thermoelectric device (92) to substantially enhance the overall operating efficiency of the refrigerator (20). The electrical power supply (202) and control system allows increasing the maximum power capability of the thermoelectric device (92) in response to increased heat loads within the refrigerator (20). The electrical power supply (202) and control system may also be used to monitor the performance of the cooling system (70) associated with the refrigerator (20).

  2. Helium dilution refrigeration system

    DOEpatents

    Roach, P.R.; Gray, K.E.

    1988-09-13

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

  3. Helium dilution refrigeration system

    DOEpatents

    Roach, Patrick R.; Gray, Kenneth E.

    1988-01-01

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.

  4. Vapor-liquid coexistence curves in the critical region and the critical temperatures and densities of 1,1,1,2-tetrafluoroethane (R-134a), 1,1,1-trifluoroethane (R-143a), and 1,1,1,2,3,3-hexafluoropropane (R-236ea)

    SciTech Connect

    Aoyama, H.; Kishizawa, G.; Sato, H.; Watanabe, K.

    1996-09-01

    The vapor-liquid coexistence curves in the critical region of 1,1,1,2-tetrafluoroethane (R-134a), 1,1,1-trifluoroethane (R-143a), and 1,1,1,2,3,3-hexafluoropropane (R-236ea) were measured by a visual observation of the meniscus disappearance in an optical cell. Seventeen saturated-vapor and -liquid densities have been measured for R-134a. Thirty-five saturated-vapor and -liquid densities have been measured for R-143a. Twenty-seven saturated-vapor and -liquid densities have been measured for R-236ea. The level and location of the meniscus, as well as the intensity of the critical opalescence were considered in the determination of the critical temperature and density for each fluid. R-134a was found to have (374.083 {+-} 0.010) K and (509 {+-} 1) kg/m{sup 3}, R-143a, (345.860 {+-} 0.010) K and (434 {+-} 1) kg/m{sup 3}, and R-236ea, (412.375 {+-} 0.015) K and (568 {+-} 1) kg/m{sup 3}.

  5. Augmentation of the cooling capacity of refrigerated fluid by minimizing heat gain of the fluid using a simple method of cold insulation.

    PubMed

    Lee, Byung Kook; Jeung, Kyung Woon; Lee, Seung Cheol; Min, Yong Il; Ryu, Hyun Ho; Kim, Mu Jin; Lee, Hyoung Youn; Heo, Tag

    2010-06-01

    This study was undertaken to determine how rapidly refrigerated fluids gain heat during bolus infusion and to determine whether the refrigerated fluids could be kept cold by a simple cold-insulation method. One liter of refrigerated fluid was run through either a 16-gauge catheter (16G(-) and 16G(+) groups) or an 18-gauge catheter (18G(-) and 18G(+) groups) while monitoring the temperature in the fluid bag and the outflow site. In the 16G(+) and the 18G(+) groups, the fluid bag was placed with an ice pack inside an insulating sleeve during the fluid run. In the 16G(-) and the 18G(-) groups, the outflow temperature increased to 10-12 degrees C during the fluid run. Meanwhile, outflow temperatures in the 16G(+) and the 18G(+) groups remained below 4.6 and 6.8 degrees C, respectively. The temperatures differed significantly between the 16G(-) and the 16G(+) groups (p < 0.001) and between the 18G(-) and the 18G(+) groups (p < 0.001), respectively. Substantial heat gain occurred in the refrigerated fluid even during the relatively short duration of bolus infusion. The heat gain could, however, be easily minimized by cold insulation of the fluid bag. (c) 2010 by the Society for Academic Emergency Medicine.

  6. Solar-powered cooling system

    SciTech Connect

    Farmer, Joseph C

    2013-12-24

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  7. Low cost microminiature refrigerators for large unit volume applications

    NASA Technical Reports Server (NTRS)

    Duboc, R. M., Jr.

    1983-01-01

    Photolithographic techniques were employed to fabricate small Joule-Thomson refrigerators in laminated substrates. The gas passages of a J-T refrigerator are formed by etching channels as narrow as 50 microns and as shallow as 5 microns in glass plates which are laminated together. Circular refrigerators on the order of 1.5 centimeters in diameter and .75 millimeters thick were produced which cool down to cryogenic temperatures in a few seconds, using Argon or Nitrogen, with no vacuum or radiation insulation. Smaller refrigerators are developed for both faster cooldown and low refrigeration capacity applications. By using this technology, custom refrigerators can be designed to meet specific application requirements.

  8. Thermoelectric refrigerator

    NASA Technical Reports Server (NTRS)

    Park, Brian V. (Inventor); Smith, Jr., Malcolm C. (Inventor); McGrath, Ralph D. (Inventor); Gilley, Michael D. (Inventor); Criscuolo, Lance (Inventor); Nelson, John L. (Inventor)

    1996-01-01

    A refrigerator is provided which combines the benefits of superinsulation materials with thermoelectric devices and phase change materials to provide an environmentally benign system that is energy efficient and can maintain relatively uniform temperatures for extended periods of time with relatively low electrical power requirements. The refrigerator includes a thermoelectric assembly having a thermoelectric device with a hot sink and a cold sink. The superinsulation materials include a plurality of vacuum panels. The refrigerator is formed from an enclosed structure having a door. The vacuum panels may be contained within the walls of the enclosed structure and the door. By mounting the thermoelectric assembly on the door, the manufacturer of the enclosed structure is simplified and the overall R rating of the refrigerator increased. Also an electrical motor and propellers may be mounted on the door to assist in the circulation of air to improve the efficiency of the cold sink and the hot sink. A propeller and/or impeller is preferably mounted within the refrigerator to assist in establishing the desired air circulation flow path.

  9. Impact of cooking, cooling, and subsequent refrigeration on the growth or survival of Clostridium perfringens in cooked meat and poultry products.

    PubMed

    Kalinowski, Robin M; Tompkin, R Bruce; Bodnaruk, Peter W; Pruett, W Payton

    2003-07-01

    In January 1999, the Food Safety and Inspection Service (FSIS) finalized performance standards for the cooking and chilling of meat and poultry products in federally inspected establishments. More restrictive chilling (stabilization) requirements were adopted despite the lack of strong evidence of a public health risk posed by industry practices employing the original May 1988 guidelines (U.S. Department of Agriculture FSIS Directive 7110.3). Baseline data led the FSIS to estimate a "worst case" of 10(4) Clostridium perfringens cells per g in raw meat products. The rationale for the FSIS performance standards was based on this estimate and the assumption that the numbers detected in the baseline study were spores that could survive cooking. The assumptions underlying the regulation stimulated work in our laboratory to help address why there have been so few documented outbreaks of C. perfringens illness associated with the consumption of commercially processed cooked meat and poultry products. Our research took into account the numbers of C. perfringens spores in both raw and cooked products. One hundred ninety-seven raw comminuted meat samples were cooked to 73.9 degrees C and analyzed for C. perfringens levels. All but two samples had undetectable levels (<3 spores per g). Two ground pork samples contained 3.3 and 66 spores per g. Research was also conducted to determine the effect of chilling on the outgrowth of C. perfringens spores in cured and uncured turkey. Raw meat blends inoculated with C. perfringens spores, cooked to 73.9 degrees C, and chilled according to current guidelines or under abuse conditions yielded increases of 2.25 and 2.44 log10 CFU/g for uncured turkey chilled for 6 h and an increase of 3.07 log10 CFU/g for cured turkey chilled for 24 h. No growth occurred in cured turkey during a 6-h cooling period. Furthermore, the fate of C. perfringens in cooked cured and uncured turkey held at refrigeration temperatures was investigated. C

  10. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  11. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  12. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  13. Method of reducing chlorofluorocarbon refrigerant emissions in the atmosphere

    SciTech Connect

    DeVault, R.C.; Fairchild, P.D.; Biermann, W.J.

    1990-06-19

    This patent describes a method of reducing escape of refrigerant emissions to the atmosphere during removal of a chlorofluorocarbon refrigerant from a vapor compression cooling system or heat pump. The method comprises contacting the chlorofluorocarbon refrigerant during removal with a sorbent material into which the chlorofluorocarbon refrigerant can be dissolved, the sorbent material being selected from the group consisting of N-methyl-2-pyrrolidone, ethyl tetrahydro furfuryl ether, tetramethylene glycol dimethylether, triethylene glycol dimethylether, N,N-dimethyl formamide, dimethylamides, and tetrachloroethane.

  14. Quantum absorption refrigerator.

    PubMed

    Levy, Amikam; Kosloff, Ronnie

    2012-02-17

    A quantum absorption refrigerator driven by noise is studied with the purpose of determining the limitations of cooling to absolute zero. The model consists of a working medium coupled simultaneously to hot, cold, and noise baths. Explicit expressions for the cooling power are obtained for Gaussian and Poisson white noise. The quantum model is consistent with the first and second laws of thermodynamics. The third law is quantified; the cooling power J(c) vanishes as J(c) ∝ T(c)(α), when T(c)→0, where α=d+1 for dissipation by emission and absorption of quanta described by a linear coupling to a thermal bosonic field, where d is the dimension of the bath.

  15. Refrigeration Showcases

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Through the Technology Affiliates Program at the Jet Propulsion Laboratory (JPL), valuable modifications were made to refrigerator displays built by Displaymor Manufacturing Company, Inc. By working with JPL, Displaymor could address stiffer requirements that ensure the freshness of foods. The application of the space technology meant that the small business would be able to continue to market its cases without incurring expenses that could threaten the viability of the business, and the future of several dozen jobs. Research and development improvements in air flow distribution and refrigeration coil technology contributed greatly to certifying Displaymor's showcases given the new federal regulations. These modifications resulted in a refrigerator case that will keep foods cooler, longer. Such changes maintained the openness of the display, critical to customer visibility and accessibility, impulse buying, and cross-merchandising.

  16. A recuperative superfluid stirling refrigerator

    SciTech Connect

    Brisson, J.G.; Swift, G.W.

    1993-07-01

    A superfluid Stirling refrigerator has been built with a counterflow heat exchanger serving as a recuperative regenerator. It has achieved temperatures of 296 mK with a 4% {sup 3}He-{sup 4}He mixture. Cooling power versus temperature and speed is presented for a 6.6% mixture.

  17. A rocket-borne He-3 refrigerator

    NASA Astrophysics Data System (ADS)

    Duband, L.; Alsop, D.; Lange, A.; Kittel, P.

    A self-contained, recyclable He-3 refrigerator suitable for use in space has been developed. The refrigerator is compact, has no moving parts, and requires only electrical connections and thermal contact in order to operate from a 2 K cold stage. A charcoal adsorption pump is used to efficiently condense and cool the He-3. Sintered copper confines the He-3 to the evaporator in zero-gravity and, in fact, allows the refrigerator to operate upside-down in the laboratory. Mounted on a 2 K cold stage, the refrigerator provides 100 microwatts of cooling power at 346 mK, with a 7 hour hold time. On a 1.5 K cold stage, the lowest temperature achieved is 277 mK. The refrigerator has been vibration tested at 7.5 G amplitude from 30 to 400 Hz and 15 G amplitude from 400 to 2000 Hz.

  18. A rocket-borne He-3 refrigerator

    NASA Technical Reports Server (NTRS)

    Duband, L.; Alsop, D.; Lange, A.; Kittel, P.

    1990-01-01

    A self-contained, recyclable He-3 refrigerator suitable for use in space has been developed. The refrigerator is compact, has no moving parts, and requires only electrical connections and thermal contact in order to operate from a 2 K cold stage. A charcoal adsorption pump is used to efficiently condense and cool the He-3. Sintered copper confines the He-3 to the evaporator in zero-gravity and, in fact, allows the refrigerator to operate upside-down in the laboratory. Mounted on a 2 K cold stage, the refrigerator provides 100 microwatts of cooling power at 346 mK, with a 7 hour hold time. On a 1.5 K cold stage, the lowest temperature achieved is 277 mK. The refrigerator has been vibration tested at 7.5 G amplitude from 30 to 400 Hz and 15 G amplitude from 400 to 2000 Hz.

  19. A Ross-Stirling spacecraft refrigerator

    NASA Astrophysics Data System (ADS)

    Walker, G.; Scott, M.; Zylstra, S.

    A spacecraft refrigerator was investigated capable of providing cooling for storage of food and biological samples in the temperature range 0-20 F with cooling capacity in the range of 1 to 2 kW, operating for long periods with great reliability. The system operated on the Stirling refrigeration cycle using the spacecraft life-support gases as the working fluid. A prototype spacecraft Stirling refrigerator was designed, built, and tested with air as the working fluid. The system performance was satisfactory, meeting the requirements specified above. Potential applications for the prototype unit are mentioned.

  20. Combination cooler and freezer for refrigerating containers and food in outer space

    SciTech Connect

    Rudick, A.G.

    1988-04-19

    A refrigeration apparatus for cooling containers and food in the microgravity conditions of outer space is described comprising: (a) a housing defining a refrigeration compartment for supporting the containers in a container storage area and food in a refrigerated food storage area, and freezer compartment; (b) cold plate means within the refrigeration compartment for cooling the containers and food by conduction; (c) thermoelectric refrigeration means for maintaining the cold plates at temperatures which cool the contents of the refrigeration compartment, and the freezer compartment.

  1. Refrigeration Servicing.

    ERIC Educational Resources Information Center

    Hamilton, Donald L.; And Others

    This self-study course is designed to familiarize Marine enlisted personnel with the services required to be performed on refrigeration equipment. The course contains four study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work…

  2. Enclosure for thermoelectric refrigerator and method

    NASA Technical Reports Server (NTRS)

    Park, Brian V. (Inventor); McGrath, Ralph D. (Inventor)

    1997-01-01

    An enclosed structure is provided for use with a refrigerator having a door assembly. The enclosed structure preferably contains superinsulation materials and a plurality of matching drawers. The enclosed structure preferably includes corner joints which minimize thermal energy transfer between adjacent superinsulation panels. The refrigerator may include a cooling system having a thermoelectric device for maintaining the temperature within the refrigerator at selected values. If desired, a fluid cooling system and an active gasket may also be provided between the door assembly and the enclosed structure. The fluid cooling system preferably includes a second thermoelectric device to maintain the temperature of fluid flowing through the active gasket at a selected value. The drawers associated with the refrigerator may be used for gathering, processing, shipping and storing food or other perishable items.

  3. Modeling and testing of fractionation effects with refrigerant blends in an actual residential heat pump system

    SciTech Connect

    Biancardi, F.R.; Pandy, D.R.; Sienel, T.H.; Michels, H.H.

    1997-12-31

    The heating, ventilating, and air-conditioning (HVAC) industry is actively evaluating and testing hydrofluorocarbon (HFC) refrigerant blends as a means of complying with current and impending national and international environmental regulations restricting the use and disposal of conventional chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigerants that contribute to the global ozone-depletion effects. While analyses and system performance tools have shown that HFC refrigerant blends offer certain performance, capacity, and operational advantages, there are significant possible service and operational issues that are raised by the use of blends. Many of these issues occur due to the fractionation of the blends. Therefore, the objective of this program was to conduct analyses and experimental tests aimed at understanding these issues, develop approaches or techniques to predict these effects, and convey to the industry safe and reliable approaches. As a result, analytical models verified by laboratory data have been developed that predict the fractionation effects of HFC refrigerant blends (1) when exposed to selected POE lubricants, (2) during the system charging process from large liquid containers, and (3) during system start-up, operation, and shutdown within various system components (where two-phase refrigerant exists) and during selected system and component leakage scenarios. Model predictions and experimental results are presented for HFC refrigerant blends containing R-32, R-134a, and R-125 and the data are generalized for various operating conditions and scenarios.

  4. Greenhouse gas emissions for refrigerant choices in room air conditioner units.

    PubMed

    Galka, Michael D; Lownsbury, James M; Blowers, Paul

    2012-12-04

    In this work, potential replacement refrigerants for window-mounted room air conditioners (RACs) in the U.S. have been evaluated using a greenhouse gas (GHG) emissions analysis. CO(2)-equivalent emissions for several hydrofluoroethers (HFEs) and other potential replacements were compared to the most widely used refrigerants today. Included in this comparison are pure refrigerants that make up a number of hydrofluorocarbon (HFC) mixtures, pure hydrocarbons, and historically used refrigerants such as propane and ammonia. GHG emissions from direct and indirect sources were considered in this thermodynamic analysis. Propylene, dimethyl ether, ammonia, R-152a, propane, and HFE-152a all performed effectively in a 1 ton window unit and produced slightly lower emissions than the currently used R-22 and R-134a. The results suggest that regulation of HFCs in this application would have some effect on reducing emissions since end-of-life emissions remain at 55% of total refrigerant charge despite EPA regulations that mandate 80% recovery. Even so, offsite emissions due to energy generation dominate over direct GHG emissions and all the refrigerants perform similarly in totals of indirect GHG emissions.

  5. Wheel-type magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1983-10-11

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load. 7 figs.

  6. Wheel-type magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1982-01-20

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  7. Wheel-type magnetic refrigerator

    DOEpatents

    Barclay, John A.

    1983-01-01

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  8. Investigation on Nano Refrigeration

    NASA Astrophysics Data System (ADS)

    Senthil kumar, G.; Saravanan, K.; Ajay Kumar, K.

    2017-05-01

    Boiling heat transfer is imperative in the refrigeration and air conditioning systems. R22 is the mostly widely used alternative refrigerant in refrigeration equipment such as domestic refrigerators and air conditioners. Though the global warming up potential of R22is relatively high, it is affirmed that it is a long alternative refrigerant in lots of countries. By addition of nano particles to the refrigerant results in improvements in the thermo-physical properties and heat transfer characteristics of the refrigerant, thereby improving the performance of the refrigeration system. The results indicate that cuo nano refrigerant works normally and safely in the refrigeration system. The results indicate that heat transfer coefficient increases with the usage of nanocuo. Thus using cuo nano refrigerant in refrigeration system is found to be feasible. Objective of this project is to study the pre and post effects of addition of NRs in refrigeration and to predict COP and power consumption reduction.

  9. Mixed refrigerant Joule-Thomson sorption cryocoolers

    NASA Astrophysics Data System (ADS)

    Tzabar, Nir; Grossman, Gershon

    2014-01-01

    Joule-Thomson (JT) sorption cryocooling is the most mature technology for cooling from a normal Room-Temperature (RT) down to temperatures below 100 K in the absence of moving parts. Therefore, high reliability and no vibrations are attainable, in comparison with other cryocoolers. Cooling to 80 - 100 K with JT cryocoolers is often implemented with pure nitrogen. Alternatively, mixed refrigerants have been suggested for reducing the operating pressures to enable closed cycle cryocooling. There is a variety of publications describing nitrogen sorption cryocoolers with different configurations of sorption compressors. In the present research we suggest a novel sorption JT cryocooler that operates with a mixed refrigerant. Merging of sorption cryocooling and a mixed refrigerant enables the use of a simple, single stage compressor for cooling to 80 - 100 K, lower operating temperatures of the sorption cycle, and thus - reduced power consumption. In previous studies we have analyzed sorption compressors for mixed gases and mixed refrigerants for JT cryocoolers, separately. In this paper the option of mixed refrigerant sorption JT cryocoolers is explored. The considerations for developing mixed refrigerants to be driven by sorption compressors and to be utilized with JT cryocoolers are provided. It appears that, unlike with pure nitrogen, mixed refrigerants can be suitable for JT cryocooling with a single stage sorption compressor.

  10. Magnetic Refrigeration Development

    NASA Technical Reports Server (NTRS)

    Deardoff, D. D.; Johnson, D. L.

    1984-01-01

    Magnetic refrigeration is being developed to determine whether it may be used as an alternative to the Joule-Thomson circuit of a closed cycle refrigerator for providing 4 K refrigeration. An engineering model 4-15 K magnetic refrigerator has been designed and is being fabricated. This article describes the overall design of the magnetic refrigerator.

  11. Sub-room Temperature Magnetic Refrigerator

    NASA Astrophysics Data System (ADS)

    Zimm, Carl

    1998-03-01

    Magnetic refrigeration has been predicted to be an efficient cooling technology because of the highly reversible nature of the magnetocaloric effect for some materials. However, cooling power and efficiency of past devices has been limited because of the difficulties in exchanging heat with the solid magnetic refrigerant. Astronautics in a joint project with Ames DOE Laboratory has constructed a regenerative magnetic refrigerator that provides cooling near room temperature using gadolinium as a refrigerant and water as a heat transfer fluid. Using a superconducting magnet at 5 T, cooling of 500 watts was obtained at coefficients of performance of 5 or more watts of cooling per watt of work input. Cooling of 150 watts was obtained using a 1.5 T field, which can be obtained from permanent magnet sources. The main losses in the present device are magnet AC losses and seal friction, although limits on temperature span may also be imposed by magnetic material properties. We have identified design, magnet, and magnetic material improvements that should reduce such losses, allowing the construction of devices whose efficiency well exceeds that obtainable from conventional technology. The fluid used in such magnetic refrigerators presents no toxicity, ozone depletion or global warming hazard. This talk will include test results and projections of the capabilities and limitations of the technology.

  12. Measurements with a recuperative superfluid Stirling refrigerator

    SciTech Connect

    Watanabe, A.; Swift, G.W.; Brisson, J.G.

    1995-08-01

    A superfluid Stirling refrigerator cooled to 168 mK using a 4.9% {sup 3}He- {sup 4}He mixture and exhausting its waste heat at 383 mK. Cooling power versus temperature and speed is presented for 4.9%, 17%, and 36% mixtures. At the highest concentration, a dissipation mechanism of unknown origin is observed.

  13. Development of a prototype optical refrigerator

    SciTech Connect

    Epstein, R.I.; Edwards, B.C.; Sigel, G.H.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have carried out a range of tasks directed toward the construction and testing of a proof-of-principle optical refrigerator prototype. They procured and tested new cooling elements that are at the heart of an optical refrigerator. The cooling element absorbs pump radiation and then fluoresces with nearly unity quantum efficiency. They constructed and tested a cooling chamber with low thermal emissivity walls that reduces the parasitic heating.

  14. Methods development for measuring and classifying flammability/combustibility of refrigerants. Final report

    SciTech Connect

    Heinonen, E.W.; Tapscott, R.E.; Crawford, F.R.

    1994-12-01

    Because of concerns for the effect that chlorofluorocarbon (CFC) fluids currently in use as refrigerants have on the environment, the refrigeration industry is considering the use of natural refrigerants, many of which are potentially flammable. In some cases, these flammable fluids may result in the least environmental damage when considering ozone depletion, global warming, efficiency, and photochemical reactivity. Many potentially flammable fluids have been proven to be effective when used either by themselves or as a part of a binary or ternary mixture. However, despite favorable initial test results, these fluids may not be acceptable to the general public if questions of safety cannot be adequately addressed. Significant research is being conducted to investigate the flammability of these materials. The purpose of this project is to experimentally determine the impact and variability of eleven different parameters which may affect flammability and/or combustibility of refrigerants and refrigerant blends, as a function of composition and test conditions, and to develop a better understanding of methods and conditions to measure the flammability of refrigerants. The refrigerants used in this study are being considered as new refrigerants and reviewed published data on these materials is scarce. The data contained herein should not be considered complete and should be used only to make relative comparisons of the impacts of the test parameters, not to represent the flammability characteristics of the materials. This report documents Task 3 of the test program. During Task 1, technical literature was thoroughly reviewed and a database of available documents was constructed. During Task 2, the test plan for this task was written. The goals of Task 3 are to investigate the flammability characteristics of selected blends of refrigerants R32, R134a, and R125 using an existing explosion sphere and a newly-constructed ASTM E681 apparatus.

  15. Superconducting tunnel-junction refrigerator

    NASA Astrophysics Data System (ADS)

    Melton, Robert G.; Paterson, James L.; Kaplan, S. B.

    1980-03-01

    The dc current through an S1-S2 tunnel junction, with Δ2 greater than Δ1, when biased with eV<Δ1+Δ2, will lower the energy in S1. This energy reduction will be shared by the phonons and electrons. This device is shown to be analogous to a thermoelectric refrigerator with an effective Peltier coefficient π*~Δ1e. Tunneling calculations yield the cooling power Pc, the electrical power Pe supplied by the bias supply, and the cooling efficiency η=PcPe. The maximum cooling power is obtained for eV=+/-(Δ2-Δ1) and t1=T1Tc1~0.9. Estimates are made of the temperature difference T2-T1 achievable in Al-Pb and Sn-Pb junctions with an Al2O3 tunneling barrier. The performance of this device is shown to yield a maximum cooling efficiency η~=Δ1(Δ2-Δ1) which can be compared with that available in an ideal Carnot refrigerator of η=T1(T2-T1). The development of a useful tunnel-junction refrigerator requires a tunneling barrier with an effective thermal conductance per unit area several orders of magnitude less than that provided by the Al2O3 barrier in the Al-Pb and Sn-Pb systems.

  16. Magnetic-Flux-Compression Cooling Using Superconductors

    NASA Technical Reports Server (NTRS)

    Strayer, Donald M.; Israelsson, Ulf E.; Elleman, Daniel D.

    1989-01-01

    Proposed magnetic-flux-compression refrigeration system produces final-stage temperatures below 4.2 K. More efficient than mechanical and sorption refrigerators at temperatures in this range. Weighs less than comparable liquid-helium-cooled superconducting magnetic refrigeration systems operating below 4.2 K. Magnetic-flux-compression cooling stage combines advantages of newly discovered superconductors with those of cooling by magnetization and demagnetization of paramagnetic salts.

  17. Counterflow absorber for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.

  18. Managing Refrigerant Emissions

    EPA Pesticide Factsheets

    Access information on EPA's efforts to address ozone layer depletion by reducing emissions of refrigerants from stationary refrigeration and air conditioning systems and motor vehicle air conditioning systems.

  19. Cycle design for the ISABELLE helium refrigerator

    SciTech Connect

    Brown, D.P.; Schlafke, A.P.; Wu, K.C.; Moore, R.W.

    1981-01-01

    The superconducting magnets for the ISABELLE storage ring/accelerator are designed to be operated at 3.8/sup 0/K using a forced-flow supercritical helium cooling system. The ISABELLE refrigerator has been designed subject to these special requirements. The design output is 13.65 KW of refrigeration below 4.2/sup 0/K (for cooling the magnet and distribution system), 55 KW at 55/sup 0/K (to cool heat shields for the whole system) and 100 g/s of liquefaction (for magnet power leads cooling). The system incorporates a subcooler section that produces liquid helium at 5.3 atm and 2.6 K and circulates it through the loads, and a Claude-type main refrigerator section. The main refrigerator section has five stages of cooling, with four of them below liquid nitrogen temperature. Liquid nitrogen precooling is not used. With 60% isothermal compressors the efficiency of the refrigerator system will be about 26% of Carnot.

  20. ARTI Refrigerant Database. [Quarterly progress report, 1 July 1993--30 September 1993

    SciTech Connect

    Calm, J.M.

    1993-11-28

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R134a, R-141b, R-142b, R-143a, R-152a, R-227ea, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyol ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  1. Miscibility of lubricants with refrigerants. Quarterly report, 1 April 1992--30 June 1992

    SciTech Connect

    Pate, M.B.; Zoz, S.C.; Berkenbosch, L.J.

    1992-07-01

    Miscibility data is being obtained for a variety of non-CFC refrigerants and their potential lubricants. Ten different refrigerants and seven different lubricants are being investigated. Experiments are being performed in two phases: Phase I focuses on performing screening tests and Phase II consists of developing miscibility plots. The miscibility tests are being performed in a test facility consisting of a series of miniature test cells submerged in a constant temperature bath. The bath temperature can be precisely controlled over a temperature range of -50{degrees}C to 100{degrees}C. The test cells are constructed to allow for complete visibility of lubricant-refrigerant mixtures under all test conditions. Early in this reporting period, new procedures for charging the lubricant and refrigerant into the cells for testing were adopted. All of the refrigerants and all but one of the lubricants have been received from the manufacturers. Data obtained to date includes that for R-134a, R142b, R-32, R-134, R-125, and R-143a with four lubricants, namely, two esters and two polypropylene glycols.

  2. Carbon Dioxide and Ionic Liquid Refrigerants: Compact, Efficient Air Conditioning with Ionic Liquid-Based Refrigerants

    SciTech Connect

    2010-10-01

    BEETIT Project: Notre Dame is developing an air-conditioning system with a new ionic liquid and CO2 as the working fluid. Synthetic refrigerants used in air conditioning and refrigeration systems are potent GHGs and can trap 1,000 times more heat in the atmosphere than CO2 alone—making CO2 an attractive alternative for synthetic refrigerants in cooling systems. However, operating cooling systems with pure CO2 requires prohibitively high pressures and expensive hardware. Notre Dame is creating a new fluid made of CO2 and ionic liquid that enables the use of CO2 at low pressures and requires minimal changes to existing hardware and production lines. This new fluid also produces no harmful emissions and can improve the efficiency of air conditioning systems— enabling new use of CO2 as a refrigerant in cooling systems.

  3. Mathematical analysis of a Vuilleumier refrigerator.

    NASA Technical Reports Server (NTRS)

    Sherman, A.

    1971-01-01

    A comprehensive analysis of the Vuilleumier refrigerator was conducted. This analysis includes the effects of nonisothermal gas heat addition and rejection, hot and cold regenerator inefficiencies, conduction losses, and gas leakage losses. A computer program was written which solves the equations resulting from the analysis. The program calculates internal pressures, temperatures, and gas flow rates as functions of refrigerator crank angle, as well as overall refrigerator cooling load and power input. Comparisons between the program results and available data show good agreement, with a marked improvement over the predictions of the ideal model.

  4. Data center cooling system

    DOEpatents

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  5. Optimal performance of a thermoelectric refrigerator

    SciTech Connect

    Goektun, S.

    1996-07-01

    By employing an externally and internally irreversible Carnot-like reversed heat engine model, the coefficient of performance and maximum cooling rate have been determined for a thermoelectric refrigerator. The irreversibilities can be characterized by a single parameter called the device-design parameter. The coefficient of performance and the cooling rate increase with an increase of the device-design parameter, which appears in the equations for maximum cooling rate and coefficient of performance.

  6. Optimal refrigerator.

    PubMed

    Allahverdyan, Armen E; Hovhannisyan, Karen; Mahler, Guenter

    2010-05-01

    We study a refrigerator model which consists of two n -level systems interacting via a pulsed external field. Each system couples to its own thermal bath at temperatures T h and T c, respectively (θ ≡ T c/T h < 1). The refrigerator functions in two steps: thermally isolated interaction between the systems driven by the external field and isothermal relaxation back to equilibrium. There is a complementarity between the power of heat transfer from the cold bath and the efficiency: the latter nullifies when the former is maximized and vice versa. A reasonable compromise is achieved by optimizing the product of the heat-power and efficiency over the Hamiltonian of the two systems. The efficiency is then found to be bounded from below by [formula: see text] (an analog of the Curzon-Ahlborn efficiency), besides being bound from above by the Carnot efficiency [formula: see text]. The lower bound is reached in the equilibrium limit θ → 1. The Carnot bound is reached (for a finite power and a finite amount of heat transferred per cycle) for ln n > 1. If the above maximization is constrained by assuming homogeneous energy spectra for both systems, the efficiency is bounded from above by ζ CA and converges to it for n > 1.

  7. Optimal refrigerator

    NASA Astrophysics Data System (ADS)

    Allahverdyan, Armen E.; Hovhannisyan, Karen; Mahler, Guenter

    2010-05-01

    We study a refrigerator model which consists of two n -level systems interacting via a pulsed external field. Each system couples to its own thermal bath at temperatures Th and Tc , respectively (θ≡Tc/Th<1) . The refrigerator functions in two steps: thermally isolated interaction between the systems driven by the external field and isothermal relaxation back to equilibrium. There is a complementarity between the power of heat transfer from the cold bath and the efficiency: the latter nullifies when the former is maximized and vice versa. A reasonable compromise is achieved by optimizing the product of the heat-power and efficiency over the Hamiltonian of the two systems. The efficiency is then found to be bounded from below by ζCA=(1)/(1-θ)-1 (an analog of the Curzon-Ahlborn efficiency), besides being bound from above by the Carnot efficiency ζC=(1)/(1-θ)-1 . The lower bound is reached in the equilibrium limit θ→1 . The Carnot bound is reached (for a finite power and a finite amount of heat transferred per cycle) for lnn≫1 . If the above maximization is constrained by assuming homogeneous energy spectra for both systems, the efficiency is bounded from above by ζCA and converges to it for n≫1 .

  8. Refrigeration Compressors for the Altitude Wind Tunnel

    NASA Image and Video Library

    1944-09-21

    These compressors inside the Refrigeration Building at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory were used to generate cold temperatures in the Altitude Wind Tunnel (AWT) and Icing Research Tunnel. The AWT was a large facility that simulated actual flight conditions at high altitudes. The two primary aspects of altitude simulation are the reduction of the air pressure and the decrease of temperature. The Icing Research Tunnel was a smaller facility in which water droplets were added to the refrigerated air stream to simulate weather conditions that produced ice buildup on aircraft. The military pressured the NACA to complete the tunnels quickly so they could be of use during World War II. The NACA engineers struggled with the design of this refrigeration system, so Willis Carrier, whose Carrier Corporation had pioneered modern refrigeration, took on the project. The Carrier engineers devised the largest cooling system of its kind in the world. The system could lower the tunnels’ air temperature to –47⁰ F. The cooling system was powered by 14 Carrier and York compressors, seen in this photograph, which were housed in the Refrigeration Building between the two wind tunnels. The compressors converted the Freon 12 refrigerant into a liquid. The refrigerant was then pumped into zig-zag banks of cooling coils inside the tunnels’ return leg. The Freon absorbed heat from the airflow as it passed through the coils. The heat was transferred to the cooling water and sent to the cooling tower where it was dissipated into the atmosphere.

  9. Subterranean heat exchanger for refrigeration air conditioning equipment

    SciTech Connect

    Rothwell, H.

    1980-09-30

    Heat exchanger apparatus for use with refrigeration cycle heating and cooling equipment is disclosed. In the preferred embodiment, it cooperates with and modifies refrigeration equipment including a compressor, an expansion valve, an evaporator coil and a closed loop for cycling refrigerant. This apparatus is a sealed container adapted to be placed in a well extending into artesian (Relatively heated or chilled) formations whereby the water of the formation stabilizes the temperature around the unit and enables heating and cooling. The sealed unit receives refrigerant from the top which flows along the sidewall at a reduced temperature, thereby condensing on the sidewall and trickling down the sidewall to collect in a sump at the bottom where the compressor pump picks up condensed refrigerant as a liquid and pumps it out of the artesian well to the connected refrigeration equipment.

  10. Method of reducing chlorofluorocarbon refrigerant emissons to the atmosphere

    DOEpatents

    DeVault, Robert C.; Fairchild, Phillip D.; Biermann, Wendell J.

    1990-01-01

    A method is disclosed for reducing chloroflurocarbon (CFC) refrigerant emissions during removal or transfer or refrigerants from a vapor compression cooling system or heat pump which comprises contacting the refrigerant with a suitable sorbent material. The sorbent material allows for the storage and retention or the chlorofluorocarbon in non-gaseous form so that it does not tend to escape to the atmosphere where it would cause harm by contributing to ozone depletion. In other aspects of the invention, contacting of CFC refrigerants with sorbent material allows for purification and recycling of used refrigerant, and a device containing stored sorbent material can be employed in the detection of refrigerant leakage in a cooling system or heat pump.

  11. REACH. Refrigeration Units.

    ERIC Educational Resources Information Center

    Snow, Rufus; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of refrigeration. The instructional units focus on refrigeration fundamentals, tubing and pipe, refrigerants, troubleshooting, window air conditioning, and…

  12. Gas chromatographic measurements of activity coefficients at infinite dilution for refrigerants with a polyol ester oil as a stationary phase

    SciTech Connect

    Stryjek, R.; Bobbo, S.; Camporese, R.; Zilio, C.

    1999-05-01

    Activity coefficients at infinite dilution have been measured by gas chromatography for 14 refrigerants (R12, R22, R32, R124, R125, R134a, R142b, R143a, RE170, R236ea, R290, R600, R600a, and R236fa) as solutes, using a polyol ester oil (POE), EMKARATE by ICI, as a stationary phase (solvent). Instrumental analysis (NMR, IR) showed that the main components of the oil are pentaerithritol esters of carboxylic acids, and electrospray ionization spectrometry revealed an average molecular mass of the POE of 618 g/mol. The measurements were performed within a temperature range of 244 K to 313 K, but a specific temperature range for each refrigerant was adopted depending on its retention data. The experimental findings are well-represented by the equation: ln {gamma}{sub i}{sup {infinity}} = a{sub i} {minus} b{sub i}/T. Some refrigerants, i.e., R22, R124, R125, R236ea, and R236fa, show quite a considerable positive temperature dependence of their activity coefficients at infinite dilution, which can be attributed to hydrogen bonding with the POE, unlike other refrigerants that show a small, either positive or negative temperature dependence. To the authors` knowledge, there are no data in the literature on activity coefficients at infinite dilution for refrigerant and oil (lubricant) systems, and details on the solubility of refrigerants in oils are also extremely scarce.

  13. Compact refrigerant reclaim apparatus

    SciTech Connect

    Van Steenburgh, L.R. Jr.

    1991-09-24

    This patent describes an apparatus for reclaiming refrigerant. It comprises in combination, means for removing gaseous or liquid refrigerant from a container, vaporizing means for vaporizing all of the liquid refrigerant, an oil separator chamber for separating oil from the gaseous refrigerant, a compressor for receiving and compressing the gaseous refrigerant from the oil separator chamber, oil accumulator means for receiving and removing oil mist from the gaseous refrigerant before it enters the compressor, and condensor means for receiving and condensing the gaseous refrigerant from the container, wherein the oil accumulator means is located within the oil separator chamber.

  14. SBIR Grant:No-Vibration Agile Cryogenic Optical Refrigerator

    SciTech Connect

    Epstein, Richard

    2013-04-09

    Optical refrigeration is currently the only all-solid-state cryocooling technology that has been demonstrated. Optical cryocoolers are devices that use laser light to cool small crystal or glass cooling elements. The cooling element absorbs the laser light and reradiates it at higher energy, an example of anti-Stokes fluorescence. The dif-ference between the energy of the outgoing and incoming light comes from the thermal energy of the cooling element, which in turn becomes colder. Entitled No-Vibration Agile Cryocoolers using Optical Refrigeration, this Phase I proposal directly addressed the continued development of the optical refrigerator components necessary to transition this scientific breakthrough into National Nu-clear Security Administration (NNSA) sensor applications in line with the objectives of topic 50b. ThermoDynamic Films LLC (TDF), in collaboration with the University of New Mexico (UNM), cooled an optical-refrigerator cooling element comprised of an ytterbium-doped yttrium lithium fluoride (Yb:YLF) crystal from room tempera-ture to 123 K with about 2% efficiency. This is the world record in optical refrigera-tion and an important step toward revolutionizing cryogenic systems for sensor ap-plications. During this period, they also designed and analyzed the crucial elements of a prototype optical refrigerator including the thermal link that connects the cool-ing element with the load.

  15. Laboratory evaluation of skin refrigerants used in dermabrasion

    SciTech Connect

    Hanke, C.W.; O'Brian, J.J.; Solow, E.B.

    1985-01-01

    Six skin refrigerants were evaluated for maximum cooling temperature. The temperatures produced correlated well with the chemical components and also the gelatin freeze-thaw times. Freon 114 and Freon 114-ethyl chloride mixtures are time-tested, safe skin refrigerants. Some of the newer skin refrigerants are pure sources of Freon 12 or mixtures of Freon 12 and Freon 11. These newer, colder products have the potential to damage the skin and represent a hazard to successful dermabrasion.

  16. Current thermophysical properties research on refrigerant mixtures in Japan

    NASA Astrophysics Data System (ADS)

    Watanabe, K.

    1990-03-01

    This paper reviews the thermophysical properties of nonazeotropic refrigerant blends (NARBs), which are prospective working fluids, especially for advanced heat pump systems as well as for other industrial applications such as ultra-lowtemperature freezers for medical use, domestic air-conditioners, etc. After a brief introduction on the thermodynamic behavior of NARBs, the current state of thermophysical-properties research for NARBs, which are possible candidates for CFC alternatives, is reviewed. The thermophysical properties discussed in this paper include not only thermodynamic properties such as PVTx properties, vapor-liquid equilibria, critical parameters, etc., but also transport properties such as viscosity and thermal conductivity. Emphasis is placed on the most recent results resulting from an extensive research project partially supported by the Japanese Association of Refrigeration (JAR) on the occasion of its 60th foundation anniversary, celebrated in 1985. In view of the urgent demand to accumulate information on various thermophysical properties of CFC alternatives including R134a and R123, some of our current activities in Japan are presented. A task force to provide a set of reliable thermophysical properties for engineering use of CFC alternatives has been organized with partial support from the Ministry of International Trade and Industry, Japan.

  17. Apparatus of the Vapor-pressure Measurements for Natural Refrigerants

    NASA Astrophysics Data System (ADS)

    Higuchi, Satoru; Higashi, Yukihiro

    An apparatus for measuring the vapor-pressures was newly designed and constructed in order to make the basic thermodynamic properties for environmentally acceptable refrigerants clear. The temperature of sample fluid was measured with 100Ω platinum resistance thermometer calibrated against ITS-90 using a 25Ω standard platinum resistance thermometer. With respect to the pressure measurement, two kinds of presure transducer were adopted. One is a diaphragm semi-conductor strain pressure transducer with the uncertainty of ±0.09%. This pressure transducer was calibrated against quartz crystal pressure transducer with the uncertainty of ±0.01% after every series of experiments. Another is a quartz crystal pressure transducer with the uncertainty of ±0.01%. A quartz crystal pressure transducer was calibrated against the dead weight pressure gauge and barometer. The vapor-pressures for R-32, R-134a, R-290 (propane), R-600a (iso-butane) and n-pentane were measured in the temperature range between273.15 and 323.15K. As the results of vapor-pressure measurements, the reliability of the experimental apparatus as well as the reproducibility of the experimental data were confirmed. In addition, coefficients of Antoine vapor pressure equation were determined from the experimental data. Normal boiling points for environmentally acceptable refrigerants were also determined with high accuracy.

  18. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    SciTech Connect

    Baxter, VAN

    2003-05-19

    With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case has its own

  19. Cooling system having dual suction port compressor

    DOEpatents

    Wu, Guolian

    2017-08-29

    A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portion of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.

  20. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1996-11-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  1. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1996-01-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. it consolidates and facilitates.access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  2. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1999-01-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilities access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  3. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1996-07-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  4. Data center cooling method

    DOEpatents

    Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun

    2015-08-11

    A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.

  5. Engineering analysis of the use of compression refrigerants in the thin polymer icemaker. Revision 2/96

    SciTech Connect

    Leigh, R.W.; Andrews, J.W.

    1996-02-01

    Preliminary designs for systems which satisfy code requirements using R-134a and R-C318 as refrigerants are developed. Standard thermodynamic and heat transfer analysis were used to determine expected performance for the systems. The R-C318 has a somewhat peculiar vapor/liquid equilibrium curve, and a novel heat exchanger was introduced to optimize performance of this refrigerant. These performance assessments with component and assembly cost estimates were combined to prepare life-cycle costs for the two new systems. Compared to commercially available systems, these ``polymer evaporator`` systems seem to be completely feasible technically and if successfully demonstrated, they should have substantial economic advantages over existing ice-making devices.

  6. Sealed tube comparisons of the compatibility of desiccants with refrigerants and lubricants

    NASA Astrophysics Data System (ADS)

    Field, J. E.

    Continuing environmental concerns mandate replacement of CFC's with alternate refrigeration fluids. At this time relatively little testing has been reported in the literature for compatibility of desiccants in these new working fluids. Work has begun, and some results are reported, on a project that will determine the compatibility of virtually all of the currently used desiccant types--both bead and molded core--with thirteen refrigerant/lubricant combinations. The desiccants are tested by exposure to refrigerant and lubricant in sealed, glass tubes in accordance with ASHRAE/ANSI Standard 97-1989. After aging the lubricants are evaluated for change in color and acid formation. The refrigerants are analyzed for charges by gas chromatography and halide ion formation using ion chromatography. The desiccants are evaluated for changes in crush strength and for retention of acids and halide ions. Metal catalysts, also present in the sealed tubes, are visually examined for corrosion, copper plating, and appearance change. Results are reported for 4 A and 3 A molecular sieve desiccants aged in R-12, R-134a, and R-32.

  7. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    SciTech Connect

    Not Available

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  8. Stirling-type pulse tube refrigerator with slit-type heat exchangers for HTS superconducting motor

    NASA Astrophysics Data System (ADS)

    Ki, Taekyung; Jeong, Sangkwon

    2011-06-01

    A cryogenic refrigeration system is one of the indispensable components for cooling superconducting motor or generator. Among various configurations of cryogenic refrigeration system, the on-board refrigeration system is considered to be attractive for compactness and small heat leak. In order to turn this concept into reality, we focus on two essential points; development of the specific structure for on-board refrigeration and optimal design of the refrigerator. Since the on-board refrigeration system should not create unbalanced vibration, the inline Stirling-type pulse tube refrigerator is considered as a good candidate and more concrete and efficient structure is developed under the design constraints. The dynamic absorber is used to maintain the dynamic stability of the single acting linear compressor. To increase thermal Carnot efficiency with the on-board Stirling-type pulse tube refrigerator, slit-type heat exchangers are implemented and flow straighteners are carefully designed by the three-dimensional CFD simulation. The overall configuration of the Stirling-type pulse tube refrigerator is designed and fabricated by the optimal process. The present on-board refrigerator has the cooling capacity of 7 W at 59.5 K with the Carnot efficiency of 10.9%. According to these experimental results, the pulse tube refrigerator as the on-board refrigeration system possesses a sufficient thermal efficiency despite the restricted design configuration. The on-board refrigeration is considered as a useful method for cooling HTS superconducting motor.

  9. Synchronous temperature rate control for refrigeration with reduced energy consumption

    DOEpatents

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  10. Exergetic sustainability evaluation of irreversible Carnot refrigerator

    NASA Astrophysics Data System (ADS)

    Açıkkalp, Emin

    2015-10-01

    Purpose of this paper is to assess irreversible refrigeration cycle by using exergetic sustainability index. In literature, there is no application of exergetic sustainability index for the refrigerators and, indeed, this index has not been derived for refrigerators. In this study, exergetic sustainability indicator is presented for the refrigeration cycle and its relationships with other thermodynamics parameters including COP, exergy efficiency, cooling load, exergy destruction, ecological function and work input are investigated. Calculations are conducted for endoreversible and reversible cycles and then results obtained from the ecological function are compared. It is found that exergy efficiency, exergetic sustainable index reduce 47.595% and 59.689% and rising at the COP is 99.888% is obtained for endoreversible cycle. Similarly, exergy efficiency and exergetic sustainability index reduce 90.163% and 93.711% and rising of the COP is equal to 99.362%.

  11. Shuttle Kit Freezer Refrigeration Unit Conceptual Design

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.

    1975-01-01

    The refrigerated food/medical sample storage compartment as a kit to the space shuttle orbiter is examined. To maintain the -10 F in the freezer kit, an active refrigeration unit is required, and an air cooled Stirling Cycle refrigerator was selected. The freezer kit contains two subsystems, the refrigeration unit, and the storage volume. The freezer must provide two basic capabilities in one unit. One requirement is to store 215 lbs of food which is consumed in a 30-day period by 7 people. The other requirement is to store 128.3 lbs of medical samples consisting of both urine and feces. The unit can be mounted on the lower deck of the shuttle cabin, and will occupy four standard payload module compartments on the forward bulkhead. The freezer contains four storage compartments.

  12. REFRIGERATION ESPECIALLY FOR VERY LOW TEMPERATURES

    DOEpatents

    Kennedy, P.B.; Smith, H.R. Jr.

    1960-09-13

    A refrigeration system for producing very low temperatures is described. The system of the invention employs a binary mixture refrigerant in a closed constant volume, e.g., Freon and ethylene. Such mixture is compressed in the gaseous state and is then separated in a fractionating column element of the system. Thenceforth, the first liquid to separate is employed stagewise to cool and liq uefy successive portions of the refrigerant at successively lower temperatures by means of heat exchangers coupled between the successive stages. When shut down, all of the volumes of the system are interconnected and a portion of the refrigerant remains liquid at ambient temperatures so that no dangerous overpressures develop. The system is therefore rugged, simple and dependable in operation.

  13. Refrigerating machine oil

    SciTech Connect

    Nozawa, K.

    1981-03-17

    Refrigerating machine oil to be filled in a sealed motorcompressor unit constituting a refrigerating cycle system including an electric refrigerator, an electric cold-storage box, a small-scaled electric refrigerating show-case, a small-scaled electric cold-storage show-case and the like, is arranged to have a specifically enhanced property, in which smaller initial driving power consumption of the sealed motor-compressor and easier supply of the predetermined amount of the refrigerating machine oil to the refrigerating system are both guaranteed even in a rather low environmental temperature condition.

  14. Optical Refrigeration

    DTIC Science & Technology

    2007-12-01

    1Optical Science and Engineering, Department of Physics & Astronomy, University of New Mexico , Albuquerque, New Mexico 87131, USA 2Los Alamos National...Laboratory, Los Alamos, New Mexico 87545, USA *e-mail: msb@unm.edu The term ‘laser cooling’ is most often associated with cooling dilute gases of...TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of New Mexico ,Department of Physics & Astronomy

  15. Properties of Gas Mixtures and Their Use in Mixed-Refrigerant Joule-Thomson Refrigerators

    NASA Astrophysics Data System (ADS)

    Luo, E.; Gong, M.; Wu, J.; Zhou, Y.

    2004-06-01

    The Joule-Thomson (J-T) effect has been widely used for achieving low temperatures. In the past few years, much progress has been made in better understanding the working mechanism of the refrigeration method and in developing prototypes for different applications. In this talk, there are three aspects of our research work to be discussed. First, some special thermal properties of the mixtures for achieving liquid nitrogen temperature range will be presented. Secondly, some important conclusions from the optimization of various mixed-refrigerant J-T cycles such as a simple J-T cycle and an auto-cascade mixed-refrigerant J-T cycle will be presented. Moreover, an auto-cascade, mixed-refrigerant J-T refrigerator with a special mixture capable of achieving about 50K will be mentioned. Finally, various prototypes based on the mixed-refrigerant refrigeration technology will be described. These applications include miniature J-T cryocoolers for cooling infrared detectors and high-temperature superconducting devices, cryosurgical knife for medical treatment, low-temperature refrigerators for biological storage and so forth. The on-going research work and unanswered questions for this technology will be also discussed.

  16. Ventilation Cooling: An Old Solution to New Problems. Part 1: The Economics.

    ERIC Educational Resources Information Center

    DiMercurio, C.

    1981-01-01

    This first article in a series about cooling classrooms by ventilation explains that energy consumption for one day of refrigeration cooling is equal to energy use for 35 days of ventilation cooling. Schools using only refrigeration cooling are passing up energy savings that could be provided by ventilation cooling. (Author/MLF)

  17. Quantum-enhanced absorption refrigerators

    NASA Astrophysics Data System (ADS)

    Correa, Luis A.; Palao, José P.; Alonso, Daniel; Adesso, Gerardo

    2014-02-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators.

  18. Quantum-enhanced absorption refrigerators

    PubMed Central

    Correa, Luis A.; Palao, José P.; Alonso, Daniel; Adesso, Gerardo

    2014-01-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators. PMID:24492860

  19. Transition to New Refrigerants

    EPA Pesticide Factsheets

    Overview page provides information on the refrigerants that motor vehicle air conditioners have used over time, with information on environmental impacts, refrigerant fitting sizes, label colors, and alternatives to ozone-depleting substances.

  20. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1994-05-27

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  1. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1995-06-01

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  2. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1995-02-01

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase-out of chemical compounds of environmental concern.

  3. New Rules for Refrigerants.

    ERIC Educational Resources Information Center

    Jackson, Robert

    1999-01-01

    Discusses how educational facilities can comply with new Environmental Protection Agency regulations regarding commercial refrigerants. Tips include developing a compliance plan with a manager in charge of it, and developing an accurate and complete refrigerant-systems assessment. (GR)

  4. Optimal performance of a quantum Otto refrigerator

    NASA Astrophysics Data System (ADS)

    Abah, Obinna; Lutz, Eric

    2016-03-01

    We consider a quantum Otto refrigerator cycle of a time-dependent harmonic oscillator. We investigate the coefficient of performance at maximum figure of merit for adiabatic and nonadiabatic frequency modulations. We obtain analytical expressions for the optimal performance both in the high-temperature (classical) regime and in the low-temperature (quantum) limit. We moreover analyze the breakdown of the cooling cycle for strongly nonadiabatic driving protocols and derive analytical estimates for the minimal driving time allowed for cooling.

  5. Acoustic recovery of lost power in pulse tube refrigerators

    SciTech Connect

    Swift, G.W.; Gardner, D.L.; Backhaus, S.

    1999-02-01

    In an efficient Stirling-cycle cryocooler, the cold piston or displacer recovers power from the gas. This power is dissipated into heat in the orifice of an orifice pulse tube refrigerator, decreasing system efficiency. Recovery of some of this power in a pulse tube refrigerator, without sacrificing the simplicity and reliability inherent in a system with no cold moving parts, is described in this paper. In one method of such power recovery, the hot ends of both the regenerator and the pulse tube are connected to the front of the piston driving the refrigerator. Experimental data is presented demonstrating this method using a thermoacoustic driver instead of a piston driver. Control of time-averaged mass flux through the refrigerator is crucial to this power recovery, lest the refrigerator{close_quote}s cooling power be overwhelmed by a room-temperature mass flux. Two methods are demonstrated for control of mass flux: a barrier method, and a hydrodynamic method based on turbulent irreversible flow. At {minus}55{degree}C, the refrigerator provided cooling with 9{percent} of the Carnot coefficient of performance. With straightforward improvements, similar refrigerators should achieve efficiencies greater than those of prior pulse tube refrigerators and prior standing-wave thermoacoustic refrigerators, while maintaining the advantages of no moving parts. {copyright} {ital 1999 Acoustical Society of America.}

  6. Self-actuating heat switches for redundant refrigeration systems

    NASA Astrophysics Data System (ADS)

    Chan, Chung K.

    1988-09-01

    A dual refrigeration system for cooling a sink device is described, which automatically thermally couples the cold refrigerator to the sink device while thermally isolating the warm refrigerator from the sink device. The system includes two gas gap heat switches that each thermally couples one of the refrigerators to the sink device, and a pair of sorption pumps that are coupled through tubes to the heat switches. When the first refrigerator is operated and therefore cold, the first pump which is thermally coupled to it is also cooled and adsorbs gas to withdraw it from the second heat switch, to thereby thermally isolate the sink device from the warm second refrigerator. With the second refrigerator being warm, the second pump is also warm and desorbs gas, so the gas lies in the first switch, to close that switch and therefore thermally couple the cold first refrigerator to the sink device. Thus, the heat switches are automatically switched according to the temperature of the corresponding refrigerator.

  7. Self-actuating heat switches for redundant refrigeration systems

    NASA Technical Reports Server (NTRS)

    Chan, Chung K. (Inventor)

    1988-01-01

    A dual refrigeration system for cooling a sink device is described, which automatically thermally couples the cold refrigerator to the sink device while thermally isolating the warm refrigerator from the sink device. The system includes two gas gap heat switches that each thermally couples one of the refrigerators to the sink device, and a pair of sorption pumps that are coupled through tubes to the heat switches. When the first refrigerator is operated and therefore cold, the first pump which is thermally coupled to it is also cooled and adsorbs gas to withdraw it from the second heat switch, to thereby thermally isolate the sink device from the warm second refrigerator. With the second refrigerator being warm, the second pump is also warm and desorbs gas, so the gas lies in the first switch, to close that switch and therefore thermally couple the cold first refrigerator to the sink device. Thus, the heat switches are automatically switched according to the temperature of the corresponding refrigerator.

  8. A 4 K Gifford-McMahon Refrigerator for Astronomy

    NASA Astrophysics Data System (ADS)

    Plambeck, R. L.; Thatte, N. A.; Sykes, P. B.

    1993-05-01

    SIS mixers on the BIMA array are cooled to 4 K with novel closed cycle refrigerators. These refrigerators utilize the Gifford-McMahon cycle, which is used in most commercially available cryopumps. In this cycle helium is expanded from 20 to 6 atm after it is precooled in a heat exchanger matrix, or regenerator. Conventional GM refrigerators bottom out at temperatures of 8 to 10 K because their regenerators have inadequate heat capacity at lower temperatures. By adding a third stage to a standard commercial refrigerator, and by using spheres of Er_3Ni as the third stage regenerator, we reach much lower temperatures. Our refrigerator operates at 2.2 K with no heat load applied to the third stage. With 10 W on the first stage, 1 W on the second stage, and 50 mW on the third stage, the third stage temperature can be maintained at 3.5 K. By comparison with hybrid Joule-Thomson/GM refrigerators traditionally used to reach 4 K, our refrigerator is far more compact, cools more quickly (to 4 K in a little over an hour), requires only a single helium compressor, and is less prone to clogging by contamination. The principal challenge in building such a refrigerator is to fabricate a helium-tight reciprocating seal which operates reliably at 7 K on the refrigerator's third stage. This work was supported by NSF Grant AST91-00307.

  9. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... refrigeration system: (1) The cooling water pump or pumps must be used exclusively for the system; (2) Each pump... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... (89.6 °F) still water with the largest unit in the system inoperative; or (2) Have a standby unit...

  10. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... refrigeration system: (1) The cooling water pump or pumps must be used exclusively for the system; (2) Each pump... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... (89.6 °F) still water with the largest unit in the system inoperative; or (2) Have a standby unit...

  11. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... refrigeration system: (1) The cooling water pump or pumps must be used exclusively for the system; (2) Each pump... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... (89.6 °F) still water with the largest unit in the system inoperative; or (2) Have a standby unit...

  12. Microporous Carbon Disks For Sorption Refrigerators

    NASA Technical Reports Server (NTRS)

    Munukutla, Lakshmi V.; Moore, Mark R.

    1993-01-01

    Slow, carefully controlled pyrolysis found to turn polyvinylidene chloride disks into carbon disks having small pores and large surface areas. Disks exhibit high adsorptivities making them useful in krypton-sorption refrigerators. Carbons made from polyvinylidene chloride have greater adsorptive capacities. Thermal instability controlled and variability of product reduced by careful control of rates of heating, heating times, and rate of final cooling.

  13. Regenerative sorption compressors for cryogenic refrigeration

    NASA Technical Reports Server (NTRS)

    Bard, Steven; Jones, Jack A.

    1990-01-01

    Dramatic efficiency improvements for sorption coolers appear possible with use of compressor heat regeneration techniques. The general theory of sorption compressor heat regeneration is discussed in this paper, and several design concepts are presented. These designs result in long-life, low-vibration cryocoolers that potentially have efficiencies comparable to Stirling refrigerators for 65 to 90 K spacecraft instrument cooling applications.

  14. Wicks For Refrigerants In Heat Pipes

    NASA Technical Reports Server (NTRS)

    Seidenberg, Benjamin

    1988-01-01

    Ultra-high-molecular-weight material compatible with efficient heat-transfer fluids. New wick material for heat pipes first physically and chemically compatible with chlorofluoromethanes, chlorofluoroethanes, and ammonia. Allows one of these refrigerants to be used as working fluid in capillary-pump heat-pipe loop for cooling electronic equipment.

  15. Solid-state optical refrigeration to sub-100 Kelvin regime

    DOE PAGES

    Melgaard, Seth D.; Albrecht, Alexander R.; Hehlen, Markus P.; ...

    2016-02-05

    We report that since the first demonstration of net cooling twenty years ago, optical refrigeration of solids has progressed to outperform all other solid-state cooling processes. It has become the first and only solid-state refrigerator capable of reaching cryogenic temperatures, and now the first solid-state cooling below 100 K. Such substantial progress required a multi-disciplinary approach of pump laser absorption enhancement, material characterization and purification, and thermal management. Here we present the culmination of two decades of progress, the record cooling to ≈91K from room temperature.

  16. Solid-state optical refrigeration to sub-100 Kelvin regime

    PubMed Central

    Melgaard, Seth D.; Albrecht, Alexander R.; Hehlen, Markus P.; Sheik-Bahae, Mansoor

    2016-01-01

    Since the first demonstration of net cooling twenty years ago, optical refrigeration of solids has progressed to outperform all other solid-state cooling processes. It has become the first and only solid-state refrigerator capable of reaching cryogenic temperatures, and now the first solid-state cooling below 100 K. Such substantial progress required a multi-disciplinary approach of pump laser absorption enhancement, material characterization and purification, and thermal management. Here we present the culmination of two decades of progress, the record cooling to ≈ 91 K from room temperature. PMID:26847703

  17. Magnetically suspended Stirling cryogenic space refrigerator Status report

    NASA Technical Reports Server (NTRS)

    Daniels, A.; Gasser, M.; Sherman, A.

    1982-01-01

    At the 1979 Cryogenic Engineering Conference, attention was given to conceptual designs of spaceborne cryogenic refrigeration systems which can provide long-term, unattended operation. Since that time, efforts have continued to translate one of those concepts into an engineering model. The present investigation is concerned with a refrigerator which was designed to generate 5 W of cooling power at a temperature of 65 K. The compression heat of the refrigerator is dissipated at a temperature of 300 K, and the output of the system is to be maintained reliably for a period of five years or longer. The refrigerator design is based on the Stirling cycle, which has an ideal efficiency equal to that of the Carnot cycle. Attention is given to some background information concerning a cryogenic refrigerator, the design of the refrigerator components, and the development status. The magnetic bearings and the linear motors have been tested at the component level.

  18. Restaurant food cooling practices.

    PubMed

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  19. Hydronic rooftop cooling systems

    DOEpatents

    Bourne, Richard C [Davis, CA; Lee, Brian Eric [Monterey, CA; Berman, Mark J [Davis, CA

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  20. A Variable Refrigerant Flow Heat Pump Computer Model in EnergyPlus

    SciTech Connect

    Raustad, Richard A.

    2013-01-01

    This paper provides an overview of the variable refrigerant flow heat pump computer model included with the Department of Energy's EnergyPlusTM whole-building energy simulation software. The mathematical model for a variable refrigerant flow heat pump operating in cooling or heating mode, and a detailed model for the variable refrigerant flow direct-expansion (DX) cooling coil are described in detail.

  1. Novel materials for laser refrigeration

    SciTech Connect

    Hehlen, Markus P

    2009-01-01

    The status of optical refrigeration of rare-earth-doped solids is reviewed, and the various factors that limit the performance of current laser-cooling materials are discussed. Efficient optical refrigeration is possible in materials for which {Dirac_h}{omega}{sub max} < E{sub p}/8, where {Dirac_h}{omega}{sub max} is the maximum phonon energy of the host material and E{sub p} is the pump energy of the rare-earth dopant. Transition-metal and OH{sup -}impurities at levels >100 ppb are believed to be the main factors for the limited laser-cooling performance in current materials. The many components of doped ZBLAN glass pose particular processing challenges. Binary fluoride glasses such as YF{sub 3}-LiF are considered as alternatives to ZBLAN. The crystalline system KPb{sub 2}CI{sub 5} :Dy{sup 3+} is identified as a prime candidate for high-efficiency laser cooling.

  2. Superfluid Stirling refrigerator with a counterflow regenerator

    SciTech Connect

    Brisson, J.G.; Swift, G.W.

    1992-01-01

    The superfluid Stirling refrigerator (SSR) uses a [sup 3]He-[sup 4]He liquid mixture as a working fluid. It operates at temperatures below 2 K where the [sup 4]He component of the working fluid is superfluid. The [sup 3]He component of the working fluid, to first approximation, behaves thermodynamically like an ideal gas in the inert background of superfluid [sup 4]He. Using pistons equipped with a superleak bypass, it is possible to expand and compress the [sup 3]He solute gas.'' The SSR is a Stirling machine equipped with these superleaked'' pistons to take advantage of the properties of the [sup 3]He solute to cool below 1 K. The proof of principle was shown by Kotsubo and Swift in 1990. There are three other techniques for cooling below 1 K: (1) the [sup 3]He-[sup 4]He dilution refrigerator which utilizes the endothermic heat of mixing of [sup 3]He into [sup 4]He to reach temperatures below 0.010 K; (2) the evaporation of [sup 3]He which can reach temperatures of 0.3 K; and, (3) adiabatic demagnetization of a paramagnetic salt. There are several advantages of the SSR over each of the other techniques. The power consumption of a dilution refrigerator is typically on the order of kilowatts; whereas, the SSR consumes hundreds of watts. The SSR has the potential to cool below 0.3 K and out-perform the evaporative [sup 3]He refrigerator. Adiabatic demagnetization often requires magnetic shielding between the refrigerator and the object to be cooled; obviously, the SSR requires no such shielding. There is an interest in developing subkelvin cryocoolers for satellite-borne X-ray and infrared detectors. In space applications, the power consumption of an SSR can be reduced to tens of watts. This coupled with the SSR's insensitivity to a zero G environment makes it an attractive option to cool detectors in space.

  3. Better refrigerant exchanger design

    SciTech Connect

    Starczewski, J.

    1985-04-01

    Design methods are presented for freon refrigerant evaporators of a horizontal tubular heat exchanger type. This article is in two parts. The first part deals with refrigerants on the shell side while the second deals with refrigerants on the tube side. The currently used LMTD to calculate surface area with refrigerants boiling inside (or outside) tubes will be shown to be incorrect. Instead, a new concept of mean average heat flux is introduced. The article also proves that the boiling refrigerant heat transfer coefficient varies considerably along heat exchangers.

  4. Reciprocating magnetic refrigerator

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1985-01-01

    A 4 to 15 K magnetic refrigerator to test as an alternative to the Joule-Thomson circuit as the low temperature stage of a 4 to 300 K closed-cycle refrigerator was developed. The reciprocating magnetic refrigerator consists of two matrices of gadolinium gallium garnet spheres located in tandem on a single piston which alternately moves each matrix into a 7 telsa magnetic field. A separate helium gas circuit is used as the heat exchange mechanism for the low and the high temperature extremes of the magnetic refrigerator. Details of the design and results of the initial refrigerator component tests are presented.

  5. Functional Nanomaterials Useful for Magnetic Refrigeration Systems

    NASA Astrophysics Data System (ADS)

    Aslani, Amir

    Magnetic refrigeration is an emerging energy efficient and environmentally friendly refrigeration technology. The principle of magnetic refrigeration is based on the effect of varying a magnetic field on the temperature change of a magnetocaloric material (refrigerant). By applying a magnetic field, the magnetic moments of a magnetic material tend to align parallel to it, and the thermal energy released in this process heats the material. Reversibly, the magnetic moments become randomly oriented when the magnetic field is removed, and the material cools down. The heating and the cooling of a refrigerant in response to a changing magnetic field is similar to the heating and the cooling of a gaseous medium in response to an adiabatic compression and expansion in a conventional refrigeration system. One requirement to make a practical magnetic refrigerator is to have a large temperature change per unit of applied magnetic field, with sufficiently wide operating temperature. So far, no commercially viable magnetic refrigerator has been built primarily due to the low temperature change of bulk refrigerants, the added burden of hysteresis, and the system's low cooling capacity. The purpose of this dissertation is to explore magnetic refrigeration system. First, the Active Magnetic Regenerator (AMR) system built by Shir et al at the GWU's Institute for Magnetics Research (IMR) is optimized by tuning the heat transfer medium parameters and system's operating conditions. Next, by reviewing literature and works done so far on refrigerants, a number of materials that may be suitable to be used in magnetic refrigeration technology were identified. Theoretical work by Bennett et al showed an enhancement in magnetocaloric effect of magnetic nanoparticles. Research was performed on functional magnetic nanoparticles and their use in magnetic refrigeration technology. Different aspects such as the size, shape, chemical composition, structure and interaction of the nanoparticle with

  6. Solar-powered cooling system

    DOEpatents

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  7. Quantum heat engines and refrigerators: continuous devices.

    PubMed

    Kosloff, Ronnie; Levy, Amikam

    2014-01-01

    Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when Tc→0 are obtained by optimizing the cooling current. All refrigerators as Tc→0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as Tc→0 of the relaxation rate γc and heat capacity cV of the cold bath.

  8. Performance characteristics of pulse tube refrigerators

    NASA Astrophysics Data System (ADS)

    Huang, B. J.; Tzeng, T. M.

    In the present study experiments were carried out to investigate the performance characteristics of pulse tube refrigerators. It was found that the cool-down time tc during the transient or start-up period is dominated by the time constant of the pulse tube wall τpt and that the dynamics of a basic pulse tube (BPT) refrigerator approaches that of a first-order system. For steady state operation, the cold-end temperature TL was found to vary with τpt, and the cooling load QL increases monotonically with increasing τpt. This indicates that heat pumped by the gas from the cold to the hot end increases with decreasing hpt (i.e. less energy exchange between the gas and wall). The process of heat storage or release of the pulse tube wall is thus shown to have a negative effect on the performance of a BPT refrigerator. It was thus found experimentally that the gas compression/expansion process inside the pulse tube, which is similar to a Brayton cycle but lies between isothermal and adiabatic, can explain the performance of BPT refrigerators. The present experiment also shows that the performance of a pulse tube refrigerator at transient and steady states is mainly dominated by the time constant of the pulse tube wall τpt.

  9. Dilution Refrigerator for Nuclear Refrigeration and Cryogenic Thermometry Studies

    NASA Astrophysics Data System (ADS)

    Nakagawa, Hisashi; Hata, Tohru

    2014-07-01

    This study explores the design and construction of an ultra-low temperature facility in order to realize the Provisional low-temperature scale from 0.9 mK to 1 K (PLTS-2000) in Japan, to disseminate its use through calibration services, and to study thermometry at low temperatures below 1 K. To this end, a dilution refrigerator was constructed in-house that has four sintered silver discrete heat exchangers for use as a precooling stage of a copper nuclear demagnetization stage. A melting curve thermometer attached to the mixing chamber flange could be cooled continuously to 4.0 mK using the refrigerator. The dependence of minimum temperatures on circulation rates can be explained by the calculation of Frossati's formula based on a perfect continuous counterflow heat exchanger model, assuming that the Kapitza resistance has a temperature dependence. Residual heat leakage to the mixing chamber was estimated to be around 86 nW. A nuclear demagnetization cryostat with a nuclear stage containing an effective amount of copper (51 mol in a 9 T magnetic field) is under construction, and we will presently start to work toward the realization of the PLTS-2000. In this article, the design and performance of the dilution refrigerator are reported.

  10. Performance of an irreversible quantum refrigeration cycle

    NASA Astrophysics Data System (ADS)

    He, Ji-Zhou; Ouyang, Wei-Pin; Wu, Xin

    2006-01-01

    A new model of a quantum refrigeration cycle composed of two adiabatic and two isomagnetic field processes is established. The working substance in the cycle consists of many non-interacting spin-1/2 systems. The performance of the cycle is investigated, based on the quantum master equation and semi-group approach. The general expressions of several important performance parameters, such as the coefficient of performance, cooling rate and power input, are given. It is found that the coefficient of performance of this cycle is in the closest analogy to that of the classical Carnot cycle. Furthermore, at high temperatures the optimal relations of the cooling rate and the maximum cooling rate are analysed in detail. Some performance characteristic curves of the cycle are plotted, such as the cooling rate versus the maximum ratio between high and low ``temperatures'' of the working substances, the maximum cooling rate versus the ratio between high and low ``magnetic fields'' and the ``temperature'' ratio between high and low reservoirs. The obtained results are further generalized and discussed, so that they may be directly applied to describing the performance of the quantum refrigerator using spin-J systems as the working substance. Finally, the optimum characteristics of the quantum Carnot and Ericsson refrigeration cycles are derived by analogy.

  11. Magnetic refrigerator for hydrogen liquefaction

    NASA Astrophysics Data System (ADS)

    Numazawa, T.; Kamiya, K.; Utaki, T.; Matsumoto, K.

    2014-07-01

    This paper reviews the status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. When we compare the consuming energy of hydrogen liquefaction with high pressurized hydrogen gas, FOM must be larger than 0.57 for hydrogen liquefaction. Thus, we need to develop a highly efficient liquefaction method. Magnetic refrigeration using the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency >50%, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system with >80% liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 s of the cycle. By using the simulation, we estimate the efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained for operation temperature between 20 K and 77 K including LN2 work input.

  12. Room-temperature semiconductor heterostructure refrigeration

    NASA Astrophysics Data System (ADS)

    Chao, K. A.; Larsson, Magnus; Mal'shukov, A. G.

    2005-07-01

    With the proper design of semiconductor tunneling barrier structures, we can inject low-energy electrons via resonant tunneling, and take out high-energy electrons via a thermionic process. This is the operation principle of our semiconductor heterostructure refrigerator (SHR) without the need of applying a temperature gradient across the device. Even for the bad thermoelectric material AlGaAs, our calculation shows that at room temperature, the SHR can easily lower the temperature by 5-7K. Such devices can be fabricated with the present semiconductor technology. Besides its use as a kitchen refrigerator, the SHR can efficiently cool microelectronic devices.

  13. Experimental investigation of an alternating evaporator duty refrigerator/freezer

    SciTech Connect

    Lavanis, M.; Haider, I.; Radermacher, R.

    1998-12-31

    A bistable solenoid valve has been used to build an alternating evaporator duty (AED) domestic refrigerator/freezer. This refrigerator has two vapor compression refrigeration loops that share a common compressor, condenser, and suction line heat exchanger. Each of the refrigeration loops has an expansion device and evaporator. One evaporator is located in the fresh food compartment and the other is located in the freezer compartment. The bistable solenoid valve directs the flow of the refrigerant through one loop at a time. Only one of the two compartments is cooled at any given time. With this configuration, the food compartment is cooled at a higher evaporator temperature than the freezer. Due to this, the energy efficiency of the refrigerator is improved by 8.5% over a conventional domestic refrigerator/freezer. Also, this cycle allows for completely independent temperature control of the freezer and fresh food compartments. There may be a penalty because this cycle does not allow for both loops to be simultaneously optimized. Isobutane was the only refrigerant used in this investigation.

  14. Refrigeration systems program summary

    NASA Astrophysics Data System (ADS)

    1991-12-01

    In addition to saving energy, deploying advanced refrigeration technologies can substantially benefit the environment. Chlorofluorocarbons (CFCs) have been identified as a major cause of potential global climate change and about 20 pct. of the CFCs consumed by the U.S. are due to refrigeration systems. As the international Montreal Protocol will phase out CFC compounds no later than 2000, there is tremendous need to develop safe non-CFC refrigerants and working fluids, alternative refrigeration cycles, and non-CFC insulations for appliances. The U.S. Department of Energy (DOE) established the Refrigeration System Program in 1977 to lead a national effort to accelerate the deployment of cost effective and energy efficient air conditioning and refrigeration technologies. The program primarily conducts research and development on advanced refrigeration technologies. The program, managed by the Office of Building Technologies, which reports to DOE's Assistant Secretary for Conversation and Renewable Energy, encompasses several key activities such as investigating alternative refrigerants and refrigeration cycles, developing advanced technologies for future air conditioning and refrigeration equipment designs, and developing advanced appliance insulations.

  15. Neon turbo-Brayton cycle refrigerator for HTS power machines

    NASA Astrophysics Data System (ADS)

    Hirai, Hirokazu; Hirokawa, M.; Yoshida, Shigeru; Nara, N.; Ozaki, S.; Hayashi, H.; Okamoto, H.; Shiohara, Y.

    2012-06-01

    We developed a prototype turbo-Brayton refrigerator whose working fluid is neon gas. The refrigerator is designed for a HTS (High Temperature Superconducting) power transformer and its cooling power is more than 2 kW at 65 K. The refrigerator has a turboexpander and a turbo-compressor, which utilize magnetic bearings. These rotational machines have no rubbing parts and no oil-components. Those make a long maintenance interval of the refrigerator. The refrigerator is very compact because our newly developed turbo-compressor is volumetrically smaller than a displacement type compressor in same operating specification. Another feature of the refrigerator is a wide range operation capability for various heat-loads. Cooling power is controlled by the input-power of the turbo-compressor instead of the conventional method of using an electric heater. The rotational speed of the compressor motor is adjusted by an inverter. This system is expected to be more efficient. We show design details, specification and cooling test results of the new refrigerator in this paper.

  16. PIPER Continuous Adiabatic Demagnetization Refrigerator

    NASA Technical Reports Server (NTRS)

    Kimball, Mark O.; Shirron, Peter J.; Canavan, Edgar R.; James, Bryan L.; Sampson, Michael A.; Letmate, Richard V.

    2017-01-01

    We report upon the development and testing of a 4-stage adiabatic demagnetization refrigerator (ADR) capable of continuous cooling at 0.100 Kelvin. This cooler is being built to cool the detector array aboard NASA's Primordial Inflation Polarization Explorer (PIPER) observatory. The goal of this balloon mission is to measure the primordial gravitational waves that should exist if the theory of cosmological inflation is correct. At altitude, the ADR will hold the array of transition-edge sensors at 100 mK continuously while periodically rejecting heat to a 1.2 K pumped helium bath. During testing on ground, the array is held at the same temperature but heat is rejected to a 4.2 K helium bath indicating the flexibility in this coolers design.

  17. Cryogenic refrigeration. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    1993-09-01

    The bibliography contains citations concerning cryogenic refrigeration or cryocooling. Design, development, testing, and evaluation of cryogenic cooling systems are discussed. Design applications in spacecraft, magnet cooling, superconductors, liquid fuel storage, radioastronomy, and medicine are presented. Material properties at cryogenic temperatures and cryogenic rocket propellants are considered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  18. Mixed-Gas Sorption Joule-Thomson Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Petrick, S. Walter; Bard, Steven

    1991-01-01

    Proposed mixed-gas sorption Joule-Thomson refrigerator provides cooling down to temperature of 70 K. Includes only one stage and no mechanical compressor. Simpler, operates without vibrating, and consumes less power in producing same amount of cooling. Same sorption principle of operation applicable in compressor that chemisorbs oxygen or hydrogen from mixture with helium, neon, and/or other nonreactive gases.

  19. Sorption Refrigeration / Heat Pump Cycles

    NASA Astrophysics Data System (ADS)

    Saha, Bidyut Baran; Alam, K. C. Amanul; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    Over the past few decades there have been considerable efforts to use adsorption (solid/vapor) for cooling and heat pump applications, but intensified efforts were initiated only since the imposition of international restrictions on the production and use of CFCs (chlorofluorocarbons) and HCFCs (hydrochlorofluorocarbons). Up to now, only the desiccant evaporative cooling system of the open type has achieved commercial use, predominantly in the United States. Closed-type adsorption refrigeration and heat pump systems are rarely seen in the market, or are still in the laboratory testing stage. Promising recent development have been made in Japan for the use of porous metal hydrides and composite adsorbents. In this paper, a short description of adsorption theories along with an overview of present status and future development trends of thermally powered adsorption refrigeration cycles are outlined putting emphasis on experimental achievements. This paper also addressed some advanced absorption cycles having relatively higher COP, and also summarizes fundamental concepts of GAX cycles and various GAX cycles developed for heat pump applications.

  20. Laser cooling of solids

    SciTech Connect

    Epstein, Richard I; Sheik-bahae, Mansoor

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  1. An adiabatic demagnetization refrigerator for SIRTF

    NASA Astrophysics Data System (ADS)

    Timbie, P. T.; Bernstein, G. M.; Richards, P. L.

    1989-02-01

    An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the multiband imaging photometer of the Space Infrared Telescope Facility (SIRTF). One such refrigerator has been built which uses a ferric ammonium alum salt pill suspended by nylon threads in a 3-T solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is less than 0.5 microW. The system has a hold time at 0.1K of more than 12 h. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built at a SIRTF prototype to fly on a ballon-borne telescope. It will use a ferromagnetic shield. The possibility of using a high-Tc solenoid-actuated heat switch is also discussed.

  2. An adiabatic demagnetization refrigerator for SIRTF

    NASA Technical Reports Server (NTRS)

    Timbie, P. T.; Bernstein, G. M.; Richards, P. L.

    1989-01-01

    An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the multiband imaging photometer of the Space Infrared Telescope Facility (SIRTF). One such refrigerator has been built which uses a ferric ammonium alum salt pill suspended by nylon threads in a 3-T solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is less than 0.5 microW. The system has a hold time at 0.1K of more than 12 h. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built at a SIRTF prototype to fly on a ballon-borne telescope. It will use a ferromagnetic shield. The possibility of using a high-Tc solenoid-actuated heat switch is also discussed.

  3. An adiabatic demagnetization refrigerator for SIRTF

    NASA Technical Reports Server (NTRS)

    Timbie, P. T.; Bernstein, G. M.; Richards, P. L.

    1989-01-01

    An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the multiband imaging photometer of the Space Infrared Telescope Facility (SIRTF). One such refrigerator has been built which uses a ferric ammonium alum salt pill suspended by nylon threads in a 3-T solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is less than 0.5 microW. The system has a hold time at 0.1K of more than 12 h. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built at a SIRTF prototype to fly on a ballon-borne telescope. It will use a ferromagnetic shield. The possibility of using a high-Tc solenoid-actuated heat switch is also discussed.

  4. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1997-02-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alterative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on various refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  5. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1998-08-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufactures and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on many refrigerants including propane, ammonia, water, carbon dioxide, propylene, ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  6. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-11-24

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  7. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  8. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  9. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-06-23

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  10. Design of subcooled helium II refrigerator with helium-3 cold compressor

    SciTech Connect

    Kato, D.; Saji, N.; Ohya, H.; Asakura, H.; Kubota, M.; Kaneko, Y.; Nagai, S.

    1994-12-31

    This paper will study the possibility of a He II refrigerator made up of three cold compressors by making use of helium-3 characteristics. This system is compact enough to fit inside a small cold box, so it can be easily connected with an existing helium-4 refrigerator. The authors designed the compressors, calculated the He II cooling capacity, 4.4 K refrigeration load, required inventory of helium-3, and Carnot efficiency. Though helium-3 is expensive, the required inventory of helium-3 to be filled inside this He II refrigerator was calculated to be small enough to prove practicality of constructing this refrigerator.

  11. Thermoacoustically driven refrigerator with double thermoacoustic-Stirling cycles

    NASA Astrophysics Data System (ADS)

    Luo, Ercang; Dai, Wei; Zhang, Yong; Ling, Hong

    2006-02-01

    Recently, considerable research efforts have been made to search substitution technologies for chlorofluorocarbon-based vapor compression cycles due to the concern over environmental issues. This letter introduces a helium-based thermoacoustic refrigeration system, which is a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine, for domestic refrigeration purpose. In the regenerators of both the refrigerator and the prime mover, helium gas experiences near to reversible high efficiency Stirling process. At the operating point with 3.0MPa mean pressure, 57.7Hz frequency, and 2.2kW heat input, the experimental cooler provides a lowest temperature of -64.4°C and 250W cooling power at -22.1°C. These results show good potential of the system to be an alternative in near future for domestic refrigeration with advantages of environment-friendliness, no moving parts, and heat driven mechanism.

  12. Magnetically suspended Stirling cryogenic space refrigerator Test results

    NASA Astrophysics Data System (ADS)

    Daniels, A.; Stolfi, F.; Sherman, A.; Gasser, M.

    In 1979, a project leading to the development of a Stirling type cryogenic refrigerator for spaceborne application was initiated. The refrigerator is to generate five watts of net cooling at a temperature of 65 K. An operation without maintenance for a period of five years is required. A novel approach was selected for meeting the life requirement, taking into account an electromagnetic suspension of the moving parts. The fabrication of the hardware has now been completed and the performance of the refrigerator has been measured. The present paper provides a short review of the Stirling cycle, a description of the refrigerator design, and a summary of the test results. The new refrigerator configuration contains four major features, including a purely rectilinear drive, magnetic bearings, clearance seals, and all metal/ceramic working space surfaces. The displacer and the piston are supported and guided by magnetic bearings. The magnetic bearing consists of a set of electromagnetic actuators and radial position transducers.

  13. Application of Cryocoolers to a Vintage Dilution Refrigerator

    SciTech Connect

    Schmitt, Richard; Smith, Gary; Ruschman, Mark; Beaty, Jim; /Minnesota U.

    2011-06-06

    A dilution refrigerator is required for 50mK detector operation of CDMS (Cryogenic Dark Matter Search). Besides shielding the dilution refrigerator itself, the liquid nitrogen shield and liquid helium bath in the refrigerator cool the detector cryostat heat shields and cool electronics, resulting in significant external heat loads at 80K and at 4K. An Oxford Instruments Kelvinox 400 has served this role for ten years but required daily transfers of liquid nitrogen and liquid helium. Complicating the cryogen supply is the location 800 meters below ground in an RF shielded, class 10000 clean room at Soudan, MN. Nitrogen and helium re-liquefiers using cryocoolers were installed outside the clean room and continuously condense room temperature gas and return the liquids to the dilution refrigerator through a transfer line. This paper will describe the design, installation, controls and performance of liquefaction systems.

  14. Study on Operating Characteristics of A House Hold Stirling Refrigerator

    NASA Astrophysics Data System (ADS)

    Otaka, Toshio; Sakamoto, Moriyoshi; Murakami, Kazuhiko; Ota, Masahiro

    A prototype Stirling cycle refrigerator employing helium as a working fluid has been investigated to see whether the freon free machine be a viable alternative for the current household refrigerator. The prototype is a kinematics drive, and β type Stirling cycle machine of 100W refrigeration. The performance was evaluated as a function of cooling head temperature, mean pressure, frequency, and cooling capacity. The prototype has achieved the targeted refrigeration of 100W, and the COP of 1.02 under the design operation condition; 16.7Hz frequency and 0.7MPa helium pressure. The performance data was compared with the predicted ones, which was obtained by the 3rd order computational method. It has been demonstrated that the performance is in a good agreement with the predicted in the whole range of operation condition.

  15. Refrigerated Warehouse Demand Response Strategy Guide

    SciTech Connect

    Scott, Doug; Castillo, Rafael; Larson, Kyle; Dobbs, Brian; Olsen, Daniel

    2015-11-01

    This guide summarizes demand response measures that can be implemented in refrigerated warehouses. In an appendix, it also addresses related energy efficiency opportunities. Reducing overall grid demand during peak periods and energy consumption has benefits for facility operators, grid operators, utility companies, and society. State wide demand response potential for the refrigerated warehouse sector in California is estimated to be over 22.1 Megawatts. Two categories of demand response strategies are described in this guide: load shifting and load shedding. Load shifting can be accomplished via pre-cooling, capacity limiting, and battery charger load management. Load shedding can be achieved by lighting reduction, demand defrost and defrost termination, infiltration reduction, and shutting down miscellaneous equipment. Estimation of the costs and benefits of demand response participation yields simple payback periods of 2-4 years. To improve demand response performance, it’s suggested to install air curtains and another form of infiltration barrier, such as a rollup door, for the passageways. Further modifications to increase efficiency of the refrigeration unit are also analyzed. A larger condenser can maintain the minimum saturated condensing temperature (SCT) for more hours of the day. Lowering the SCT reduces the compressor lift, which results in an overall increase in refrigeration system capacity and energy efficiency. Another way of saving energy in refrigerated warehouses is eliminating the use of under-floor resistance heaters. A more energy efficient alternative to resistance heaters is to utilize the heat that is being rejected from the condenser through a heat exchanger. These energy efficiency measures improve efficiency either by reducing the required electric energy input for the refrigeration system, by helping to curtail the refrigeration load on the system, or by reducing both the load and required energy input.

  16. Influence of Oil on Refrigerant Evaporator Performance

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Soo; Nagata, Karsuya; Katsuta, Masafumi; Tomosugi, Hiroyuki; Kikuchi, Kouichiro; Horichi, Toshiaki

    In vapor compression refrigeration system using oil-lubricated compressors, some amount of oil is always circulated through the system. Oil circulation can have a significant influence on the evaporator performance of automotive air conditioner which is especially required to cool quickly the car interior after a period standing in the sun. An experimental investigation was carried out an electrically heated horizontal tube to measure local heat transfer coefficients for various flow rates and heat fluxes during forced convection boiling of pure refrigerant R12 and refrigerant-oil mixtures (0-11% oil concentration by weight) and the results were compared with oil free performance. Local heat transfer coefficients increased at the region of low vapor quality by the addition of oil. On the other hand, because the oil-rich liquid film was formed on the heat transfer surface, heat transfer coefficients gradually decreased as the vapor quality became higher. Average heat transfer coefficient reached a maximum at about 4% oil concentration and this trend agreed well with the results of Green and Furse. Previous correlations, using the properties of the refrigerant-oil mixture, could not predict satisfactorily the local heat transfer coefficients data. New correlation modified by oil concentration factor was developed for predicting the corresponding heat transfer coefficient for refrigerant-oil mixture convection boiling. The maximum percent deviation between predicted and measured heat transfer coefficient was within ±30%.

  17. Performance comparison of magnetic refrigeration cycles

    SciTech Connect

    Chen, F.C.; Chen, G.L.; Murphy, R.W.; Mei, V.C.

    1990-01-01

    Magnetic refrigeration has been used for cryogenic cooling at temperatures near absolute zero for many years. In these cases, a single-step adiabatic demagnetization method that does not provide continuous refrigeration is commonly used. The possibilities of providing continuous cooling through magnetic refrigeration cycles and of extending the range of applications above near-absolute-zero temperatures have been investigated only in recent years. This paper reports the results of a parametric performance study of three magnetic refrigeration cycles using four rare-earth magnetic materials operating near their respective Curie temperatures. The thermodynamic cycles employed are the magnetic-equivalent Carnot, Ericsson, and ideal regenerative cycles, and the four magnetic materials are terbium, holmium, erbium, and thulium. Our findings show that the Carnot cycle is not possible for cases of temperature lift beyond 10 K for a magnetic field variation of Tesla, that the performance and capacity of an ideal regenerative cycle are higher than that of the corresponding Ericsson cycle, and that the magnetocaloric effects of erbium and thulium seem to be too weak for practical applications. 14 refs., 14 figs.

  18. Refrigeration system having improved heat transfer and reduce power requirement for various evaporative refrigerants

    SciTech Connect

    Miller, B.

    1980-07-01

    A description is given of an improved refrigerating system of the type which includes (A) an evaporator for circulating a fluid refrigerate therethrough to absorb heat from a refrigerating medium, whereby said medium is cooled and said refrigerant is converted from a liquid to a gas, (B) an oil lubricated compressor connected in receiving relation to said evaporator for compressing and superheating said gas, (C) a condenser connected in receiving relation to said compressor for condensing said compressed gas to form a liquid, and (D) a receiver connected in liquid receiving relation to said condenser for storing said liquid and connected in liquid supplying relation to said evaporator, the improvement comprising (E) heat exchanger means having a liquid refrigerant confining shell and a heat exchanger tube disposed in said shell, an inlet end of said tube being connected in receiving relation to said compressor for receiving said compressed, superheated gas therein, said shell having an inlet port connected in receiving relation to an outlet port of said condenser for circulating a portion of the liquid refrigerant condensed in said condenser about said tube to partially desuperheat said compressed gas, and (F) an impurity removing oil-mist separator/collector unit connected in receiving relation to an outlet end of said tube for removing impurities, including oil, from said partially desuperheated gas, said unit being connected in supplying relation to said condenser for supplying cleaned, partially desuperheated gas to said condenser.

  19. Two-watt, 4-Kelvin closed cycle refrigerator performance

    NASA Technical Reports Server (NTRS)

    Britcliffe, M.

    1987-01-01

    A 2-watt, 4-K helium refrigerator using the Gifford-McMahon/Joule Thomson cycle is described. The unit features a removable displacer cylinder and high-efficiency, low-pressure drop heat exchangers. These improvements result in a 100 percent increase in cooling power over the existing Deep Space Network system. The effects of the heat exchanger efficiency and Gifford-McMahon expander performance on refrigerator capacity are also discussed.

  20. Thermoacoustic engines and refrigerators

    NASA Astrophysics Data System (ADS)

    Garrett, Steven L.

    2012-06-01

    Thermoacoustic engines and refrigerators use gas inertia and compressibility to eliminate many of the mechanical contrivances required by traditional engines and refrigerators while providing potentially attractive options that might reduce environmental impacts. The operation of both standing-wave and traveling-wave devices will be described and illustrated with thermoacoustic devices that have been used outside the laboratory.

  1. Theory of cascade refrigeration

    NASA Astrophysics Data System (ADS)

    Quack, Hans H.

    2012-06-01

    The maximum difference between the warm and cold temperature of a refrigeration cycle is limited by properties of the refrigerant and/or losses associated with the transport of the refrigerant. For larger temperature differences, one has to arrange several refrigeration cycles "above" each other, each cycle spanning a certain temperature difference. This approach is called cascade refrigeration and has played an important role in the history of cryogenics. For a theory of cascade refrigeration it is helpful to define a general one-stage non-reversible refrigeration step and to visualize it within the temperature-entropy diagram. Then one can combine several one-stage cycles to a cascade. There exist two types of cascades: "Full" cascades, where all entropy gains of a lower stage are transferred to the next higher temperature stage, and "partial" cascades, where each single cycle goes up to ambient temperature, where a part of the entropy gain is removed, and only the rest of the entropy gain is transferred to the next higher temperature stage. In cryogenic refrigeration "partial" cascades are generally more efficient than "full" cascades.

  2. Halocarbon Refrigerant Detection Methods.

    DTIC Science & Technology

    1996-01-01

    The Montreal Protocol and the U.S. Clean Air Act limit the production of ozone-depleting substances, including many refrigerants. Three options for...conditioning and refrigeration systems. As background, the report describes the relevant sections of the Montreal Protocol and the Clean Air Act , and

  3. AMR (Active Magnetic Regenerative) refrigeration for low temperature

    NASA Astrophysics Data System (ADS)

    Jeong, Sangkwon

    2014-07-01

    This paper reviews AMR (Active Magnetic Regenerative) refrigeration technology for low temperature applications that is a novel cooling method to expand the temperature span of magnetic refrigerator. The key component of the AMR system is a porous magnetic regenerator which allows a heat transfer medium (typically helium gas) to flow through it and therefore obviate intermittently operating an external heat switch. The AMR system alternatingly heats and cools the heat transfer medium by convection when the magneto-caloric effect is created under varying magnetic field. AMR may extend the temperature span for wider range than ADR (Adiabatic Demagnetization Refrigerator) at higher temperatures above 10 K because magneto-caloric effects are typically concentrated in a small temperature range in usual magnetic refrigerants. The regenerative concept theoretically enables each magnetic refrigerant to experience a pseudo-Carnot magnetic refrigeration cycle in a wide temperature span if it is properly designed, although adequate thermodynamic matching of strongly temperature-dependent MCE (magneto-caloric effect) of the regenerator material and the heat capacity of fluid flow is often tricky due to inherent characteristics of magnetic materials. This paper covers historical developments, fundamental concepts, key components, applications, and recent research trends of AMR refrigerators for liquid helium or liquid hydrogen temperatures.

  4. Investigation of active-buffer pulse tube refrigerator

    NASA Astrophysics Data System (ADS)

    Zhu, Shaowei; Kakimi, Yasuhiro; Matsubara, Yoichi

    An active-buffer pulse tube refrigerator, which is a GM type pulse tube refrigerator, is described in this paper. Two or more buffers are connected at the hot end of the pulse tube through on/off valves. The main purpose of this method is to increase the efficiency. A numerical method is introduced to analyse the working process. To understand the basic mechanism, an ideal cycle is also introduced. With a prototype single stage active-buffer pulse tube refrigerator, a cooling capacity of 166 W and a percent Carnot of 13% at 80 K have been obtained.

  5. Development of the Los Alamos solid-state optical refrigerator

    SciTech Connect

    Edwards, B.C.; Buchwald, M.I.; Epstein, R.I.

    1998-05-01

    Laser-induced cooling of a solid by net anti-Stokes fluorescence, first experimentally demonstrated in 1995, can be the basis of a new type of cryocooler, an {ital optical refrigerator}. This article describes the physics and design issues of a practical optical refrigerator for operation at 77 K. In particular, the Los Alamos Solid-State Optical Refrigerator (LASSOR) which we are developing would have an operating efficiency comparable to commercial small cryocoolers, be completely vibration-free and operate for years without maintenance.

  6. Materials and device concepts for electrocaloric refrigeration

    NASA Astrophysics Data System (ADS)

    Suchaneck, G.; Gerlach, G.

    2015-09-01

    Electrocaloric (EC) materials provide a solid-state cooling technology without polluting liquid refrigerants and noisy mechanical parts. Currently, basic research in this field is mainly focused on materials with a first-order phase transition exhibiting a large polarization change in a narrow temperature region near the phase transition point (Curie temperature) and, thus, a large EC effect. In this contribution, device operation above Curie temperature will be discussed. In this case, the polarization change originates from the temperature coefficient of the dielectric permittivity. To optimize material properties for EC refrigerator applications, we adapt the modified Curie-Weiss law describing a large class of ferroelectrics with a diffuse phase transition. Device performance will be evaluated based on the expected cooling power in dependence on thermodynamic cycle time, total thermal resistance and EC material thickness.

  7. Laser cooling in solids: advances and prospects

    NASA Astrophysics Data System (ADS)

    Seletskiy, Denis V.; Epstein, Richard; Sheik-Bahae, Mansoor

    2016-09-01

    This review discusses the progress and ongoing efforts in optical refrigeration. Optical refrigeration is a process in which phonons are removed from a solid by anti-Stokes fluorescence. The review first summarizes the history of optical refrigeration, noting the success in cooling rare-earth-doped solids to cryogenic temperatures. It then examines in detail a four-level model of rare-earth-based optical refrigeration. This model elucidates the essential roles that the various material parameters, such as the spacing of the energy levels and the radiative quantum efficiency, play in the process of optical refrigeration. The review then describes the experimental techniques for cryogenic optical refrigeration of rare-earth-doped solids employing non-resonant and resonant optical cavities. It then examines the work on laser cooling of semiconductors, emphasizing the differences between optical refrigeration of semiconductors and rare-earth-doped solids and the new challenges and advantages of semiconductors. It then describes the significant experimental results including the observed optical refrigeration of CdS nanostructures. The review concludes by discussing the engineering challenges to the development of practical optical refrigerators, and the potential advantages and uses of these refrigerators.

  8. System for vaporizing carbon dioxide utilizing the heat by-product of the refrigeration system as a heat source

    SciTech Connect

    Shaw, H.L.

    1980-12-23

    The present invention is directed to a carbonation and refrigeration system wherein the heat of the refrigerant output side of the refrigeration compressor is utilized to vaporize liquid carbon dioxide into CO/sub 2/ gas which is introduced into a liquid product. The carbonation and refrigeration system successfully utilizes the heat of the refrigerant to vaporize the CO/sub 2/ liquid regardless of the cooling demand of the system caused by seasonal temperature variations. For example during the winter months when the cooling demand is as low as 10% of the cooling demand in the summer, the carbonation and refrigeration system operates effectively to vaporize the CO/sub 2/ liquid by means of a heat exchanger and a desuperheater which are connected in communication with the superheated vapor emerging from the output side of a refrigeration compressor. In addition, the carbonation and refrigeration system of the present invention cools more efficiently by extracting some of the heat from the condensed refrigerant entering the receiver of the refrigeration system. In this manner, the refrigeration compressor can operate more efficiently.

  9. Device applications of cryogenic optical refrigeration

    NASA Astrophysics Data System (ADS)

    Melgaard, Seth D.; Seletskiy, Denis V.; Epstein, Richard I.; Alden, Jay V.; Sheik-Bahae, Mansoor

    2014-02-01

    With the coldest solid-state temperatures (ΔT <185K from 300K) achievable by optical refrigeration, it is now timely to apply this technology to cryogenic devices. Along with thermal management and pump absorption, this work addresses the most key engineering challenge of transferring cooling power to the payload while efficiently rejecting optical waste-heat fluorescence. We discuss our optimized design of such a thermal link, which shows excellent performance in optical rejection and thermal properties.

  10. Gas hydrate cool storage system

    DOEpatents

    Ternes, Mark P.; Kedl, Robert J.

    1985-01-01

    This invention is a process for formation of a gas hydrate to be used as a cool storage medium using a refrigerant in water. Mixing of the immiscible refrigerant and water is effected by addition of a surfactant and agitation. The difficult problem of subcooling during the process is overcome by using the surfactant and agitation and performance of the process significantly improves and approaches ideal.

  11. Gas hydrate cool storage system

    DOEpatents

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  12. Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger

    DOEpatents

    Mei, V.C.; Chen, F.C.

    1997-04-22

    A refrigeration system is described having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle. 4 figs.

  13. Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger

    DOEpatents

    Mei, Viung C.; Chen, Fang C.

    1997-01-01

    A refrigeration system having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle.

  14. A general computer model for predicting the performance of gas sorption refrigerators

    NASA Technical Reports Server (NTRS)

    Sigurdson, K. B.

    1983-01-01

    Projected performance requirements for cryogenic spacecraft sensor cooling systems which demand higher reliability and longer lifetimes are outlined. The gas/solid sorption refrigerator is viewed as a potential solution to cryogenic cooling needs. A software model of an entire gas sorption refrigerator system was developed. The numerical model, evaluates almost any combination and order of refrigerator components and any sorbent-sorbate pair or which the sorption isotherm data are available. Parametric curves for predicting system performance were generated for two types of refrigerators, a LaNi5-H2 absorption cooler and a Charcoal-N2 adsorption cooler. It is found that precooling temperature and heat exchanger effectiveness affect the refrigerator performance. It is indicated that gas sorption refrigerators are feasible for a number of space applications.

  15. Dynamic design of gas sorption J-T refrigerator

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1986-01-01

    A long-life Joule-Thomson refrigerator which is heat powered, involves no sealing, and has few mechanical parts is desirable for long-term sensor cooling in space. In the gas-sorption J-T refrigerator, cooling is achieved by gas sorption (either adsorption or absorption) processes. Currently, a modular, single-stage refrigerator is being designed and built to be operated at 20 K. The design was analyzed using a dynamic model, which is described here. The model includes the kinetics of the compressors and the heat switches, the heat transfer of the pre-coolers and the heat exchangers, the on/off ratio of the check valves, and the impedance of the J-T valve. The cooling power, the cycle time, and the operating conditions were obtained in terms of the power input, the heat sink temperature, and the J-T impedance.

  16. Cooling system for superconducting magnet

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed

    1998-01-01

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir.

  17. Cooling system for superconducting magnet

    DOEpatents

    Gamble, B.B.; Sidi-Yekhlef, A.

    1998-12-15

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir. 3 figs.

  18. Polymer-based electrocaloric cooling devices

    DOEpatents

    Zhang, Qiming; Lu, Sheng-Guo; Li, Xinyu; Gorny, Lee; Cheng, Jiping; Neese, Bret P; Chu, Baojin

    2014-10-28

    Cooling devices (i.e., refrigerators or heat pumps) based on polymers which exhibit a temperature change upon application or removal of an electrical field or voltage, (e.g., fluoropolymers or crosslinked fluoropolymers that exhibit electrocaloric effect).

  19. Counter-Top Thermoacoustic Refrigerator- An Experimental Investigation

    SciTech Connect

    Anwar, Mahmood; Ghazali, Normah Mohd

    2010-06-28

    Thermoacoustic phenomenon is a new alternative refrigeration technology. Though design and fabrication is complex for getting the desired effect, it is environmentally friendly and successful system showed that it is relatively easy to run compared to the traditional vapor compression refrigeration system. Currently, theories supporting the thermoacoustic refrigeration systems are yet to be comprehensive to make them commercially viable. Theoretical, experimental, and numerical studies are being done to address the thermodynamics-acoustics interactions. In this study, experimental investigations were completed to test the feasibility of the practical use of a thermoacoustic refrigerator in its counter-top form for future specific application. The system was designed and fabricated based on linear acoustic theory. Acoustic power was given by a loud speaker and thermoacoustic effects were measured in terms of the cooling effects produced at resonanance. Investigations showed that discrepancies between designed and working resonance frequency exist. Thermoacoutic cooling improved at a certain frequency, achieved when the working frequency was varied away from the design frequency. A cooling effect of 4.8 K below the ambient temperature of 23.3 deg. C was obtained from the counter-top thermoacoustic system. This system uses no refrigerants and no compressor to generate the cooling effect, a potential to be further investigated for a practical system.

  20. Quantum refrigerators and the third law of thermodynamics.

    PubMed

    Levy, Amikam; Alicki, Robert; Kosloff, Ronnie

    2012-06-01

    The rate of temperature decrease of a cooled quantum bath is studied as its temperature is reduced to absolute zero. The third law of thermodynamics is then quantified dynamically by evaluating the characteristic exponent ζ of the cooling process dT(t)/dt∼-T^{ζ} when approaching absolute zero, T→0. A continuous model of a quantum refrigerator is employed consisting of a working medium composed either by two coupled harmonic oscillators or two coupled two-level systems. The refrigerator is a nonlinear device merging three currents from three heat baths: a cold bath to be cooled, a hot bath as an entropy sink, and a driving bath which is the source of cooling power. A heat-driven refrigerator (absorption refrigerator) is compared to a power-driven refrigerator. When optimized, both cases lead to the same exponent ζ, showing a lack of dependence on the form of the working medium and the characteristics of the drivers. The characteristic exponent is therefore determined by the properties of the cold reservoir and its interaction with the system. Two generic heat bath models are considered: a bath composed of harmonic oscillators and a bath composed of ideal Bose/Fermi gas. The restrictions on the interaction Hamiltonian imposed by the third law are discussed. In the Appendices, the theory of periodically driven open systems and its implication for thermodynamics are outlined.

  1. Counter-Top Thermoacoustic Refrigerator- An Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Anwar, Mahmood; Ghazali, Normah Mohd

    2010-06-01

    Thermoacoustic phenomenon is a new alternative refrigeration technology. Though design and fabrication is complex for getting the desired effect, it is environmentally friendly and successful system showed that it is relatively easy to run compared to the traditional vapor compression refrigeration system. Currently, theories supporting the thermoacoustic refrigeration systems are yet to be comprehensive to make them commercially viable. Theoretical, experimental, and numerical studies are being done to address the thermodynamics-acoustics interactions. In this study, experimental investigations were completed to test the feasibility of the practical use of a thermoacoustic refrigerator in its counter-top form for future specific application. The system was designed and fabricated based on linear acoustic theory. Acoustic power was given by a loud speaker and thermoacoustic effects were measured in terms of the cooling effects produced at resonanance. Investigations showed that discrepancies between designed and working resonance frequency exist. Thermoacoutic cooling improved at a certain frequency, achieved when the working frequency was varied away from the design frequency. A cooling effect of 4.8 K below the ambient temperature of 23.3°C was obtained from the counter-top thermoacoustic system. This system uses no refrigerants and no compressor to generate the cooling effect, a potential to be further investigated for a practical system.

  2. An analytical screening of alternatives for R-502 in low-temperature refrigerating applications

    SciTech Connect

    Fischer, S.K.

    1992-08-01

    R-502 is used as the working fluid of low-temperature refrigerating systems with evaporating temperatures as low as {minus}40{degrees}F ({minus}40{degrees}C). It was selected as the refrigerant of choice for these applications because it is both nonflammable and nontoxic and has an acceptable compressor discharge temperature when used in a high-efficiency vapor-compression system. Replacement fluids are going to be needed for use in place of R-502, however, because of the provisions of the Montreal Protocol. R-502 is an azeotropic blend of R-22 and R-115, and R-115 is a chlorofluorocarbon (CFC) that is contributing to the destruction of stratospheric ozone. The provisions of the Montreal Protocol currently require a total phase-out of the production of all fully halogenated CFCs, including R-115, by the year 2000. Consequently, replacement fluids will be needed for new and existing equipment. This study was initiated to identify other possible fluids that can be used either in new or retrofit applications for low-temperature refrigerant. It includes an evaluation of predicted cycle efficiency, system capacity, pressure ratio, fluid flammability, and compressor discharge temperature. Eight different chemical compounds are considered for use as pure refrigerants as well as components in binary and ternary mixtures: R-134a, R-134, R-125, R-143a, R-152a,R-32, R-124, and R-22. An exhaustive study of the composition of blends was performed to determine the mass fractions of each component in the mixtures that are most promising on the basis of efficiency, flammability, low discharge temperature, and acceptable capacity and pressure ratio. Several blends are identified for further laboratory and analytical evaluation.

  3. An analytical screening of alternatives for R-502 in low-temperature refrigerating applications

    SciTech Connect

    Fischer, S.K.

    1992-01-01

    R-502 is used as the working fluid of low-temperature refrigerating systems with evaporating temperatures as low as {minus}40{degrees}F ({minus}40{degrees}C). It was selected as the refrigerant of choice for these applications because it is both nonflammable and nontoxic and has an acceptable compressor discharge temperature when used in a high-efficiency vapor-compression system. Replacement fluids are going to be needed for use in place of R-502, however, because of the provisions of the Montreal Protocol. R-502 is an azeotropic blend of R-22 and R-115, and R-115 is a chlorofluorocarbon (CFC) that is contributing to the destruction of stratospheric ozone. The provisions of the Montreal Protocol currently require a total phase-out of the production of all fully halogenated CFCs, including R-115, by the year 2000. Consequently, replacement fluids will be needed for new and existing equipment. This study was initiated to identify other possible fluids that can be used either in new or retrofit applications for low-temperature refrigerant. It includes an evaluation of predicted cycle efficiency, system capacity, pressure ratio, fluid flammability, and compressor discharge temperature. Eight different chemical compounds are considered for use as pure refrigerants as well as components in binary and ternary mixtures: R-134a, R-134, R-125, R-143a, R-152a,R-32, R-124, and R-22. An exhaustive study of the composition of blends was performed to determine the mass fractions of each component in the mixtures that are most promising on the basis of efficiency, flammability, low discharge temperature, and acceptable capacity and pressure ratio. Several blends are identified for further laboratory and analytical evaluation.

  4. An analytical screening of alternatives for R-502 in low-temperature refrigerating applications

    NASA Astrophysics Data System (ADS)

    Fischer, S. K.

    R-502 is used as the working fluid of low-temperature refrigerating systems with evaporating temperatures as low as -40 F (-40 C). It was selected as the refrigerant of choice for these applications because it is both nonflammable and nontoxic and has an acceptable compressor discharge temperature when used in a high-efficiency vapor-compression system. Replacement fluids are going to be needed for use in place of R-502, however, because of the provisions of the Montreal Protocol. R-502 is an azeotropic blend of R-22 and R-115, and R-115 is a chlorofluorocarbon (CFC). The provisions of the Montreal Protocol currently require a total phase-out of the production of all fully halogenated CFCs, including R-115, by the year 2000. Consequently, replacement fluids will be needed for new and existing equipment. This study was initiated to identify other possible fluids that can be used either in new or retrofit applications for low-temperature refrigerant. It includes an evaluation of predicted cycle efficiency, system capacity, pressure ratio, fluid flammability, and compressor discharge temperature. Eight different chemical compounds are considered for use as pure refrigerants as well as components in binary and ternary mixtures: R-134a, R-134, R-125, R-143a, R-152a, R-32, R-124, and R-22. An exhaustive study of the composition of blends was performed to determine the mass fractions of each component in the mixtures that are most promising on the basis of efficiency, flammability, low discharge temperature, and acceptable capacity and pressure ratio. Several blends are identified for further laboratory and analytical evaluation.

  5. The toxicity of refrigerants

    SciTech Connect

    Calm, J.M.

    1996-07-01

    This paper presents toxicity data and exposure limits for refrigerants. The data address both acute (short-term, single exposure) and chronic (long-term, repeated exposure) effects, with emphasis on the former. The refrigerants covered include those in common use for the last decade, those used as components in alternatives, and selected candidates for future replacements. The paper also reviews the toxicity indicators used in both safety standards and building, mechanical, and fire codes. It then outlines current classification methods for refrigerant safety and relates them to standard and code usage.

  6. Refrigerated cryogenic envelope

    DOEpatents

    Loudon, John D.

    1976-11-16

    An elongated cryogenic envelope including an outer tube and an inner tube coaxially spaced within said inner tube so that the space therebetween forms a vacuum chamber for holding a vacuum. The inner and outer tubes are provided with means for expanding or contracting during thermal changes. A shield is located in the vacuum chamber intermediate the inner and outer tubes; and, a refrigeration tube for directing refrigeration to the shield is coiled about at least a portion of the inner tube within the vacuum chamber to permit the refrigeration tube to expand or contract along its length during thermal changes within said vacuum chamber.

  7. New technologies for refrigeration without CFC's

    NASA Astrophysics Data System (ADS)

    Swift, G. W.

    1992-07-01

    Today the appliance industry and other cooling industries are facing the double challenge of eliminating environmentally harmful CFC's while simultaneously improving energy efficiency. These challenges will force this industry to make tremendous changes and to work out many difficult problems, ranging from choice of technology through production-line retooling to product-liability concerns. Three new cooling technologies--sonic compression, thermoacoustic refrigeration, and Malone refrigeration--have been developed at least in part at Los Alamos National Laboratory. We discuss the principles, features, and status of each of these three technologies. With these three examples we hope to show that mechanical compression and subsequent evaporation of CFC's is not the only potentially practical way to produce cooling. These examples are only three of many alternative cooling technologies. No new technology can be guaranteed a success before development is complete, from either an economic or engineering point of view. But enough alternative cooling technologies exist, and the probability for success of each technology is high enough, that one or more of these technologies can almost certainly be produced at reasonable cost, eliminate CFC's, and reduce the consumption of electricity.

  8. Engineering analysis of the use of compression refrigerants in the thin polymer icemaker

    SciTech Connect

    Leigh, R.; Andrews, J.

    1995-11-01

    In previous studies the authors have developed the concept of an ice-making device constructed of thin polymer films, arranged so that when filled with a cold fluid they expand in a set of parallel tubes, on the exterior of which ice forms. When the ice is about one millimeter thick, the cold fluid is removed from the tubes and they collapse, being pulled away from the ice by a vacuum within. The device has been successfully demonstrated in a version where the tubes are filled with a water-ethylene glycol brine. This was followed by an economic assessment which indicated that the device would be even more competitive with existing systems if the compression refrigerant itself were admitted into the polymer film structure on which the ice forms. This report presents an engineering study of such a system, examines the outstanding questions which must still be answered and assesses the potential economics of the system. The authors develop preliminary designs for systems using R-134a and R-C318 as refrigerants which satisfy code requirements. They use standard thermodynamic and heat transfer analysis to determine expected performance for the systems, and combine this with component and assembly cost estimates to prepare life-cycle costs for the two new systems. Comparing them to commercially available systems, they find that these ``polymer evaporator`` systems seem to be completely feasible technically and that if they are successfully demonstrated, they should have substantial economic advantages over existing ice-making devices.

  9. Development of the REFPROP database and transport properties of refrigerants. Final report

    SciTech Connect

    McLinden, M.O.

    1998-07-01

    This task consisted of developing Version 6.0 of the NIST Thermodynamic and Transport Properties of Refrigerants and Refrigerant Mixtures Database (REFPROP), entailing a complete revision of this database. This program is based on the most accurate pure fluid and mixture models currently available. The database development is further divided into the development of a graphical user interface and the development of Fortran subroutines which implement the property models. Three models are used for the thermodynamic properties of pure components, depending on the availability of data. The first is the modified Benedict-Webb-Rubin (MBWR) equation of state. It is capable of accurately representing the properties of a fluid over wide ranges of temperature, pressure, and density. The MBWR equation is the basis for the current international standard for the properties of R123. The second high-accuracy pure-fluid equation of state is written in terms of reduced molar Helmholtz free energy. This Helmholtz energy model is the basis for the international standard formulation for R134a. The third pure-fluid model is the extended corresponding states (ECS) model of Huber and Ely (1994). It is used for fluids with limited experimental data. The database calculates seventeen thermodynamic and transport properties, including surface tensions of pure fluids and mixtures. Commercialized blends, such as R407C and R410A, are predefined in the interface and are listed in a table.

  10. Thermofluid Analysis of Magnetocaloric Refrigeration

    SciTech Connect

    Abdelaziz, Omar; Gluesenkamp, Kyle R; Vineyard, Edward Allan; Benedict, Michael

    2014-01-01

    While there have been extensive studies on thermofluid characteristics of different magnetocaloric refrigeration systems, a conclusive optimization study using non-dimensional parameters which can be applied to a generic system has not been reported yet. In this study, a numerical model has been developed for optimization of active magnetic refrigerator (AMR). This model is computationally efficient and robust, making it appropriate for running the thousands of simulations required for parametric study and optimization. The governing equations have been non-dimensionalized and numerically solved using finite difference method. A parametric study on a wide range of non-dimensional numbers has been performed. While the goal of AMR systems is to improve the performance of competitive parameters including COP, cooling capacity and temperature span, new parameters called AMR performance index-1 have been introduced in order to perform multi objective optimization and simultaneously exploit all these parameters. The multi-objective optimization is carried out for a wide range of the non-dimensional parameters. The results of this study will provide general guidelines for designing high performance AMR systems.

  11. Optimum design on refrigeration system of high-repetition-frequency laser

    NASA Astrophysics Data System (ADS)

    Li, Gang; Li, Li; Jin, Yezhou; Sun, Xinhua; Mao, Shaojuan; Wang, Yuanbo

    2014-12-01

    A refrigeration system with fluid cycle, semiconductor cooler and air cooler is designed to solve the problems of thermal lensing effect and unstable output of high-repetition-frequency solid-state lasers. Utilizing a circulating water pump, water recycling system carries the water into laser cavity to absorb the heat then get to water cooling head. The water cooling head compacts cold spot of semiconductor cooling chips, so the heat is carried to hot spot which contacts the radiating fins, then is expelled through cooling fan. Finally, the cooled water return to tank. The above processes circulate to achieve the purposes of highly effective refrigeration in miniative solid-state lasers.The refrigeration and temperature control components are designed strictly to ensure refrigeration effect and practicability. we also set up a experiment to test the performances of this refrigeration system, the results show that the relationship between water temperature and cooling power of semiconductor cooling chip is linear at 20°C-30°C (operating temperature range of Nd:YAG), the higher of the water temperature, the higher of cooling power. According to the results, cooling power of single semiconductor cooling chip is above 60W, and the total cooling power of three semiconductor cooling chips achieves 200W that will satisfy the refrigeration require of the miniative solid-state lasers.The performance parameters of laser pulse are also tested, include pulse waveform, spectrogram and laser spot. All of that indicate that this refrigeration system can ensure the output of high-repetition-frequency pulse whit high power and stability.

  12. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    DOEpatents

    Barclay, John A.; Stewart, Walter F.; Henke, Michael D.; Kalash, Kenneth E.

    1987-01-01

    A magnetic refrigerator operating in the 12 to 77K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  13. Four K refrigerators with a new compact heat exchanger

    NASA Technical Reports Server (NTRS)

    Longsworth, R. C.; Steyert, W. A.

    1985-01-01

    Two refrigerators have been developed which have nominal cpacities of 0.25M and 0.5W at 4.2K. These use standard two stage Displex sup R expanders and compressors combined with a new compact heat exchanger which is concentric with the expander cylinder. These refrigerators can be used to cool superconducting electronic devices by direct attachment to the 4K heat station, or they can be plugged into the neck of a liquid helium superconducting magnet cryostat where they can cool the radiation shields and reliquefy helium.

  14. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    DOEpatents

    Barclay, J.A.; Stewart, W.F.; Henke, M.D.; Kalash, K.E.

    1986-04-03

    A magnetic refrigerator operating in the 12 to 77 K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  15. Thermoacoustic engines and refrigerators

    SciTech Connect

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  16. Joule Thomson refrigerator

    NASA Technical Reports Server (NTRS)

    Chan, Chung K. (Inventor); Gatewood, John R. (Inventor)

    1988-01-01

    A bi-directional Joule Thomson refrigerator is described, which is of simple construction at the cold end of the refrigerator. Compressed gas flowing in either direction through the Joule Thomson expander valve and becoming liquid, is captured in a container in direct continuous contact with the heat load. The Joule Thomson valve is responsive to the temperature of the working fluid near the valve, to vary the flow resistance through the valve so as to maintain a generally constant flow mass between the time that the refrigerator is first turned on and the fluid is warm, and the time when the refrigerator is near its coldest temperature and the fluid is cold. The valve is operated by differences in thermal coefficients of expansion of materials to squeeze and release a small tube which acts as the expander valve.

  17. Refrigeration oils for low GWP refrigerants in various applications

    NASA Astrophysics Data System (ADS)

    Saito, R.; Sundaresan, S. G.

    2017-08-01

    The practical use of the refrigeration systems is considered as a methods to suppress global warming. The replacement of a refrigerant with a new one that has lower global warming potential (GWP) has been underway for several years. For the application fields of refrigerators, domestic air conditioners, automotive air conditioners and hot water dispensers, the investigation has almost finished. It is still underway for the application fields of commercial air conditioners and chillers, refrigeration facilities for cold storage, etc. And now, the refrigeration system is being applied in various ways to decrease global warming above the generation of electric power with organic Rankine cycle, the binary electric generation with ground source heat pump, and so on. In these situations, various refrigerants are developed and several kinds of suitable refrigeration oils are selected. This paper presents the consideration of suitable refrigeration oil for the various low GWP refrigerants.

  18. Vuilleumier Cycle Cryogenic Refrigeration

    DTIC Science & Technology

    1976-04-01

    WORDS (Continue on reverse side if necessary and identify by block number) Cryogenic Refrigerator Vuilleumier Cycle 20. ABSTRACT (Continue on reverse ...The energy added to the gas was stored in the regenerator packing, or matrix, by gas flow in the reverse direction during a previous part of the cycle ...AFFDL-TR-76-17 VUILLEUMIER CYCLE CRYOGENIC REFRIGERATION ENVIRONMENTAL CONTROL BRANCH 4 VEHICLE EQUIPMENT DIVISION APRIL 1976 TECHNICAL REPORT AFFDL

  19. Electrocaloric Refrigeration for Superconductors

    DTIC Science & Technology

    1977-02-01

    CO rH CO © . NBSIR 76-847 ELECTROCALORIC REFRIGERATION FOR SUPERCONDUCTORS Ray Radebaugh and J.D. Siegwarth Cryogenics Division Institute...June 30, 1975 NBSIR 76-847 ELECTROULORIC REFRIGERATION FOR SUPERCONDUCTORS Ray Radebaugh and J.D. Siegwarth Cryogenics Division L Institute for...Field at Low Temperatures, Rev. Sei. Instrum. 42, 571 (1971). 8. Lawless, W. N., Radebaugh , R., and Soulen, R. J., Studies of a Glass- Ceramic

  20. Cryogenic coolers and refrigerators. (Latest citations from the Patent Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning cryogenic cooling equipment and cryogenic refrigerators. Associated components such as drive motors, insulation, temperature controls, vibration damping, actuators, pumps, and heat exchangers are discussed. Applications of cryogenic refrigeration and materials properties at cryogenic temperatures are considered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  1. Cryogenic coolers and refrigerators. (Latest citations from the US Patent database). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning cryogenic cooling equipment and cryogenic refrigerators. Associated components such as drive motors, insulation, temperature controls, vibration damping, actuators, pumps, and heat exchangers are discussed. Applications of cryogenic refrigeration and materials properties at cryogenic temperatures are considered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  2. Transport Refrigeration Technician: Apprenticeship Course Outline. Apprenticeship and Industry Training. 4112

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2012

    2012-01-01

    The graduate of the Transport Refrigeration Technician apprenticeship program is a certified journeyperson who will be able: (1) to diagnose repair, maintain and operate transport refrigeration equipment used to heat or cool the load as well as of diesel engines, APUs and other prime movers; (2) to use tools and equipment in order to carry out…

  3. 10 CFR 431.292 - Definitions concerning refrigerated bottled or canned beverage vending machines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... beverage vending machines. 431.292 Section 431.292 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY... Vending Machines § 431.292 Definitions concerning refrigerated bottled or canned beverage vending machines... means a refrigerated bottled or canned beverage vending machine that is fully cooled, and is not...

  4. 10 CFR 431.292 - Definitions concerning refrigerated bottled or canned beverage vending machines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... beverage vending machines. 431.292 Section 431.292 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY... Vending Machines § 431.292 Definitions concerning refrigerated bottled or canned beverage vending machines... means a refrigerated bottled or canned beverage vending machine that is fully cooled, and is not...

  5. 10 CFR 431.292 - Definitions concerning refrigerated bottled or canned beverage vending machines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... beverage vending machines. 431.292 Section 431.292 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY... Vending Machines § 431.292 Definitions concerning refrigerated bottled or canned beverage vending machines... means a refrigerated bottled or canned beverage vending machine that is fully cooled, and is not...

  6. Microbial analysis of meatballs cooled with vacuum and conventional cooling.

    PubMed

    Ozturk, Hande Mutlu; Ozturk, Harun Kemal; Koçar, Gunnur

    2017-08-01

    Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

  7. Conduction cooling systems for linear accelerator cavities

    DOEpatents

    Kephart, Robert

    2017-05-02

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  8. Magnetocaloric materials for energy efficient cooling

    NASA Astrophysics Data System (ADS)

    Lyubina, Julia

    2017-02-01

    Solid-state magnetic cooling near room temperature has recently gained a prominent position among alternative cooling technologies that are deemed to have higher energy efficiency compared to vapour compression. This prospect has surged a rapid growth of the area of magnetocaloric materials. Although several breakthroughs were achieved, the extensive study revealed a number of challenges in the effective deployment of the magnetic refrigerants. This review focuses on fundamentally and technologically relevant aspects of the cooling with magnetocaloric materials. A critical evaluation of magnetic refrigerants and progress made in improvement of their performance is provided. Future development trends in the field of materials for the solid state cooling are highlighted.

  9. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Refrigerators... efficiency, water consumption, or water efficiency. Commercial refrigerator, freezer, and refrigerator... consists of 1 or more refrigerant compressors, refrigerant condensers, condenser fans and motors,...

  10. Improving Control in a Joule-Thomson Refrigerator

    NASA Technical Reports Server (NTRS)

    Borders, James; Pearson, David; Prina, Mauro

    2005-01-01

    A report discusses a modified design of a Joule-Thomson (JT) refrigerator under development to be incorporated into scientific instrumentation aboard a spacecraft. In most other JT refrigerators (including common household refrigerators), the temperature of the evaporator (the cold stage) is kept within a desired narrow range by turning a compressor on and off as needed. This mode of control is inadequate for the present refrigerator because a JT-refrigerator compressor performs poorly when the flow from its evaporator varies substantially, and this refrigerator is required to maintain adequate cooling power. The proposed design modifications include changes in the arrangement of heat exchangers, addition of a clamp that would afford a controlled heat leak from a warmer to a cooler stage to smooth out temperature fluctuations in the cooler stage, and incorporation of a proportional + integral + derivative (PID) control system that would regulate the heat leak to maintain the temperature of the evaporator within a desired narrow range while keeping the amount of liquid in the evaporator within a very narrow range in order to optimize the performance of the compressor. Novelty lies in combining the temperature- and cooling-power-regulating controls into a single control system.

  11. An experimental study of the flow boiling of refrigerant-based nanofluids

    NASA Astrophysics Data System (ADS)

    Kolekar, Rahul Dadasaheb

    The use of nanofluids for various heat transfer applications has been a topic of intense research over the last decade. A number of studies to evaluate the thermophysical properties and single-phase heat transfer behavior of nanofluids have been reported. The current study is focused on the use of nanofluids in flow boiling applications, with CO2 and R134a used as the base refrigerants. CuO nanoparticles 40nm in size, and TiO2 nanoparticles 200nm in size are used to create partially stable CO2-based nanofluids. Stable nanofluids are created in R134a by mixing it with dispersions of surface-treated nanoparticles in polyolester (POE) oil (RL22H and RL68H). The particles (Al 2O3, ZnO, CuO, and ATO) at particle mass fractions from 0.08% to 1.34%, with particle sizes of 20nm and 40nm are coated with polar and non-polar surface treatments. The thermal properties of R134a-based nanofluids are measured. Thermal conductivity shows limited improvements; the largest increase of 13% is observed with CuO nanoparticles. Significant increases in viscosity, as high as 2147%, are observed due to CuO nanoparticles. Only the ATO nanofluid exhibited a decrease in the measured viscosity. Heat transfer coefficients during flow boiling of nanofluids are measured over a range of mass flux from 100 to 1000 kg/m2s, with a heat flux from 5 to 25kW/m2, and vapor quality up to 1. The test section is a smooth copper tube, 6.23mm in diameter and 1.8m in length. Average decreases of 5% and 28% are observed in heat transfer coefficients during flow boiling of CuO/CO2 and TiO2/CO2 nanofluids, respectively. For the R134a-based nanofluids, average decreases in heat transfer during flow boiling at the highest particle mass fraction are 15% and 22% for Al2O3 and ZnO nanoparticles, respectively. CuO nanoparticles exhibit an average decrease of 7% for particle mass fraction of 0.08%. An average increase of 10% is observed with ATO nanoparticles at a 0.22% mass fraction. Heat transfer performance

  12. Stirling Air Conditioner for Compact Cooling

    SciTech Connect

    2010-09-01

    BEETIT Project: Infinia is developing a compact air conditioner that uses an unconventional high efficient Stirling cycle system (vs. conventional vapor compression systems) to produce cool air that is energy efficient and does not rely on polluting refrigerants. The Stirling cycle system is a type of air conditioning system that uses a motor with a piston to remove heat to the outside atmosphere using a gas refrigerant. To date, Stirling systems have been expensive and have not had the right kind of heat exchanger to help cool air efficiently. Infinia is using chip cooling technology from the computer industry to make improvements to the heat exchanger and improve system performance. Infinia’s air conditioner uses helium gas as refrigerant, an environmentally benign gas that does not react with other chemicals and does not burn. Infinia’s improvements to the Stirling cycle system will enable the cost-effective mass production of high-efficiency air conditioners that use no polluting refrigerants.

  13. Hybrid driven three-terminal thermoelectric refrigerators based on resonant tunneling quantum dots

    NASA Astrophysics Data System (ADS)

    Shi, Zhicheng; Qin, Weifeng; He, Jizhou

    2016-11-01

    In this paper, we propose a pair of symmetric three-terminal refrigerator models with a hot cavity connected to two colder reservoirs via ideal tunneling quantum dots. The cooling of the refrigerators is achieved by investing thermal power from a hot reservoir and electric power from an applied voltage. Based on the model proposed, we numerically analyze the performance of the refrigerators with different half width of energy levels, and particularly discuss the coefficient of performance for zero applied voltage in the limit of a small half level width. Finally, we optimize with half width of energy levels and get the optimal region of the refrigerators.

  14. Isac Sc-Linac Phase-II Helium Refrigerator Commissioning and First Operational Experience at Triumf

    NASA Astrophysics Data System (ADS)

    Sekachev, I.; Kishi, D.; Laxdal, R. E.

    2010-04-01

    ISAC Phase-II is an upgrade of the radioactive isotope superconducting linear accelerator, SC-linac, at TRIUMF. The Phase-I section of the accelerator, medium-beta, is operational and is cooled with a 600 W helium refrigerator, commissioned in March 2005. An identical refrigerator is being used with the Phase-II segment of the accelerator; which is now under construction. The second refrigerator has been commissioned and tested with the Phase-I section of the linac and is used for Phase-II linac development, including new SC-cavity performance tests. The commissioning of the Phase-II refrigeration system and recent operational experience is presented.

  15. Development of a thermodynamic model for a cold cycle 3He-4He dilution refrigerator

    NASA Astrophysics Data System (ADS)

    Mueller, B. W.; Miller, F. K.

    2016-10-01

    A thermodynamic model of a 3He-4He cold cycle dilution refrigerator with no actively-driven mechanical components is developed and investigated. The refrigerator employs a reversible superfluid magnetic pump, passive check valves, a phase separation chamber, and a series of recuperative heat exchangers to continuously circulate 3He-4He and maintain a 3He concentration gradient across the mixing chamber. The model predicts cooling power and mixing chamber temperature for a range of design and operating parameters, allowing an evaluation of feasibility for potential 3He-4He cold cycle dilution refrigerator prototype designs. Model simulations for a prototype refrigerator design are presented.

  16. Algor mortis: an erroneous measurement following postmortem refrigeration.

    PubMed

    Wardak, Khalil S; Cina, Stephen J

    2011-09-01

    Determination of the time of death is one goal of medicolegal death investigations. Algor mortis has been used as a measure of the postmortem interval (PMI). We prospectively recorded the core temperatures of 19 adult bodies entering our morgue cooler and at 3, 6, and 9 h of refrigeration. We then compared the cooling rate with the calculated body mass index (BMI). For each individual body, the rate of cooling was fairly linear with no evidence of a plateau. There was fair to moderate correlation between the BMI and the cooling rate: cooling rate = -0.052 (BMI) + 3.52. The probability of linearity in any given case was 36%. Variables affecting this correlation included the presence and the layers of clothing and if the clothing was wet. Our data confirm that algor mortis is of very limited utility in determining the PMI in bodies that have been refrigerated.

  17. Laser Cooling of Solids

    DTIC Science & Technology

    2009-01-01

    journal.org) Schematic of an optical refrigeration system. Pump light is efficiently generated by a semicon- ductor diode laser. The laser light en- ters...efficiency of light emitting diodes (LEDs). Various methods have been devised to remedy this prob- lem for LEDs but not all are applicable to laser...cooling: light quanta in the red tail of the absorption spectrum are absorbed from a monochro- matic source followed by spontaneous emission of more

  18. Space-borne He-3 refrigerator

    NASA Technical Reports Server (NTRS)

    Duband, L.; Hui, L.; Lange, A.

    1990-01-01

    A space-compatible He-3 refrigerator is being developed for cooling the bolometric detectors of the Far Infrared Photometer (FIRP) in the Infrared Telescope in Space (IRTS). The refrigerator is self-contained and compact, and can be recycled in zero gravity with low power dissipation (20 mW or less). A laboratory prototype that contains 2 STP cu dm of He-3 has been successfully cycled upside-down, i.e., against gravity, thus proving the feasibility of the cycle in zero gravity. Sintered copper confines the He-3 to the evaporator during the low temperature phase. Temperatures as low as 280 mK have been achieved with this configuration. Other types of porous material which have lower mass density are currently under investigation.

  19. Performance bound for quantum absorption refrigerators

    NASA Astrophysics Data System (ADS)

    Correa, Luis A.; Palao, José P.; Adesso, Gerardo; Alonso, Daniel

    2013-04-01

    An implementation of quantum absorption chillers with three qubits has been recently proposed that is ideally able to reach the Carnot performance regime. Here we study the working efficiency of such self-contained refrigerators, adopting a consistent treatment of dissipation effects. We demonstrate that the coefficient of performance at maximum cooling power is upper bounded by 3/4 of the Carnot performance. The result is independent of the details of the system and the equilibrium temperatures of the external baths. We provide design prescriptions that saturate the bound in the limit of a large difference between the operating temperatures. Our study suggests that delocalized dissipation, which must be taken into account for a proper modeling of the machine-baths interaction, is a fundamental source of irreversibility which prevents the refrigerator from approaching the Carnot performance arbitrarily closely in practice. The potential role of quantum correlations in the operation of these machines is also investigated.

  20. Space-borne He-3 refrigerator

    NASA Astrophysics Data System (ADS)

    Duband, L.; Hui, L.; Lange, A.

    1990-03-01

    A space-compatible He-3 refrigerator is being developed for cooling the bolometric detectors of the Far Infrared Photometer (FIRP) in the Infrared Telescope in Space (IRTS). The refrigerator is self-contained and compact, and can be recycled in zero gravity with low power dissipation (20 mW or less). A laboratory prototype that contains 2 STP cu dm of He-3 has been successfully cycled upside-down, i.e., against gravity, thus proving the feasibility of the cycle in zero gravity. Sintered copper confines the He-3 to the evaporator during the low temperature phase. Temperatures as low as 280 mK have been achieved with this configuration. Other types of porous material which have lower mass density are currently under investigation.

  1. A model for exergy analysis and thermodynamic bounds of Stirling refrigerators

    NASA Astrophysics Data System (ADS)

    Razani, A.; Dodson, C.; Roberts, T.

    2010-04-01

    A thermodynamic model based on exergy flow through a Stirling Refrigerator is developed. Important irreversibilities of the refrigerator due to external heat transfer with the reservoirs, heat leak, flow and heat transfer in regenerator are included in the model. Expansion and compression efficiencies are introduced in the model to account for the losses in these processes. The effect of a control phase shift between the mass flow rate and pressure across regenerator on the performance of the refrigerator is presented. Analytical solutions representing important quantities in the design of Stirling refrigerators such as the load curve, cooling power and efficiency in terms of basic system input parameters are developed. Thermodynamic bounds for the performance of Stirling refrigerators are obtained. Results indicating a compromise between cooling power and efficiency that are dependent on the constraint of the system are presented and discussed.

  2. Refrigerator recycling and CFCs

    SciTech Connect

    Shepard, M.; Hawthorne, W.; Wilson, A.

    1994-12-31

    Utility-sponsored refrigerator and freezer pick-up programs have removed almost 900,000 inefficient appliances from the North American electric grid to date. While the CFC-12 refrigerant from the discarded appliances is typically removed and recycled, in all but a few programs the CFC-11 in the foam insulation is not. About a quarter-billion pounds of CFC-11 are banked in refrigerator foam in the United States. Release of this ``bank`` of CFC, combined with that from foam insulation used in buildings, will be the largest source of future emissions if preventive measures are not taken. Methods exist to recover the CFC for reuse or to destroy it by incineration. The task of recycling or destroying the CFCs and other materials from millions of refrigerators is a daunting challenge, but one in which utilities can play a leadership role. E Source believes that utilities can profitably serve as the catalyst for public-private partnerships that deliver comprehensive refrigerator recycling. Rather than treating such efforts solely as a DSM resource acquisition, utilities could position these programs as a multifaceted service delivery that offers convenient appliance removal for homeowners, a solid waste minimization service for landfills, a source of recycled materials for industry, and a CFC recovery and/or disposal service in support of the HVAC industry and society`s atmospheric protection goals and laws. Financial mechanisms could be developed through these public-private enterprises to ensure that utilities are compensated for the extra cost of fully recycling refrigerators, including the foam CFC.

  3. Helium-refrigeration system

    SciTech Connect

    Specht, J.R.; Millar, B.; Sutherland, A.

    1995-08-01

    The design, procurement, and preliminary construction was completed for adding two more wet expansion engines to two helium refrigerators. These will be added in mid-year FY 1995. In addition a variable speed drive will be added to an existing helium compressor. This is part of an energy conservation upgrade project to reduce operating costs from the use of electricity and liquid nitrogen. This project involves the replacement of Joule-Thompson valves in the refrigerators with expansion engines resulting in system efficiency improvements of about 30% and improved system reliability.

  4. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    SciTech Connect

    Nelson, Caleb; Reis, Chuck; Nelson, Eric; Armer, James; Arthur, Rob; Heath, Richard; Rono, James; Hirsch, Adam; Doebber, Ian

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  5. Low-temperature magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1983-05-26

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  6. The Carnot type magnetic refrigeration below 4.2 K - Computer simulation

    NASA Astrophysics Data System (ADS)

    Hashimoto, T.; Numazawa, T.; Maro, T.

    Cooling devices based on a utilization of the Carnot type magnetic refrigeration cycle are usually selected for the temperature range from 20 K to 1.8 K. However, the refrigeration power in the case of such devices is frequently limited by the heat transfer coefficient between the heat source and the magnetic working substance. Thus, in a magnetic refrigerator studied by Delpuech et al. (1981), the refrigeration power is mainly restricted by the heat transfer coefficient in the isothermal magnetization process at 4.2 K. The present investigation is concerned with the development of a method for achieving high refrigeration power on the basis of a study utilizing computer simulation. One of two methods considered for enhancing refrigeration power is related to the change in the magnetic field, while the other method involves an enlargement of the effective area of gadolinium-gallium-garnet (GGG) with the aid of deep grooves in the surface.

  7. Portable refrigerant charge meter and method for determining the actual refrigerant charge in HVAC systems

    DOEpatents

    Gao, Zhiming; Abdelaziz, Omar; LaClair, Tim L.

    2017-08-08

    A refrigerant charge meter and a method for determining the actual refrigerant charge in HVAC systems are described. The meter includes means for determining an optimum refrigerant charge from system subcooling and system component parameters. The meter also includes means for determining the ratio of the actual refrigerant charge to the optimum refrigerant charge. Finally, the meter includes means for determining the actual refrigerant charge from the optimum refrigerant charge and the ratio of the actual refrigerant charge to the optimum refrigerant charge.

  8. Dilution refrigeration for space applications

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Petrac, D.

    1990-01-01

    Dilution refrigerators are presently used routinely in ground based applications where temperatures below 0.3 K are required. The operation of a conventional dilution refrigerator depends critically on the presence of gravity. To operate a dilution refrigerator in space many technical difficulties must be overcome. Some of the anticipated difficulties are identified in this paper and possible solutions are described. A single cycle refrigerator is described conceptually that uses forces other than gravity to function and the stringent constraints imposed on the design by requiring the refrigerator to function on the earth without using gravity are elaborated upon.

  9. Heat powered refrigeration compressor

    NASA Astrophysics Data System (ADS)

    Goad, R. R.

    This prototype will be of similar capacity as the compressor that will eventually be commercially produced. This unit can operate on almost any moderate temperature water heat source. This heat source could include such applications as industrial waste heat, solar, wood burning stove, resistance electrical heat produced by a windmill, or even perhaps heat put out by the condenser of another refrigeration system.

  10. Solar Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  11. Improved cryogenic refrigeration system

    NASA Technical Reports Server (NTRS)

    Higa, W. H.

    1967-01-01

    Two-position shuttle valve simplifies valving arrangement and crank-shaft configuration in gas-balancing and Stirling-cycle refrigeration systems used to produce temperatures below 173 degrees K. It connects the displacer and regenerator alternately to the supply line or the return line of the compressor, and establishes constant pressure on the drive piston.

  12. Education in Helium Refrigeration

    NASA Astrophysics Data System (ADS)

    Gistau Baguer, G. M.

    2004-06-01

    On the one hand, at the end of the time I was active in helium refrigeration, I noticed that cryogenics was stepping into places where it was not yet used. For example, a conventional accelerator, operating at room temperature, was to be upgraded to reach higher particle energy. On the other hand, I was a little bit worried to let what I had so passionately learned during these years to be lost. Retirement made time available, and I came gradually to the idea to teach about what was my basic job. I thought also about other kinds of people who could be interested in such lessons: operators of refrigerators or liquefiers who, often by lack of time, did not get a proper introduction to their job when they started, young engineers who begin to work in cryogenics… and so on. Consequently, I have assembled a series of lessons about helium refrigeration. As the audiences have different levels of knowledge in the field of cryogenics, I looked for a way of teaching that is acceptable for all of them. The course is split into theory of heat exchangers, refrigeration cycles, technology and operation of main components, process control, and helium purity.

  13. Fundamentals of Refrigeration.

    ERIC Educational Resources Information Center

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine enlisted personnel with the principles of the refrigeration process. The course contains five study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work units, each…

  14. Solar Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  15. Electrocaloric Refrigeration for Superconductors

    DTIC Science & Technology

    1974-12-31

    AD-A008 852 ELECTROCALORIC REFRIGERATION FOR SUPERCONDUCTORS Ray Radebaugh , et al National Bureau of Standards...for the period ending December 31, 1974 < Prepared by Ray Radebaugh , W. N. Lawless, and J. D. Slegwarth Cryogenics Division National Bureau of

  16. Thermoacoustic engines and refrigerators

    SciTech Connect

    Swift, G.W.

    1995-07-01

    We ordinarily think of a sound wave in a gas as consisting of coupled pressure and displacement oscillations. However, temperature oscillations always accompany the pressure changes. The combination of all these oscillations, and their interaction with solid boundaries, produces a rich variety of `thermoacoustic` effects. Although these effects as they occur in every-day life are too small to be noticed, one can harness extremely loud sound waves in acoustically sealed chambers to produce powerful heat engines, heat pumps and refrigerators. Whereas typical engines and refrigerators have crankshaft-coupled pistons or rotating turbines, thermoacoustic engines and refrigerators have at most a single flexing moving part (as in a loudspeaker) with no sliding seals. Thermoacoustic devices may be of practical use where simplicity, reliability or low cost is more important than the highest efficiency (although one cannot say much more about their cost-competitiveness at this early stage). This paper discusses the fundamentals of thermoacoustic engines and refrigerators, research in this field, and their commercial development. 16 refs., 5 figs.

  17. Education in Helium Refrigeration

    SciTech Connect

    Gistau Baguer, G. M.

    2004-06-23

    On the one hand, at the end of the time I was active in helium refrigeration, I noticed that cryogenics was stepping into places where it was not yet used. For example, a conventional accelerator, operating at room temperature, was to be upgraded to reach higher particle energy. On the other hand, I was a little bit worried to let what I had so passionately learned during these years to be lost. Retirement made time available, and I came gradually to the idea to teach about what was my basic job. I thought also about other kinds of people who could be interested in such lessons: operators of refrigerators or liquefiers who, often by lack of time, did not get a proper introduction to their job when they started, young engineers who begin to work in cryogenics... and so on.Consequently, I have assembled a series of lessons about helium refrigeration. As the audiences have different levels of knowledge in the field of cryogenics, I looked for a way of teaching that is acceptable for all of them. The course is split into theory of heat exchangers, refrigeration cycles, technology and operation of main components, process control, and helium purity.

  18. Thermophysical properties of refrigerants

    SciTech Connect

    Platzer, B.; Maurer, G. ); Polt, A. )

    1990-01-01

    This book summarizes the extensive experimental results available for 16 pure and mixed halogenated hydrocarbons, important working media in organic Rankine cycles and refrigerant processes in industry. Properties like pressure-temperature-density relationship, vapour pressure, enthalphy etc. are correlated by the Bender equation of state for computerized calculations.

  19. Solar Powered Refrigeration System

    NASA Astrophysics Data System (ADS)

    Ewert, Michael K.; Bergeron, David J., III

    2002-09-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  20. Experimental results on a low-temperature magnetic refrigerator

    NASA Astrophysics Data System (ADS)

    Barclay, J. A.; Stewart, W. F.; Overton, W. C.; Candler, R. J.; Harkleroad, O. D.

    1985-06-01

    A Carnot-cycle magnetic refrigerator has been designed, built, and tested in the temperature range of approx. 4 K to approx. 15 K. Gadolinium gallium garnet in the rim of a wheel is the refrigerant. The wheel rim rotates through a gap between two superconducting Helmholtz coils that produce a magnetic field of up to 6 T. Helium gas is used as the heat-transfer fluid in the hot and cold regions of the wheel. The refrigerator performance has been measured in an open-cycle flow system because no suitable low-temperature helium gas pumps were available for closed loop circulation of helium gas. Over one watt of cooling power with a temperature span of several degrees was achieved. At low frequencies the cooling power and temperature changes of the refrigerator match the entropy-temperature data used in the design. Problems associated with friction and gas mixing limit the performance at frequencies above about 0.1 Hz. Separate friction measurements suggest that gas flow control is the dominant problem that needs to be solved before significant improvement in refrigerator operation can be expected. The present measured efficiency is about 20% of Carnot if the drive motor efficiency is ignored. With friction and other losses in the drive motor mechanism, the overall efficiency is approx. 1% of Carnot.

  1. Hydride absorption refrigerator system for ten Kelvin and below

    NASA Astrophysics Data System (ADS)

    Jones, J. A.

    1985-05-01

    A very long-life, lightweight and efficient hydride absorption refrigerator system was built to operate at ten Kelvin and below. The system consists of four basic stages of refrigeration. The first stage is accomplished by an active refrigeration system. The second stage is operated by a hydride absorption system, wherein a heated hydride powder drives off high pressure hydrogen through a Joule-Thomson/heat exchanger expansion loop such that the hydrogen is partially liquefied. In the third stage, the vapor pressure over the collected liquid hydrogen is lowered by absorbing the hydrogen vapor onto a different low pressure, worn hydride. With a 1.7 torr partial pressure of hydrogen gas in the hydride, liquid hydrogen is solidified and sublimes at 10 K. Long-life adiabatic demagnetization refrigerators, helium desorption, or helium diaphragm compressors are used to cool to 4 K or below. It is shown that the hydride concepts provide an extremely efficient means of refrigeration to 10 K, and that an entire sorption refrigeration process can be accomplished solely by using low grade heat energy at about 150 C.

  2. Radio-frequency single-electron refrigerator.

    PubMed

    Pekola, Jukka P; Giazotto, Francesco; Saira, Olli-Pentti

    2007-01-19

    We propose a cyclic refrigeration principle based on mesoscopic electron transport. Synchronous sequential tunneling of electrons in a Coulomb-blockaded device, a normal metal-superconductor single-electron box, results in a cooling power of approximately k(B)T x f at temperature T over a wide range of cycle frequencies f. Electrostatic work, done by the gate voltage source, removes heat from the Coulomb island with an efficiency of approximately k(B)T/Delta, where Delta is the superconducting gap parameter. The performance is not affected significantly by nonidealities, for instance by offset charges. We propose ways of characterizing the system and of its practical implementation.

  3. Magnetic refrigeration apparatus with heat pipes

    DOEpatents

    Barclay, John A.; Prenger, Jr., F. Coyne

    1987-01-01

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe of pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  4. Magnetic refrigeration apparatus with heat pipes

    DOEpatents

    Barclay, J.A.; Prenger, F.C. Jr.

    1985-10-25

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe or pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  5. Four-level refrigerator driven by photons

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; Lai, Yiming; Ye, Zhuolin; He, Jizhou; Ma, Yongli; Liao, Qinghong

    2015-05-01

    We propose a quantum absorption refrigerator driven by photons. The model uses a four-level system as its working substance and couples simultaneously to hot, cold, and solar heat reservoirs. Explicit expressions for the cooling power Q˙c and coefficient of performance (COP) ηCOP are derived, with the purpose of revealing and optimizing the performance of the device. Our model runs most efficiently under the tight coupling condition, and it is consistent with the third law of thermodynamics in the limit T →0 .

  6. Four-level refrigerator driven by photons.

    PubMed

    Wang, Jianhui; Lai, Yiming; Ye, Zhuolin; He, Jizhou; Ma, Yongli; Liao, Qinghong

    2015-05-01

    We propose a quantum absorption refrigerator driven by photons. The model uses a four-level system as its working substance and couples simultaneously to hot, cold, and solar heat reservoirs. Explicit expressions for the cooling power Q̇(c) and coefficient of performance (COP) η(COP) are derived, with the purpose of revealing and optimizing the performance of the device. Our model runs most efficiently under the tight coupling condition, and it is consistent with the third law of thermodynamics in the limit T→0.

  7. Magnetic refrigeration: recent developments and alternative configurations

    NASA Astrophysics Data System (ADS)

    Almanza, Morgan; Kedous-Lebouc, Afef; Yonnet, Jean-Paul; Legait, Ulrich; Roudaut, Julien

    2015-07-01

    Magnetic refrigeration, based on magnetocaloric effect, is an upcoming environmentaly friendly technology with a high potential to improve energy efficiency and to reduce greenhouse gas emission. It is a multidisciplinary research theme and its real emergence requires, to overcome scientific and technical issues related to both material and system. This paper presents the state of the art in magnetic cooling, the main recent works achieved and discusses in more details the thermodynamic phenomenon according to the G2Elab experience in the field. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2014)", edited by Adel Razek

  8. Performance evaluation of a solar ejector-vapour compression cycle for cooling application

    NASA Astrophysics Data System (ADS)

    Megdouli, K.; Elakhdar, M.; Nahdi, E.; Kairouani, L.; Mhimid, A.

    2015-04-01

    This study deals with the performance of the ejector-vapour compression cycle assisted by solar. The effect of operating conditions on the combined cycle performance is examined. Also, a comparison of the system performance with environment friendly refrigerants (R134a, R600, R123, R141b, R142b, R152a, R290, and R245fa) is made. This performance is calculated using an empirical correlation. Thermodynamic properties of functioning fluids are obtained with package REFPROP 8. Using the typical meteorological year file containing the weather data of the city of Tunis, the system performance is computed for three collector types. The theoretical results show that the R290 offers the highest coefficient of performance, COP=3.75, for generator temperature TB = 78°C, condenser temperature Tc = 30°C and the intercooler temperature Te = 15°C.

  9. Thermal conductivity of a wide range of alternative refrigerants measured with an improved guarded hot-plate apparatus

    SciTech Connect

    Hammerschmidt, U.

    1995-09-01

    The thermal conductivity of the refrigerants R22, R123, R134a, R142b, R143a, and R152a has been determined as a function of temperature in the range from 300 to 460 K. Measurements were carried out at atmospheric pressure with an improved guarded hot-plate apparatus. The width of the instrument`s gas layer and the temperature difference across the metering section were varied to detect any stray heat transfer. Radiation correction factors were derived from IR absorption spectra. The uncertainty of the measurements is estimated to be 2% at a standard deviation of less than 0.1%. Our data sets are compared with corresponding hot wire results. In contrast to the generally preferred hot wire technique, with its possible electrical and chemical interactions between the wire and the polar refrigerant, there are no such difficulties using a guarded hot-plate apparatus. Our data sets may thus contribute to the discussions on discrepancies in thermal conductivity values from various authors using hot wire as one particular method.

  10. Performance of R-410A Alternative Refrigerants in a Reciprocating Compressor Designed for Air Conditioning Applications

    SciTech Connect

    Shrestha, Som S; Vineyard, Edward Allan; Mumpower, Kevin

    2016-01-01

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. After successfully completing the first phase of the program in December 2013, AHRI launched a second phase of the Low-GWP AREP in 2014 to continue research in areas that were not previously addressed, including refrigerants in high ambient conditions, refrigerants in applications not tested in the first phase, and new refrigerants identified since testing for the program began. Although the Ozone Depletion Potential of R-410A is zero, this refrigerant is under scrutiny due to its high GWP. Several candidate alternative refrigerants have already demonstrated low global warming potential. Performance of these low-GWP alternative refrigerants is being evaluated for Air conditioning and heat pump applications to ensure acceptable system capacity and efficiency. This paper reports the results of a series of compressor calorimeter tests conducted for the second phase of the AREP to evaluate the performance of R-410A alternative refrigerants in a reciprocating compressor designed for air conditioning systems. It compares performance of alternative refrigerants ARM-71A, L41-1, DR-5A, D2Y-60, and R-32 to that of R-410A over a wide range of operating conditions. The tests showed that, in general, cooling capacities were slightly lower (except for the R-32), but energy efficiency ratios (EER) of the alternative refrigerants were comparable to that of R-410A.

  11. Semimetal cascades - Solid state precursors to spacecraft slush hydrogen refrigerators

    NASA Astrophysics Data System (ADS)

    Schalla, C. A.

    The design of an energy conversion system for the refrigeration of stored propellant during a spacecraft mission represents a challenging problem. The utilization of cascaded semimetal elements for the development of solid-state propellant refrigerators for interplanetary spacecraft is, in this connection, considered. The present investigation gives attention to a hypothetical cooling device to show the viability of a thermomaganetic cooling system and to give direction to semimetals development. Problems of propellant storage heat absorption during a 405-day Mars mission are discussed. It is concluded that solid-state refregeration is the most reliable and light-weight means for thermal control of the stored hydrogen. The use of a cascaded series of thermomagnetic cooling elements could maintain a slush hydrogen temperature of 13.6 K, 0.2 K below the triple point. Attention is given to figure of merit improvement goals, semimetal cascade staging requirements, and aspects of magnetic enhancement and other improvements with high-temperature superconductors.

  12. Salt pill design and fabrication for adiabatic demagnetization refrigerators

    NASA Astrophysics Data System (ADS)

    Shirron, Peter J.; McCammon, Dan

    2014-07-01

    The performance of an adiabatic demagnetization refrigerator (ADR) is critically dependent on the design and construction of the salt pills that produce cooling. In most cases, the primary goal is to obtain the largest cooling capacity at the low temperature end of the operating range. The realizable cooling capacity depends on a number of factors, including refrigerant mass, and how efficiently it absorbs heat from the various instrument loads. The design and optimization of “salt pills” for ADR systems depend not only on the mechanical, chemical and thermal properties of the refrigerant, but also on the range of heat fluxes that the salt pill must accommodate. Despite the fairly wide variety of refrigerants available, those used at very low temperature tend to be hydrated salts that require a dedicated thermal bus and must be hermetically sealed, while those used at higher temperature - greater than about 0.5 K - tend to be single- or poly-crystals that have much simpler requirements for thermal and mechanical packaging. This paper presents a summary of strategies and techniques for designing, optimizing and fabricating salt pills for both low- and mid-temperature applications.

  13. Salt Pill Design and Fabrication for Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; Mccammon, Dan

    2014-01-01

    The performance of an adiabatic demagnetization refrigerator (ADR) is critically dependent on the design and construction of the salt pills that produce cooling. In most cases, the primary goal is to obtain the largest cooling capacity at the low temperature end of the operating range. The realizable cooling capacity depends on a number of factors, including refrigerant mass, and how efficiently it absorbs heat from the various instrument loads. The design and optimization of "salt pills" for ADR systems depend not only on the mechanical, chemical and thermal properties of the refrigerant, but also on the range of heat fluxes that the salt pill must accommodate. Despite the fairly wide variety of refrigerants available, those used at very low temperature tend to be hydrated salts that require a dedicated thermal bus and must be hermetically sealed, while those used at higher temperature - greater than about 0.5 K - tend to be single-­- or poly-­-crystals that have much simpler requirements for thermal and mechanical packaging. This paper presents a summary of strategies and techniques for designing, optimizing and fabricating salt pills for both low-­- and mid-­-temperature applications.

  14. Practical design of heat exchangers for dilution refrigerators: part 2

    NASA Astrophysics Data System (ADS)

    Oda, Y.; Fujii, G.; Ono, T.; Nagano, H.

    A dilution refrigerator with a He 3 circulation rate 80-730 μmols -1 and a minimum temperature of 2.85 mK which is continuously maintained has been built. Discrete heat exchangers with pressed metal (Cu and Ag) powder are used. The heat exchangers are newly developed, based on the analysis of Radebaugh and Siegwarth. The machine is designed for many purposes such as the base of nuclear cooling and studies of general solid state physics. The design, construction and performance of this refrigerator are described.

  15. Suspension Device for Use with Low Temperature Refrigerator

    NASA Technical Reports Server (NTRS)

    Wegel, Donald C. (Inventor)

    2015-01-01

    A suspension device for use with a low temperature refrigeration system, such as an adiabatic demagnetization refrigerator is provided. A support ring is provided with three spring-loaded tension assemblies equally spaced about the periphery of the support ring. The tension assemblies each have a pulley, about which is entrained a band of material. Connected to this band is a ring that laterally supports a cylindrical salt pill. Undesired variations in the amount of slack in the band as the salt pill cools are compensated for by the spring loading of the tension assemblies.

  16. Advantages of cryopumping with liquid hydrogen instead of helium refrigerators

    NASA Technical Reports Server (NTRS)

    Anderson, J. W.; Tueller, J. E.

    1972-01-01

    Open loop hydrogen vaporizers and helium refrigerators are compared for operational complexity, installation and operating cost, and safety requirements. Data from two vacuum chambers using helium refrigerators are used to provide comparative data. In general, the use of hydrogen is attractive in the larger systems, even when extra safety precautions are taken. Emotional resistance to the use of hydrogen because of safety requirements is considered great. However, the experience gained in the handling of large quantities of cryogenics, particularly hydrogen and liquefied natural gases, should be considered in the design of open loop hydrogen cooling systems.

  17. The Effect of Circuiting Arrangement on the Thermal Performance of Refrigeration Mixtures in Tube-and-Fin Condensing Heat Exchangers

    SciTech Connect

    Chen, D.T.; Conklin, J.C.

    1999-03-15

    For the pure or azeotropic refrigerants typically used in present air conditioning and refrigeration applications, the refrigerant changes phase at a constant temperature. Thus, the refrigerant circuiting arrangement such as crossfiow, counterfiow, or cross-counterflow, has no effect on the thermal performance. For zeotropic refrigerant mixtures, however, the phase-change occurs over a temperature range, or "glide", and the refrigerant circuiting arrangement, or flow path through the heat exchanger, can affect the thermal performance of both the heat exchangers as well as the overall efficiency of the vapor compression cooling cycle. The effects of tsvo diflerent circuiting arrangements on the thermal performance of a zeotropic retligerant mixture and an almost azeotropic refrigerant mixture in a four-row cross-countertlow heat exchanger arrangement are reported here. The two condensers differ only in the manner of circuiting the refrigerant tubes, where one has refrigerant always flowing downward in the active heat transfer region ("identical order") and the other has refrigerant alternating flow direction in the active heat transfer region ("inverted order"). All other geometric parameters, such as bce are% fin louver geometry, refrigerant tube size and enhancement etc., are the same for both heat exchangers. One refrigerant mixture (R-41OA) un&rgoes a small temperature change ("low glide") during phase change, and the other retligerant mixture (a multi- component proprietary mixture) has a substantial temperature change ("high glide") of approximately 10"C during the phase change process. The overall thermal conductance, two-phase conductance, and pressure drop are presented. For the flow conditions of these tests, which are representative of resi&ntial cooling conditions, inverted order circuiting is more desirable than identical order. The potential thermal advantages of the i&ntical order arrangement for high-glide zeotropic refrigerant mixtures are negated

  18. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Refrigerators... efficiency, water consumption, or water efficiency. Commercial refrigerator, freezer, and refrigerator... compressors, refrigerant condensers, condenser fans and motors, and factory supplied accessories....

  19. Cryogenic coolers and refrigerators. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations concerning cryogenic cooling equipment and cryogenic refrigerators. Associated components such as drive motors, insulation, temperature controls, vibration damping, actuators, pumps, and heat exchangers are discussed. Applications of cryogenic refrigeration and materials properties at cryogenic temperatures are considered in separate bibliographies.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  20. Cryogenic coolers and refrigerators. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1997-04-01

    The bibliography contains citations concerning cryogenic cooling equipment and cryogenic refrigerators. Associated components such as drive motors, insulation, temperature controls, vibration damping, actuators, pumps, and heat exchangers are discussed. Applications of cryogenic refrigeration and materials properties at cryogenic temperatures are considered in separate bibliographies.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  1. Cryogenic coolers and refrigerators. (Latest citations from the US Patent bibliographic file with exemplary claims). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations concerning cryogenic cooling equipment and cryogenic refrigerators. Associated components such as drive motors, insulation, temperature controls, vibration damping, actuators, pumps, and heat exchangers are discussed. Applications of cryogenic refrigeration and materials properties at cryogenic temperatures are considered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  2. Thermal and flow measurements of continuous cryogenic spray cooling.

    PubMed

    Hsieh, Shou-Shing; Tsai, Huang-Hsiu

    2006-07-01

    The performance of single sprays for high heat flux cooling using R-134a was studied. The heat flux and heat transfer coefficient at the surface of a sprayed jet based on measurements of steady-state temperature gradients on a thin copper plate during continuous spraying. Meanwhile, the spray droplets flow characteristics was also quantified through laser doppler velocimetry (LDV) measurements to obtain the local velocity distributions. The effects of mass flow rate and average droplet velocity, and spray exit-to-target distance on the surface heat flux including the corresponding critical heat flux (CHF) were explored through three different nozzle diameters of 0.2, 0.3, and 0.4 mm. Finally, the effective use of the fluid being delivered based on the cooling efficiency and cooling effectiveness was also examined. The relationship between CHF and nozzle performance in terms of cooling efficiency and cooling effectiveness was found. The heat transfer removal rate can reach up to 140 W/cm(2) for the present nozzle size of d (j)=0.2 and 0.3 mm, which may enhance the current cryogen spray cooling (CSC) technique that assists laser therapy of dermatoses.

  3. Modeling and Control of a Double-effect Absorption Refrigerating Machine

    NASA Astrophysics Data System (ADS)

    Hihara, Eiji; Yamamoto, Yuuji; Saito, Takamoto; Nagaoka, Yoshikazu; Nishiyama, Noriyuki

    Because the heat capacity of absorption refrigerating machines is large compared with vapor compression refrigerating machines, the dynamic characteristics at the change in cooling load conditions are problems to be improved. The control method of energy input and of weak solution flow rate following cooling load variations was investigated. As the changes in cooling load and cooling capacity are moderate, the optimal operation conditions corresponding to the cooling load can be estimated with steady state characteristics. If the relation between the cooling load and the optimal operation conditions is well known, a feed forward control can be employed. In this report a new control algorithm, which is called MOL (Multi-variable Open Loop) control, is proposed. Comparing the MOL control with the conventional chilled water outlet temperature proportional control, the MOL control enables the smooth changes in cooling capacity and the reduction in fuel consumption.

  4. Discussion of Refrigeration Cycle Using Carbon Dioxide as Refrigerant

    NASA Astrophysics Data System (ADS)

    Ji, Amin; Sun, Miming; Li, Jie; Yin, Gang; Cheng, Keyong; Zhen, Bing; Sun, Ying

    Nowadays, the problem of the environment goes worse, it urges people to research and study new energy-saving and environment-friendly refrigerants, such as carbon dioxide, at present, people do research on carbon dioxide at home and abroad. This paper introduces the property of carbon dioxide as a refrigerant, sums up and analyses carbon dioxide refrigeration cycles, and points out the development and research direction in the future.

  5. Effects of environmental temperature on performance of the Joule-Thomson refrigerator

    NASA Astrophysics Data System (ADS)

    Hong, Yong-Ju; Kim, Hyobong; Park, Seong-Je

    2012-06-01

    Miniature Joule-Thomson refrigerators have been widely used for rapid cooling of infrared detectors, probes of cryosurgery, thermal cameras, missile homing head and guidance system, due to their special features of simple configuration, compact structure and rapid cool-down characteristics. Typical performance factors of the Joule-Thomson refrigerator are cool-down time, temperature of the cold end, running time and gas consumption. Those depend on operating conditions such as the pressure of the gas, thermal environment and etc.. In this study, experimental study of a miniature Joule- Thomson refrigerator with the gas pressure up to 12 MPa were performed to investigate the effects of the thermal environment (-40 ~ 50 °C). In experiments, to obtain the information of cool-down time, gas consumption and etc., the temperature of the cold end, mass flow rate and pressure of the argon gas are simultaneously measured. The Joule-Thomson refrigerator in cold thermal environment has rapid cool-down characteristics and small gas consumption. In the cold environmental condition, the Joule-Thomson refrigerator has high mass flow rate during cool-down process and in steady state.

  6. Flammability Indices for Refrigerants

    NASA Astrophysics Data System (ADS)

    Kataoka, Osami

    This paper introduces a new index to classify flammable refrigerants. A question on flammability indices that ASHRAE employs arose from combustion test results of R152a and ammonia. Conventional methods of not only ASHRAE but also ISO and Japanese High-pressure gas safety law to classify the flammability of refrigerants are evaluated to show why these methods conflict with the test results. The key finding of this paper is that the ratio of stoichiometric concentration to LFL concentration (R factor) represents the test results most precisely. In addition, it has excellent correlation with other flammability parameters such as flame speed and pressure rise coefficient. Classification according to this index gives reasonable flammability order of substances including ammonia, R152a and carbon monoxide. Theoretical background why this index gives good correlation is also discussed as well as the insufficient part of this method.

  7. Technical Evaluation of Side Stream Filtration for Cooling Towers

    SciTech Connect

    2012-10-01

    Cooling towers are an integral component of many refrigeration systems, providing comfort or process cooling across a broad range of applications. Cooling towers represent the point in a cooling system where heat is dissipated to the atmosphere through evaporation. Cooling towers are commonly used in industrial applications and in large commercial buildings to release waste heat extracted from a process or building system through evaporation of water.

  8. Refrigeration and Food Safety

    MedlinePlus

    ... Administrative Forms Standard Forms Skip Navigation Z7_0Q0619C0JGR010IFST1G5B10H1 Web Content Viewer (JSR 286) Actions ${title} Loading... / Topics / ... Food Safety / Refrigeration and Food Safety Z7_0Q0619C0JGR010IFST1G5B10H3 Web Content Viewer (JSR 286) Actions ${title} Loading... Z7_ ...

  9. Multilayer Thermionic Refrigeration

    SciTech Connect

    Mahan, G.D.

    1999-08-30

    A review is presented of our program to construct an efficient solid state refrigerator based on thermionic emission of electrons over periodic barriers in the solid. The experimental program is to construct a simple device with one barrier layer using a three layers: metal-semiconductor-metal. The theoretical program is doing calculations to determine: (i) the optimal layer thickness, and (ii) the thermal conductivity.

  10. The HAWC and SAFIRE adiabatic demagnetization refrigerators

    NASA Astrophysics Data System (ADS)

    Tuttle, Jim; Shirron, Peter; DiPirro, Michael; Jackson, Michael; Behr, Jason; Kamiya, Koji; Warner, Brent; Kunes, Evan; Hait, Tom

    2001-11-01

    High-resolution airborne wide-band camera (HAWC) and sub-millimeter and far-infrared experiment (SAFIRE) are far-infrared experiments which will fly on the stratospheric observatory for infrared astronomy (SOFIA) aircraft. HAWC's detectors will operate at 0.2 K, while those of SAFIRE will be at 0.1 K. Each instrument will include an adiabatic demagnetization refrigerator (ADR) to cool its detector stage from the liquid helium bath temperature (HAWC's at 4.2 K and SAFIRE's pumped to about 1.3 K) to its operating temperature. Except for the magnets used to achieve the cooling, the magnetic shielding, and a slight difference in the heat switch design, the two ADRs are identical. We describe the ADR design and present the results of performance testing.

  11. The HAWC and SAFIRE Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Tuttle, Jim; Shirron, Peter; DiPirro, Michael; Jackson, Michael; Behr, Jason; Kunes, Evan; Hait, Tom; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The High-Resolution Airborne Wide-band Camera (HAWC) and Submillimeter and Far Infrared Experiment (SAFIRE) are far-infrared experiments which will fly on the Stratospheric Observatory for Infrared Astronomy (SOFIA) aircraft. HAWC's detectors will operate at 0.2 Kelvin, while those of SAFIRE will be at 0.1 Kelvin. Each instrument will include an adiabatic demagnetization refrigerator (ADR) to cool its detector stage from the liquid helium bath temperature (HAWC's at 4.2 Kelvin and SAFIRE's pumped to about 1.3 Kelvin) to its operating temperature. Except for the magnets used to achieve the cooling and a slight difference in the heat switch design, the two ADRs are nearly identical. We describe the ADR design and present the results of performance testing.

  12. Fault tolerant control for a refrigerator

    SciTech Connect

    Tershak, A.T.

    1988-05-03

    In a refrigerator having a cabinet defining a first, below freezing compartment and a second, above freezing compartment, cooling means for cooling and first compartment, a wall defining an opening between the compartments, a baffle operative for selectively closing the opening, operating means to operate the baffle, a first temperature sensing means associated with the below-freezing compartment for sensing the temperature therein and a second temperature sensing means associated with the above-freezing compartment for sensing the temperature therein, an improvement is described comprising: third fault detecting means for diagnosing a fault in the baffle operating means; and means responsive to the third detecting means diagnosing the baffle operated to a failed-open position for adjusting the first set point temperature to a first value and responsive to the third detecting means diagnosing the baffle operated to a failed-closed position for adjusting the first set point temperature to a second value lower than the first value.

  13. Experimental realization of a Coulomb blockade refrigerator

    NASA Astrophysics Data System (ADS)

    Feshchenko, A. V.; Koski, J. V.; Pekola, J. P.

    2014-11-01

    We present an experimental realization of a Coulomb blockade refrigerator (CBR) based on a single-electron transistor (SET). In the present structure, the SET island is interrupted by a superconducting inclusion to permit charge transport while preventing heat flow. At certain values of the bias and gate voltages, the current through the SET cools one of the junctions. The measurements follow the theoretical model down to ˜80 mK, which was the base temperature of the current measurements. The observed cooling increases rapidly with decreasing temperature, in agreement with the theory, reaching about a 15 mK drop at the base temperature. The CBR appears as a promising electronic cooler at temperatures well below 100 mK.

  14. Vaccine refrigerator testing. Final report

    SciTech Connect

    Ventre, G.G.; Kilfoyle, D.; Marion, B.

    1990-06-01

    For the Central American Health Clinic Project initiated in 1986, Sandia National Laboratories and the Florida Solar Energy Center recognized the need for a test and evaluation program for vaccine refrigeration systems. At the Florida Solar Energy Center, side-by-side testing of three photovoltaic powered vaccine refrigerators began in 1987. The testing was expanded in 1988 to include a kerosene absorption refrigerator. This report presents observations, conclusions, and recommendations derived from testing the four vaccine refrigeration systems. Information is presented pertaining to the refrigerators, photovoltaic arrays, battery subsystems, charge controllers, and user requirements. This report should be of interest to designers, manufacturers, installers, and users of photovoltaic-powered vaccine refrigeration systems and components.

  15. The general performance characteristics of a Stirling refrigerator with regenerative losses

    NASA Astrophysics Data System (ADS)

    Chen, Jincan; Yan, Zijun

    1996-04-01

    The influence of finite-rate heat transfer and regenerative losses on the performance of a Stirling refrigerator using an ideal or Van der Waals gas as the working substance is investigated. The cooling rate and the coefficient of performance are derived. The optimal relation between the cooling rate and the coefficient of performance is obtained. The maximum cooling rate and the corresponding coefficient of performance are determined for different cases. The problem of optimizing other parameters is also discussed. The results obtained here will be useful for the further understanding and the selection of the optimal operating conditions of a Stirling refrigerator.

  16. Thermoacoustic Duplex Technology for Cooling and Powering a Venus Lander

    NASA Astrophysics Data System (ADS)

    Walker, A. R.; Haberbusch, M. S.; Sasson, J.

    2015-04-01

    A Thermoacoustic Stirling Heat Engine (TASHE) is directly coupled to a Pulse Tube Refrigerator (PTR) in a duplex configuration, providing simultaneous cooling and electrical power, thereby suiting the needs of a long-lived Venus lander.

  17. High-efficiency gas heat pump air-conditioner equipped with absorption refrigerator

    NASA Astrophysics Data System (ADS)

    Kawakami, Ryuichiro; Imai, Kazuya; Nakajima, Hidekazu; Okamoto, Hiroaki; Hihara, Eiji

    To improve rated efficiency and partial load efficiency of gas engine heat pump (GHP), we are developing a new type air-cooled absorption refrigerator which is driven by the engine waste hot water. To shape the compact absorption refrigerator body that was able to be built into the space of a GHP outdoor-unit, an air-cooled sub-cooled adiabatic absorber and flowing liquid film plate type generator were newly developed. Maximum cooling capacity was increased about 20%, rated load COP was increased 40%, and partial load COP was increased 46% or less, as a result of the combination examination of a prototype 8.0kW absorption refrigerator and a 56kW GHP at a laboratory.

  18. The effect of coolants on the performance of magnetic micro-refrigerators.

    PubMed

    Silva, D J; Bordalo, B D; Pereira, A M; Ventura, J; Oliveira, J C R E; Araújo, J P

    2014-06-01

    Magnetic refrigeration is an alternative cooling technique with envisaged technological applications on micro- and opto-electronic devices. Here, we present a magnetic micro-refrigerator cooling device with embedded micro-channels and based on the magnetocaloric effect. We studied the influence of the coolant fluid in the refrigeration process by numerically simulating the heat transfer processes using the finite element method. This allowed us to calculate the cooling power of the device. Our results show that gallium is the most efficient coolant fluid and, when used with Gd5Si2Ge2, a maximum power of 11.2 W/mm3 at a working frequency of -5 kHz can be reached. However, for operation frequencies around 50 Hz, water is the most efficient fluid with a cooling power of 0.137 W/mm3.

  19. The Hall D solenoid helium refrigeration system at JLab

    NASA Astrophysics Data System (ADS)

    Laverdure, N.; Creel, J.; Dixon, K.; Ganni, V.; Martin, F.; Norton, R.; Radovic, S.

    2014-01-01

    Hall D, the new Jefferson Lab experimental facility built for the 12GeV upgrade, features a LASS 1.85 m bore solenoid magnet supported by a 4.5 K helium refrigerator system. This system consists of a CTI 2800 4.5 K refrigerator cold box, three 150 hp screw compressors, helium gas management and storage, and liquid helium and nitrogen storage for stand-alone operation. The magnet interfaces with the cryo refrigeration system through an LN2-shielded distribution box and transfer line system, both designed and fabricated by JLab. The distribution box uses a thermo siphon design to respectively cool four magnet coils and shields with liquid helium and nitrogen. We describe the salient design features of the cryo system and discuss our recent commissioning experience.

  20. Life test results of hydride compressors for cryogenic refrigerators

    NASA Astrophysics Data System (ADS)

    Jones, J. A.; Golben, P. M.

    1984-01-01

    A development status assessment is made, from the viewpoint of system durability, for the hydride compressors used in such cryogenic refrigerators as that of the JPL, which has operated at 29 K for 500 hours and at lower temperatures for over 1000. Attention is given to a novel hydride compressor unit which has operated through 35,000 cycles and exhibits negligible degradation of check valves, hydride particle size, and expansion valves. The power requirement for liquid hydrogen cooling can be halved through the use of recuperative hot water heating methods, making this system comparable in power use to liquid hydrogen refrigeration systems operating on electricity. Due to the lack of moving parts in hydride refrigerator designs, potential service lifetimes of many years, and perhaps decades, are being projected.