Science.gov

Sample records for r407c compression air

  1. The Effect of Temperature Glide of R407C Refrigerant on the Power of Evaporator in Air Refrigerators / WPŁYW POŚLIZGU Temperatury Czynnika CHŁODNICZEGO R407C NA Moc Parownika CHŁODZIARKI Powietrza

    NASA Astrophysics Data System (ADS)

    Nowak, Bernard; Życzkowski, Piotr

    2013-12-01

    The article discusses the effect of the phenomenon of temperature glide of zeotropic refrigerants on thermal power of an evaporator in an air compression refrigerator. Zeotropic mixtures are subject to phase transitions, the process of which significantly differs from that of homogeneous refrigerants. In contrast to homogeneous refrigerants, where boiling and condensing processes take place at a constant temperature, for the zeotropic mixtures it is essential to know the vapor quality to unambiguously determine the temperature at which the evaporation process is initiated. The R407C refrigerant serves as an example to describe the method of determining the initial temperature of the evaporation process taking into account the effect of temperature glide. The developed formula (7) has been based on a proven linear course of isobars in the two-phase region (Fig. 5) and thus determining a polynomial describing their angle of inclination (8). In addition, temperature calculation formulas (9) and specific enthalpy (10) of dry saturated vapor of the R407C refrigerant have been presented as well. This approach allows to determine the temperature of the R407C refrigerant at the inlet to the evaporator without the required knowledge of its vapor quality. The previously used simplified methods for determining the temperature of a refrigerant at the inlet to the evaporator result in considerable deviations in calculated power of the evaporator compared with its actual value. The presented calculation example involving mine air compression refrigerator of TS-450P type shows that relative deviations of the evaporator thermal power may even exceed 20%. This example compares two simplified methods for determining zeotropic evaporating temperature of a refrigerant used in comparative calculations of refrigerants with the method presented in this article. W artykule przedstawiono wpływ zjawiska poślizgu temperatury zeotropowych czynników chłodniczych na moc cieplną parownika

  2. Impact of air and refrigerant maldistributions on the performance of finned-tube evaporators with R-22 and R-407C. Final Report

    SciTech Connect

    Lee, Jangho; Domanski, P.A.

    1997-07-01

    The report presents basic features of the evaporator model, EVAP5M, and simulation results for an evaporator operating with R-22 and R-407C at non-uniform air and refrigerant distributions. EVAP5M was developed under this project to provide a tool for simulating a finned-tube air-to refrigerant evaporator operating with single-component refrigerants and refrigerant mixtures. The tube-by-tube modeling approach allowed for one-dimensional non-uniformity in the air velocity profile and arbitrary maldistribution on the refrigerant side. The model uses the Carnahan-Starling-DeSantis equation of state for calculating refrigerant thermodynamic properties. Simulations were performed for three evaporator slabs with different refrigerant circuitry designs. For the maldistributions studied, maldistributed air caused much more significant capacity degradation than maldistributed refrigerant. In some cases capacity decreased to as low as 57 percent of the value obtained for uniform velocity profile. Simulation results showed that R-22 and R-407C have similar susceptibility to capacity degradation. Relative change of capacity varied depending on the evaporator design and maldistribution studied. 17 refs., 18 figs., 9 tabs.

  3. Experimental study of the speed of sound in liquid and gaseous refrigerant R-407C

    NASA Astrophysics Data System (ADS)

    Komarov, S. G.; Stankus, S. V.

    2016-01-01

    The speed of sound in liquid and gaseous refrigerant R-407C was measured by the method of ultrasonic interferometer in the temperature range from 293 to 373 K and pressure from 0.05 to 0.5 to 3.7 MPa. The experimental uncertainties of the temperature, pressure, and speed of sound measurements were estimated to be within ±20 mK, ±4 kPa, and ±(0.1-0.3) %, respectively. The obtained results are compared with the calculated speed of sound from the fundamental state equation for the Helmholtz free energy.

  4. Drying R-407C and R-410A refrigerant blends with molecular sieve desiccants

    SciTech Connect

    Cohen, A.P.; Tucker, D.M.

    1998-10-01

    The hydrofluorocarbon (HFC) R-32 (CF{sub 2}H{sub 2}) is a component of refrigerant blends in the 407 and 410 series being tested and commercialized for use as replacements for R-502 and the hydrochlorofluorocarbon (HCFC) R-22. The molecular sieve desiccants used with chlorofluorocarbon (CFC) and HCFC mineral oil systems in the past have achieved high water capacity by excluding the refrigerant and adsorbing only the water. Unfortunately, R-32 is adsorbed on commercial type 3A molecular sieve desiccant products. The result of this adsorption is a loss of water capacity when drying R-32 compared to drying R-22 or R-502 and a reduced level of chemical compatibility of the desiccant with the refrigerant. Some compressor manufacturers are seeking a water concentration as low as 10 mg/kg (ppm[wt]) in the circulating refrigerant of polyolester-lubricated refrigerating equipment using these HFC blends. This paper compares unmodified commercial type 3A molecular sieve desiccants with a recently developed, modified 3A molecular sieve that excludes R-32. The modified 3A has better chemical compatibility with R-32 and high water capacity in liquid R-407C and R-410A. The drying rates of the two desiccants in R-407C and R-410A are similar. Data and test methods are reported on refrigerant adsorption, water capacity, drying rate, and chemical compatibility.

  5. Piston reciprocating compressed air engine

    SciTech Connect

    Cestero, L.G.

    1987-03-24

    A compressed air engine is described comprising: (a). a reservoir of compressed air, (b). two power cylinders each containing a reciprocating piston connected to a crankshaft and flywheel, (c). a transfer cylinder which communicates with each power cylinder and the reservoir, and contains a reciprocating piston connected to the crankshaft, (d). valve means controlled by rotation of the crankshaft for supplying compressed air from the reservoir to each power cylinder and for exhausting compressed air from each power cylinder to the transfer cylinder, (e). valve means controlled by rotation of the crankshaft for supplying from the transfer cylinder to the reservoir compressed air supplied to the transfer cylinder on the exhaust strokes of the pistons of the power cylinders, and (f). an externally powered fan for assisting the exhaust of compressed air from each power cylinder to the transfer cylinder and from there to the compressed air reservoir.

  6. Compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  7. Compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  8. 29 CFR 1917.154 - Compressed air.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Compressed air. 1917.154 Section 1917.154 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.154 Compressed air. Employees shall be... this part during cleaning with compressed air. Compressed air used for cleaning shall not exceed...

  9. 29 CFR 1917.154 - Compressed air.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Compressed air. 1917.154 Section 1917.154 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.154 Compressed air. Employees shall be... this part during cleaning with compressed air. Compressed air used for cleaning shall not exceed...

  10. 29 CFR 1917.154 - Compressed air.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Compressed air. 1917.154 Section 1917.154 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.154 Compressed air. Employees shall be... this part during cleaning with compressed air. Compressed air used for cleaning shall not exceed...

  11. 29 CFR 1917.154 - Compressed air.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Compressed air. 1917.154 Section 1917.154 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.154 Compressed air. Employees shall be... this part during cleaning with compressed air. Compressed air used for cleaning shall not exceed...

  12. 29 CFR 1917.154 - Compressed air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Compressed air. 1917.154 Section 1917.154 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.154 Compressed air. Employees shall be... this part during cleaning with compressed air. Compressed air used for cleaning shall not exceed...

  13. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped...

  14. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped...

  15. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped...

  16. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped...

  17. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped...

  18. Chapter 22: Compressed Air Evaluation Protocol

    SciTech Connect

    Benton, N.

    2014-11-01

    Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: high-efficiency/variable speed drive (VSD) compressor replacing modulating compressor; compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.

  19. Industrial Compressed Air System Energy Efficiency Guidebook.

    SciTech Connect

    United States. Bonneville Power Administration.

    1993-12-01

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  20. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect

    2012-11-30

    This document provides specifications for the process air compressor for a compressed air storage project, requests a budgetary quote, and provides supporting information, including compressor data, site specific data, water analysis, and Seneca CAES value drivers.

  1. Recoil Experiments Using a Compressed Air Cannon

    ERIC Educational Resources Information Center

    Taylor, Brett

    2006-01-01

    Ping-Pong vacuum cannons, potato guns, and compressed air cannons are popular and dramatic demonstrations for lecture and lab. Students enjoy them for the spectacle, but they can also be used effectively to teach physics. Recently we have used a student-built compressed air cannon as a laboratory activity to investigate impulse, conservation of…

  2. Compressed Air/Vacuum Transportation Techniques

    NASA Astrophysics Data System (ADS)

    Guha, Shyamal

    2011-03-01

    General theory of compressed air/vacuum transportation will be presented. In this transportation, a vehicle (such as an automobile or a rail car) is powered either by compressed air or by air at near vacuum pressure. Four version of such transportation is feasible. In all versions, a ``c-shaped'' plastic or ceramic pipe lies buried a few inches under the ground surface. This pipe carries compressed air or air at near vacuum pressure. In type I transportation, a vehicle draws compressed air (or vacuum) from this buried pipe. Using turbine or reciprocating air cylinder, mechanical power is generated from compressed air (or from vacuum). This mechanical power transferred to the wheels of an automobile (or a rail car) drives the vehicle. In type II-IV transportation techniques, a horizontal force is generated inside the plastic (or ceramic) pipe. A set of vertical and horizontal steel bars is used to transmit this force to the automobile on the road (or to a rail car on rail track). The proposed transportation system has following merits: virtually accident free; highly energy efficient; pollution free and it will not contribute to carbon dioxide emission. Some developmental work on this transportation will be needed before it can be used by the traveling public. The entire transportation system could be computer controlled.

  3. 30 CFR 57.13020 - Use of compressed air.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Use of compressed air. 57.13020 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13020 Use of compressed air. At no time shall compressed air be directed toward...

  4. 30 CFR 57.13020 - Use of compressed air.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Use of compressed air. 57.13020 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13020 Use of compressed air. At no time shall compressed air be directed toward...

  5. 30 CFR 57.13020 - Use of compressed air.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Use of compressed air. 57.13020 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13020 Use of compressed air. At no time shall compressed air be directed toward...

  6. 30 CFR 57.13020 - Use of compressed air.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Use of compressed air. 57.13020 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13020 Use of compressed air. At no time shall compressed air be directed toward...

  7. 30 CFR 56.13020 - Use of compressed air.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Use of compressed air. 56.13020 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13020 Use of compressed air. At no time shall compressed air be directed toward a...

  8. 30 CFR 56.13020 - Use of compressed air.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Use of compressed air. 56.13020 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13020 Use of compressed air. At no time shall compressed air be directed toward a...

  9. 30 CFR 77.412 - Compressed air systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressed air systems. 77.412 Section 77.412... for Mechanical Equipment § 77.412 Compressed air systems. (a) Compressors and compressed-air receivers... involving the pressure system of compressors, receivers, or compressed-air-powered equipment shall not...

  10. 30 CFR 56.13020 - Use of compressed air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Use of compressed air. 56.13020 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13020 Use of compressed air. At no time shall compressed air be directed toward a...

  11. 30 CFR 56.13020 - Use of compressed air.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Use of compressed air. 56.13020 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13020 Use of compressed air. At no time shall compressed air be directed toward a...

  12. 30 CFR 56.13020 - Use of compressed air.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Use of compressed air. 56.13020 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13020 Use of compressed air. At no time shall compressed air be directed toward a...

  13. 30 CFR 77.412 - Compressed air systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Compressed air systems. 77.412 Section 77.412... for Mechanical Equipment § 77.412 Compressed air systems. (a) Compressors and compressed-air receivers... involving the pressure system of compressors, receivers, or compressed-air-powered equipment shall not...

  14. 30 CFR 57.13020 - Use of compressed air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Use of compressed air. 57.13020 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13020 Use of compressed air. At no time shall compressed air be directed toward...

  15. 30 CFR 77.412 - Compressed air systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compressed air systems. 77.412 Section 77.412... for Mechanical Equipment § 77.412 Compressed air systems. (a) Compressors and compressed-air receivers... involving the pressure system of compressors, receivers, or compressed-air-powered equipment shall not...

  16. 30 CFR 77.412 - Compressed air systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressed air systems. 77.412 Section 77.412... for Mechanical Equipment § 77.412 Compressed air systems. (a) Compressors and compressed-air receivers... involving the pressure system of compressors, receivers, or compressed-air-powered equipment shall not...

  17. 30 CFR 77.412 - Compressed air systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air systems. 77.412 Section 77.412... for Mechanical Equipment § 77.412 Compressed air systems. (a) Compressors and compressed-air receivers... involving the pressure system of compressors, receivers, or compressed-air-powered equipment shall not...

  18. 46 CFR 112.50-7 - Compressed air starting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Compressed air starting. 112.50-7 Section 112.50-7... air starting. A compressed air starting system must meet the following: (a) The starting, charging... air compressors addressed in paragraph (c)(3)(i) of this section. (b) The compressed air...

  19. Compressible Flow Tables for Air

    NASA Technical Reports Server (NTRS)

    Burcher, Marie A.

    1947-01-01

    This paper contains a tabulation of functions of the Mach number which are frequently used in high-speed aerodynamics. The tables extend from M = 0 to M = 10.0 in increments of 0.01 and are based on the assumption that air is a perfect gas having a specific heat ratio of 1.400.

  20. 41 CFR 50-204.8 - Use of compressed air.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false Use of compressed air. 50-204.8 Section 50-204.8 Public Contracts and Property Management Other Provisions Relating to... CONTRACTS General Safety and Health Standards § 50-204.8 Use of compressed air. Compressed air shall not...

  1. 41 CFR 50-204.8 - Use of compressed air.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Use of compressed air. 50-204.8 Section 50-204.8 Public Contracts and Property Management Other Provisions Relating to Public... General Safety and Health Standards § 50-204.8 Use of compressed air. Compressed air shall not be used...

  2. 41 CFR 50-204.8 - Use of compressed air.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 1 2012-07-01 2009-07-01 true Use of compressed air. 50-204.8 Section 50-204.8 Public Contracts and Property Management Other Provisions Relating to Public... General Safety and Health Standards § 50-204.8 Use of compressed air. Compressed air shall not be used...

  3. 41 CFR 50-204.8 - Use of compressed air.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 1 2013-07-01 2013-07-01 false Use of compressed air. 50-204.8 Section 50-204.8 Public Contracts and Property Management Other Provisions Relating to... CONTRACTS General Safety and Health Standards § 50-204.8 Use of compressed air. Compressed air shall not...

  4. 41 CFR 50-204.8 - Use of compressed air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Use of compressed air. 50-204.8 Section 50-204.8 Public Contracts and Property Management Other Provisions Relating to Public... General Safety and Health Standards § 50-204.8 Use of compressed air. Compressed air shall not be used...

  5. University of Arizona Compressed Air Energy Storage

    SciTech Connect

    Simmons, Joseph; Muralidharan, Krishna

    2012-12-31

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  6. Microfluidic pressure sensing using trapped air compression.

    PubMed

    Srivastava, Nimisha; Burns, Mark A

    2007-05-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid-air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d approximately 50 microm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700-100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions. PMID:17476384

  7. Microfluidic pressure sensing using trapped air compression.

    PubMed

    Srivastava, Nimisha; Burns, Mark A

    2007-05-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid-air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d approximately 50 microm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700-100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions.

  8. Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning

    SciTech Connect

    2010-09-13

    GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES™ system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

  9. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect

    None, None

    2012-11-30

    This report provides a review and an analysis of potential environmental justice areas that could be affected by the New York State Electric & Gas (NYSEG) compress air energy storage (CAES) project and identifies existing environmental burden conditions on the area and evaluates additional burden of any significant adverse environmental impact. The review assesses the socioeconomic and demographic conditions of the area surrounding the proposed CAES facility in Schuyler County, New York. Schuyler County is one of 62 counties in New York. Schuyler County’s 2010 population of 18,343 makes it one of the least populated counties in the State (U.S. Census Bureau, 2010). This report was prepared for WorleyParsons by ERM and describes the study area investigated, methods and criteria used to evaluate this area, and the findings and conclusions from the evaluation.

  10. 78. PIPING CHANNEL FOR FUEL LOADING, FUEL TOPPING, COMPRESSED AIR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. PIPING CHANNEL FOR FUEL LOADING, FUEL TOPPING, COMPRESSED AIR, GASEOUS NITROGEN, AND HELIUM - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. 6. DETAIL OF HIGHPRESSURE COMPRESSED AIR HOSE IN SOUTHWEST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL OF HIGH-PRESSURE COMPRESSED AIR HOSE IN SOUTHWEST CORNER OF SHIPPING AND RECEIVING ROOM (109) - Vandenberg Air Force Base, Space Launch Complex 3, Vehicle Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. Elimination of microorganisms from dental operatory compressed air.

    PubMed

    De Ciccio, A; Chan, E C

    1998-01-01

    Compressed air is used to power high-speed handpieces, as well as to dry and clean surfaces in the oral cavity during patient treatment, in all dental operatories. The compressed air used in the dental operatories located in large institutions such as universities or hospitals is generally obtained from a central source, and is produced by continually running compressors. In operatories located in private practice settings, compressed air is obtained from small on-site air compressors, which may be run less frequently. A survey was made of operatories in the Montreal area to determine the microbial load of the compressed air produced by air compressors. An air sampler was used to collect compressed air and impinge it on a rotating agar medium surface. Compared to the air produced from compressors in constant use, the air collected from compressors that ran intermittently had a very high microbial load. The efficacy of an apparatus designed to sterilize the contaminated air produced by small, on-site compressors was tested. Called a Purilair, this device heats every particle of inflowing compressed air to 250 degrees C and then forces it through a fine-pore ceramic filter. In three private practice operatories, an in-line Purilair effectively sterilized the air being delivered by small compressors. The same result was obtained in the laboratory when lyophilized spores and cells of Bacillus stearothermophilus and conidia of Penicillium notatum and Aspergillus niger were sprayed into the intake line of the apparatus. PMID:9473876

  13. Elimination of microorganisms from dental operatory compressed air.

    PubMed

    De Ciccio, A; Chan, E C

    1998-01-01

    Compressed air is used to power high-speed handpieces, as well as to dry and clean surfaces in the oral cavity during patient treatment, in all dental operatories. The compressed air used in the dental operatories located in large institutions such as universities or hospitals is generally obtained from a central source, and is produced by continually running compressors. In operatories located in private practice settings, compressed air is obtained from small on-site air compressors, which may be run less frequently. A survey was made of operatories in the Montreal area to determine the microbial load of the compressed air produced by air compressors. An air sampler was used to collect compressed air and impinge it on a rotating agar medium surface. Compared to the air produced from compressors in constant use, the air collected from compressors that ran intermittently had a very high microbial load. The efficacy of an apparatus designed to sterilize the contaminated air produced by small, on-site compressors was tested. Called a Purilair, this device heats every particle of inflowing compressed air to 250 degrees C and then forces it through a fine-pore ceramic filter. In three private practice operatories, an in-line Purilair effectively sterilized the air being delivered by small compressors. The same result was obtained in the laboratory when lyophilized spores and cells of Bacillus stearothermophilus and conidia of Penicillium notatum and Aspergillus niger were sprayed into the intake line of the apparatus.

  14. Working characteristics of variable intake valve in compressed air engine.

    PubMed

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine. PMID:25379536

  15. Working Characteristics of Variable Intake Valve in Compressed Air Engine

    PubMed Central

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine. PMID:25379536

  16. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressed air and boilers; general. 77.411... COAL MINES Safeguards for Mechanical Equipment § 77.411 Compressed air and boilers; general. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  17. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Compressed air and boilers; general. 77.411... COAL MINES Safeguards for Mechanical Equipment § 77.411 Compressed air and boilers; general. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  18. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compressed air and boilers; general. 77.411... COAL MINES Safeguards for Mechanical Equipment § 77.411 Compressed air and boilers; general. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  19. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air and boilers; general. 77.411... COAL MINES Safeguards for Mechanical Equipment § 77.411 Compressed air and boilers; general. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  20. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressed air and boilers; general. 77.411... COAL MINES Safeguards for Mechanical Equipment § 77.411 Compressed air and boilers; general. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  1. Energy storage by compressed air. [using windpowered pumps

    NASA Technical Reports Server (NTRS)

    Szego, G. C.

    1973-01-01

    The feasibility of windpower energy storage by compressed air is considered. The system is comprised of a compressor, a motor, and a pump turbine to store air in caverns or aquifiers. It is proposed that storage of several days worth of compressed air up to 650 pounds per square inch can be used to push the aquifier up closer to the container dome and thus initiate piston action by simply compressing air more and more. More energy can be put into it by pressure increase or pushing back the water in the aquifier. This storage system concept has reheat flexibility and lowest cost effectiveness.

  2. Compressed Air System Improvements at an Automotive Plant

    SciTech Connect

    2000-10-01

    In 1998, the Ford Motor Company implemented a compressed air system improvement project at its Woodhaven Stamping plant in Woodhaven, Michigan. As a result of the system approach that it took towards improving the plant's compressed air system, the plant was able to take an 800-hp air compressor offline, shut down several high pressure satellite compressors, and operate the remaining compressors more efficiently.

  3. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect

    None, None

    2012-11-30

    Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant construction with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEG’s service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York State’s Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEG’s engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any

  4. Accidental fatal lung injury by compressed air: a case report.

    PubMed

    Rayamane, Anand Parashuram; Pradeepkumar, M V

    2015-03-01

    Compressed air is being used extensively as a source of energy at industries and in daily life. A variety of fatal injuries are caused by improper and ignorant use of compressed air equipments. Many types of injuries due to compressed air are reported in the literature such as colorectal injury, orbital injury, surgical emphysema, and so on. Most of these injuries are accidental in nature. It is documented that 40 pounds per square inch pressure causes fatal injuries to the ear, eyes, lungs, stomach, and intestine. Openings of body are vulnerable to injuries by compressed air. Death due to compressed air injuries is rarely reported. Many cases are treated successfully by conservative or surgical management. Extensive survey of literature revealed no reports of fatal injury to the upper respiratory tract and lungs caused by compressed air. Here, we are reporting a fatal event of accidental death after insertion of compressed air pipe into the mouth. The postmortem findings are corroborated with the history and discussed in detail.

  5. Compressed air systems. A guidebook on energy and cost savings

    SciTech Connect

    Not Available

    1984-03-30

    This guidebook shows how energy can be saved in compressed air systems. It discusses basic compressed air systems which are typical of those found in industry and describes them and the engineering practices behind them. Energy conservation recommendations follow. These recommendations cover equipment selection, design, maintenance, and operation. Included is information which will help the reader to make economic evaluations of various engineering and equipment alternatives as they affect operations and costs. The appendices include some modern computer based approaches to predicting pressure drop for designing compressed air distribution systems. Also included is a bibliography providing leads for further and more detailed technical information on these and related subjects.

  6. Analytical and experimental study on complex compressed air pipe network

    NASA Astrophysics Data System (ADS)

    Gai, Yushou; Cai, Maolin; Shi, Yan

    2015-09-01

    To analyze the working characteristics of complex compressed air networks, numerical methods are widely used which are based on finite element technology or intelligent algorithms. However, the effectiveness of the numerical methods is limited. In this paper, to provide a new method to optimize the design and the air supply strategy of the complex compressed air pipe network, firstly, a novel method to analyze the topology structure of the compressed air flow in the pipe network is initially proposed. A matrix is used to describe the topology structure of the compressed air flow. Moreover, based on the analysis of the pressure loss of the pipe network, the relationship between the pressure and the flow of the compressed air is derived, and a prediction method of pressure fluctuation and air flow in a segment in a complex pipe network is proposed. Finally, to inspect the effectiveness of the method, an experiment with a complex network is designed. The pressure and the flow of airflow in the network are measured and studied. The results of the study show that, the predicted results with the proposed method have a good consistency with the experimental results, and that verifies the air flow prediction method of the complex pipe network. This research proposes a new method to analyze the compressed air network and a prediction method of pressure fluctuation and air flow in a segment, which can predicate the fluctuation of the pressure according to the flow of compressed air, and predicate the fluctuation of the flow according to the pressure in a segment of a complex pipe network.

  7. Detail of interior of compressed air chamber showing top of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of interior of compressed air chamber showing top of working chamber and tie rods that strengthen the outer shell plates of the compression chamber. - Sub Marine Explorer, Located along the beach of Isla San Telmo, Pearl Islands, Isla San Telmo, Former Panama Canal Zone, CZ

  8. Improving Compressed Air System Performance: A Sourcebook for Industry

    SciTech Connect

    2003-11-01

    NREL will produce this sourcebook for DOE's Industrial Technologies Office as part of a series of documents on industrial energy equipment. The sourcebook is a reference for industrial compressed air system users, outlining opportunities to improve system efficiency.

  9. Economic and environmental evaluation of compressed-air cars

    NASA Astrophysics Data System (ADS)

    Creutzig, Felix; Papson, Andrew; Schipper, Lee; Kammen, Daniel M.

    2009-10-01

    Climate change and energy security require a reduction in travel demand, a modal shift, and technological innovation in the transport sector. Through a series of press releases and demonstrations, a car using energy stored in compressed air produced by a compressor has been suggested as an environmentally friendly vehicle of the future. We analyze the thermodynamic efficiency of a compressed-air car powered by a pneumatic engine and consider the merits of compressed air versus chemical storage of potential energy. Even under highly optimistic assumptions the compressed-air car is significantly less efficient than a battery electric vehicle and produces more greenhouse gas emissions than a conventional gas-powered car with a coal intensive power mix. However, a pneumatic-combustion hybrid is technologically feasible, inexpensive and could eventually compete with hybrid electric vehicles.

  10. Investigation on wind energy-compressed air power system.

    PubMed

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  11. 46 CFR 112.50-7 - Compressed air starting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-7 Compressed..., and energy storing devices must be in the emergency generator room, except for the main or auxiliary... emergency generator room and a handcranked, diesel-powered air compressor for recharging the air...

  12. 46 CFR 112.50-7 - Compressed air starting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-7 Compressed..., and energy storing devices must be in the emergency generator room, except for the main or auxiliary... emergency generator room and a handcranked, diesel-powered air compressor for recharging the air...

  13. 46 CFR 112.50-7 - Compressed air starting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-7 Compressed..., and energy storing devices must be in the emergency generator room, except for the main or auxiliary... emergency generator room and a handcranked, diesel-powered air compressor for recharging the air...

  14. 46 CFR 112.50-7 - Compressed air starting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-7 Compressed..., and energy storing devices must be in the emergency generator room, except for the main or auxiliary... emergency generator room and a handcranked, diesel-powered air compressor for recharging the air...

  15. Summary of selected compressed air energy storage studies

    SciTech Connect

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1985-01-01

    A descriptive summarily of research and development in compressed air energy storage technology is presented. Research funded primarily by the Department of Energy is described. Results of studies by other groups and experience at the Huntorf plant in West Germany are included. Feasibility studies performed by General Electric are summarized. The feasibility of air storage in dissolved salt cavities is also demonstrated. (BCS)

  16. 29 CFR 1926.803 - Compressed air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of fresh air shall be provided. (5) Whenever heat-producing machines (moles, shields) are used in... be equipped with noncombustible, nonabsorptive, insulating sockets, approved handles, basket...

  17. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  18. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  19. Consistent air quality and energy savings provided by heat of compression air dryer

    SciTech Connect

    Brown, F.; Hodel, A.E.

    1986-02-01

    The six-year-old compressed air dryers serving the plant and instrument air needs at Monsanto Company's W.G. Krummrich plant in Sauget, IL were no longer performing at peak efficiency. Dryer reliability had declined. Energy usage of the heat regenerated dryers was substantial. The 60 kw heaters used to regenerate the desiccant were operating 2 1/2 out of 4 hours on a timer controlled continuous cycle. Engineers decided to remove the old, inefficient air compression and drying equipment air compression and drying equipment at the W.G. Krummrich plant and replace it with a state-of-the-art system. The combination of a compressor and dryer package was specified to incorporate heat recovery/energy savings. Monsanto's engineers specified an air system that would operate on demand and use a heat of compression air dryer that was available commercially.

  20. Compressed Air System Optimization: Case Study Food Industry in Indonesia

    NASA Astrophysics Data System (ADS)

    Widayati, Endang; Nuzahar, Hasril

    2016-01-01

    Compressors and compressed air systems was one of the most important utilities in industries or factories. Approximately 10% of the cost of electricity in the industry was used to produce compressed air. Therefore the potential for energy savings in the compressors and compressed air systems had a big challenge. This field was conducted especially in Indonesia food industry or factory. Compressed air system optimization was a technique approach to determine the optimal conditions for the operation of compressors and compressed air systems that included evaluation of the energy needs, supply adjustment, eliminating or reconfiguring the use and operation of inefficient, changing and complementing some equipment and improving operating efficiencies. This technique gave the significant impact for energy saving and costs. The potential savings based on this study through measurement and optimization e.g. system that lowers the pressure of 7.5 barg to 6.8 barg would reduce energy consumption and running costs approximately 4.2%, switch off the compressor GA110 and GA75 was obtained annual savings of USD 52,947 ≈ 455 714 kWh, running GA75 light load or unloaded then obtained annual savings of USD 31,841≈ 270,685 kWh, install new compressor 2x132 kW and 1x 132 kW VSD obtained annual savings of USD 108,325≈ 928,500 kWh. Furthermore it was needed to conduct study of technical aspect of energy saving potential (Investment Grade Audit) and performed Cost Benefit Analysis. This study was one of best practice solutions how to save energy and improve energy performance in compressors and compressed air system.

  1. Legal and regulatory issues affecting compressed air energy storage

    SciTech Connect

    Hendrickson, P.L.

    1981-07-01

    Several regulatory and legal issues that can potentially affect implementation of a compressed air energy storage (CAES) system are discussed. This technology involves the compression of air using base load electric power for storage in an underground storage medium. The air is subsequently released and allowed to pass through a turbine to generate electricity during periods of peak demand. The storage media considered most feasible are a mined hard rock cavern, a solution-mined cavern in a salt deposit, and a porous geologic formation (normally an aquifer) of suitable structure. The issues are discussed in four categories: regulatory issues common to most CAES facilities regardless of storage medium, regulatory issues applicable to particular CAES reservoir media, issues related to possible liability from CAES operations, and issues related to acquisition of appropriate property rights for CAES implementation. The focus is on selected federal regulation. Lesser attention is given to state and local regulation. (WHK)

  2. Rupture of sigmoid colon caused by compressed air.

    PubMed

    Yin, Wan-Bin; Hu, Ji-Lin; Gao, Yuan; Zhang, Xian-Xiang; Zhang, Mao-Shen; Liu, Guang-Wei; Zheng, Xue-Feng; Lu, Yun

    2016-03-14

    Compressed air has been generally used since the beginning of the 20(th) century for various applications. However, rupture of the colon caused by compressed air is uncommon. We report a case of pneumatic rupture of the sigmoid colon. The patient was admitted to the emergency room complaining of abdominal pain and distention. His colleague triggered a compressed air nozzle against his anus as a practical joke 2 h previously. On arrival, his pulse rate was 126 beats/min, respiratory rate was 42 breaths/min and blood pressure was 86/54 mmHg. Physical examination revealed peritoneal irritation and the abdomen was markedly distended. Computed tomography of the abdomen showed a large volume of air in the abdominal cavity. Peritoneocentesis was performed to relieve the tension pneumoperitoneum. Emergency laparotomy was done after controlling shock. Laparotomy revealed a 2-cm perforation in the sigmoid colon. The perforation was sutured and temporary ileostomy was performed as well as thorough drainage and irrigation of the abdominopelvic cavity. Reversal of ileostomy was performed successfully after 3 mo. Follow-up was uneventful. We also present a brief literature review. PMID:26973403

  3. Compressed Air System Optimization Improves Production and saves energy at a Satellite Manufacturer

    SciTech Connect

    2002-05-01

    In 2001, a compressed air improvement project was implemented following an audit on the compressed air system at Boeing Satellite Systems (formerly Hughes Space & Communications Company) in Los Angeles, California.

  4. CLASSIFICATION OF THE MGR SUBSURFACE COMPRESSED AIR SYSTEM

    SciTech Connect

    R. Garrett

    1999-08-31

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) subsurface compressed air system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

  5. CLASSIFICATION OF THE MGR SITE COMPRESSED AIR SYSTEM

    SciTech Connect

    J.A. Ziegler

    1999-08-31

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) site compressed air system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

  6. Prefeasibility study on compressed air energy storage systems

    NASA Astrophysics Data System (ADS)

    Elmahgary, Y.; Peltola, E.; Sipilae, K.; Vaeaetaeinen, A.

    1991-08-01

    A prefeasibility study on compressed air energy storage (CALS) systems was launched in VTT in the course of the year 1990. The study was undertaken partly in the Laboratory of Electrical and Automation Engineering and partly in the Road, Traffic and Geotechnical Laboratory. Information on existing mines in Finland which could be used as storage caverns were collected (part 2). The costs of excavating rock caverns for compressed air storage and those for forming suitable storage caverns in existing mines were also estimated. This information was used in the first (and present) part of the report to calculate the economics of CAES. In the present part (part 1) of the study, an analysis of the different possible systems was given following a review of literature on CAES. This was followed by an economic analysis which comprised two separate systems. The first consisted of conventional oil fueled gas turbine plants provided with the CALS system. In the second system, wind turbines were used to run the compressors which are used in charging the compressed air storage cavern. The results of the current prefeasibility study confirmed the economic attractiveness of the CAES in the first system. Wind turbines still seem, however, to be too expensive to compete with coal power plants. More accurate and straight-forward results could be obtained only in a more comprehensive study.

  7. Improved fireman's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    King, H. A.; Morris, E. E.

    1973-01-01

    Prototype high pressure glass filament-wound, aluminum-lined pressurant vessels suitable for use in a fireman's compressed air breathing system were designed, fabricated, and acceptance tested in order to demonstrate the feasibility of producing such high performance, lightweight units. The 4000 psi tanks have a 60 standard cubic foot (SCF) air capacity, and have a 6.5 inch diamter, 19 inch length, 415 inch volume, weigh 13 pounds when empty, and contain 33 percent more air than the current 45 SCF (2250 psi) steel units. The current steel 60 SCF (3000 psi) tanks weigh approximately twice as much as the prototype when empty, and are 2 inches, or 10 percent shorter. The prototype units also have non-rusting aluminum interiors, which removes the hazard of corrosion, the need for internal coatings, and the possibility of rust particles clogging the breathing system.

  8. Preliminary Investigation of an Underwater Ramjet Powered by Compressed Air

    NASA Technical Reports Server (NTRS)

    Mottard, Elmo J.; Shoemaker, Charles J.

    1961-01-01

    Part I contains the results of a preliminary experimental investigation of a particular design of an underwater ramjet or hydroduct powered by compressed air. The hydroduct is a propulsion device in which the energy of an expanding gas imparts additional momentum to a stream of water through mixing. The hydroduct model had a fineness ratio of 5.9, a maximum diameter of 3.2 inches, and a ratio of inlet area to frontal area of 0.32. The model was towed at a depth of 1 inch at forward speeds between 20 and 60 feet per second for airflow rates from 0.1 to 0.3 pound per second. Longitudinal force and pressures at the inlet and in the mixing chamber were determined. The hydroduct produced a positive thrust-minus-drag force at every test speed. The force and pressure coefficients were functions primarily of the ratio of weight airflow to free-stream velocity. The maximum propulsive efficiency based on the net internal thrust and an isothermal expansion of the air was approximately 53 percent at a thrust coefficient of 0.10. The performance of the test model may have been influenced by choking of the exit flow. Part II is a theoretical development of an underwater ramjet using air as "fuel." The basic assumption of the theoretical analysis is that a mixture of water and air can be treated as a compressible gas. More information on the properties of air-water mixtures is required to confirm this assumption or to suggest another approach. A method is suggested from which a more complete theoretical development, with the effects of choking included, may be obtained. An exploratory computation, in which this suggested method was used, indicated that the effect of choked flow on the thrust coefficient was minor.

  9. Compressed air energy storage technology program. Annual report for 1980

    SciTech Connect

    Kannberg, L.D.

    1981-06-01

    All of the major research funded under the Compressed Air Energy Storage Technology Program during the period March 1980 to March 1981 is described. This annual report is divided into two segments: Reservoir Stability Studies and Second-Generation Concepts Studies. The first represents research performed to establish stability criteria for CAES reservoirs while the second reports progress on research performed on second-generation CAES concepts. The report consists of project reports authored by research engineers and scientists from PNL and numerous subcontractors including universities, architect-engineering, and other private firms.

  10. Geothermally Coupled Well-Based Compressed Air Energy Storage

    SciTech Connect

    Davidson, C L; Bearden, Mark D; Horner, Jacob A; Appriou, Delphine; McGrail, B Peter

    2015-12-01

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storage portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure

  11. Geothermally Coupled Well-Based Compressed Air Energy Storage

    SciTech Connect

    Davidson, Casie L.; Bearden, Mark D.; Horner, Jacob A.; Cabe, James E.; Appriou, Delphine; McGrail, B. Peter

    2015-12-20

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storage portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure

  12. Raytheon: Compressed Air System Upgrade Saves Energy and Improves Performance

    SciTech Connect

    2005-04-01

    In 2003, Raytheon Company upgraded the efficiency of the compressed air system at its Integrated Air Defense Center in Andover, Massachusetts, to save energy and reduce costs. Worn compressors and dryers were replaced, a more sophisticated control strategy was installed, and an aggressive leak detection and repair effort was carried out. The total cost of these improvements was $342,000; however, National Grid, a utility service provider, contributed a $174,000 incentive payment. Total annual energy and maintenance cost savings are estimated at $141,500, and energy savings are nearly 1.6 million kWh. This case study was prepared for the U.S. Department of Energy's Industrial Technologies Program.

  13. Compressed air energy storage technology program. Annual report for 1979

    SciTech Connect

    Loscutoff, W.V.

    1980-06-01

    The objectives of the Compressed Air Energy Storage (CAES) program are to establish stability criteria for large underground reservoirs in salt domes, hard rock, and porous rock used for air storage in utility applications, and to develop second-generation CAES technologies that have minimal or no dependence on petroleum fuels. During the year reported reports have been issued on field studies on CAES on aquifers and in salt, stability, and design criteria for CAES and for pumped hydro-storage caverns, laboratory studies of CAES in porous rock reservoris have continued. Research has continued on combined CAES/Thermal Energy Storage, CAES/Solar systems, coal-fired fluidized bed combustors for CAES, and two-reservoir advanced CAES concepts. (LCL)

  14. Carbon and energy saving markets in compressed air

    NASA Astrophysics Data System (ADS)

    Cipollone, R.

    2015-08-01

    CO2 reduction and fossil fuel saving represent two of the cornerstones of the environmental commitments of all the countries of the world. The first engagement is of a medium to long term type, and unequivocally calls for a new energetic era. The second delays in time the fossil fuel technologies to favour an energetic transition. In order to sustain the two efforts, new immaterial markets have been established in almost all the countries of the world, whose exchanges (purchases and sales) concern CO2 emissions and equivalent fossil fuels that have not been emitted or burned. This paper goes deep inside two aspects not yet exploited: specific CO2 emissions and equivalent fossil fuel burned, as a function of compressed air produced. Reference is made to the current compressor technology, carefully analysing CAGI's (Compressed Air Gas Institute) data and integrating it with the PNUEROP (European Association of manufacturers of compressors, vacuum pumps, pneumatic tools and allied equipment) contribution on the compressor European market. On the base of energy saving estimates that could be put in place, this article also estimates the financial value of the CO2 emissions and fossil fuels avoided.

  15. Expiratory flow limitation in compressed air divers and oxygen divers.

    PubMed

    Tetzlaff, K; Friege, L; Reuter, M; Haber, J; Mutzbauer, T; Neubauer, B

    1998-10-01

    Divers are exposed to dense gases under hyperbaric and hyperoxic conditions and, therefore, may be at risk of developing respiratory disease. Long-term effects on respiratory function have been found in commercial divers who perform deep dives. This study was conducted to detect possible lung function changes in scuba divers who dive in shallow water using compressed air or oxygen as a breathing gas. A cross-sectional sample of 180 healthy male divers (152 air divers and 28 oxygen divers) and 34 healthy male controls underwent a diving medical examination including body plethysmography, diffusion capacity measurement and a cold-air isocapnic hyperventilation test (CAIH). Air divers and oxygen divers had a lower mid-expiratory flow at 25% of vital capacity (MEF25) than controls (p<0.01 and p<0.05, respectively). Oxygen divers also had a decreased mid-expiratory flow at 50% of vital capacity (MEF50) (p<0.05). Divers' groups and controls did not differ with respect to age, smoking or medical history. The prevalence of airway hyperresponsiveness to CAIH was 1.4% (n=3 divers). MEF25 and MEF50 were inversely related to years of diving (p<0.01 and p<0.001, respectively). The pattern of lung function changes obtained in scuba divers is consistent with small airways dysfunction and the association between diving exposure and lung function changes may indicate long-term effects on respiratory function.

  16. Compressed breathing air - the potential for evil from within.

    PubMed

    Millar, Ian L; Mouldey, Peter G

    2008-06-01

    Human underwater activities rely on an adequate supply of breathable compressed gas, usually air, free from contaminants that could cause incapacitation underwater or post-dive or longer-term health effects. Potentially fatal but well-known hazards are hypoxia secondary to steel cylinder corrosion and carbon monoxide (CO) poisoning due to contaminated intake air. Another phenomenon may be behind some previously unexplained episodes of underwater incapacitation and perhaps death: low-level CO poisoning and/or the effects of gaseous contaminants generated within the compressor, including toluene and other volatile compounds. Many low molecular weight volatile contaminants are anaesthetic and will be potentiated by pressure and nitrogen narcosis. In sub-anaesthetic doses, impaired judgement, lowered seizure threshold and sensitisation of the heart to arrhythmias may occur. Toxic compounds can be volatilised from some compressor oils, especially mineral oils, in overheated compressors, or be created de novo under certain combinations of temperature, humidity and pressure, perhaps catalysed by metal traces from compressor wear and tear. Most volatiles can be removed by activated carbon filtration but many filters are undersized and may overload in hot, moist conditions and with short dwell times. A compressor that passes normal testing could contaminate one or more cylinders after heating up and then return to producing clean air as the filters dry and the systems cool. The scope of this problem is very unclear as air quality is tested infrequently and often inadequately, even after fatalities. More research is needed as well as better education regarding the safe operation and limitations of high-pressure breathing air compressors.

  17. Atopy, airway reactivity and compressed air diving in males.

    PubMed

    Tetzlaff, K; Neubauer, B; Reuter, M; Friege, L

    1998-01-01

    A decline in expiratory flow rates in divers has recently been attributed to chronic exposure to hyberbaric air. Airway hyperresponsiveness (AHR) to stimuli due to a hyperbaric environment may play a certain role in this context. The aim of this study was to determine the prevalence of AHR in compressed air divers and to assess the value of bronchial challenges for prediction of fitness to dive. A cross-sectional sample of 59 healthy male volunteers--28 divers and 31 diving candidates (controls)--who had been found fit to dive in a diving medical examination underwent additional allergy screening (skin prick and serum IgE) and a histamine bronchial challenge. Pre- and postchallenge body plethysmography was completed to assess AHR. AHR to histamine was significantly increased among divers and positively related to diving experience whereas divers and controls did not differ significantly with respect to age, anthropometric data, current smoking habits, skin prick reaction, and elevated serum IgE. Our results indicate an increased prevalence of AHR to nonspecific inhalation stimuli in experienced divers. Bronchial challenge tests may be helpful to detect asthmatics in the medical assessment of fitness to dive and for follow-up examinations during a diver's career. PMID:9730792

  18. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND...

  19. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND...

  20. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND...

  1. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND...

  2. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND...

  3. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND...

  4. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND...

  5. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND...

  6. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND...

  7. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND...

  8. Integration of Wind Turbines with Compressed Air Energy Storage

    NASA Astrophysics Data System (ADS)

    Arsie, I.; Marano, V.; Rizzo, G.; Moran, M.

    2009-08-01

    Some of the major limitations of renewable energy sources are represented by their low power density and intermittent nature, largely depending upon local site and unpredictable weather conditions. These problems concur to increase the unit costs of wind power, so limiting their diffusion. By coupling storage systems with a wind farm, some of the major limitations of wind power, such as a low power density and an unpredictable nature, can be overcome. After an overview on storage systems, the Compressed Air Energy Storage (CAES) is analyzed, and the state of art on such systems is discussed. A Matlab/Simulink model of a hybrid power plant consisting of a wind farm coupled with CAES is then presented. The model has been successfully validated starting from the operating data of the McIntosh CAES Plant in Alabama. Time-series neural network-based wind speed forecasting are employed to determine the optimal daily operation strategy for the storage system. A detailed economic analysis has been carried out: investment and maintenance costs are estimated based on literature data, while operational costs and revenues are calculated according to energy market prices. As shown in the paper, the knowledge of the expected available energy is a key factor to optimize the management strategies of the proposed hybrid power plant, allowing to obtain environmental and economic benefits.

  9. Optimization study on a single-cylinder compressed air engine

    NASA Astrophysics Data System (ADS)

    Yu, Qihui; Cai, Maolin; Shi, Yan; Xu, Qiyue

    2015-11-01

    The current research of compressed air engine (CAE) mainly focused on simulations and system integrations. However, energy efficiency and output torque of the CAE is limited, which restricts its application and popularization. In this paper, the working principles of CAE are briefly introduced. To set a foundation for the study on the optimization of the CAE, the basic mathematical model of working processes is set up. A pressure-compensated valve which can reduce the inertia force of the valve is proposed. To verify the mathematical model, the prototype with the newly designed pressure-compensated intake valve is built and the experiment is carried out, simulation and experimental results of the CAE are conducted, and pressures inside the cylinder and output torque of the CAE are obtained. Orthogonal design and grey relation analysis are utilized to optimize structural parameters. The experimental and optimized results show that, first of all, pressure inside the cylinder has the same changing tendency in both simulation curve and experimental curve. Secondly, the highest average output torque is obtained at the highest intake pressure and the lowest rotate speed. Thirdly, the optimization of the single-cylinder CAE can improve the working efficiency from an original 21.95% to 50.1%, an overall increase of 28.15%, and the average output torque increases also increases from 22.047 5 N • m to 22.439 N • m. This research designs a single-cylinder CAE with pressure-compensated intake valve, and proposes a structural parameters design method which improves the single-cylinder CAE performance.

  10. Waste Feed Delivery Raw Water and Potable Water and Compressed Air Capacity Evaluation

    SciTech Connect

    MAY, T.H.

    2000-02-08

    This study evaluated the ability of the Raw Water, Potable Water, and Compressed Air systems to support safe storage as well as the first phase of the Waste Feed Delivery. Several recommendations are made to improve the system.

  11. Upgrade of Compressed Air Control System Reduces Energy Costs at Michelin Tire Plant

    SciTech Connect

    2002-01-01

    This case study highlights the upgraded compressed air system at a Michelin tire manufacturing plant in Spartanburg, South Carolina. The controls upgrade project enabled multiple compressor operation without blow-off, and significantly reduced energy costs.

  12. Effects of boundary layer and liquid viscosity and compressible air on sloshing characteristics

    NASA Astrophysics Data System (ADS)

    Zou, Chang-Fang; Wang, De-Yu; Cai, Zhong-Hua

    2015-07-01

    In this paper, numerical investigations for tank sloshing, based on commercial CFD package FLUENT, are performed to study effects of boundary layer grid, liquid viscosity and compressible air on sloshing pressure, wave height and rising time of impact pressure. Also, sloshing experiments for liquids of different viscosity are carried out to validate the numerical results. Through comparison of numerical and experimental results, a computational model including boundary layer grid can predict the sloshing pressure more accurately. Energy dissipation due to viscous friction leads to reduction of sloshing pressure and wave elevation. Sloshing pressure is also reduced because of cushion effect of compressible air. Due to high viscosity damping effect and compressible air effect, the rising time of impact pressure becomes longer. It is also found that liquid viscosity and compressible air influence distribution of dynamic pressure along the vertical tank wall.

  13. Canandaigua Wines: Compressed Air System Upgrade Saves Energy and Improves Performance at a Winery

    SciTech Connect

    2005-03-01

    In June 2004, Canandaigua Wine Company (CWC) completed an upgrade project on the compressed air system at its winery in Lodi, California. Before the project, the winery depended on two compressors to satisfy its production requirements. Anticipating an expansion of its production capacity, the winery commissioned a review of the compressed air system by a U.S. Department of Energy (DOE) Qualifi ed AIRMaster+ Specialist at Atlas Copco Compressors, Inc.

  14. Implementing a Compressed Air System Leak Management Program at an Automotive Plant (Visteon's Monroe Plant)

    SciTech Connect

    2001-01-01

    The energy team at Visteon’s Monroe plant, formerly owned by Ford Motor Company, implemented an ongoing compressed air system leak management program. The team developed an approach that combined a traditional “find and fix” effort with an innovative implementation and marketing program. As a result of the leak management program, compressed air system consumption was reduced by more than 50% on a per production unit basis.

  15. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  16. Carbon monoxide and water vapor contamination of compressed breathing air for firefighters and divers.

    PubMed

    Austin, C C; Ecobichon, D J; Dussault, G; Tirado, C

    1997-12-12

    Compressed breathing air, used in self-contained breathing apparatus (SCBA) by firefighters and other categories of workers as well as by recreational and commercial divers, is prepared with the aid of high-pressure compressors operating in the range of 5000 psig. There have been reports of unexplained deaths of SCUBA divers and anecdotal accounts of decreased time to exhaustion in firefighters using SCBAs. Compressed breathing air has been found to contain elevated levels of carbon monoxide (CO) and water vapor that are consistent with carboxyhemoglobin (COHb) poisoning and freezing of the user's regulator on the breathing apparatus. The Coburn-Forster-Kane equation (CFK equation) was used to estimate COHb levels at rest and at maximum exercise when exposed to different levels of CO in contaminated breathing air. The results demonstrated that, at maximum exercise, the COHb ranged from 6.0 to 17% with the use of 1 to 4 SCBA cylinders contaminated by 250 ppm CO. Standard operating procedures have been developed at the Montreal Fire Department to minimize the risk of compressed breathing air contamination. Results of the quality analysis/quality control program indicate that implementation of these procedures has improved the quality of the compressed breathing air. Recommendations are made for improvement of the air testing procedures mandated by the Canadian CAN3 180.1-M85 Standard on Compressed Breathing Air and Systems.

  17. Improving Compressed Air Energy Efficiency in Automotive Plants - Practical Examples and Implementation

    SciTech Connect

    Alkadi, Nasr E; Kissock, Professor Kelly

    2011-01-01

    The automotive industry is the largest industry in the United States in terms of the dollar value of production [1]. U.S. automakers face tremendous pressure from foreign competitors, which have an increasing manufacturing presence in this country. The Big Three North American Original Equipment Manufacturers (OEMs) General Motors, Ford, and Chrysler are reacting to declining sales figures and economic strain by working more efficiently and seeking out opportunities to reduce production costs without negatively affecting the production volume or the quality of the product. Successful, cost-effective investment and implementation of the energy efficiency technologies and practices meet the challenge of maintaining the output of high quality product with reduced production costs. Automotive stamping and assembly plants are typically large users of compressed air with annual compressed air utility bills in the range of $2M per year per plant. This paper focuses on practical methods that the authors have researched, analyzed and implemented to improve compressed air system efficiency in automobile manufacturing facilities. It describes typical compressed air systems in automotive stamping and assembly plants, and compares these systems to best practices. The paper then presents a series of examples, organized using the method of inside-out approach, which strategically identifies the energy savings in the compressed air system by first minimizing end-use demand, then minimizing distribution losses, and finally making improvements to primary energy conversion equipment, the air compressor plant.

  18. Effect of compressibility on the rise velocity of an air bubble in porous media

    NASA Astrophysics Data System (ADS)

    Cihan, Abdullah; Corapcioglu, M. Yavuz

    2008-04-01

    The objective of this study is to develop a theoretical model to analyze the effect of air compressibility on air bubble migration in porous media. The model is obtained by combining the Newton's second law of motion and the ideal gas law assuming that the air phase in the bubble behaves as an ideal gas. Numerical and analytical solutions are presented for various cases of interest. The model results compare favorably with both experimental data and analytical solutions reported in the literature obtained for an incompressible air bubble migration. The results show that travel velocity of a compressible air bubble in porous media strongly depends on the depth of air phase injection. A bubble released from greater depths travels with a slower velocity than a bubble with an equal volume injected at shallower depths. As an air bubble rises up, it expands with decreasing bubble pressure with depth. The volume of a bubble injected at a 1-m depth increases 10% as the bubble reaches the water table. However, bubble volume increases almost twofold when it reaches to the surface from a depth of 10 m. The vertical rise velocity of a compressible bubble approaches that of an incompressible one regardless of the injection depth and volume as it reaches the water table. The compressible bubble velocity does not exceed 18.8 cm/s regardless of the injection depth and bubble volume. The results demonstrate that the effect of air compressibility on the motion of a bubble cannot be neglected except when the air is injected at very shallow depths.

  19. Study of hydraulic air compression for Ocean Thermal Energy Conversion open-cycle application

    NASA Astrophysics Data System (ADS)

    Golshani, A.; Chen, F. C.

    1983-01-01

    A hydraulic air compressor, which requires no mechanical moving parts and operates in a nearly isothermal mode, can be an alternative for the noncondensible gas disposal of an Ocean Thermal Energy Conversion (OTEC) open-cycle power system. The compressor requires only a downward flow of water to accomplish air compression. An air compressor test loop was assembled and operated to obtain test data that would lead to the design of an OTEC hydraulic air compressor. A one dimensional, hydraulic gas compressor, computer model was employed to simulate the laboratory experiments, and it was tuned to fit the test results. A sensitivity study that shows the effects of various parameters on the applied head of the hydraulic air compression is presented.

  20. Scuba tanks as a compressed air source in positive-pressure ventilation.

    PubMed

    Stewart, T

    1992-06-01

    Throughout the developing world there is a general problem of ensuring regular deliveries of medical supplies to hospitals. This includes the supply of compressed gases. At one regional hospital in Vanuatu, we were faced with the problem of how to provide economically a source of compressed gas at regulated pressure to drive an anaesthetic ventilator. We eventually adapted the output from a Scuba cylinder for this purpose. This paper describes the simple modifications necessary and suggests other uses for this source of compressed air that could be implemented in hospitals with small to medium case loads and access to a diving compressor.

  1. Failure Monitoring and Leakage Detection for Underground Storage of Compressed Air Energy in Lined Rock Caverns

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Mok; Rutqvist, Jonny; Kim, Hyunwoo; Park, Dohyun; Ryu, Dong-Woo; Park, Eui-Seob

    2016-02-01

    Underground compressed air energy storage (CAES) in lined rock caverns (LRCs) provides a promising solution for storing energy on a large scale. One of the essential issues facing underground CAES implementation is the risk of air leakage from the storage caverns. Compressed air may leak through an initial defect in the inner containment liner, such as imperfect welds and construction joints, or through structurally damaged points of the liner during CAES operation for repeated compression and decompression cycles. Detection of the air leakage and identification of the leakage location around the underground storage cavern are required. In this study, we analyzed the displacement (or strain) monitoring method to detect the mechanical failure of liners that provides major pathways of air leakage using a previously developed numerical technique simulating the coupled thermodynamic and geomechanical behavior of underground CAES in LRCs. We analyzed the use of pressure monitoring to detect air leakage and characterize the leakage location. From the simulation results, we demonstrated that tangential strain monitoring at the inner face of sealing liners could enable one to detect failure. We also demonstrated that the use of the cross-correlation method between pressure history data measured at various sensors could identify the air leak location. These results may help in the overall design of a monitoring and alarm system for the successful implementation and operation of CAES in LRCs.

  2. Demonstration of Isothermal Compressed Air Energy Storage to Support Renewable Energy Production

    SciTech Connect

    Bollinger, Benjamin

    2015-01-02

    This project develops and demonstrates a megawatt (MW)-scale Energy Storage System that employs compressed air as the storage medium. An isothermal compressed air energy storage (ICAESTM) system rated for 1 MW or more will be demonstrated in a full-scale prototype unit. Breakthrough cost-effectiveness will be achieved through the use of proprietary methods for isothermal gas cycling and staged gas expansion implemented using industrially mature, readily-available components.The ICAES approach uses an electrically driven mechanical system to raise air to high pressure for storage in low-cost pressure vessels, pipeline, or lined-rock cavern (LRC). This air is later expanded through the same mechanical system to drive the electric motor as a generator. The approach incorporates two key efficiency-enhancing innovations: (1) isothermal (constant temperature) gas cycling, which is achieved by mixing liquid with air (via spray or foam) to exchange heat with air undergoing compression or expansion; and (2) a novel, staged gas-expansion scheme that allows the drivetrain to operate at constant power while still allowing the stored gas to work over its entire pressure range. The ICAES system will be scalable, non-toxic, and cost-effective, making it suitable for firming renewables and for other grid applications.

  3. Proctor & Gamble: Compressed Air System Upgrade Saves Energy & Improves Production at a Paper Mill

    SciTech Connect

    2004-05-01

    In 2002, Procter & Gamble applied a system-level strategy to optimize a compressed air system at its paper products mill in Mehoopany, Pennsylvania. The project improved production, improved system performance, and saved 7.6 million kWh per year and $309,000 per year in maintenance costs.

  4. Electric power generating plant having direct coupled steam and compressed air cycles

    DOEpatents

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  5. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOEpatents

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  6. Improving Energy Efficiency of Compressed Air System Based onSystem Audit

    SciTech Connect

    Shanghai, Hongbo Qin; McKane, Aimee

    2007-06-01

    Industrial electric motor systems consume more than 600billion kWh annually, accounting for more than 50 percent of China selectricity use. The International Energy Agency estimates thatoptimizing motor systems results in an improvement of 20-25 percent,which is well-supported by experience in both the U.S. and China.Compressed air systems in China use 9.4 percent of all electricity.Compressed air use in China is growing rapidly, as new industrial plantsare built and the production processes of existing plants expand andchange. Most of these systems, whether existing or new, are not optimizedfor energy efficiency. This paper will present a practitioner'sperspective on theemergence of compressed air auditing services inChina, specifically as it pertains to Shanghai and surrounding areas.Both the methodology used and the market development of these compressedair system services will be addressed. Finally, the potential for energysaving opportunities will be described based on highlights from over 50compressed air system energy audits completed by Shanghai EnergyConservation Service Center, both during the United Nations IndustrialDevelopment Organization (UNIDO) China Motor System Energy ConservationProgram, and after this training program was completed.

  7. Compressed Air System Retrofitting Project Improves Productivity at a Foundry (Cast Masters, Bowling Green, OH)

    SciTech Connect

    2002-06-01

    This case study highlights International Truck and Engine Corporation's optimization project on the compressed air system that serves its foundry, Indianapolis Casting Corporation. Due to the project's implementation, the system's efficiency was greatly improved, allowing the foundry to operate with less compressor capacity, which resulted in reduced energy consumption, significant maintenance savings, and more reliable production.

  8. Compressed Air System Upgrade Improves Production at an Automotive Glass Plant

    SciTech Connect

    2003-02-01

    In 2000, The Visteon automotive glass plant improved its compressed air system at its automotive glass plant in Nashville, Tennessee. This improvement allowed Visteon to save $711,000 annually, reduce annual energy consumption by 7.9 million kilowatt-hours, reduce maintenance, improve system performance, and avoid $800,000 in asbestos abatement costs.

  9. Two stroke homogenous charge compression ignition engine with pulsed air supplier

    DOEpatents

    Clarke, John M.

    2003-08-05

    A two stroke homogenous charge compression ignition engine includes a volume pulsed air supplier, such as a piston driven pump, for efficient scavenging. The usage of a homogenous charge tends to decrease emissions. The use of a volume pulsed air supplier in conjunction with conventional poppet type intake and exhaust valves results in a relatively efficient scavenging mode for the engine. The engine preferably includes features that permit valving event timing, air pulse event timing and injection event timing to be varied relative to engine crankshaft angle. The principle use of the invention lies in improving diesel engines.

  10. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    SciTech Connect

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  11. Improving the performance of a compression ignition engine by directing flow of inlet air

    NASA Technical Reports Server (NTRS)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  12. Aseptic necrosis in compressed air tunnel workers using current OSHA decompression schedules.

    PubMed

    Kindwall, E P; Nellen, J R; Spiegelhoff, D R

    1982-10-01

    Aseptic necrosis (dysbaric osteonecrosis) was discovered in two compressed air tunnel workers who had used the present Occupational Health and Safety Administration (OSHA) decompression tables for compressed air tunneling at pressures greater than 36 pounds per square inch gauge (psig). A roentgenographic study was made of 21 men who had worked at pressures up to 43 psig using the OSHA schedules. Bone scanning was also included. Seven of the men (33%) were found to have aseptic necrosis involving the shoulders, hips or distal femoral shafts and proximal tibia. It became evident that the present OSHA schedules caused not only an unacceptable incidence of decompression sickness but also aseptic necrosis at pressures over 36 psig. New interim tables that are more conservative and that use either air or oxygen as a breathing gas during decompression are undergoing laboratory and worksite evaluation.

  13. Dynamics of compressible air flow in ducts with heat exchange

    NASA Astrophysics Data System (ADS)

    Abdulhadi, M.

    1986-12-01

    An investigation into the effect of heat addition on subsonic flow of an air stream in a constant-area duct preceded by a convergent nozzle is carried out. A nozzle flow apparatus with a heat exchanger encasing the constant-area duct has been built for this purpose. Hot water is provided from an electric boiler where the flow rate and the in-flow hot water temperature could be controlled. It is confirmed experimentally, as predicted analytically, that heat transfer to the gas decreases its local static pressure along the duct axis, and that this decrease is associated with an increase in Mach number toward M = 1 at the exit (thermal choking). In the case of subsonic flow, the additional entropy generated by the heat interaction exceeding the amount that produces thermal choking can only be accommodated by moving to a new Rayleigh line, at a decreased flow rate which lowers the inlet Mach number. The good correlation between the experimental results and the analytical derivations illustrates that the experimental arrangement has potential for further experiments and investigations.

  14. Electric component cooling alternatives: Compressed air and liquid nitrogen. Project report, June 1991-September 1993

    SciTech Connect

    Schmitt, S.S.; Olfenbuttel, R.F.

    1994-09-01

    The goal of the study was to evaluate tools used to troubleshoot circuit boards with known or suspected thermally intermittent components. Spray cans of refrigerants (R-12 (CFC-12) and R-22 (HCFC-22)), which are commonly used in electronics manufacturing and repair businesses for this purpose, served as the benchmark for the evaluation. A promising alternative technology that was evaluated in the study is a compressed-air tool that provides a continuous stream of cold air that can be directed toward specific components. Another alternative technology that was considered is a Dewar flask that dispenses cold nitrogen gas as the cooling agent. Critical parameters were measured for each cooling method to provide a basis for comparison of compressed air and liquid nitrogen with spray cans of refrigerant. Although the plan was written specifically for the evaluation of compressed air, the test plan was written to include an evaluation of liquid nitrogen because test site staff were interested in evaluating this technology. The liquid nitrogen evaluation showed that it could be a viable alternative.

  15. Changes in lung function after working with the shotcrete lining method under compressed air conditions.

    PubMed Central

    Kessel, R; Redl, M; Mauermayer, R; Praml, G J

    1989-01-01

    Shotcrete techniques under compressed air are increasingly applied in the construction of tunnels. Up to now little is known about the influence of shotcrete dusts on the function of the lung. The lung function of 30 miners working with shotcrete under compressed air (before and after one shift) was measured. They carried personal air samplers to assess the total dust exposure. Long term effects were studied on a second group of 29 individuals exposed to shotcrete dusts and compressed air for two years. A significant increase of airway resistance and a significant decrease of some flow-volume parameters were found after one workshift. These changes partially correlate close to the dust exposure. After two years exposure a significant decrease of mean expiratory flow (MEF)50 and MEF25 was found. These results point to damage in the small airways and emphasise the major role of the lung function test--including the flow-volume manoeuvre for the medical examination of the workers. Additionally, they should carry filter masks. Images PMID:2923823

  16. Compressed-air work is entering the field of high pressures.

    PubMed

    Le Péchon, J Cl; Gourdon, G

    2010-01-01

    Since 1850, compressed-air work has been used to prevent shafts or tunnels under construction from flooding. Until the 1980s, workers were digging in compressed-air environments. Since the introduction of tunnel boring machines (TBMs), very little digging under pressure is needed. However, the wearing out of cutter-head tools requires inspection and repair. Compressed-air workers enter the pressurized working chamber only occasionally to perform such repairs. Pressures between 3.5 and 4.5 bar, that stand outside a reasonable range for air breathing, were reached by 2002. Offshore deep diving technology had to be adapted to TBM work. Several sites have used mixed gases: in Japan for deep shaft sinking (4.8 bar), in The Netherlands at Western Scheldt Tunnels (6.9 bar), in Russia for St. Petersburg Metro (5.8 bar) and in the United States at Seattle (5.8 bar). Several tunnel projects are in progress that may involve higher pressures: Hallandsås (Sweden) interventions in heliox saturation up to 13 bar, and Lake Mead (U.S.) interventions to about 12 bar (2010). Research on TBMs and grouting technologies tries to reduce the requirements for hyperbaric works. Adapted international rules, expertise and services for saturation work, shuttles and trained personnel matching industrial requirements are the challenges. PMID:20737925

  17. Fuel Spray and Flame Formation in a Compression-Ignition Engine Employing Air Flow

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    The effects of air flow on fuel spray and flame formation in a high-speed compression-ignition engine have been investigated by means of the NACA combustion apparatus. The process was studied by examining high-speed motion pictures taken at the rate of 2,200 frames a second. The combustion chamber was of the flat-disk type used in previous experiments with this apparatus. The air flow was produced by a rectangular displacer mounted on top of the engine piston. Three fuel-injection nozzles were tested: a 0.020-inch single-orifice nozzle, a 6-orifice nozzle, and a slit nozzle. The air velocity within the combustion chamber was estimated to reach a value of 425 feet a second. The results show that in no case was the form of the fuel spray completely destroyed by the air jet although in some cases the direction of the spray was changed and the spray envelope was carried away by the moving air. The distribution of the fuel in the combustion chamber of a compression-ignition engine can be regulated to some extent by the design of the combustion chamber, by the design of the fuel-injection nozzle, and by the use of air flow.

  18. Ohio Aluminum Industries: Compressed air system improvement project saves energy and improves product quality

    SciTech Connect

    None, None

    2003-11-01

    In 2001, Ohio Aluminum Industries implemented the first phase of a compressed air system improvement project at its Cleveland, Ohio, plant. By completing this phase, the plant stabilized the system's pressure and improved its performance. Furthermore, it yielded annual energy savings of 716,000 kilowatt-hours and $73,200. The total cost for the project's first phase was $83,500, making the simple payback slightly more than 1 year.

  19. [Medical aspects of the environmental sanitation of workplaces in compressed air work in Japan].

    PubMed

    Mano, Y; Shibayama, M

    1987-01-01

    Actual follow-up investigations were made for a period of 5 yr and 10 months since February 1980 on 55 places of caisson and shield work. The maximum bottom pressure in caisson work was 3.6 kg/cm2 (4.6 ATA) and that of shield work was 1.6 kg/cm2. The number of exposures of workers was 23,737 in caisson work and 75,244 in shield work. The items of geomedical measurements were temperature (degrees C), humidity, dust, illumination, noise, oxygen, carbonic acid gas and others. In compressed air work, it is most important to prevent decompression sickness (bends) from the view of occupational health. The incidence of bends has decreased in recent years because of strict control by regulations. Environmental hygiene, however, has seldom been discussed in this field and little geomedical control has been made on compressed air work. In view of this situation, we have, therefore, studied, observed, and measured the hygienic factors of this work during the past five years. This investigation is without doubt the first of its kind in Japan and the areas covered most of the regions where compressed air works have been made in the past. From these results, it can be concluded as follows: The working temperature was controlled, but humidity was too high (nearly 90%). Illumination was insufficient. Dust was a problem, but high humidity played an important role in decreasing the volume. The environment was noisy. It is therefore natural that environmental studies should be continued and hygienic consideration be further emphasized in compressed air work. PMID:3613254

  20. Factors affecting storage of compressed air in porous-rock reservoirs

    SciTech Connect

    Allen, R.D.; Doherty, T.J.; Erikson, R.L.; Wiles, L.E.

    1983-05-01

    This report documents a review and evaluation of the geotechnical aspects of porous medium (aquifer) storage. These aspects include geologic, petrologic, geophysical, hydrologic, and geochemical characteristics of porous rock masses and their interactions with compressed air energy storage (CAES) operations. The primary objective is to present criteria categories for the design and stability of CAES in porous media (aquifers). The document will also describe analytical, laboratory, and field-scale investigations that have been conducted.

  1. Geothermal well behaviour prediction after air compress stimulation using one-dimensional transient numerical modelling

    NASA Astrophysics Data System (ADS)

    Yusman, W.; Viridi, S.; Rachmat, S.

    2016-01-01

    The non-discharges geothermal wells have been a main problem in geothermal development stages and well discharge stimulation is required to initiate a flow. Air compress stimulation is one of the methods to trigger a fluid flow from the geothermal reservoir. The result of this process can be predicted by using by the Af / Ac method, but sometimes this method shows uncertainty result in several geothermal wells and also this prediction method does not take into account the flowing time of geothermal fluid to discharge after opening the well head. This paper presents a simulation of non-discharges well under air compress stimulation to predict well behavior and time process required. The component of this model consists of geothermal well data during heating-up process such as pressure, temperature and mass flow in the water column and main feed zone level. The one-dimensional transient numerical model is run based on the Single Fluid Volume Element (SFVE) method. According to the simulation result, the geothermal well behavior prediction after air compress stimulation will be valid under two specific circumstances, such as single phase fluid density between 1 - 28 kg/m3 and above 28.5 kg/m3. The first condition shows that successful well discharge and the last condition represent failed well discharge after air compress stimulation (only for two wells data). The comparison of pf values between simulation and field observation shows the different result according to the success discharge well. Time required for flow to occur as observed in well head by using the SFVE method is different with the actual field condition. This model needs to improve by updating more geothermal well data and modified fluid phase condition inside the wellbore.

  2. Increasing the Air Charge and Scavenging the Clearance Volume of a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Hicks, C W; Foster, H H

    1934-01-01

    The object of the investigation presented in this report was to determine the effects of increasing the air charge and scavenging the clearance volume of a 4-stroke-cycle compression-ignition engine having a vertical-disk form combustion chamber. Boosting the inlet-air pressure with normal valve timing increased the indicated engine power in proportion to the additional air inducted and resulted in smoother engine operation with less combustion shock. Scavenging the clearance volume by using a valve overlap of 145 degrees and an inlet-air boost pressure of approximately 2 1/2 inches of mercury produced a net increase in performance for clear exhaust operation of 33 percent over that obtained with normal valve timing and the same boost pressure. The improved combustion characteristics result in lower specific fuel consumption, and a clearer exhaust.

  3. Compressed air energy storage in depleted natural gas reservoirs: effects of porous media and gas mixing

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Pan, L.

    2015-12-01

    Although large opportunities exist for compressed air energy storage (CAES) in aquifers and depleted natural gas reservoirs, only two grid-scale CAES facilities exist worldwide, both in salt caverns. As such, experience with CAES in porous media, what we call PM-CAES, is lacking and we have relied on modeling to elucidate PM-CAES processes. PM-CAES operates similarly to cavern CAES. Specifically, working gas (air) is injected through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir flows first into a recuperator, then into an expander, and subsequently is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Energy storage in porous media is complicated by the solid matrix grains which provide resistance to flow (via permeability in Darcy's law); in the cap rock, low-permeability matrix provides the seal to the reservoir. The solid grains also provide storage capacity for heat that might arise from compression, viscous flow effects, or chemical reactions. The storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Residual liquid (i.e., formation fluids) affects flow and can cause watering out at the production well(s). PG&E is researching a potential 300 MW (for ten hours) PM-CAES facility in a depleted gas reservoir near Lodi, California. Special considerations exist for depleted natural gas reservoirs because of mixing effects which can lead to undesirable residual methane (CH4) entrainment and reactions of oxygen and CH4. One strategy for avoiding extensive mixing of working gas (air) with reservoir CH4 is to inject an initial cushion gas with reduced oxygen concentration providing a buffer between the working gas (air) and the residual CH4 gas. This reduces the potential mixing of the working air with the residual CH4

  4. Evaluation of thermal energy storage materials for advanced compressed air energy storage systems

    SciTech Connect

    Zaloudek, F.R.; Wheeler, K.R.; Marksberry, L.

    1983-03-01

    Advanced Compressed-Air Energy Storage (ACAS) plants have the near-term potential to reduce the fuel consumption of compressed-air plants from 33 to 100%, depending upon their design. Fuel is saved by storing some or all of the heat of compression as sensible heat which is subsequently used to reheat the compressed air prior to expansion in the turbine generator. The thermal storage media required for this application must be low cost and durable. The objective of this project was to screen thermal store materials based on their thermal cycle durability, particulate formation and corrosion resistant characteristics. The materials investigated were iron oxide pellets, Denstone pebbles, cast-iron balls, and Dresser basalt rock. The study specifically addressed the problems of particle formation and thermal ratcheting of the materials during thermal cycling and the chemical attack on the materials by the high temperature and moist environment in an ACAS heat storage bed. The results indicate that from the durability standpoint Denstone, cast iron containing 27% or more chromium, and crushed Dresser basalt would possibly stand up to ACAS conditions. If costs are considered in addition to durability and performance, the crushed Dresser basalt would probably be the most desirable heat storage material for adiabatic and hybrid ACAS plants, and more in-depth longer term thermal cycling and materials testing of Dresser basalt is recommended. Also recommended is the redesign and costing analysis of both the hybrid and adiabatic ACAS facilities based upon the use of Dresser basalt as the thermal store material.

  5. Compressed air energy storage preliminary design and site development program in an aquifer. Turbomachinery design

    NASA Astrophysics Data System (ADS)

    Berman, P. A.; Bonk, J. S.; Kobett, W. F.; Kosanovich, N. S.; Long, L. J.; Marinacci, D. J.

    1981-07-01

    Compressed Air Energy Storage (CAES) is a means of storing electrical energy generated by utility baseload power plants during off-peak hours. This stored energy will be used during periods of high demand. Compressed Air Energy Storage (CAES) system uses off-peak power from an electrical grid to operate an electric dynamo. This is used as a motor to drive a compressor train that charges atmospheric air at elevated pressure into an underground aquifer. During high electrical demand periods, the pressurized air is withdrawn from the aquifer and channeled to combustors where it is heated and then expanded through a combustion turbine. The turbine drives the electric dynamo, being operated as a generator, to supply power back to the grid. Since the CAES turbine train is divorced from the compressor during power generation, the net output power is about three times that of a normal combustion turbine. Although the fuel consumption rate is nearly the same, the heat rate is much lower.

  6. Ford Van Dyke: Compressed Air Management Program Leads to Improvements that Reduce Energy Consumption at an Automotive Transmission Plant

    SciTech Connect

    2010-06-25

    Staff at the Ford Van Dyke Transmission Plant in Sterling Heights, Michigan, have increased the efficiency of the plant’s compressed air system to enhance its performance while saving energy and improving production.

  7. Effects of Air-Fuel Spray and Flame Formation in a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    High-speed motion pictures were taken at the rate of 2,500 frames per second of the fuel spray and flame formation in the combustion chamber of the NACA combustion apparatus. The compression ratio was 13.2 and the speed 1,500 revolutions per minute. An optical indicator was used to record the time-pressure relationship in the combustion chamber. The air-fuel ratio was varied from 10.4 to 365. The results showed that as the air-fuel ratio was increased definite stratification of the charge occurred in the combustion chamber even though moderate air flow existed. The results also showed the rate of vapor diffusion to be relatively slow.

  8. Porous media experience applicable to field evaluation for compressed air energy storage

    SciTech Connect

    Allen, R.D.; Gutknecht, P.J.

    1980-06-01

    A survey is presented of porous media field experience that may aid in the development of a compressed air energy storage field demonstration. Work done at PNL and experience of other groups and related industries is reviewed. An overall view of porous media experience in the underground storage of fluids is presented. CAES experience consists of site evaluation and selection processes used by groups in California, Kansas, and Indiana. Reservoir design and field evaluation of example sites are reported. The studies raised questions about compatibility with depleted oil and gas reservoirs, storage space rights, and compressed air regulations. Related experience embraces technologies of natural gas, thermal energy, and geothermal and hydrogen storage. Natural gas storage technology lends the most toward compressed air storage development, keeping in mind the respective differences between stored fluids, physical conditions, and cycling frequencies. Both fluids are injected under pressure into an aquifer to form a storage bubble confined between a suitable caprock structure and partially displaced ground water. State-of-the-art information is summarized as the necessary foundation material for field planning. Preliminary design criteria are given as recommendations for basic reservoir characteristics. These include geometric dimensions and storage matrix properties such as permeability. Suggested ranges are given for injection air temperature and reservoir pressure. The second step in developmental research is numerical modeling. Results have aided preliminary design by analyzing injection effects upon reservoir pressure, temperature and humidity profiles. Results are reported from laboratory experiments on candidate sandstones and caprocks. Conclusions are drawn, but further verification must be done in the field.

  9. Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air

    DOEpatents

    Bland, Robert J.; Horazak, Dennis A.

    2012-03-06

    A gas turbine engine is provided comprising an outer shell, a compressor assembly, at least one combustor assembly, a turbine assembly and duct structure. The outer shell includes a compressor section, a combustor section, an intermediate section and a turbine section. The intermediate section includes at least one first opening and at least one second opening. The compressor assembly is located in the compressor section to define with the compressor section a compressor apparatus to compress air. The at least one combustor assembly is coupled to the combustor section to define with the combustor section a combustor apparatus. The turbine assembly is located in the turbine section to define with the turbine section a turbine apparatus. The duct structure is coupled to the intermediate section to receive at least a portion of the compressed air from the compressor apparatus through the at least one first opening in the intermediate section, pass the compressed air to an apparatus for separating a portion of oxygen from the compressed air to produced vitiated compressed air and return the vitiated compressed air to the intermediate section via the at least one second opening in the intermediate section.

  10. Improving Energy Efficiency in Pharmaceutical ManufacturingOperations -- Part I: Motors, Drives and Compressed Air Systems

    SciTech Connect

    Galitsky, Christina; Chang, Sheng-chien; Worrell, Ernst; Masanet,Eric

    2006-04-01

    In Part I of this two-part series, we focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Pharmaceutical manufacturing plants in the U.S. spend nearly $1 billion each year for the fuel and electricity they need to keep their facilities running (Figure 1, below). That total that can increase dramatically when fuel supplies tighten and oil prices rise, as they did last year. Improving energy efficiency should be a strategic goal for any plant manager or manufacturing professional working in the drug industry today. Not only can energy efficiency reduce overall manufacturing costs, it usually reduces environmental emissions, establishing a strong foundation for a corporate greenhouse-gas-management program. For most pharmaceutical manufacturing plants, Heating, Ventilation and Air Conditioning (HVAC) is typically the largest consumer of energy, as shown in Table 1 below. This two-part series will examine energy use within pharmaceutical facilities, summarize best practices and examine potential savings and return on investment. In this first article, we will focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Part 2, to be published in May, will focus on overall HVAC systems, building management and boilers.

  11. Techni-Cast: Foundry Saves Energy with Compressed Air System Retrofit

    SciTech Connect

    none,

    2004-03-01

    In 2002, Techni-Cast improved its compressed air system at its foundry in Southgate, California. The project allowed the foundry to reduce its compressor capacity by 50%, which greatly reduced the foundry's energy and maintenance costs. The annual energy and maintenance savings from the project implementation are 242,000 kWh and $24,200, and the project's cost was $38,000. Because the plant received a $10,000 incentive payment from the California Public Utilities Commission, the total project cost was reduced to $28,000, yielding a 14-month simple payback.

  12. Thermophysical behavior of St. Peter sandstone: application to compressed air energy storage in an aquifer

    SciTech Connect

    Erikson, R.L.

    1983-12-01

    The long-term stability of a sandstone reservoir is of primary importance to the success of compressed air energy storage (CAES) in aquifers. The purpose of this study was to: develop experimental techniques for the operation of the CAES Porous Media Flow Loop (PMFL), an apparatus designed to study the stability of porous media in subsurface geologic environments, conduct experiments in the PMFL designed to determine the effects of temperature, stress, and humidity on the stability of candidate CAES reservoir materials, provide support for the CAES field demonstration project in Pittsfield, Illinois, by characterizing the thermophysical stability of Pittsfield reservoir sandstone under simulated field conditions.

  13. Geotechnical issues and guidelines for storage of compressed air in excavated hard rock caverns

    SciTech Connect

    Allen, R.D.; Doherty, T.J.; Fossum, A.F.

    1982-04-01

    The results of a literature survey on the stability of excavated hard rock caverns are presented. The objective of the study was to develop geotechnical criteria for the design of compressed air energy storage (CAES) caverns in hard rock formations. These criteria involve geologic, hydrological, geochemical, geothermal, and in situ stress state characteristics of generic rock masses. Their relevance to CAES caverns, and the identification of required research areas, are identified throughout the text. This literature survey and analysis strongly suggests that the chief geotechnical issues for the development and operation of CAES caverns in hard rock are impermeability for containment, stability for sound openings, and hydrostatic balance.

  14. Weyerhaeuser: Compressed Air System Improvement Saves Energy and Improves Production at a Sawmill

    SciTech Connect

    2004-11-01

    In 2000, Weyerhaeuser Company, a U.S. Department of Energy Allied Partner in the Industrial Technologies Program, increased the efficiency of the compressed air system at its sawmill facility in Coburg, Oregon. This improved the system's performance and will save about 1.3 million kWh annually. Total project costs were $55,000; because annual energy cost savings were also $55,000, the simple payback period was only 1 year. Subsequent improvements at six other company plants and mills are yielding 6.8 million kWh in energy savings and reducing annual energy costs by $250,000.

  15. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    PubMed Central

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518

  16. Canandaigua Wines: Compressed Air System Upgrade Saves Energy and Improves Performance at a Winery

    SciTech Connect

    Not Available

    2005-03-01

    In June 2004, a U.S. Department of Energy Qualified AIRMaster+ Specialist at Atlas Copco Compressors was asked to review the compressed air system at the Canandaigua Wine Company in Lodi, California, as part of a program to improve industrial energy efficiency. The review prompted a system-level improvement project that enabled the winery to use its compressors more efficiently and to add another, more efficient compressor, saving 218,000 kWh annually and $27,000 in energy and maintenance costs.

  17. Gas chromatographic method for measuring nitrogen dioxide and peroxyacetyl nitrate in air without compressed gas cylinders

    SciTech Connect

    Burkhardt, M.R.; Maniga, N.I.; Stedman, D.H.; Paur, R.J.

    1988-04-15

    A gas chromatographic technique that measures atmospheric concentrations of peroxyacetyl nitrate (PAN) and NO/sub 2/ has been developed that uses luminol-based chemiluminescence for detection. The carrier gas is air that has been scrubbed by passing it over FeSO/sub 4/, which eliminates the need for any compressed gas cylinders. A novel gas sampling system and time enable variable sample volumes of contaminated air to be injected. Ambient PAN and NO/sub 2/ measurements can be made every 40 s with detection limits of 0.12 ppb for PAN and 0.2 ppb for NO/sub 2/. Seven other atmospheric species, including ozone, gave no interference. Linear response was observed for NO/sub 2/ from 0.2 to 170 ppb and for PAN from 1 to 70 ppb.

  18. An efficient new automobile air-conditioning system based on CO{sub 2} vapor compression

    SciTech Connect

    Pettersen, J.

    1994-12-31

    A new, efficient, and environmentally safe automobile air-conditioning system based on carbon dioxide (CO{sub 2}) vapor compression has been developed. Although working pressures and component design are different, the basic principles are similar to those of current chlorofluorocarbon/hydrofluorocarbon (CFC/HFC) units. With the construction and testing of a laboratory prototype, it has been documented that the new system is highly competitive with current CFC-12 and HFC-134a units in terms of efficiency, capacity, cost, weight, and dimensions. The CO{sub 2} concept thus offers a solution to the environmental problem associated with automobile air conditioning and eliminates all uncertainties with respect to possible unforeseen effects from new refrigerant compounds. Further advantages of the natural fluid CO{sub 2} as a refrigerant are: no need for recycling or recovery, low cost of fluid, excellent availability, well-known properties, and more compact machinery and components.

  19. Quantitative Analysis of Major Phytochemicals in Orthodox tea (Camellia sinensis), Oxidized under Compressed Air Environment.

    PubMed

    Panda, Brajesh Kumar; Datta, Ashis Kumar

    2016-04-01

    This study describes major changes in phytochemical composition of orthodox tea (Camellia sinensis var. Assamica) oxidized under compressed air (CA). The experiments for oxidation were conducted under air pressure (101, 202, and 303 kPa) for 150 min. Relative change in the concentrations of caffeine, catechins, theaflavins (TF), and thearubigins (TR) were analyzed. Effect of CA pressure was found to be nonsignificant in regulating caffeine concentration during oxidation. But degradation in different catechins as well as formation of different TF was significantly affected by CA pressure. At high CA pressure, TF showed highest peak value. TR was found to have slower rate of formation during initial phase of oxidation than TF. Even though the rate of TR formation was significantly influenced by CA, a portion of catechins remained unoxidized at end of oxidation. Except caffeine, the percent change in rate of formation or degradation were more prominent at 202 kPa.

  20. Destratification of an impounding reservoir using compressed air??case of Mudi reservoir, Blantyre, Malawi

    NASA Astrophysics Data System (ADS)

    Chipofya, V. H.; Matapa, E. J.

    This paper reviews the operational and cost effectiveness of a compressed air destratification system that was installed in the Mudi reservoir for destratifying the reservoir. Mudi reservoir is a raw water source for the Blantyre Water Board. It has a capacity of 1,400,000 cubic metres. The reservoir is 15.3 m deep at top water level. In the absence of any artificial circulation of air, the reservoir stratifies into two layers. There is a warm epilimnion in the top 3 m of the reservoir, with temperatures ranging from 23 to 26 °C. There is prolific algal growth in this layer. The bottom layer has much lower temperatures, and is oxygen deficient. Under such anaerobic conditions, ammonia, sulphides, iron and manganese are released from the sediments of the reservoir. As a result of nutrient inflow from the catchments, coupled with tropical ambient temperatures, the reservoir is most times infested with blue-green algae. This results into water treatment problems in respect of taste and odour and iron and manganese soluble salts. To abate such problems, air is artificially circulated in the reservoir, near the intake tower, through a perforated pipe that is connected to an electrically driven compressor. This causes artificial circulation of water in the hypolimnion region of the reservoir. As a result of this circulation, a hostile environment that inhibits the propagation of algae is created. Dissolved oxygen and temperature profiles are practically uniform from top to bottom of reservoir. Concentrations of iron and manganese soluble salts are much reduced at any of the draw-off points available for the water treatment process. The paper concludes by highlighting the significant cost savings in water treatment that are accrued from the use of compressed air destratification in impounding water storage reservoirs for the control of algae and other chemical pollutants.

  1. Progressive resistance neck exercises using a compressible ball coupled with an air pressure gauge.

    PubMed

    Axen, K; Haas, F; Schicchi, J; Merrick, J

    1992-01-01

    Strength training of neck muscles, a potentially important approach to injury prevention and rehabilitation, has been limited by the lack of a convenient means of instituting progressive resistance exercise (PRE) programs. By positioning a compressible ball coupled with an air pressure gauge between the head and a wall, eight men, ranging in age from 21 to 46 years, initially measured the maximum voluntary pressure (MVP) generated within the ball (a measure of neck muscle force), while maximally flexing, extending, and laterally flexing their head into the ball. In accordance with PRE principles, they then performed three sets of 10 repetitions of each motion while maintaining ball pressure at 60-80% of the measured MVP. This training program, consisting of three to five sessions per week for 4-7 weeks: 1) increased the MVPs for flexion [to 156 +/- 9% (SE) pretraining, p < 0.05], extension [to 162 +/- 11% (SE) pretraining, p < 0.05], and lateral flexion [to 173 +/- 12% (SE) pretraining, p < 0.05]; and 2) decreased the disparity between the MVPs for left and right lateral flexion, indicating that the weaker side showed greater improvement than the stronger side (p < 0.05). These findings demonstrate that progressive resistance neck exercises, facilitated by a compressible ball coupled with an air pressure gauge, can markedly increase neck muscle strength and decrease lateral force imbalance. J Orthop Sports Phys Ther 1992;16(6):275-280.

  2. Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs :

    SciTech Connect

    Gardner, William Payton

    2013-06-01

    The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a

  3. Modeling breathing-zone concentrations of airborne contaminants generated during compressed air spray painting.

    PubMed

    Flynn, M R; Gatano, B L; McKernan, J L; Dunn, K H; Blazicko, B A; Carlton, G N

    1999-01-01

    This paper presents a mathematical model to predict breathing-zone concentrations of airborne contaminants generated during compressed air spray painting in cross-flow ventilated booths. The model focuses on characterizing the generation and transport of overspray mist. It extends previous work on conventional spray guns to include exposures generated by HVLP guns. Dimensional analysis and scale model wind-tunnel studies are employed using non-volatile oils, instead of paint, to produce empirical equations for estimating exposure to total mass. Results indicate that a dimensionless breathing zone concentration is a nonlinear function of the ratio of momentum flux of air from the spray gun to the momentum flux of air passing through the projected area of the worker's body. The orientation of the spraying operation within the booth is also very significant. The exposure model requires an estimate of the contaminant generation rate, which is approximated by a simple impactor model. The results represent an initial step in the construction of more realistic models capable of predicting exposure as a mathematical function of the governing parameters. PMID:10028895

  4. Technical and economic assessment of fluidized bed augmented compressed air energy storage system. Volume III. Preconceptual design

    SciTech Connect

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01

    A technical and economic assessment of fluidized bed combustion augmented compressed air energy storage systems is presented. The results of this assessment effort are presented in three volumes. Volume III - Preconceptual Design contains the system analysis which led to the identification of a preferred component configuration for a fluidized bed combustion augmented compressed air energy storage system, the results of the effort which transformed the preferred configuration into preconceptual power plant design, and an introductory evaluation of the performance of the power plant system during part-load operation and while load following.

  5. Work plan for upgrading the 241-A-701 compressed air system and motor control center. Revision 1

    SciTech Connect

    Carpenter, K.E.

    1995-01-17

    This work plan will outline the responsibilities associated with the 241-A-701 Compressed Air System (CAS) and Motor Control Center (MCC) upgrades. All activities required to design, install, test, and operate the modified systems are addressed in this document. Upgrades Technical Support (UTS) of TWRS Engineering is responsible for the completion of all tasks associated with this upgrade. UTS will coordinate the upgrade activities, and ensure all tasks are successfully completed on or before the scheduled dates. The primary objective of the 241-A-701 Compressor and MCC Upgrade is to provide a reliable source of process and instrument compressed air to the A, AX, AY, and AZ tank farms.

  6. Acoustic localization in weakly compressible elastic media containing random air bubbles.

    PubMed

    Liang, Bin; Cheng, Jian-chun

    2007-01-01

    We study theoretically the propagation of longitudinal wave in weakly compressible elastic media containing random air bubbles by using a self-consistent method. By inspecting the scattering cross section of an individual bubble and estimating the mean free paths of the elastic wave propagating in the bubbly weakly compressible media, the mode conversion is numerically proved negligible as the longitudinal wave is scattered by the bubbles. On the basis of the bubble dynamic equation, the wave propagation is solved rigorously with the multiple scattering effects incorporated. In a range of frequency slightly above the bubble resonance frequency, the acoustic localization in such a class of media is theoretically identified with even a very small volume fraction of bubbles. We present a method by analyzing the spatial correlation of wave field to identify the phenomenon of localization, which turns out to be effective. The sensibility of the features of localization to the structure parameters is numerically investigated. The spatial distribution of acoustic energy is also studied and the results show that the waves are trapped within a spatial domain adjacent to the source when localization occurs.

  7. Combined compressed air storage-low BTU coal gasification power plant

    DOEpatents

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  8. Compressed air energy storage (CAES) environmental control concerns and program plan

    SciTech Connect

    Beckwith, M.A.; Boehm, D.W.

    1980-06-01

    This report assesses the required environmental research and recommends a program plan to assist DOD's Environmental Control Technology Division (ECT) in performing its mission of ensuring that the procedures, processes, systems, and strategies necessary to minimize any adverse environmental impacts of compressed air energy storage (CAES) are developed in a timely manner so as not to delay implementation of the technology. To do so, CAES technology and the expected major environmental concerns of the technology are described. Second, ongoing or planned research in related programs and the applicability of results from these programs to CAES environmental research are discussed. Third, the additional research and development required to provide the necessary environmental data base and resolve concerns in CAES are outlined. Finally, a program plan to carry out this research and development effort is presented.

  9. Evaluation of NDI compressed air foam system (cafs) applied as a retrofit. Final report

    SciTech Connect

    Duncan, S.

    1994-08-01

    Army Engineer Firefighting Detachments require increased firefighting capability to compensate for deficiencies in structural, brush, or wildland and large petroleum storage site fires. Additionally, Army fire departments responsible for protection and prevention on posts, camps and stations have difficulty accessing new or emerging technology do not possess state-of-the-art equipment. The results of this evaluation and subsequent projects, will be reported throughout the Army in an attempt to mitigate operational deficiencies and widen the scope of knowledge in the Army fire service. The evaluation of non-developmental retrofitted compressed air foam systems show an efficiency of suppressive capabilities of water superseded by water alone. Retrofitting the equipment was not easy or inexpensive but it was very successful.

  10. Compressed air demand-type firefighter's breathing system, volume 1. [design analysis and performance tests

    NASA Technical Reports Server (NTRS)

    Sullivan, J. L.

    1975-01-01

    The commercial availability of lightweight high pressure compressed air vessels has resulted in a lightweight firefighter's breathing apparatus. The improved apparatus, and details of its design and development are described. The apparatus includes a compact harness assembly, a backplate mounted pressure reducer assembly, a lightweight bubble-type facemask with a mask mounted demand breathing regulator. Incorporated in the breathing regulator is exhalation valve, a purge valve and a whistle-type low pressure warning that sounds only during inhalation. The pressure reducer assembly includes two pressure reducers, an automatic transfer valve and a signaling device for the low pressure warning. Twenty systems were fabricated, tested, refined through an alternating development and test sequence, and extensively examined in a field evaluation program. Photographs of the apparatus are included.

  11. Compressed air energy storage system reservoir size for a wind energy baseload power plant

    SciTech Connect

    Cavallo, A.J.

    1996-12-31

    Wind generated electricity can be transformed from an intermittent to a baseload resource using an oversized wind farm in conjunction with a compressed air energy storage (CAES) system. The size of the storage reservoir for the CAES system (solution mined salt cavern or porous media) as a function of the wind speed autocorrelation time (C) has been examined using a Monte Carlo simulation for a wind class 4 (wind power density 450 W m{sup -2} at 50 m hub height) wind regime with a Weibull k factor of 2.5. For values of C typically found for winds over the US Great Plains, the storage reservoir must have a 60 to 80 hour capacity. Since underground reservoirs account for only a small fraction of total system cost, this larger storage reservoir has a negligible effect on the cost of energy from the wind energy baseload system. 7 refs., 2 figs., 1 tab.

  12. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns

    SciTech Connect

    Rutqvist, J.; Kim, H. -M.; Ryu, D. -W.; Synn, J. -H.; Song, W. -K.

    2012-02-01

    We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. We analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be

  13. A Feasibility Study on Operating Large Scale Compressed Air Energy Storage in Porous Formations

    NASA Astrophysics Data System (ADS)

    Wang, B.; Pfeiffer, W. T.; Li, D.; Bauer, S.

    2015-12-01

    Compressed air energy storage (CAES) in porous formations has been considered as one promising option of large scale energy storage for decades. This study, hereby, aims at analyzing the feasibility of operating large scale CAES in porous formations and evaluating the performance of underground porous gas reservoirs. To address these issues quantitatively, a hypothetic CAES scenario with a typical anticline structure in northern Germany was numerically simulated. Because of the rapid growth in photovoltaics, the period of extraction in a daily cycle was set to the early morning and the late afternoon in order to bypass the massive solar energy production around noon. The gas turbine scenario was defined referring to the specifications of the Huntorf CAES power plant. The numerical simulations involved two stages, i.e. initial fill and cyclic operation, and both were carried out using the Eclipse E300 simulator (Schlumberger). Pressure loss in the gas wells was post analyzed using an analytical solution. The exergy concept was applied to evaluate the potential energy amount stored in the specific porous formation. The simulation results show that porous formations prove to be a feasible solution of large scale CAES. The initial fill with shut-in periods determines the spatial distribution of the gas phase and helps to achieve higher gas saturation around the wells, and thus higher deliverability. The performance evaluation shows that the overall exergy flow of stored compressed air is also determined by the permeability, which directly affects the deliverability of the gas reservoir and thus the number of wells required.

  14. Feasibility study of porous media compressed air energy storage in South Carolina, United States of America

    NASA Astrophysics Data System (ADS)

    Jarvis, Alexandra-Selene

    Renewable Energy Systems (RES) such as solar and wind, are expected to play a progressively significant role in electricity production as the world begins to move away from an almost total reliance on nonrenewable sources of power. In the US there is increasing investment in RES as the Department of Energy (DOE) expands its wind power network to encompass the use of offshore wind resources in places such as the South Carolina (SC) Atlantic Coastal Plain. Because of their unstable nature, RES cannot be used as reliable grid-scale power sources unless power is somehow stored during excess production and recovered at times of insufficiency. Only two technologies have been cited as capable of storing renewable energy at this scale: Pumped Hydro Storage and Compressed Air Energy Storage (CAES). Both CAES power plants in existence today use solution-mined caverns as their storage spaces. This project focuses on exploring the feasibility of employing the CAES method to store excess wind energy in sand aquifers. The numerical multiphase flow code, TOUGH2, was used to build models that approximate subsurface sand formations similar to those found in SC. Although the aquifers of SC have very low dips, less than 10, the aquifers in this study were modeled as flat, or having dips of 00. Cycle efficiency is defined here as the amount of energy recovered compared to the amount of energy injected. Both 2D and 3D simulations have shown that the greatest control on cycle efficiency is the volume of air that can be recovered from the aquifer after injection. Results from 2D simulations showed that using a dual daily peak load schedule instead of a single daily peak load schedule increased cycle efficiency as do the following parameters: increased anisotropy, screening the well in the upper portions of the aquifer, reduced aquifer thickness, and an initial water displacement by the continuous injection of air for at least 60 days. Aquifer permeability of 1x10-12 m2 produced a cycle

  15. 76 FR 13661 - In the Matter of Certain Connecting Devices (“Quick Clamps”) for Use With Modular Compressed Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... COMMISSION In the Matter of Certain Connecting Devices (``Quick Clamps'') for Use With Modular Compressed Air Conditioning Units, Including Filters, Regulators, and Lubricators (``FRL's'') That Are Part of Larger..., Colorado. 71 FR 66193 (Nov. 13, 2006). An amended complaint was filed on October 25, 2006. A supplement...

  16. Effects of radiation and compression on propagating spherical flames of methane/air mixtures near the lean flammability limit

    SciTech Connect

    Chen, Zheng

    2010-12-15

    Large discrepancies between the laminar flame speeds and Markstein lengths measured in experiments and those predicted by simulations for ultra-lean methane/air mixtures bring a great concern for kinetic mechanism validation. In order to quantitatively explain these discrepancies, a computational study is performed for propagating spherical flames of lean methane/air mixtures in different spherical chambers using different radiation models. The emphasis is focused on the effects of radiation and compression. It is found that the spherical flame propagation speed is greatly reduced by the coupling between thermal effect (change of flame temperature or unburned gas temperature) and flow effect (inward flow of burned gas) induced by radiation and/or compression. As a result, for methane/air mixtures near the lean flammability limit, the radiation and compression cause large amounts of under-prediction of the laminar flame speeds and Markstein lengths extracted from propagating spherical flames. Since radiation and compression both exist in the experiments on ultra-lean methane/air mixtures reported in the literature, the measured laminar flame speeds and Markstein lengths are much lower than results from simulation and thus cannot be used for kinetic mechanism validation. (author)

  17. Influence of extensive compressed natural gas (CNG) usage on air quality

    NASA Astrophysics Data System (ADS)

    Suthawaree, Jeeranut; Sikder, Helena Akhter; Jones, Charlotte Emily; Kato, Shungo; Kunimi, Hitoshi; Mohammed Hamidul Kabir, Abu Naser; Kajii, Yoshizumi

    2012-07-01

    Compressed Natural Gas (CNG) is an inexpensive, indigenous energy resource which currently accounts for the majority of automobile and domestic energy consumption in Bangladesh. This extensive CNG usage, particularly within the capital city, Dhaka, heavily influences the atmospheric composition (and hence air quality), yet to date measurements of trace gases in regions dominated by CNG emissions are relatively limited. Here we report continuous observations of the atmospherically important trace gases O3, CO, SO2, NOx and volatile organic compounds (VOC), in ambient air in Dhaka City, Bangladesh, during May 2011. The average mixing ratios of O3, CO, SO2, and NOx for the measurement period were 18.9, 520.9, 7.6 and 21.5 ppbv, respectively. The ratios of CO to NO reveal that emissions from gasoline and CNG-fuelled vehicles were dominant during the daytime (slope of ˜26), while in contrast, owing to restrictions imposed on diesel fuelled vehicles entering Dhaka City, emissions from these vehicles only became significant during the night (slope of ˜10). The total VOC mixing ratio in Dhaka was ˜5-10 times higher than the levels reported in more developed Asian cities such as Tokyo and Bangkok, which consequently gives rise to a higher ozone formation potential (OFP). However, the most abundant VOC in Dhaka were the relatively long-lived ethane and propane (with mean mixing ratios of ˜115 and ˜30 ppbv, respectively), and as a consequence, the ozone formation potential per ppb carbon (ppbC) was lower in Dhaka than in Tokyo and Bangkok. Thus the atmospheric composition of air influenced by extensive CNG combustion may be characterized by high VOC mixing ratios, yet mixing ratios of the photochemical pollutant ozone do not drastically exceed the levels typical of Asian cities with considerably lower VOC levels.

  18. An Analytical Solution for Mechanical Responses Induced by Temperature and Air Pressure in a Lined Rock Cavern for Underground Compressed Air Energy Storage

    NASA Astrophysics Data System (ADS)

    Zhou, Shu-Wei; Xia, Cai-Chu; Du, Shi-Gui; Zhang, Ping-Yang; Zhou, Yu

    2015-03-01

    Mechanical responses induced by temperature and air pressure significantly affect the stability and durability of underground compressed air energy storage (CAES) in a lined rock cavern. An analytical solution for evaluating such responses is, thus, proposed in this paper. The lined cavern of interest consists of three layers, namely, a sealing layer, a concrete lining and the host rock. Governing equations for cavern temperature and air pressure, which involve heat transfer between the air and surrounding layers, are established first. Then, Laplace transform and superposition principle are applied to obtain the temperature around the lined cavern and the air pressure during the operational period. Afterwards, a thermo-elastic axisymmetrical model is used to analytically determine the stress and displacement variations induced by temperature and air pressure. The developments of temperature, displacement and stress during a typical operational cycle are discussed on the basis of the proposed approach. The approach is subsequently verified with a coupled compressed air and thermo-mechanical numerical simulation and by a previous study on temperature. Finally, the influence of temperature on total stress and displacement and the impact of the heat transfer coefficient are discussed. This paper shows that the temperature sharply fluctuates only on the sealing layer and the concrete lining. The resulting tensile hoop stresses on the sealing layer and concrete lining are considerably large in comparison with the initial air pressure. Moreover, temperature has a non-negligible effect on the lined cavern for underground compressed air storage. Meanwhile, temperature has a greater effect on hoop and longitudinal stress than on radial stress and displacement. In addition, the heat transfer coefficient affects the cavern stress to a higher degree than the displacement.

  19. Geochemical effects of compressed air, methane, or hydrogen intrusion into shallow aquifers

    NASA Astrophysics Data System (ADS)

    Berta, Marton; Dethlefsen, Frank; Ebert, Markus; Dahmke, Andreas

    2016-04-01

    The fluctuating energy yield of renewable sources, most importantly wind and solar, implies the emerging necessity of energy storage. Already operating possibilities for geological energy storage include storage of compressed air (CAES), methane, and hydrogen. For the safe and sustainable implementation of subsurface energy storage, site specific risk assessment studies and elaborated monitoring strategies are needed, based on proper process understanding. In case of gas storage, this process understanding must include gas-specific reactions to be expected in shallow aquifers following a leakage of compressed air, methane, or hydrogen, and therefore potentially changing the composition of the groundwater, which is protected by law. As the geochemical reactions potentially following gas leakages were not known in a sufficient extent, experiments representing relevant hydrogeological conditions were carried out. The experimental approach included batch and column experiments using mainly sediment from a shallow Pleistocene aquifer percolated by the groundwater from the same aquifer. This water was saturated with the respective gas to simulate a leakage environment in a shallow aquifer. Leakage of compressed air resulted in pyrite oxidation (rates up to 4 μM/h). In our experimental conditions with oxygen partial pressures between 0 and 11 bars pyrite oxidation caused minor (up to 0.5 mM) increase in sulfate concentration and minor (up to 0.5) decrease in pH. The transfer function on reaction kinetics developed using PHREEQC based on the experimental reaction rates for upscaling the results includes a passivation inhibiting more than 90% of the pyrite reactivity. Methane oxidation coupled to reduction of nitrate, and especially sulfate is known from various groundwater and marine environments. However, fugitive methane does not cause detectable changes in groundwater within one year in our experiments. This acknowledges earlier field studies describing no methane

  20. Conceptual design and engineering studies of adiabatic compressed air energy storage (CAES) with thermal energy storage

    SciTech Connect

    Hobson, M. J.

    1981-11-01

    The objective of this study was to perform a conceptual engineering design and evaluation study and to develop a design for an adiabatic CAES system using water-compensated hard rock caverns for compressed air storage. The conceptual plant design was to feature underground containment for thermal energy storage and water-compensated hard rock caverns for high pressure air storage. Other design constraints included the selection of turbomachinery designs that would require little development and would therefore be available for near-term plant construction and demonstration. The design was to be based upon the DOE/EPRI/PEPCO-funded 231 MW/unit conventional CAES plant design prepared for a site in Maryland. This report summarizes the project, its findings, and the recommendations of the study team; presents the development and optimization of the plant heat cycle and the selection and thermal design of the thermal energy storage system; discusses the selection of turbomachinery and estimated plant performance and operational capability; describes the control system concept; and presents the conceptual design of the adiabatic CAES plant, the cost estimates and economic evaluation, and an assessment of technical and economic feasibility. Particular areas in the plant design requiring further development or investigation are discussed. It is concluded that the adiabatic concept appears to be the most attractive candidate for utility application in the near future. It is operationally viable, economically attractive compared with competing concerns, and will require relatively little development before the construction of a plant can be undertaken. It is estimated that a utility could start the design of a demonstration plant in 2 to 3 years if research regarding TES system design is undertaken in a timely manner. (LCL)

  1. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    SciTech Connect

    Kim, H.-M.; Rutqvist, J.; Ryu, D.-W.; Choi, B.-H.; Sunwoo, C.; Song, W.-K.

    2011-07-15

    This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operational costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 1×10{sup -18} m{sup 2} would result in an acceptable air leakage rate of less than 1%, with the operational pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operational air pressure and when the lining is kept moist at a relatively high liquid saturation. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability off less than 1×10{sup -18} m{sup 2}, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage

  2. Narcotic effects of nitrous oxide and compressed air on memory and auditory perception.

    PubMed

    Fowler, B; White, P L; Wright, G R; Ackles, K N

    1980-03-01

    Three experiments were conducted to examine the effects of 35% N2 O (nitrous oxide) on human memory and auditory perception. In Experiment I, dichotic listening performance was found to be impaired. Experiment II used the same technique but was controlled for attenuation of sound transmission in the middle ear. No impairment was found. The perceptual effect found in Experiment I was peripheral, not central, and N2O did not impair short-term memory (STM). Experiment III used one-trial free recall of a word list. The shapes of the serial position curves were interpreted as indicating that N2O impairs long-term memory (LTM) but not STM. Experiment III provided no evidence, using cued recall, that the LTM deficit was due to impaired retrieval. Comparing these results with those for compressed air led to the conclusion that both N2O and hyperbaric nitrogen display an identical pattern of effects. A reason for the decrement found in some N2O STM studies may have been confounding the measurement of STM with that of LTM.

  3. Review of environmental studies and issues on compressed-air energy storage

    SciTech Connect

    Not Available

    1983-03-01

    This report is a summary of the environmental and regulatory issues associated with Compressed Air Energy Storage (CAES) technology. It reviews from an environmental perspective the progress and results of extensive engineering research and technology development directed at commercial development of CAES technology. A comprehensive analysis of the legal and regulatory issues associated with CAES is also summarized. Significant conclusions are: the environmental impacts associated with construction and operation of CAES facilities are generally similar to or less severe than those associated with construction of conventional electrical generating facilities; adverse subsurface and surface environmental impacts can be largely avoided by thorough geological characterization of subsurface conditions, careful evaluation of surface environmental factors, and avoidance of unsuitable sites; the US has a large number of suitable sites; siting flexibility for CAES facilities is much greater than for other energy storage technologies; land use requirements are generally significantly less than for conventional generating facilities of similar genrating capacity; petroleum fuel use is much less than for conventional peak power generating facilities; CAES technology offers the potential for increased efficiency of utilization of utility system generating capacity which results in reduced overall resources commitment and reduced environmental impacts; and, due to lack of implementation experience, uncertainty still surrounds the legal and regulatory issues associated with CAES.

  4. An Assessment of second-generation compressed-air energy-storage concepts

    SciTech Connect

    Zaloudek, F.R.; Reilly, R.W.

    1982-07-01

    The Pacific Northwest Laboratory (PNL) conducted an assessment of the adiabatic compressed air energy storage (CAES), hybrid CAES, CAES with coal gasification, and CAES with pressurized fluidized bed combustion concepts based on information provided in conceptual design studies. The PNL assessment covered consideration of the technological readiness, relative economic benefits, and operational viability of each concept. It was concluded that the adiabatic CAES concept appears to be the most attractive candidate for utility application in the near future. It is operationally viable, economically attractive compared with competing concepts, and will require relatively little additional development before plant construction can be undertaken. It was estimated that a utility could start the design of a demonstration plant in 2 to 3 years if research regarding thermal energy storage system design is undertaken in a timely manner. The hybrid CAES concept should also be considered as a candidate for early application. It is similarly operationally viable and close to readiness; however, it is less economically attractive. The hybrid CAES concept has a more favorable charging ratio, which may increase its attractiveness in comparison to adiabatic CAES for some utilities.

  5. Compressed air energy storage monitoring to support refrigerated mined rock cavern technology.

    SciTech Connect

    Lee, Moo Yul; Bauer, Stephen J.

    2004-06-01

    This document is the final report for the Compressed Air Energy Storage Monitoring to Support Refrigerated-Mined Rock Cavern Technology (CAES Monitoring to Support RMRCT) (DE-FC26-01NT40868) project to have been conducted by CAES Development Co., along with Sandia National Laboratories. This document provides a final report covering tasks 1.0 and subtasks 2.1, 2.2, and 2.5 of task 2.0 of the Statement of Project Objectives and constitutes the final project deliverable. The proposed work was to have provided physical measurements and analyses of large-scale rock mass response to pressure cycling. The goal was to develop proof-of-concept data for a previously developed and DOE sponsored technology (RMRCT or Refrigerated-Mined Rock Cavern Technology). In the RMRCT concept, a room and pillar mine developed in rock serves as a pressure vessel. That vessel will need to contain pressure of about 1370 psi (and cycle down to 300 psi). The measurements gathered in this study would have provided a means to determine directly rock mass response during cyclic loading on the same scale, under similar pressure conditions. The CAES project has been delayed due to national economic unrest in the energy sector.

  6. Baseload power production from wind turbine arrays coupled to compressed air energy storage

    NASA Astrophysics Data System (ADS)

    Succar, Samir

    An analysis is presented of compressed air energy storage (CAES) and its potential for mitigating the intermittency of wind power, facilitating access to remote wind resources and transforming wind into baseload power. Although CAES has traditionally served other grid support applications, it is also well suited for wind balancing applications due its ability to provide long duration storage, its fast ramp rates and its high part load efficiencies. In addition, geologies potentially suitable for CAES appear to be abundant in regions with high-quality wind resources. This is especially true of porous rock formations, which have the potential to be the least costly air storage option for CAES. The characteristics of formations suitable for CAES storage and the challenges associated with using air as a storage fluid are discussed. An optimization framework is developed for analyzing the cost of baseload plants comprised of wind turbine arrays backed by natural gas-fired generating capacity and/or CAES. The optimization model analyzes changes to key aspects of the system configuration such as the wind turbine rating, the relative capacities of the system components, the size of the CAES storage reservoir and the wind turbine spacing. The response of the optimal system configuration to changes in natural gas price, greenhouse gas (GHG) emissions price, capital cost, and wind resource is also considered. Wind turbine rating is given focused attention because of its substantial impact on system configuration and output behavior. The generation cost of baseload wind is compared to that of other baseload options. To highlight the carbon-mitigation potential of baseload wind, the competition with coal power (with and without CO2 capture and storage, CCS) is given prominent attention. The ability of alternative options to compete under dispatch competition is explored thereby clarifying the extent to which baseload wind can defend high capacity factors in the market. This

  7. Nonlinear compression of high energy fiber amplifier pulses in air-filled hypocycloid-core Kagome fiber.

    PubMed

    Guichard, Florent; Giree, Achut; Zaouter, Yoann; Hanna, Marc; Machinet, Guillaume; Debord, Benoît; Gérôme, Frédéric; Dupriez, Pascal; Druon, Frédéric; Hönninger, Clemens; Mottay, Eric; Benabid, Fetah; Georges, Patrick

    2015-03-23

    We report on the generation of 34 fs and 50 µJ pulses from a high energy fiber amplifier system with nonlinear compression in an air-filled hypocycloid-core Kagome fiber. The unique properties of such fibers allow bridging the gap between solid core fibers-based and hollow capillary-based post-compression setups, thereby operating with pulse energies obtained with current state-of-the-art fiber systems. The overall transmission of the compression setup is over 70%. Together with Yb-doped fiber amplifier technologies, Kagome fibers therefore appear as a promising tool for efficient generation of pulses with durations below 50 fs, energies ranging from 10 to several hundreds of µJ, and high average powers.

  8. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    SciTech Connect

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  9. Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system. Volume I. Executive summary

    SciTech Connect

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01

    An energy storage system which could be attractive for future electric utility peak-load applications is a modified gas turbine power system utilizing underground storage of very high pressure air. The compressed air energy storage (CAES) concept involves using off-peak electricity generated from indigenous coal or nuclear sources to compress air, storing the air in large underground facilities, and withdrawing the air during peak-load periods when it would be heated by combustion and expanded through gas turbines to generate power. The attractiveness of the CAES concept is based upon its potential to supply competitively priced peaking energy, to reduce peak-load power plant dependence on petroleum-based fuels, and to provide a means for leveling the utility system load demand. Therefore, a technical and economic assessment of coal-fired fluidized bed (FBC) combustor/compressed air energy storage (FBC/CAES) systems was performed and is described. The conclusions drawn from the FBC/CAES study program are encouraging. They indicate that pressurized FBC/CAES power plants should be technologically feasible, provide good performance, and be economically competitive. Specifically, it is concluded that: coal-fired FBC/CAES systems should be technically feasible in the near future and potentially attractive for peak-load power generation; and an open-bed PFBC/CAES configuration would provide the best candidate for early commercialization. It has relatively low risk combined with moderate cost and reasonable round-trip heat rate. It also has the potential for future growth options which tend to reduce costs and lower fuel consumption.

  10. Siting-selection study for the Soyland Power Cooperative, Inc. , compressed-air energy-storage system (CAES)

    SciTech Connect

    Not Available

    1982-01-01

    A method used for siting a compressed air energy storage (CAES) system using geotechnical and environmental criteria is explained using the siting of a proposed 220 MW water-compensated CAES plant in Illinois as an example. Information is included on the identification and comparative ranking of 28 geotechnically and environmental sites in Illinois, the examination of fatal flaws, e.g., mitigation, intensive studies, costly studies, permit denials, at 7 sites; and the selection of 3 sites for further geological surveying. (LCL)

  11. Site specific comparison of H2, CH4 and compressed air energy storage in porous formations

    NASA Astrophysics Data System (ADS)

    Tilmann Pfeiffer, Wolf; Wang, Bo; Bauer, Sebastian

    2016-04-01

    The supply of energy from renewable sources like wind or solar power is subject to fluctuations determined by the climatic and weather conditions, and shortage periods can be expected on the order of days to weeks. Energy storage is thus required if renewable energy dominates the total energy production and has to compensate the shortages. Porous formations in the subsurface could provide large storage capacities for various energy carriers, such as hydrogen (H2), synthetic methane (CH4) or compressed air (CAES). All three energy storage options have similar requirements regarding the storage site characteristics and consequently compete for suitable subsurface structures. The aim of this work is to compare the individual storage methods for an individual storage site regarding the storage capacity as well as the achievable delivery rates. This objective is pursued using numerical simulation of the individual storage operations. In a first step, a synthetic anticline with a radius of 4 km, a drop of 900 m and a formation thickness of 20 m is used to compare the individual storage methods. The storage operations are carried out using -depending on the energy carrier- 5 to 13 wells placed in the top of the structure. A homogeneous parameter distribution is assumed with permeability, porosity and residual water saturation being 500 mD, 0.35 and 0.2, respectively. N2 is used as a cushion gas in the H2 storage simulations. In case of compressed air energy storage, a high discharge rate of 400 kg/s equating to 28.8 mio. m³/d at surface conditions is required to produce 320 MW of power. Using 13 wells the storage is capable of supplying the specified gas flow rate for a period of 31 hours. Two cases using 5 and 9 wells were simulated for both the H2 and the CH4 storage operation. The target withdrawal rates of 1 mio. sm³/d are maintained for the whole extraction period of one week in all simulations. However, the power output differs with the 5 well scenario producing

  12. Tension-Compression Fatigue of a Nextel™720/alumina Composite at 1200 °C in Air and in Steam

    NASA Astrophysics Data System (ADS)

    Lanser, R. L.; Ruggles-Wrenn, M. B.

    2016-08-01

    Tension-compression fatigue behavior of an oxide-oxide ceramic-matrix composite was investigated at 1200 °C in air and in steam. The composite is comprised of an alumina matrix reinforced with Nextel™720 alumina-mullite fibers woven in an eight harness satin weave (8HSW). The composite has no interface between the fiber and matrix, and relies on the porous matrix for flaw tolerance. Tension-compression fatigue behavior was studied for cyclical stresses ranging from 60 to 120 MPa at a frequency of 1.0 Hz. The R ratio (minimum stress to maximum stress) was -1.0. Fatigue run-out was defined as 105 cycles and was achieved at 80 MPa in air and at 70 MPa in steam. Steam reduced cyclic lives by an order of magnitude. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Specimens subjected to prior cyclic loading in air retained 100 % of their tensile strength. The steam environment severely degraded tensile properties. Tension-compression cyclic loading was considerably more damaging than tension-tension cyclic loading. Composite microstructure, as well as damage and failure mechanisms were investigated.

  13. Integration of ceramic membrane and compressed air-assisted solvent extraction (CASX) for metal recovery.

    PubMed

    Li, Chi-Wang; Chiu, Chun-Hao; Lee, Yu-Cheng; Chang, Chia-Hao; Lee, Yu-Hsun; Chen, Yi-Ming

    2010-01-01

    In our previous publications, compressed air-assisted solvent extraction process (CASX) was developed and proved to be kinetically efficient process for metal removal. In the current study, CASX with a ceramic MF membrane integrated for separation of spent solvent was employed to remove and recover metal from wastewater. MF was operated either in crossflow mode or dead-end with intermittent flushing mode. Under crossflow mode, three distinct stages of flux vs. TMP (trans-membrane pressure) relationship were observed. In the first stage, flux increases with increasing TMP which is followed by the stage of stable flux with increasing TMP. After reaching a threshold TMP which is dependent of crossflow velocity, flux increases again with increasing TMP. At the last stage, solvent was pushed through membrane pores as indicated by increasing permeate COD. In dead-end with intermittent flushing mode, an intermittent flushing flow (2 min after a 10-min or a 30-min dead-end filtration) was incorporated to reduce membrane fouling by flush out MSAB accumulated on membrane surface. Effects of solvent concentration and composition were also investigated. Solvent concentrations ranging from 0.1 to 1% (w/w) have no adverse effect in terms of membrane fouling. However, solvent composition, i.e. D(2)EHPA/kerosene ratio, shows impact on membrane fouling. The type of metal extractants employed in CASX has significant impact on both membrane fouling and the quality of filtrate due to the differences in their viscosity and water solubility. Separation of MSAB was the limiting process controlling metal removal efficiency, and the removal efficiency of Cd(II) and Cr(VI) followed the same trend as that for COD.

  14. Citizen Hydrology and Compressed-Air Hydropower for Rural Electrification in Haiti

    NASA Astrophysics Data System (ADS)

    Allen, S. M.

    2015-12-01

    At the present time, only one in eight residents of Haiti has access to electricity. Two recent engineering and statistical innovations have the potential for vastly reducing the cost of installation of hydropower in Haiti and the rest of the developing world. The engineering innovation is that wind, solar and fluvial energy have been used to compress air for generation of electricity for only 20 per megawatt-hour, in contrast to the conventional World Bank practice of funding photovoltaic cells for 156 per megawatt-hour. The installation of hydropower requires a record of stream discharge, which is conventionally obtained by installing a gaging station that automatically monitors gage height (height of the water surface above a fixed datum). An empirical rating curve is then used to convert gage height to stream discharge. The multiple field measurements of gage height and discharge over a wide range of discharge values that are required to develop and maintain a rating curve require a manpower of hydrologic technicians that is prohibitive in remote and impoverished areas of the world. The statistical innovation is that machine learning has been applied to the USGS database of nearly four million simultaneous measurements of gage height and discharge to develop a new classification of rivers so that a rating curve can be developed solely from the stream slope, channel geometry, horizontal and vertical distances to the nearest upstream and downstream confluences, and two pairs of discharge - gage height measurements. The objective of this study is to organize local residents to monitor gage height at ten stream sites in the northern peninsula of Haiti over a one-year period in preparation for installation of hydropower at one of the sites. The necessary baseline discharge measurements and channel surveying are being carried out for conversion of gage height to discharge. Results will be reported at the meeting.

  15. Upgrade of Compressed Air Control System Reduces Energy Costs at Michelin Tire Plant. Office of Industrial Technologies (OIT) BestPractices Project Case Study

    SciTech Connect

    Not Available

    2002-01-01

    This case study highlights the upgraded compressed air system at a Michelin tire manufacturing plant in Spartanburg, South Carolina. The controls upgrade project enabled multiple compressor operation without blow-off, and significantly reduced energy costs.

  16. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  17. Petrologic and petrophysical evaluation of the Dallas Center Structure, Iowa, for compressed air energy storage in the Mount Simon Sandstone.

    SciTech Connect

    Heath, Jason E.; Bauer, Stephen J.; Broome, Scott Thomas; Dewers, Thomas A.; Rodriguez, Mark A

    2013-03-01

    The Iowa Stored Energy Plant Agency selected a geologic structure at Dallas Center, Iowa, for evaluation of subsurface compressed air energy storage. The site was rejected due to lower-than-expected and heterogeneous permeability of the target reservoir, lower-than-desired porosity, and small reservoir volume. In an initial feasibility study, permeability and porosity distributions of flow units for the nearby Redfield gas storage field were applied as analogue values for numerical modeling of the Dallas Center Structure. These reservoir data, coupled with an optimistic reservoir volume, produced favorable results. However, it was determined that the Dallas Center Structure cannot be simplified to four zones of high, uniform permeabilities. Updated modeling using field and core data for the site provided unfavorable results for air fill-up. This report presents Sandia National Laboratories petrologic and petrophysical analysis of the Dallas Center Structure that aids in understanding why the site was not suitable for gas storage.

  18. Application of wavelet filtering and Barker-coded pulse compression hybrid method to air-coupled ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenggan; Ma, Baoquan; Jiang, Jingtao; Yu, Guang; Liu, Kui; Zhang, Dongmei; Liu, Weiping

    2014-10-01

    Air-coupled ultrasonic testing (ACUT) technique has been viewed as a viable solution in defect detection of advanced composites used in aerospace and aviation industries. However, the giant mismatch of acoustic impedance in air-solid interface makes the transmission efficiency of ultrasound low, and leads to poor signal-to-noise (SNR) ratio of received signal. The utilisation of signal-processing techniques in non-destructive testing is highly appreciated. This paper presents a wavelet filtering and phase-coded pulse compression hybrid method to improve the SNR and output power of received signal. The wavelet transform is utilised to filter insignificant components from noisy ultrasonic signal, and pulse compression process is used to improve the power of correlated signal based on cross-correction algorithm. For the purpose of reasonable parameter selection, different families of wavelets (Daubechies, Symlet and Coiflet) and decomposition level in discrete wavelet transform are analysed, different Barker codes (5-13 bits) are also analysed to acquire higher main-to-side lobe ratio. The performance of the hybrid method was verified in a honeycomb composite sample. Experimental results demonstrated that the proposed method is very efficient in improving the SNR and signal strength. The applicability of the proposed method seems to be a very promising tool to evaluate the integrity of high ultrasound attenuation composite materials using the ACUT.

  19. EFFECT OF LUBRICANT CONTAMINATION ON THE PERFORMANCE AND RELIABILITY OF HEAT PUMPS CHARGED WITH R-407C.

    EPA Science Inventory

    The report gives results of the development of new data that can be used to determine the effect of mineral oil contamination on the reliability of a heat pump system operating with a new hydrofluorocarbon mixture and polyol ester lubricant, to assess any performance degradation ...

  20. Massive Air Embolism During Interventional Laser Therapy of the Liver: Successful Resuscitation Without Chest Compression

    SciTech Connect

    Helmberger, Thomas K.; Roth, Ute; Empen, Klaus

    2002-08-15

    We report on a rare, acute, life-threatening complication during percutaneous thermal therapy for hepatic metastases. Massive cardiac air embolism occurred during a maneuver of deep inspiration after the dislodgement of an introducer sheath into a hepatic vein. The subsequent cardiac arrest was treated successfully by immediate transthoracic evacuation of the air by needle aspiration followed by electrical defibrillation. In procedures that may be complicated by gas embolism, cardiopulmonary resuscitation should not be initiated before considering the likelihood of air embolism, and eventually aspiration of the gas.

  1. 29 CFR 1926.913 - Blasting in excavation work under compressed air.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of explosives and detonators. (e) All metal pipes, rails, air locks, and steel tunnel lining shall be... performed with light charges and with light burden on each hole. Advance drilling shall be performed...

  2. 29 CFR 1926.913 - Blasting in excavation work under compressed air.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of explosives and detonators. (e) All metal pipes, rails, air locks, and steel tunnel lining shall be... performed with light charges and with light burden on each hole. Advance drilling shall be performed...

  3. Homemade Firearm Suicide With Dumbbell Pipe Triggering by an Air-Compressed Gun: Case Report and Review of Literature.

    PubMed

    Le Garff, Erwan; Delannoy, Yann; Mesli, Vadim; Berthezene, Jean Marie; Morbidelli, Philippe; Hédouin, Valéry

    2015-12-01

    Firearm suicides are frequent and well described in the forensic literature, particularly in Europe and the United States. However, the use of homemade and improvised firearms is less well described. The present case reports a suicide with an original improvised gun created using an air-compressed pellet gun and a dumbbell pipe. The aims of this study were to describe the scene, the external examination of the corpse, the body scan, and the autopsy; to understand the mechanism of death; and to compare the results with a review of the forensic literature to highlight the epidemiology of homemade firearm use, the tools used for homemade and improvised firearms in suicides versus homicides, and the manners in which homemade firearms are used (homicide or suicide, particularly in complex suicide cases).

  4. Considerations on the effect of wind-tunnel walls on oscillating air forces for two-dimensional subsonic compressible flow

    NASA Technical Reports Server (NTRS)

    Runyan, Harry L; Watkins, Charles E

    1953-01-01

    This report treats the effect of wind-tunnel walls on the oscillating two-dimensional air forces in a compressible medium. The walls are simulated by the usual method of placing images at appropriate distances above and below the wing. An important result shown is that, for certain conditions of wing frequency, tunnel height, and Mach number, the tunnel and wing may form a resonant system so that the forces on the wing are greatly changed from the condition of no tunnel walls. It is pointed out that similar conditions exist for three-dimensional flow in circular and rectangular tunnels and apparently, within certain Mach number ranges, in tunnels of nonuniform cross section or even in open tunnels or jets.

  5. 29 CFR 1926.913 - Blasting in excavation work under compressed air.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... use in wet holes shall be water-resistant and shall be Fume Class 1. (g) When tunnel excavation in... explosives shall not be stored or kept in tunnels, shafts, or caissons. Detonators and explosives for each... of explosives and detonators. (e) All metal pipes, rails, air locks, and steel tunnel lining shall...

  6. 29 CFR 1926.913 - Blasting in excavation work under compressed air.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... use in wet holes shall be water-resistant and shall be Fume Class 1. (g) When tunnel excavation in... explosives shall not be stored or kept in tunnels, shafts, or caissons. Detonators and explosives for each... of explosives and detonators. (e) All metal pipes, rails, air locks, and steel tunnel lining shall...

  7. Compressed air energy storage: Preliminary design and site development program in an aquifer. Task 1: Establish facility design criteria and utility benefits

    NASA Astrophysics Data System (ADS)

    1980-10-01

    Compressed air energy storage (CAES) stores mechanical energy in the form of compressed air during off-peak hours, using power supplied by a large, high efficiency baseload power plant. At times of high electrical demand, the compressed air is drawn from storage and is heated in a combustor by the burning of fuel oil, after which the air is expanded in a turbine. Essentially all of the turbine output can be applied to the generation of electricity, unlike a conventional gas turbine which expends approximately two-thirds of the turbine shaft power in driving the air compressor. The separation of the compression and generation modes in the system results in increased net generation and greater premium fuel economy. Work performed in establishing facility design criteria for a CAES system with aquifer storage includes: determination of initial design bases; preliminary analysis of the CAES system; development of data for site-specific analysis of the CAES system; detailed analysis of the CAES system for three selected heat cycles; CAES power plant design; and an economic analysis of CAES.

  8. Compressed air energy storage: preliminary design and site development program in an aquifer. Final draft, Task 1: establish facility design criteria and utility benefits

    SciTech Connect

    1980-10-01

    Compressed air energy storage (CAES) has been identified as one of the principal new energy storage technologies worthy of further research and development. The CAES system stores mechanical energy in the form of compressed air during off-peak hours, using power supplied by a large, high-efficiency baseload power plant. At times of high electrical demand, the compressed air is drawn from storage and is heated in a combustor by the burning of fuel oil, after which the air is expanded in a turbine. In this manner, essentially all of the turbine output can be applied to the generation of electricity, unlike a conventional gas turbine which expends approximately two-thirds of the turbine shaft power in driving the air compressor. The separation of the compression and generation modes in the CAES system results in increased net generation and greater premium fuel economy. The use of CAES systems to meet the utilities' high electrical demand requirements is particularly attractive in view of the reduced availability of premium fuels such as oil and natural gas. This volume documents the Task 1 work performed in establishing facility design criteria for a CAES system with aquifer storage. Information is included on: determination of initial design bases; preliminary analysis of the CAES system; development of data for site-specific analysis of the CAES system; detailed analysis of the CAES system for three selected heat cycles; CAES power plant design; and an economic analysis of CAES.

  9. Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system: system load following capability

    SciTech Connect

    Lessard, R.D.; Blecher, W.A.; Merrick, D.

    1981-09-01

    The load-following capability of fluidized bed combustion-augmented compressed air energy storage systems was evaluated. The results are presented in two parts. The first part is an Executive Summary which provides a concise overview of all major elements of the study including the conclusions, and, second, a detailed technical report describing the part-load and load following capability of both the pressurized fluid bed combustor and the entire pressurized fluid bed combustor/compressed air energy storage system. The specific tasks in this investigation were to: define the steady-state, part-load operation of the CAES open-bed PFBC; estimate the steady-state, part-load performance of the PFBC/CAES system and evaluate any possible operational constraints; simulate the performance of the PFBC/CAES system during transient operation and assess the load following capability of the system; and establish a start-up procedure for the open-bed PFBC and evaluate the impact of this procedure. The conclusions are encouraging and indicate that the open-bed PFBC/CAES power plant should provide good part-load and transient performance, and should have no major equipment-related constraints, specifically, no major problems associated with the performance or design of either the open-end PFBC or the PFBC/CAES power plant in steady-state, part-load operation are envisioned. The open-bed PFBC/CAES power plant would have a load following capability which would be responsive to electric utility requirements for a peak-load power plant. The open-bed PFBC could be brought to full operating conditions within 15 min after routine shutdown, by employing a hot-start mode of operation. The PFBC/CAES system would be capable of rapid changes in output power (12% of design load per minute) over a wide output power range (25% to 100% of design output). (LCL)

  10. Geotechnical factors and guidelines for storage of compressed air in solution-mined salt cavities

    SciTech Connect

    Allen, R.D.; Doherty, T.J.; Thoms, R.L.

    1982-05-01

    The state of knowledge about utilization of solution-mined salt cavities for CAES including laboratory experiments, numerical modeling, field characterization, solution mining experience, and operating parameters is outlined in this report. Topics evaluated in recent studies include: cavern geometry and size; long-term creep and creep rupture of rock salt; effects of pressure and temperature loading rates; low frequency fatigue; progressive deterioration of salt fabric with possible air penetration; cavern monitoring methods; and salt properties at nonambient conditions. Currently, the only CAES operational facility in the world is located at Huntorf, West Germany. This CAES facility uses two solution-mined salt caverns for air storage and has been operating successfully for more than 2 years. Stability criteria for solution-mined salt caverns from the Huntorf facility and recent field and laboratory studies are included in this report.

  11. Theoretical analysis of injecting the compressed air through a defensive well into aquifer aimed to separate between polluted and fresh water

    NASA Astrophysics Data System (ADS)

    Boger, M.; Ravina, I.

    2012-12-01

    Injecting a compressed air, through a well, located between the sea or a polluted lake and fresh ground water, creates a "hydraulic barrier" that prevents their mixing. Steady influx of air to a saturated soil produces a pressure gradient from the well and replacement of water by air, hence the interface between air and water increases. After the compression process is stopped, the soil pores are filled with air, so that saturated soil becomes unsaturated with a decreased conductivity. Creating such a barrier, first by the air pressure and second by blocking of the pores, is welcomed at the interface sea-fresh water area, for example. It prevents the loss of fresh water to the sea and it decreases sea water movement into the aquifer. Another positive effect of the air injection is the air flow through unsaturated zone, above the ground water, that decreases polluted water down-seepage from the surface thus defending the fresh ground water against pollution. The regular water well or special drilled one will be used as defensive well. The radius of defensive well can be smaller than the one of the water well. The explanation of the defensive well exploitation in the field for one and multi layer aquifers is presented. Analytical evaluations of the pressure loss and shape of the air-water interfaces in saturated soil are presented for: (a) steady air flow for a one layer aquifer and for a three layer one (leaky aquifer case), (b) transient air flow for a one layer aquifer. It is shown that the shape of air-water interfaces is generally an inverted cone, where the decrease of air pressure in the aquifer with the distance from the well is approximately logarithmic. The necessary pressure to create the effective air flow in the aquifer is only about tens percent higher than static water pressure in the well.

  12. Technical and economic assessment of fluidized bed augmented compressed air energy-storage system. Volume II. Introduction and technology assessment

    SciTech Connect

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01

    The results are described of a study subcontracted by PNL to the United Technologies Research Center on the engineering feasibility and economics of a CAES concept which uses a coal fired, fluidized bed combustor (FBC) to heat the air being returned from storage during the power production cycle. By burning coal instead of fuel oil, the CAES/FBC concept can completely eliminate the dependence of compressed air energy storage on petroleum fuels. The results of this assessment effort are presented in three volumes. Volume II presents a discussion of program background and an in-depth coverage of both fluid bed combustion and turbomachinery technology pertinent to their application in a CAES power plant system. The CAES/FBC concept appears technically feasible and economically competitive with conventional CAES. However, significant advancement is required in FBC technology before serious commercial commitment to CAES/FBC can be realized. At present, other elements of DOE, industrial groups, and other countries are performing the required R and D for advancement of FBC technology. The CAES/FBC will be reevaluated at a later date when FBC technology has matured and many of the concerns now plaguing FBC are resolved. (LCL)

  13. Memory deficit caused by compressed air equivalent to 36 meters of seawater.

    PubMed

    Philp, R B; Fields, G N; Roberts, W A

    1989-06-01

    Twenty-four students from a diving school undertook a hyperbaric chamber dive to a pressure equal to 36 m of seawater. Tests of cognitive function and manual dexterity, performed in the chamber during the 35-min bottom time and before, or after, the dive included immediate and delayed free recall of words presented as 7 lists of 15 each, recognition of previously presented words, number identification, and a forceps pickup of ball bearings. Delayed free recall and immediate free recall (primacy region) were significantly impaired, whereas manual dexterity and recognition memory were not. These are in keeping with previously reported findings but indicate that significant impairment of memory may occur in experienced divers at operational depths for air diving. Lack of effect on recognition memory suggests that cueing strategies might be useful for debriefing divers.

  14. A one-dimensional numerical model for predicting pressure and velocity oscillations of a compressed air-pocket in a vertical shaft

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Leon, A.; Apte, S.

    2015-12-01

    The presence of pressurized air pockets in combined sewer systems is argued to produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows through vertical shafts. A 1D numerical model is developed for predicting pressure and velocity oscillations of a compressed air-pocket in a vertical shaft which in turn attempts to simulate geyser like flows. The vertical shaft is closed at the bottom and open to ambient pressure at the top. Initially, the lower section of the vertical shaft is filled with compressed air and the upper section with water. The interaction between the pressurized air pocket and the water column in the vertical shaft exhibits an oscillatory motion of the water column that decays over time. The model accounts for steady and unsteady friction to estimate the energy dissipation. The model also includes the falling flow of water around the external perimeter of the pressurized air pocket by assuming that any expansion in the pressurized air pocket would result in the falling volume of water. The acceleration of air-water interface is predicted through a force balance between the pressurized air pocket and the water column combined with the Method of Characteristics that resolves pressure and velocity within the water column. The expansion and compression of the pressurized air pocket is assumed to follow either isothermal process or adiabatic process. Results for both assumptions; isothermal and adiabatic processes, are presented. The performance of the developed 1D numerical model is compared with that of a commercial 3D CFD model. Overall, a good agreement between both models is obtained for pressure and velocity oscillations. The paper will also present a sensitivity analysis of the 3D CFD model.

  15. Inner Ear Barotrauma After Underwater Pool Competency Training Without the Use of Compressed Air Case and Review.

    PubMed

    McIntire, Sean; Boujie, Lee

    2016-01-01

    Inner ear barotrauma can occur when the gas-filled chambers of the ear have difficulty equalizing pressure with the outside environment after changes in ambient pressure. This can transpire even with small pressure changes. Hypobaric or hyperbaric environments can place significant stress on the structures of the middle and inner ear. If methods to equalize pressure between the middle ear and other connected gas-filled spaces (i.e., Valsalva maneuver) are unsuccessful, middle ear overpressurization can occur. This force can be transmitted to the fluid-filled inner ear, making it susceptible to injury. Damage specifically to the structures of the vestibulocochlear system can lead to symptoms of vertigo, hearing loss, and tinnitus. This article discusses the case of a 23-year-old male Marine who presented with symptoms of nausea and gait instability after performing underwater pool competency exercises to a maximum depth of 13 feet, without breathing compressed air. Diagnosis and management of inner ear barotrauma are reviewed, as is differentiation from inner ear decompression sickness. PMID:27450603

  16. Student understanding of the volume, mass, and pressure of air within a sealed syringe in different states of compression

    NASA Astrophysics Data System (ADS)

    de Berg, Kevin Charles

    Problem-solving strategies in the physical sciences have been characterized by a dependence on algorithmic techniques often devoid of any reasoning skills. The purpose of this study was to examine student responses to a task relating to Boyle's Law for gases, which did not demand the use of a mathematical equation for its solution. Students (17- to 18-year-olds) in lower sixth form from two colleges in the Leeds district of Yorkshire in England were asked to respond to a task relating to pressure and volume measurements of air within a sealed syringe in different states of compression. Both qualitative and quantitative tasks for the sealed syringe system were examined. It was found that 34% to 38% of students did not understand the concepts of volume and mass, respectively, of a gas under such circumstances. Performance on an inverse ratio (2:1) task was shown to depend on gender and those students who performed well on the 2:1 inverse ratio task did not necessarily perform well on a different inverse ratio task when an arithmetic averaging principle was present. Tasks which draw upon qualitative knowledge as well as quantitative knowledge have the potential to reduce dependence on algorithms, particularly equation substitution and solution. The implications for instructional design are discussed.Received: 14 April 1993; Revised: 29 June 1994;

  17. Assessment of air quality after the implementation of compressed natural gas (CNG) as fuel in public transport in Delhi, India.

    PubMed

    Ravindra, Khaiwal; Wauters, Eric; Tyagi, Sushil K; Mor, Suman; Van Grieken, René

    2006-04-01

    Public transport in Delhi was amended by the Supreme Court of India to use Compressed Natural Gas (CNG) instead of diesel or petrol. After the implementation of CNG since April 2001, Delhi has the highest fraction of CNG-run public vehicles in the world and most of them were introduced within 20 months. In the present study, the concentrations of various criteria air pollutants (SPM, PM(10), CO, SO(2) and NO(x)) and organic pollutants such as benzene, toluene, xylene (BTX) and polycyclic aromatic hydrocarbons (PAHs) were assessed before and after the implementation of CNG. A decreasing trend was found for PAHs, SO(2) and CO concentrations, while the NO(x) level was increased in comparison to those before the implementation of CNG. Further, SPM, PM(10), and BTX concentrations showed no significant change after the implementation of CNG. However, the BTX concentration demonstrated a clear relation with the benzene content of gasoline. In addition to the impact of the introduction of CNG the daily variation in PAHs levels was also studied and the PAHs concentrations were observed to be relatively high between 10 pm to 6 am, which gives a proof of a relation with the limited day entry and movement of heavy vehicles in Delhi.

  18. Humidity-dependent compression-induced glass transition of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA).

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung; Choi, Yun Hwa; Meron, Mati; Lin, Binhua; Bang, Joona; Won, You-Yeon

    2015-07-28

    Constant rate compression isotherms of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not fully understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air-water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods. We observed that the mechanical and structural responses of the Langmuir PLGA films are significantly dependent on the rate of film compression; the glass transition was induced in the PLGA film only at fast compression rates. Surprisingly, we found that this deformation rate dependence is also dependent on the humidity of the environment. With water acting as a plasticizer for the PLGA material, the diffusion of water molecules through the PLGA film seems to be the key factor in the determination of the glass transformation properties and thus the mechanical response of the PLGA film against lateral compression. Based on our combined results, we hypothesize the following mechanism for the compression-induced glass transformation of the Langmuir PLGA film; (1) initially, a humidified/non-glassy PLGA film is formed in the full surface-coverage region (where the surface pressure shows a plateau) during compression; (2) further compression leads to the collapse of the PLGA chains and the formation of new surfaces on the air side of the film, and this newly formed top layer of the PLGA film is transiently glassy in character because the water evaporation rate

  19. Humidity-dependent compression-induced glass transition of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA).

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung; Choi, Yun Hwa; Meron, Mati; Lin, Binhua; Bang, Joona; Won, You-Yeon

    2015-07-28

    Constant rate compression isotherms of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not fully understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air-water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods. We observed that the mechanical and structural responses of the Langmuir PLGA films are significantly dependent on the rate of film compression; the glass transition was induced in the PLGA film only at fast compression rates. Surprisingly, we found that this deformation rate dependence is also dependent on the humidity of the environment. With water acting as a plasticizer for the PLGA material, the diffusion of water molecules through the PLGA film seems to be the key factor in the determination of the glass transformation properties and thus the mechanical response of the PLGA film against lateral compression. Based on our combined results, we hypothesize the following mechanism for the compression-induced glass transformation of the Langmuir PLGA film; (1) initially, a humidified/non-glassy PLGA film is formed in the full surface-coverage region (where the surface pressure shows a plateau) during compression; (2) further compression leads to the collapse of the PLGA chains and the formation of new surfaces on the air side of the film, and this newly formed top layer of the PLGA film is transiently glassy in character because the water evaporation rate

  20. Development of a Next-Generation Membrane-Integrated Adsorption Processor for CO2 Removal and Compression for Closed-Loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila; LeVan, Douglas

    2002-01-01

    The current CO2 removal technology of NASA is very energy intensive and contains many non-optimized subsystems. This paper discusses the concept of a next-generation, membrane integrated, adsorption processor for CO2 removal nd compression in closed-loop air revitalization systems. This processor will use many times less power than NASA's current CO2 removal technology and will be capable of maintaining a lower CO2 concentration in the cabin than that can be achieved by the existing CO2 removal systems. The compact, consolidated, configuration of gas dryer, CO2 separator, and CO2 compressor will allow continuous recycling of humid air in the cabin and supply of compressed CO2 to the reduction unit for oxygen recovery. The device has potential application to the International Space Station and future, long duration, transit, and planetary missions.

  1. The start-up of a gas turbine engine using compressed air tangentially fed onto the blades of the basic turbine

    NASA Technical Reports Server (NTRS)

    Slobodyanyuk, L. K.; Dayneko, V. I.

    1983-01-01

    The use of compressed air was suggested to increase the reliability and motor lifetime of a gas turbine engine. Experiments were carried out and the results are shown in the form of the variation in circumferential force as a function of the entry angle of the working jet onto the turbine blade. The described start-up method is recommended for use with massive rotors.

  2. Operational procedure for computer program for design point characteristics of a compressed-air generator with through-flow combustor for V/STOL applications

    NASA Technical Reports Server (NTRS)

    Krebs, R. P.

    1971-01-01

    The computer program described in this report calculates the design-point characteristics of a compressed-air generator for use in V/STOL applications such as systems with a tip-turbine-driven lift fan. The program computes the dimensions and mass, as well as the thermodynamic performance of a model air generator configuration which involves a straight through-flow combustor. Physical and thermodynamic characteristics of the air generator components are also given. The program was written in FORTRAN IV language. Provision has been made so that the program will accept input values in either SI units or U.S. customary units. Each air generator design-point calculation requires about 1.5 seconds of 7094 computer time for execution.

  3. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  4. Optimization of the nonlinear regime of self-compression at femtosecond laser pulses in silica and air

    NASA Astrophysics Data System (ADS)

    Slavchev, V.; Kovachev, L.; Ivanov, L. M.

    2015-03-01

    In the present work it is demonstrated two efficient methods of self-compression of femtosecond pulses based on suitable selection of optical elements, parameters of the medium and laser radiation. The basic idea is that the phase modulated pulses more efficiently can be compressed trough nonlinear mechanisms. The first method can be applied for mediums with significant dispersion like fused silica, where the sign of the dispersion of the group velocity is important. We show that the combination of focusing by optical lens and a balance between anomalous dispersion and nonlinearity lead to significant compression from 100fs to~20-30fs of optical pulse. The second method for self-compression is by using only one optical diffraction grating to obtain broadband pulses and the following self-compression in nonlinear regime. In the second case in addition is observed generation of X wave.

  5. Development of a Low-Power CO2 Removal and Compression System for Closed-Loop Air Revitalization in Future Spacecraft

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Rosen, Micha; Affleck, David; LeVan, M. Douglas; Moate, Joe R.

    2005-01-01

    The current CO2 removal technology of NASA is very energy intensive and contains many non-optimized subsystems. This paper discusses the design and prototype development of a two-stage CO2 removal and compression system that will utilize much less power than NASA s current CO2 removal technology. This integrated system contains a Nafion membrane followed by a residual water adsorber that performs the function of the desiccant beds in the four-bed molecular sieve (4BMS) system of the International Space Station (ISS). The membrane and the water adsorber are followed by a two-stage CO2 removal and compression subsystem that satisfies the operations of the CO2 adsorbent beds of the 4BMS aid the interface compressor for the Sabatier reactor connection. The two-stage compressor will utilize the principles of temperature-swing adsorption (TSA) compression technology for CO2 removal and compression. The similarities in operation and cycle times of the CO2 removal (first stage) and compression (second stage) operations will allow thermal coupling of the processes to maximize the efficiency of the system. In addition to the low-power advantage, this processor will maintain a lower CO2 concentration in the cabin than that can be achieved by the existing CO2 removal systems. The compact, consolidated, configuration of membrane gas dryer and CO2 separator and compressor will allow continuous recycling of humid air in the cabin and supply of compressed CO2 to the reduction unit for oxygen recovery. The device has potential application to the International Space Station and future, long duration, transit, and planetary missions.

  6. Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery

    NASA Astrophysics Data System (ADS)

    Lanin, Aleksandr A.; Fedotov, Il'ya V.; Sidorov-Biryukov, Dmitrii A.; Doronina-Amitonova, Lyubov V.; Ivashkina, Olga I.; Zots, Marina A.; Sun, Chi-Kuang; Ömer Ilday, F.; Fedotov, Andrei B.; Anokhin, Konstantin V.; Zheltikov, Aleksei M.

    2012-03-01

    Large-core hollow photonic-crystal fibers (PCFs) are shown to enable a fiber-format air-guided delivery of ultrashort infrared laser pulses for neurosurgery and nonlinear-optical imaging. With an appropriate dispersion precompensation, an anomalously dispersive 15-μm-core hollow PCF compresses 510-fs, 1070-nm light pulses to a pulse width of about 110 fs, providing a peak power in excess of 5 MW. The compressed PCF output is employed to induce a local photodisruption of corpus callosum tissues in mouse brain and is used to generate the third harmonic in brain tissues, which is captured by the PCF and delivered to a detector through the PCF cladding.

  7. Techno-economic assessment of the need for bulk energy storage in low-carbon electricity systems with a focus on compressed air storage (CAES)

    NASA Astrophysics Data System (ADS)

    Safaei Mohamadabadi, Hossein

    Increasing electrification of the economy while decarbonizing the electricity supply is among the most effective strategies for cutting greenhouse gas (GHG) emissions in order to abate climate change. This thesis offers insights into the role of bulk energy storage (BES) systems to cut GHG emissions from the electricity sector. Wind and solar energies can supply large volumes of low-carbon electricity. Nevertheless, large penetration of these resources poses serious reliability concerns to the grid, mainly because of their intermittency. This thesis evaluates the performance of BES systems - especially compressed air energy storage (CAES) technology - for integration of wind energy from engineering and economic aspects. Analytical thermodynamic analysis of Distributed CAES (D-CAES) and Adiabatic CAES (A-CAES) suggest high roundtrip storage efficiencies ( 80% and 70%) compared to conventional CAES ( 50%). Using hydrogen to fuel CAES plants - instead of natural gas - yields a low overall efficiency ( 35%), despite its negligible GHG emissions. The techno-economic study of D-CAES shows that exporting compression heat to low-temperature loads (e.g. space heating) can enhance both the economic and emissions performance of compressed air storage plants. A case study for Alberta, Canada reveals that the abatement cost of replacing a conventional CAES with D-CAES plant practicing electricity arbitrage can be negative (-$40 per tCO2e, when the heat load is 50 km away from the air storage site). A green-field simulation finds that reducing the capital cost of BES - even drastically below current levels - does not substantially impact the cost of low-carbon electricity. At a 70% reduction in the GHG emissions intensity of the grid, gas turbines remain three times more cost-efficient in managing the wind variability compared to BES (in the best case and with a 15-minute resolution). Wind and solar thus, do not need to wait for availability of cheap BES systems to cost

  8. Investigation of the air effect on the resonance frequency and damping of three small assembled structures using different adhesive materials (SU8 epoxy resin and compressed gold)

    NASA Astrophysics Data System (ADS)

    Nouira, H.; Foltête, E.; Hirsinger, L.; Ballandras, S.

    2008-06-01

    There has been growing interest in recent years in the understanding of microsystems and the mechanical properties essential for their design. In this context, an experimental technique is proposed to characterize the structures of small dimensions composed of both silicon and lithium niobate and assembled using three different adhesive materials (SU8 (5 and 1 µm) and compressed gold) surrounded by various ambient air pressure levels. Dynamic tests were performed on three different structures used for the manufacturing of a harvesting energy microconverter. The assembled structure is mounted on a support and excited by a white noise signal via an electromagnetic shaker. The dynamic responses are recorded by a Doppler laser vibrometer and the modal parameters (obtained from the dynamic response) are identified in order to determine their evolution when the ambient air pressure inside the vacuum chamber is changed. A nonlinear modal identification is then performed. It is based on the logarithmic decrement method applied in the time-frequency domain using a wavelet transform of the time responses. The evolution of the equivalent modal frequencies and damping of the assembled structure versus time and vibration magnitude are identified for several pressure values ranging from a secondary vacuum to atmospheric pressure.

  9. Compressed air energy storage: preliminary design and site development program in an aquifer. Final draft, Task 2: Volume 2 of 3. Characterize and explore potential sites and prepare research and development plan

    SciTech Connect

    1980-12-01

    The characteristics of sites in Indiana and Illinois which are being investigated as potential sites for compressed air energy storage power plants are documented. These characteristics include geological considerations, economic factors, and environmental considerations. Extensive data are presented for 14 specific sites and a relative rating on the desirability of each site is derived. (LCL)

  10. Free compression tube. Applications

    NASA Astrophysics Data System (ADS)

    Rusu, Ioan

    2012-11-01

    During the flight of vehicles, their propulsion energy must overcome gravity, to ensure the displacement of air masses on vehicle trajectory, to cover both energy losses from the friction between a solid surface and the air and also the kinetic energy of reflected air masses due to the impact with the flying vehicle. The flight optimization by increasing speed and reducing fuel consumption has directed research in the aerodynamics field. The flying vehicles shapes obtained through studies in the wind tunnel provide the optimization of the impact with the air masses and the airflow along the vehicle. By energy balance studies for vehicles in flight, the author Ioan Rusu directed his research in reducing the energy lost at vehicle impact with air masses. In this respect as compared to classical solutions for building flight vehicles aerodynamic surfaces which reduce the impact and friction with air masses, Ioan Rusu has invented a device which he named free compression tube for rockets, registered with the State Office for Inventions and Trademarks of Romania, OSIM, deposit f 2011 0352. Mounted in front of flight vehicles it eliminates significantly the impact and friction of air masses with the vehicle solid. The air masses come into contact with the air inside the free compression tube and the air-solid friction is eliminated and replaced by air to air friction.

  11. Variations in speciated emissions from spark-ignition and compression-ignition motor vehicles in California's south coast air basin.

    PubMed

    Fujita, Eric M; Zielinska, Barbara; Campbell, David E; Arnott, W Patrick; Sagebiel, John C; Mazzoleni, Lynn; Chow, Judith C; Gabele, Peter A; Crews, William; Snow, Richard; Clark, Nigel N; Wayne, W Scott; Lawson, Douglas R

    2007-06-01

    The U.S. Department of Energy Gasoline/Diesel PM Split Study examined the sources of uncertainties in using an organic compound-based chemical mass balance receptor model to quantify the contributions of spark-ignition (SI) and compression-ignition (CI) engine exhaust to ambient fine particulate matter (PM2.5). This paper presents the chemical composition profiles of SI and CI engine exhaust from the vehicle-testing portion of the study. Chemical analysis of source samples consisted of gravimetric mass, elements, ions, organic carbon (OC), and elemental carbon (EC) by the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation Trends Network (STN) thermal/optical methods, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, alkanes, and polar organic compounds. More than half of the mass of carbonaceous particles emitted by heavy-duty diesel trucks was EC (IMPROVE) and emissions from SI vehicles contained predominantly OC. Although total carbon (TC) by the IMPROVE and STN protocols agreed well for all of the samples, the STN/IMPROVE ratios for EC from SI exhaust decreased with decreasing sample loading. SI vehicles, whether low or high emitters, emitted greater amounts of high-molecular-weight particulate PAHs (benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene) than did CI vehicles. Diesel emissions contained higher abundances of two- to four-ring semivolatile PAHs. Diacids were emitted by CI vehicles but are also prevalent in secondary organic aerosols, so they cannot be considered unique tracers. Hopanes and steranes were present in lubricating oil with similar composition for both gasoline and diesel vehicles and were negligible in gasoline or diesel fuels. CI vehicles emitted greater total amounts of hopanes and steranes on a mass per mile basis, but abundances were comparable to SI exhaust normalized to TC emissions within measurement uncertainty. The combustion-produced high-molecular-weight PAHs were found in used

  12. Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Holst, Kent; Huff, Georgianne; Schulte, Robert H.; Critelli, Nicholas

    2012-01-01

    The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

  13. Doppler ultrasound surveillance in deep tunneling compressed-air work with Trimix breathing: bounce dive technique compared to saturation-excursion technique.

    PubMed

    Vellinga, T P van Rees; Sterk, W; de Boer, A G E M; van der Beek, A J; Verhoeven, A C; van Dijk, F J H

    2008-01-01

    The Western Scheldt Tunneling Project in The Netherlands provided a unique opportunity to evaluate two deep-diving techniques with Doppler ultrasound surveillance. Divers used the bounce diving techniques for repair and maintenance of the TBM. The tunnel boring machine jammed at its deepest depth. As a result the work time was not sufficient. The saturation diving technique was developed and permitted longer work time at great depth. Thirty-one divers were involved in this project. Twenty-three divers were examined using Doppler ultrasound. Data analysis addressed 52 exposures to Trimix at 4.6-4.8 bar gauge using the bounce technique and 354 exposures to Trimix at 4.0-6.9 bar gauge on saturation excursions. No decompression incidents occurred with either technique during the described phase of the project. Doppler ultrasound revealed that the bubble loads assessed in both techniques were generally low. We find out, that despite longer working hours, shorter decompression times and larger physical workloads, the saturation-excursion technique was associated with significant lower bubble grades than in the bounce technique using Doppler Ultrasound. We conclude that the saturation-excursion technique with Trimix is a good option for deep and long exposures in caisson work. The Doppler technique proved valuable, and it should be incorporated in future compressed-air work. PMID:19175196

  14. [A case of isocyanate-induced hypersensitivity pneumonitis and a compression-air mask thought to be effective in its prevention].

    PubMed

    Idezuka, J; Ikarashi, H; Nozawa, S; Maruyama, M; Sasagawa, M; Suzuki, E

    1991-07-01

    A 41-year-old paint sprayer, who had worked with polyurethane paint since the spring of 1989, developed exertional dyspnea and dry cough and entered hospital on December 4, 1989. Plain chest X-ray film and a computed tomogram of the lung revealed diffuse micronodular shadows in both lower lung fields. DLco was shown to be significantly decreased in a pulmonary function test. A sample of bronchoalveolar lavage fluid showed increased T lymphocytes and a decreased CD4/8 ratio. A lung biopsy specimen revealed alveolitis, but neither Masson body nor granulomas were seen. Serum antibody specific to TDI-HSA was detected, and an environmental provocation test was positive. From these results, the patient was diagnosed as having isocyanate-induced hypersensitivity pneumonitis. We advised him to wear a compression-air mask when he worked, because he did not want to quit his job. Respiratory symptoms have not been seen since then, but careful observation was thought to be necessary. The involvement of type III humoral and type IV cellular immunity was suspected in this case.

  15. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 1. Executive summary. Final report

    SciTech Connect

    Not Available

    1981-05-01

    Potomac Electric Power Company (PEPCO) and Acres American Incorporated (AAI) have carried out a preliminary design study of water-compensated Compressed Air Energy Storage (CAES) and Underground Pumped Hydroelectric (UPH) plants for siting in geological conditions suitable for hard rock excavations. The work was carried out over a period of three years and was sponsored by the US Department of Energy (DOE), the Electric Power Research Institute (EPRI) and PEPCO. The study was divided into five primary tasks as follows: establishment of design criteria and analysis of impact on power system; selection of site and establishment of site characteristics; formulation of design approaches; assessment of environmental and safety aspects; and preparation of preliminary design of plant. The salient aspects considered and the conclusions reached during the consideration of the five primary tasks for both CAES and UPH are presented in this Executive Summary, which forms Volume 1 of the series of reports prepared during the study. The investigations and analyses carried out, together with the results and conclusions reached, are described in detail in Volumes 2 through 13 and ten appendices.

  16. Coal-fuelled systems for peaking power with 100% CO2 capture through integration of solid oxide fuel cells with compressed air energy storage

    NASA Astrophysics Data System (ADS)

    Nease, Jake; Adams, Thomas A.

    2014-04-01

    In this study, a coal-fuelled integrated solid oxide fuel cell (SOFC) and compressed air energy storage (CAES) system in a load-following power production scenario is discussed. Sixteen SOFC-based plants with optional carbon capture and sequestration (CCS) and syngas shifting steps are simulated and compared to a state-of-the-art supercritical pulverised coal (SCPC) plant. Simulations are performed using a combination of MATLAB and Aspen Plus v7.3. It was found that adding CAES to a SOFC-based plant can provide load-following capabilities with relatively small effects on efficiencies (1-2% HHV depending on the system configuration) and levelized costs of electricity (∼0.35 ¢ kW-1 h-1). The load-following capabilities, as measured by least-squares metrics, show that this system may utilize coal and achieve excellent load-tracking that is not adversely affected by the inclusion of CCS. Adding CCS to the SOFC/CAES system reduces measurable direct CO2 emission to zero. A seasonal partial plant shutdown schedule is found to reduce fuel consumption by 9.5% while allowing for cleaning and maintenance windows for the SOFC stacks without significantly affecting the performance of the system (∼1% HHV reduction in efficiency). The SOFC-based systems with CCS are found to become economically attractive relative to SCPC above carbon taxes of 22 ton-1.

  17. Doppler ultrasound surveillance in deep tunneling compressed-air work with Trimix breathing: bounce dive technique compared to saturation-excursion technique.

    PubMed

    Vellinga, T P van Rees; Sterk, W; de Boer, A G E M; van der Beek, A J; Verhoeven, A C; van Dijk, F J H

    2008-01-01

    The Western Scheldt Tunneling Project in The Netherlands provided a unique opportunity to evaluate two deep-diving techniques with Doppler ultrasound surveillance. Divers used the bounce diving techniques for repair and maintenance of the TBM. The tunnel boring machine jammed at its deepest depth. As a result the work time was not sufficient. The saturation diving technique was developed and permitted longer work time at great depth. Thirty-one divers were involved in this project. Twenty-three divers were examined using Doppler ultrasound. Data analysis addressed 52 exposures to Trimix at 4.6-4.8 bar gauge using the bounce technique and 354 exposures to Trimix at 4.0-6.9 bar gauge on saturation excursions. No decompression incidents occurred with either technique during the described phase of the project. Doppler ultrasound revealed that the bubble loads assessed in both techniques were generally low. We find out, that despite longer working hours, shorter decompression times and larger physical workloads, the saturation-excursion technique was associated with significant lower bubble grades than in the bounce technique using Doppler Ultrasound. We conclude that the saturation-excursion technique with Trimix is a good option for deep and long exposures in caisson work. The Doppler technique proved valuable, and it should be incorporated in future compressed-air work.

  18. 29 CFR 1910.169 - Air receivers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Compressed Gas and Compressed Air Equipment § 1910.169 Air receivers. (a) General requirements—(1) Application. This section applies to compressed air receivers, and other equipment used in providing and utilizing compressed air for performing operations such as...

  19. DNABIT Compress - Genome compression algorithm.

    PubMed

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  20. Geotechnical Feasibility Analysis of Compressed Air Energy Storage (CAES) in Bedded Salt Formations: a Case Study in Huai'an City, China

    NASA Astrophysics Data System (ADS)

    Zhang, Guimin; Li, Yinping; Daemen, Jaak J. K.; Yang, Chunhe; Wu, Yu; Zhang, Kai; Chen, Yanlong

    2015-09-01

    The lower reaches of the Yangtze River is one of the most developed regions in China. It is desirable to build compressed air energy storage (CAES) power plants in this area to ensure the safety, stability, and economic operation of the power network. Geotechnical feasibility analysis was carried out for CAES in impure bedded salt formations in Huai'an City, China, located in this region. First, geological investigation revealed that the salt groups in the Zhangxing Block meet the basic geological conditions for CAES storage, even though the possible unfavorable characteristics of the salt formations include bedding and different percentages of impurities. Second, mechanical tests were carried out to determine the mechanical characteristics of the bedded salt formations. It is encouraging that the samples did not fail even when they had undergone large creep deformation. Finally, numerical simulation was performed to evaluate the stability and volume shrinkage of the CAES under the following conditions: the shape of a single cavern is that of a pear; the width of the pillar is adopted as two times the largest diameter; three regular operating patterns were adopted for two operating caverns (internal pressure 9-10.5 MPa, 10-11.5 MPa, and 11-12.5 MPa), while the other two were kept at high pressure (internal pressure 10.5, 11.5, and 12.5 MPa) as backups; an emergency operating pattern in which two operating caverns were kept at atmospheric pressure (0.1 MPa) for emergency while the backups were under operation (9-10.5 MPa), simulated for 12 months at the beginning of the 5th year. The results of the analysis for the plastic zone, displacement, and volume shrinkage support the feasibility of the construction of an underground CAES power station.

  1. Compression embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.

    1998-01-01

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%.

  2. Compression embedding

    DOEpatents

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-07-07

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.

  3. Compression embedding

    DOEpatents

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-03-10

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique is disclosed. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method. 11 figs.

  4. Compression embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.

    1998-01-01

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method.

  5. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  6. Compressed gas fuel storage system

    DOEpatents

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  7. Partial transparency of compressed wood

    NASA Astrophysics Data System (ADS)

    Sugimoto, Hiroyuki; Sugimori, Masatoshi

    2016-05-01

    We have developed novel wood composite with optical transparency at arbitrary region. Pores in wood cells have a great variation in size. These pores expand the light path in the sample, because the refractive indexes differ between constituents of cell and air in lumen. In this study, wood compressed to close to lumen had optical transparency. Because the condition of the compression of wood needs the plastic deformation, wood was impregnated phenolic resin. The optimal condition for high transmission is compression ratio above 0.7.

  8. Video Compression

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Optivision developed two PC-compatible boards and associated software under a Goddard Space Flight Center Small Business Innovation Research grant for NASA applications in areas such as telerobotics, telesciences and spaceborne experimentation. From this technology, the company used its own funds to develop commercial products, the OPTIVideo MPEG Encoder and Decoder, which are used for realtime video compression and decompression. They are used in commercial applications including interactive video databases and video transmission. The encoder converts video source material to a compressed digital form that can be stored or transmitted, and the decoder decompresses bit streams to provide high quality playback.

  9. Compressed Genotyping

    PubMed Central

    Erlich, Yaniv; Gordon, Assaf; Brand, Michael; Hannon, Gregory J.; Mitra, Partha P.

    2011-01-01

    Over the past three decades we have steadily increased our knowledge on the genetic basis of many severe disorders. Nevertheless, there are still great challenges in applying this knowledge routinely in the clinic, mainly due to the relatively tedious and expensive process of genotyping. Since the genetic variations that underlie the disorders are relatively rare in the population, they can be thought of as a sparse signal. Using methods and ideas from compressed sensing and group testing, we have developed a cost-effective genotyping protocol to detect carriers for severe genetic disorders. In particular, we have adapted our scheme to a recently developed class of high throughput DNA sequencing technologies. The mathematical framework presented here has some important distinctions from the ’traditional’ compressed sensing and group testing frameworks in order to address biological and technical constraints of our setting. PMID:21451737

  10. Best compression: Reciprocating or rotary?

    SciTech Connect

    Cahill, C.

    1997-07-01

    A compressor is a device used to increase the pressure of a compressible fluid. The inlet pressure can vary from a deep vacuum to a high positive pressure. The discharge pressure can range from subatmospheric levels to tens of thousands of pounds per square inch. Compressors come in numerous forms, but for oilfield applications there are two primary types, reciprocating and rotary. Both reciprocating and rotary compressors are grouped in the intermittent mode of compression. Intermittent is cyclic in nature, in that a specific quantity of gas is ingested by the compressor, acted upon and discharged before the cycle is repeated. Reciprocating compression is the most common form of compression used for oilfield applications. Rotary screw compressors have a long history but are relative newcomers to oilfield applications. The rotary screw compressor-technically a helical rotor compressor-dates back to 1878. That was when the first rotary screw was manufactured for the purpose of compressing air. Today thousands of rotary screw compression packages are being used throughout the world to compress natural gas.

  11. Compression research on the REINAS Project

    NASA Technical Reports Server (NTRS)

    Rosen, Eric; Macy, William; Montague, Bruce R.; Pi-Sunyer, Carles; Spring, Jim; Kulp, David; Long, Dean; Langdon, Glen, Jr.; Pang, Alex; Wittenbrink, Craig M.

    1995-01-01

    We present approaches to integrating data compression technology into a database system designed to support research of air, sea, and land phenomena of interest to meteorology, oceanography, and earth science. A key element of the Real-Time Environmental Information Network and Analysis System (REINAS) system is the real-time component: to provide data as soon as acquired. Compression approaches being considered for REINAS include compression of raw data on the way into the database, compression of data produced by scientific visualization on the way out of the database, compression of modeling results, and compression of database query results. These compression needs are being incorporated through client-server, API, utility, and application code development.

  12. Computing interface motion in compressible gas dynamics

    NASA Technical Reports Server (NTRS)

    Mulder, W.; Osher, S.; Sethan, James A.

    1992-01-01

    An analysis is conducted of the coupling of Osher and Sethian's (1988) 'Hamilton-Jacobi' level set formulation of the equations of motion for propagating interfaces to a system of conservation laws for compressible gas dynamics, giving attention to both the conservative and nonconservative differencing of the level set function. The capabilities of the method are illustrated in view of the results of numerical convergence studies of the compressible Rayleigh-Taylor and Kelvin-Helmholtz instabilities for air-air and air-helium boundaries.

  13. Apparatus and method for treating air from a turbocharger

    SciTech Connect

    Mann, D.O.

    1987-11-24

    This patent describes an apparatus for cooling and removing moisture from compressed air passing from a turbocharger and the like to an intake of an engine comprising: an air duct connecting the turbocharger to the intake of the engine; heat pipes extending across the air duct for receiving heat from the compressed air passing through the air duct; a portion of the heat pipes extending from the air duct into a zone of ambient air external to the air duct for transferring heat received from the compressed air to the ambient air thus cooling the compressed air; and a lower extension of the air duct forming a coalescer zone receiving the compressed air after cooling by the heat pipes extending across the air duct for removing moisture therefrom.

  14. Generalized Charts for Determination of Pressure Drop of a High-speed Compressible Fluid in Heat-exchanger Passages I : Air Heated in Smooth Passages of Constant Area with Constant Wall Temperature

    NASA Technical Reports Server (NTRS)

    Valerino, Michael F

    1948-01-01

    In the present paper an analysis is made of the compressible-flow variations occurring in heat-exchanger passages. The results of the analysis describe the flow and heating characteristics for which specific flow passages can be treated as segments of generalized flow systems. The graphical representation of the flow variations in the generalized flow systems can then be utilized as working charts to determine directly the pressure changes occurring in any specific flow passage. On the basis of these results, working charts are constructed to handle the case of air heated at constant wall temperature under turbulent-flow conditions. A method is given of incorporating the effect on the heat-exchanger flow process of high temperature differential between passage wall and fluid as based on recent NACA experimental data. Good agreement is obtained between the experimental and the chart pressure-drop values for passage-wall average temperatures as high as 1752 degrees R (experimental limit) and for flow Mach numbers ranging from 0.32 to 1.00 (choke) at the passage exit.

  15. Turbulence in Compressible Flows

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.

  16. Compressed Gas Safety for Experimental Fusion Facilities

    SciTech Connect

    Cadwallader, L.C.

    2005-05-15

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard associated with compressed gas cylinders and methods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  17. Compressed Gas Safety for Experimental Fusion Facilities

    SciTech Connect

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  18. 29 CFR 1926.803 - Compressed air.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... regardless of the number of persons employed. An ambulance or transportation suitable for a litter case shall... instructions that in case of emergency of unknown or doubtful cause or illness, the wearer shall be rushed to... the man lock; (iv) Lock attendant's station; (v) The compressor plant; (vi) The first-aid...

  19. 29 CFR 1926.803 - Compressed air.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... regardless of the number of persons employed. An ambulance or transportation suitable for a litter case shall... instructions that in case of emergency of unknown or doubtful cause or illness, the wearer shall be rushed to... the man lock; (iv) Lock attendant's station; (v) The compressor plant; (vi) The first-aid...

  20. 29 CFR 1926.803 - Compressed air.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... system that can be activated inside the lock or by the outside lock tender. (xi) Be provided with oxygen lines and fittings leading into external tanks. The lines shall be fitted with check valves to prevent reverse flow. The oxygen system inside the chamber shall be of a closed circuit design and be so...

  1. 29 CFR 1926.803 - Compressed air.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... system that can be activated inside the lock or by the outside lock tender. (xi) Be provided with oxygen lines and fittings leading into external tanks. The lines shall be fitted with check valves to prevent reverse flow. The oxygen system inside the chamber shall be of a closed circuit design and be so...

  2. Microbunching and RF Compression

    SciTech Connect

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-05-23

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  3. Compressed gas manifold

    SciTech Connect

    Hildebrand, Richard J.; Wozniak, John J.

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  4. Compressible turbulent mixing: Effects of compressibility

    NASA Astrophysics Data System (ADS)

    Ni, Qionglin

    2016-04-01

    We studied by numerical simulations the effects of compressibility on passive scalar transport in stationary compressible turbulence. The turbulent Mach number varied from zero to unity. The difference in driven forcing was the magnitude ratio of compressive to solenoidal modes. In the inertial range, the scalar spectrum followed the k-5 /3 scaling and suffered negligible influence from the compressibility. The growth of the Mach number showed (1) a first reduction and second enhancement in the transfer of scalar flux; (2) an increase in the skewness and flatness of the scalar derivative and a decrease in the mixed skewness and flatness of the velocity-scalar derivatives; (3) a first stronger and second weaker intermittency of scalar relative to that of velocity; and (4) an increase in the intermittency parameter which measures the intermittency of scalar in the dissipative range. Furthermore, the growth of the compressive mode of forcing indicated (1) a decrease in the intermittency parameter and (2) less efficiency in enhancing scalar mixing. The visualization of scalar dissipation showed that, in the solenoidal-forced flow, the field was filled with the small-scale, highly convoluted structures, while in the compressive-forced flow, the field was exhibited as the regions dominated by the large-scale motions of rarefaction and compression.

  5. Computer program for compressible flow network analysis

    NASA Technical Reports Server (NTRS)

    Wilton, M. E.; Murtaugh, J. P.

    1973-01-01

    Program solves problem of an arbitrarily connected one dimensional compressible flow network with pumping in the channels and momentum balancing at flow junctions. Program includes pressure drop calculations for impingement flow and flow through pin fin arrangements, as currently found in many air cooled turbine bucket and vane cooling configurations.

  6. Adiabatic Compression in a Fire Syringe.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Baird, Scott C.

    1985-01-01

    Suggests using better materials in fire syringes to obtain more effective results during demonstrations which show the elevation in temperature upon a very rapid (adiabatic) compression of air. Also describes an experiment (using ignition temperatures) which introduces students to the use of thermocouples for high temperature measurements. (DH)

  7. 16. DETAIL OF TOOL FOR COMPRESSING SPRING IN FAIRING SEPARATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. DETAIL OF TOOL FOR COMPRESSING SPRING IN FAIRING SEPARATION ACTUATOR AND PLASTIC-WRAPPED ACTUATOR FOR FAIRING THAT WILL ENCLOSE A DMSP SATELLITE. (FAIRING SEPARATION ACTUATOR COMPRESSES TO ONE-THIRD OF ITS SIZE.) - Vandenberg Air Force Base, Space Launch Complex 3, Vehicle Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. RUNNER BOX MAINTENANCE. FRANK FEHER USES A COMPRESSED AIRPOWERED CHISEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RUNNER BOX MAINTENANCE. FRANK FEHER USES A COMPRESSED AIR-POWERED CHISEL TO CHIP OUT CONGEALED METAL IN PREPARATION FOR ANOTHER HEAT. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  9. ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS

    EPA Science Inventory

    The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...

  10. Performance Predictions of Supersonic Intakes with Isentropic-Compression Forebody

    NASA Astrophysics Data System (ADS)

    Nakashima, K.; Saito, Tsutomu

    Intake is an important component of next generation air-breathing engines such as Ram/Scram jet engines, as well as conventional jet-propulsion systems. The supersonic intake decelerates compresses the air inflow by shocks or compression waves to appropriate flow conditions for a specific engine system. The performance of supersonic intakes is evaluated mainly by the mass flow rate and the total pressure recovery rate.

  11. Parallel image compression

    NASA Technical Reports Server (NTRS)

    Reif, John H.

    1987-01-01

    A parallel compression algorithm for the 16,384 processor MPP machine was developed. The serial version of the algorithm can be viewed as a combination of on-line dynamic lossless test compression techniques (which employ simple learning strategies) and vector quantization. These concepts are described. How these concepts are combined to form a new strategy for performing dynamic on-line lossy compression is discussed. Finally, the implementation of this algorithm in a massively parallel fashion on the MPP is discussed.

  12. Sequential neural text compression.

    PubMed

    Schmidhuber, J; Heil, S

    1996-01-01

    The purpose of this paper is to show that neural networks may be promising tools for data compression without loss of information. We combine predictive neural nets and statistical coding techniques to compress text files. We apply our methods to certain short newspaper articles and obtain compression ratios exceeding those of the widely used Lempel-Ziv algorithms (which build the basis of the UNIX functions "compress" and "gzip"). The main disadvantage of our methods is that they are about three orders of magnitude slower than standard methods.

  13. Controlling And Operating Homogeneous Charge Compression Ignition (Hcci) Engines

    DOEpatents

    Flowers, Daniel L.

    2005-08-02

    A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.

  14. Compression Ratio Adjuster

    NASA Technical Reports Server (NTRS)

    Akkerman, J. W.

    1982-01-01

    New mechanism alters compression ratio of internal-combustion engine according to load so that engine operates at top fuel efficiency. Ordinary gasoline, diesel and gas engines with their fixed compression ratios are inefficient at partial load and at low-speed full load. Mechanism ensures engines operate as efficiently under these conditions as they do at highload and high speed.

  15. Fractal image compression

    NASA Technical Reports Server (NTRS)

    Barnsley, Michael F.; Sloan, Alan D.

    1989-01-01

    Fractals are geometric or data structures which do not simplify under magnification. Fractal Image Compression is a technique which associates a fractal to an image. On the one hand, the fractal can be described in terms of a few succinct rules, while on the other, the fractal contains much or all of the image information. Since the rules are described with less bits of data than the image, compression results. Data compression with fractals is an approach to reach high compression ratios for large data streams related to images. The high compression ratios are attained at a cost of large amounts of computation. Both lossless and lossy modes are supported by the technique. The technique is stable in that small errors in codes lead to small errors in image data. Applications to the NASA mission are discussed.

  16. Ames Air Revitalization

    NASA Technical Reports Server (NTRS)

    Huang, Roger Z.

    2015-01-01

    This is an informal presentation presented to the University of Colorado, Boulder Bioastronautics group seminar. It highlights the key focal areas of the Air Revitalization Group research over the past year, including progress on the CO2 Removal and Compression System, testing of CDRA drying bed configurations, and adsorption research.

  17. Modeling Compressed Turbulence

    SciTech Connect

    Israel, Daniel M.

    2012-07-13

    From ICE to ICF, the effect of mean compression or expansion is important for predicting the state of the turbulence. When developing combustion models, we would like to know the mix state of the reacting species. This involves density and concentration fluctuations. To date, research has focused on the effect of compression on the turbulent kinetic energy. The current work provides constraints to help development and calibration for models of species mixing effects in compressed turbulence. The Cambon, et al., re-scaling has been extended to buoyancy driven turbulence, including the fluctuating density, concentration, and temperature equations. The new scalings give us helpful constraints for developing and validating RANS turbulence models.

  18. Local compressibilities in crystals

    NASA Astrophysics Data System (ADS)

    Martín Pendás, A.; Costales, Aurora; Blanco, M. A.; Recio, J. M.; Luaña, Víctor

    2000-12-01

    An application of the atoms in molecules theory to the partitioning of static thermodynamic properties in condensed systems is presented. Attention is focused on the definition and the behavior of atomic compressibilities. Inverses of bulk moduli are found to be simple weighted averages of atomic compressibilities. Two kinds of systems are investigated as examples: four related oxide spinels and the alkali halide family. Our analyses show that the puzzling constancy of the bulk moduli of these spinels is a consequence of the value of the compressibility of an oxide ion. A functional dependence between ionic bulk moduli and ionic volume is also proposed.

  19. Compression behavior of single-layer graphenes.

    PubMed

    Frank, Otakar; Tsoukleri, Georgia; Parthenios, John; Papagelis, Konstantinos; Riaz, Ibtsam; Jalil, Rashid; Novoselov, Kostya S; Galiotis, Costas

    2010-06-22

    Central to most applications involving monolayer graphenes is its mechanical response under various stress states. To date most of the work reported is of theoretical nature and refers to tension and compression loading of model graphenes. Most of the experimental work is indeed limited to the bending of single flakes in air and the stretching of flakes up to typically approximately 1% using plastic substrates. Recently we have shown that by employing a cantilever beam we can subject single graphenes to various degrees of axial compression. Here we extend this work much further by measuring in detail both stress uptake and compression buckling strain in single flakes of different geometries. In all cases the mechanical response is monitored by simultaneous Raman measurements through the shift of either the G or 2D phonons of graphene. Despite the infinitely small thickness of the monolayers, the results show that graphenes embedded in plastic beams exhibit remarkable compression buckling strains. For large length (l)-to-width (w) ratios (> or =0.2) the buckling strain is of the order of -0.5% to -0.6%. However, for l/w < 0.2 no failure is observed for strains even higher than -1%. Calculations based on classical Euler analysis show that the buckling strain enhancement provided by the polymer lateral support is more than 6 orders of magnitude compared to that of suspended graphene in air. PMID:20496881

  20. Experimental studies on an air-air jet exhaust pump

    SciTech Connect

    Chou, S.K.

    1986-01-01

    Industrial ventilation employing an air-air jet exhaust pump connected to a compressed-air line was investigated. The motive air supply pressure was maintained between 2 and 3 bar. A unique ejector housing was constructed to receive both the convergent-divergent primary nozzle and the mixing chamber. The entire unit adapts readily to any existing compressed-air system. The mixing chamber was so constructed that the length of its cylindrical section may be changed. Pressure variations along the mixing chamber were recorded, and this offered a valuable appreciation of the effects of the length-to-diameter ratios. Results indicate the influence of the supply air pressure and pressure ratio on the jet entrainment capacity and efficiency. It has also been shown that the present design is capable of achieving the maximum reported jet-pump efficiency of around 25% corresponding to a nozzle-to-mixing chamber area ratio of 0.15.

  1. Compressive Optical Image Encryption

    PubMed Central

    Li, Jun; Sheng Li, Jiao; Yang Pan, Yang; Li, Rong

    2015-01-01

    An optical image encryption technique based on compressive sensing using fully optical means has been proposed. An object image is first encrypted to a white-sense stationary noise pattern using a double random phase encoding (DRPE) method in a Mach-Zehnder interferometer. Then, the encrypted image is highly compressed to a signal using single-pixel compressive holographic imaging in the optical domain. At the receiving terminal, the encrypted image is reconstructed well via compressive sensing theory, and the original image can be decrypted with three reconstructed holograms and the correct keys. The numerical simulations show that the method is effective and suitable for optical image security transmission in future all-optical networks because of the ability of completely optical implementation and substantially smaller hologram data volume. PMID:25992946

  2. Focus on Compression Stockings

    MedlinePlus

    ... sion apparel is used to prevent or control edema The post-thrombotic syndrome (PTS) is a complication ( ... complication. abdomen. This swelling is referred to as edema. If you have edema, compression therapy may be ...

  3. Muon cooling: longitudinal compression.

    PubMed

    Bao, Yu; Antognini, Aldo; Bertl, Wilhelm; Hildebrandt, Malte; Khaw, Kim Siang; Kirch, Klaus; Papa, Angela; Petitjean, Claude; Piegsa, Florian M; Ritt, Stefan; Sedlak, Kamil; Stoykov, Alexey; Taqqu, David

    2014-06-01

    A 10  MeV/c positive muon beam was stopped in helium gas of a few mbar in a magnetic field of 5 T. The muon "swarm" has been efficiently compressed from a length of 16 cm down to a few mm along the magnetic field axis (longitudinal compression) using electrostatic fields. The simulation reproduces the low energy interactions of slow muons in helium gas. Phase space compression occurs on the order of microseconds, compatible with the muon lifetime of 2  μs. This paves the way for the preparation of a high-quality low-energy muon beam, with an increase in phase space density relative to a standard surface muon beam of 10^{7}. The achievable phase space compression by using only the longitudinal stage presented here is of the order of 10^{4}.

  4. Compressive Optical Image Encryption

    NASA Astrophysics Data System (ADS)

    Li, Jun; Sheng Li, Jiao; Yang Pan, Yang; Li, Rong

    2015-05-01

    An optical image encryption technique based on compressive sensing using fully optical means has been proposed. An object image is first encrypted to a white-sense stationary noise pattern using a double random phase encoding (DRPE) method in a Mach-Zehnder interferometer. Then, the encrypted image is highly compressed to a signal using single-pixel compressive holographic imaging in the optical domain. At the receiving terminal, the encrypted image is reconstructed well via compressive sensing theory, and the original image can be decrypted with three reconstructed holograms and the correct keys. The numerical simulations show that the method is effective and suitable for optical image security transmission in future all-optical networks because of the ability of completely optical implementation and substantially smaller hologram data volume.

  5. Muon Cooling: Longitudinal Compression

    NASA Astrophysics Data System (ADS)

    Bao, Yu; Antognini, Aldo; Bertl, Wilhelm; Hildebrandt, Malte; Khaw, Kim Siang; Kirch, Klaus; Papa, Angela; Petitjean, Claude; Piegsa, Florian M.; Ritt, Stefan; Sedlak, Kamil; Stoykov, Alexey; Taqqu, David

    2014-06-01

    A 10 MeV/c positive muon beam was stopped in helium gas of a few mbar in a magnetic field of 5 T. The muon "swarm" has been efficiently compressed from a length of 16 cm down to a few mm along the magnetic field axis (longitudinal compression) using electrostatic fields. The simulation reproduces the low energy interactions of slow muons in helium gas. Phase space compression occurs on the order of microseconds, compatible with the muon lifetime of 2 μs. This paves the way for the preparation of a high-quality low-energy muon beam, with an increase in phase space density relative to a standard surface muon beam of 107. The achievable phase space compression by using only the longitudinal stage presented here is of the order of 104.

  6. Compressible Astrophysics Simulation Code

    SciTech Connect

    Howell, L.; Singer, M.

    2007-07-18

    This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.

  7. Compression molding of aerogel microspheres

    DOEpatents

    Pekala, Richard W.; Hrubesh, Lawrence W.

    1998-03-24

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50-800 kg/m.sup.3 (0.05-0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization.

  8. Compression molding of aerogel microspheres

    DOEpatents

    Pekala, R.W.; Hrubesh, L.W.

    1998-03-24

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner is disclosed. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50--800 kg/m{sup 3} (0.05--0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization. 4 figs.

  9. Shock compression of liquid hydrazine

    SciTech Connect

    Garcia, B.O.; Chavez, D.J.

    1995-01-01

    Liquid hydrazine (N{sub 2}H{sub 4}) is a propellant used by the Air Force and NASA for aerospace propulsion and power systems. Because the propellant modules that contain the hydrazine can be subject to debris impacts during their use, the shock states that can occur in the hydrazine need to be characterized to safely predict its response. Several shock compression experiments have been conducted in an attempt to investigate the detonability of liquid hydrazine; however, the experiments results disagree. Therefore, in this study, we reproduced each experiment numerically to evaluate in detail the shock wave profiles generated in the liquid hydrazine. This paper presents the results of each numerical simulation and compares the results to those obtained in experiment. We also present the methodology of our approach, which includes chemical kinetic experiments, chemical equilibrium calculations, and characterization of the equation of state of liquid hydrazine.

  10. Image compression technique

    DOEpatents

    Fu, C.Y.; Petrich, L.I.

    1997-03-25

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.

  11. Image compression technique

    DOEpatents

    Fu, Chi-Yung; Petrich, Loren I.

    1997-01-01

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.

  12. Alternative Compression Garments

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Lee, S. M. C.; Ribeiro, L. C.; Brown, A. K.; Westby, C. M.; Platts, S. H.

    2011-01-01

    Orthostatic intolerance after spaceflight is still an issue for astronauts as no in-flight countermeasure has been 100% effective. Future anti-gravity suits (AGS) may be similar to the Shuttle era inflatable AGS or may be a mechanical compression device like the Russian Kentavr. We have evaluated the above garments as well as elastic, gradient compression garments of varying magnitude and determined that breast-high elastic compression garments may be a suitable replacement to the current AGS. This new garment should be more comfortable than the AGS, easy to don and doff, and as effective a countermeasure to orthostatic intolerance. Furthermore, these new compression garments could be worn for several days after space flight as necessary if symptoms persisted. We conducted two studies to evaluate elastic, gradient compression garments. The purpose of these studies was to evaluate the comfort and efficacy of an alternative compression garment (ACG) immediately after actual space flight and 6 degree head-down tilt bed rest as a model of space flight, and to determine if they would impact recovery if worn for up to three days after bed rest.

  13. Combined rankine and vapor compression cycles

    DOEpatents

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  14. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, R.G.

    1984-08-31

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  15. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, Ramkrishna G.

    1986-01-01

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  16. The Quiescent-Chamber Type Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Foster, H H

    1937-01-01

    Report presents the results of performance tests of a single-cylinder 4-stroke-cycle compression-ignition engine having a vertical disk form of combustion chamber without air flow. The number, size, and direction of the orifices of the fuel-injection nozzles used were independently varied. A table and graphs are presented showing the performance of the engine with different nozzles; results of tests at different compression ratios, boost pressures, and coolant temperatures are also included.

  17. 29 CFR 1917.155 - Air receivers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Air receivers. 1917.155 Section 1917.155 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.155 Air receivers. (a) Application. This section applies to compressed air receivers and equipment used for operations such as...

  18. 29 CFR 1917.155 - Air receivers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Air receivers. 1917.155 Section 1917.155 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.155 Air receivers. (a) Application. This section applies to compressed air receivers and equipment used for operations such as...

  19. 29 CFR 1917.155 - Air receivers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Air receivers. 1917.155 Section 1917.155 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.155 Air receivers. (a) Application. This section applies to compressed air receivers and equipment used for operations such as...

  20. Variable valve timing in a homogenous charge compression ignition engine

    DOEpatents

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  1. Transverse Compression of Tendons.

    PubMed

    Salisbury, S T Samuel; Buckley, C Paul; Zavatsky, Amy B

    2016-04-01

    A study was made of the deformation of tendons when compressed transverse to the fiber-aligned axis. Bovine digital extensor tendons were compression tested between flat rigid plates. The methods included: in situ image-based measurement of tendon cross-sectional shapes, after preconditioning but immediately prior to testing; multiple constant-load creep/recovery tests applied to each tendon at increasing loads; and measurements of the resulting tendon displacements in both transverse directions. In these tests, friction resisted axial stretch of the tendon during compression, giving approximately plane-strain conditions. This, together with the assumption of a form of anisotropic hyperelastic constitutive model proposed previously for tendon, justified modeling the isochronal response of tendon as that of an isotropic, slightly compressible, neo-Hookean solid. Inverse analysis, using finite-element (FE) simulations of the experiments and 10 s isochronal creep displacement data, gave values for Young's modulus and Poisson's ratio of this solid of 0.31 MPa and 0.49, respectively, for an idealized tendon shape and averaged data for all the tendons and E = 0.14 and 0.10 MPa for two specific tendons using their actual measured geometry. The compression load versus displacement curves, as measured and as simulated, showed varying degrees of stiffening with increasing load. This can be attributed mostly to geometrical changes in tendon cross section under load, varying according to the initial 3D shape of the tendon. PMID:26833218

  2. Transverse Compression of Tendons.

    PubMed

    Salisbury, S T Samuel; Buckley, C Paul; Zavatsky, Amy B

    2016-04-01

    A study was made of the deformation of tendons when compressed transverse to the fiber-aligned axis. Bovine digital extensor tendons were compression tested between flat rigid plates. The methods included: in situ image-based measurement of tendon cross-sectional shapes, after preconditioning but immediately prior to testing; multiple constant-load creep/recovery tests applied to each tendon at increasing loads; and measurements of the resulting tendon displacements in both transverse directions. In these tests, friction resisted axial stretch of the tendon during compression, giving approximately plane-strain conditions. This, together with the assumption of a form of anisotropic hyperelastic constitutive model proposed previously for tendon, justified modeling the isochronal response of tendon as that of an isotropic, slightly compressible, neo-Hookean solid. Inverse analysis, using finite-element (FE) simulations of the experiments and 10 s isochronal creep displacement data, gave values for Young's modulus and Poisson's ratio of this solid of 0.31 MPa and 0.49, respectively, for an idealized tendon shape and averaged data for all the tendons and E = 0.14 and 0.10 MPa for two specific tendons using their actual measured geometry. The compression load versus displacement curves, as measured and as simulated, showed varying degrees of stiffening with increasing load. This can be attributed mostly to geometrical changes in tendon cross section under load, varying according to the initial 3D shape of the tendon.

  3. Turbulence modeling for high speed compressible flows

    NASA Technical Reports Server (NTRS)

    Chandra, Suresh

    1993-01-01

    The following grant objectives were delineated in the proposal to NASA: to offer course work in computational fluid dynamics (CFD) and related areas to enable mechanical engineering students at North Carolina A&T State University (N.C. A&TSU) to pursue M.S. studies in CFD, and to enable students and faculty to engage in research in high speed compressible flows. Since no CFD-related activity existed at N.C. A&TSU before the start of the NASA grant period, training of students in the CFD area and initiation of research in high speed compressible flows were proposed as the key aspects of the project. To that end, graduate level courses in CFD, boundary layer theory, and fluid dynamics were offered. This effort included initiating a CFD course for graduate students. Also, research work was performed on studying compressibility effects in high speed flows. Specifically, a modified compressible dissipation model, which included a fourth order turbulent Mach number term, was incorporated into the SPARK code and verified for the air-air mixing layer case. The results obtained for this case were compared with a wide variety of experimental data to discern the trends in the mixing layer growth rates with varying convective Mach numbers. Comparison of the predictions of the study with the results of several analytical models was also carried out. The details of the research study are described in the publication entitled 'Compressibility Effects in Modeling Turbulent High Speed Mixing Layers,' which is attached to this report.

  4. Turbulence modeling for high speed compressible flows

    NASA Astrophysics Data System (ADS)

    Chandra, Suresh

    1993-08-01

    The following grant objectives were delineated in the proposal to NASA: to offer course work in computational fluid dynamics (CFD) and related areas to enable mechanical engineering students at North Carolina A&T State University (N.C. A&TSU) to pursue M.S. studies in CFD, and to enable students and faculty to engage in research in high speed compressible flows. Since no CFD-related activity existed at N.C. A&TSU before the start of the NASA grant period, training of students in the CFD area and initiation of research in high speed compressible flows were proposed as the key aspects of the project. To that end, graduate level courses in CFD, boundary layer theory, and fluid dynamics were offered. This effort included initiating a CFD course for graduate students. Also, research work was performed on studying compressibility effects in high speed flows. Specifically, a modified compressible dissipation model, which included a fourth order turbulent Mach number term, was incorporated into the SPARK code and verified for the air-air mixing layer case. The results obtained for this case were compared with a wide variety of experimental data to discern the trends in the mixing layer growth rates with varying convective Mach numbers. Comparison of the predictions of the study with the results of several analytical models was also carried out. The details of the research study are described in the publication entitled 'Compressibility Effects in Modeling Turbulent High Speed Mixing Layers,' which is attached to this report.

  5. 22. Power plant engine pipingcompressed air piping diagram and sections, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Power plant engine piping-compressed air piping diagram and sections, sheet 81 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  6. The compressible mixing layer

    NASA Technical Reports Server (NTRS)

    Vandromme, Dany; Haminh, Hieu

    1991-01-01

    The capability of turbulence modeling correctly to handle natural unsteadiness appearing in compressible turbulent flows is investigated. Physical aspects linked to the unsteadiness problem and the role of various flow parameters are analyzed. It is found that unsteady turbulent flows can be simulated by dividing these motions into an 'organized' part for which equations of motion are solved and a remaining 'incoherent' part represented by a turbulence model. Two-equation turbulence models and second-order turbulence models can yield reasonable results. For specific compressible unsteady turbulent flow, graphic presentations of different quantities may reveal complementary physical features. Strong compression zones are observed in rapid flow parts but shocklets do not yet occur.

  7. Isentropic Compression of Argon

    SciTech Connect

    H. Oona; J.C. Solem; L.R. Veeser, C.A. Ekdahl; P.J. Rodriquez; S.M. Younger; W. Lewis; W.D. Turley

    1997-08-01

    We are studying the transition of argon from an insulator to a conductor by compressing the frozen gas isentropically to pressures at which neighboring atomic orbitals overlap sufficiently to allow some electron motion between atoms. Argon and the other rare gases have closed electron shells and therefore remain montomic, even when they solidify. Their simple structure makes it likely that any measured change in conductivity is due to changes in the atomic structure, not in molecular configuration. As the crystal is compressed the band gap closes, allowing increased conductivity. We have begun research to determine the conductivity at high pressures, and it is our intention to determine the compression at which the crystal becomes a metal.

  8. Compressive Shift Retrieval

    NASA Astrophysics Data System (ADS)

    Ohlsson, Henrik; Eldar, Yonina C.; Yang, Allen Y.; Sastry, S. Shankar

    2014-08-01

    The classical shift retrieval problem considers two signals in vector form that are related by a shift. The problem is of great importance in many applications and is typically solved by maximizing the cross-correlation between the two signals. Inspired by compressive sensing, in this paper, we seek to estimate the shift directly from compressed signals. We show that under certain conditions, the shift can be recovered using fewer samples and less computation compared to the classical setup. Of particular interest is shift estimation from Fourier coefficients. We show that under rather mild conditions only one Fourier coefficient suffices to recover the true shift.

  9. Isentropic compression of argon

    SciTech Connect

    Veeser, L.R.; Ekdahl, C.A.; Oona, H.

    1997-06-01

    The compression was done in an MC-1 flux compression (explosive) generator, in order to study the transition from an insulator to a conductor. Since conductivity signals were observed in all the experiments (except when the probe is removed), both the Teflon and the argon are becoming conductive. The conductivity could not be determined (Teflon insulation properties unknown), but it could be bounded as being {sigma}=1/{rho}{le}8({Omega}cm){sub -1}, because when the Teflon breaks down, the dielectric constant is reduced. The Teflon insulator problem remains, and other ways to better insulate the probe or to measure the conductivity without a probe is being sought.

  10. Orbiting dynamic compression laboratory

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Vreeland, T., Jr.; Kasiraj, P.; Frisch, B.

    1984-01-01

    In order to examine the feasibility of carrying out dynamic compression experiments on a space station, the possibility of using explosive gun launchers is studied. The question of whether powders of a refractory metal (molybdenum) and a metallic glass could be well considered by dynamic compression is examined. In both cases extremely good bonds are obtained between grains of metal and metallic glass at 180 and 80 kb, respectively. When the oxide surface is reduced and the dynamic consolidation is carried out in vacuum, in the case of molybdenum, tensile tests of the recovered samples demonstrated beneficial ultimate tensile strengths.

  11. Closed-loop air cooling system for a turbine engine

    DOEpatents

    North, William Edward

    2000-01-01

    Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

  12. Homogenous charge compression ignition engine having a cylinder including a high compression space

    DOEpatents

    Agama, Jorge R.; Fiveland, Scott B.; Maloney, Ronald P.; Faletti, James J.; Clarke, John M.

    2003-12-30

    The present invention relates generally to the field of homogeneous charge compression engines. In these engines, fuel is injected upstream or directly into the cylinder when the power piston is relatively close to its bottom dead center position. The fuel mixes with air in the cylinder as the power piston advances to create a relatively lean homogeneous mixture that preferably ignites when the power piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. Thus, the present invention divides the homogeneous charge between a controlled volume higher compression space and a lower compression space to better control the start of ignition.

  13. Equations, tables, and charts for compressible flow

    NASA Technical Reports Server (NTRS)

    1953-01-01

    This report, which is a revision and extension of NACA-TN-1428, presents a compilation of equations, tables, and charts useful in the analysis of high-speed flow of a compressible fluid. The equations provide relations for continuous one-dimensional flow, normal and oblique shock waves, and Prandtl-Meyer expansions for both perfect and imperfect gases. The tables present useful dimensionless ratios for continuous one-dimensional flow and for normal shock waves as functions of Mach number for air considered as a perfect gas. One series of charts presents the characteristics of the flow of air (considered a perfect gas) for oblique shock waves and for cones in a supersonic air stream. A second series shows the effects of caloric imperfections on continuous one-dimensional flow and on the flow through normal and oblique shock waves. (author)

  14. Nonlinear Frequency Compression

    PubMed Central

    Scollie, Susan; Glista, Danielle; Seelisch, Andreas

    2013-01-01

    Frequency lowering technologies offer an alternative amplification solution for severe to profound high frequency hearing losses. While frequency lowering technologies may improve audibility of high frequency sounds, the very nature of this processing can affect the perceived sound quality. This article reports the results from two studies that investigated the impact of a nonlinear frequency compression (NFC) algorithm on perceived sound quality. In the first study, the cutoff frequency and compression ratio parameters of the NFC algorithm were varied, and their effect on the speech quality was measured subjectively with 12 normal hearing adults, 12 normal hearing children, 13 hearing impaired adults, and 9 hearing impaired children. In the second study, 12 normal hearing and 8 hearing impaired adult listeners rated the quality of speech in quiet, speech in noise, and music after processing with a different set of NFC parameters. Results showed that the cutoff frequency parameter had more impact on sound quality ratings than the compression ratio, and that the hearing impaired adults were more tolerant to increased frequency compression than normal hearing adults. No statistically significant differences were found in the sound quality ratings of speech-in-noise and music stimuli processed through various NFC settings by hearing impaired listeners. These findings suggest that there may be an acceptable range of NFC settings for hearing impaired individuals where sound quality is not adversely affected. These results may assist an Audiologist in clinical NFC hearing aid fittings for achieving a balance between high frequency audibility and sound quality. PMID:23539261

  15. Compress Your Files

    ERIC Educational Resources Information Center

    Branzburg, Jeffrey

    2005-01-01

    File compression enables data to be squeezed together, greatly reducing file size. Why would someone want to do this? Reducing file size enables the sending and receiving of files over the Internet more quickly, the ability to store more files on the hard drive, and the ability pack many related files into one archive (for example, all files…

  16. Compression: Rent or own

    SciTech Connect

    Cahill, C.

    1997-07-01

    Historically, the decision to purchase or rent compression has been set as a corporate philosophy. As companies decentralize, there seems to be a shift away from corporate philosophy toward individual profit centers. This has led the decision to rent versus purchase to be looked at on a regional or project-by-project basis.

  17. The Compressed Video Experience.

    ERIC Educational Resources Information Center

    Weber, John

    In the fall semester 1995, Southern Arkansas University- Magnolia (SAU-M) began a two semester trial delivering college classes via a compressed video link between SAU-M and its sister school Southern Arkansas University Tech (SAU-T) in Camden. As soon as the University began broadcasting and receiving classes, it was discovered that using the…

  18. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.; Callow, Diane Schafer; Marron, Lisa C.; Salton, Jonathan R.

    2002-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water. The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  19. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.

    2001-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water (ideally isothermal to a humidity of 1.0, then adiabatic thereafter). The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  20. TEM Video Compressive Sensing

    SciTech Connect

    Stevens, Andrew J.; Kovarik, Libor; Abellan, Patricia; Yuan, Xin; Carin, Lawrence; Browning, Nigel D.

    2015-08-02

    One of the main limitations of imaging at high spatial and temporal resolution during in-situ TEM experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1ms, the cameras are expensive and must replace existing detectors. In this paper, we examine the use of coded aperture compressive sensing methods [1, 2, 3, 4] to increase the framerate of any camera with simple, low-cost hardware modifications. The coded aperture approach allows multiple sub-frames to be coded and integrated into a single camera frame during the acquisition process, and then extracted upon readout using statistical compressive sensing inversion. Our simulations show that it should be possible to increase the speed of any camera by at least an order of magnitude. Compressive Sensing (CS) combines sensing and compression in one operation, and thus provides an approach that could further improve the temporal resolution while correspondingly reducing the electron dose rate. Because the signal is measured in a compressive manner, fewer total measurements are required. When applied to TEM video capture, compressive imaging couled improve acquisition speed and reduce the electron dose rate. CS is a recent concept, and has come to the forefront due the seminal work of Candès [5]. Since the publication of Candès, there has been enormous growth in the application of CS and development of CS variants. For electron microscopy applications, the concept of CS has also been recently applied to electron tomography [6], and reduction of electron dose in scanning transmission electron microscopy (STEM) imaging [7]. To demonstrate the applicability of coded aperture CS video reconstruction for atomic level imaging, we simulate compressive sensing on observations of Pd nanoparticles and Ag nanoparticles during exposure to high temperatures and other environmental

  1. Coded aperture compressive temporal imaging.

    PubMed

    Llull, Patrick; Liao, Xuejun; Yuan, Xin; Yang, Jianbo; Kittle, David; Carin, Lawrence; Sapiro, Guillermo; Brady, David J

    2013-05-01

    We use mechanical translation of a coded aperture for code division multiple access compression of video. We discuss the compressed video's temporal resolution and present experimental results for reconstructions of > 10 frames of temporal data per coded snapshot.

  2. Space-time compressive imaging.

    PubMed

    Treeaporn, Vicha; Ashok, Amit; Neifeld, Mark A

    2012-02-01

    Compressive imaging systems typically exploit the spatial correlation of the scene to facilitate a lower dimensional measurement relative to a conventional imaging system. In natural time-varying scenes there is a high degree of temporal correlation that may also be exploited to further reduce the number of measurements. In this work we analyze space-time compressive imaging using Karhunen-Loève (KL) projections for the read-noise-limited measurement case. Based on a comprehensive simulation study, we show that a KL-based space-time compressive imager offers higher compression relative to space-only compressive imaging. For a relative noise strength of 10% and reconstruction error of 10%, we find that space-time compressive imaging with 8×8×16 spatiotemporal blocks yields about 292× compression compared to a conventional imager, while space-only compressive imaging provides only 32× compression. Additionally, under high read-noise conditions, a space-time compressive imaging system yields lower reconstruction error than a conventional imaging system due to the multiplexing advantage. We also discuss three electro-optic space-time compressive imaging architecture classes, including charge-domain processing by a smart focal plane array (FPA). Space-time compressive imaging using a smart FPA provides an alternative method to capture the nonredundant portions of time-varying scenes.

  3. 30 CFR 56.13012 - Compressor air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressor air intakes. 56.13012 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure that...

  4. 21 CFR 868.6250 - Portable air compressor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes,...

  5. 30 CFR 57.13012 - Compressor air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressor air intakes. 57.13012 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13012 Compressor air intakes. Compressor air intakes shall be installed to...

  6. 30 CFR 56.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Reciprocating-type air compressors. 56.13010... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air...

  7. 30 CFR 56.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Reciprocating-type air compressors. 56.13010... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air...

  8. 30 CFR 56.13011 - Air receiver tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air receiver tanks. 56.13011 Section 56.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic...

  9. 30 CFR 56.13011 - Air receiver tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air receiver tanks. 56.13011 Section 56.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic...

  10. 30 CFR 56.13012 - Compressor air intakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compressor air intakes. 56.13012 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure that...

  11. 21 CFR 868.6250 - Portable air compressor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes,...

  12. 30 CFR 57.13011 - Air receiver tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air receiver tanks. 57.13011 Section 57.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more...

  13. 30 CFR 57.13011 - Air receiver tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air receiver tanks. 57.13011 Section 57.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more...

  14. 30 CFR 56.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Reciprocating-type air compressors. 56.13010... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air...

  15. 30 CFR 56.13011 - Air receiver tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air receiver tanks. 56.13011 Section 56.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic...

  16. 30 CFR 56.13012 - Compressor air intakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressor air intakes. 56.13012 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure that...

  17. 21 CFR 868.6250 - Portable air compressor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes,...

  18. Progressive compressive imager

    NASA Astrophysics Data System (ADS)

    Evladov, Sergei; Levi, Ofer; Stern, Adrian

    2012-06-01

    We have designed and built a working automatic progressive sampling imaging system based on the vector sensor concept, which utilizes a unique sampling scheme of Radon projections. This sampling scheme makes it possible to progressively add information resulting in tradeoff between compression and the quality of reconstruction. The uniqueness of our sampling is that in any moment of the acquisition process the reconstruction can produce a reasonable version of the image. The advantage of the gradual addition of the samples is seen when the sparsity rate of the object is unknown, and thus the number of needed measurements. We have developed the iterative algorithm OSO (Ordered Sets Optimization) which employs our sampling scheme for creation of nearly uniform distributed sets of samples, which allows the reconstruction of Mega-Pixel images. We present the good quality reconstruction from compressed data ratios of 1:20.

  19. Digital cinema video compression

    NASA Astrophysics Data System (ADS)

    Husak, Walter

    2003-05-01

    The Motion Picture Industry began a transition from film based distribution and projection to digital distribution and projection several years ago. Digital delivery and presentation offers the prospect to increase the quality of the theatrical experience for the audience, reduce distribution costs to the distributors, and create new business opportunities for the theater owners and the studios. Digital Cinema also presents an opportunity to provide increased flexibility and security of the movies for the content owners and the theater operators. Distribution of content via electronic means to theaters is unlike any of the traditional applications for video compression. The transition from film-based media to electronic media represents a paradigm shift in video compression techniques and applications that will be discussed in this paper.

  20. Compressibility of solids

    NASA Technical Reports Server (NTRS)

    Vinet, P.; Ferrante, J.; Rose, J. H.; Smith, J. R.

    1987-01-01

    A universal form is proposed for the equation of state (EOS) of solids. Good agreement is found for a variety of test data. The form of the EOS is used to suggest a method of data analysis, which is applied to materials of geophysical interest. The isothermal bulk modulus is discussed as a function of the volume and of the pressure. The isothermal compression curves for materials of geophysical interest are examined.

  1. Basic cluster compression algorithm

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.; Lee, J.

    1980-01-01

    Feature extraction and data compression of LANDSAT data is accomplished by BCCA program which reduces costs associated with transmitting, storing, distributing, and interpreting multispectral image data. Algorithm uses spatially local clustering to extract features from image data to describe spectral characteristics of data set. Approach requires only simple repetitive computations, and parallel processing can be used for very high data rates. Program is written in FORTRAN IV for batch execution and has been implemented on SEL 32/55.

  2. Compression of Cake

    NASA Astrophysics Data System (ADS)

    Nason, Sarah; Houghton, Brittany; Renfro, Timothy

    2012-03-01

    The fall university physics class, at McMurry University, created a compression modulus experiment that even high school students could do. The class came up with this idea after a Young's modulus experiment which involved stretching wire. A question was raised of what would happen if we compressed something else? We created our own Young's modulus experiment, but in a more entertaining way. The experiment involves measuring the height of a cake both before and after a weight has been applied to the cake. We worked to derive the compression modulus by applying weight to a cake. In the end, we had our experimental cake and, ate it too! To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2012.TSS.B1.1

  3. Scale adaptive compressive tracking.

    PubMed

    Zhao, Pengpeng; Cui, Shaohui; Gao, Min; Fang, Dan

    2016-01-01

    Recently, the compressive tracking (CT) method (Zhang et al. in Proceedings of European conference on computer vision, pp 864-877, 2012) has attracted much attention due to its high efficiency, but it cannot well deal with the scale changing objects due to its constant tracking box. To address this issue, in this paper we propose a scale adaptive CT approach, which adaptively adjusts the scale of tracking box with the size variation of the objects. Our method significantly improves CT in three aspects: Firstly, the scale of tracking box is adaptively adjusted according to the size of the objects. Secondly, in the CT method, all the compressive features are supposed independent and equal contribution to the classifier. Actually, different compressive features have different confidence coefficients. In our proposed method, the confidence coefficients of features are computed and used to achieve different contribution to the classifier. Finally, in the CT method, the learning parameter λ is constant, which will result in large tracking drift on the occasion of object occlusion or large scale appearance variation. In our proposed method, a variable learning parameter λ is adopted, which can be adjusted according to the object appearance variation rate. Extensive experiments on the CVPR2013 tracking benchmark demonstrate the superior performance of the proposed method compared to state-of-the-art tracking algorithms. PMID:27386298

  4. Compression of multiwall microbubbles

    NASA Astrophysics Data System (ADS)

    Lebedeva, Natalia; Moore, Sam; Dobrynin, Andrey; Rubinstein, Michael; Sheiko, Sergei

    2012-02-01

    Optical monitoring of structural transformations and transport processes is prohibited if the objects to be studied are bulky and/or non-transparent. This paper is focused on the development of a microbbuble platform for acoustic imaging of heterogeneous media under harsh environmental conditions including high pressure (<500 atm), temperature (<100 C), and salinity (<10 wt%). We have studied the compression behavior of gas-filled microbubbles composed of multiple layers of surfactants and stabilizers. Upon hydrostatic compression, these bubbles undergo significant (up to 100x) changes in volume, which are completely reversible. Under repeated compression/expansion cycles, the pressure-volume P(V) characteristic of these microbubbles deviate from ideal-gas-law predictions. A theoretical model was developed to explain the observed deviations through contributions of shell elasticity and gas effusion. In addition, some of the microbubbles undergo peculiar buckling/smoothing transitions exhibiting intermittent formation of facetted structures, which suggest a solid-like nature of the pressurized shell. Preliminary studies illustrate that these pressure-resistant microbubbles maintain their mechanical stability and acoustic response at pressures greater than 1000 psi.

  5. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback

    SciTech Connect

    Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

    2007-12-31

    This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when

  6. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  7. 10. DIAMOND MINE YARD FROM THE NORTH SHOWING A COMPRESSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DIAMOND MINE YARD FROM THE NORTH SHOWING A COMPRESSED AIR PIPE AND TRESTLE IN THE LOWER LEFT, AND THE LORRY HOUSE. A PART OF A RETAINING WALL IS VISIBLE ABOVE THE RAILROAD CUT - Butte Mineyards, Diamond Mine, Butte, Silver Bow County, MT

  8. Compressibility and Heating Effects on Pressure Loss and Cooling of a Baffled Cylinder Barrel

    NASA Technical Reports Server (NTRS)

    Goldstein, Arthur W; Ellerbrock, Herman H , Jr

    1944-01-01

    Theoretical investigations have shown that, because air is compressible, the pressure-drop requirements for cooling an air-cooled engine will be much greater at high altitudes and high speeds than at sea level and low speeds. Tests were conducted by the NACA to obtain some experimental confirmation of the effect of air compressibility on cooling and pressure loss of a baffled cylinder barrel and to evaluate various methods of analysis. The results reported in the present paper are regarded as preliminary to tests on single-cylinder and multicylinder engines. Tests were conducted over a wide range of air flows and density altitudes.

  9. Comparative data compression techniques and multi-compression results

    NASA Astrophysics Data System (ADS)

    Hasan, M. R.; Ibrahimy, M. I.; Motakabber, S. M. A.; Ferdaus, M. M.; Khan, M. N. H.

    2013-12-01

    Data compression is very necessary in business data processing, because of the cost savings that it offers and the large volume of data manipulated in many business applications. It is a method or system for transmitting a digital image (i.e., an array of pixels) from a digital data source to a digital data receiver. More the size of the data be smaller, it provides better transmission speed and saves time. In this communication, we always want to transmit data efficiently and noise freely. This paper will provide some compression techniques for lossless text type data compression and comparative result of multiple and single compression, that will help to find out better compression output and to develop compression algorithms.

  10. Compression retaining piston

    SciTech Connect

    Quaglino, A.V. Jr.

    1987-06-16

    A piston apparatus is described for maintaining compression between the piston wall and the cylinder wall, that comprises the following: a generally cylindrical piston body, including: a head portion defining the forward end of the body; and a continuous side wall portion extending rearward from the head portion; a means for lubricating and preventing compression loss between the side wall portion and the cylinder wall, including an annular recessed area in the continuous side wall portion for receiving a quantity of fluid lubricant in fluid engagement between the wall of the recessed and the wall of the cylinder; a first and second resilient, elastomeric, heat resistant rings positioned in grooves along the wall of the continuous side wall portion, above and below the annular recessed area. Each ring engages the cylinder wall to reduce loss of lubricant within the recessed area during operation of the piston; a first pump means for providing fluid lubricant to engine components other than the pistons; and a second pump means provides fluid lubricant to the recessed area in the continuous side wall portion of the piston. The first and second pump means obtains lubricant from a common source, and the second pump means including a flow line supplies oil from a predetermined level above the level of oil provided to the first pump means. This is so that should the oil level to the second pump means fall below the predetermined level, the loss of oil to the recessed area in the continuous side wall portion of the piston would result in loss of compression and shut down of the engine.

  11. International magnetic pulse compression

    SciTech Connect

    Kirbie, H.C.; Newton, M.A.; Siemens, P.D.

    1991-04-01

    Although pulsed-power engineering traditionally has been practiced by a fairly small, close community in the areas of defense and energy research, it is becoming more common in high-power, high-energy commercial pursuits such as material processing and lasers. This paper is a synopsis of the Feb. 12--14, 1990 workshop on magnetic switching as it applies primarily to pulse compression (power transformation). During the course of the Workshop at Granlibakken, a great deal of information was amassed and a keen insight into both the problems and opportunities as to the use of this switching approach was developed. The segmented workshop format proved ideal for identifying key aspects affecting optimum performance in a variety of applications. Individual groups of experts addressed network and system modeling, magnetic materials, power conditioning, core cooling and dielectrics, and finally circuits and application. At the end, they came together to consolidate their input and formulate the workshop's conclusions, identifying roadblocks or suggesting research projects, particularly as they apply to magnetic switching's trump card -- its high-average-power-handling capability (at least on a burst-mode basis). The workshop was especially productive both in the quality and quantity of information transfer in an environment conducive to a free and open exchange of ideas. We will not delve into the organization proper of this meeting, rather we wish to commend to the interested reader this volume, which provides the definitive and most up-to-date compilation on the subject of magnetic pulse compression from underlying principles to current state of the art as well as the prognosis for the future of magnetic pulse compression as a consensus of the workshop's organizers and participants.

  12. International magnetic pulse compression

    NASA Astrophysics Data System (ADS)

    Kirbie, H. C.; Newton, M. A.; Siemens, P. D.

    1991-04-01

    Although pulsed-power engineering traditionally has been practiced by a fairly small, close community in the areas of defense and energy research, it is becoming more common in high-power, high-energy commercial pursuits such as material processing and lasers. This paper is a synopsis of the Feb. 12-14, 1990 workshop on magnetic switching as it applies primarily to pulse compression (power transformation). During the course of the Workshop at Granlibakken, a great deal of information was amassed and a keen insight into both the problems and opportunities as to the use of this switching approach was developed. The segmented workshop format proved ideal for identifying key aspects affecting optimum performance in a variety of applications. Individual groups of experts addressed network and system modeling, magnetic materials, power conditioning, core cooling and dielectrics, and finally circuits and application. At the end, they came together to consolidate their input and formulate the workshop's conclusions, identifying roadblocks or suggesting research projects, particularly as they apply to magnetic switching's trump card - its high-average-power-handling capability (at least on a burst-mode basis). The workshop was especially productive both in the quality and quantity of information transfer in an environment conducive to a free and open exchange of ideas. We will not delve into the organization proper of this meeting, rather we wish to commend to the interested reader this volume, which provides the definitive and most up-to-date compilation on the subject of magnetic pulse compression from underlying principles to current state of the art as well as the prognosis for the future of magnetic pulse compression as a consensus of the workshop's organizers and participants.

  13. Avalanches in Wood Compression

    NASA Astrophysics Data System (ADS)

    Mäkinen, T.; Miksic, A.; Ovaska, M.; Alava, Mikko J.

    2015-07-01

    Wood is a multiscale material exhibiting a complex viscoplastic response. We study avalanches in small wood samples in compression. "Woodquakes" measured by acoustic emission are surprisingly similar to earthquakes and crackling noise in rocks and laboratory tests on brittle materials. Both the distributions of event energies and of waiting (silent) times follow power laws. The stress-strain response exhibits clear signatures of localization of deformation to "weak spots" or softwood layers, as identified using digital image correlation. Even though material structure-dependent localization takes place, the avalanche behavior remains scale-free.

  14. Avalanches in Wood Compression.

    PubMed

    Mäkinen, T; Miksic, A; Ovaska, M; Alava, Mikko J

    2015-07-31

    Wood is a multiscale material exhibiting a complex viscoplastic response. We study avalanches in small wood samples in compression. "Woodquakes" measured by acoustic emission are surprisingly similar to earthquakes and crackling noise in rocks and laboratory tests on brittle materials. Both the distributions of event energies and of waiting (silent) times follow power laws. The stress-strain response exhibits clear signatures of localization of deformation to "weak spots" or softwood layers, as identified using digital image correlation. Even though material structure-dependent localization takes place, the avalanche behavior remains scale-free.

  15. Sampling video compression system

    NASA Technical Reports Server (NTRS)

    Matsumoto, Y.; Lum, H. (Inventor)

    1977-01-01

    A system for transmitting video signal of compressed bandwidth is described. The transmitting station is provided with circuitry for dividing a picture to be transmitted into a plurality of blocks containing a checkerboard pattern of picture elements. Video signals along corresponding diagonal rows of picture elements in the respective blocks are regularly sampled. A transmitter responsive to the output of the sampling circuitry is included for transmitting the sampled video signals of one frame at a reduced bandwidth over a communication channel. The receiving station is provided with a frame memory for temporarily storing transmitted video signals of one frame at the original high bandwidth frequency.

  16. Avalanches in Wood Compression.

    PubMed

    Mäkinen, T; Miksic, A; Ovaska, M; Alava, Mikko J

    2015-07-31

    Wood is a multiscale material exhibiting a complex viscoplastic response. We study avalanches in small wood samples in compression. "Woodquakes" measured by acoustic emission are surprisingly similar to earthquakes and crackling noise in rocks and laboratory tests on brittle materials. Both the distributions of event energies and of waiting (silent) times follow power laws. The stress-strain response exhibits clear signatures of localization of deformation to "weak spots" or softwood layers, as identified using digital image correlation. Even though material structure-dependent localization takes place, the avalanche behavior remains scale-free. PMID:26274428

  17. Compression ratio effect on methane HCCI combustion

    SciTech Connect

    Aceves, S. M.; Pitz, W.; Smith, J. R.; Westbrook, C.

    1998-09-29

    We have used the HCT (Hydrodynamics, Chemistry and Transport) chemical kinetics code to simulate HCCI (homogeneous charge compression ignition) combustion of methane-air mixtures. HCT is applied to explore the ignition timing, bum duration, NOx production, gross indicated efficiency and gross IMEP of a supercharged engine (3 atm. Intake pressure) with 14:1, 16:l and 18:1 compression ratios at 1200 rpm. HCT has been modified to incorporate the effect of heat transfer and to calculate the temperature that results from mixing the recycled exhaust with the fresh mixture. This study uses a single control volume reaction zone that varies as a function of crank angle. The ignition process is controlled by adjusting the intake equivalence ratio and the residual gas trapping (RGT). RGT is internal exhaust gas recirculation which recycles both thermal energy and combustion product species. Adjustment of equivalence ratio and RGT is accomplished by varying the timing of the exhaust valve closure in either 2-stroke or 4-stroke engines. Inlet manifold temperature is held constant at 300 K. Results show that, for each compression ratio, there is a range of operational conditions that show promise of achieving the control necessary to vary power output while keeping indicated efficiency above 50% and NOx levels below 100 ppm. HCT results are also compared with a set of recent experimental data for natural gas.

  18. 29 CFR 1917.155 - Air receivers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Air receivers. 1917.155 Section 1917.155 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.155 Air receivers. (a) Application. This section applies to compressed...

  19. A Cartesian scheme for compressible multimaterial models in 3D

    NASA Astrophysics Data System (ADS)

    de Brauer, Alexia; Iollo, Angelo; Milcent, Thomas

    2016-05-01

    We model the three-dimensional interaction of compressible materials separated by sharp interfaces. We simulate fluid and hyperelastic solid flows in a fully Eulerian framework. The scheme is the same for all materials and can handle large deformations and frictionless contacts. Necessary conditions for hyperbolicity of the hyperelastic neohookean model in three dimensions are proved thanks to an explicit computation of the characteristic speeds. We present stiff multimaterial interactions including air-helium and water-air shock interactions, projectile-shield impacts in air and rebounds.

  20. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P.; Kieser, Andrew J.; Rodman, Anthony; Liechty, Michael P.; Hergart, Carl-Anders; Hardy, William L.

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  1. Lossless image compression technique for infrared thermal images

    NASA Astrophysics Data System (ADS)

    Allred, Lloyd G.; Kelly, Gary E.

    1992-07-01

    The authors have achieved a 6.5-to-one image compression technique for thermal images (640 X 480, 1024 colors deep). Using a combination of new and more traditional techniques, the combined algorithm is computationally simple, enabling `on-the-fly' compression and storage of an image in less time than it takes to transcribe the original image to or from a magnetic medium. Similar compression has been achieved on visual images by virtue of the feature that all optical devices possess a modulation transfer function. As a consequence of this property, the difference in color between adjacent pixels is a usually small number, often between -1 and +1 graduations for a meaningful color scheme. By differentiating adjacent rows and columns, the original image can be expressed in terms of these small numbers. A simple compression algorithm for these small numbers achieves a four to one image compression. By piggy-backing this technique with a LZW compression or a fixed Huffman coding, an additional 35% image compression is obtained, resulting in a 6.5-to-one lossless image compression. Because traditional noise-removal operators tend to minimize the color graduations between adjacent pixels, an additional 20% reduction can be obtained by preprocessing the image with a noise-removal operator. Although noise removal operators are not lossless, their application may prove crucial in applications requiring high compression, such as the storage or transmission of a large number or images. The authors are working with the Air Force Photonics Technology Application Program Management office to apply this technique to transmission of optical images from satellites.

  2. Perceptually Lossless Wavelet Compression

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Yang, Gloria Y.; Solomon, Joshua A.; Villasenor, John

    1996-01-01

    The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter, which we call DWT uniform quantization noise. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2(exp -1), where r is display visual resolution in pixels/degree, and L is the wavelet level. Amplitude thresholds increase rapidly with spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from low-pass to horizontal/vertical to diagonal. We propose a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a 'perceptually lossless' quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  3. Compressive sensing in medical imaging.

    PubMed

    Graff, Christian G; Sidky, Emil Y

    2015-03-10

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.

  4. Energy transfer in compressible turbulence

    NASA Technical Reports Server (NTRS)

    Bataille, Francoise; Zhou, YE; Bertoglio, Jean-Pierre

    1995-01-01

    This letter investigates the compressible energy transfer process. We extend a methodology developed originally for incompressible turbulence and use databases from numerical simulations of a weak compressible turbulence based on Eddy-Damped-Quasi-Normal-Markovian (EDQNM) closure. In order to analyze the compressible mode directly, the well known Helmholtz decomposition is used. While the compressible component has very little influence on the solenoidal part, we found that almost all of the compressible turbulence energy is received from its solenoidal counterpart. We focus on the most fundamental building block of the energy transfer process, the triadic interactions. This analysis leads us to conclude that, at low turbulent Mach number, the compressible energy transfer process is dominated by a local radiative transfer (absorption) in both inertial and energy containing ranges.

  5. Recent progress in compressible turbulence

    NASA Astrophysics Data System (ADS)

    Chen, Shiyi; Xia, Zhenhua; Wang, Jianchun; Yang, Yantao

    2015-06-01

    In this paper, we review some recent studies on compressible turbulence conducted by the authors' group, which include fundamental studies on compressible isotropic turbulence (CIT) and applied studies on developing a constrained large eddy simulation (CLES) for wall-bounded turbulence. In the first part, we begin with a newly proposed hybrid compact-weighted essentially nonoscillatory (WENO) scheme for a CIT simulation that has been used to construct a systematic database of CIT. Using this database various fundamental properties of compressible turbulence have been examined, including the statistics and scaling of compressible modes, the shocklet-turbulence interaction, the effect of local compressibility on small scales, the kinetic energy cascade, and some preliminary results from a Lagrangian point of view. In the second part, the idea and formulas of the CLES are reviewed, followed by the validations of CLES and some applications in compressible engineering problems.

  6. libpolycomp: Compression/decompression library

    NASA Astrophysics Data System (ADS)

    Tomasi, Maurizio

    2016-04-01

    Libpolycomp compresses and decompresses one-dimensional streams of numbers by means of several algorithms. It is well-suited for time-ordered data acquired by astronomical instruments or simulations. One of the algorithms, called "polynomial compression", combines two widely-used ideas (namely, polynomial approximation and filtering of Fourier series) to achieve substantial compression ratios for datasets characterized by smoothness and lack of noise. Notable examples are the ephemerides of astronomical objects and the pointing information of astronomical telescopes. Other algorithms implemented in this C library are well known and already widely used, e.g., RLE, quantization, deflate (via libz) and Burrows-Wheeler transform (via libbzip2). Libpolycomp can compress the timelines acquired by the Planck/LFI instrument with an overall compression ratio of ~9, while other widely known programs (gzip, bzip2) reach compression ratios less than 1.5.

  7. Compressive sensing in medical imaging

    PubMed Central

    Graff, Christian G.; Sidky, Emil Y.

    2015-01-01

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed. PMID:25968400

  8. ECG data compression by modeling.

    PubMed Central

    Madhukar, B.; Murthy, I. S.

    1992-01-01

    This paper presents a novel algorithm for data compression of single lead Electrocardiogram (ECG) data. The method is based on Parametric modeling of the Discrete Cosine Transformed ECG signal. Improved high frequency reconstruction is achieved by separately modeling the low and the high frequency regions of the transformed signal. Differential Pulse Code Modulation is applied on the model parameters to obtain a further increase in the compression. Compression ratios up to 1:40 were achieved without significant distortion. PMID:1482940

  9. Shock compression of precompressed deuterium

    SciTech Connect

    Armstrong, M R; Crowhurst, J C; Zaug, J M; Bastea, S; Goncharov, A F; Militzer, B

    2011-07-31

    Here we report quasi-isentropic dynamic compression and thermodynamic characterization of solid, precompressed deuterium over an ultrafast time scale (< 100 ps) and a microscopic length scale (< 1 {micro}m). We further report a fast transition in shock wave compressed solid deuterium that is consistent with the ramp to shock transition, with a time scale of less than 10 ps. These results suggest that high-density dynamic compression of hydrogen may be possible on microscopic length scales.

  10. Simulation of a hydraulic air ingestion process

    SciTech Connect

    Chen, F.C.; Golshani, A.

    1981-01-01

    A hydraulic air ingestion process which requires no mechanical moving parts to accomplish air compression but a downward flow of water and operates at nearly isothermal compression mode can be a viable alternative for the noncondensibles disposal of an OTEC open-cycle power system. A computer simulation of the process is presented based on one-dimensional lumped parameter analysis. Results of laboratory-scale experiments were obtained which compared favorably with the analytical results. A sensitivity study which depicts the effects of various parameters upon the applied head of the hydraulic air ingestion process is also presented.

  11. Magnetic compression laser driving circuit

    DOEpatents

    Ball, Don G.; Birx, Dan; Cook, Edward G.

    1993-01-01

    A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 Kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 Kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.

  12. Magnetic compression laser driving circuit

    DOEpatents

    Ball, D.G.; Birx, D.; Cook, E.G.

    1993-01-05

    A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.

  13. Data compression for sequencing data

    PubMed Central

    2013-01-01

    Post-Sanger sequencing methods produce tons of data, and there is a general agreement that the challenge to store and process them must be addressed with data compression. In this review we first answer the question “why compression” in a quantitative manner. Then we also answer the questions “what” and “how”, by sketching the fundamental compression ideas, describing the main sequencing data types and formats, and comparing the specialized compression algorithms and tools. Finally, we go back to the question “why compression” and give other, perhaps surprising answers, demonstrating the pervasiveness of data compression techniques in computational biology. PMID:24252160

  14. Compressive sensing of sparse tensors.

    PubMed

    Friedland, Shmuel; Li, Qun; Schonfeld, Dan

    2014-10-01

    Compressive sensing (CS) has triggered an enormous research activity since its first appearance. CS exploits the signal's sparsity or compressibility in a particular domain and integrates data compression and acquisition, thus allowing exact reconstruction through relatively few nonadaptive linear measurements. While conventional CS theory relies on data representation in the form of vectors, many data types in various applications, such as color imaging, video sequences, and multisensor networks, are intrinsically represented by higher order tensors. Application of CS to higher order data representation is typically performed by conversion of the data to very long vectors that must be measured using very large sampling matrices, thus imposing a huge computational and memory burden. In this paper, we propose generalized tensor compressive sensing (GTCS)-a unified framework for CS of higher order tensors, which preserves the intrinsic structure of tensor data with reduced computational complexity at reconstruction. GTCS offers an efficient means for representation of multidimensional data by providing simultaneous acquisition and compression from all tensor modes. In addition, we propound two reconstruction procedures, a serial method and a parallelizable method. We then compare the performance of the proposed method with Kronecker compressive sensing (KCS) and multiway compressive sensing (MWCS). We demonstrate experimentally that GTCS outperforms KCS and MWCS in terms of both reconstruction accuracy (within a range of compression ratios) and processing speed. The major disadvantage of our methods (and of MWCS as well) is that the compression ratios may be worse than that offered by KCS.

  15. Engine powered auxiliary air supply system

    SciTech Connect

    Mc Lean, J.R.

    1987-01-27

    This patent describes an auxiliary air supply system comprising: an engine; at least one exhaust driven turbocharger including a turbine and a compressor associated therewith for supply of compressed air to the engine; a low pressure compressor including means for powering the low pressure compressor utilizing the engine exhaust gas and flow connected to receive a portion of the compressed air exiting the engine turbocharger compressor; a high pressure compressor including means for powering the high pressure compressor utilizing the engine exhaust gas and flow connected to receive the compressed air exiting the low pressure compressor; and means for directing engine exhaust gases between at least one engine turbocharger and the means for powering the low and high pressure compressors.

  16. Compressibility of Nanocrystalline Forsterite

    SciTech Connect

    Couvy, H.; Chen, J; Drozd, V

    2010-01-01

    We established an equation of state for nanocrystalline forsterite using multi-anvil press and diamond anvil cell. Comparative high-pressure and high-temperature experiments have been performed up to 9.6 GPa and 1,300 C. We found that nanocrystalline forsterite is more compressible than macro-powder forsterite. The bulk modulus of nanocrystalline forsterite is equal to 123.3 ({+-}3.4) GPa whereas the bulk modulus of macro-powder forsterite is equal to 129.6 ({+-}3.2) GPa. This difference is attributed to a weakening of the elastic properties of grain boundary and triple junction and their significant contribution in nanocrystalline sample compare to the bulk counterpart. The bulk modulus at zero pressure of forsterite grain boundary was determined to be 83.5 GPa.

  17. Compressively sensed complex networks.

    SciTech Connect

    Dunlavy, Daniel M.; Ray, Jaideep; Pinar, Ali

    2010-07-01

    The aim of this project is to develop low dimension parametric (deterministic) models of complex networks, to use compressive sensing (CS) and multiscale analysis to do so and to exploit the structure of complex networks (some are self-similar under coarsening). CS provides a new way of sampling and reconstructing networks. The approach is based on multiresolution decomposition of the adjacency matrix and its efficient sampling. It requires preprocessing of the adjacency matrix to make it 'blocky' which is the biggest (combinatorial) algorithm challenge. Current CS reconstruction algorithm makes no use of the structure of a graph, its very general (and so not very efficient/customized). Other model-based CS techniques exist, but not yet adapted to networks. Obvious starting point for future work is to increase the efficiency of reconstruction.

  18. Vapor compression distillation module

    NASA Technical Reports Server (NTRS)

    Nuccio, P. P.

    1975-01-01

    A Vapor Compression Distillation (VCD) module was developed and evaluated as part of a Space Station Prototype (SSP) environmental control and life support system. The VCD module includes the waste tankage, pumps, post-treatment cells, automatic controls and fault detection instrumentation. Development problems were encountered with two components: the liquid pumps, and the waste tank and quantity gauge. Peristaltic pumps were selected instead of gear pumps, and a sub-program of materials and design optimization was undertaken leading to a projected life greater than 10,000 hours of continuous operation. A bladder tank was designed and built to contain the waste liquids and deliver it to the processor. A detrimental pressure pattern imposed upon the bladder by a force-operated quantity gauge was corrected by rearranging the force application, and design goals were achieved. System testing has demonstrated that all performance goals have been fulfilled.

  19. Compressed quantum simulation

    SciTech Connect

    Kraus, B.

    2014-12-04

    Here, I summarize the results presented in B. Kraus, Phys. Rev. Lett. 107, 250503 (2011). Recently, it has been shown that certain circuits, the so-called match gate circuits, can be compressed to an exponentially smaller universal quantum computation. We use this result to demonstrate that the simulation of a 1-D Ising chain consisting of n qubits can be performed on a universal quantum computer running on only log(n) qubits. We show how the adiabatic evolution can be simulated on this exponentially smaller system and how the magnetization can be measured. Since the Ising model displays a quantum phase transition, this result implies that a quantum phase transition of a very large system can be observed with current technology.

  20. Population attribute compression

    DOEpatents

    White, James M.; Faber, Vance; Saltzman, Jeffrey S.

    1995-01-01

    An image population having a large number of attributes is processed to form a display population with a predetermined smaller number of attributes that represent the larger number of attributes. In a particular application, the color values in an image are compressed for storage in a discrete look-up table (LUT). Color space containing the LUT color values is successively subdivided into smaller volumes until a plurality of volumes are formed, each having no more than a preselected maximum number of color values. Image pixel color values can then be rapidly placed in a volume with only a relatively few LUT values from which a nearest neighbor is selected. Image color values are assigned 8 bit pointers to their closest LUT value whereby data processing requires only the 8 bit pointer value to provide 24 bit color values from the LUT.

  1. Compressed Wavefront Sensing

    PubMed Central

    Polans, James; McNabb, Ryan P.; Izatt, Joseph A.; Farsiu, Sina

    2014-01-01

    We report on an algorithm for fast wavefront sensing that incorporates sparse representation for the first time in practice. The partial derivatives of optical wavefronts were sampled sparsely with a Shack-Hartmann wavefront sensor (SHWFS) by randomly subsampling the original SHWFS data to as little as 5%. Reconstruction was performed by a sparse representation algorithm that utilized the Zernike basis. We name this method SPARZER. Experiments on real and simulated data attest to the accuracy of the proposed techniques as compared to traditional sampling and reconstruction methods. We have made the corresponding data set and software freely available online. Compressed wavefront sensing offers the potential to increase the speed of wavefront acquisition and to defray the cost of SHWFS devices. PMID:24690703

  2. Compressive Network Analysis

    PubMed Central

    Jiang, Xiaoye; Yao, Yuan; Liu, Han; Guibas, Leonidas

    2014-01-01

    Modern data acquisition routinely produces massive amounts of network data. Though many methods and models have been proposed to analyze such data, the research of network data is largely disconnected with the classical theory of statistical learning and signal processing. In this paper, we present a new framework for modeling network data, which connects two seemingly different areas: network data analysis and compressed sensing. From a nonparametric perspective, we model an observed network using a large dictionary. In particular, we consider the network clique detection problem and show connections between our formulation with a new algebraic tool, namely Randon basis pursuit in homogeneous spaces. Such a connection allows us to identify rigorous recovery conditions for clique detection problems. Though this paper is mainly conceptual, we also develop practical approximation algorithms for solving empirical problems and demonstrate their usefulness on real-world datasets. PMID:25620806

  3. Survey of Header Compression Techniques

    NASA Technical Reports Server (NTRS)

    Ishac, Joseph

    2001-01-01

    This report provides a summary of several different header compression techniques. The different techniques included are: (1) Van Jacobson's header compression (RFC 1144); (2) SCPS (Space Communications Protocol Standards) header compression (SCPS-TP, SCPS-NP); (3) Robust header compression (ROHC); and (4) The header compression techniques in RFC2507 and RFC2508. The methodology for compression and error correction for these schemes are described in the remainder of this document. All of the header compression schemes support compression over simplex links, provided that the end receiver has some means of sending data back to the sender. However, if that return path does not exist, then neither Van Jacobson's nor SCPS can be used, since both rely on TCP (Transmission Control Protocol). In addition, under link conditions of low delay and low error, all of the schemes perform as expected. However, based on the methodology of the schemes, each scheme is likely to behave differently as conditions degrade. Van Jacobson's header compression relies heavily on the TCP retransmission timer and would suffer an increase in loss propagation should the link possess a high delay and/or bit error rate (BER). The SCPS header compression scheme protects against high delay environments by avoiding delta encoding between packets. Thus, loss propagation is avoided. However, SCPS is still affected by an increased BER (bit-error-rate) since the lack of delta encoding results in larger header sizes. Next, the schemes found in RFC2507 and RFC2508 perform well for non-TCP connections in poor conditions. RFC2507 performance with TCP connections is improved by various techniques over Van Jacobson's, but still suffers a performance hit with poor link properties. Also, RFC2507 offers the ability to send TCP data without delta encoding, similar to what SCPS offers. ROHC is similar to the previous two schemes, but adds additional CRCs (cyclic redundancy check) into headers and improves

  4. Adaptive compressive sensing camera

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Hsu, Ming K.; Cha, Jae; Iwamura, Tomo; Landa, Joseph; Nguyen, Charles; Szu, Harold

    2013-05-01

    We have embedded Adaptive Compressive Sensing (ACS) algorithm on Charge-Coupled-Device (CCD) camera based on the simplest concept that each pixel is a charge bucket, and the charges comes from Einstein photoelectric conversion effect. Applying the manufactory design principle, we only allow altering each working component at a minimum one step. We then simulated what would be such a camera can do for real world persistent surveillance taking into account of diurnal, all weather, and seasonal variations. The data storage has saved immensely, and the order of magnitude of saving is inversely proportional to target angular speed. We did design two new components of CCD camera. Due to the matured CMOS (Complementary metal-oxide-semiconductor) technology, the on-chip Sample and Hold (SAH) circuitry can be designed for a dual Photon Detector (PD) analog circuitry for changedetection that predicts skipping or going forward at a sufficient sampling frame rate. For an admitted frame, there is a purely random sparse matrix [Φ] which is implemented at each bucket pixel level the charge transport bias voltage toward its neighborhood buckets or not, and if not, it goes to the ground drainage. Since the snapshot image is not a video, we could not apply the usual MPEG video compression and Hoffman entropy codec as well as powerful WaveNet Wrapper on sensor level. We shall compare (i) Pre-Processing FFT and a threshold of significant Fourier mode components and inverse FFT to check PSNR; (ii) Post-Processing image recovery will be selectively done by CDT&D adaptive version of linear programming at L1 minimization and L2 similarity. For (ii) we need to determine in new frames selection by SAH circuitry (i) the degree of information (d.o.i) K(t) dictates the purely random linear sparse combination of measurement data a la [Φ]M,N M(t) = K(t) Log N(t).

  5. Hydrogen as an Auxiliary Fuel in Compression-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Foster, H

    1936-01-01

    An investigation was made to determine whether a sufficient amount of hydrogen could be efficiently burned in a compression-ignition engine to compensate for the increase of lift of an airship due to the consumption of the fuel oil. The performance of a single-cylinder four-stroke-cycle compression-ignition engine operating on fuel oil alone was compared with its performance when various quantities of hydrogen were inducted with the inlet air. Engine-performance data, indicator cards, and exhaust-gas samples were obtained for each change in engine-operating conditions.

  6. Air Abrasion

    MedlinePlus

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  7. Oxygen-enriched air for MHD power plants

    NASA Technical Reports Server (NTRS)

    Ebeling, R. W., Jr.; Cutting, J. C.; Burkhart, J. A.

    1979-01-01

    Cryogenic air-separation process cycle variations and compression schemes are examined. They are designed to minimize net system power required to supply pressurized, oxygen-enriched air to the combustor of an MHD power plant with a coal input of 2000 MWt. Power requirements and capital costs for oxygen production and enriched air compression for enrichment levels from 13 to 50% are determined. The results are presented as curves from which total compression power requirements can be estimated for any desired enrichment level at any delivery pressure. It is found that oxygen enrichment and recuperative heating of MHD combustor air to 1400 F yields near-term power plant efficiencies in excess of 45%. A minimum power compression system requires 167 MW to supply 330 lb of oxygen per second and costs roughly 100 million dollars. Preliminary studies show MHD/steam power plants to be competitive with plants using high-temperature air preheaters burning gas.

  8. Compression failure of composite laminates

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.

    1983-01-01

    This presentation attempts to characterize the compressive behavior of Hercules AS-1/3501-6 graphite-epoxy composite. The effect of varying specimen geometry on test results is examined. The transition region is determined between buckling and compressive failure. Failure modes are defined and analytical models to describe these modes are presented.

  9. Application specific compression : final report.

    SciTech Connect

    Melgaard, David Kennett; Byrne, Raymond Harry; Myers, Daniel S.; Harrison, Carol D.; Lee, David S.; Lewis, Phillip J.; Carlson, Jeffrey J.

    2008-12-01

    With the continuing development of more capable data gathering sensors, comes an increased demand on the bandwidth for transmitting larger quantities of data. To help counteract that trend, a study was undertaken to determine appropriate lossy data compression strategies for minimizing their impact on target detection and characterization. The survey of current compression techniques led us to the conclusion that wavelet compression was well suited for this purpose. Wavelet analysis essentially applies a low-pass and high-pass filter to the data, converting the data into the related coefficients that maintain spatial information as well as frequency information. Wavelet compression is achieved by zeroing the coefficients that pertain to the noise in the signal, i.e. the high frequency, low amplitude portion. This approach is well suited for our goal because it reduces the noise in the signal with only minimal impact on the larger, lower frequency target signatures. The resulting coefficients can then be encoded using lossless techniques with higher compression levels because of the lower entropy and significant number of zeros. No significant signal degradation or difficulties in target characterization or detection were observed or measured when wavelet compression was applied to simulated and real data, even when over 80% of the coefficients were zeroed. While the exact level of compression will be data set dependent, for the data sets we studied, compression factors over 10 were found to be satisfactory where conventional lossless techniques achieved levels of less than 3.

  10. Streaming Compression of Hexahedral Meshes

    SciTech Connect

    Isenburg, M; Courbet, C

    2010-02-03

    We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

  11. Pressure Oscillations in Adiabatic Compression

    ERIC Educational Resources Information Center

    Stout, Roland

    2011-01-01

    After finding Moloney and McGarvey's modified adiabatic compression apparatus, I decided to insert this experiment into my physical chemistry laboratory at the last minute, replacing a problematic experiment. With insufficient time to build the apparatus, we placed a bottle between two thick textbooks and compressed it with a third textbook forced…

  12. Digital compression algorithms for HDTV transmission

    NASA Technical Reports Server (NTRS)

    Adkins, Kenneth C.; Shalkhauser, Mary JO; Bibyk, Steven B.

    1990-01-01

    Digital compression of video images is a possible avenue for high definition television (HDTV) transmission. Compression needs to be optimized while picture quality remains high. Two techniques for compression the digital images are explained and comparisons are drawn between the human vision system and artificial compression techniques. Suggestions for improving compression algorithms through the use of neural and analog circuitry are given.

  13. Analytical model for ramp compression

    NASA Astrophysics Data System (ADS)

    Xue, Quanxi; Jiang, Shaoen; Wang, Zhebin; Wang, Feng; Hu, Yun; Ding, Yongkun

    2016-08-01

    An analytical ramp compression model for condensed matter, which can provide explicit solutions for isentropic compression flow fields, is reported. A ramp compression experiment can be easily designed according to the capability of the loading source using this model. Specifically, important parameters, such as the maximum isentropic region width, material properties, profile of the pressure pulse, and the pressure pulse duration can be reasonably allocated or chosen. To demonstrate and study this model, laser-direct-driven ramp compression experiments and code simulation are performed successively, and the factors influencing the accuracy of the model are studied. The application and simulation show that this model can be used as guidance in the design of a ramp compression experiment. However, it is verified that further optimization work is required for a precise experimental design.

  14. Compressive strength of carbon fibers

    SciTech Connect

    Prandy, J.M. ); Hahn, H.T. )

    1991-01-01

    Most composites are weaker in compression than in tension, which is due to the poor compressive strength of the load bearing fibers. The present paper discusses the compressive strengths and failure modes of 11 different carbon fibers: PAN-AS1, AS4, IM6, IM7, T700, T300, GY-30, pitch-75, ultra high modulus (UHM), high modulus (HM), and high strength (HS). The compressive strength was determined by embedding a fiber bundle in a transparent epoxy matrix and testing in compression. The resin allows for the containment and observation of failure during and after testing while also providing lateral support to the fibers. Scanning electron microscopy (SEM) was used to determine the global failure modes of the fibers.

  15. Mid-term Stability of Novel Mica-based Compressive Seals for Solid Oxide Fuel Cells

    SciTech Connect

    Chou, Y S.; Stevenson, Jeffry W.

    2003-04-10

    A novel mica-based hybrid compressive seal was examined the stability at elevated temperatures under the compressive stress. The hybrid mica compressive seals were composed of the Muscovite mica and two compliant inter-layers and were reported earlier to have ultra-low leak rates at 800 C. In this paper, we examined the mid-term ({approx}350-700 hours) stability of the mica-based compressive seals with three different inter-layers: a low melting borosilicate glass, a glass ceramics, and a metallic material. The 800 C leak test results showed excellent stability for the three different inter-layers in air at a compressive stress of 100 psi that the leak rates remained almost unchanged during the test. Microstructure characterization of the interface showed very limited interfacial reaction or glass penetration at the 8YSZ substrate interface. The results clearly demonstrate the applicability of the mica-based compressive seals for solid oxide fuel cells.

  16. An ocular compression device for reduction of elevated post anesthetic intraocular pressure.

    PubMed

    S P, Preejith; Sivaprakasam, Mohanasankar; Venkatakrishnan, Jaichandran

    2014-01-01

    Rise in Intra Ocular Pressure (IOP), after administration of regional ophthalmic anesthesia for surgery, is a commonly observed clinical phenomenon. Rise in IOP increases risk of retinal ischemia and leads to surgical complications. The current clinical practice for reduction of IOP, after delivery of local anesthesia, is manually administered digital compression. The highly subjective nature of manual compression, results in unknown duration and magnitude of the pressure applied, thus limiting the clinical effectiveness of the procedure. The work presented here addresses the need for a device that delivers all the benefits of digital compression, while eliminating the uncertainty and risks involved. Design, development and clinical validation of an air pressure based compression device have been presented in this paper. This device makes the compression procedure safe and reliable by quantifying all compression parameters applied and considering safety limits for individual subjects. PMID:25571070

  17. Compressive sensing exploiting wavelet-domain dependencies for ECG compression

    NASA Astrophysics Data System (ADS)

    Polania, Luisa F.; Carrillo, Rafael E.; Blanco-Velasco, Manuel; Barner, Kenneth E.

    2012-06-01

    Compressive sensing (CS) is an emerging signal processing paradigm that enables sub-Nyquist sampling of sparse signals. Extensive previous work has exploited the sparse representation of ECG signals in compression applications. In this paper, we propose the use of wavelet domain dependencies to further reduce the number of samples in compressive sensing-based ECG compression while decreasing the computational complexity. R wave events manifest themselves as chains of large coefficients propagating across scales to form a connected subtree of the wavelet coefficient tree. We show that the incorporation of this connectedness as additional prior information into a modified version of the CoSaMP algorithm can significantly reduce the required number of samples to achieve good quality in the reconstruction. This approach also allows more control over the ECG signal reconstruction, in particular, the QRS complex, which is typically distorted when prior information is not included in the recovery. The compression algorithm was tested upon records selected from the MIT-BIH arrhythmia database. Simulation results show that the proposed algorithm leads to high compression ratios associated with low distortion levels relative to state-of-the-art compression algorithms.

  18. 30 CFR 57.13011 - Air receiver tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exceeding the maximum allowable working pressure in a receiver tank by not more than 10 percent. Air... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air receiver tanks. 57.13011 Section 57.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air...

  19. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air...

  20. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air...

  1. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air...

  2. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.414 Air...

  3. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air...

  4. 21 CFR 868.6250 - Portable air compressor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e.g., to drive ventilators and other respiratory devices. (b) Classification. Class II...

  5. The New Interpretation of the Laws of Air Resistance

    NASA Technical Reports Server (NTRS)

    Prandtl, L

    1923-01-01

    A closer examination of Newton's formula for air resistance shows that it is well to consider the air as an ordinary fluid, and, indeed for most of the velocities considered, as a non-compressible fluid, so long as the dimensions of the moving body are large in comparison with the mean free path of the particles of air.

  6. Compressive Sensing for Quantum Imaging

    NASA Astrophysics Data System (ADS)

    Howland, Gregory A.

    This thesis describes the application of compressive sensing to several challenging problems in quantum imaging with practical and fundamental implications. Compressive sensing is a measurement technique that compresses a signal during measurement such that it can be dramatically undersampled. Compressive sensing has been shown to be an extremely efficient measurement technique for imaging, particularly when detector arrays are not available. The thesis first reviews compressive sensing through the lens of quantum imaging and quantum measurement. Four important applications and their corresponding experiments are then described in detail. The first application is a compressive sensing, photon-counting lidar system. A novel depth mapping technique that uses standard, linear compressive sensing is described. Depth maps up to 256 x 256 pixel transverse resolution are recovered with depth resolution less than 2.54 cm. The first three-dimensional, photon counting video is recorded at 32 x 32 pixel resolution and 14 frames-per-second. The second application is the use of compressive sensing for complementary imaging---simultaneously imaging the transverse-position and transverse-momentum distributions of optical photons. This is accomplished by taking random, partial projections of position followed by imaging the momentum distribution on a cooled CCD camera. The projections are shown to not significantly perturb the photons' momenta while allowing high resolution position images to be reconstructed using compressive sensing. A variety of objects and their diffraction patterns are imaged including the double slit, triple slit, alphanumeric characters, and the University of Rochester logo. The third application is the use of compressive sensing to characterize spatial entanglement of photon pairs produced by spontaneous parametric downconversion. The technique gives a theoretical speedup N2/log N for N-dimensional entanglement over the standard raster scanning technique

  7. Variable compression ratio control

    SciTech Connect

    Johnson, K.A.

    1988-04-19

    In a four cycle engine that includes a crankshaft having a plural number of main shaft sections defining the crankshaft rotational axis and a plural number of crank arms defining orbital shaft sections, a plural number of combustion cylinders, a movable piston within each cylinder, each cylinder and its associated piston defining a combustion chamber, a connecting rod connecting each piston to an orbital shaft section of the crankshaft, and a plural number of stationary support walls spaced along the crankshaft axis for absorbing crankshaft forces: the improvement is described comprising means for adjustably supporting the crankshaft on the stationary walls such that the crankshaft rotational axis is adjustable along the piston-cylinder axis for the purpose of varying a resulting engine compression ratio; the adjustable support means comprising a circular cavity in each stationary wall. A circular disk swivably is seated in each cavity, each circular disk having a circular opening therethrough eccentric to the disk center. The crankshaft is arranged so that respective ones of its main shaft sections are located within respective ones of the circular openings; means for rotating each circular disk around its center so that the main shaft sections of the crankshaft are adjusted toward and away from the combustion chamber; a pinion gear on an output end of the crankshaft in axial alignment with and positioned beyond the respective ones of the main shaft sections, and a rotary output gear located about and engaged with teeth extending from the pinion gear.

  8. Compression relief engine brake

    SciTech Connect

    Meneely, V.A.

    1987-10-06

    A compression relief brake is described for four cycle internal-combustion engines, comprising: a pressurized oil supply; means for selectively pressurizing a hydraulic circuit with oil from the oil supply; a master piston and cylinder communicating with a slave piston and cylinder via the hydraulic circuit; an engine exhaust valve mechanically coupled to the engine and timed to open during the exhaust cycle of the engine the exhaust valve coupled to the slave piston. The exhaust valve is spring-based in a closed state to contact a valve seat; a sleeve frictionally and slidably disposed within a cavity defined by the slave piston which cavity communicates with the hydraulic circuit. When the hydraulic circuit is selectively pressurized and the engine is operating the sleeve entraps an incompressible volume of oil within the cavity to generate a displacement of the slave piston within the slave cylinder, whereby a first gap is maintained between the exhaust valve and its associated seat; and means for reciprocally activating the master piston for increasing the pressure within the previously pressurized hydraulic circuit during at least a portion of the expansion cycle of the engine whereby a second gap is reciprocally maintained between the exhaust valve and its associated seat.

  9. Determination of a vapor compression refrigeration system refrigerant charge

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Xin; Dang, Chao-Bin

    1995-09-01

    A physical model is established in this paper to describe the heat transfer and two phase flow of a refrigerant in the evaporator and condenser of a vapor compression refrigeration system. The model is then used to determine the refrigerant charge in vapor compression units. The model is used for a sensitivity analysis to determine the effect that varing design parameters on the refrigerant charge. The model is also used to evaluate the effect of refrigerant charge and the thermal physical properties on the refrigeration cycle. The predicted value of the refrigerant charge and experimental data agree well. The model and the method presented in this paper could be used to design vapour compression units such as domestic refrigerators and air conditioners.

  10. Advances in compressible turbulent mixing

    SciTech Connect

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

  11. Compression Pylon Reduces Interference Drag

    NASA Technical Reports Server (NTRS)

    Patterson, James C., Jr.; Carlson, John R.

    1989-01-01

    New design reduces total drag by 4 percent. Pylon reduces fuselage/wing/pylon/nacelle-channel compressibility losses without creating additional drag associated with other areas of pylon. Minimum cross-sectional area of channel occurs at trailing edge of wing. Velocity of flow in channel always nearly subsonic, reducing compressibility losses associated with supersonic flow. Flow goes past trailing edge before returning to ambient conditions, resulting in no additional drag to aircraft. Designed to compress flow beneath wing by reducing velocity in this channel, thereby reducing shockwave losses and providing increase in wing lift.

  12. Context-Aware Image Compression

    PubMed Central

    Chan, Jacky C. K.; Mahjoubfar, Ata; Chen, Claire L.; Jalali, Bahram

    2016-01-01

    We describe a physics-based data compression method inspired by the photonic time stretch wherein information-rich portions of the data are dilated in a process that emulates the effect of group velocity dispersion on temporal signals. With this coding operation, the data can be downsampled at a lower rate than without it. In contrast to previous implementation of the warped stretch compression, here the decoding can be performed without the need of phase recovery. We present rate-distortion analysis and show improvement in PSNR compared to compression via uniform downsampling. PMID:27367904

  13. Designing experiments through compressed sensing.

    SciTech Connect

    Young, Joseph G.; Ridzal, Denis

    2013-06-01

    In the following paper, we discuss how to design an ensemble of experiments through the use of compressed sensing. Specifically, we show how to conduct a small number of physical experiments and then use compressed sensing to reconstruct a larger set of data. In order to accomplish this, we organize our results into four sections. We begin by extending the theory of compressed sensing to a finite product of Hilbert spaces. Then, we show how these results apply to experiment design. Next, we develop an efficient reconstruction algorithm that allows us to reconstruct experimental data projected onto a finite element basis. Finally, we verify our approach with two computational experiments.

  14. Compressibility effects on dynamic stall

    NASA Astrophysics Data System (ADS)

    Carr, Lawrence W.; Chandrasekhara, M. S.

    1996-12-01

    Dynamic stall delay of flow over airfoils rapidly pitching past the static stall angle has been studied by many scientists. However, the effect of compressibility on this dynamic stall behavior has been less comprehensively studied. This review presents a detailed assessment of research performed on this subject, including a historical review of work performed on both aircraft and helicopters, and offers insight into the impact of compressibility on the complex aerodynamic phenomenon known as dynamic stall. It also documents the major effect that compressibility can have on dynamic stall events, and the complete change of physics of the stall process that can occur as free-stream Mach number is increased.

  15. The effect of changes in compression ratio upon engine performance

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W

    1925-01-01

    This report is based upon engine tests made at the Bureau of Standards during 1920, 1921, 1922, and 1923. The majority of these tests were of aviation engines and were made in the Altitude Laboratory. For a small portion of the work a single cylinder experimental engine was used. This, however, was operated only at sea-level pressures. The report shows that an increase in break horsepower and a decrease in the pounds of fuel used per brake horsepower hour usually results from an increase in compression ratio. This holds true at least up to the highest ratio investigated, 14 to 1, provided there is no serious preignition or detonation at any ratio. To avoid preignition and detonation when employing high-compression ratios, it is often necessary to use some fuel other than gasoline. It has been found that the consumption of some of these fuels in pounds per brake horsepower hour is so much greater than the consumption of gasoline that it offsets the decrease derived from the use of the high-compression ratio. The changes in indicated thermal efficiency with changes in compression ratio are in close agreement with what would be anticipated from a consideration of the air cycle efficiencies at the various ratios. In so far as these tests are concerned there is no evidence that a change in compression ratio produces an appreciable, consistent change in friction horsepower, volumetric efficiency, or in the range of fuel-air ratios over which the engine can operate. The ratio between the heat loss to the jacket water and the heat converted into brake horsepower or indicated horsepower decreases with increase in compression ratio. (author)

  16. [Working ability between air and trimix breathing gas under 8 ATA air condition].

    PubMed

    Shibayama, M; Kosugi, S; Mohri, M; Yamamura, I; Oda, S; Kimura, A; Takeuchi, J; Mano, Y

    1990-04-01

    Pneumatic caisson work in Japan has come into operation since 1924. Afterward, this technique of compressed air work has been widely utilized in the construction of foundation basements, shafts of the bottom tunnel shields for subway and so forth. While using this technique of compressed air work means that workers have to be exposed to hyperbaric environment, this technique has risks of not only decompression sickness (DCS) but also toxicity of poisonous gas and/or oxygen deficiency. However, this technique is independent of city construction work and the operation of compressed air work higher than 5ATA (4.0 kg/cm2G) is actually been planning recently. Accordingly unmanned caisson work is considered as a better technique for such higher pressurized work, even though workers must enter into hyperbaric working fields for maintenance or repair of unmanned operated machinery and materials. This research is to establish the safe work under hyperbaric air environment at 8ATA. PMID:2400467

  17. Efficient lossy compression for compressive sensing acquisition of images in compressive sensing imaging systems.

    PubMed

    Li, Xiangwei; Lan, Xuguang; Yang, Meng; Xue, Jianru; Zheng, Nanning

    2014-12-05

    Compressive Sensing Imaging (CSI) is a new framework for image acquisition, which enables the simultaneous acquisition and compression of a scene. Since the characteristics of Compressive Sensing (CS) acquisition are very different from traditional image acquisition, the general image compression solution may not work well. In this paper, we propose an efficient lossy compression solution for CS acquisition of images by considering the distinctive features of the CSI. First, we design an adaptive compressive sensing acquisition method for images according to the sampling rate, which could achieve better CS reconstruction quality for the acquired image. Second, we develop a universal quantization for the obtained CS measurements from CS acquisition without knowing any a priori information about the captured image. Finally, we apply these two methods in the CSI system for efficient lossy compression of CS acquisition. Simulation results demonstrate that the proposed solution improves the rate-distortion performance by 0.4~2 dB comparing with current state-of-the-art, while maintaining a low computational complexity.

  18. Efficient Lossy Compression for Compressive Sensing Acquisition of Images in Compressive Sensing Imaging Systems

    PubMed Central

    Li, Xiangwei; Lan, Xuguang; Yang, Meng; Xue, Jianru; Zheng, Nanning

    2014-01-01

    Compressive Sensing Imaging (CSI) is a new framework for image acquisition, which enables the simultaneous acquisition and compression of a scene. Since the characteristics of Compressive Sensing (CS) acquisition are very different from traditional image acquisition, the general image compression solution may not work well. In this paper, we propose an efficient lossy compression solution for CS acquisition of images by considering the distinctive features of the CSI. First, we design an adaptive compressive sensing acquisition method for images according to the sampling rate, which could achieve better CS reconstruction quality for the acquired image. Second, we develop a universal quantization for the obtained CS measurements from CS acquisition without knowing any a priori information about the captured image. Finally, we apply these two methods in the CSI system for efficient lossy compression of CS acquisition. Simulation results demonstrate that the proposed solution improves the rate-distortion performance by 0.4∼2 dB comparing with current state-of-the-art, while maintaining a low computational complexity. PMID:25490597

  19. Firefighter's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    Beck, E. J.

    1974-01-01

    The research to design, fabricate, test, and deliver a pressure vessel for the main component in an improved high-performance firefighter's breathing system is reported. The principal physical and performance characteristics of the vessel which were required are: (1) maximum weight of 9.0 lb; (2) maximum operating pressure of 4500 psig (charge pressure of 4000 psig); (3) minimum contained volume of 280 in. 3; (4) proof pressure of 6750 psig; (5) minimum burst pressure of 9000 psig following operational and service life; and (6) a minimum service life of 15 years. The vessel developed to fulfill the requirements described was completely sucessful, i.e., every category of performence was satisfied. The average weight of the vessel was found to be about 8.3 lb, well below the 9.0 lb specification requirement.

  20. ELECTRONIC COMPONENT COOLING ALTERNATIVES: COMPRESSED AIR AND LIQUID NITROGEN

    EPA Science Inventory

    The goal of this study was to evaluate topics used to troubleshoot circuit boards with known or suspected thermally intermittent components. Failure modes for thermally intermittent components are typically mechanical defects, such as cracks in solder paths or joints, or broken b...

  1. [New aspects of compression therapy].

    PubMed

    Partsch, Bernhard; Partsch, Hugo

    2016-06-01

    In this review article the mechanisms of action of compression therapy are summarized and a survey of materials is presented together with some practical advice how and when these different devices should be applied. Some new experimental findings regarding the optimal dosage (= compression pressure) concerning an improvement of venous hemodynamics and a reduction of oedema are discussed. It is shown, that stiff, non-yielding material applied with adequate pressure provides hemodynamically superior effects compared to elastic material and that relatively low pressures reduce oedema. Compression over the calf is more important to increase the calf pump function compared to graduated compression. In patients with mixed, arterial-venous ulcers and an ABPI over 0.6 inelastic bandages not exceeding a sub-bandage pressure of 40 mmHg may increase the arterial flow and improve venous pumping function. PMID:27259340

  2. Efficient Decoding of Compressed Data.

    ERIC Educational Resources Information Center

    Bassiouni, Mostafa A.; Mukherjee, Amar

    1995-01-01

    Discusses the problem of enhancing the speed of Huffman decoding of compressed data. Topics addressed include the Huffman decoding tree; multibit decoding; binary string mapping problems; and algorithms for solving mapping problems. (22 references) (LRW)

  3. Comparison of Artificial Compressibility Methods

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Housman, Jeffrey; Kwak, Dochan

    2004-01-01

    Various artificial compressibility methods for calculating the three-dimensional incompressible Navier-Stokes equations are compared. Each method is described and numerical solutions to test problems are conducted. A comparison based on convergence behavior, accuracy, and robustness is given.

  4. Dynamics of Strongly Compressible Turbulence

    NASA Astrophysics Data System (ADS)

    Towery, Colin; Poludnenko, Alexei; Hamlington, Peter

    2015-11-01

    Strongly compressible turbulence, wherein the turbulent velocity fluctuations directly generate compression effects, plays a critical role in many important scientific and engineering problems of interest today, for instance in the processes of stellar formation and also hypersonic vehicle design. This turbulence is very unusual in comparison to ``normal,'' weakly compressible and incompressible turbulence, which is relatively well understood. Strongly compressible turbulence is characterized by large variations in the thermodynamic state of the fluid in space and time, including excited acoustic modes, strong, localized shock and rarefaction structures, and rapid heating due to viscous dissipation. The exact nature of these thermo-fluid dynamics has yet to be discerned, which greatly limits the ability of current computational engineering models to successfully treat these problems. New direct numerical simulation (DNS) results of strongly compressible isotropic turbulence will be presented along with a framework for characterizing and evaluating compressible turbulence dynamics and a connection will be made between the present diagnostic analysis and the validation of engineering turbulence models.

  5. Object-Based Image Compression

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.

    2003-01-01

    Image compression frequently supports reduced storage requirement in a computer system, as well as enhancement of effective channel bandwidth in a communication system, by decreasing the source bit rate through reduction of source redundancy. The majority of image compression techniques emphasize pixel-level operations, such as matching rectangular or elliptical sampling blocks taken from the source data stream, with exemplars stored in a database (e.g., a codebook in vector quantization or VQ). Alternatively, one can represent a source block via transformation, coefficient quantization, and selection of coefficients deemed significant for source content approximation in the decompressed image. This approach, called transform coding (TC), has predominated for several decades in the signal and image processing communities. A further technique that has been employed is the deduction of affine relationships from source properties such as local self-similarity, which supports the construction of adaptive codebooks in a self-VQ paradigm that has been called iterated function systems (IFS). Although VQ, TC, and IFS based compression algorithms have enjoyed varying levels of success for different types of applications, bit rate requirements, and image quality constraints, few of these algorithms examine the higher-level spatial structure of an image, and fewer still exploit this structure to enhance compression ratio. In this paper, we discuss a fourth type of compression algorithm, called object-based compression, which is based on research in joint segmentaton and compression, as well as previous research in the extraction of sketch-like representations from digital imagery. Here, large image regions that correspond to contiguous recognizeable objects or parts of objects are segmented from the source, then represented compactly in the compressed image. Segmentation is facilitated by source properties such as size, shape, texture, statistical properties, and spectral

  6. Air resources

    SciTech Connect

    1995-10-01

    This section describes the ambient (surrounding) air quality of the TVA region, discusses TVA emission contributions to ambient air quality, and identifies air quality impacts to human health and welfare. Volume 2 Technical Document 2, Environmental Consequences, describes how changes in TVA emissions could affect regional air quality, human health, environmental resources, and materials. The primary region of the affected environment is broadly defined as the state of Tennessee, as well as southern Kentucky, western Virginia, southern West Virginia, western North Carolina, and northern Georgia, Alabama, and Mississippi. This area represents the watershed of the Tennessee River and the 201 counties of the greater TVA service area. Emissions from outside the Tennessee Valley region contribute to air quality in the Valley. Also, TVA emissions are transported outside the Valley and have some impact on air quality beyond the primary study area. Although the study area experiences a number of air quality problems, overall air quality is good.

  7. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  8. Perceptual Image Compression in Telemedicine

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Ahumada, Albert J., Jr.; Eckstein, Miguel; Null, Cynthia H. (Technical Monitor)

    1996-01-01

    The next era of space exploration, especially the "Mission to Planet Earth" will generate immense quantities of image data. For example, the Earth Observing System (EOS) is expected to generate in excess of one terabyte/day. NASA confronts a major technical challenge in managing this great flow of imagery: in collection, pre-processing, transmission to earth, archiving, and distribution to scientists at remote locations. Expected requirements in most of these areas clearly exceed current technology. Part of the solution to this problem lies in efficient image compression techniques. For much of this imagery, the ultimate consumer is the human eye. In this case image compression should be designed to match the visual capacities of the human observer. We have developed three techniques for optimizing image compression for the human viewer. The first consists of a formula, developed jointly with IBM and based on psychophysical measurements, that computes a DCT quantization matrix for any specified combination of viewing distance, display resolution, and display brightness. This DCT quantization matrix is used in most recent standards for digital image compression (JPEG, MPEG, CCITT H.261). The second technique optimizes the DCT quantization matrix for each individual image, based on the contents of the image. This is accomplished by means of a model of visual sensitivity to compression artifacts. The third technique extends the first two techniques to the realm of wavelet compression. Together these two techniques will allow systematic perceptual optimization of image compression in NASA imaging systems. Many of the image management challenges faced by NASA are mirrored in the field of telemedicine. Here too there are severe demands for transmission and archiving of large image databases, and the imagery is ultimately used primarily by human observers, such as radiologists. In this presentation I will describe some of our preliminary explorations of the applications

  9. 149. Interior of Room B3, Air Compressor Room, showing a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    149. Interior of Room B-3, Air Compressor Room, showing a ca. 1960s Worthington air compressor used to provide compressed air for powerhouse; air compressor powered by an electric motor; stairway (far left) leads to the generator room. Looking south. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  10. Injectant mole-fraction imaging in compressible mixing flows using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Abbitt, John D., III; Mcdaniel, James C.

    1989-01-01

    A technique is described for imaging the injectant mole-fraction distribution in nonreacting compressible mixing flow fields. Planar fluorescence from iodine, seeded into air, is induced by a broadband argon-ion laser and collected using an intensified charge-injection-device array camera. The technique eliminates the thermodynamic dependence of the iodine fluorescence in the compressible flow field by taking the ratio of two images collected with identical thermodynamic flow conditions but different iodine seeding conditions.

  11. Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies

    SciTech Connect

    none,

    2014-03-01

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. This Building Technologies Office report: --Identifies alternatives to vapor-compression technology in residential and commercial HVAC applications --Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems --Makes specific research, development, and deployment (RD&D) recommendations to support further development of these technologies, should DOE choose to support non-vapor-compression technology further.

  12. Compressing a spinodal surface at fixed area: bijels in a centrifuge.

    PubMed

    Rumble, Katherine A; Thijssen, Job H J; Schofield, Andrew B; Clegg, Paul S

    2016-05-11

    Bicontinuous interfacially jammed emulsion gels (bijels) are solid-stabilised emulsions with two inter-penetrating continuous phases. Employing the method of centrifugal compression we find that macroscopically the bijel yields at relatively low angular acceleration. Both continuous phases escape from the top of the structure, making any compression immediately irreversible. Microscopically, the bijel becomes anisotropic with the domains aligned perpendicular to the compression direction which inhibits further liquid expulsion; this contrasts strongly with the sedimentation behaviour of colloidal gels. The original structure can, however, be preserved close to the top of the sample and thus the change to an anisotropic structure suggests internal yielding. Any air bubbles trapped in the bijel are found to aid compression by forming channels aligned parallel to the compression direction which provide a route for liquid to escape. PMID:27098233

  13. Influence of intermittent compression cuff design on interface pressure and calf deformation: experimental results.

    PubMed

    John, Gareth W; Narracott, Andrew J; Morris, Rhys J; Woodcock, John P; Lawford, Patricia V; Hose, D Rodney

    2007-01-01

    Intermittent pneumatic compression (IPC) is widely used for deep vein thrombosis (DVT) prophylaxis. The technique involves periodic inflation of a compression cuff around a limb, which acts to simulate the muscle pump mechanism, encouraging venous blood flow. However, there is uncertainty regarding the relationship between compression, vascular effects and clinical outcomes. This study investigates calf compression provided by four IPC cuffs with different air bladder configurations. Interface pressure between the cuff and the skin surface is measured and magnetic resonance (MR) images are obtained showing the calf cross section before and during compression. The data will be used to inform numerical simulations of IPC, leading to increased understanding of the implications of cuff design in relation to IPC and DVT prophylaxis.

  14. Compressing a spinodal surface at fixed area: bijels in a centrifuge.

    PubMed

    Rumble, Katherine A; Thijssen, Job H J; Schofield, Andrew B; Clegg, Paul S

    2016-05-11

    Bicontinuous interfacially jammed emulsion gels (bijels) are solid-stabilised emulsions with two inter-penetrating continuous phases. Employing the method of centrifugal compression we find that macroscopically the bijel yields at relatively low angular acceleration. Both continuous phases escape from the top of the structure, making any compression immediately irreversible. Microscopically, the bijel becomes anisotropic with the domains aligned perpendicular to the compression direction which inhibits further liquid expulsion; this contrasts strongly with the sedimentation behaviour of colloidal gels. The original structure can, however, be preserved close to the top of the sample and thus the change to an anisotropic structure suggests internal yielding. Any air bubbles trapped in the bijel are found to aid compression by forming channels aligned parallel to the compression direction which provide a route for liquid to escape.

  15. Compression of spectral meteorological imagery

    NASA Technical Reports Server (NTRS)

    Miettinen, Kristo

    1993-01-01

    Data compression is essential to current low-earth-orbit spectral sensors with global coverage, e.g., meteorological sensors. Such sensors routinely produce in excess of 30 Gb of data per orbit (over 4 Mb/s for about 110 min) while typically limited to less than 10 Gb of downlink capacity per orbit (15 minutes at 10 Mb/s). Astro-Space Division develops spaceborne compression systems for compression ratios from as little as three to as much as twenty-to-one for high-fidelity reconstructions. Current hardware production and development at Astro-Space Division focuses on discrete cosine transform (DCT) systems implemented with the GE PFFT chip, a 32x32 2D-DCT engine. Spectral relations in the data are exploited through block mean extraction followed by orthonormal transformation. The transformation produces blocks with spatial correlation that are suitable for further compression with any block-oriented spatial compression system, e.g., Astro-Space Division's Laplacian modeler and analytic encoder of DCT coefficients.

  16. Modeling Compressibility Effects in High-Speed Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Sarkar, S.

    2004-01-01

    Man has strived to make objects fly faster, first from subsonic to supersonic and then to hypersonic speeds. Spacecraft and high-speed missiles routinely fly at hypersonic Mach numbers, M greater than 5. In defense applications, aircraft reach hypersonic speeds at high altitude and so may civilian aircraft in the future. Hypersonic flight, while presenting opportunities, has formidable challenges that have spurred vigorous research and development, mainly by NASA and the Air Force in the USA. Although NASP, the premier hypersonic concept of the eighties and early nineties, did not lead to flight demonstration, much basic research and technology development was possible. There is renewed interest in supersonic and hypersonic flight with the HyTech program of the Air Force and the Hyper-X program at NASA being examples of current thrusts in the field. At high-subsonic to supersonic speeds, fluid compressibility becomes increasingly important in the turbulent boundary layers and shear layers associated with the flow around aerospace vehicles. Changes in thermodynamic variables: density, temperature and pressure, interact strongly with the underlying vortical, turbulent flow. The ensuing changes to the flow may be qualitative such as shocks which have no incompressible counterpart, or quantitative such as the reduction of skin friction with Mach number, large heat transfer rates due to viscous heating, and the dramatic reduction of fuel/oxidant mixing at high convective Mach number. The peculiarities of compressible turbulence, so-called compressibility effects, have been reviewed by Fernholz and Finley. Predictions of aerodynamic performance in high-speed applications require accurate computational modeling of these "compressibility effects" on turbulence. During the course of the project we have made fundamental advances in modeling the pressure-strain correlation and developed a code to evaluate alternate turbulence models in the compressible shear layer.

  17. The Effect of Compressibility on the Pressure Reading of a Prandtl Pitot Tube at Subsonic Flow Velocity

    NASA Technical Reports Server (NTRS)

    Walchner, O

    1939-01-01

    Errors arising from yawed flow were also determined up to 20 degrees angle of attack. In axial flow, the Prandtl pitot tube begins at w/a approx. = 0.8 to give an incorrect static pressure reading, while it records the tank pressure correctly, as anticipated, up to sonic velocity. Owing to the compressibility of the air, the Prandtl pitot tube manifests compression shocks when the air speed approaches velocity of sound. This affects the pressure reading of the instrument. Because of the increasing importance of high speed in aviation, this compressibility effect is investigated in detail.

  18. Data compression using Chebyshev transform

    NASA Technical Reports Server (NTRS)

    Cheng, Andrew F. (Inventor); Hawkins, III, S. Edward (Inventor); Nguyen, Lillian (Inventor); Monaco, Christopher A. (Inventor); Seagrave, Gordon G. (Inventor)

    2007-01-01

    The present invention is a method, system, and computer program product for implementation of a capable, general purpose compression algorithm that can be engaged on the fly. This invention has particular practical application with time-series data, and more particularly, time-series data obtained form a spacecraft, or similar situations where cost, size and/or power limitations are prevalent, although it is not limited to such applications. It is also particularly applicable to the compression of serial data streams and works in one, two, or three dimensions. The original input data is approximated by Chebyshev polynomials, achieving very high compression ratios on serial data streams with minimal loss of scientific information.

  19. Compressive behavior of fine sand.

    SciTech Connect

    Martin, Bradley E.; Kabir, Md. E.; Song, Bo; Chen, Wayne

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  20. Efficient access of compressed data

    SciTech Connect

    Eggers, S.J.; Shoshani, A.

    1980-06-01

    A compression technique is presented that allows a high degree of compression but requires only logarithmic access time. The technique is a constant suppression scheme, and is most applicable to stable databases whose distribution of constants is fairly clustered. Furthermore, the repeated use of the technique permits the suppression of a multiple number of different constants. Of particular interest is the application of the constant suppression technique to databases the composite key of which is made up of an incomplete cross product of several attribute domains. The scheme for compressing the full cross product composite key is well known. This paper, however, also handles the general, incomplete case by applying the constant suppression technique in conjunction with a composite key suppression scheme.

  1. Data compression for satellite images

    NASA Technical Reports Server (NTRS)

    Chen, P. H.; Wintz, P. A.

    1976-01-01

    An efficient data compression system is presented for satellite pictures and two grey level pictures derived from satellite pictures. The compression techniques take advantages of the correlation between adjacent picture elements. Several source coding methods are investigated. Double delta coding is presented and shown to be the most efficient. Both predictive differential quantizing technique and double delta coding can be significantly improved by applying a background skipping technique. An extension code is constructed. This code requires very little storage space and operates efficiently. Simulation results are presented for various coding schemes and source codes.

  2. Structured illumination temporal compressive microscopy

    PubMed Central

    Yuan, Xin; Pang, Shuo

    2016-01-01

    We present a compressive video microscope based on structured illumination with incoherent light source. The source-side illumination coding scheme allows the emission photons being collected by the full aperture of the microscope objective, and thus is suitable for the fluorescence readout mode. A 2-step iterative reconstruction algorithm, termed BWISE, has been developed to address the mismatch between the illumination pattern size and the detector pixel size. Image sequences with a temporal compression ratio of 4:1 were demonstrated. PMID:27231586

  3. Extended testing of compression distillation.

    NASA Technical Reports Server (NTRS)

    Bambenek, R. A.; Nuccio, P. P.

    1972-01-01

    During the past eight years, the NASA Manned Spacecraft Center has supported the development of an integrated water and waste management system which includes the compression distillation process for recovering useable water from urine, urinal flush water, humidity condensate, commode flush water, and concentrated wash water. This paper describes the design of the compression distillation unit, developed for this system, and the testing performed to demonstrate its reliability and performance. In addition, this paper summarizes the work performed on pretreatment and post-treatment processes, to assure the recovery of sterile potable water from urine and treated urinal flush water.

  4. Data compression in digitized lines

    NASA Technical Reports Server (NTRS)

    Thapa, Khagendra

    1990-01-01

    The problem of data compression is very important in digital photogrammetry, computer assisted cartography, and GIS/LIS. In addition, it is also applicable in many other fields such as computer vision, image processing, pattern recognition, and artificial intelligence. Consequently, there are many algorithms available to solve this problem but none of them are considered to be satisfactory. In this paper, a new method of finding critical points in a digitized curve is explained. This technique, based on the normalized symmetric scattered matrix, is good for both critical points detection and data compression. In addition, the critical points detected by this algorithm are compared with those by zero-crossings.

  5. Compressed sensing for phase retrieval.

    PubMed

    Newton, Marcus C

    2012-05-01

    To date there are several iterative techniques that enjoy moderate success when reconstructing phase information, where only intensity measurements are made. There remains, however, a number of cases in which conventional approaches are unsuccessful. In the last decade, the theory of compressed sensing has emerged and provides a route to solving convex optimisation problems exactly via ℓ(1)-norm minimization. Here the application of compressed sensing to phase retrieval in a nonconvex setting is reported. An algorithm is presented that applies reweighted ℓ(1)-norm minimization to yield accurate reconstruction where conventional methods fail.

  6. Compressing the inert doublet model

    NASA Astrophysics Data System (ADS)

    Blinov, Nikita; Kozaczuk, Jonathan; Morrissey, David E.; de la Puente, Alejandro

    2016-02-01

    The inert doublet model relies on a discrete symmetry to prevent couplings of the new scalars to Standard Model fermions. This stabilizes the lightest inert state, which can then contribute to the observed dark matter density. In the presence of additional approximate symmetries, the resulting spectrum of exotic scalars can be compressed. Here, we study the phenomenological and cosmological implications of this scenario. We derive new limits on the compressed inert doublet model from LEP, and outline the prospects for exclusion and discovery of this model at dark matter experiments, the LHC, and future colliders.

  7. Compressing the Inert Doublet Model

    DOE PAGESBeta

    Blinov, Nikita; Kozaczuk, Jonathan; Morrissey, David E.; de la Puente, Alejandro

    2016-02-16

    The Inert Doublet Model relies on a discrete symmetry to prevent couplings of the new scalars to Standard Model fermions. We found that this stabilizes the lightest inert state, which can then contribute to the observed dark matter density. In the presence of additional approximate symmetries, the resulting spectrum of exotic scalars can be compressed. Here, we study the phenomenological and cosmological implications of this scenario. In conclusion, we derive new limits on the compressed Inert Doublet Model from LEP, and outline the prospects for exclusion and discovery of this model at dark matter experiments, the LHC, and future colliders.

  8. Calculations of the Performance of a Compression-Ignition Engine-Compressor Turbine Combination I : Performance of a Highly Supercharged Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Sanders, J. C.; Mendelson, Alexander

    1945-01-01

    Small high-speed single-cylinder compression-ignition engines were tested to determine their performance characteristics under high supercharging. Calculations were made on the energy available in the exhaust gas of the compression-ignition engines. The maximum power at any given maximum cylinder pressure was obtained when the compression pressure was equal to the maximum cylinder pressure. Constant-pressure combustion was found possible at an engine speed of 2200 rpm. Exhaust pressures and temperatures were determined from an analysis of indicator cards. The analysis showed that, at rich mixtures with the exhaust back pressure equal to the inlet-air pressure, there is excess energy available for driving a turbine over that required for supercharging. The presence of this excess energy indicates that a highly supercharged compression-ignition engine might be desirable as a compressor and combustion chamber for a turbine.

  9. Effects of air resistance on AT-cut quartz thickness-shear resonators.

    PubMed

    Chen, Yangyang; Wang, Ji; Du, Jianke; Zhang, Weiping; Yang, Jiashi

    2013-02-01

    We study theoretically the effects of air resistance on an AT-cut quartz plate thickness-shear mode resonator. Mindlin's two-dimensional equations for coupled thickness-shear and flexural motions of piezoelectric plates are employed for the crystal resonator. The equations of a Newtonian fluid and the equations of linear acoustics are used for the shear and compressive waves in the air surrounding the resonator, respectively. Solutions for free and electrically forced vibrations are obtained. The impedance of the resonator is calculated. The effects of air resistance are examined. It is found that air viscosity causes a relative frequency shift of the order of ppm. When the material quality factor of quartz Q = 10(5), the air viscosity and compressibility both have significant effects on resonator impedance. For resonators with larger aspect ratios the effects of air resistance are weaker, and the effect of air compressibility is weaker than air viscosity.

  10. 29 CFR 1910.169 - Air receivers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equipment used in providing and utilizing compressed air for performing operations such as cleaning.... Boiler and Pressure Vessel Code Section VIII, which is incorporated by reference as specified in § 1910.6....M.E. Boiler and Pressure Vessel Code, Section VIII Edition 1968. (b) Installation and...

  11. 29 CFR 1910.169 - Air receivers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipment used in providing and utilizing compressed air for performing operations such as cleaning.... Boiler and Pressure Vessel Code Section VIII, which is incorporated by reference as specified in § 1910.6....M.E. Boiler and Pressure Vessel Code, Section VIII Edition 1968. (b) Installation and...

  12. 29 CFR 1926.306 - Air receivers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... providing and utilizing compressed air for performing operations such as cleaning, drilling, hoisting, and... be constructed in accordance with the 1968 edition of the A.S.M.E. Boiler and Pressure Vessel Code... with the A.S.M.E. Boiler and Pressure Vessel Code, Section VIII Edition 1968. (b) Installation...

  13. 29 CFR 1926.306 - Air receivers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... providing and utilizing compressed air for performing operations such as cleaning, drilling, hoisting, and... be constructed in accordance with the 1968 edition of the A.S.M.E. Boiler and Pressure Vessel Code... with the A.S.M.E. Boiler and Pressure Vessel Code, Section VIII Edition 1968. (b) Installation...

  14. 29 CFR 1926.306 - Air receivers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... providing and utilizing compressed air for performing operations such as cleaning, drilling, hoisting, and... be constructed in accordance with the 1968 edition of the A.S.M.E. Boiler and Pressure Vessel Code... with the A.S.M.E. Boiler and Pressure Vessel Code, Section VIII Edition 1968. (b) Installation...

  15. 29 CFR 1926.306 - Air receivers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... providing and utilizing compressed air for performing operations such as cleaning, drilling, hoisting, and... be constructed in accordance with the 1968 edition of the A.S.M.E. Boiler and Pressure Vessel Code... with the A.S.M.E. Boiler and Pressure Vessel Code, Section VIII Edition 1968. (b) Installation...

  16. 29 CFR 1910.169 - Air receivers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment used in providing and utilizing compressed air for performing operations such as cleaning.... Boiler and Pressure Vessel Code Section VIII, which is incorporated by reference as specified in § 1910.6....M.E. Boiler and Pressure Vessel Code, Section VIII Edition 1968. (b) Installation and...

  17. 29 CFR 1926.306 - Air receivers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... providing and utilizing compressed air for performing operations such as cleaning, drilling, hoisting, and... be constructed in accordance with the 1968 edition of the A.S.M.E. Boiler and Pressure Vessel Code... with the A.S.M.E. Boiler and Pressure Vessel Code, Section VIII Edition 1968. (b) Installation...

  18. 29 CFR 1910.169 - Air receivers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment used in providing and utilizing compressed air for performing operations such as cleaning.... Boiler and Pressure Vessel Code Section VIII, which is incorporated by reference as specified in § 1910.6....M.E. Boiler and Pressure Vessel Code, Section VIII Edition 1968. (b) Installation and...

  19. Compression fractures of the back

    MedlinePlus

    ... Meirhaeghe J, et al. Efficacy and safety of balloon kyphoplasty compared with non-surgical care for vertebral compression fracture (FREE): a randomised controlled trial. Lancet . 2009;373(9668):1016-24. PMID: 19246088 www.ncbi.nlm.nih.gov/pubmed/19246088 .

  20. Culture: Copying, Compression, and Conventionality

    ERIC Educational Resources Information Center

    Tamariz, Mónica; Kirby, Simon

    2015-01-01

    Through cultural transmission, repeated learning by new individuals transforms cultural information, which tends to become increasingly compressible (Kirby, Cornish, & Smith, 2008; Smith, Tamariz, & Kirby, 2013). Existing diffusion chain studies include in their design two processes that could be responsible for this tendency: learning…

  1. Compressive passive millimeter wave imager

    SciTech Connect

    Gopalsami, Nachappa; Liao, Shaolin; Elmer, Thomas W; Koehl, Eugene R; Heifetz, Alexander; Raptis, Apostolos C

    2015-01-27

    A compressive scanning approach for millimeter wave imaging and sensing. A Hadamard mask is positioned to receive millimeter waves from an object to be imaged. A subset of the full set of Hadamard acquisitions is sampled. The subset is used to reconstruct an image representing the object.

  2. Teaching Time-Space Compression

    ERIC Educational Resources Information Center

    Warf, Barney

    2011-01-01

    Time-space compression shows students that geographies are plastic, mutable and forever changing. This paper justifies the need to teach this topic, which is rarely found in undergraduate course syllabi. It addresses the impacts of transportation and communications technologies to explicate its dynamics. In summarizing various conceptual…

  3. Compression testing of flammable liquids

    NASA Technical Reports Server (NTRS)

    Briles, O. M.; Hollenbaugh, R. P.

    1979-01-01

    Small cylindrical test chamber determines catalytic effect of given container material on fuel that might contribute to accidental deflagration or detonation below expected temperature under adiabatic compression. Device is useful to producers and users of flammable liquids and to safety specialists.

  4. Perceptually lossy compression of documents

    NASA Astrophysics Data System (ADS)

    Beretta, Giordano B.; Bhaskaran, Vasudev; Konstantinides, Konstantinos; Natarajan, Balas R.

    1997-06-01

    The main cost of owning a facsimile machine consists of the telephone charges for the communications, thus short transmission times are a key feature for facsimile machines. Similarly, on a packet-routed service such as the Internet, a low number of packets is essential to avoid operator wait times. Concomitantly, the user expectations have increased considerably. In facsimile, the switch from binary to full color increases the data size by a factor of 24. On the Internet, the switch from plain text American Standard Code for Information Interchange (ASCII) encoded files to files marked up in the Hypertext Markup Language (HTML) with ample embedded graphics has increased the size of transactions by several orders of magnitude. A common compressing method for raster files in these applications in the Joint Photographic Experts Group (JPEG) method, because efficient implementations are readily available. In this method the implementors design the discrete quantization tables (DQT) and the Huffman tables (HT) to maximize the compression factor while maintaining the introduced artifacts at the threshold of perceptual detectability. Unfortunately the achieved compression rates are unsatisfactory for applications such as color facsimile and World Wide Web (W3) browsing. We present a design methodology for image-independent DQTs that while producing perceptually lossy data, does not impair the reading performance of users. Combined with a text sharpening algorithm that compensates for scanning device limitations, the methodology presented in this paper allows us to achieve compression ratios near 1:100.

  5. A programmable image compression system

    NASA Technical Reports Server (NTRS)

    Farrelle, Paul M.

    1989-01-01

    A programmable image compression system which has the necessary flexibility to address diverse imaging needs is described. It can compress and expand single frame video images (monochrome or color) as well as documents and graphics (black and white or color) for archival or transmission applications. Through software control, the compression mode can be set for lossless or controlled quality coding; the image size and bit depth can be varied; and the image source and destination devices can be readily changed. Despite the large combination of image data types, image sources, and algorithms, the system provides a simple consistent interface to the programmer. This system (OPTIPAC) is based on the TITMS320C25 digital signal processing (DSP) chip and has been implemented as a co-processor board for an IBM PC-AT compatible computer. The underlying philosophy can readily be applied to different hardware platforms. By using multiple DSP chips or incorporating algorithm specific chips, the compression and expansion times can be significantly reduced to meet performance requirements.

  6. Device Assists Cardiac Chest Compression

    NASA Technical Reports Server (NTRS)

    Eichstadt, Frank T.

    1995-01-01

    Portable device facilitates effective and prolonged cardiac resuscitation by chest compression. Developed originally for use in absence of gravitation, also useful in terrestrial environments and situations (confined spaces, water rescue, medical transport) not conducive to standard manual cardiopulmonary resuscitation (CPR) techniques.

  7. COMPRESSIBLE FLOW, ENTRAINMENT, AND MEGAPLUME

    EPA Science Inventory

    It is generally believed that low Mach number, i.e., low-velocity, flow may be assumed to be incompressible flow. Under steady-state conditions, an exact equation of continuity may then be used to show that such flow is non-divergent. However, a rigorous, compressible fluid-dynam...

  8. Hyperspectral image compressive projection algorithm

    NASA Astrophysics Data System (ADS)

    Rice, Joseph P.; Allen, David W.

    2009-05-01

    We describe a compressive projection algorithm and experimentally assess its performance when used with a Hyperspectral Image Projector (HIP). The HIP is being developed by NIST for system-level performance testing of hyperspectral and multispectral imagers. It projects a two-dimensional image into the unit under test (UUT), whereby each pixel can have an independently programmable arbitrary spectrum. To efficiently project a single frame of dynamic realistic hyperspectral imagery through the collimator into the UUT, a compression algorithm has been developed whereby the series of abundance images and corresponding endmember spectra that comprise the image cube of that frame are first computed using an automated endmember-finding algorithm such as the Sequential Maximum Angle Convex Cone (SMACC) endmember model. Then these endmember spectra are projected sequentially on the HIP spectral engine in sync with the projection of the abundance images on the HIP spatial engine, during the singleframe exposure time of the UUT. The integrated spatial image captured by the UUT is the endmember-weighted sum of the abundance images, which results in the formation of a datacube for that frame. Compressive projection enables a much smaller set of broadband spectra to be projected than monochromatic projection, and thus utilizes the inherent multiplex advantage of the HIP spectral engine. As a result, radiometric brightness and projection frame rate are enhanced. In this paper, we use a visible breadboard HIP to experimentally assess the compressive projection algorithm performance.

  9. Advection by polytropic compressible turbulence

    NASA Astrophysics Data System (ADS)

    Ladeinde, F.; O'Brien, E. E.; Cai, X.; Liu, W.

    1995-11-01

    Direct numerical simulation (DNS) is used to examine scalar correlation in low Mach number, polytropic, homogeneous, two-dimensional turbulence (Ms≤0.7) for which the initial conditions, Reynolds, and Mach numbers have been chosen to produce three types of flow suggested by theory: (a) nearly incompressible flow dominated by vorticity, (b) nearly pure acoustic turbulence dominated by compression, and (c) nearly statistical equipartition of vorticity and compressions. Turbulent flows typical of each of these cases have been generated and a passive scalar field imbedded in them. The results show that a finite-difference based computer program is capable of producing results that are in reasonable agreement with pseudospectral calculations. Scalar correlations have been calculated from the DNS results and the relative magnitudes of terms in low-order scalar moment equations determined. It is shown that the scalar equation terms with explicit compressibility are negligible on a long time-averaged basis. A physical-space EDQNM model has been adapted to provide another estimate of scalar correlation evolution in these same two-dimensional, compressible cases. The use of the solenoidal component of turbulence energy, rather than total turbulence energy, in the EDQNM model gives results closer to those from DNS in all cases.

  10. Adiabatic Compression Sensitivity of Liquid Fuels and Monopropellants

    NASA Technical Reports Server (NTRS)

    Ismail, Ismail M. K.; Hawkins, Tom W.

    2000-01-01

    Liquid rocket propellants can be sensitive to rapid compression. Such liquids may undergo decomposition and their handling may be accompanied with risk. Decomposition produces small gas bubbles in the liquid, which upon rapid compression may cause catastrophic explosions. The rapid compression can result from mechanical shocks applied on the tank containing the liquid or from rapid closure of the valves installed on the lines. It is desirable to determine the conditions that may promote explosive reactions. At Air Force Research Laboratory (AFRL), we constructed an apparatus and established a safe procedure for estimating the sensitivity of propellant materials towards mechanical shocks (Adiabatic Compression Tester). A sample is placed on a stainless steel U-tube, held isothermally at a temperature between 20 and 150 C then exposed to an abrupt mechanical shock of nitrogen gas at a pressure between 6.9 and 20.7 MPa (1000 to 3000 psi). The apparatus is computer interfaced and is driven with LABTECH NOTEBOOK-pro (registered) Software. In this presentation, the design of the apparatus is shown, the operating procedure is outlined, and the safety issues are addressed. The results obtained on different energetic materials are presented.

  11. Dynamic control of a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P.; Mehresh, Parag; Schuh, David; Kieser, Andrew J.; Hergart, Carl-Anders; Hardy, William L.; Rodman, Anthony; Liechty, Michael P.

    2008-06-03

    A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

  12. Magnetic Flux Compression Experiments Using Plasma Armatures

    NASA Technical Reports Server (NTRS)

    Turner, M. W.; Hawk, C. W.; Litchford, R. J.

    2003-01-01

    Magnetic flux compression reaction chambers offer considerable promise for controlling the plasma flow associated with various micronuclear/chemical pulse propulsion and power schemes, primarily because they avoid thermalization with wall structures and permit multicycle operation modes. The major physical effects of concern are the diffusion of magnetic flux into the rapidly expanding plasma cloud and the development of Rayleigh-Taylor instabilities at the plasma surface, both of which can severely degrade reactor efficiency and lead to plasma-wall impact. A physical parameter of critical importance to these underlying magnetohydrodynamic (MHD) processes is the magnetic Reynolds number (R(sub m), the value of which depends upon the product of plasma electrical conductivity and velocity. Efficient flux compression requires R(sub m) less than 1, and a thorough understanding of MHD phenomena at high magnetic Reynolds numbers is essential to the reliable design and operation of practical reactors. As a means of improving this understanding, a simplified laboratory experiment has been constructed in which the plasma jet ejected from an ablative pulse plasma gun is used to investigate plasma armature interaction with magnetic fields. As a prelude to intensive study, exploratory experiments were carried out to quantify the magnetic Reynolds number characteristics of the plasma jet source. Jet velocity was deduced from time-of-flight measurements using optical probes, and electrical conductivity was measured using an inductive probing technique. Using air at 27-inHg vacuum, measured velocities approached 4.5 km/s and measured conductivities were in the range of 30 to 40 kS/m.

  13. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    ERIC Educational Resources Information Center

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  14. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  15. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  16. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  17. Stirling Air Conditioner for Compact Cooling

    SciTech Connect

    2010-09-01

    BEETIT Project: Infinia is developing a compact air conditioner that uses an unconventional high efficient Stirling cycle system (vs. conventional vapor compression systems) to produce cool air that is energy efficient and does not rely on polluting refrigerants. The Stirling cycle system is a type of air conditioning system that uses a motor with a piston to remove heat to the outside atmosphere using a gas refrigerant. To date, Stirling systems have been expensive and have not had the right kind of heat exchanger to help cool air efficiently. Infinia is using chip cooling technology from the computer industry to make improvements to the heat exchanger and improve system performance. Infinia’s air conditioner uses helium gas as refrigerant, an environmentally benign gas that does not react with other chemicals and does not burn. Infinia’s improvements to the Stirling cycle system will enable the cost-effective mass production of high-efficiency air conditioners that use no polluting refrigerants.

  18. Pediatric air gun shot injury

    PubMed Central

    Khan, Ubaid U.; Kamal, Naglaa M.; Mirza, Shazia J.; Sherief, Laila M.

    2014-01-01

    Air guns (AGs) use air or another compressed gas to propel a projectile. Different injuries may occur in children due to their body structure, which is less-resistant with thin soft tissue coverage that can be easily penetrated by an AG shot. We present 3 cases of pediatric AG shot injury. The first-case had right lumber deep tissue penetration of AG pallet without internal damage, the second-case had a complex course of pellet into the perineum, and the third-case was shot in the left shoulder. All cases were accidentally shot. The shooters were all children, and relatives of the victims. All patients were generally stable on arrival. Two cases were operated, and one received conservative management. On follow up, no complications were noted. At first sight, AGs and air rifles may appear relatively harmless, but they are potentially lethal and children should not be allowed to play with them. PMID:25491217

  19. Pediatric air gun shot injury.

    PubMed

    Khan, Ubaid U; Kamal, Naglaa M; Mirza, Shazia J; Sherief, Laila M

    2014-12-01

    Air guns (AGs) use air or another compressed gas to propel a projectile. Different injuries may occur in children due to their body structure, which is less-resistant with thin soft tissue coverage that can be easily penetrated by an AG shot. We present 3 cases of pediatric AG shot injury. The first-case had right lumber deep tissue penetration of AG pallet without internal damage, the second-case had a complex course of pellet into the perineum, and the third-case was shot in the left shoulder. All cases were accidentally shot. The shooters were all children, and relatives of the victims. All patients were generally stable on arrival. Two cases were operated, and one received conservative management. On follow up, no complications were noted.  At first sight, AGs and air rifles may appear relatively harmless, but they are potentially lethal and children should not be allowed to play with them.  PMID:25491217

  20. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    SciTech Connect

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity

  1. Physical examination of upper extremity compressive neuropathies.

    PubMed

    Popinchalk, Samuel P; Schaffer, Alyssa A

    2012-10-01

    A thorough history and physical examination are vital to the assessment of upper extremity compressive neuropathies. This article summarizes relevant anatomy and physical examination findings associated with upper extremity compressive neuropathies.

  2. Sensorineural deafness due to compression chamber noise.

    PubMed

    Hughes, K B

    1976-05-01

    A case of unilateral sensorineural deafness following exposure to compression chamber noise is described. A review of the current literature concerning the otological hazards of compression chambers is made. The possible pathological basis is discussed.

  3. Integrated air separation plant-integrated gasification combined cycle power generator

    SciTech Connect

    Allam, R.J.; Topham, A.

    1992-01-21

    This patent describes an integrated gasification combined cycle power generation system, comprising an air separation unit wherein air is compressed, cooled, and separated into an oxygen and nitrogen enriched fractions, a gasification system for generating a fuel gas, an air compressor system for supplying compressed air for use in combusting the fuel gas, a combustion zone for effecting combustion of the compressed air and the fuel gas, and a gas turbine for effecting the generation of power from the resulting combusted gases from the combustion zone in the combined cycle power generation system. It comprises independently compressing feed air to the air separation unit to pressures of from 8 to 20 bar from the compressor system used to compress air for the combustion zone; cryogenically separating the air in the air separation unit having at least one distillation column operating at pressures of between 8 and 20 bar and producing an oxygen enriched fraction consisting of low purity oxygen, and; utilizing at least a portion of the low purity oxygen for effecting gasification of a carbon containing fuel source by partial oxidation in the gasification system and thereby generating a fuel gas stream; removing at least a portion of a nitrogen enriched fraction from the air separation unit and boosting its pressures to a pressure substantially equal to that of the fuel gas stream; and expanding at least another portion of the nitrogen enriched fraction in an expansion engine.

  4. Cluster compression algorithm: A joint clustering/data compression concept

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.

    1977-01-01

    The Cluster Compression Algorithm (CCA), which was developed to reduce costs associated with transmitting, storing, distributing, and interpreting LANDSAT multispectral image data is described. The CCA is a preprocessing algorithm that uses feature extraction and data compression to more efficiently represent the information in the image data. The format of the preprocessed data enables simply a look-up table decoding and direct use of the extracted features to reduce user computation for either image reconstruction, or computer interpretation of the image data. Basically, the CCA uses spatially local clustering to extract features from the image data to describe spectral characteristics of the data set. In addition, the features may be used to form a sequence of scalar numbers that define each picture element in terms of the cluster features. This sequence, called the feature map, is then efficiently represented by using source encoding concepts. Various forms of the CCA are defined and experimental results are presented to show trade-offs and characteristics of the various implementations. Examples are provided that demonstrate the application of the cluster compression concept to multi-spectral images from LANDSAT and other sources.

  5. FRESCO: Referential compression of highly similar sequences.

    PubMed

    Wandelt, Sebastian; Leser, Ulf

    2013-01-01

    In many applications, sets of similar texts or sequences are of high importance. Prominent examples are revision histories of documents or genomic sequences. Modern high-throughput sequencing technologies are able to generate DNA sequences at an ever-increasing rate. In parallel to the decreasing experimental time and cost necessary to produce DNA sequences, computational requirements for analysis and storage of the sequences are steeply increasing. Compression is a key technology to deal with this challenge. Recently, referential compression schemes, storing only the differences between a to-be-compressed input and a known reference sequence, gained a lot of interest in this field. In this paper, we propose a general open-source framework to compress large amounts of biological sequence data called Framework for REferential Sequence COmpression (FRESCO). Our basic compression algorithm is shown to be one to two orders of magnitudes faster than comparable related work, while achieving similar compression ratios. We also propose several techniques to further increase compression ratios, while still retaining the advantage in speed: 1) selecting a good reference sequence; and 2) rewriting a reference sequence to allow for better compression. In addition,we propose a new way of further boosting the compression ratios by applying referential compression to already referentially compressed files (second-order compression). This technique allows for compression ratios way beyond state of the art, for instance,4,000:1 and higher for human genomes. We evaluate our algorithms on a large data set from three different species (more than 1,000 genomes, more than 3 TB) and on a collection of versions of Wikipedia pages. Our results show that real-time compression of highly similar sequences at high compression ratios is possible on modern hardware.

  6. Image quality (IQ) guided multispectral image compression

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  7. Multiphase, Multicomponent Compressibility in Geothermal Reservoir Engineering

    SciTech Connect

    Macias-Chapa, L.; Ramey, H.J. Jr.

    1987-01-20

    Coefficients of compressibilities below the bubble point were computer with a thermodynamic model for single and multicomponent systems. Results showed coefficients of compressibility below the bubble point larger than the gas coefficient of compressibility at the same conditions. Two-phase compressibilities computed in the conventional way are underestimated and may lead to errors in reserve estimation and well test analysis. 10 refs., 9 figs.

  8. FRESCO: Referential compression of highly similar sequences.

    PubMed

    Wandelt, Sebastian; Leser, Ulf

    2013-01-01

    In many applications, sets of similar texts or sequences are of high importance. Prominent examples are revision histories of documents or genomic sequences. Modern high-throughput sequencing technologies are able to generate DNA sequences at an ever-increasing rate. In parallel to the decreasing experimental time and cost necessary to produce DNA sequences, computational requirements for analysis and storage of the sequences are steeply increasing. Compression is a key technology to deal with this challenge. Recently, referential compression schemes, storing only the differences between a to-be-compressed input and a known reference sequence, gained a lot of interest in this field. In this paper, we propose a general open-source framework to compress large amounts of biological sequence data called Framework for REferential Sequence COmpression (FRESCO). Our basic compression algorithm is shown to be one to two orders of magnitudes faster than comparable related work, while achieving similar compression ratios. We also propose several techniques to further increase compression ratios, while still retaining the advantage in speed: 1) selecting a good reference sequence; and 2) rewriting a reference sequence to allow for better compression. In addition,we propose a new way of further boosting the compression ratios by applying referential compression to already referentially compressed files (second-order compression). This technique allows for compression ratios way beyond state of the art, for instance,4,000:1 and higher for human genomes. We evaluate our algorithms on a large data set from three different species (more than 1,000 genomes, more than 3 TB) and on a collection of versions of Wikipedia pages. Our results show that real-time compression of highly similar sequences at high compression ratios is possible on modern hardware. PMID:24524158

  9. General-Purpose Compression for Efficient Retrieval.

    ERIC Educational Resources Information Center

    Cannane, Adam; Williams, Hugh E.

    2001-01-01

    Discusses compression of databases that reduces space requirements and retrieval times; considers compression of documents in text databases based on semistatic modeling with words; and proposes a scheme for general purpose compression that can be applied to all types of data stored in large collections. (Author/LRW)

  10. Compressibility of liquid-metallic hydrogen

    NASA Astrophysics Data System (ADS)

    MacDonald, A. H.

    1983-05-01

    An expression for the compressibility κ of liquid-metallic hydrogen, derived within adiabatic and linear screening approximations, is presented. Terms in the expression for κ have been associated with Landau parameters of the two-component Fermi liquid. The compressibility found for the liquid state is much larger than the compressibility which would be expected in the solid state.

  11. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  12. Energy-saving compression valve of the rock drill

    NASA Astrophysics Data System (ADS)

    Glazov, A. N.; Efanov, A. A.; Aikina, T. Yu

    2015-11-01

    The relevance of the research is due to the necessity to create pneumatic rock drills with low air consumption. The article analyzes the reasons for low efficiency of percussive machines. The authors state that applying a single distribution body in the percussive mechanism does not allow carrying out a low-energy operating cycle of the mechanism. Using the studied device as an example, it is substantiated that applying a compression valve with two distribution bodies separately operating the working chambers makes it possible to significantly reduce the airflow. The authors describe the construction of a core drill percussive mechanism and the operation of a compression valve. It is shown that in the new percussive mechanism working chambers are cut off the circuit by the time when exhaust windows are opened by the piston and air is not supplied into the cylinder up to 20% of the cycle time. The air flow rate of the new mechanism was 3.8 m3/min. In comparison with the drill PK-75, the overall noise level of the new machine is lower by 8-10 dB, while the percussive mechanism efficiency is 2.3 times higher.

  13. Growing concern following compression mammography.

    PubMed

    van Netten, Johannes Pieter; Hoption Cann, Stephen; Thornton, Ian; Finegan, Rory

    2016-01-01

    A patient without clinical symptoms had a mammogram in October 2008. The procedure caused intense persistent pain, swelling and development of a haematoma following mediolateral left breast compression. Three months later, a 9×11 cm mass developed within the same region. Core biopsies showed a necrotizing high-grade ductal carcinoma, with a high mitotic index. Owing to its extensive size, the patient began chemotherapy followed by trastuzumab and later radiotherapy to obtain clear margins for a subsequent mastectomy. The mastectomy in October 2009 revealed an inflammatory carcinoma, with 2 of 3 nodes infiltrated by the tumour. The stage IIIC tumour, oestrogen and progesterone receptor negative, was highly HER2 positive. A recurrence led to further chemotherapy in February 2011. In July 2011, another recurrence was removed from the mastectomy scar. She died of progressive disease in 2012. In this article, we discuss the potential influence of compression on the natural history of the tumour. PMID:27581236

  14. Using autoencoders for mammogram compression.

    PubMed

    Tan, Chun Chet; Eswaran, Chikkannan

    2011-02-01

    This paper presents the results obtained for medical image compression using autoencoder neural networks. Since mammograms (medical images) are usually of big sizes, training of autoencoders becomes extremely tedious and difficult if the whole image is used for training. We show in this paper that the autoencoders can be trained successfully by using image patches instead of the whole image. The compression performances of different types of autoencoders are compared based on two parameters, namely mean square error and structural similarity index. It is found from the experimental results that the autoencoder which does not use Restricted Boltzmann Machine pre-training yields better results than those which use this pre-training method.

  15. Frost heave in compressible soils

    NASA Astrophysics Data System (ADS)

    Peppin, Stephen; Majumdar, Apala; Sander, Graham

    2010-05-01

    Recent frost heave experiments on compressible soils find no pore ice in the soil near the ice lenses (no frozen fringe). These results confirm early observations of Beskow that in clays the soil between ice lenses is ``soft and unfrozen'' but have yet to be explained theoretically. Recently it has been suggested that periodic ice lens formation in the absence of a frozen fringe may be due to a morphological instability of the ice--soil interface. Here we use this concept to develop a mathematical model of frost heave in compressible soils. The theory accounts for heave, overburden effects and soil consolidation. In the limit of a rigid porous medium a relation is obtained between the critical morphological number and the empirical segregation potential. Analytical and numerical solutions are found, and compared with the results of unidirectional solidification experiments.

  16. [Medical image compression: a review].

    PubMed

    Noreña, Tatiana; Romero, Eduardo

    2013-01-01

    Modern medicine is an increasingly complex activity , based on the evidence ; it consists of information from multiple sources : medical record text , sound recordings , images and videos generated by a large number of devices . Medical imaging is one of the most important sources of information since they offer comprehensive support of medical procedures for diagnosis and follow-up . However , the amount of information generated by image capturing gadgets quickly exceeds storage availability in radiology services , generating additional costs in devices with greater storage capacity . Besides , the current trend of developing applications in cloud computing has limitations, even though virtual storage is available from anywhere, connections are made through internet . In these scenarios the optimal use of information necessarily requires powerful compression algorithms adapted to medical activity needs . In this paper we present a review of compression techniques used for image storage , and a critical analysis of them from the point of view of their use in clinical settings. PMID:23715317

  17. [Medical image compression: a review].

    PubMed

    Noreña, Tatiana; Romero, Eduardo

    2013-01-01

    Modern medicine is an increasingly complex activity , based on the evidence ; it consists of information from multiple sources : medical record text , sound recordings , images and videos generated by a large number of devices . Medical imaging is one of the most important sources of information since they offer comprehensive support of medical procedures for diagnosis and follow-up . However , the amount of information generated by image capturing gadgets quickly exceeds storage availability in radiology services , generating additional costs in devices with greater storage capacity . Besides , the current trend of developing applications in cloud computing has limitations, even though virtual storage is available from anywhere, connections are made through internet . In these scenarios the optimal use of information necessarily requires powerful compression algorithms adapted to medical activity needs . In this paper we present a review of compression techniques used for image storage , and a critical analysis of them from the point of view of their use in clinical settings.

  18. Splanchnic Compression Improves the Efficacy of Compression Stockings to Prevent Orthostatic Intolerance

    NASA Technical Reports Server (NTRS)

    Platts, Steven H.; Brown, A. K.; Lee, S. M.; Stenger, M. B.

    2009-01-01

    Purpose: Post-spaceflight orthostatic intolerance (OI) is observed in 20-30% of astronauts. Previous data from our laboratory suggests that this is largely a result of decreased venous return. Currently, NASA astronauts wear an anti-gravity suit (AGS) which consists of inflatable air bladders over the calves, thighs and abdomen, typically pressurized from 26 to 78 mmHg. We recently determined that, thigh-high graded compression stockings (JOBST , 55 mmHg at ankle, 6 mmHg at top of thigh) were effective, though to a lesser degree than the AGS. The purpose of this study was to evaluate the addition of splanchnic compression to prevent orthostatic intolerance. Methods: Ten healthy volunteers (6M, 4F) participated in three 80 head-up tilts on separate days while (1) normovolemic (2) hypovolemic w/ breast-high compression stockings (BS)(JOBST(R), 55 mmHg at the ankle, 6 mmHg at top of thigh, 12 mmHg over abdomen) (3) hypovolemic w/o stockings. Hypovolemia was induced by IV infusion of furosemide (0.5 mg/kg) and 48 hrs of a low salt diet to simulate plasma volume loss following space flight. Hypovolemic testing occurred 24 and 48 hrs after furosemide. One-way repeated measures ANOVA, with Bonferroni corrections, was used to test for differences in blood pressure and heart rate responses to head-up tilt, stand times were compared using a Kaplan-Meyer survival analysis. Results: BS were effective in preventing OI and presyncope in hypovolemic test subjects ( p = 0.015). BS prevented the decrease in systolic blood pressure seen during tilt in normovolemia (p < 0.001) and hypovolemia w/o countermeasure (p = 0.005). BS also prevented the decrease in diastolic blood pressure seen during tilt in normovolemia (p = 0.006) and hypovolemia w/o countermeasure (p = 0.041). Hypovolemia w/o countermeasure showed a higher tilt-induced heart rate increase (p = 0.022) than seen in normovolemia; heart rate while wearing BS was not different than normovolemia (p = 0.353). Conclusion: BS may

  19. Antiproton compression and radial measurements

    SciTech Connect

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A. J.; Jenkins, M. J.; Joergensen, L. V.; Madsen, N.; Werf, D. P. van der; Bray, C. C.; Chapman, S.; Fajans, J.; Povilus, A.; Wurtele, J. S.; Cesar, C. L.; Lambo, R.; Silveira, D. M.; Fujiwara, M. C.

    2008-08-08

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile, and its relation to that of the electron plasma. We also measure the outer radial profile by ejecting antiprotons to the trap wall using an octupole magnet.

  20. Vascular compression of the duodenum.

    PubMed Central

    Moskovich, R; Cheong-Leen, P

    1986-01-01

    Compression of the third or fourth part of the duodenum by the superior mesenteric artery or one of its branches is the anatomic basis for some cases of duodenal obstruction. Two cases of vascular obstruction of the duodenum after surgical correction of scoliosis are presented. The embryologic and pathoanatomic bases for this condition, and the rationale for treatment, are described. Images Figure 1. Figure 2. Figure 3. PMID:3761291